WO2012176839A1 - Method for manufacturing rear face electrode type solar battery - Google Patents

Method for manufacturing rear face electrode type solar battery Download PDF

Info

Publication number
WO2012176839A1
WO2012176839A1 PCT/JP2012/065864 JP2012065864W WO2012176839A1 WO 2012176839 A1 WO2012176839 A1 WO 2012176839A1 JP 2012065864 W JP2012065864 W JP 2012065864W WO 2012176839 A1 WO2012176839 A1 WO 2012176839A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
region
passivation film
silicon substrate
conductivity type
Prior art date
Application number
PCT/JP2012/065864
Other languages
French (fr)
Japanese (ja)
Inventor
直城 浅野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012176839A1 publication Critical patent/WO2012176839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a back electrode type solar cell, and more particularly to a method for forming a passivation film on a semiconductor region of a back electrode type solar cell.
  • the conductivity type of a silicon substrate is, for example, a surface of a single-crystal or polycrystalline silicon substrate located on a light incident side (hereinafter referred to as “light-receiving surface of a silicon substrate”).
  • a pn junction is formed by diffusing impurities having different conductivity types, and electrodes are respectively provided on the light receiving surface of the silicon substrate and a surface located on the opposite side of the light receiving surface (hereinafter referred to as “the back surface of the silicon substrate”).
  • the back surface of the silicon substrate The ones that are formed and manufactured are the mainstream.
  • FIG. 8 is a cross-sectional view schematically showing an example of the configuration of the back junction solar cell 200 disclosed in Patent Document 1.
  • An antireflection film 209 is formed on the light receiving surface of the n-type silicon substrate 201.
  • An n + layer 205 and a p + layer 206 are formed on the back surface of the silicon substrate 201.
  • a first passivation film 203 is formed on the p + layer 206, and a second passivation film 204 different from the first passivation film 203 is formed on the n + layer 205.
  • a p electrode 208 is connected to the p + layer 206, and an n electrode 207 is connected to the n + layer 205.
  • FIG. 9 is a cross-sectional view showing an example of the manufacturing method of the back junction solar cell of FIG. 8 disclosed in Patent Document 1 in the order of steps. With reference to FIG. 9, a method of manufacturing the back junction solar cell shown in FIG. 8 will be described.
  • an n-type silicon substrate 401 is prepared.
  • a texture mask 413 made of a silicon oxide film or the like is formed on the back surface of the silicon substrate 401, and a texture structure 410 is formed on the light receiving surface of the silicon substrate 401 by etching.
  • a first diffusion mask 411 made of a silicon oxide film or the like is formed on the entire light receiving surface and back surface of the silicon substrate 401.
  • a first etching paste is printed in a desired pattern on the first diffusion mask 411 formed on the back surface of the silicon substrate 401 by, for example, a screen printing method.
  • the silicon substrate 401 on which the first etching paste is printed is subjected to heat treatment.
  • the silicon substrate 401 is immersed in water, and ultrasonic cleaning is performed by applying ultrasonic waves.
  • the first etching paste is removed, and a window 414 is formed on the back surface of the silicon substrate 401.
  • vapor phase diffusion of boron which is a p-type impurity as the first conductivity type impurity, is performed on the silicon substrate 401.
  • the p + layer 406 as the first conductivity type impurity diffusion layer is formed in the window 414.
  • the first diffusion mask 411 formed on the silicon substrate 401 and the BSG (boron silicate glass) film formed on the silicon substrate 401 by diffusion of boron are all removed using a hydrogen fluoride aqueous solution or the like.
  • a second diffusion mask 412 made of a silicon oxide film or the like is formed on the entire light receiving surface and back surface of the silicon substrate 401.
  • a second etching paste is printed in a desired pattern on the second diffusion mask 412 formed on the back surface of the silicon substrate 401.
  • the second etching paste may have the same composition as the first etching paste, or may have a different composition.
  • the silicon substrate 401 on which the second etching paste is printed is subjected to heat treatment. As a result, only the portion of the second diffusion mask 412 formed on the back surface of the silicon substrate 401 on which the second etching paste is printed is removed by etching. Thereafter, the window 415 is formed on the back surface of the silicon substrate 401 by performing the process in the step shown in FIG.
  • vapor phase diffusion of phosphorus which is an n-type impurity as the second conductivity type impurity, is performed on the silicon substrate 401.
  • an n + layer 405 as a second conductivity type impurity diffusion layer is formed in the window 415.
  • the second diffusion mask 412 formed on the silicon substrate 401 and the PSG (phosphorus silicate glass) film formed on the silicon substrate 401 by diffusion of phosphorus are all removed using a hydrogen fluoride aqueous solution or the like.
  • the silicon substrate 401 is thermally oxidized.
  • a first passivation film 403 made of a silicon oxide film is formed on the entire back surface of the silicon substrate 401.
  • the silicon oxide film 403a is also formed on the entire light receiving surface of the silicon substrate 401.
  • portions of the first passivation film 403 other than the portion formed on the p + layer 406 are removed by etching.
  • the etching paste used at this time may be the first etching paste or the second etching paste. As a result, the first passivation film 403 remains only on the p + layer 406.
  • a second passivation film 404 is formed on the back surface of the silicon substrate 401 from which the first passivation film 403 has been removed.
  • a silicon nitride film as the second passivation film 404 is formed on the back surface of the silicon substrate 401 and the n + layer 405 by forming a film made of silicon nitride by plasma CVD.
  • This second passivation film 404 is also formed on the first passivation film 403.
  • the silicon oxide film 403a formed on the light receiving surface of the silicon substrate 401 is completely removed using a hydrogen fluoride aqueous solution or the like, and then a silicon nitride film is formed on the light receiving surface.
  • An antireflection film 409 made of or the like is formed.
  • a contact hole 416 and a contact hole 417 are formed.
  • a part of each of the n + layer 405 and the p + layer 406 is exposed from the second passivation film 404 and the like.
  • the contact hole 416 and the contact hole 417 are formed by the following method.
  • the silicon substrate 401 is heated. Thereby, the second passivation film 404 on which the etching paste is printed is removed.
  • the etching paste is removed by performing ultrasonic cleaning after the heat treatment.
  • a silver paste is printed in each of the contact hole 416 and the contact hole 417, and then fired.
  • an n electrode 407 is formed on the n + layer 405, and a p electrode 408 is formed on the p + layer 406. In this manner, the back junction solar cell shown in FIG. 8 is manufactured.
  • an n + layer and a p + layer are formed on the back surface of the silicon substrate. Therefore, it is necessary to perform a diffusion mask formation process, a patterning process, an impurity diffusion process, a diffusion mask removal process, and the like for the n + layer formation and the p + layer formation, respectively. Further, after the formation of the n + layer and the formation of the p + layer is completed, different passivation films are formed on the n + layer and the p + layer, respectively.
  • the present invention has been made in view of this point, and the object of the present invention is to form different passivation films on the n + region and the p + region, respectively, even if the number of steps is reduced. It is providing the manufacturing method of a back electrode type solar cell.
  • the first back electrode type solar cell manufacturing method of the present invention includes a step of forming a first back surface passivation film containing a first conductivity type dopant on a part of a back surface of a silicon substrate, and a back surface of the silicon substrate. A step of forming a film containing a second conductivity type dopant on the upper surface and the first back surface side passivation film; and a heat treatment of the silicon substrate, whereby the first conductivity type dopant is transferred from the first back surface side passivation film to silicon.
  • a semiconductor region of the first conductivity type is formed by being diffused in a part of the substrate, and the dopant of the first conductivity type is diffused from the silicon substrate from a film in which the second conductivity type dopant contains the second conductivity type dopant.
  • the second back electrode type solar cell manufacturing method of the present invention includes a step of forming a first conductivity type semiconductor region on a part of a back surface of a silicon substrate, and a first conductivity type semiconductor region,
  • the second conductive layer is formed on at least a part of the back surface of the silicon substrate different from the first conductive type semiconductor region by using a step of forming a back surface side passivation film and a solution containing a second conductive type dopant. Forming a semiconductor region of the mold, and forming a second back-side passivation film on the back surface of the silicon substrate and the first back-side passivation film.
  • the first conductivity type semiconductor region may be n-type, and the second conductivity type semiconductor region may be p-type.
  • the second back side passivation film is preferably an aluminum oxide film.
  • the first back surface passivation film may be a silicon oxide film.
  • different passivation films can be formed on the n + region and the p + region, respectively, even if the number of steps is reduced.
  • first conductivity type and the “second conductivity type” in the claims are “n-type” and “p-type”, respectively.
  • first conductivity type and second conductivity type in the claims are “p-type” and “n-type”, respectively.
  • FIG. 1 and 2 are diagrams showing a configuration of a back electrode type solar cell 1 according to a first embodiment of the present invention.
  • FIG. 1 is a plan view schematically showing the configuration of a back electrode solar cell 1 according to the present embodiment.
  • the back electrode solar cell 1 according to the present embodiment is viewed from the back side of the silicon substrate. It is a top view.
  • the strip-shaped n-type electrodes 2 and the strip-shaped p-type electrodes 3 are alternately arranged.
  • FIG. 2 is a cross-sectional view taken along line II-II ′ shown in FIG.
  • An uneven shape 5 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 4.
  • a light-receiving surface side passivation film 6 is formed on the light-receiving surface of the n-type silicon substrate 4, and an antireflection film 7 is formed on the light-receiving surface side passivation film 6.
  • the light-receiving surface side passivation film 6 is preferably, for example, a silicon oxide film or a silicon nitride film.
  • the thickness of the light-receiving surface side passivation film 6 is preferably 10 nm or less, for example.
  • the antireflection film 7 preferably has a refractive index lower than that of the light receiving surface side passivation film 6, and is preferably a silicon nitride film having a nitrogen content higher than that of the light receiving surface side passivation film 6, for example.
  • the thickness of the antireflection film 7 is preferably, for example, 50 nm or less and 100 nm or less.
  • n + regions 9 that are n-type semiconductor regions and p + regions 10 that are p-type semiconductor regions are alternately formed adjacent to each other.
  • a first backside passivation film 11 is formed on the n + region 9, and a second backside passivation film 12 is formed on the p + region 10 and the first backside passivation film 11. Yes.
  • the first back side passivation film 11 is preferably, for example, a silicon oxide film.
  • the thickness of the first back side passivation film 11 is preferably not less than 50 nm and not more than 100 nm, for example.
  • the second back side passivation film 12 is preferably, for example, an aluminum oxide film.
  • the thickness of the second back surface side passivation film 12 is preferably not less than 5 nm and not more than 50 nm, for example.
  • the n-type electrode 2 is connected to the n + region 9, and the p-type electrode 3 is connected to the p + region 10.
  • the total area of the p + region 10 having a conductivity type different from that of the n-type silicon substrate 4 on the back surface of the n-type silicon substrate 4 is the same as that of the n-type silicon substrate 4. It is preferable to make it larger than the total area of the n + region 9 having a mold.
  • Adjacent n + regions 9 may be separated in a direction perpendicular to the length direction of the n + region 9. At this time, a p + region 10 is formed between the n + regions 9. Further, when the p + region 10 are separated in a direction perpendicular to the length direction of the p + region 10, n + region 9 between p + region 10 is formed.
  • the back electrode type solar cell 1 since the conductivity type of the electrode located in the most periphery is the same in the back surface side of the n-type silicon substrate 4, it is possible to make the back electrode type solar cell 1 into a rotationally symmetric structure. . Therefore, when producing a solar cell module by arranging a plurality of back electrode type solar cells 1, for example, the back electrode type solar cell 1 can be arranged upside down in FIG. 1.
  • FIG. 3 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 1 according to this embodiment in the order of steps.
  • a texture mask 21 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 4 by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
  • CVD Chemical Vapor Deposition
  • an uneven shape 5 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 4 by etching.
  • This etching is preferably performed using, for example, a mixed solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower.
  • the texture mask 21 formed on the back surface of the n-type silicon substrate 4 is removed. Thereafter, a first back surface passivation film forming film containing a first conductivity type dopant is formed on the entire back surface of the n-type silicon substrate 4 by, for example, a CVD method, and on the first back surface passivation film forming film, A film for forming a diffusion prevention film is formed by, for example, a CVD method.
  • the first conductivity type dopant is an n-type dopant such as phosphorus.
  • the first back-side passivation film forming film is preferably a silicon oxide film, for example, and the thickness of the first back-side passivation film forming film is preferably, for example, from 50 nm to 100 nm.
  • the diffusion preventing film forming film is preferably, for example, a silicon oxide film or a silicon nitride film.
  • the thickness of the diffusion preventing film forming film is preferably, for example, 200 nm or more and 500 nm or less. This prevents the second conductivity type dopant from penetrating the diffusion prevention film 34 (see FIG. 3D) in the thickness direction during the heat treatment in FIG.
  • the portion of the n-type silicon substrate 4 located under the diffusion prevention film 34 (in other words, the n-type silicon substrate 4 It is possible to prevent diffusion toward the region in which the n + region 9 is formed.
  • the first back surface passivation film forming film and the diffusion preventing film forming film are formed only on the region where the n + region 9 is formed.
  • the first backside passivation film formation film and the diffusion prevention film formation film are patterned so that the film remains. This patterning is preferably performed by applying an etching paste by a screen printing method or the like and then heating. By this patterning, the first back-side passivation film 11 and the diffusion prevention film 34 are sequentially formed on the region where the n + region 9 is formed. Thereafter, the n-type silicon substrate 4 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning.
  • the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
  • the n-type silicon substrate 4 is exposed from the first back-side passivation film 11 and the diffusion prevention film 34 on the back surface (specifically, on the back surface of the n-type silicon substrate 4).
  • a film 31 containing a second conductivity type dopant is formed by, for example, the CVD method, and a diffusion control film 32 is formed on the film 31 containing the second conductivity type dopant, for example. It is formed by the CVD method.
  • the second conductivity type dopant is a p-type dopant such as boron.
  • the n-type silicon substrate 4 is heat-treated.
  • the second conductivity type dopant diffuses from the film 31 containing the second conductivity type dopant to the portion located below the film 31 containing the second conductivity type dopant on the back side of the n-type silicon substrate 4.
  • the p + region 10 is formed.
  • the first conductivity type dopant diffuses from the first back surface side passivation film 11 to a portion of the back surface side of the n-type silicon substrate 4 located below the first back surface side passivation film 11, and thus the n + region 9. Is formed.
  • the n + region 9 and the p + region 10 can be formed simultaneously.
  • the n + region 9 and the p + region 10 are formed so as to be adjacent to each other.
  • the diffusion preventing film 34 is provided between the first back surface side passivation film 11 and the film 31 containing the second conductivity type dopant, the second conductivity type dopant remains in the second conductivity even after the heat treatment. It is possible to prevent diffusion from the film 31 containing the conductive dopant toward the portion of the n-type silicon substrate 4 located below the diffusion prevention film 34. Further, since the diffusion control film 32 is provided on the film 31 containing the second conductivity type dopant, it is possible to prevent the second conductivity type dopant from being out-diffused even if the heat treatment is performed. .
  • the diffusion control film 32, the film 31 containing the second conductivity type dopant and the diffusion prevention film 34 formed on the back surface of the n-type silicon substrate 4 are removed by etching. .
  • a film 31 containing a second conductivity type dopant and a diffusion control film 32 are formed on the p + region 10, and a film 31 containing the second conductivity type dopant and a diffusion are formed on the n + region 9.
  • the first back surface side passivation film 11 and the diffusion preventing film 34 are formed. Therefore, if etching is performed until the film 31 containing the second conductivity type dopant and the diffusion control film 32 are removed, only the first back-side passivation film 11 remains.
  • a second back surface passivation film 12 different from the first back surface passivation film 11 is formed on the back surface of the n-type silicon substrate 4 by, for example, sputtering or CVD. . Since the first back surface side passivation film 11 is formed on the n + region 9, the second back surface side passivation film 12 is formed on the p + region 10 and on the first back surface side passivation film 11. Thereafter, a light-receiving surface side passivation film 6 and an antireflection film 7 are sequentially formed on the light-receiving surface of the n-type silicon substrate 4 by, for example, a CVD method.
  • the second back side passivation film 12 is preferably, for example, an aluminum oxide film.
  • Both the light-receiving surface side passivation film 6 and the antireflection film 7 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 7 than in the light-receiving surface side passivation film 6, and the refractive index is reflected.
  • the prevention film 7 is preferably lower than the light-receiving surface side passivation film 6.
  • the light-receiving surface side passivation film 6 may be a silicon oxide film.
  • the light receiving surface side of the n-type silicon substrate 4 is shown above.
  • the first back-side passivation film 11 and the second back-side passivation film 12 are patterned.
  • the second back-side passivation film 12 is patterned. Thereby, a part of the n + region 9 is exposed from the first back surface side passivation film 11 and the second back surface side passivation film 12, and a part of the p + region 10 is exposed from the second back surface side passivation film 12.
  • This patterning is preferably performed, for example, by applying an etching paste by screen printing or the like and then heating. Thereafter, the n-type silicon substrate 4 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning.
  • the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
  • the back electrode type solar cell 1 can be manufactured without providing a step of diffusing the second conductivity type dopant separately from the step of diffusing the first conductivity type dopant.
  • the mask used to form the n + region 9 and the mask used to form the p + region 10 can be removed simultaneously. Therefore, the number of manufacturing steps of the back electrode type solar cell 1 can be reduced.
  • the method for manufacturing the back electrode type solar cell 1 according to the present embodiment the first back side passivation film 11 is formed on the n + region 9, and the second back side passivation is formed on the p + region 10. A film 12 is formed.
  • the back electrode type solar cell 1 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 1 is improved.
  • the n + region 9 is formed using the first back surface side passivation film 11. Therefore, the first back-side passivation film 11 can be formed on the n + region 9 without causing a positional shift.
  • the second back surface side passivation film 12 is formed on the entire back surface of the n-type silicon substrate 4, it is formed not only on the first back surface side passivation film 11 but also on the p + region 10. Therefore, the second back-side passivation film 12 can be formed on the p + region 10 without causing a positional shift.
  • the aluminum oxide film has a negative fixed charge. Therefore, if the second back surface passivation film 12 is made of an aluminum oxide film, the back electrode solar cell 1 having high passivation properties on the p + region 10 can be manufactured.
  • FIG. 4 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 71 according to the second embodiment of the present invention in the order of steps.
  • the first back side passivation film does not contain the first conductivity type dopant.
  • the manufacturing method of the back surface electrode type solar cell 71 according to the present embodiment is different from the manufacturing method of the back surface electrode type solar cell 1 according to the first embodiment in the method of forming the n + region 9.
  • the manufacturing method of the back electrode type solar cell 71 according to this embodiment will be described in the order of steps.
  • a texture mask 21 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 4 as in the step shown in FIG. 3A in the first embodiment.
  • a texture mask 21 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 4 as in the step shown in FIG. 3A in the first embodiment.
  • it is formed by a CVD method or a sputtering method.
  • the uneven shape 5 which is a textured structure is etched on the light receiving surface of the n-type silicon substrate 4 by etching. Form.
  • the texture mask 21 formed on the back surface of the n-type silicon substrate 4 is removed.
  • a diffusion mask 22 made of, for example, silicon oxide is formed on the light receiving surface of the n-type silicon substrate 4.
  • a diffusion mask 23 is formed on a region different from the region where n + region 9 is formed on the back surface of n-type silicon substrate 4.
  • the diffusion mask 23 is formed, for example, by applying a masking paste containing a solvent, a thickener, and a silicon oxide precursor by inkjet or screen printing and then performing a heat treatment.
  • a gas containing a dopant of the first conductivity type is diffused in a gas phase. Accordingly, the first conductivity type dopant is diffused into the portion of the back surface of the n-type silicon substrate 4 exposed from the diffusion mask 23. Thereby, n + region 9 is formed.
  • the first conductivity type dopant is phosphorus
  • POCl 3 can be used as the gas containing the first conductivity type dopant.
  • n-type silicon is used in a gas atmosphere containing the first conductivity type dopant at a temperature of 800 ° C. to 900 ° C. for 10 minutes to 60 minutes.
  • the substrate 4 is exposed.
  • an n + region 9 having a dopant concentration of the first conductivity type of 10 20 cm ⁇ 3 or more is formed.
  • the diffusion masks 22 and 23 formed on the n-type silicon substrate 4 and the glass layer formed by diffusing phosphorus in the diffusion masks 22 and 23 are combined with hydrogen fluoride. Remove by acid treatment. Thereafter, thermal oxidation with oxygen or water vapor is performed. Thereby, a silicon oxide film 24 is formed on the light receiving surface of the n-type silicon substrate 4, and a first back-side passivation film forming film 11 ⁇ / b> A is formed on the back surface of the n-type silicon substrate 4. At this time, as shown in FIG.
  • the thickness of the first back surface passivation film forming film 11 ⁇ / b > A formed on the n + region 9 was formed on a region different from the n + region 9. It becomes thicker than the thickness of the first backside passivation film forming film 11A.
  • the growth rate of the film by thermal oxidation is determined by the type of impurity diffused in the silicon substrate and the concentration of the impurity. In particular, when the n-type impurity concentration in the silicon substrate is high, the growth rate of the film by thermal oxidation increases.
  • n-type impurity concentration it n + region 9 is higher than a region different from the n + region 9.
  • the first is more of the thickness of the back side passivation film forming film 11A, a first for the back side passivation film formed formed on the area different from the n + region 9 formed on the n + region 9 It becomes thicker than the thickness of the film 11A.
  • the first back surface passivation film forming film 11A is formed by combining silicon and oxygen during thermal oxidation.
  • the n-type silicon substrate 4 the surface of the n + region 9 is recessed n-type silicon substrate 4 side than the surface of a region different from the n + region 9.
  • the first back side passivation film 11 (see FIG. 4 (e)) as a diffusion mask for the n + region 9 during the formation of the p + region 10 is formed on the n + region 9 first
  • the difference between the thickness of the first back surface passivation film forming film 11A and the thickness of the first back surface passivation film forming film 11A formed on a region different from the n + region 9 is preferably 60 nm or more.
  • 11A is removed by etching.
  • the back surface of the n-type silicon substrate 4, the thickness of the first back side passivation film forming film 11A formed on the n + region 9, first back surface formed on a region different from the n + region 9 It is thicker than the thickness of the side passivation film forming film 11A.
  • the first backside passivation film forming film 11A is etched until the first backside passivation film forming film 11A formed on a region different from the n + region 9 is removed, the first backside passivation is performed.
  • the film forming film 11A remains only on the n + region 9. Thereby, the 1st back surface side passivation film 11 is formed.
  • a diffusion mask 25 made of silicon oxide or the like is formed on the light receiving surface of the n-type silicon substrate 4.
  • the polymer obtained by reacting the organic polymer with a compound containing a dopant of the second conductivity type is exposed to a portion of the back surface of the n-type silicon substrate 4 exposed from the first back surface passivation film 11 with an alcohol solvent.
  • the solution obtained by dissolving in is applied. When the solution is dry, heat treatment is performed. As a result, the second conductivity type dopant diffuses into the portion of the back surface of the n-type silicon substrate 4 exposed from the first back surface passivation film 11. Therefore, p + region 10 is formed.
  • the second conductivity type dopant is boron
  • a boron compound can be used as the compound containing the second conductivity type dopant.
  • heating the n-type silicon substrate 4 at 900 ° C. or more and 1000 ° C. or less for 10 minutes or more and 60 minutes or less can be mentioned.
  • the p + region 10 having the second conductivity type dopant concentration of 10 20 cm ⁇ 3 or more is formed.
  • the first back surface side passivation film 11 also functions as a film (diffusion mask) for preventing the second conductivity type dopant from diffusing into the n + region 9.
  • FIG. 4F the light receiving surface side of the n-type silicon substrate 4 is shown above.
  • the diffusion mask 25 and the glass layer formed by diffusing boron in the diffusion mask 25 are removed by hydrofluoric acid treatment.
  • a second back surface passivation film 12 different from the first back surface passivation film 11 is formed on the back surface of the n-type silicon substrate 4 by, for example, a sputtering method or a CVD method. Since the first back surface side passivation film 11 is formed on the n + region 9, the second back surface side passivation film 12 is formed on the p + region 10 and on the first back surface side passivation film 11.
  • a light-receiving surface side passivation film 6 and an antireflection film 7 are sequentially formed on the light-receiving surface of the n-type silicon substrate 4 by, for example, a CVD method.
  • the second back side passivation film 12 is preferably, for example, an aluminum oxide film.
  • Both the light-receiving surface side passivation film 6 and the antireflection film 7 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 7 than in the light-receiving surface side passivation film 6, and the refractive index is reflected.
  • the prevention film 7 is preferably lower than the light-receiving surface side passivation film 6.
  • the light-receiving surface side passivation film 6 may be a silicon oxide film.
  • the n-type electrode 2 on the n + region 9 in the same manner as the step shown in FIG. Patterning is performed on the back side passivation film 11 and the second back side passivation film 12. Further, in order to form the p-type electrode 3 on the p + region 10, the second back surface passivation film 12 is patterned.
  • the patterning method the composition of the etching paste, and the method for removing the etching paste, the same method as the step shown in FIG. 3G in the first embodiment can be used.
  • the first back-side passivation film 11 and the second back-side passivation in the n + region 9 are used.
  • a silver paste is applied onto the portion exposed from the film 12 and the portion exposed from the second back-side passivation film 12 in the p + region 10 by, for example, a screen printing method and then dried. Thereafter, it is fired.
  • the n-type electrode 2 is formed on the n + region 9 and the p-type electrode 3 is formed on the p + region 10. In this way, the back electrode type solar cell 71 is manufactured.
  • the diffusion mask for forming the p + region 10 is the first back surface passivation film 11. Therefore, the back electrode type solar cell 71 can be manufactured without providing the step of forming the first back side passivation film 11 separately from the step of forming the diffusion mask for forming the p + region 10.
  • the p + region 10 is formed by applying a solution containing a second conductivity type dopant. Therefore, back electrode type solar cell 71 can be manufactured without forming and removing a diffusion mask for forming p + region 10. Therefore, the number of manufacturing steps of the back electrode type solar cell 71 can be reduced.
  • the first back surface passivation film 11 is formed on the n + region 9, and the second back surface passivation is formed on the p + region 10.
  • a film 12 is formed.
  • the back electrode type solar cell 71 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 71 is improved.
  • the first back side passivation film 11 is formed on the n + region 9 by thermally oxidizing the n-type silicon substrate 4, the first back side passivation film is formed on the n + region 9 without causing positional displacement. 11 can be formed.
  • the second back surface side passivation film 12 is formed on the entire back surface of the n-type silicon substrate 4, it is formed not only on the first back surface side passivation film 11 but also on the p + region 10. Therefore, the second back-side passivation film 12 can be formed on the p + region 10 without causing a positional shift.
  • the aluminum oxide film has a negative fixed charge. Therefore, if the second back surface side passivation film 12 is made of an aluminum oxide film, the back electrode type solar cell 71 having high passivation properties on the p + region 10 can be manufactured.
  • the n + region 9 may be formed after the p + region 10 is formed.
  • the p + region 10 can be formed using a gas containing boron or the like, and the n + region 9 can be formed using a solution containing phosphorus or the like.
  • FIG. 5 to 6 are diagrams showing the configuration of a back electrode type solar cell 81 according to the third embodiment of the present invention.
  • FIG. 5 is a plan view schematically showing the configuration of the back electrode type solar cell 81 according to this embodiment.
  • the back electrode type solar cell 81 according to this embodiment is seen from the back side of the silicon substrate. It is a top view.
  • the strip-shaped n-type electrodes 102 and the strip-shaped p-type electrodes 103 are alternately arranged.
  • FIG. 6 is a cross-sectional view taken along line VI-VI ′ shown in FIG.
  • An uneven shape 105 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 104.
  • a light-receiving surface side passivation film 106 is formed on the light-receiving surface of the n-type silicon substrate 104, and an antireflection film 107 is formed on the light-receiving surface side passivation film 106.
  • the light-receiving surface side passivation film 106 is preferably, for example, a silicon oxide film or a silicon nitride film.
  • the thickness of the light-receiving surface side passivation film 106 is preferably 10 nm or less, for example.
  • the antireflection film 107 preferably has a lower refractive index than the light-receiving surface side passivation film 106, and is preferably a silicon nitride film having a higher nitrogen content than the light-receiving surface side passivation film 106, for example.
  • the thickness of the antireflection film 107 is preferably, for example, 50 nm or less and 100 nm or less.
  • n + regions 109 that are n-type semiconductor regions and p + regions 110 that are p-type semiconductor regions are formed alternately adjacent to each other.
  • a first back-side passivation film 111 is formed on the p + region 110, and a second back-side passivation film 112 is formed on the n + region 109 and the first back-side passivation film 111.
  • the first back side passivation film 111 is preferably, for example, a silicon oxide film.
  • the thickness of the first back-side passivation film 111 is preferably, for example, not less than 50 nm and not more than 100 nm.
  • the second back side passivation film 112 is preferably a silicon nitride film, for example.
  • the thickness of the second back surface side passivation film 112 is preferably not less than 5 nm and not more than 50 nm, for example.
  • the n-type electrode 102 is connected to the n + region 109, and the p-type electrode 103 is connected to the p + region 110.
  • the total area of the p + region 110 having a conductivity type different from that of the n-type silicon substrate 104 on the back surface of the n-type silicon substrate 104 is set to the same conductivity type as that of the n-type silicon substrate 104. It is preferable to make it larger than the total area of the n + regions 109.
  • Adjacent n + regions 109 may be separated in a direction perpendicular to the length direction of the n + region 109. At this time, a p + region 110 is formed between the n + regions 109. Further, when the p + region 110 are separated in a direction perpendicular to the length direction of the p + region 110, n + region 109 between p + region 110 is formed.
  • the back electrode type solar cell 81 can have a rotationally symmetric structure. . Therefore, when producing a solar cell module by arranging a plurality of back electrode solar cells 81, for example, the back electrode solar cells 81 can be arranged upside down in FIG.
  • FIG. 7 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 81 according to this embodiment in the order of steps.
  • a texture mask 121 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 104 by, for example, CVD or sputtering.
  • an uneven shape 105 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 104 by etching.
  • This etching is preferably performed using, for example, a mixed solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower.
  • the back side of the n-type silicon substrate 104 is described above.
  • the texture mask 121 formed on the back surface of the n-type silicon substrate 104 is removed.
  • a first back-side passivation film forming film containing a first conductivity type dopant is formed on the entire back surface of the n-type silicon substrate 104 by, for example, a CVD method, and the first back-side passivation film forming film is formed on the first back-side passivation film forming film.
  • a film for forming a diffusion prevention film is formed by, for example, a CVD method.
  • the first conductivity type dopant is a p-type dopant such as boron.
  • the first back-side passivation film forming film is preferably a silicon oxide film, for example, and the thickness of the first back-side passivation film forming film is preferably, for example, from 50 nm to 100 nm.
  • the diffusion preventing film forming film is preferably, for example, a silicon oxide film or a silicon nitride film.
  • the thickness of the diffusion preventing film forming film is preferably, for example, 200 nm or more and 500 nm or less. Accordingly, the second conductivity type dopant can be prevented from penetrating through the diffusion prevention film 132 (see FIG.
  • the second conductivity type dopant can be prevented. From the film 133 containing the second conductivity type dopant (see FIG. 7D), a portion of the n-type silicon substrate 104 located under the diffusion barrier film 132 (in other words, of the n-type silicon substrate 104 Diffusion toward the region where the p + region 110 is formed) can be prevented.
  • the first back side passivation film formation film and the diffusion prevention film formation film are formed only on the region where the n + region 109 is formed.
  • the first backside passivation film formation film and the diffusion prevention film formation film are patterned so that the film is removed. This patterning is preferably performed by applying an etching paste by a screen printing method or the like and then heating. By this patterning, the first back-side passivation film 111 and the diffusion preventing film 132 are formed, and the region where the n + region 109 is formed is exposed from the first back-side passivation film 111 and the diffusion preventing film 132.
  • the n-type silicon substrate 104 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning.
  • the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
  • the n-type silicon substrate 104 is exposed from the first back-side passivation film 111 and the diffusion prevention film 132 on the back surface (specifically, on the back surface of the n-type silicon substrate 104).
  • a film 133 containing a second conductivity type dopant is formed by, for example, the CVD method, and a diffusion control film 134 is formed on the film 133 containing the second conductivity type dopant, for example. It is formed by the CVD method.
  • the second conductivity type dopant is an n-type dopant such as phosphorus.
  • the film 133 containing the second conductivity type dopant is preferably, for example, a silicon oxide film, and the thickness of the film 133 containing the second conductivity type dopant is preferably, for example, not less than 50 nm and not more than 100 nm.
  • the diffusion control film 134 is preferably a silicon oxide film or a silicon nitride film, for example.
  • the thickness of the diffusion control film 134 is preferably, for example, not less than 200 nm and not more than 500 nm.
  • the n-type silicon substrate 104 is heat-treated.
  • the first conductivity type dopant diffuses from the first back surface side passivation film 111 to the portion of the back surface side of the n-type silicon substrate 104 located below the first back surface side passivation film 111, and thus the p + region. 110 is formed.
  • the second conductivity type dopant diffuses from the film 133 containing the second conductivity type dopant to a portion located below the film 133 containing the second conductivity type dopant on the back side of the n-type silicon substrate 104, Therefore, n + region 109 is formed.
  • the n + region 109 and the p + region 110 can be formed simultaneously.
  • the n + region 109 and the p + region 110 are formed adjacent to each other.
  • the dopant concentration of the second conductivity type is formed 10 20 cm -3 or more n + region 109
  • the dopant concentration of the first conductivity type is 10 20 cm -3 or more p + region 110 is formed.
  • the diffusion prevention film 132 is provided between the first back surface side passivation film 111 and the film 133 containing the second conductivity type dopant, the second conductivity type dopant remains the second even if the heat treatment is performed. It is possible to prevent diffusion from the film 133 containing the conductive dopant toward the portion of the n-type silicon substrate 104 located under the diffusion prevention film 132. Further, since the diffusion control film 134 is provided on the film 133 containing the second conductivity type dopant, it is possible to prevent the second conductivity type dopant from being out-diffused.
  • the diffusion control film 134, the film 133 containing the second conductivity type dopant, and the diffusion prevention film 132 formed on the back surface of the n-type silicon substrate 104 are removed by etching.
  • a film 133 containing a second conductivity type dopant and a diffusion control film 134 are formed on the n + region 109, and a film 133 containing a second conductivity type dopant and a diffusion layer are formed on the p + region 110.
  • a first back-side passivation film 111 and a diffusion prevention film 132 are formed. Therefore, if etching is performed until the film 133 containing the second conductivity type dopant and the diffusion control film 134 are removed, only the first back-side passivation film 111 remains.
  • a second back surface passivation film 112 different from the first back surface passivation film 111 is formed on the back surface of the n-type silicon substrate 104 by, for example, sputtering or CVD. . Since the first back surface side passivation film 111 is formed on the p + region 110, the second back surface side passivation film 112 is formed on the n + region 109 and the first back surface side passivation film 111. Thereafter, a light-receiving surface side passivation film 106 and an antireflection film 107 are formed on the light-receiving surface of the n-type silicon substrate 104 by, for example, a CVD method.
  • the second back side passivation film 112 is preferably a silicon nitride film, for example.
  • Both the light receiving surface side passivation film 106 and the antireflection film 107 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 107 than in the light receiving surface side passivation film 106, and the refractive index is reflected.
  • the prevention film 107 is preferably lower than the light-receiving surface side passivation film 106.
  • the light-receiving surface side passivation film 106 may be a silicon oxide film.
  • the light receiving surface side of the n-type silicon substrate 104 is shown above.
  • the second back surface side passivation film 112 is patterned.
  • the first back surface side passivation film 111 and the second back surface side passivation film 112 are patterned. This patterning is preferably performed, for example, by applying an etching paste by screen printing or the like and then heating. Thereafter, the n-type silicon substrate 104 is subjected to ultrasonic cleaning and acid treatment to remove the etching paste used for patterning.
  • the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
  • the n + region 109 is exposed on the portion exposed from the second back surface side passivation film 112 and the first back surface side passivation film 111 and the second surface in the p + region 110.
  • a silver paste is applied onto the portion exposed from the back-side passivation film 112 by, for example, a screen printing method and then dried. Thereafter, it is fired.
  • the n-type electrode 102 is formed on the n + region 109
  • the p-type electrode 103 is formed on the p + region 110. In this way, the back electrode type solar cell 81 is manufactured.
  • the first back surface passivation film 111 is formed of a film containing the first conductivity type dopant necessary for forming the p + region 110. It is said. Therefore, the back electrode type solar cell 81 can be manufactured without providing a separate step of forming the first back side passivation film 111. Further, in the method of manufacturing the back electrode type solar cell 81 according to this embodiment, in the step shown in FIG. 7D, the p + region 110 is formed by diffusing the first conductivity type dopant and the second conductivity type. N + region 109 is formed by diffusing the dopant.
  • the back electrode type solar cell 81 can be manufactured without providing a step of diffusing the second conductivity type dopant separately from the step of diffusing the first conductivity type dopant.
  • the mask used to form the n + region 109 and the mask used to form the p + region 110 can be removed at the same time. Therefore, the number of manufacturing steps of the back electrode type solar cell 81 can be reduced.
  • the second back surface passivation film 112 is formed on the n + region 109 and the first back surface passivation is formed on the p + region 110.
  • a film 111 is formed.
  • the n + region 109 and the p + region 110 are different.
  • a passivation film can be formed.
  • the back electrode type solar cell 81 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 81 is improved.
  • the p + region 110 is formed using the first back surface side passivation film 111. Therefore, the first back-side passivation film 111 can be formed on the p + region 110 without causing a positional shift.
  • the second back surface side passivation film 112 is formed on the entire back surface of the n-type silicon substrate 104, it is formed not only on the first back surface side passivation film 111 but also on the n + region 109. Therefore, the second back-side passivation film 112 can be formed on the n + region 109 without causing a positional shift.
  • the silicon nitride film has a positive fixed charge. Therefore, if the second back surface side passivation film 112 is formed of a silicon nitride film, the back electrode type solar cell 81 having high passivation properties on the n + region 109 can be manufactured.
  • the back electrode type solar cell provided with the n-type silicon substrate has been described, but a p-type silicon substrate may be used as the substrate.
  • a p-type silicon substrate is used as the substrate, in order to obtain a higher short-circuit current, the total area of n + regions having a conductivity type different from that of the substrate on the back surface of the substrate is the same as that of the substrate. It is preferable to make it larger than the total area of the p + region.
  • the concept of the back electrode type solar cell of the present invention includes an MWT (Metal Wrap Through) type solar cell (in this solar cell, a part of the electrode is disposed in a through hole provided in a semiconductor substrate), etc. Is also included.
  • MWT Metal Wrap Through

Abstract

Disclosed is a method of manufacturing a rear face electrode type solar battery (1), including: a step for forming a first rear face side passivation film (11) including first conductivity type dopant; a step of forming a film (31) containing second conductivity type dopant; a step in which, by heat treatment of a silicon substrate (4), a first conductivity type semiconductor region (9) is formed by first conductivity type dopant being dispersed from the first rear face side passivation film (11) in part of the silicon substrate (4), and a second conductivity type semiconductor region (10) is formed by second conductivity type dopant being dispersed from the film (31) containing second conductivity type dopant in at least part of a region of the silicon substrate (4) that is different from the region in which the first conductivity type dopant is dispersed; a step of removing the film (31) containing the second conductivity type dopant; and a step of forming a second rear face side passivation film (12). In this way, the p+ region (10) can be formed by dispersing the second conductivity type dopant without needing to separately provide a first rear face side passivation film, and at the same time as the formation of the n+ region (9) by dispersion of the first conductivity type dopant.

Description

裏面電極型太陽電池の製造方法Manufacturing method of back electrode type solar cell
 本発明は、裏面電極型太陽電池の製造方法、特に、裏面電極型太陽電池の半導体領域上のパッシベーション膜の形成方法に関する。 The present invention relates to a method for manufacturing a back electrode type solar cell, and more particularly to a method for forming a passivation film on a semiconductor region of a back electrode type solar cell.
 近年、エネルギ資源の枯渇という問題および大気中のCO2の増加のような地球環境問題などから、クリーンなエネルギの開発が望まれている。特に太陽電池を用いた太陽光発電が新しいエネルギ源として開発且つ実用化され、発展の道を歩んでいる。 In recent years, development of clean energy has been desired due to problems such as exhaustion of energy resources and global environmental problems such as an increase in atmospheric CO 2 . In particular, solar power generation using solar cells has been developed and put into practical use as a new energy source, and is on the path of development.
 太陽電池としては、従来から、たとえば単結晶または多結晶のシリコン基板のうち光が入射される側に位置する面(以下、「シリコン基板の受光面」という)に、シリコン基板の導電型とは異なる導電型を有する不純物を拡散することによってpn接合を形成し、シリコン基板の受光面と当該受光面の反対側に位置する面(以下、「シリコン基板の裏面」という。)とにそれぞれ電極を形成して製造されたものが主流となっている。 Conventionally, as a solar cell, the conductivity type of a silicon substrate is, for example, a surface of a single-crystal or polycrystalline silicon substrate located on a light incident side (hereinafter referred to as “light-receiving surface of a silicon substrate”). A pn junction is formed by diffusing impurities having different conductivity types, and electrodes are respectively provided on the light receiving surface of the silicon substrate and a surface located on the opposite side of the light receiving surface (hereinafter referred to as “the back surface of the silicon substrate”). The ones that are formed and manufactured are the mainstream.
 また、シリコン基板の受光面には電極を形成せず、シリコン基板の裏面にpn接合を形成した、いわゆる裏面電極型太陽電池が開発されている。裏面電極型太陽電池では、電極が受光面に設けられていないことから電極によるシャドウロスがなく、よって、シリコン基板の受光面および裏面にそれぞれ電極を有する上記の太陽電池と比べて高い出力を得ることが期待できる。裏面電極型太陽電池は、このような特性を活かしてソーラカーまたは集光用太陽電池などの用途に使用されている。特許文献1(特開2008-10746号公報)には、裏面のみに電極が形成された裏面接合型太陽電池の一例が示されている。 Also, a so-called back electrode type solar cell has been developed in which no electrode is formed on the light receiving surface of the silicon substrate, and a pn junction is formed on the back surface of the silicon substrate. In the back electrode type solar cell, since the electrode is not provided on the light receiving surface, there is no shadow loss due to the electrode, and thus a higher output is obtained compared to the above solar cell having electrodes on the light receiving surface and the back surface of the silicon substrate. I can expect that. Back electrode type solar cells are used in applications such as solar cars or concentrating solar cells by utilizing such characteristics. Patent Document 1 (Japanese Patent Laid-Open No. 2008-10746) shows an example of a back junction solar cell in which an electrode is formed only on the back surface.
 図8は、特許文献1に開示されている裏面接合型太陽電池200の構成の一例を模式的に示す断面図である。n型のシリコン基板201の受光面には、反射防止膜209が形成されている。シリコン基板201の裏面には、n+層205とp+層206とが形成されている。p+層206上には第1パッシベーション膜203が形成されており、n+層205上には第1パッシベーション膜203とは異なる第2パッシベーション膜204が形成されている。p+層206にはp電極208が接続されており、n+層205にはn電極207が接続されている。 FIG. 8 is a cross-sectional view schematically showing an example of the configuration of the back junction solar cell 200 disclosed in Patent Document 1. As shown in FIG. An antireflection film 209 is formed on the light receiving surface of the n-type silicon substrate 201. An n + layer 205 and a p + layer 206 are formed on the back surface of the silicon substrate 201. A first passivation film 203 is formed on the p + layer 206, and a second passivation film 204 different from the first passivation film 203 is formed on the n + layer 205. A p electrode 208 is connected to the p + layer 206, and an n electrode 207 is connected to the n + layer 205.
 図9は、特許文献1に開示されている図8の裏面接合型太陽電池の製造方法の一例を工程順に示す断面図である。図9を参照しながら、図8に示す裏面接合型太陽電池の製造方法を説明する。 FIG. 9 is a cross-sectional view showing an example of the manufacturing method of the back junction solar cell of FIG. 8 disclosed in Patent Document 1 in the order of steps. With reference to FIG. 9, a method of manufacturing the back junction solar cell shown in FIG. 8 will be described.
 まず、図9(a)に示すように、n型のシリコン基板401を用意する。その後、図9(b)に示すように、シリコン基板401の裏面に酸化珪素膜などからなるテクスチャマスク413を形成し、シリコン基板401の受光面にエッチングによりテクスチャ構造410を形成する。 First, as shown in FIG. 9A, an n-type silicon substrate 401 is prepared. 9B, a texture mask 413 made of a silicon oxide film or the like is formed on the back surface of the silicon substrate 401, and a texture structure 410 is formed on the light receiving surface of the silicon substrate 401 by etching.
 次に、図9(c)に示すように、まず、シリコン基板401の受光面および裏面の全面に、酸化珪素膜などからなる第1拡散マスク411を形成する。次に、シリコン基板401の裏面に形成された第1拡散マスク411上に、第1エッチングペーストをたとえばスクリーン印刷法などによって所望のパターンに印刷する。続いて、第1エッチングペーストが印刷されたシリコン基板401を加熱処理する。これにより、シリコン基板401の裏面に形成された第1拡散マスク411のうち第1エッチングペーストが印刷された部分のみがエッチングにより除去される。その後、シリコン基板401を水中に浸し、超音波を印加して超音波洗浄などを行なう。これにより、第1エッチングペーストが除去され、シリコン基板401の裏面に窓414が形成される。 Next, as shown in FIG. 9C, first, a first diffusion mask 411 made of a silicon oxide film or the like is formed on the entire light receiving surface and back surface of the silicon substrate 401. Next, a first etching paste is printed in a desired pattern on the first diffusion mask 411 formed on the back surface of the silicon substrate 401 by, for example, a screen printing method. Subsequently, the silicon substrate 401 on which the first etching paste is printed is subjected to heat treatment. As a result, only the portion of the first diffusion mask 411 formed on the back surface of the silicon substrate 401 on which the first etching paste is printed is removed by etching. Thereafter, the silicon substrate 401 is immersed in water, and ultrasonic cleaning is performed by applying ultrasonic waves. As a result, the first etching paste is removed, and a window 414 is formed on the back surface of the silicon substrate 401.
 次に、図9(d)に示すように、シリコン基板401に第1導電型不純物としてのp型不純物であるボロンなどを気相拡散させる。これにより、窓414に第1導電型不純物拡散層としてのp+層406が形成される。その後、シリコン基板401に形成された第1拡散マスク411とボロンが拡散してシリコン基板401に形成されたBSG(ボロンシリケートガラス)膜とをフッ化水素水溶液などを用いてすべて除去する。 Next, as shown in FIG. 9D, vapor phase diffusion of boron, which is a p-type impurity as the first conductivity type impurity, is performed on the silicon substrate 401. As a result, the p + layer 406 as the first conductivity type impurity diffusion layer is formed in the window 414. Thereafter, the first diffusion mask 411 formed on the silicon substrate 401 and the BSG (boron silicate glass) film formed on the silicon substrate 401 by diffusion of boron are all removed using a hydrogen fluoride aqueous solution or the like.
 次に、図9(e)に示すように、まず、シリコン基板401の受光面および裏面の全面に、酸化珪素膜などからなる第2拡散マスク412を形成する。次に、シリコン基板401の裏面に形成された第2拡散マスク412上に、第2エッチングペーストを所望のパターンに印刷する。第2エッチングペーストは上記の第1エッチングペーストと同一組成からなっても良いし、異なる組成からなっても良い。続いて、第2エッチングペーストが印刷されたシリコン基板401を加熱処理する。これにより、シリコン基板401の裏面に形成された第2拡散マスク412のうち第2エッチングペーストが印刷された部分のみがエッチングにより除去される。その後、図9(c)に示す工程での処理を行なうことにより、シリコン基板401の裏面に窓415が形成される。 Next, as shown in FIG. 9E, first, a second diffusion mask 412 made of a silicon oxide film or the like is formed on the entire light receiving surface and back surface of the silicon substrate 401. Next, a second etching paste is printed in a desired pattern on the second diffusion mask 412 formed on the back surface of the silicon substrate 401. The second etching paste may have the same composition as the first etching paste, or may have a different composition. Subsequently, the silicon substrate 401 on which the second etching paste is printed is subjected to heat treatment. As a result, only the portion of the second diffusion mask 412 formed on the back surface of the silicon substrate 401 on which the second etching paste is printed is removed by etching. Thereafter, the window 415 is formed on the back surface of the silicon substrate 401 by performing the process in the step shown in FIG.
 次に、図9(f)に示すように、シリコン基板401に第2導電型不純物としてのn型不純物であるリンなどを気相拡散させる。これにより、窓415に第2導電型不純物拡散層としてのn+層405が形成される。その後、シリコン基板401に形成された第2拡散マスク412とリンが拡散してシリコン基板401に形成されたPSG(リンシリケートガラス)膜とをフッ化水素水溶液などを用いてすべて除去する。 Next, as shown in FIG. 9F, vapor phase diffusion of phosphorus, which is an n-type impurity as the second conductivity type impurity, is performed on the silicon substrate 401. As a result, an n + layer 405 as a second conductivity type impurity diffusion layer is formed in the window 415. Thereafter, the second diffusion mask 412 formed on the silicon substrate 401 and the PSG (phosphorus silicate glass) film formed on the silicon substrate 401 by diffusion of phosphorus are all removed using a hydrogen fluoride aqueous solution or the like.
 次に、図9(g)に示すように、シリコン基板401に対して熱酸化を行なう。これにより、シリコン基板401の裏面の全面に酸化珪素膜からなる第1パッシベーション膜403が形成される。なお、このとき同時にシリコン基板401の受光面の全面にも酸化珪素膜403aが形成されることとなる。 Next, as shown in FIG. 9G, the silicon substrate 401 is thermally oxidized. As a result, a first passivation film 403 made of a silicon oxide film is formed on the entire back surface of the silicon substrate 401. At the same time, the silicon oxide film 403a is also formed on the entire light receiving surface of the silicon substrate 401.
 次に、図9(h)に示すように、第1パッシベーション膜403のうちp+層406上に形成された部分以外の部分をエッチングにより除去する。このとき用いるエッチングペーストは、上記の第1のエッチングペーストまたは上記の第2のエッチングペーストであっても良い。これにより、第1パッシベーション膜403はp+層406上にのみ残存する。 Next, as shown in FIG. 9H, portions of the first passivation film 403 other than the portion formed on the p + layer 406 are removed by etching. The etching paste used at this time may be the first etching paste or the second etching paste. As a result, the first passivation film 403 remains only on the p + layer 406.
 次に、図9(i)に示すように、第1パッシベーション膜403が除去されたシリコン基板401の裏面に第2パッシベーション膜404を形成する。具体的には、プラズマCVD法により窒化珪素からなる膜を形成することにより、シリコン基板401の裏面上およびn+層405上に第2パッシベーション膜404としての窒化珪素膜が形成される。この第2パッシベーション膜404は第1パッシベーション膜403上にも形成される。 Next, as shown in FIG. 9I, a second passivation film 404 is formed on the back surface of the silicon substrate 401 from which the first passivation film 403 has been removed. Specifically, a silicon nitride film as the second passivation film 404 is formed on the back surface of the silicon substrate 401 and the n + layer 405 by forming a film made of silicon nitride by plasma CVD. This second passivation film 404 is also formed on the first passivation film 403.
 次に、図9(j)に示すように、シリコン基板401の受光面に形成された酸化珪素膜403aをフッ化水素水溶液などを用いてすべて除去してから、当該受光面上に窒化珪素膜などからなる反射防止膜409を形成する。また、第1パッシベーション膜403および第2パッシベーション膜404のそれぞれの一部を除去することにより、コンタクトホール416およびコンタクトホール417が形成される。これにより、n+層405およびp+層406のそれぞれの一部が第2パッシベーション膜404などから露出する。なお、コンタクトホール416およびコンタクトホール417は以下の方法で形成される。第2パッシベーション膜404上にエッチングペーストを印刷してから、シリコン基板401を加熱処理する。これにより、エッチングペーストが印刷された第2パッシベーション膜404が除去される。加熱処理後に超音波洗浄を行なうなどによって、エッチングペーストを除去する。 Next, as shown in FIG. 9J, the silicon oxide film 403a formed on the light receiving surface of the silicon substrate 401 is completely removed using a hydrogen fluoride aqueous solution or the like, and then a silicon nitride film is formed on the light receiving surface. An antireflection film 409 made of or the like is formed. Further, by removing a part of each of the first passivation film 403 and the second passivation film 404, a contact hole 416 and a contact hole 417 are formed. As a result, a part of each of the n + layer 405 and the p + layer 406 is exposed from the second passivation film 404 and the like. Note that the contact hole 416 and the contact hole 417 are formed by the following method. After the etching paste is printed on the second passivation film 404, the silicon substrate 401 is heated. Thereby, the second passivation film 404 on which the etching paste is printed is removed. The etching paste is removed by performing ultrasonic cleaning after the heat treatment.
 次に、図9(k)に示すように、コンタクトホール416およびコンタクトホール417のそれぞれに銀ペーストを印刷した後、焼成する。これにより、n+層405上にn電極407が形成され、p+層406上にp電極408が形成される。このようにして図8に示す裏面接合型太陽電池が製造される。 Next, as shown in FIG. 9K, a silver paste is printed in each of the contact hole 416 and the contact hole 417, and then fired. As a result, an n electrode 407 is formed on the n + layer 405, and a p electrode 408 is formed on the p + layer 406. In this manner, the back junction solar cell shown in FIG. 8 is manufactured.
特開2008-10746号公報(平成20年1月17日公開)JP 2008-10746 A (published January 17, 2008)
 特許文献1に開示されている図9の裏面接合型太陽電池の製造方法では、シリコン基板の裏面にn+層とp+層とを形成する。そのため、n+層の形成とp+層の形成とに対して、それぞれ、拡散マスクの形成工程、パターニング工程、不純物拡散工程、および拡散マスクの除去の工程などを行なう必要がある。また、n+層の形成とp+層の形成とが終了してから、n+層上とp+層上とにそれぞれ異なるパッシベーション膜を形成する。そのため、第1パッシベーション膜の形成工程、パターニング工程、第1パッシベーション膜をp+層上のみに残す工程、および、第2パッシベーション膜の形成工程などを行なう必要がある。以上より、図9の裏面接合型太陽電池の製造方法では、工程数が多くなる。 In the method for manufacturing the back junction solar cell of FIG. 9 disclosed in Patent Document 1, an n + layer and a p + layer are formed on the back surface of the silicon substrate. Therefore, it is necessary to perform a diffusion mask formation process, a patterning process, an impurity diffusion process, a diffusion mask removal process, and the like for the n + layer formation and the p + layer formation, respectively. Further, after the formation of the n + layer and the formation of the p + layer is completed, different passivation films are formed on the n + layer and the p + layer, respectively. Therefore, it is necessary to perform a first passivation film forming process, a patterning process, a process in which the first passivation film is left only on the p + layer, a second passivation film forming process, and the like. As described above, the number of steps increases in the method for manufacturing the back junction solar cell in FIG.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、工程数を減らしてもn+領域上とp+領域上とにそれぞれ異なるパッシベーション膜を形成することが可能な裏面電極型太陽電池の製造方法を提供することにある。 The present invention has been made in view of this point, and the object of the present invention is to form different passivation films on the n + region and the p + region, respectively, even if the number of steps is reduced. It is providing the manufacturing method of a back electrode type solar cell.
 本発明の第1の裏面電極型太陽電池の製造方法は、シリコン基板の裏面上の一部に、第1導電型のドーパントを含む第1裏面側パッシベーション膜を形成する工程と、シリコン基板の裏面上と第1裏面側パッシベーション膜上とに、第2導電型のドーパントを含む膜を形成する工程と、シリコン基板を熱処理することにより、第1導電型のドーパントが第1裏面側パッシベーション膜からシリコン基板の一部に拡散されて第1導電型の半導体領域が形成され、第2導電型のドーパントが第2導電型のドーパントを含む膜からシリコン基板のうち第1導電型のドーパントが拡散される領域とは異なる領域の少なくとも一部に拡散されて第2導電型の半導体領域が形成される工程と、第2導電型のドーパントを含む膜を除去する工程と、シリコン基板の裏面上と第1裏面側パッシベーション膜上とに、第2裏面側パッシベーション膜を形成する工程とを備える。 The first back electrode type solar cell manufacturing method of the present invention includes a step of forming a first back surface passivation film containing a first conductivity type dopant on a part of a back surface of a silicon substrate, and a back surface of the silicon substrate. A step of forming a film containing a second conductivity type dopant on the upper surface and the first back surface side passivation film; and a heat treatment of the silicon substrate, whereby the first conductivity type dopant is transferred from the first back surface side passivation film to silicon. A semiconductor region of the first conductivity type is formed by being diffused in a part of the substrate, and the dopant of the first conductivity type is diffused from the silicon substrate from a film in which the second conductivity type dopant contains the second conductivity type dopant. A step of diffusing in at least a part of a region different from the region to form a second conductivity type semiconductor region, a step of removing a film containing the second conductivity type dopant, and silicon On the on the back surface of the substrate and on the first back side passivation layer, and forming a second back side passivation film.
 本発明の第2の裏面電極型太陽電池の製造方法は、シリコン基板の裏面上の一部に、第1導電型の半導体領域を形成する工程と、第1導電型の半導体領域上に、第1裏面側パッシベーション膜を形成する工程と、第2導電型のドーパントを含む溶液を用いて、シリコン基板の裏面のうち第1導電型の半導体領域とは異なる領域の少なくとも一部に、第2導電型の半導体領域を形成する工程と、シリコン基板の裏面上と第1裏面側パッシベーション膜上とに、第2裏面側パッシベーション膜を形成する工程とを備える。 The second back electrode type solar cell manufacturing method of the present invention includes a step of forming a first conductivity type semiconductor region on a part of a back surface of a silicon substrate, and a first conductivity type semiconductor region, The second conductive layer is formed on at least a part of the back surface of the silicon substrate different from the first conductive type semiconductor region by using a step of forming a back surface side passivation film and a solution containing a second conductive type dopant. Forming a semiconductor region of the mold, and forming a second back-side passivation film on the back surface of the silicon substrate and the first back-side passivation film.
 ここで、本発明の裏面電極型太陽電池の製造方法では、第1導電型の半導体領域はn型であり、第2導電型の半導体領域はp型であってもよい。このとき、第2裏面側パッシベーション膜は、酸化アルミニウム膜であることが好ましい。 Here, in the method for manufacturing a back electrode type solar cell of the present invention, the first conductivity type semiconductor region may be n-type, and the second conductivity type semiconductor region may be p-type. At this time, the second back side passivation film is preferably an aluminum oxide film.
 また、本発明の裏面電極型太陽電池の製造方法では、第1裏面側パッシベーション膜は、酸化シリコン膜であってもよい。 Further, in the method for manufacturing a back electrode type solar cell of the present invention, the first back surface passivation film may be a silicon oxide film.
 本発明に係る裏面電極型太陽電池の製造方法によれば、工程数を減らしてもn+領域上とp+領域上とにそれぞれ異なるパッシベーション膜を形成することができる。 According to the method for manufacturing a back electrode type solar cell according to the present invention, different passivation films can be formed on the n + region and the p + region, respectively, even if the number of steps is reduced.
本発明の一実施形態に係る裏面電極型太陽電池の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the back electrode type solar cell which concerns on one Embodiment of this invention. 図1に示すII-II’線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II ′ shown in FIG. 1. 本発明の一実施形態に係る裏面電極型太陽電池の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the back electrode type solar cell which concerns on one Embodiment of this invention in process order. 本発明の別の一実施形態に係る裏面電極型太陽電池の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the back electrode type solar cell which concerns on another one Embodiment of this invention in process order. 本発明のまた別の一実施形態に係る裏面電極型太陽電池の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the back electrode type solar cell which concerns on another one Embodiment of this invention. 図5に示すVI-VI’線における断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI ′ shown in FIG. 5. 本発明のまた別の一実施形態に係る裏面電極型太陽電池の製造方法を工程順に示す断面図である。It is sectional drawing which shows the manufacturing method of the back surface electrode type solar cell which concerns on another one Embodiment of this invention in process order. 従来の裏面接合型太陽電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the conventional back junction type solar cell. 従来の裏面接合型太陽電池の製造方法の一例を工程順に示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the conventional back junction type solar cell in order of a process.
 以下、本発明の裏面電極型太陽電池の製造方法について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。 Hereinafter, the manufacturing method of the back electrode type solar cell of the present invention will be described with reference to the drawings. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts. In addition, dimensional relationships such as length, width, thickness, and depth are changed as appropriate for clarity and simplification of the drawings, and do not represent actual dimensional relationships.
 下記第1~第2の実施形態では、請求の範囲における「第1導電型」および「第2導電型」がそれぞれ「n型」および「p型」である。一方、下記第3の実施形態では、請求の範囲における「第1導電型」および「第2導電型」がそれぞれ「p型」および「n型」である。 In the following first and second embodiments, the “first conductivity type” and the “second conductivity type” in the claims are “n-type” and “p-type”, respectively. On the other hand, in the following third embodiment, “first conductivity type” and “second conductivity type” in the claims are “p-type” and “n-type”, respectively.
 <第1の実施形態>
 図1~図2は、本発明の第1の実施形態に係る裏面電極型太陽電池1の構成を示す図である。図1は、本実施形態に係る裏面電極型太陽電池1の構成を模式的に示す平面図であり、具体的には本実施形態に係る裏面電極型太陽電池1をシリコン基板の裏面側からみた平面図である。本実施形態に係る裏面電極型太陽電池1のシリコン基板の裏面では、帯状のn型用電極2と帯状のp型用電極3とが交互に配置されている。
<First Embodiment>
1 and 2 are diagrams showing a configuration of a back electrode type solar cell 1 according to a first embodiment of the present invention. FIG. 1 is a plan view schematically showing the configuration of a back electrode solar cell 1 according to the present embodiment. Specifically, the back electrode solar cell 1 according to the present embodiment is viewed from the back side of the silicon substrate. It is a top view. On the back surface of the silicon substrate of the back electrode type solar cell 1 according to the present embodiment, the strip-shaped n-type electrodes 2 and the strip-shaped p-type electrodes 3 are alternately arranged.
 図2は、図1に示すII-II’線における断面図である。n型シリコン基板4の受光面にはテクスチャ構造である凹凸形状5が形成されている。n型シリコン基板4の受光面上には受光面側パッシベーション膜6が形成されており、受光面側パッシベーション膜6上には反射防止膜7が形成されている。受光面側パッシベーション膜6は、たとえば酸化シリコン膜または窒化シリコン膜であることが好ましい。受光面側パッシベーション膜6の厚さは、たとえば10nm以下であることが好ましい。反射防止膜7は、受光面側パッシベーション膜6よりも屈折率が低いことが好ましく、たとえば受光面側パッシベーション膜6よりも窒素含有率が高い窒化シリコン膜であることが好ましい。反射防止膜7の厚さは、たとえば50nm以下100nm以下であることが好ましい。 FIG. 2 is a cross-sectional view taken along line II-II ′ shown in FIG. An uneven shape 5 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 4. A light-receiving surface side passivation film 6 is formed on the light-receiving surface of the n-type silicon substrate 4, and an antireflection film 7 is formed on the light-receiving surface side passivation film 6. The light-receiving surface side passivation film 6 is preferably, for example, a silicon oxide film or a silicon nitride film. The thickness of the light-receiving surface side passivation film 6 is preferably 10 nm or less, for example. The antireflection film 7 preferably has a refractive index lower than that of the light receiving surface side passivation film 6, and is preferably a silicon nitride film having a nitrogen content higher than that of the light receiving surface side passivation film 6, for example. The thickness of the antireflection film 7 is preferably, for example, 50 nm or less and 100 nm or less.
 n型シリコン基板4の裏面側には、n型半導体領域であるn+領域9とp型半導体領域であるp+領域10とが交互に隣接して形成されている。n+領域9上には、第1裏面側パッシベーション膜11が形成されており、p+領域10上と第1裏面側パッシベーション膜11上とには、第2裏面側パッシベーション膜12が形成されている。第1裏面側パッシベーション膜11は、たとえば酸化シリコン膜であることが好ましい。第1裏面側パッシベーション膜11の厚さは、たとえば50nm以上100nm以下であることが好ましい。第2裏面側パッシベーション膜12は、たとえば酸化アルミニウム膜であることが好ましい。第2裏面側パッシベーション膜12の厚さは、たとえば5nm以上50nm以下であることが好ましい。n型用電極2はn+領域9に接続されており、p型用電極3はp+領域10に接続されている。 On the back surface side of the n-type silicon substrate 4, n + regions 9 that are n-type semiconductor regions and p + regions 10 that are p-type semiconductor regions are alternately formed adjacent to each other. A first backside passivation film 11 is formed on the n + region 9, and a second backside passivation film 12 is formed on the p + region 10 and the first backside passivation film 11. Yes. The first back side passivation film 11 is preferably, for example, a silicon oxide film. The thickness of the first back side passivation film 11 is preferably not less than 50 nm and not more than 100 nm, for example. The second back side passivation film 12 is preferably, for example, an aluminum oxide film. The thickness of the second back surface side passivation film 12 is preferably not less than 5 nm and not more than 50 nm, for example. The n-type electrode 2 is connected to the n + region 9, and the p-type electrode 3 is connected to the p + region 10.
 より高い短絡電流を得るためには、n型シリコン基板4の裏面において、n型シリコン基板4とは異なる導電型を有するp+領域10の合計面積を、n型シリコン基板4とは同一の導電型を有するn+領域9の合計面積よりも大きくすることが好ましい。 In order to obtain a higher short-circuit current, the total area of the p + region 10 having a conductivity type different from that of the n-type silicon substrate 4 on the back surface of the n-type silicon substrate 4 is the same as that of the n-type silicon substrate 4. It is preferable to make it larger than the total area of the n + region 9 having a mold.
 隣り合うn+領域9は、当該n+領域9の長さ方向に対して垂直方向に分離していてもよい。その際、n+領域9間にはp+領域10が形成されている。また、p+領域10が当該p+領域10の長さ方向に対して垂直方向に分離している場合には、p+領域10間にn+領域9が形成されている。 Adjacent n + regions 9 may be separated in a direction perpendicular to the length direction of the n + region 9. At this time, a p + region 10 is formed between the n + regions 9. Further, when the p + region 10 are separated in a direction perpendicular to the length direction of the p + region 10, n + region 9 between p + region 10 is formed.
 なお、図1に示すように、n型シリコン基板4の裏面側では最も周縁に位置する電極の導電型が同じであるため、裏面電極型太陽電池1を回転対称構造とすることが可能である。よって、裏面電極型太陽電池1を複数並べて太陽電池モジュールを作製するときには、たとえば裏面電極型太陽電池1を図1における上下逆にして配置することができる。 In addition, as shown in FIG. 1, since the conductivity type of the electrode located in the most periphery is the same in the back surface side of the n-type silicon substrate 4, it is possible to make the back electrode type solar cell 1 into a rotationally symmetric structure. . Therefore, when producing a solar cell module by arranging a plurality of back electrode type solar cells 1, for example, the back electrode type solar cell 1 can be arranged upside down in FIG. 1.
 以下に、本実施形態に係る裏面電極型太陽電池1の製造方法を示す。図3は、本実施形態に係る裏面電極型太陽電池1の製造方法を工程順に示す断面図である。 Hereinafter, a method for manufacturing the back electrode type solar cell 1 according to this embodiment will be described. FIG. 3 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 1 according to this embodiment in the order of steps.
 まず、図3(a)に示すように、n型シリコン基板4の裏面上に、たとえば窒化シリコン膜からなるテクスチャマスク21をたとえばCVD(Chemical Vapor Deposition)法またはスパッタ法で形成する。 First, as shown in FIG. 3A, a texture mask 21 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 4 by, for example, a CVD (Chemical Vapor Deposition) method or a sputtering method.
 次に、図3(b)に示すように、n型シリコン基板4の受光面にテクスチャ構造である凹凸形状5をエッチングにより形成する。このエッチングは、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加して得られた混合溶液を70℃以上80℃以下に加熱したものを用いて行なわれることが好ましい。 Next, as shown in FIG. 3 (b), an uneven shape 5 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 4 by etching. This etching is preferably performed using, for example, a mixed solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower.
 次に、図3(c)を用いて次の工程を説明する。図3(c)では、n型シリコン基板4の裏面側を上に記している。まず、n型シリコン基板4の裏面上に形成されたテクスチャマスク21を除去する。その後、n型シリコン基板4の裏面全面上に、第1導電型のドーパントを含む第1裏面側パッシベーション膜形成用膜をたとえばCVD法により形成し、第1裏面側パッシベーション膜形成用膜上に、拡散防止膜形成用膜をたとえばCVD法により形成する。 Next, the next process will be described with reference to FIG. In FIG.3 (c), the back side of the n-type silicon substrate 4 is described above. First, the texture mask 21 formed on the back surface of the n-type silicon substrate 4 is removed. Thereafter, a first back surface passivation film forming film containing a first conductivity type dopant is formed on the entire back surface of the n-type silicon substrate 4 by, for example, a CVD method, and on the first back surface passivation film forming film, A film for forming a diffusion prevention film is formed by, for example, a CVD method.
 ここで、第1導電型のドーパントは、本実施形態では、リンなどのn型ドーパントである。第1裏面側パッシベーション膜形成用膜は、たとえば酸化シリコン膜であることが好ましく、第1裏面側パッシベーション膜形成用膜の厚さは、たとえば50nm以上100nm以下であることが好ましい。拡散防止膜形成用膜は、たとえば酸化シリコン膜または窒化シリコン膜などであることが好ましい。拡散防止膜形成用膜の厚さは、たとえば200nm以上500nm以下であることが好ましい。これにより、図3(d)における熱処理時に、第2導電型のドーパントが拡散防止膜34(図3(d)参照)を厚さ方向に貫通することを防止できるので、第2導電型のドーパントが第2導電型のドーパントを含む膜31(図3(d)参照)からn型シリコン基板4のうち拡散防止膜34の下に位置する部分(別の言い方をすると、n型シリコン基板4のうちn+領域9が形成される領域)へ向かって拡散することを防止できる。 Here, in the present embodiment, the first conductivity type dopant is an n-type dopant such as phosphorus. The first back-side passivation film forming film is preferably a silicon oxide film, for example, and the thickness of the first back-side passivation film forming film is preferably, for example, from 50 nm to 100 nm. The diffusion preventing film forming film is preferably, for example, a silicon oxide film or a silicon nitride film. The thickness of the diffusion preventing film forming film is preferably, for example, 200 nm or more and 500 nm or less. This prevents the second conductivity type dopant from penetrating the diffusion prevention film 34 (see FIG. 3D) in the thickness direction during the heat treatment in FIG. From the film 31 containing the second conductivity type dopant (see FIG. 3D), the portion of the n-type silicon substrate 4 located under the diffusion prevention film 34 (in other words, the n-type silicon substrate 4 It is possible to prevent diffusion toward the region in which the n + region 9 is formed.
 次に、n型シリコン基板4の裏面側にn+領域9を形成するために、n+領域9が形成される領域の上においてのみ第1裏面側パッシベーション膜形成用膜および拡散防止膜形成用膜が残存するように第1裏面側パッシベーション膜形成用膜および拡散防止膜形成用膜をパターニングする。このパターニングは、エッチングペーストをスクリーン印刷法などで塗布してから加熱することにより行なわれることが好ましい。このパターニングにより、n+領域9が形成される領域の上には、第1裏面側パッシベーション膜11および拡散防止膜34が順に形成される。その後、n型シリコン基板4を超音波洗浄してから酸処理することにより、パターニングで使用したエッチングペーストを除去する。ここで、エッチングペーストとしては、たとえば、エッチング成分としてリン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムからなる群より選択された少なくとも1種を含むことが好ましく、水、有機溶媒および増粘剤をさらに含むことが好ましい。 Next, in order to form the n + region 9 on the back surface side of the n-type silicon substrate 4, the first back surface passivation film forming film and the diffusion preventing film forming film are formed only on the region where the n + region 9 is formed. The first backside passivation film formation film and the diffusion prevention film formation film are patterned so that the film remains. This patterning is preferably performed by applying an etching paste by a screen printing method or the like and then heating. By this patterning, the first back-side passivation film 11 and the diffusion prevention film 34 are sequentially formed on the region where the n + region 9 is formed. Thereafter, the n-type silicon substrate 4 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning. Here, the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
 次に、図3(d)に示すように、n型シリコン基板4の裏面上(具体的にはn型シリコン基板4の裏面上のうち第1裏面側パッシベーション膜11および拡散防止膜34から露出する部分)と拡散防止膜34上とに、第2導電型のドーパントを含む膜31をたとえばCVD法により形成し、第2導電型のドーパントを含む膜31の上に、拡散制御膜32をたとえばCVD法により形成する。第2導電型のドーパントは、本実施形態では、ボロンなどのp型ドーパントである。第2導電型のドーパントを含む膜31は、たとえば酸化シリコン膜であることが好ましく、第2導電型のドーパントを含む膜31の厚さは、たとえば50nm以上100nm以下であることが好ましい。拡散制御膜32は、たとえば酸化シリコン膜または窒化シリコン膜などであることが好ましい。拡散制御膜32の厚さは、たとえば200nm以上500nm以下であることが好ましい。これにより、下記熱処理時には、第2導電型のドーパントが拡散制御膜32を厚さ方向に貫通することを防止できるので、第2導電型のドーパントがアウトディフュージョンすることを防止することができる。 Next, as shown in FIG. 3D, the n-type silicon substrate 4 is exposed from the first back-side passivation film 11 and the diffusion prevention film 34 on the back surface (specifically, on the back surface of the n-type silicon substrate 4). A film 31 containing a second conductivity type dopant is formed by, for example, the CVD method, and a diffusion control film 32 is formed on the film 31 containing the second conductivity type dopant, for example. It is formed by the CVD method. In the present embodiment, the second conductivity type dopant is a p-type dopant such as boron. The film 31 containing the second conductivity type dopant is preferably a silicon oxide film, for example, and the thickness of the film 31 containing the second conductivity type dopant is preferably, for example, 50 nm or more and 100 nm or less. The diffusion control film 32 is preferably, for example, a silicon oxide film or a silicon nitride film. The thickness of the diffusion control film 32 is preferably not less than 200 nm and not more than 500 nm, for example. Thereby, since the second conductivity type dopant can be prevented from penetrating the diffusion control film 32 in the thickness direction at the time of the following heat treatment, it is possible to prevent the second conductivity type dopant from being out-diffusioned.
 次に、n型シリコン基板4を熱処理する。これにより、第2導電型のドーパントが第2導電型のドーパントを含む膜31からn型シリコン基板4の裏面側のうち第2導電型のドーパントを含む膜31の下に位置する部分に拡散し、よって、p+領域10が形成される。また、第1導電型のドーパントが第1裏面側パッシベーション膜11からn型シリコン基板4の裏面側のうち第1裏面側パッシベーション膜11の下に位置する部分に拡散し、よって、n+領域9が形成される。このように、本実施形態では、n+領域9とp+領域10とを同時に形成することができる。また、n+領域9とp+領域10とは、互いに隣接するように形成される。 Next, the n-type silicon substrate 4 is heat-treated. As a result, the second conductivity type dopant diffuses from the film 31 containing the second conductivity type dopant to the portion located below the film 31 containing the second conductivity type dopant on the back side of the n-type silicon substrate 4. Thus, the p + region 10 is formed. Further, the first conductivity type dopant diffuses from the first back surface side passivation film 11 to a portion of the back surface side of the n-type silicon substrate 4 located below the first back surface side passivation film 11, and thus the n + region 9. Is formed. Thus, in the present embodiment, the n + region 9 and the p + region 10 can be formed simultaneously. The n + region 9 and the p + region 10 are formed so as to be adjacent to each other.
 n型シリコン基板4の熱処理条件の一例としては、0.5時間以上2時間以下、n型シリコン基板4を800℃以上1000℃以下で加熱するということが挙げられる。これにより、第1導電型のドーパント濃度が1020cm-3以上のn+領域9が形成され、第2導電型のドーパント濃度が1020cm-3以上のp+領域10が形成される。 An example of the heat treatment conditions for the n-type silicon substrate 4 is that the n-type silicon substrate 4 is heated at 800 ° C. or more and 1000 ° C. or less for 0.5 hours or more and 2 hours or less. Thus, the dopant concentration of the first conductivity type is 10 20 cm -3 or more n + region 9 is formed, the dopant concentration of the second conductivity type is 10 20 cm -3 or more p + region 10 is formed.
 なお、第1裏面側パッシベーション膜11と第2導電型のドーパントを含む膜31との間に拡散防止膜34が設けられているので、上記熱処理を行なっても第2導電型のドーパントが第2導電型のドーパントを含む膜31からn型シリコン基板4のうち拡散防止膜34の下に位置する部分へ向かって拡散することを防止することができる。また、第2導電型のドーパントを含む膜31の上には拡散制御膜32が設けられているので、上記熱処理を行なっても第2導電型のドーパントがアウトディフュージョンすることを防止することができる。 Since the diffusion preventing film 34 is provided between the first back surface side passivation film 11 and the film 31 containing the second conductivity type dopant, the second conductivity type dopant remains in the second conductivity even after the heat treatment. It is possible to prevent diffusion from the film 31 containing the conductive dopant toward the portion of the n-type silicon substrate 4 located below the diffusion prevention film 34. Further, since the diffusion control film 32 is provided on the film 31 containing the second conductivity type dopant, it is possible to prevent the second conductivity type dopant from being out-diffused even if the heat treatment is performed. .
 次に、図3(e)に示すように、n型シリコン基板4の裏面上に形成された拡散制御膜32、第2導電型のドーパントを含む膜31および拡散防止膜34をエッチングにより除去する。p+領域10上には、第2導電型のドーパントを含む膜31と拡散制御膜32とが形成されており、n+領域9上には、第2導電型のドーパントを含む膜31および拡散制御膜32に加えて第1裏面側パッシベーション膜11と拡散防止膜34とが形成されている。そのため、第2導電型のドーパントを含む膜31および拡散制御膜32が除去されるまでエッチングを行なうと、第1裏面側パッシベーション膜11だけが残る。 Next, as shown in FIG. 3E, the diffusion control film 32, the film 31 containing the second conductivity type dopant and the diffusion prevention film 34 formed on the back surface of the n-type silicon substrate 4 are removed by etching. . A film 31 containing a second conductivity type dopant and a diffusion control film 32 are formed on the p + region 10, and a film 31 containing the second conductivity type dopant and a diffusion are formed on the n + region 9. In addition to the control film 32, the first back surface side passivation film 11 and the diffusion preventing film 34 are formed. Therefore, if etching is performed until the film 31 containing the second conductivity type dopant and the diffusion control film 32 are removed, only the first back-side passivation film 11 remains.
 次に、図3(f)に示すように、n型シリコン基板4の裏面上に、第1裏面側パッシベーション膜11とは異なる第2裏面側パッシベーション膜12をたとえばスパッタ法またはCVD法により形成する。n+領域9上には第1裏面側パッシベーション膜11が形成されているため、第2裏面側パッシベーション膜12はp+領域10上と第1裏面側パッシベーション膜11上とに形成される。その後、n型シリコン基板4の受光面上に受光面側パッシベーション膜6と反射防止膜7とをたとえばCVD法により順に形成する。第2裏面側パッシベーション膜12は、たとえば酸化アルミニウム膜であることが好ましい。受光面側パッシベーション膜6および反射防止膜7は共に窒化シリコン膜であることが好ましく、窒素含有率は反射防止膜7の方が受光面側パッシベーション膜6よりも高いことが好ましく、屈折率は反射防止膜7の方が受光面側パッシベーション膜6よりも低いことが好ましい。受光面側パッシベーション膜6は、酸化シリコン膜であっても良い。 Next, as shown in FIG. 3F, a second back surface passivation film 12 different from the first back surface passivation film 11 is formed on the back surface of the n-type silicon substrate 4 by, for example, sputtering or CVD. . Since the first back surface side passivation film 11 is formed on the n + region 9, the second back surface side passivation film 12 is formed on the p + region 10 and on the first back surface side passivation film 11. Thereafter, a light-receiving surface side passivation film 6 and an antireflection film 7 are sequentially formed on the light-receiving surface of the n-type silicon substrate 4 by, for example, a CVD method. The second back side passivation film 12 is preferably, for example, an aluminum oxide film. Both the light-receiving surface side passivation film 6 and the antireflection film 7 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 7 than in the light-receiving surface side passivation film 6, and the refractive index is reflected. The prevention film 7 is preferably lower than the light-receiving surface side passivation film 6. The light-receiving surface side passivation film 6 may be a silicon oxide film.
 次に、図3(g)を用いて次の工程を説明する。図3(g)では、n型シリコン基板4の受光面側を上に記している。n+領域9上にn型用電極2を形成するために、第1裏面側パッシベーション膜11および第2裏面側パッシベーション膜12に対してパターニングを行なう。p+領域10上にp型用電極3を形成するために、第2裏面側パッシベーション膜12に対してパターニングを行う。これにより、n+領域9の一部が第1裏面側パッシベーション膜11および第2裏面側パッシベーション膜12から露出され、p+領域10の一部が第2裏面側パッシベーション膜12から露出される。このパターニングは、たとえばエッチングペーストをスクリーン印刷法などで塗布してから加熱することにより行なわれることが好ましい。その後、n型シリコン基板4を超音波洗浄してから酸処理することにより、パターニングで使用したエッチングペーストを除去する。ここで、エッチングペーストとしては、たとえば、エッチング成分としてリン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムからなる群より選択された少なくとも1種を含むことが好ましく、水、有機溶媒および増粘剤をさらに含むことが好ましい。 Next, the next step will be described with reference to FIG. In FIG. 3G, the light receiving surface side of the n-type silicon substrate 4 is shown above. In order to form the n-type electrode 2 on the n + region 9, the first back-side passivation film 11 and the second back-side passivation film 12 are patterned. In order to form the p-type electrode 3 on the p + region 10, the second back-side passivation film 12 is patterned. Thereby, a part of the n + region 9 is exposed from the first back surface side passivation film 11 and the second back surface side passivation film 12, and a part of the p + region 10 is exposed from the second back surface side passivation film 12. This patterning is preferably performed, for example, by applying an etching paste by screen printing or the like and then heating. Thereafter, the n-type silicon substrate 4 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning. Here, the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
 次に、図3(h)に示すように、n+領域9のうち第1裏面側パッシベーション膜11および第2裏面側パッシベーション膜12から露出する部分の上と、p+領域10のうち第2裏面側パッシベーション膜12から露出する部分の上とに、銀ペーストをたとえばスクリーン印刷法により塗布してから乾燥させる。その後、焼成する。これにより、n+領域9上にはn型用電極2が形成され、p+領域10上にはp型用電極3が形成される。このようにして裏面電極型太陽電池1が製造される。 Next, as shown in FIG. 3 (h), on the portion exposed from the first back surface side passivation film 11 and the second back surface side passivation film 12 in the n + region 9 and in the second region of the p + region 10. A silver paste is applied onto the portion exposed from the back surface side passivation film 12 by, for example, a screen printing method and then dried. Thereafter, it is fired. As a result, the n-type electrode 2 is formed on the n + region 9 and the p-type electrode 3 is formed on the p + region 10. In this way, the back electrode type solar cell 1 is manufactured.
 以上説明したように、本実施形態に係る裏面電極型太陽電池1の製造方法では、n+領域9を形成するために必要な第1導電型のドーパントを含む膜を第1裏面側パッシベーション膜11としている。よって、第1裏面側パッシベーション膜11を形成する工程を別途設けることなく裏面電極型太陽電池1を製造することができる。また、本実施形態に係る裏面電極型太陽電池1の製造方法では、図3(d)に示す工程において、第1導電型のドーパントを拡散させてn+領域9を形成するとともに第2導電型のドーパントを拡散させてp+領域10を形成する。よって、第1導電型のドーパントを拡散させる工程とは別に第2導電型のドーパントを拡散させる工程を設けることなく、裏面電極型太陽電池1を製造することができる。それだけでなく、n+領域9を形成するために用いたマスクとp+領域10を形成するために用いたマスクとを同時に除去することができる。したがって、裏面電極型太陽電池1の製造工程数を減らすことができる。一方、本実施形態に係る裏面電極型太陽電池1の製造方法では、n+領域9上には第1裏面側パッシベーション膜11が形成されており、p+領域10上には第2裏面側パッシベーション膜12が形成されている。以上のことから、本実施形態に係る裏面電極型太陽電池1の製造方法では、裏面電極型太陽電池1の製造工程数を減らしてもn+領域9上とp+領域10上とにそれぞれ異なるパッシベーション膜を形成することができる。 As described above, in the method for manufacturing the back electrode type solar cell 1 according to the present embodiment, the film containing the first conductivity type dopant necessary for forming the n + region 9 is used as the first back surface passivation film 11. It is said. Therefore, the back electrode type solar cell 1 can be manufactured without providing a separate step of forming the first back side passivation film 11. Moreover, in the manufacturing method of the back electrode type solar cell 1 according to the present embodiment, in the step shown in FIG. 3D, the n + region 9 is formed by diffusing the first conductivity type dopant and the second conductivity type. The p + region 10 is formed by diffusing the dopant. Therefore, the back electrode type solar cell 1 can be manufactured without providing a step of diffusing the second conductivity type dopant separately from the step of diffusing the first conductivity type dopant. In addition, the mask used to form the n + region 9 and the mask used to form the p + region 10 can be removed simultaneously. Therefore, the number of manufacturing steps of the back electrode type solar cell 1 can be reduced. On the other hand, in the method for manufacturing the back electrode type solar cell 1 according to the present embodiment, the first back side passivation film 11 is formed on the n + region 9, and the second back side passivation is formed on the p + region 10. A film 12 is formed. From the above, in the manufacturing method of the back electrode type solar cell 1 according to the present embodiment, even if the number of manufacturing steps of the back electrode type solar cell 1 is reduced, it differs between the n + region 9 and the p + region 10. A passivation film can be formed.
 また、多くの設備を必要とすることなく裏面電極型太陽電池1を製造することができるので、裏面電極型太陽電池1の生産性が向上する。 Moreover, since the back electrode type solar cell 1 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 1 is improved.
 さらに、第1裏面側パッシベーション膜11を用いてn+領域9を形成する。よって、位置ずれを招くことなくn+領域9上に第1裏面側パッシベーション膜11を形成することができる。また、第2裏面側パッシベーション膜12は、n型シリコン基板4の裏面全面上に形成されるため、第1裏面側パッシベーション膜11上だけでなくp+領域10上にも形成される。よって、位置ずれを招くことなくp+領域10上に第2裏面側パッシベーション膜12を形成することができる。 Further, the n + region 9 is formed using the first back surface side passivation film 11. Therefore, the first back-side passivation film 11 can be formed on the n + region 9 without causing a positional shift. In addition, since the second back surface side passivation film 12 is formed on the entire back surface of the n-type silicon substrate 4, it is formed not only on the first back surface side passivation film 11 but also on the p + region 10. Therefore, the second back-side passivation film 12 can be formed on the p + region 10 without causing a positional shift.
 その上、酸化アルミニウム膜は負の固定電荷を有する。そのため、第2裏面側パッシベーション膜12を酸化アルミニウム膜で構成すれば、p+領域10上において高いパッシベーション性を有する裏面電極型太陽電池1を製造することができる。 In addition, the aluminum oxide film has a negative fixed charge. Therefore, if the second back surface passivation film 12 is made of an aluminum oxide film, the back electrode solar cell 1 having high passivation properties on the p + region 10 can be manufactured.
 <第2の実施形態>
 図4は、本発明の第2の実施形態に係る裏面電極型太陽電池71の製造方法を工程順に示す断面図である。本実施形態に係る裏面電極型太陽電池71では、第1裏面側パッシベーション膜膜は第1導電型のドーパントを含有していない。また、本実施形態に係る裏面電極型太陽電池71の製造方法は、上記第1の実施形態に係る裏面電極型太陽電池1の製造方法とは、n+領域9の形成方法を異にする。以下、本実施形態に係る裏面電極型太陽電池71の製造方法を工程順に示す。
<Second Embodiment>
FIG. 4 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 71 according to the second embodiment of the present invention in the order of steps. In the back electrode type solar cell 71 according to this embodiment, the first back side passivation film does not contain the first conductivity type dopant. Moreover, the manufacturing method of the back surface electrode type solar cell 71 according to the present embodiment is different from the manufacturing method of the back surface electrode type solar cell 1 according to the first embodiment in the method of forming the n + region 9. Hereinafter, the manufacturing method of the back electrode type solar cell 71 according to this embodiment will be described in the order of steps.
 まず、図4(a)に示すように、上記第1の実施形態における図3(a)に示す工程と同じく、n型シリコン基板4の裏面上に、たとえば窒化シリコン膜からなるテクスチャマスク21をたとえばCVD法またはスパッタ法で形成する。 First, as shown in FIG. 4A, a texture mask 21 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 4 as in the step shown in FIG. 3A in the first embodiment. For example, it is formed by a CVD method or a sputtering method.
 次に、図4(b)に示すように、上記第1の実施形態における図3(a)に示す工程と同じく、n型シリコン基板4の受光面にテクスチャ構造である凹凸形状5をエッチングにより形成する。 Next, as shown in FIG. 4B, as in the step shown in FIG. 3A in the first embodiment, the uneven shape 5 which is a textured structure is etched on the light receiving surface of the n-type silicon substrate 4 by etching. Form.
 次に、図4(c)を用いて次の工程を説明する。図4(c)では、n型シリコン基板4の裏面側を上に記している。まず、n型シリコン基板4の裏面上に形成されたテクスチャマスク21を除去する。次に、n型シリコン基板4の受光面上にたとえば酸化シリコンからなる拡散マスク22を形成する。その後、n型シリコン基板4の裏面においてn+領域9が形成される領域とは異なる領域の上に、拡散マスク23を形成する。拡散マスク23は、たとえば、溶剤、増粘剤および酸化シリコン前駆体を含むマスキングペーストをインクジェットまたはスクリーン印刷などで塗布してから熱処理することにより形成される。その後、第1導電型のドーパントを含むガスを気相拡散させる。これにより、n型シリコン基板4の裏面のうち拡散マスク23から露出した部分には、第1導電型のドーパントが拡散する。これにより、n+領域9が形成される。 Next, the next step will be described with reference to FIG. In FIG.4 (c), the back side of the n-type silicon substrate 4 is described above. First, the texture mask 21 formed on the back surface of the n-type silicon substrate 4 is removed. Next, a diffusion mask 22 made of, for example, silicon oxide is formed on the light receiving surface of the n-type silicon substrate 4. Thereafter, a diffusion mask 23 is formed on a region different from the region where n + region 9 is formed on the back surface of n-type silicon substrate 4. The diffusion mask 23 is formed, for example, by applying a masking paste containing a solvent, a thickener, and a silicon oxide precursor by inkjet or screen printing and then performing a heat treatment. Thereafter, a gas containing a dopant of the first conductivity type is diffused in a gas phase. Accordingly, the first conductivity type dopant is diffused into the portion of the back surface of the n-type silicon substrate 4 exposed from the diffusion mask 23. Thereby, n + region 9 is formed.
 第1導電型のドーパントがリンである場合には、第1導電型のドーパントを含むガスとしてはたとえばPOCl3を用いることができる。第1導電型のドーパントを気相拡散させる条件の一例としては、800℃以上900℃以下の温度下で、10分以上60分以下、第1導電型のドーパントを含むガス雰囲気下にn型シリコン基板4を曝すということが挙げられる。これにより、第1導電型のドーパント濃度が1020cm-3以上のn+領域9が形成される。 When the first conductivity type dopant is phosphorus, for example, POCl 3 can be used as the gas containing the first conductivity type dopant. As an example of the conditions for vapor-phase diffusion of the first conductivity type dopant, n-type silicon is used in a gas atmosphere containing the first conductivity type dopant at a temperature of 800 ° C. to 900 ° C. for 10 minutes to 60 minutes. For example, the substrate 4 is exposed. As a result, an n + region 9 having a dopant concentration of the first conductivity type of 10 20 cm −3 or more is formed.
 次に、図4(d)に示すように、n型シリコン基板4上に形成された拡散マスク22,23と拡散マスク22,23にリンが拡散して形成されたガラス層とをフッ化水素酸処理により除去する。その後、酸素または水蒸気による熱酸化を行う。これにより、n型シリコン基板4の受光面上には、酸化シリコン膜24が形成され、n型シリコン基板4の裏面上には、第1裏面側パッシベーション膜形成用膜11Aが形成される。このとき、図4(d)に示すように、n+領域9上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さはn+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さよりも厚くなる。 Next, as shown in FIG. 4D, the diffusion masks 22 and 23 formed on the n-type silicon substrate 4 and the glass layer formed by diffusing phosphorus in the diffusion masks 22 and 23 are combined with hydrogen fluoride. Remove by acid treatment. Thereafter, thermal oxidation with oxygen or water vapor is performed. Thereby, a silicon oxide film 24 is formed on the light receiving surface of the n-type silicon substrate 4, and a first back-side passivation film forming film 11 </ b> A is formed on the back surface of the n-type silicon substrate 4. At this time, as shown in FIG. 4D, the thickness of the first back surface passivation film forming film 11 </ b > A formed on the n + region 9 was formed on a region different from the n + region 9. It becomes thicker than the thickness of the first backside passivation film forming film 11A.
 熱酸化により形成された第1裏面側パッシベーション膜形成用膜11Aの厚さがn+領域9上とn+領域9とは異なる領域の上とで異なる理由は次に示すとおりである。熱酸化による膜の成長速度は、シリコン基板に拡散している不純物の種類とその不純物の濃度とによって決まる。特にシリコン基板におけるn型不純物濃度が高い場合には、熱酸化による膜の成長速度は速くなる。ここで、n型不純物濃度は、n+領域9の方がn+領域9とは異なる領域よりも高い。よって、n+領域9上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さの方が、n+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さよりも厚くなる。 Why the thickness of the first back side passivation film forming film 11A formed by thermal oxidation is different between on the area different from the n + region 9 and on the n + region 9 is as shown below. The growth rate of the film by thermal oxidation is determined by the type of impurity diffused in the silicon substrate and the concentration of the impurity. In particular, when the n-type impurity concentration in the silicon substrate is high, the growth rate of the film by thermal oxidation increases. Here, n-type impurity concentration, it n + region 9 is higher than a region different from the n + region 9. Thus, the first is more of the thickness of the back side passivation film forming film 11A, a first for the back side passivation film formed formed on the area different from the n + region 9 formed on the n + region 9 It becomes thicker than the thickness of the film 11A.
 また、第1裏面側パッシベーション膜形成用膜11Aは、熱酸化時にシリコンと酸素とが結びつくことにより形成される。よって、n型シリコン基板4では、n+領域9の表面は、n+領域9とは異なる領域の表面よりもn型シリコン基板4側に凹む。 The first back surface passivation film forming film 11A is formed by combining silicon and oxygen during thermal oxidation. Thus, the n-type silicon substrate 4, the surface of the n + region 9 is recessed n-type silicon substrate 4 side than the surface of a region different from the n + region 9.
 なお、第1裏面側パッシベーション膜11(図4(e)参照)をp+領域10の形成時におけるn+領域9の拡散マスクとして使用する場合には、n+領域9上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さとn+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さとの差が60nm以上であることが好ましい。 Incidentally, in the case of using the first back side passivation film 11 (see FIG. 4 (e)) as a diffusion mask for the n + region 9 during the formation of the p + region 10 is formed on the n + region 9 first The difference between the thickness of the first back surface passivation film forming film 11A and the thickness of the first back surface passivation film forming film 11A formed on a region different from the n + region 9 is preferably 60 nm or more.
 次に、図4(e)に示すように、酸化シリコン膜24とn型シリコン基板4の裏面のうちn+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aとをエッチングにより除去する。n型シリコン基板4の裏面では、n+領域9上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さは、n+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aの厚さよりも厚い。そのため、n+領域9とは異なる領域の上に形成された第1裏面側パッシベーション膜形成用膜11Aが除去されるまで第1裏面側パッシベーション膜形成用膜11Aをエッチングすると、第1裏面側パッシベーション膜形成用膜11Aはn+領域9上だけに残る。これにより、第1裏面側パッシベーション膜11が形成される。 Next, as shown in FIG. 4E, a first back surface passivation film forming film formed on a region different from the n + region 9 on the back surface of the silicon oxide film 24 and the n-type silicon substrate 4. 11A is removed by etching. The back surface of the n-type silicon substrate 4, the thickness of the first back side passivation film forming film 11A formed on the n + region 9, first back surface formed on a region different from the n + region 9 It is thicker than the thickness of the side passivation film forming film 11A. Therefore, if the first backside passivation film forming film 11A is etched until the first backside passivation film forming film 11A formed on a region different from the n + region 9 is removed, the first backside passivation is performed. The film forming film 11A remains only on the n + region 9. Thereby, the 1st back surface side passivation film 11 is formed.
 次に、n型シリコン基板4の受光面上に酸化シリコンなどからなる拡散マスク25を形成する。その後、n型シリコン基板4の裏面のうち第1裏面側パッシベーション膜11から露出した部分に、有機性高分子に第2導電型のドーパントを含む化合物を反応させて得られたポリマーをアルコール系溶媒に溶解させて得られた溶液を塗布する。その溶液が乾燥したら熱処理を行なう。これにより、n型シリコン基板4の裏面のうち第1裏面側パッシベーション膜11から露出した部分に第2導電型のドーパントが拡散する。よって、p+領域10が形成される。 Next, a diffusion mask 25 made of silicon oxide or the like is formed on the light receiving surface of the n-type silicon substrate 4. Thereafter, the polymer obtained by reacting the organic polymer with a compound containing a dopant of the second conductivity type is exposed to a portion of the back surface of the n-type silicon substrate 4 exposed from the first back surface passivation film 11 with an alcohol solvent. The solution obtained by dissolving in is applied. When the solution is dry, heat treatment is performed. As a result, the second conductivity type dopant diffuses into the portion of the back surface of the n-type silicon substrate 4 exposed from the first back surface passivation film 11. Therefore, p + region 10 is formed.
 第2導電型のドーパントがボロンである場合には、第2導電型のドーパントを含む化合物としてはたとえばホウ素化合物を用いることができる。また、n型シリコン基板4の熱処理条件の一例としては、10分以上60分以下、n型シリコン基板4を900℃以上1000℃以下で加熱するということが挙げられる。これにより、第2導電型のドーパント濃度が1020cm-3以上のp+領域10が形成される。 When the second conductivity type dopant is boron, for example, a boron compound can be used as the compound containing the second conductivity type dopant. In addition, as an example of the heat treatment condition of the n-type silicon substrate 4, heating the n-type silicon substrate 4 at 900 ° C. or more and 1000 ° C. or less for 10 minutes or more and 60 minutes or less can be mentioned. As a result, the p + region 10 having the second conductivity type dopant concentration of 10 20 cm −3 or more is formed.
 このように、本実施形態では、第1裏面側パッシベーション膜11がn+領域9上に形成された状態で第2導電型のドーパントを含む溶液を塗布することによりp+領域10が形成される。よって、n+領域9とp+領域10とは互いに隣接するように形成される。 As described above, in this embodiment, the p + region 10 is formed by applying the solution containing the dopant of the second conductivity type in a state where the first back surface side passivation film 11 is formed on the n + region 9. . Therefore, n + region 9 and p + region 10 are formed adjacent to each other.
 なお、第1裏面側パッシベーション膜11がn+領域9上に形成された状態で第2導電型のドーパントを含む溶液を塗布するので、第2導電型のドーパントがn+領域9へ拡散することを防止することができる。つまり、第1裏面側パッシベーション膜11は、第2導電型のドーパントがn+領域9へ拡散することを防止するための膜(拡散マスク)としても機能する。 In addition, since the solution containing the second conductivity type dopant is applied in a state where the first back surface side passivation film 11 is formed on the n + region 9, the second conductivity type dopant diffuses into the n + region 9. Can be prevented. That is, the first back surface side passivation film 11 also functions as a film (diffusion mask) for preventing the second conductivity type dopant from diffusing into the n + region 9.
 次に、図4(f)を用いて次の工程を説明する。図4(f)では、n型シリコン基板4の受光面側を上に記している。図4(f)に示すように、拡散マスク25と、拡散マスク25にボロンが拡散して形成されたガラス層とを、フッ化水素酸処理により除去する。その後、n型シリコン基板4の裏面上に、第1裏面側パッシベーション膜11とは異なる第2裏面側パッシベーション膜12をたとえばスパッタ法またはCVD法により形成する。n+領域9上には第1裏面側パッシベーション膜11が形成されているため、第2裏面側パッシベーション膜12はp+領域10上と第1裏面側パッシベーション膜11上とに形成される。その後、n型シリコン基板4の受光面上に受光面側パッシベーション膜6と反射防止膜7とをたとえばCVD法により順に形成する。第2裏面側パッシベーション膜12は、たとえば酸化アルミニウム膜であることが好ましい。受光面側パッシベーション膜6および反射防止膜7は共に窒化シリコン膜であることが好ましく、窒素含有率は反射防止膜7の方が受光面側パッシベーション膜6よりも高いことが好ましく、屈折率は反射防止膜7の方が受光面側パッシベーション膜6よりも低いことが好ましい。受光面側パッシベーション膜6は、酸化シリコン膜であっても良い。 Next, the next step will be described with reference to FIG. In FIG. 4F, the light receiving surface side of the n-type silicon substrate 4 is shown above. As shown in FIG. 4F, the diffusion mask 25 and the glass layer formed by diffusing boron in the diffusion mask 25 are removed by hydrofluoric acid treatment. Thereafter, a second back surface passivation film 12 different from the first back surface passivation film 11 is formed on the back surface of the n-type silicon substrate 4 by, for example, a sputtering method or a CVD method. Since the first back surface side passivation film 11 is formed on the n + region 9, the second back surface side passivation film 12 is formed on the p + region 10 and on the first back surface side passivation film 11. Thereafter, a light-receiving surface side passivation film 6 and an antireflection film 7 are sequentially formed on the light-receiving surface of the n-type silicon substrate 4 by, for example, a CVD method. The second back side passivation film 12 is preferably, for example, an aluminum oxide film. Both the light-receiving surface side passivation film 6 and the antireflection film 7 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 7 than in the light-receiving surface side passivation film 6, and the refractive index is reflected. The prevention film 7 is preferably lower than the light-receiving surface side passivation film 6. The light-receiving surface side passivation film 6 may be a silicon oxide film.
 次に、図4(g)に示すように、上記第1の実施形態における図3(g)に示す工程と同じく、n+領域9上にn型用電極2を形成するために、第1裏面側パッシベーション膜11および第2裏面側パッシベーション膜12に対してパターニングを行なう。また、p+領域10上にp型用電極3を形成するために、第2裏面側パッシベーション膜12に対してパターニングを行う。パターニングの方法、エッチングペーストの組成、および、エッチングペーストの除去方法としては、上記第1の実施形態における図3(g)に示す工程と同一の方法を用いることができる。 Next, as shown in FIG. 4G, in order to form the n-type electrode 2 on the n + region 9 in the same manner as the step shown in FIG. Patterning is performed on the back side passivation film 11 and the second back side passivation film 12. Further, in order to form the p-type electrode 3 on the p + region 10, the second back surface passivation film 12 is patterned. As the patterning method, the composition of the etching paste, and the method for removing the etching paste, the same method as the step shown in FIG. 3G in the first embodiment can be used.
 次に、図4(h)に示すように、上記第1の実施形態における図3(h)に示す工程と同じく、n+領域9のうち第1裏面側パッシベーション膜11および第2裏面側パッシベーション膜12から露出する部分の上と、p+領域10のうち第2裏面側パッシベーション膜12から露出する部分の上とに、銀ペーストをたとえばスクリーン印刷法により塗布してから乾燥させる。その後、焼成する。これにより、n+領域9上にはn型用電極2が形成され、p+領域10上にはp型用電極3が形成される。このようにして裏面電極型太陽電池71が製造される。 Next, as shown in FIG. 4 (h), as in the step shown in FIG. 3 (h) in the first embodiment, the first back-side passivation film 11 and the second back-side passivation in the n + region 9 are used. A silver paste is applied onto the portion exposed from the film 12 and the portion exposed from the second back-side passivation film 12 in the p + region 10 by, for example, a screen printing method and then dried. Thereafter, it is fired. As a result, the n-type electrode 2 is formed on the n + region 9 and the p-type electrode 3 is formed on the p + region 10. In this way, the back electrode type solar cell 71 is manufactured.
 以上説明したように、本実施形態に係る裏面電極型太陽電池71の製造方法では、p+領域10を形成するための拡散マスクを第1裏面側パッシベーション膜11としている。よって、p+領域10を形成するための拡散マスクを形成する工程とは別に第1裏面側パッシベーション膜11を形成する工程を設けることなく、裏面電極型太陽電池71を製造することができる。また、本実施形態に係る裏面電極型太陽電池71の製造方法では、第2導電型のドーパントを含む溶液を塗布することによりp+領域10が形成される。よって、p+領域10を形成するための拡散マスクの形成およびその除去を行なうことなく、裏面電極型太陽電池71を製造することができる。したがって、裏面電極型太陽電池71の製造工程数を減らすことができる。一方、本実施形態に係る裏面電極型太陽電池71の製造方法では、n+領域9上には第1裏面側パッシベーション膜11が形成されており、p+領域10上には第2裏面側パッシベーション膜12が形成されている。以上のことから、本実施形態に係る裏面電極型太陽電池71の製造方法においても、裏面電極型太陽電池71の製造工程数を減らしてもn+領域9上とp+領域10上とにそれぞれ異なるパッシベーション膜を形成することができる。 As described above, in the manufacturing method of the back electrode type solar cell 71 according to the present embodiment, the diffusion mask for forming the p + region 10 is the first back surface passivation film 11. Therefore, the back electrode type solar cell 71 can be manufactured without providing the step of forming the first back side passivation film 11 separately from the step of forming the diffusion mask for forming the p + region 10. Moreover, in the manufacturing method of the back electrode type solar cell 71 according to the present embodiment, the p + region 10 is formed by applying a solution containing a second conductivity type dopant. Therefore, back electrode type solar cell 71 can be manufactured without forming and removing a diffusion mask for forming p + region 10. Therefore, the number of manufacturing steps of the back electrode type solar cell 71 can be reduced. On the other hand, in the manufacturing method of the back electrode type solar cell 71 according to the present embodiment, the first back surface passivation film 11 is formed on the n + region 9, and the second back surface passivation is formed on the p + region 10. A film 12 is formed. From the above, in the manufacturing method of the back electrode type solar cell 71 according to the present embodiment, even if the number of manufacturing steps of the back electrode type solar cell 71 is reduced, the n + region 9 and the p + region 10 are respectively provided. Different passivation films can be formed.
 また、多くの設備を必要とすることなく裏面電極型太陽電池71を製造することができるので、裏面電極型太陽電池71の生産性が向上する。 Moreover, since the back electrode type solar cell 71 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 71 is improved.
 さらに、n型シリコン基板4を熱酸化させることにより第1裏面側パッシベーション膜11がn+領域9上に形成されるため、位置ずれを招くことなくn+領域9上に第1裏面側パッシベーション膜11を形成することができる。また、第2裏面側パッシベーション膜12は、n型シリコン基板4の裏面全面上に形成されるため、第1裏面側パッシベーション膜11上だけでなくp+領域10上にも形成される。よって、位置ずれを招くことなくp+領域10上に第2裏面側パッシベーション膜12を形成することができる。 Further, since the first back side passivation film 11 is formed on the n + region 9 by thermally oxidizing the n-type silicon substrate 4, the first back side passivation film is formed on the n + region 9 without causing positional displacement. 11 can be formed. In addition, since the second back surface side passivation film 12 is formed on the entire back surface of the n-type silicon substrate 4, it is formed not only on the first back surface side passivation film 11 but also on the p + region 10. Therefore, the second back-side passivation film 12 can be formed on the p + region 10 without causing a positional shift.
 その上、酸化アルミニウム膜は負の固定電荷を有する。そのため、第2裏面側パッシベーション膜12を酸化アルミニウム膜で構成すれば、p+領域10上において高いパッシベーション性を有する裏面電極型太陽電池71を製造することができる。 In addition, the aluminum oxide film has a negative fixed charge. Therefore, if the second back surface side passivation film 12 is made of an aluminum oxide film, the back electrode type solar cell 71 having high passivation properties on the p + region 10 can be manufactured.
 なお、本実施形態では、p+領域10を形成してからn+領域9を形成しても良い。この場合、ボロンなどを含むガスを用いてp+領域10を形成することができ、リンなどを含む溶液を用いてn+領域9を形成することができる。 In the present embodiment, the n + region 9 may be formed after the p + region 10 is formed. In this case, the p + region 10 can be formed using a gas containing boron or the like, and the n + region 9 can be formed using a solution containing phosphorus or the like.
 <第3の実施形態>
 図5~図6は、本発明の第3の実施形態に係る裏面電極型太陽電池81の構成を示す図である。図5は、本実施形態に係る裏面電極型太陽電池81の構成を模式的に示す平面図であり、具体的には本実施形態に係る裏面電極型太陽電池81をシリコン基板の裏面側からみた平面図である。本実施形態に係る裏面電極型太陽電池81のシリコン基板の裏面では、帯状のn型用電極102と帯状のp型用電極103とが交互に配置されている。
<Third Embodiment>
5 to 6 are diagrams showing the configuration of a back electrode type solar cell 81 according to the third embodiment of the present invention. FIG. 5 is a plan view schematically showing the configuration of the back electrode type solar cell 81 according to this embodiment. Specifically, the back electrode type solar cell 81 according to this embodiment is seen from the back side of the silicon substrate. It is a top view. On the back surface of the silicon substrate of the back electrode type solar cell 81 according to the present embodiment, the strip-shaped n-type electrodes 102 and the strip-shaped p-type electrodes 103 are alternately arranged.
 図6は、図5に示すVI-VI’線における断面図である。n型シリコン基板104の受光面にはテクスチャ構造である凹凸形状105が形成されている。n型シリコン基板104の受光面上には受光面側パッシベーション膜106が形成されており、受光面側パッシベーション膜106上には反射防止膜107が形成されている。受光面側パッシベーション膜106は、たとえば酸化シリコン膜または窒化シリコン膜であることが好ましい。受光面側パッシベーション膜106の厚さは、たとえば10nm以下であることが好ましい。反射防止膜107は、受光面側パッシベーション膜106よりも屈折率が低いことが好ましく、たとえば受光面側パッシベーション膜106よりも窒素含有率が高い窒化シリコン膜であることが好ましい。反射防止膜107の厚さは、たとえば50nm以下100nm以下であることが好ましい。 FIG. 6 is a cross-sectional view taken along line VI-VI ′ shown in FIG. An uneven shape 105 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 104. A light-receiving surface side passivation film 106 is formed on the light-receiving surface of the n-type silicon substrate 104, and an antireflection film 107 is formed on the light-receiving surface side passivation film 106. The light-receiving surface side passivation film 106 is preferably, for example, a silicon oxide film or a silicon nitride film. The thickness of the light-receiving surface side passivation film 106 is preferably 10 nm or less, for example. The antireflection film 107 preferably has a lower refractive index than the light-receiving surface side passivation film 106, and is preferably a silicon nitride film having a higher nitrogen content than the light-receiving surface side passivation film 106, for example. The thickness of the antireflection film 107 is preferably, for example, 50 nm or less and 100 nm or less.
 n型シリコン基板104の裏面側には、n型半導体領域であるn+領域109とp型半導体領域であるp+領域110とが交互に隣接して形成されている。p+領域110上には、第1裏面側パッシベーション膜111が形成されており、n+領域109上と第1裏面側パッシベーション膜111上とには、第2裏面側パッシベーション膜112が形成されている。第1裏面側パッシベーション膜111は、たとえば酸化シリコン膜であることが好ましい。第1裏面側パッシベーション膜111の厚さは、たとえば50nm以上100nm以下であることが好ましい。第2裏面側パッシベーション膜112は、たとえば窒化シリコン膜であることが好ましい。第2裏面側パッシベーション膜112の厚さは、たとえば5nm以上50nm以下であることが好ましい。n型用電極102はn+領域109に接続されており、p型用電極103はp+領域110に接続されている。 On the back side of the n-type silicon substrate 104, n + regions 109 that are n-type semiconductor regions and p + regions 110 that are p-type semiconductor regions are formed alternately adjacent to each other. A first back-side passivation film 111 is formed on the p + region 110, and a second back-side passivation film 112 is formed on the n + region 109 and the first back-side passivation film 111. Yes. The first back side passivation film 111 is preferably, for example, a silicon oxide film. The thickness of the first back-side passivation film 111 is preferably, for example, not less than 50 nm and not more than 100 nm. The second back side passivation film 112 is preferably a silicon nitride film, for example. The thickness of the second back surface side passivation film 112 is preferably not less than 5 nm and not more than 50 nm, for example. The n-type electrode 102 is connected to the n + region 109, and the p-type electrode 103 is connected to the p + region 110.
 より高い短絡電流を得るために、n型シリコン基板104の裏面において、n型シリコン基板104とは異なる導電型を有するp+領域110の合計面積を、n型シリコン基板104とは同じ導電型を有するn+領域109の合計面積よりも大きくすることが好ましい。 In order to obtain a higher short-circuit current, the total area of the p + region 110 having a conductivity type different from that of the n-type silicon substrate 104 on the back surface of the n-type silicon substrate 104 is set to the same conductivity type as that of the n-type silicon substrate 104. It is preferable to make it larger than the total area of the n + regions 109.
 隣り合うn+領域109は、当該n+領域109の長さ方向に対して垂直方向に分離していてもよい。その際、n+領域109間にはp+領域110が形成されている。また、p+領域110が当該p+領域110の長さ方向に対して垂直方向に分離している場合には、p+領域110間にn+領域109が形成されている。 Adjacent n + regions 109 may be separated in a direction perpendicular to the length direction of the n + region 109. At this time, a p + region 110 is formed between the n + regions 109. Further, when the p + region 110 are separated in a direction perpendicular to the length direction of the p + region 110, n + region 109 between p + region 110 is formed.
 なお、図5に示すように、n型シリコン基板104の裏面側では最も周縁に位置する電極の導電型が同じであるため、裏面電極型太陽電池81を回転対称構造とすることが可能である。よって、裏面電極型太陽電池81を複数並べて太陽電池モジュールを作製するときには、たとえば裏面電極型太陽電池81を図5における上下逆にして配置することができる。 As shown in FIG. 5, since the conductivity type of the electrode located at the outermost edge is the same on the back surface side of the n-type silicon substrate 104, the back electrode type solar cell 81 can have a rotationally symmetric structure. . Therefore, when producing a solar cell module by arranging a plurality of back electrode solar cells 81, for example, the back electrode solar cells 81 can be arranged upside down in FIG.
 以下に、本実施形態に係る裏面電極型太陽電池81の製造方法を示す。図7は、本実施形態に係る裏面電極型太陽電池81の製造方法を工程順に示す断面図である。 Below, the manufacturing method of the back surface electrode type solar cell 81 which concerns on this embodiment is shown. FIG. 7 is a cross-sectional view showing the method of manufacturing the back electrode type solar cell 81 according to this embodiment in the order of steps.
 まず、図7(a)に示すように、n型シリコン基板104の裏面上に、たとえば窒化シリコン膜からなるテクスチャマスク121をたとえばCVD法またはスパッタ法で形成する。 First, as shown in FIG. 7A, a texture mask 121 made of, for example, a silicon nitride film is formed on the back surface of the n-type silicon substrate 104 by, for example, CVD or sputtering.
 次に、図7(b)に示すように、n型シリコン基板104の受光面にテクスチャ構造である凹凸形状105をエッチングにより形成する。このエッチングは、たとえば水酸化ナトリウムまたは水酸化カリウムなどのアルカリ水溶液にイソプロピルアルコールを添加して得られた混合溶液を70℃以上80℃以下に加熱したものを用いて行なわれることが好ましい。 Next, as shown in FIG. 7B, an uneven shape 105 having a texture structure is formed on the light receiving surface of the n-type silicon substrate 104 by etching. This etching is preferably performed using, for example, a mixed solution obtained by adding isopropyl alcohol to an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide to 70 ° C. or higher and 80 ° C. or lower.
 次に、図7(c)を用いて次の工程を説明する。図7(c)では、n型シリコン基板104の裏面側を上に記している。まず、n型シリコン基板104の裏面上に形成されたテクスチャマスク121を除去する。その後、n型シリコン基板104の裏面全面上に、第1導電型のドーパントを含む第1裏面側パッシベーション膜形成用膜をたとえばCVD法により形成し、第1裏面側パッシベーション膜形成用膜の上に、拡散防止膜形成用膜をたとえばCVD法により形成する。 Next, the next process will be described with reference to FIG. In FIG.7 (c), the back side of the n-type silicon substrate 104 is described above. First, the texture mask 121 formed on the back surface of the n-type silicon substrate 104 is removed. Thereafter, a first back-side passivation film forming film containing a first conductivity type dopant is formed on the entire back surface of the n-type silicon substrate 104 by, for example, a CVD method, and the first back-side passivation film forming film is formed on the first back-side passivation film forming film. A film for forming a diffusion prevention film is formed by, for example, a CVD method.
 ここで、第1導電型のドーパントは、本実施形態では、ボロンなどのp型ドーパントである。第1裏面側パッシベーション膜形成用膜は、たとえば酸化シリコン膜であることが好ましく、第1裏面側パッシベーション膜形成用膜の厚さは、たとえば50nm以上100nm以下であることが好ましい。拡散防止膜形成用膜は、たとえば酸化シリコン膜または窒化シリコン膜などであることが好ましい。拡散防止膜形成用膜の厚さは、たとえば200nm以上500nm以下であることが好ましい。これにより、図7(d)における熱処理時に、第2導電型のドーパントが拡散防止膜132(図7(d)参照)を厚さ方向に貫通することを防止できるので、第2導電型のドーパントが第2導電型のドーパントを含む膜133(図7(d)参照)からn型シリコン基板104のうち拡散防止膜132の下に位置する部分(別の言い方をするとn型シリコン基板104のうちp+領域110が形成される領域)へ向かって拡散することを防止できる。 Here, in the present embodiment, the first conductivity type dopant is a p-type dopant such as boron. The first back-side passivation film forming film is preferably a silicon oxide film, for example, and the thickness of the first back-side passivation film forming film is preferably, for example, from 50 nm to 100 nm. The diffusion preventing film forming film is preferably, for example, a silicon oxide film or a silicon nitride film. The thickness of the diffusion preventing film forming film is preferably, for example, 200 nm or more and 500 nm or less. Accordingly, the second conductivity type dopant can be prevented from penetrating through the diffusion prevention film 132 (see FIG. 7D) in the thickness direction during the heat treatment in FIG. 7D. Therefore, the second conductivity type dopant can be prevented. From the film 133 containing the second conductivity type dopant (see FIG. 7D), a portion of the n-type silicon substrate 104 located under the diffusion barrier film 132 (in other words, of the n-type silicon substrate 104 Diffusion toward the region where the p + region 110 is formed) can be prevented.
 次に、n型シリコン基板104の裏面側にn+領域109を形成するために、n+領域109が形成される領域の上においてのみ第1裏面側パッシベーション膜形成用膜および拡散防止膜形成用膜が除去されるように第1裏面側パッシベーション膜形成用膜および拡散防止膜形成用膜をパターニングする。このパターニングは、エッチングペーストをスクリーン印刷法などで塗布してから加熱することにより行なわれることが好ましい。このパターニングにより、第1裏面側パッシベーション膜111および拡散防止膜132が形成され、n+領域109が形成される領域が第1裏面側パッシベーション膜111および拡散防止膜132から露出する。その後、n型シリコン基板104を超音波洗浄してから酸処理することにより、パターニングで使用したエッチングペーストを除去する。ここで、エッチングペーストとしては、たとえば、エッチング成分としてリン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムからなる群より選択された少なくとも1種を含むことが好ましく、水、有機溶媒および増粘剤をさらに含むことが好ましい。 Next, in order to form the n + region 109 on the back side of the n-type silicon substrate 104, the first back side passivation film formation film and the diffusion prevention film formation film are formed only on the region where the n + region 109 is formed. The first backside passivation film formation film and the diffusion prevention film formation film are patterned so that the film is removed. This patterning is preferably performed by applying an etching paste by a screen printing method or the like and then heating. By this patterning, the first back-side passivation film 111 and the diffusion preventing film 132 are formed, and the region where the n + region 109 is formed is exposed from the first back-side passivation film 111 and the diffusion preventing film 132. Thereafter, the n-type silicon substrate 104 is subjected to ultrasonic cleaning and then acid-treated to remove the etching paste used for patterning. Here, the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
 次に、図7(d)に示すように、n型シリコン基板104の裏面上(具体的にはn型シリコン基板104の裏面上のうち第1裏面側パッシベーション膜111および拡散防止膜132から露出する部分)と拡散防止膜132上とに、第2導電型のドーパントを含む膜133をたとえばCVD法により形成し、第2導電型のドーパントを含む膜133の上に、拡散制御膜134をたとえばCVD法により形成する。第2導電型のドーパントは、本実施形態では、リンなどのn型ドーパントである。第2導電型のドーパントを含む膜133は、たとえば酸化シリコン膜であることが好ましく、第2導電型のドーパントを含む膜133の厚さは、たとえば50nm以上100nm以下であることが好ましい。拡散制御膜134は、たとえば酸化シリコン膜または窒化シリコン膜などであることが好ましい。拡散制御膜134の厚さは、たとえば200nm以上500nm以下であることが好ましい。これにより、下記熱処理時には、第2導電型のドーパントが拡散制御膜134を厚さ方向に貫通することを防止できるので、第2導電型のドーパントがアウトディフュージョンすることを防止することができる。 Next, as shown in FIG. 7D, the n-type silicon substrate 104 is exposed from the first back-side passivation film 111 and the diffusion prevention film 132 on the back surface (specifically, on the back surface of the n-type silicon substrate 104). A film 133 containing a second conductivity type dopant is formed by, for example, the CVD method, and a diffusion control film 134 is formed on the film 133 containing the second conductivity type dopant, for example. It is formed by the CVD method. In the present embodiment, the second conductivity type dopant is an n-type dopant such as phosphorus. The film 133 containing the second conductivity type dopant is preferably, for example, a silicon oxide film, and the thickness of the film 133 containing the second conductivity type dopant is preferably, for example, not less than 50 nm and not more than 100 nm. The diffusion control film 134 is preferably a silicon oxide film or a silicon nitride film, for example. The thickness of the diffusion control film 134 is preferably, for example, not less than 200 nm and not more than 500 nm. Thereby, since the second conductivity type dopant can be prevented from penetrating the diffusion control film 134 in the thickness direction at the time of the following heat treatment, it is possible to prevent the second conductivity type dopant from being out-diffusioned.
 次に、n型シリコン基板104を熱処理する。これにより、第1導電型のドーパントが第1裏面側パッシベーション膜111からn型シリコン基板104の裏面側のうち第1裏面側パッシベーション膜111の下に位置する部分に拡散し、よって、p+領域110が形成される。また、第2導電型のドーパントが第2導電型のドーパントを含む膜133からn型シリコン基板104の裏面側のうち第2導電型のドーパントを含む膜133の下に位置する部分に拡散し、よって、n+領域109が形成される。このように、本実施形態でも、n+領域109とp+領域110とを同時に形成することができる。また、n+領域109とp+領域110とは、互いに隣接するように形成される。 Next, the n-type silicon substrate 104 is heat-treated. As a result, the first conductivity type dopant diffuses from the first back surface side passivation film 111 to the portion of the back surface side of the n-type silicon substrate 104 located below the first back surface side passivation film 111, and thus the p + region. 110 is formed. Further, the second conductivity type dopant diffuses from the film 133 containing the second conductivity type dopant to a portion located below the film 133 containing the second conductivity type dopant on the back side of the n-type silicon substrate 104, Therefore, n + region 109 is formed. Thus, also in this embodiment, the n + region 109 and the p + region 110 can be formed simultaneously. The n + region 109 and the p + region 110 are formed adjacent to each other.
 n型シリコン基板104の熱処理条件の一例としては、0.5時間以上2時間以下、n型シリコン基板104を800℃以上1000℃以下で加熱するということが挙げられる。これにより、第2導電型のドーパント濃度が1020cm-3以上のn+領域109が形成され、第1導電型のドーパント濃度が1020cm-3以上のp+領域110が形成される。 As an example of the heat treatment condition of the n-type silicon substrate 104, heating the n-type silicon substrate 104 at 800 ° C. or more and 1000 ° C. or less for 0.5 hours or more and 2 hours or less can be mentioned. Thus, the dopant concentration of the second conductivity type is formed 10 20 cm -3 or more n + region 109, the dopant concentration of the first conductivity type is 10 20 cm -3 or more p + region 110 is formed.
 なお、第1裏面側パッシベーション膜111と第2導電型のドーパントを含む膜133との間に拡散防止膜132が設けられているので、上記熱処理を行なっても第2導電型のドーパントが第2導電型のドーパントを含む膜133からn型シリコン基板104のうち拡散防止膜132の下に位置する部分へ向かって拡散することを防止することができる。また、第2導電型のドーパントを含む膜133の上には拡散制御膜134が設けられているので、第2導電型のドーパントがアウトディフュージョンすることを防止することができる。 In addition, since the diffusion prevention film 132 is provided between the first back surface side passivation film 111 and the film 133 containing the second conductivity type dopant, the second conductivity type dopant remains the second even if the heat treatment is performed. It is possible to prevent diffusion from the film 133 containing the conductive dopant toward the portion of the n-type silicon substrate 104 located under the diffusion prevention film 132. Further, since the diffusion control film 134 is provided on the film 133 containing the second conductivity type dopant, it is possible to prevent the second conductivity type dopant from being out-diffused.
 次に、図7(e)に示すように、n型シリコン基板104の裏面上に形成された拡散制御膜134、第2導電型のドーパントを含む膜133および拡散防止膜132をエッチングにより除去する。n+領域109上には、第2導電型のドーパントを含む膜133と拡散制御膜134とが形成されており、p+領域110上には、第2導電型のドーパントを含む膜133および拡散制御膜134に加えて第1裏面側パッシベーション膜111と拡散防止膜132とが形成されている。そのため、第2導電型のドーパントを含む膜133および拡散制御膜134が除去されるまでエッチングを行なうと、第1裏面側パッシベーション膜111だけが残る。 Next, as shown in FIG. 7E, the diffusion control film 134, the film 133 containing the second conductivity type dopant, and the diffusion prevention film 132 formed on the back surface of the n-type silicon substrate 104 are removed by etching. . A film 133 containing a second conductivity type dopant and a diffusion control film 134 are formed on the n + region 109, and a film 133 containing a second conductivity type dopant and a diffusion layer are formed on the p + region 110. In addition to the control film 134, a first back-side passivation film 111 and a diffusion prevention film 132 are formed. Therefore, if etching is performed until the film 133 containing the second conductivity type dopant and the diffusion control film 134 are removed, only the first back-side passivation film 111 remains.
 次に、図7(f)に示すように、n型シリコン基板104の裏面上に、第1裏面側パッシベーション膜111とは異なる第2裏面側パッシベーション膜112をたとえばスパッタ法またはCVD法により形成する。p+領域110上には第1裏面側パッシベーション膜111が形成されているため、第2裏面側パッシベーション膜112はn+領域109上と第1裏面側パッシベーション膜111上とに形成される。その後、n型シリコン基板104の受光面上に受光面側パッシベーション膜106と反射防止膜107とをたとえばCVD法により形成する。第2裏面側パッシベーション膜112は、たとえば窒化シリコン膜であることが好ましい。受光面側パッシベーション膜106および反射防止膜107は共に窒化シリコン膜であることが好ましく、窒素含有率は反射防止膜107の方が受光面側パッシベーション膜106よりも高いことが好ましく、屈折率は反射防止膜107の方が受光面側パッシベーション膜106よりも低いことが好ましい。受光面側パッシベーション膜106は、酸化シリコン膜であっても良い。 Next, as shown in FIG. 7F, a second back surface passivation film 112 different from the first back surface passivation film 111 is formed on the back surface of the n-type silicon substrate 104 by, for example, sputtering or CVD. . Since the first back surface side passivation film 111 is formed on the p + region 110, the second back surface side passivation film 112 is formed on the n + region 109 and the first back surface side passivation film 111. Thereafter, a light-receiving surface side passivation film 106 and an antireflection film 107 are formed on the light-receiving surface of the n-type silicon substrate 104 by, for example, a CVD method. The second back side passivation film 112 is preferably a silicon nitride film, for example. Both the light receiving surface side passivation film 106 and the antireflection film 107 are preferably silicon nitride films, and the nitrogen content is preferably higher in the antireflection film 107 than in the light receiving surface side passivation film 106, and the refractive index is reflected. The prevention film 107 is preferably lower than the light-receiving surface side passivation film 106. The light-receiving surface side passivation film 106 may be a silicon oxide film.
 次に、図7(g)を用いて次の工程を説明する。図7(g)では、n型シリコン基板104の受光面側を上に記している。n+領域109上にn型用電極102を形成するために、第2裏面側パッシベーション膜112に対してパターニングを行なう。p+領域110上にp型用電極103を形成するために、第1裏面側パッシベーション膜111および第2裏面側パッシベーション膜112に対してパターニングを行う。このパターニングは、たとえばエッチングペーストをスクリーン印刷法などで塗布してから加熱することにより行なわれることが好ましい。その後、n型シリコン基板104を超音波洗浄して酸処理することにより、パターニングで使用したエッチングペーストを除去する。ここで、エッチングペーストとしては、たとえば、エッチング成分としてリン酸、フッ化水素、フッ化アンモニウムおよびフッ化水素アンモニウムからなる群より選択された少なくとも1種を含むことが好ましく、水、有機溶媒および増粘剤をさらに含むことが好ましい。 Next, the next step will be described with reference to FIG. In FIG. 7G, the light receiving surface side of the n-type silicon substrate 104 is shown above. In order to form the n-type electrode 102 on the n + region 109, the second back surface side passivation film 112 is patterned. In order to form the p-type electrode 103 on the p + region 110, the first back surface side passivation film 111 and the second back surface side passivation film 112 are patterned. This patterning is preferably performed, for example, by applying an etching paste by screen printing or the like and then heating. Thereafter, the n-type silicon substrate 104 is subjected to ultrasonic cleaning and acid treatment to remove the etching paste used for patterning. Here, the etching paste preferably includes, for example, at least one selected from the group consisting of phosphoric acid, hydrogen fluoride, ammonium fluoride, and ammonium hydrogen fluoride as an etching component. It is preferable to further contain a sticking agent.
 次に、図7(h)に示すように、n+領域109のうち第2裏面側パッシベーション膜112から露出する部分の上と、p+領域110のうち第1裏面側パッシベーション膜111および第2裏面側パッシベーション膜112から露出する部分の上とに、銀ペーストをたとえばスクリーン印刷法により塗布してから乾燥させる。その後、焼成する。これにより、n+領域109上にはn型用電極102が形成され、p+領域110上にはp型用電極103が形成される。このようにして裏面電極型太陽電池81が製造される。 Next, as shown in FIG. 7H, the n + region 109 is exposed on the portion exposed from the second back surface side passivation film 112 and the first back surface side passivation film 111 and the second surface in the p + region 110. A silver paste is applied onto the portion exposed from the back-side passivation film 112 by, for example, a screen printing method and then dried. Thereafter, it is fired. As a result, the n-type electrode 102 is formed on the n + region 109, and the p-type electrode 103 is formed on the p + region 110. In this way, the back electrode type solar cell 81 is manufactured.
 以上説明したように、本実施形態に係る裏面電極型太陽電池81の製造方法では、p+領域110を形成するために必要な第1導電型のドーパントを含む膜を第1裏面側パッシベーション膜111としている。よって、第1裏面側パッシベーション膜111を形成する工程を別途設けることなく裏面電極型太陽電池81を製造することができる。また、本実施形態に係る裏面電極型太陽電池81の製造方法では、図7(d)に示す工程において、第1導電型のドーパントを拡散させてp+領域110を形成するとともに第2導電型のドーパントを拡散させてn+領域109を形成する。よって、第1導電型のドーパントを拡散させる工程とは別に第2導電型のドーパントを拡散させる工程を設けることなく、裏面電極型太陽電池81を製造することができる。それだけでなく、n+領域109を形成するために用いたマスクとp+領域110を形成するために用いたマスクとを同時に除去することができる。したがって、裏面電極型太陽電池81の製造工程数を減らすことができる。一方、本実施形態に係る裏面電極型太陽電池81の製造方法では、n+領域109上には第2裏面側パッシベーション膜112が形成されており、p+領域110上には第1裏面側パッシベーション膜111が形成されている。以上のことから、本実施形態に係る裏面電極型太陽電池81の製造方法では、裏面電極型太陽電池81の製造工程数を減らしてもn+領域109上とp+領域110上とにそれぞれ異なるパッシベーション膜を形成することができる。 As described above, in the method for manufacturing the back electrode type solar cell 81 according to the present embodiment, the first back surface passivation film 111 is formed of a film containing the first conductivity type dopant necessary for forming the p + region 110. It is said. Therefore, the back electrode type solar cell 81 can be manufactured without providing a separate step of forming the first back side passivation film 111. Further, in the method of manufacturing the back electrode type solar cell 81 according to this embodiment, in the step shown in FIG. 7D, the p + region 110 is formed by diffusing the first conductivity type dopant and the second conductivity type. N + region 109 is formed by diffusing the dopant. Therefore, the back electrode type solar cell 81 can be manufactured without providing a step of diffusing the second conductivity type dopant separately from the step of diffusing the first conductivity type dopant. In addition, the mask used to form the n + region 109 and the mask used to form the p + region 110 can be removed at the same time. Therefore, the number of manufacturing steps of the back electrode type solar cell 81 can be reduced. On the other hand, in the method of manufacturing the back electrode type solar cell 81 according to the present embodiment, the second back surface passivation film 112 is formed on the n + region 109 and the first back surface passivation is formed on the p + region 110. A film 111 is formed. From the above, in the method for manufacturing the back electrode type solar cell 81 according to the present embodiment, even if the number of manufacturing steps of the back electrode type solar cell 81 is reduced, the n + region 109 and the p + region 110 are different. A passivation film can be formed.
 また、多くの設備を必要とすることなく裏面電極型太陽電池81を製造することができるので、裏面電極型太陽電池81の生産性が向上する。 Moreover, since the back electrode type solar cell 81 can be manufactured without requiring many facilities, the productivity of the back electrode type solar cell 81 is improved.
 さらに、第1裏面側パッシベーション膜111を用いてp+領域110を形成する。よって、位置ずれを招くことなくp+領域110上に第1裏面側パッシベーション膜111を形成することができる。また、第2裏面側パッシベーション膜112は、n型シリコン基板104の裏面全面上に形成されるため、第1裏面側パッシベーション膜111上だけでなくn+領域109上にも形成される。よって、位置ずれを招くことなくn+領域109上に第2裏面側パッシベーション膜112を形成することができる。 Further, the p + region 110 is formed using the first back surface side passivation film 111. Therefore, the first back-side passivation film 111 can be formed on the p + region 110 without causing a positional shift. Further, since the second back surface side passivation film 112 is formed on the entire back surface of the n-type silicon substrate 104, it is formed not only on the first back surface side passivation film 111 but also on the n + region 109. Therefore, the second back-side passivation film 112 can be formed on the n + region 109 without causing a positional shift.
 その上、窒化シリコン膜は正の固定電荷を有する。そのため、第2裏面側パッシベーション膜112を窒化シリコン膜で構成すれば、n+領域109上において高いパッシベーション性を有する裏面電極型太陽電池81を製造することができる。 In addition, the silicon nitride film has a positive fixed charge. Therefore, if the second back surface side passivation film 112 is formed of a silicon nitride film, the back electrode type solar cell 81 having high passivation properties on the n + region 109 can be manufactured.
 上記第1~第3の実施形態では、n型シリコン基板を備えた裏面電極型太陽電池について記載したが、基板としてp型シリコン基板を用いることも可能である。基板としてp型シリコン基板を用いる場合、より高い短絡電流を得るためには、基板の裏面において、基板とは異なる導電型を有するn+領域の合計面積を、基板とは同一の導電型を有するp+領域の合計面積よりも大きくすることが好ましい。 In the first to third embodiments, the back electrode type solar cell provided with the n-type silicon substrate has been described, but a p-type silicon substrate may be used as the substrate. When a p-type silicon substrate is used as the substrate, in order to obtain a higher short-circuit current, the total area of n + regions having a conductivity type different from that of the substrate on the back surface of the substrate is the same as that of the substrate. It is preferable to make it larger than the total area of the p + region.
 さらに、本発明の裏面電極型太陽電池の概念には、MWT(Metal Wrap Through)型太陽電池(この太陽電池では、半導体基板に設けられた貫通孔に電極の一部が配置されている)なども含まれる。 Further, the concept of the back electrode type solar cell of the present invention includes an MWT (Metal Wrap Through) type solar cell (in this solar cell, a part of the electrode is disposed in a through hole provided in a semiconductor substrate), etc. Is also included.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1,71,81 裏面電極型太陽電池、2,102 n型用電極、3,103 p型用電極、4,104 n型シリコン基板、5,105 凹凸形状、6,106 受光面側パッシベーション膜、7,107 反射防止膜、9,109 n+領域、10,110 p+領域、11,111 第1裏面側パッシベーション膜、11A 第1裏面側パッシベーション膜形成用膜、12,112 第2裏面側パッシベーション膜、21,121 テクスチャマスク、22,23,25 拡散マスク、24 酸化シリコン膜、31,133 第2導電型のドーパントを含む膜、32,134 拡散制御膜、34,132 拡散防止膜。 1, 71, 81 Back electrode type solar cell, 2,102 n-type electrode, 3,103 p-type electrode, 4,104 n-type silicon substrate, 5,105 uneven shape, 6,106 light-receiving surface side passivation film, 7, 107 Antireflection film, 9, 109 n + region, 10, 110 p + region, 11, 111 First back surface passivation film, 11A First back surface passivation film forming layer, 12, 112 Second back surface passivation Membrane, 21, 121 Texture mask, 22, 23, 25 Diffusion mask, 24 Silicon oxide film, 31, 133 Film containing dopant of second conductivity type, 32, 134 Diffusion control film, 34, 132 Diffusion prevention film.

Claims (5)

  1.  シリコン基板(4,104)の裏面上の一部に、第1導電型のドーパントを含む第1裏面側パッシベーション膜(11,111)を形成する工程と、
     前記シリコン基板(4,104)の裏面上と前記第1裏面側パッシベーション膜(11,111)上とに、第2導電型のドーパントを含む膜(31,133)を形成する工程と、
     前記シリコン基板(4,104)を熱処理することにより、前記第1導電型のドーパントが前記第1裏面側パッシベーション膜(11,111)から前記シリコン基板(4,104)の一部に拡散されて第1導電型の半導体領域(9,109)が形成され、前記第2導電型のドーパントが前記第2導電型のドーパントを含む膜(31,133)から前記シリコン基板(4,104)のうち前記第1導電型のドーパントが拡散される領域とは異なる領域の少なくとも一部に拡散されて第2導電型の半導体領域(10,110)が形成される工程と、
     前記第2導電型のドーパントを含む膜(31,133)を除去する工程と、
     前記シリコン基板(4,104)の裏面上と前記第1裏面側パッシベーション膜(11,111)上とに、第2裏面側パッシベーション膜(12,112)を形成する工程とを備えた裏面電極型太陽電池(1,81)の製造方法。
    Forming a first back surface side passivation film (11, 111) containing a first conductivity type dopant on a part of the back surface of the silicon substrate (4, 104);
    Forming a film (31, 133) containing a dopant of the second conductivity type on the back surface of the silicon substrate (4, 104) and on the first back surface passivation film (11, 111);
    By heat-treating the silicon substrate (4, 104), the dopant of the first conductivity type is diffused from the first back-side passivation film (11, 111) to a part of the silicon substrate (4, 104). A first conductive type semiconductor region (9, 109) is formed, and the second conductive type dopant is included in the silicon substrate (4, 104) from the film (31, 133) containing the second conductive type dopant. A step of diffusing in at least a part of a region different from a region where the first conductivity type dopant is diffused to form a second conductivity type semiconductor region (10, 110);
    Removing the films (31, 133) containing the second conductivity type dopant;
    Forming a second back surface passivation film (12, 112) on the back surface of the silicon substrate (4, 104) and the first back surface passivation film (11, 111); Manufacturing method of solar cell (1, 81).
  2.  シリコン基板(4)の裏面上の一部に、第1導電型の半導体領域(9)を形成する工程と、
     前記第1導電型の半導体領域(9)上に、第1裏面側パッシベーション膜(11)を形成する工程と、
     第2導電型のドーパントを含む溶液を用いて、前記シリコン基板(4)の裏面のうち前記第1導電型の半導体領域(9)とは異なる領域の少なくとも一部に、第2導電型の半導体領域(10)を形成する工程と、
     前記シリコン基板(4)の裏面上と前記第1裏面側パッシベーション膜(11)上とに、第2裏面側パッシベーション膜(12)を形成する工程とを備えた裏面電極型太陽電池(71)の製造方法。
    Forming a first conductivity type semiconductor region (9) on a part of the back surface of the silicon substrate (4);
    Forming a first back-side passivation film (11) on the first conductivity type semiconductor region (9);
    Using a solution containing a dopant of the second conductivity type, a second conductivity type semiconductor is formed on at least a part of the back surface of the silicon substrate (4) different from the first conductivity type semiconductor region (9). Forming a region (10);
    A back electrode type solar cell (71) comprising a step of forming a second back surface side passivation film (12) on the back surface of the silicon substrate (4) and on the first back surface side passivation film (11). Production method.
  3.  前記第1導電型の半導体領域(9,109)は、n型であり、
     前記第2導電型の半導体領域(10,110)は、p型である請求項1または2に記載の裏面電極型太陽電池(1,71,81)の製造方法。
    The semiconductor region (9, 109) of the first conductivity type is n-type,
    The method of manufacturing a back electrode type solar cell (1, 71, 81) according to claim 1 or 2, wherein the semiconductor region (10, 110) of the second conductivity type is p-type.
  4.  前記第2裏面側パッシベーション膜(12)は、酸化アルミニウム膜である請求項3に記載の裏面電極型太陽電池(1)の製造方法。 The method for producing a back electrode type solar cell (1) according to claim 3, wherein the second back surface passivation film (12) is an aluminum oxide film.
  5.  前記第1裏面側パッシベーション膜(11,111)は、酸化シリコン膜である請求項1~4のいずれかに記載の裏面電極型太陽電池(1,71,81)の製造方法。 The method for manufacturing a back electrode type solar cell (1, 71, 81) according to any one of claims 1 to 4, wherein the first back surface passivation film (11, 111) is a silicon oxide film.
PCT/JP2012/065864 2011-06-21 2012-06-21 Method for manufacturing rear face electrode type solar battery WO2012176839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-137016 2011-06-21
JP2011137016A JP5756352B2 (en) 2011-06-21 2011-06-21 Manufacturing method of back electrode type solar cell

Publications (1)

Publication Number Publication Date
WO2012176839A1 true WO2012176839A1 (en) 2012-12-27

Family

ID=47422670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065864 WO2012176839A1 (en) 2011-06-21 2012-06-21 Method for manufacturing rear face electrode type solar battery

Country Status (2)

Country Link
JP (1) JP5756352B2 (en)
WO (1) WO2012176839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038921A (en) * 2021-11-05 2022-02-11 晶科能源(海宁)有限公司 Solar cell and photovoltaic module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420706B2 (en) * 2015-04-07 2018-11-07 信越化学工業株式会社 Passivation film forming method for solar cell and passivation film forming apparatus for solar cell
US10665731B2 (en) 2015-06-30 2020-05-26 Sharp Kabushiki Kaisha Photoelectric conversion element
JP2017174925A (en) * 2016-03-23 2017-09-28 シャープ株式会社 Photoelectric conversion element
CN112018196B (en) * 2020-08-04 2022-11-29 隆基绿能科技股份有限公司 Back contact solar cell, production method thereof and back contact cell assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021494A (en) * 2007-07-13 2009-01-29 Sharp Corp Method of manufacturing solar battery
JP2009076546A (en) * 2007-09-19 2009-04-09 Sharp Corp Method of manufacturing solar cell
JP2010219527A (en) * 2009-03-17 2010-09-30 Sharp Corp Manufacturing method of back contact single heterojunction-type solar battery, and back contact single heterojunction-type solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021494A (en) * 2007-07-13 2009-01-29 Sharp Corp Method of manufacturing solar battery
JP2009076546A (en) * 2007-09-19 2009-04-09 Sharp Corp Method of manufacturing solar cell
JP2010219527A (en) * 2009-03-17 2010-09-30 Sharp Corp Manufacturing method of back contact single heterojunction-type solar battery, and back contact single heterojunction-type solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038921A (en) * 2021-11-05 2022-02-11 晶科能源(海宁)有限公司 Solar cell and photovoltaic module
CN114038921B (en) * 2021-11-05 2024-03-29 晶科能源(海宁)有限公司 Solar cell and photovoltaic module
US11949038B2 (en) 2021-11-05 2024-04-02 Jinko Solar (Haining) Co., Ltd. Solar cell and photovoltaic module

Also Published As

Publication number Publication date
JP5756352B2 (en) 2015-07-29
JP2013004889A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP4767110B2 (en) Solar cell and method for manufacturing solar cell
KR101452881B1 (en) Back contact solar cell and method for manufacturing back contact solar cell
JP5277485B2 (en) Manufacturing method of solar cell
JP5215330B2 (en) Manufacturing method of back electrode type solar cell, back electrode type solar cell and back electrode type solar cell module
JP2015531550A (en) Solar cell and manufacturing method thereof
JP2016532320A (en) Epitaxial silicon solar cell with moisture barrier
JP6199727B2 (en) Manufacturing method of solar cell
TWI518937B (en) Manufacture of solar cells
TWI538244B (en) Method for manufacturing solar cells
JP5723143B2 (en) Manufacturing method of back electrode type solar cell and back electrode type solar cell
WO2012176839A1 (en) Method for manufacturing rear face electrode type solar battery
JP2024509329A (en) Selective contact area embedded solar cell and its backside contact structure
JP2010161310A (en) Backside electrode type solar cell and method of manufacturing the same
WO2010110106A1 (en) Method of producing photoelectric conversion element, and photoelectric conversion element
JP5139502B2 (en) Back electrode type solar cell
JP2014112600A (en) Method for manufacturing back-electrode-type solar cell and back-electrode-type solar cell
JP2011233656A (en) Manufacturing method of semiconductor device
WO2009157052A1 (en) Method for manufacturing photovoltaic system
JP6116616B2 (en) Back electrode type solar cell and manufacturing method thereof
CN115117202A (en) Preparation method of solar cell and solar cell
JP2013219080A (en) Method for manufacturing photoelectric conversion element, and photoelectric conversion element
WO2012117877A1 (en) Solar cell, and method for producing solar cell
WO2017217089A1 (en) Solar cell, method for producing solar cell and system for producing solar cell
CN116995133A (en) Interdigital back contact solar cell and preparation method thereof
WO2013039101A1 (en) Method for producing solar cell, and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802240

Country of ref document: EP

Kind code of ref document: A1