WO2012176788A1 - 成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法 - Google Patents

成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法 Download PDF

Info

Publication number
WO2012176788A1
WO2012176788A1 PCT/JP2012/065701 JP2012065701W WO2012176788A1 WO 2012176788 A1 WO2012176788 A1 WO 2012176788A1 JP 2012065701 W JP2012065701 W JP 2012065701W WO 2012176788 A1 WO2012176788 A1 WO 2012176788A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyphenylene ether
ether ketone
component
molding material
molding
Prior art date
Application number
PCT/JP2012/065701
Other languages
English (en)
French (fr)
Inventor
今井直吉
土谷敦岐
本間雅登
山下浩平
堀内俊輔
山内幸二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011140691A external-priority patent/JP5589972B2/ja
Priority claimed from JP2011140690A external-priority patent/JP5614382B2/ja
Priority claimed from JP2011140692A external-priority patent/JP5589973B2/ja
Priority claimed from JP2011140689A external-priority patent/JP5589971B2/ja
Priority claimed from JP2011140693A external-priority patent/JP5589974B2/ja
Priority to CN201280031117.5A priority Critical patent/CN103608386B/zh
Priority to US14/128,868 priority patent/US10023737B2/en
Priority to EP12802922.0A priority patent/EP2725055B1/en
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to ES12802922.0T priority patent/ES2650727T3/es
Priority to KR1020137027510A priority patent/KR101513112B1/ko
Publication of WO2012176788A1 publication Critical patent/WO2012176788A1/ja
Priority to US16/008,926 priority patent/US20180362760A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • B29B15/127Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides

Definitions

  • the present invention provides a molding material excellent in productivity, handleability and moldability, and also excellent in mechanical properties of the obtained molded article, a molding method using the same, a manufacturing method thereof, and fiber reinforcement excellent in economy and productivity.
  • the present invention relates to a method for manufacturing a composite material.
  • thermoplastic prepregs, yarns, and glass mats are known.
  • Such molding materials are easy to mold by taking advantage of the properties of thermoplastic resins, and do not require storage load like thermosetting resins, and the resulting molded products have high toughness and are recyclable. It has the feature of being excellent.
  • a molding material processed into a pellet can be applied to a molding method having excellent economic efficiency and productivity such as injection molding and stamping molding, and is useful as an industrial material.
  • thermoplastic resins with excellent mechanical properties such as toughness and elongation are high molecular weight polymers, have higher viscosity than thermosetting resins, and require higher processing temperatures, making molding materials easier. In addition, it is unsuitable for manufacturing with good productivity.
  • fiber reinforced composite materials have been used in harsher environments, and higher heat resistance has been required for matrix resins.
  • thermoplastic resin having a low melting point is not preferable because it causes deformation of the molded product under high temperature conditions. Therefore, a molding material using a thermoplastic resin excellent in impregnation and heat resistance has been demanded.
  • fiber reinforced composite materials consisting of reinforced fibers and matrix resin are lightweight and can give excellent strength characteristics, and can be designed with any strength by controlling fiber orientation, so sports such as golf shafts and fishing rods It is widely used for aerospace applications such as aircraft parts and satellite parts, automobiles / ships, electrical / electronic equipment casings, robot parts, windmills, tanks, bathtubs, helmets, and other general industrial applications.
  • a prepreg obtained by impregnating a reinforced fiber with a matrix resin in advance is used as an intermediate substrate, and a manufacturing method in which a prepreg is laminated to form a laminate generally tends to increase the fiber content. It is widely used because it is relatively easy to handle.
  • thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, or an epoxy resin is often used because of its easy impregnation into the fiber bundle.
  • the curable resin becomes an insoluble / infusible polymer having a three-dimensional network structure by curing, making it difficult to recycle and the problem of disposal becoming more serious.
  • thermoplastic matrix resins such as polyethylene, polyester, polyamide, and polycarbonate are used for prepreg, but in applications that require high performance such as aerospace applications, heat resistance, chemical resistance, Polyether ether ketone, polyether imide, polyphenylene sulfide and the like which are excellent in characteristics are preferably used.
  • thermoplastic resin prepregs require a high temperature and a high pressure because of their higher molecular weight than the thermosetting resin in the manufacturing process of impregnating the fiber bundle with the matrix resin.
  • thermosetting resin in the manufacturing process of impregnating the fiber bundle with the matrix resin.
  • a fiber reinforced composite material composed of a continuous reinforcing fiber base material and a matrix resin is lightweight and has excellent mechanical properties, and is widely used for sports equipment applications, aerospace applications, general industrial applications, and the like.
  • a composite material (CFRP) using carbon fiber as a reinforcing fiber has a specific strength and specific rigidity that exceed those of a metal material, and the amount of use is increasing mainly in aerospace applications.
  • CFRP composite material
  • thermosetting resins have been used favorably as matrix resins because of their good impregnation into reinforcing fiber substrates.
  • Thermoplastic resins are high molecular weight products, have a higher viscosity than thermosetting resins, and require higher process temperatures, making them unsuitable for producing molding materials easily and with high productivity. there were.
  • thermoplastic resins have been used because of the fact that they can be molded in a short period of time, the molded products obtained can be recycled, and that they have excellent post-processing properties such as thermal bonding and thermal correction.
  • Composite materials with a matrix resin have come into the limelight.
  • fiber reinforced composite materials composed of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so aerospace, transportation equipment and industrial machinery, civil engineering and architecture, sports -Widely used in leisure fields.
  • the reinforcing fiber glass fiber, aramid fiber, carbon fiber, boron fiber or the like is used.
  • the matrix resin either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used.
  • the fiber reinforced composite material using a thermosetting resin has a problem in that it takes a long time for thermosetting, so that the productivity is low and the usable time of the prepreg is limited.
  • thermoplastic resin as a matrix
  • Patent Document 1 discloses a method for producing a molding material in which a continuous reinforcing fiber bundle is easily impregnated with a thermoplastic resin having a low molecular weight and then integrated with a high molecular weight thermoplastic resin. Is disclosed.
  • Patent Document 2 discloses a molding material in which a high molecular weight thermoplastic resin is placed in contact with a composite composed of a polyarylene sulfide prepolymer and continuous reinforcing fibers.
  • Polyarylene sulfide prepolymer easily impregnates reinforcing fiber bundles to increase the productivity of molding materials, and further improves dispersion of reinforcing fibers in molded products by easily dispersing or compatible with matrix resin in the molding process Material.
  • Patent Document 3 discloses a molding material in which a high molecular weight thermoplastic resin is placed in contact with a composite composed of high molecular weight polyarylene sulfide and continuous reinforcing fibers.
  • a method for producing a molding material having excellent productivity is described, in which a polyarylene sulfide prepolymer having a low melt viscosity is impregnated into a reinforcing fiber and then polymerized to obtain a high molecular weight polyarylene sulfide.
  • the polyarylene sulfide in the molding material has a high molecular weight, it is a molding material having excellent heat resistance of the obtained molded product.
  • Patent Document 4 discloses a cyclic poly (aryl ether) oligomer, a production method thereof, and a polymerization method of the cyclic poly (aryl ether) oligomer.
  • Patent Document 5 discloses a method for producing a prepreg by making a polyarylene sulfide into a slurry in a dispersion medium so as to be easily impregnated into a glass fiber mat.
  • Patent Document 6 discloses a method of producing a laminate without using a prepreg by laminating a polyarylene sulfide having a relatively low molecular weight into a sheet and laminating it together with a fiber base material.
  • Patent Document 7 discloses a prepreg obtained by impregnating reinforcing fibers with a low molecular weight cyclic polyarylene sulfide.
  • the cyclic polyarylene sulfide is excellent in impregnation property, a laminate having excellent prepreg productivity and excellent mechanical properties can be obtained by heat polymerization of the cyclic polyarylene sulfide during molding. .
  • Patent Document 8 consisting of continuous reinforcing fibers - to place bets like crystalline thermoplastic resin film to both sides of the substrate, 0.99 ° C. than the melting point of the resin at even higher temperatures, 5 ⁇ 30kg / cm 2
  • a reinforcing fiber bundle is impregnated with a thermoplastic resin by applying a pressure of (about 0.5 to 3 MPa).
  • Patent Document 9 describes a fiber reinforcement in which a low-molecular-weight cyclic polyarylene sulfide is compounded into a continuous reinforcing fiber bundle and further heated at 200 to 450 ° C. to polymerize the cyclic polyarylene sulfide into a high-molecular-weight polyarylene sulfide.
  • a method for producing a molded substrate is disclosed.
  • polyarylene sulfide having a melt viscosity of 300 to 2,000 Pa ⁇ s and a tensile elongation at break of 10% or more is previously formed into a sheet shape, and the sheet and the reinforcing fiber substrate are formed.
  • a method for producing a fiber-reinforced composite material by alternately laminating and compressing at a temperature of 300 to 350 ° C. at a pressure of 0.98 to 9.8 MPa and impregnating a polyarylene sulfide into a reinforcing fiber substrate. Yes.
  • Patent Document 11 a polyarylene sulfide prepolymer is heated and melted at 200 to 300 ° C. to obtain a melt having a melt viscosity of 10 Pa ⁇ s or less, impregnated into a reinforcing fiber substrate, and then heated at 300 to 400 ° C.
  • a method for producing a fiber reinforced composite material that polymerizes a polyarylene sulfide prepolymer is disclosed. This method is an excellent production method capable of easily producing a fiber-reinforced composite material comprising a reinforcing fiber substrate and a high molecular weight polyarylene sulfide with high productivity.
  • Patent Document 1 Although the method disclosed in Patent Document 1 satisfies the impregnation property when a low molecular weight thermoplastic resin is used, the handling property of the molding material is insufficient and the characteristics of the molded product are sufficiently enhanced. Presents challenges that are difficult.
  • Patent Document 2 The molding material disclosed in Patent Document 2 is excellent in heat resistance because it uses a polyarylene sulfide prepolymer.
  • various thermoplastic resins are selected as matrix resins due to diversification of needs for fiber reinforced composite materials, in addition to polyarylene sulfide prepolymers, they have high heat resistance from the viewpoint of compatibility with matrix resins. Impregnation and dispersion aids have been demanded.
  • the molding material disclosed in Patent Document 3 uses a high molecular weight polyarylene sulfide, it is excellent in heat resistance and mechanical properties.
  • various thermoplastic resins are selected as matrix resins. From the viewpoint of compatibility with matrix resins, high heat resistance thermoplastics other than polyarylene sulfides A molding material using a resin has been demanded.
  • the melting point of the obtained cyclic poly (aryl ether) oligomer is as high as 340 ° C. or more, and there is a problem that a heating process at a high temperature is required for producing a molding material. Therefore, from the viewpoint of industrial economy and productivity, a molding material that can be easily manufactured at a lower temperature has been demanded.
  • Patent Document 5 In the method disclosed in Patent Document 5, not only equipment and time are required for drying the dispersion medium, but also it is difficult to completely remove the dispersion medium, and the void is generated due to volatilization of the dispersion medium during lamination molding. There is a problem that sufficient characteristics cannot be obtained. Further, the method disclosed in Patent Document 6 requires molding conditions of high temperature and high pressure, and there is a problem that mechanical properties are still insufficient due to defects such as non-impregnation.
  • Patent Document 7 is excellent in heat resistance because it uses a polyarylene sulfide prepolymer.
  • thermoplastic resins having high heat resistance such as polyphenylene ether ether ketone, in addition to polyarylene sulfide.
  • Patent Document 9 is an excellent production method capable of easily and easily producing a molding material comprising a continuous reinforcing fiber bundle and a high molecular weight polyarylene sulfide.
  • thermoplastic resins such as polyether ether ketone in addition to polyarylene sulfide. It has become.
  • Patent Document 11 The method disclosed in Patent Document 11 is excellent in heat resistance because it uses a polyarylene sulfide prepolymer.
  • a thermoplastic resin having high heat resistance such as polyphenylene ether ether ketone
  • the present invention attempts to improve the problems of the prior art, and in a molding material composed of a continuous reinforcing fiber bundle and a thermoplastic resin, by using a polyphenylene ether ether ketone oligomer having improved melting characteristics, productivity and handleability are improved.
  • Another object of the present invention is to provide a molding material that is excellent in moldability and excellent in the mechanical properties of the resulting molded article, and a molding method that is excellent in productivity and moldability using the molding material.
  • Another object of the present invention is to solve the above-mentioned problems and to provide a method for producing a molding material and a fiber-reinforced composite material comprising a reinforcing fiber base material and polyphenylene ether ether ketone more easily and with high productivity.
  • the molding material of the present invention has the following configuration. That is, Thermoplastic resin (C) 30 to 98.9% by weight is bonded to a composite composed of continuous reinforcing fiber bundle (A) 1 to 50% by weight and polyphenylene ether ether ketone oligomer (B) 0.1 to 20% by weight. And a molding material having a melting point of the component (B) of 270 ° C. or lower.
  • the molding method of the present invention has the following configuration. That is, A molding method in which the molding material is press-molded using a mold.
  • the manufacturing method of the molding material of this invention has the following structure. That is, A step (I) of drawing out the reinforcing fiber substrate (A ′) and continuously supplying it, a step (II) of obtaining a composite by combining the component (A ′) with the polyphenylene ether ether ketone oligomer (B), A step (III) for polymerizing component (B) to polyphenylene ether ether ketone (B ′), and a step (IV) for cooling and taking up the composite comprising component (A ′) and component (B ′).
  • a method for producing a molding material wherein the melting point of the component (B) is 270 ° C. or lower.
  • the method for producing a fiber-reinforced composite material of the present invention has any of the following configurations (1) to (3). That is, (1) The step (I-1) of placing the reinforcing fiber substrate (A ′) in the mold, the step (II-1) of melting the polyphenylene ether ether ketone oligomer (B) by heating and melting it, and the step A step (III-1) of injecting the component (B) into the component (A ′) by injecting the melt obtained in the step (II-1) into the mold of (I-1) A process for producing a fiber-reinforced composite material comprising the step (IV-1) of polyphenylene ether ether ketone (B ′) by heat polymerization of the component (B), wherein the step (II-1) Or a method for producing a fiber-reinforced composite material having a melting point of 270 ° C.
  • Step (I-2) for drawing out the reinforcing fiber substrate (A ′) and continuously supplying it
  • step (II) for heating and melting the polyphenylene ether ether ketone oligomer (B) in an impregnation tank to form a melt (II -2)
  • the component (A ′) is continuously passed through the impregnation tank of the step (II-2)
  • the component (B) is impregnated in the component (A ′)
  • the resulting composite is converted into a mandrel.
  • a process for producing a fiber-reinforced composite material comprising the step (III-2) of wrapping around and the step (IV-2) of polyphenylene ether ether ketone (B ′) by heat polymerization of the component (B) Wherein the component (B) used in the step (II-2) has a melting point of 270 ° C.
  • Step (I-3) for drawing out the reinforcing fiber substrate (A ′) and continuously feeding it, and step (II) for melting the polyphenylene ether ether ketone oligomer (B) by heating in an impregnation tank (II) -3), a step of continuously passing the component (A ′) through the impregnation tank of the step (II-3) to obtain a composite in which the component (B ′) is impregnated with the component (A ′) (III -3)
  • a method for producing a fiber-reinforced composite material comprising a fiber-reinforced composite material having a melting point of the component (B) used in the step (II-3) of 270 °
  • the component (B) preferably contains 60% by weight or more of cyclic polyphenylene ether ether ketone.
  • the molding material of the present invention is preferably a mixture of cyclic polyphenylene ether ether ketones having the repeating number m different from that of the component (B).
  • the composite further contains 0.001 to 20 mol% of a polymerization catalyst (D) with respect to 1 mol of the ether ether ketone structural unit in the component (B).
  • the molding material of the present invention comprises a thermoplastic resin (C) 20 to 20 in a composite comprising a continuous reinforcing fiber bundle (A) 1 to 50% by weight and a polyphenylene ether ether ketone (B ′) 0.1 to 30% by weight.
  • Polyphenylene ether ether ketone is preferred.
  • the crystal melting enthalpy ⁇ H by DSC of the component (B ′) is preferably 40 J / g or more.
  • the component (A) preferably contains at least 10,000 single carbon fibers.
  • the component (C) is preferably at least one selected from polyamide resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, and polyphenylene sulfide resin.
  • the component (D) is preferably an alkali metal salt.
  • the component (A) is arranged substantially parallel to the axial direction, and the length of the component (A) is substantially the same as the length of the molding material.
  • the molding material of the present invention preferably has a core-sheath structure in which the composite has a core structure and the component (C) covers the periphery of the composite.
  • the form of the molding material is preferably long fiber pellets.
  • the molding material of the present invention is a molding material comprising a reinforcing fiber substrate (A ′), a polyphenylene ether ether ketone oligomer (B) and a polymerization catalyst (D), and the melting point of the component (B) is 270 ° C. or less. It is preferable.
  • the component (B) preferably contains 60% by weight or more of cyclic polyphenylene ether ether ketone.
  • the molding material of the present invention is preferably a mixture of cyclic polyphenylene ether ether ketones having the repeating number m different from that of the component (B).
  • the component (A ′) is preferably carbon fiber.
  • the content of the component (A ′) is preferably 30% by weight or more.
  • the content of the component (D) is preferably 0.001 to 20 mol% with respect to 1 mol of the ether ether ketone structural unit in the component (B).
  • the component (B) is preferably polymerized into polyphenylene ether ether ketone (B ′) in the mold.
  • the surface temperature of the mold when the component (B) is polymerized with the component (B ′) is equal to or lower than the melting point of the component (B ′).
  • the mold is opened without cooling and the molded product is taken out.
  • the component (B) preferably contains 60% by weight or more of cyclic polyphenylene ether ether ketone.
  • the method for producing a molding material of the present invention is preferably a mixture of cyclic polyphenylene ether ether ketone having a different number m of the component (B).
  • the polymerization catalyst (D) is further combined in the step (II).
  • the steps (I) to (IV) are preferably performed online.
  • the take-up speed in the step (IV) is preferably 1 to 100 m / min.
  • the component (B) heated and melted is preferably added to the component (A ′) to be combined.
  • step (II) in the method for producing a molding material of the present invention, at least one form of the component (B) selected from the group consisting of particles, fibers, and flakes is used as the component (A ′). It is preferable to make it composite with.
  • the component (B) in the form of at least one selected from the group consisting of a film, a sheet, and a nonwoven fabric is used as the component (A ′). It is preferable to make it composite with.
  • the component (B) preferably contains 60% by weight or more of cyclic polyphenylene ether ether ketone.
  • the method for producing a fiber-reinforced composite material of the present invention is preferably a mixture of cyclic polyphenylene ether ether ketones having the repeating number m different from that of the component (B).
  • a polymerization catalyst (D) to the melt of the component (B).
  • the melt viscosity of the melt composed of the component (B) is 10 Pa ⁇ s or less.
  • the method for producing a fiber-reinforced composite material of the present invention is the heating polymerization at a temperature of 160 ° C. to 330 ° C. in the step (IV-1), (IV-2) or (IV-3). It is preferable to carry out.
  • a molded article having excellent mechanical properties can be obtained in the use of a molding material having excellent economic efficiency and productivity. It can be manufactured easily.
  • the molding material using the reinforcing fiber base material (A ′) of the present invention is excellent in handleability and moldability and can have a high fiber content, and can give a molded product having excellent mechanical properties. Moreover, since it can be formed into a fiber-reinforced composite material by heating the molding material at a low temperature for a short time, it is excellent in economic efficiency, productivity and handleability.
  • polyphenylene ether ether ketone can be easily combined with a reinforcing fiber base material, it is possible to improve the productivity such as increasing the take-up speed and to reduce the process temperature. It can be improved and is suitably used for the production of molding materials such as prepregs, semi-pregs and fabrics.
  • polyphenylene ether ether ketone can be easily combined with a reinforced fiber base material, so that the economy of improving productivity and suppressing process temperature by improving the impregnation property is achieved. It can be used for the production of fiber reinforced composite materials.
  • the arrow represents the take-up direction of the fiber reinforced molded substrate. It is an example of the manufacturing apparatus used for the manufacturing method of the molding material which concerns on this invention.
  • the arrow represents the take-up direction of the fiber reinforced molded substrate. It is an example of the manufacturing apparatus used for the manufacturing method of the molding material which concerns on this invention.
  • the arrow represents the take-up direction of the fiber reinforced molded substrate. It is an example of the manufacturing apparatus used for the manufacturing method of the molding material which concerns on this invention.
  • the arrow represents the take-up direction of the fiber reinforced molded substrate.
  • It is a schematic sectional drawing which shows an example of the propeller shaft obtained by this invention. It is a schematic sectional drawing which shows an example of a structure of the fiber reinforced composite material main body cylinder obtained by this invention.
  • the molding material of the present invention comprises a continuous reinforcing fiber bundle (A) or reinforcing fiber substrate (A ′), a polyphenylene ether ether ketone oligomer (B), and a thermoplastic resin (C).
  • the molding material of the present invention may further contain a polymerization catalyst (D) in the composite, and the polyphenylene ether ether ketone oligomer (B) is polymerized by heating in the presence of the polymerization catalyst (D). It is possible to convert to ether ether ketone (B ′). First, each component will be described.
  • the reinforcing fiber used for the continuous reinforcing fiber bundle (A) or the reinforcing fiber substrate (A ′) of the present invention is not particularly limited, but is carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, mineral fiber. Silicon carbide fibers can be used, and two or more of these fibers can be mixed.
  • carbon fiber is excellent in specific strength and specific rigidity, and is preferable from the viewpoint of improving the mechanical properties of the molded product.
  • carbon fibers from the viewpoint of obtaining a molded product having a light weight, high strength, and high elastic modulus, it is preferable to use carbon fibers, and it is particularly preferable to use carbon fibers having a tensile elastic modulus of 200 to 700 GPa.
  • carbon fibers and reinforcing fibers coated with metal have high conductivity, and thus have the effect of improving the conductivity of the molded product. For example, for housing applications such as electronic devices that require electromagnetic shielding properties. Is particularly preferred.
  • the amount of surface functional groups (O / C), which is the ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy, is 0.
  • the range is from .05 to 0.4.
  • O / C is too high, there is a concern about the destruction of the crystal structure on the surface of the carbon fiber.
  • the surface functional group amount (O / C) is determined by the following procedure by X-ray photoelectron spectroscopy. First, the carbon fibers from which the sizing agent and the like have been removed with a solvent are cut and spread and arranged on a copper sample support, and then the photoelectron escape angle is set to 90 °, MgK ⁇ 1,2 is used as the X-ray source, and the sample chamber Keep inside at 1 ⁇ 10 ⁇ 8 Torr. As correction of the peak accompanying charging during measurement, the kinetic energy value (KE) of the main peak of C1S is set to 969 eV. The C1S peak area is the K.S. E. Is obtained by drawing a straight base line in the range of 958 to 972 eV.
  • the O1S peak area E. Is obtained by drawing a straight base line in the range of 714 to 726 eV.
  • the surface functional group amount (O / C) is calculated as an atomic ratio from the ratio of the O1S peak area to the C1S peak area using a sensitivity correction value unique to the apparatus.
  • the continuous reinforcing fiber bundle (A) used in the molding material of the present invention means that a reinforcing fiber bundle in which single fibers are arranged in one direction is in a continuous state in the length direction. It is not necessary for all the single fibers of the fiber bundle to be continuous over the entire length, and some of the single fibers may be divided in the middle. Examples of such continuous reinforcing fiber bundles include unidirectional fiber bundles, bi-directional fiber bundles, and multidirectional fiber bundles, but from the viewpoint of productivity in the process of manufacturing a molding material, unidirectional The fiber bundle can be used more preferably.
  • the impregnation property of the matrix resin tends to be disadvantageous. Therefore, when a carbon fiber bundle is used as the reinforcing fiber bundle (A), from the viewpoint of achieving both economy and impregnation properties. 15,000 or more and 100,000 or less are more preferable, and 20,000 or more and 50,000 or less can be used particularly preferably.
  • the advantages of the present invention are the excellent impregnation of the thermoplastic resin in the process of producing the molding material, and the good dispersion of the reinforcing fibers in the molded product during injection molding. It is suitable for a reinforcing fiber bundle having a larger number of fibers.
  • a sizing agent may be used separately from the polyphenylene ether ether ketone oligomer (B) of the present invention for the purpose of bundling single fibers into reinforcing fiber bundles. This is because the sizing agent is attached to the reinforcing fiber bundle, and the handling property at the time of transferring the reinforcing fiber and the processability in the process of producing the molding material are improved, and within the range not impairing the object of the present invention.
  • Sizing agents such as resins, urethane resins, acrylic resins and various thermoplastic resins can be used alone or in combination of two or more.
  • the form and arrangement of the reinforcing fiber base (A ′) used in the present invention are not particularly limited.
  • a base in which continuous reinforcing fibers are arranged in one direction hereinafter, simply referred to as “unidirectional array base”.
  • Woven fabric cloth
  • non-woven fabric mat
  • knitted fabric braid
  • yarn tow
  • Nonwoven fabrics and mats are preferably used.
  • the unidirectional array base material is a base material in which a plurality of reinforcing fibers are arrayed in parallel.
  • a unidirectional array base material is obtained by, for example, a method of aligning a plurality of the above-described reinforcing fiber bundles (A) in one direction to form a sheet.
  • the number of single fibers of the reinforcing fiber is not particularly limited.
  • a binder may be used for the reinforcing fiber base (A ′) separately from the component (B) in the present invention for the purpose of suppressing the dropping of single fibers. This is for the purpose of improving the processability in the process of manufacturing a molding material, and the handling property at the time of transfer of a reinforcing fiber base material (A ') by making a binder adhere to a reinforcing fiber base material (A').
  • one or more binders such as epoxy resin, urethane resin, acrylic resin and various thermoplastic resins can be used in combination as long as the object of the present invention is not impaired.
  • the polyphenylene ether ether ketone oligomer (B) used in the present invention has a melting point of 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and preferably 200 ° C. or lower. More preferably, it is particularly preferable that the temperature is 180 ° C. or lower. As the melting point of the polyphenylene ether ether ketone oligomer (B) is lower, the processing temperature can be lowered, and the process temperature can be set lower, which is advantageous from the viewpoint that the energy required for processing can be reduced.
  • polymerization of the polyphenylene ether ether ketone oligomer (B) proceeds and melts during storage and before impregnation into the reinforcing fiber bundle (A) or the reinforcing fiber substrate (A ′). Undesirable reactions such as an increase in viscosity can be suppressed.
  • the melting point of the polyphenylene ether ether ketone oligomer (B) can be measured by observing the endothermic peak temperature using a differential scanning calorimeter.
  • the polyphenylene ether ether ketone oligomer (B) in the present invention is preferably a polyphenylene ether ether ketone composition containing 60% by weight or more of cyclic polyphenylene ether ether ketone, and more preferably a composition containing 65% by weight or more. 70% by weight or more is more preferable, and a composition containing 75% by weight or more is even more preferable.
  • the cyclic polyphenylene ether ether ketone in the present invention is a cyclic compound represented by the following general formula (a) having paraphenylene ketone and paraphenylene ether as repeating structural units.
  • the range of the repeating number m is 2 to 40, more preferably 2 to 20, more preferably 2 to 15, and particularly preferably 2 to 10. Since the melting point of the polyphenylene ether ether ketone oligomer (B) tends to increase as the number of repetitions m increases, the number of repetitions m is set in the above range from the viewpoint of melting the polyphenylene ether ether ketone oligomer (B) at a low temperature. It is preferable to do.
  • the polyphenylene ether ether ketone oligomer (B) is preferably a mixture of cyclic polyphenylene ether ether ketones having different repeating numbers m, and is a cyclic polyphenylene ether ether ketone mixture comprising at least three different repeating numbers m. More preferably, it is more preferably a mixture composed of 4 or more repetitions m, and particularly preferably a mixture composed of 5 or more repetitions m. Furthermore, it is particularly preferable that these repeating numbers m are continuous.
  • the melting point of a mixture comprising a different repeating number m tends to be lower, and compared to a cyclic polyphenylene ether ether ketone mixture comprising two different repeating numbers m.
  • the melting point of a mixture composed of three or more types of repeating number m tends to be further lowered, and the melting point of a mixture consisting of continuous repeating number m is lower than that of a mixture consisting of discontinuous repeating number m. There is a tendency.
  • cyclic polyphenylene ether ether ketone having each repeating number m can be analyzed by component separation by high performance liquid chromatography, and the composition of polyphenylene ether ether ketone oligomer (B), that is, polyphenylene ether ether ketone oligomer (B), that is, polyphenylene ether ether ketone oligomer (B)
  • B polyphenylene ether ether ketone oligomer
  • the weight fraction of the cyclic polyphenylene ether ether ketone having each repeating number m contained in B) can be calculated from the peak area ratio of each cyclic polyphenylene ether ether ketone in the high performance liquid chromatography.
  • linear polyphenylene ether ether ketone As an impurity component in the polyphenylene ether ether ketone oligomer (B), that is, a component other than the cyclic polyphenylene ether ether ketone, linear polyphenylene ether ether ketone can be mainly exemplified. Since this linear polyphenylene ether ether ketone has a high melting point, when the weight fraction of the linear polyphenylene ether ether ketone increases, the melting point of the polyphenylene ether ether ketone oligomer (B) tends to increase.
  • the reduced viscosity ( ⁇ ) of the polyphenylene ether ether ketone oligomer (B) in the present invention having the characteristics as described above can preferably be 0.1 dL / g or less, and is 0.09 dL / g or less. Is more preferable, and it is more preferable that it is 0.08 dL / g or less.
  • the reduced viscosity in the present invention is obtained by subjecting a concentrated sulfuric acid solution having a concentration of 0.1 g / dL (weight of polyphenylene ether ether ketone oligomer (B) / 98% by weight concentrated sulfuric acid) to sulfonation. It is a value measured using an Ostwald viscometer at 25 ° C. immediately after completion of dissolution in order to minimize the influence. The reduced viscosity was calculated according to the following formula.
  • ⁇ (t / t 0 ) ⁇ 1 ⁇ / C (Here, t represents the number of seconds for the sample solution to pass, t 0 represents the number of seconds for the solvent (98 wt% concentrated sulfuric acid) to pass, and C represents the concentration of the solution.)
  • Examples of the method for obtaining the polyphenylene ether ether ketone oligomer (B) used in the present invention include the following methods [B1] to [B3].
  • [B1] A production method by heating and reacting a mixture containing at least a dihalogenated aromatic ketone compound, a dihydroxy aromatic compound, a base, and an organic polar solvent.
  • [B2] A production method by heating and reacting a mixture containing at least a linear polyphenylene ether ether ketone, a dihalogenated aromatic ketone compound, a dihydroxy aromatic compound, a base and an organic polar solvent.
  • the polymerization catalyst (D) is not particularly limited as long as it is a compound having an effect of accelerating the heat polymerization of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′).
  • Known catalysts such as an agent, a radical polymerization initiator, a cationic polymerization initiator, an anionic polymerization initiator, and a transition metal catalyst can be used, and among these, an anionic polymerization initiator is preferable.
  • the anionic polymerization initiator include alkali metal salts such as inorganic alkali metal salts or organic alkali metal salts.
  • Examples of inorganic alkali metal salts include sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride.
  • Examples of the alkali metal halide include alkali metal alkoxides such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, sodium tert-butoxide, potassium tert-butoxide, or sodium phenoxide.
  • alkali metal phenoxides such as potassium phenoxide, sodium-4-phenoxyphenoxide, potassium-4-phenoxyphenoxide, and alkali metal acetates such as lithium acetate, sodium acetate, potassium acetate Can be shown.
  • anionic polymerization initiators exhibit a catalytic action by nucleophilic attack on the polyphenylene ether ether ketone oligomer (B). Therefore, it is also possible to use a compound having a nucleophilic attack ability equivalent to those of these anionic polymerization initiators as a catalyst, and examples of such a compound having a nucleophilic attack ability include a polymer having an anion polymerizable terminal. Can do.
  • These anionic polymerization initiators may be used alone or in combination of two or more.
  • the polyphenylene ether ether ketone (B ′) tends to be obtained in a short time. Specifically, the heating time of the heat polymerization 2 hours or less, further 1 hour or less, 0.5 hours or less.
  • the amount of the catalyst to be used varies depending on the molecular weight of the target polyphenylene ether ether ketone (B ′) and the type of the catalyst, but is usually a repeating unit 1 of the following formula, which is the main structural unit of polyphenylene ether ether ketone (B ′).
  • the amount is 0.001 to 20 mol%, preferably 0.005 to 15 mol%, more preferably 0.01 to 10 mol%, based on mol.
  • the uniform dispersion method include a mechanical dispersion method and a dispersion method using a solvent.
  • the mechanical dispersion method include a pulverizer, a stirrer, a mixer, a shaker, and a method using a mortar.
  • a method of dispersing using a solvent specifically, there is a method of dissolving or dispersing the polyphenylene ether ether ketone oligomer (B) in an appropriate solvent, adding the polymerization catalyst (D) thereto, and then removing the solvent. It can be illustrated. Further, when the polymerization catalyst (D) is dispersed, when the polymerization catalyst (D) is a solid, more uniform dispersion is possible, so that the average particle diameter of the polymerization catalyst (D) is preferably 1 mm or less.
  • the polyphenylene ether ether ketone (B ′) in the present invention can be obtained by converting the polyphenylene ether ether ketone oligomer (B) by heat polymerization in the presence of the polymerization catalyst (D).
  • the polyphenylene ether ether ketone (B ′) is a linear compound represented by the following general formula (b) having paraphenylene ketone and paraphenylene ether as repeating structural units.
  • the reduced viscosity ( ⁇ ) of the polyphenylene ether ether ketone (B ′) in the present invention is not particularly limited, but a preferable range is 0.1 to 2.5 dL / g, more preferably 0.2 to 2.0 dL / g, More preferably, it can be 0.3 to 1.8 dL / g.
  • a suitable viscosity range By adjusting to such a suitable viscosity range, a molding material excellent in moldability and mechanical properties of the molded product can be obtained.
  • the melting point of the polyphenylene ether ether ketone (B ′) in the present invention is the composition and molecular weight of the polyphenylene ether ether ketone oligomer (B), the weight fraction of the cyclic polyphenylene ether ether ketone contained in the polyphenylene ether ether ketone oligomer (B), Further, since it varies depending on the environment during heating, it cannot be uniquely indicated, but a preferable range is 270 to 450 ° C., more preferably 280 to 400 ° C., and further preferably 300 to 350 ° C. By adjusting to such a suitable temperature range, a molding material excellent in moldability and heat resistance can be obtained.
  • the melting point of the polyphenylene ether ether ketone (B ′) is obtained by physically taking out the portion corresponding to the polyphenylene ether ether ketone (B ′) from the molding material of the present invention and using a differential scanning calorimeter from this sample. It can be measured by observing the endothermic peak temperature.
  • the heating temperature when the polyphenylene ether ether ketone oligomer (B) is converted to polyphenylene ether ether ketone (B ′) by heat polymerization is preferably equal to or higher than the melting point of the polyphenylene ether ether ketone oligomer (B). If it is such temperature conditions, there will be no restriction
  • the heating temperature is lower than the melting point of the polyphenylene ether ether ketone oligomer (B), it takes a long time to obtain the polyphenylene ether ether ketone (B ′) by heat polymerization, or the polyphenylene ether ether ketone ( B ′) tends not to be obtained.
  • 160 degreeC or more can be illustrated, Preferably it is 200 degreeC or more, More preferably, it is 230 degreeC or more, More preferably, it is 270 degreeC or more.
  • the polyphenylene ether ether ketone oligomer (B) tends to melt and polyphenylene ether ether ketone (B ′) can be obtained in a short time.
  • heating temperature 450 degrees C or less can be illustrated, Preferably it is 400 degrees C or less, More preferably, it is 350 degrees C or less, More preferably, it is 300 degrees C or less. Below this temperature range, adverse effects on the properties of the resulting polyphenylene ether ether ketone (B ′) due to undesirable side reactions tend to be suppressed.
  • the melting point of the polyphenylene ether ether ketone oligomer is high, so that it takes a long time for the heat polymerization in the above preferred temperature range, or the heat polymerization does not proceed and the polyphenylene ether ether ketone does not proceed.
  • the polyphenylene ether ether ketone oligomer (B) according to the present invention which has a feature that the melting point is 270 ° C. or less, tends to be not obtained, and the heat polymerization proceeds efficiently in the above preferred temperature range.
  • a ketone (B ′) is obtained.
  • polyphenylene ether ether ketone oligomer (B) in the present invention can be polymerized by heating at a temperature below the melting point of the obtained polyphenylene ether ether ketone (B ′).
  • Polyphenylene ether ether ketone (B ′) obtained under such polymerization conditions tends to have higher melting enthalpy and thus higher crystallinity than known polyphenylene ether ether ketone. This is thought to be because a phenomenon in which crystallization of the polyphenylene ether ether ketone (B ′) obtained by polymerization and polymerization of the polyphenylene ether ether ketone oligomer (B) proceeds simultaneously, so-called crystallization polymerization proceeds. .
  • the lower limit of the melting enthalpy of the polyphenylene ether ether ketone (B ′) obtained by crystallization polymerization can be exemplified by 40 J / g or more, preferably 45 J / g or more, more preferably 50 J / g or more.
  • the portion corresponding to polyphenylene ether ether ketone (B ′) is physically taken out from the molding material of the present invention, and a differential scanning calorimeter is used from this sample. It is possible to measure by observing the endothermic peak area.
  • the heating temperature range in which such crystallization polymerization occurs varies uniformly depending on conditions such as the weight fraction and composition ratio of cyclic polyphenylene ether ether ketone in the polyphenylene ether ether ketone oligomer (B) used, and the heating polymerization method.
  • the range of 160 to 330 ° C., preferably 200 to 300 ° C. can be exemplified.
  • the reaction time varies depending on conditions such as the weight fraction and composition ratio of the cyclic polyphenylene ether ether ketone in the polyphenylene ether ether ketone oligomer (B) to be used, the heating temperature and the heating polymerization method, it cannot be uniformly defined. It is preferable to set so as not to cause undesirable side reactions such as a cross-linking reaction, and a range of 0.001 to 100 hours can be exemplified, 0.005 to 20 hours is preferable, and 0.005 to 10 hours is more preferable .
  • thermoplastic resin (C) used in the present invention is not particularly limited, and polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PENp) resin, Polyester resins such as liquid crystal polyester, polyolefin resins such as polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, urethane resin, polyoxymethylene (POM) resin, polyamide (PA ) Resin, polycarbonate (PC) resin, polymethyl methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene s
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PENp polyethylene naphthalate
  • Polyester resins such as liquid crystal polyester, polyolefin resins such as polyethylene
  • engineering plastics such as polyamide resin, polyetherimide resin, polyamideimide resin, polyether ether ketone resin, and polyphenylene sulfide resin, or super engineering plastic are preferably used, and have excellent compatibility with the polyphenylene ether ether ketone oligomer (B).
  • a polyether ether ketone resin is particularly preferably used because a molded article having good fiber dispersibility and excellent appearance can be obtained.
  • thermoplastic resin (C) By using such a thermoplastic resin (C), it is possible to further bring out the improvement effect of the mechanical properties of the molded product in the present invention.
  • the molecular weight of the thermoplastic resin (C) used in the present invention is preferably 10,000 or more, more preferably 20,000 or more in terms of weight average molecular weight, from the viewpoint of mechanical properties of a molded product obtained by molding a molding material. And particularly preferably 30,000 or more. This is more advantageous from the viewpoint of increasing the strength and elongation of the matrix resin as the weight average molecular weight increases.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 1,000,000 or less, more preferably 500,000 or less, from the viewpoint of fluidity during molding.
  • the said weight average molecular weight can be calculated
  • the thermoplastic resin (C) exemplified in the above group contains an impact resistance improver such as a fiber reinforcing agent, an elastomer or a rubber component, and other fillers and additives as long as the object of the present invention is not impaired. May be.
  • these include inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers. , Mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, or coupling agents.
  • the 1st preferable form of the molding material of this invention is comprised with a reinforced fiber bundle (A), a polyphenylene ether ether ketone oligomer (B), and a thermoplastic resin (C).
  • the reinforcing fiber bundle (A) is 1 to 50% by weight, preferably 5 to 45% by weight, when the total of the components (A), (B) and (C) is 100% by weight. More preferably, it is 10 to 40% by weight. If the reinforcing fiber bundle (A) is less than 1% by weight, the resulting molded article may have insufficient mechanical properties, and if it exceeds 50% by weight, the fluidity may be reduced during injection molding.
  • the polyphenylene ether ether ketone oligomer (B) is 0.1 to 20% by weight, preferably 1 to 18% when the total of the constituent components (A), (B) and (C) is 100% by weight. % By weight, more preferably 5 to 15% by weight. By using within this range, a molding material excellent in moldability and handleability can be obtained.
  • thermoplastic resin (C) is 30 to 98.9% by weight, preferably 37 to 94% by weight, when the total of the components (A), (B) and (C) is 100% by weight. More preferably, it is 45 to 85% by weight. By using within this range, a molding material excellent in moldability and handleability can be obtained.
  • a second preferred form of the molding material of the present invention is composed of a reinforcing fiber bundle (A), a polyphenylene ether ether ketone (B ′), a thermoplastic resin (C), and a polymerization catalyst (D).
  • the reinforcing fiber bundle (A) is 1 to 50% by weight, preferably 5 to 45% by weight, when the total of the components (A), (B ′) and (C) is 100% by weight. More preferably, it is 10 to 40% by weight. If the reinforcing fiber bundle (A) is less than 1% by weight, the resulting molded article may have insufficient mechanical properties, and if it exceeds 50% by weight, the fluidity may be reduced during injection molding.
  • the polyphenylene ether ether ketone (B ′) is 0.1 to 30% by weight, preferably 1 to 4% when the total of the components (A), (B ′) and (C) is 100% by weight. 18% by weight, more preferably 5 to 15% by weight. By using within this range, a molding material excellent in moldability and handleability can be obtained.
  • thermoplastic resin (C) is 20 to 98.9% by weight, preferably 37 to 94% by weight when the total of the components (A), (B ′) and (C) is 100% by weight. %, More preferably 45 to 85% by weight. By using within this range, a molding material excellent in moldability and handleability can be obtained.
  • the polymerization catalyst (D) is 0.001 to 20 mol%, preferably 0.005 to 15 mol based on 1 mol of the repeating unit of the following formula, which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). %, More preferably 0.01 to 10 mol%.
  • the molding material of the present invention is arranged so that the thermoplastic resin (C) adheres to a composite composed of a continuous reinforcing fiber bundle (A) and a polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′). It is a molding material constituted.
  • the composite of the reinforcing fiber bundle (A) and the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) is formed by these two members.
  • the form of this composite is as shown in FIG. 1, and each single fiber of the reinforcing fiber bundle (A) is filled with the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′). . That is, the reinforcing fibers (A) are dispersed like islands in the sea of the polyphenylene ether ether ketone oligomer (B) or the polyphenylene ether ether ketone (B ′).
  • the polymerization catalyst (D) has the role of polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) in the sea and / or reinforcing fiber bundle (A) and polyphenylene ether ether ketone oligomer (B). Alternatively, it is preferably present at the interface with the polyphenylene ether ether ketone (B ′).
  • thermoplastic resin is obtained by making the reinforcing fiber bundle (A) well impregnated with the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) excellent in heat resistance. Even if it is bonded to the resin (C), for example, when the molding material of the present invention is injection-molded, the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B) melt-kneaded in the cylinder of the injection molding machine ') Diffuses into the thermoplastic resin (C) and helps the reinforcing fiber bundle (A) to be dispersed in the thermoplastic resin (C).
  • the polyphenylene ether ether ketone oligomer (B) or the polyphenylene ether ether ketone (B ′) can be easily replaced with the thermoplastic resin (C) to disperse the reinforcing fiber bundle (A) more easily. It is said. From this effect, the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) has a role as a so-called impregnation aid / dispersion aid.
  • the reinforcing fiber bundle (A) is arranged substantially parallel to the axial direction of the molding material, and the reinforcing fiber bundle ( The length of A) is substantially the same as the length of the molding material.
  • substantially in parallel means that the long axis of the reinforcing fiber bundle and the long axis of the molding material are oriented in the same direction.
  • the angle shift is preferably 20 ° or less, more preferably 10 ° or less, and further preferably 5 ° or less.
  • substantially the same length means that, for example, in a pellet-shaped molding material, a reinforcing fiber bundle is cut in the middle of the pellet, or a reinforcing fiber bundle substantially shorter than the entire length of the pellet is substantially included. It is not done.
  • the amount of reinforcing fiber bundle shorter than the total length of the pellet is not specified, but when the content of reinforcing fiber having a length of 50% or less of the total length of the pellet is 30% by weight or less, the pellet It is evaluated that the reinforcing fiber bundle significantly shorter than the full length is not substantially contained. Furthermore, the content of reinforcing fibers having a length of 50% or less of the total length of the pellet is preferably 20% by weight or less.
  • a pellet full length is the length of the reinforcing fiber orientation direction in a pellet. Since the reinforcing fiber bundle (A) has a length equivalent to that of the molding material, the reinforcing fiber length in the molded product can be increased, so that excellent mechanical properties can be obtained.
  • FIGS. 7 to 10 show examples of the shape of the cross section in the orthogonal direction of the molding material of the present invention. This is a schematic representation.
  • the cross-sectional shape of the molding material is arranged so that the thermoplastic resin (C) adheres to the composite of the reinforcing fiber bundle (A) and the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′). If it is, it is not limited to the one shown in the figure, but preferably, as shown in FIGS. 3 to 5 which are axial cross-sections, the composite becomes the core material and is sandwiched in layers by the thermoplastic resin (C) Are preferably arranged.
  • the composite is arranged in a core-sheath structure in which the thermoplastic resin (C) covers the periphery with respect to the core.
  • the number of composites is preferably about 2 to 6.
  • thermoplastic resin (C) The boundary between the composite and the thermoplastic resin (C) is adhered, and the thermoplastic resin (C) partially enters the composite near the boundary, and the polyphenylene ether ether ketone oligomer (B) or It may be in a state where it is compatible with polyphenylene ether ether ketone (B ′) or a state where it is impregnated in a reinforcing fiber.
  • the axial direction of the molding material may be continuous while maintaining substantially the same cross-sectional shape. Depending on the molding method, such a continuous molding material may be cut into a certain length.
  • the molding material of the present invention is a thermoplastic resin formed into a composite comprising a reinforcing fiber bundle (A) and a polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) by a technique such as injection molding or press molding.
  • the final molded product can be produced by kneading (C). From the viewpoint of the handling property of the molding material, it is important that the composite and the thermoplastic resin (C) are not separated until the molding is performed and the shape as described above is maintained. Since the polyphenylene ether ether ketone oligomer (B) has a low molecular weight, it is usually a relatively brittle and easily crushed solid at room temperature.
  • thermoplastic resin (C) is disposed so as to protect the composite, and the polyphenylene ether ether ketone oligomer (B) is crushed and scattered by transportation of the material until molding, shock at the time of handling, rubbing, etc. It is desirable not to do so.
  • the composite and the thermoplastic resin (C) differ in shape (size, aspect ratio), specific gravity, and weight, so they are separated during transportation and handling of the material up to molding and during material transfer in the molding process.
  • the mechanical properties of the resin may vary, the fluidity may decrease, the mold may clog, and blocking may occur in the molding process.
  • heat is applied to a composite composed of a reinforcing fiber bundle (A) that is a reinforcing fiber and a polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′).
  • the plastic resin (C) is arranged so as to cover the periphery of the composite, that is, the reinforcing fiber bundle (A) which is a reinforcing fiber and the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B) It is preferable that the composite made of ') has a core structure and the core-sheath structure in which the thermoplastic resin (C) covers the periphery of the composite.
  • the high molecular weight thermoplastic resin (C) wraps the polyphenylene ether ether ketone oligomer (B) that is easily crushed or is disposed on a surface that is easily rubbed. The shape is easily maintained, and the composite and the thermoplastic resin (C) can be strongly combined.
  • thermoplastic resin (C) is disposed so as to cover the periphery of the composite made of the reinforcing fiber bundle (A) and the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′), or the composite
  • the thermoplastic resin (C) surrounds the composite from the viewpoint of ease of manufacture and ease of handling of the material. More preferably, it is arranged to cover.
  • the reinforcing fiber bundle (A) is completely impregnated with the polyphenylene ether ether ketone oligomer (B) or the polyphenylene ether ether ketone (B ′).
  • a certain amount of voids exist in the composite composed of the fiber bundle (A) and the polyphenylene ether ether ketone oligomer (B) or the polyphenylene ether ether ketone (B ′).
  • the content of the reinforcing fiber bundle (A) is large, the number of voids increases.
  • the effect of promoting impregnation and fiber dispersion of the present invention is shown.
  • the void ratio is preferably in the range of 0 to 40%. A more preferable void ratio range is 20% or less. Void rate is the ASTM part of the complex D2734 (1997) Measured by the test method.
  • the molding material of the present invention is preferably used after being cut to a length in the range of 1 to 50 mm. By adjusting to the above length, the fluidity and handleability during molding can be sufficiently enhanced.
  • a particularly preferred embodiment of the molding material cut to an appropriate length in this way can be exemplified by long fiber pellets for injection molding.
  • the molding material of the present invention can be used depending on the molding method even if it is continuous or long.
  • a thermoplastic yarn prepreg it can be wound around a mandrel while heating to obtain a roll-shaped molded product.
  • molded products include liquefied natural gas tanks.
  • Such a prepreg can be applied to fields where high strength, elastic modulus, and impact resistance are required, for example, aircraft members.
  • the second preferred form of the molding material of the present invention is composed of a reinforcing fiber bundle (A), a polyphenylene ether ether ketone (B ′), a thermoplastic resin (C), and a polymerization catalyst (D). From the viewpoint of being able to be manufactured, it is preferable to manufacture through the following steps [i] to [iii].
  • Step [i] A step of obtaining a mixture comprising the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D).
  • Step [ii] A step of obtaining a composite obtained by impregnating a continuous reinforcing fiber bundle (A) with the mixture.
  • Step [iii] A step of adhering the composite to the thermoplastic resin (C).
  • the apparatus for obtaining the mixture is not particularly limited as long as it has a mechanism for mixing the charged polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D), but the polyphenylene ether ether ketone oligomer is not particularly limited. From the viewpoint of uniformly mixing (B) and the polymerization catalyst (D), it is preferable to provide a heating source for heating and melting the polyphenylene ether ether ketone oligomer (B).
  • liquid feeding mechanism in order to quickly move to step [ii] after obtaining the molten mixture.
  • driving method of liquid feeding include a self-weight type, a pneumatic type, a screw type, and a pump type.
  • step [i] when obtaining a molten mixture, it is preferable to set the temperature and time so as not to cause thermal polymerization of the polyphenylene ether ether ketone oligomer (B) as much as possible.
  • the temperature at which the molten mixture is obtained is 160 to 340 ° C., preferably 180 to 320 ° C., more preferably 200 to 300 ° C., and particularly preferably 230 to 270 ° C.
  • the polyphenylene ether ether ketone oligomer (B) can be melted in a short time, while the heat polymerization of the polyphenylene ether ether ketone oligomer (B) can be suppressed. Increase in viscosity due to formation of B ′) hardly occurs.
  • the time for obtaining the molten mixture is not particularly limited, but in order to prevent the polymerization of the polyphenylene ether ether ketone oligomer (B) from proceeding and thickening, the polyphenylene ether ether ketone oligomer (B ) And the polymerization catalyst (D) are preferably transferred to step [ii] as soon as possible after heating.
  • the time range is 0.01 to 300 minutes, preferably 0.1 to 60 minutes, more preferably 0.3 to 30 minutes, and further preferably 0.5 to 10 minutes.
  • the atmosphere during heating is preferably performed in a non-oxidizing atmosphere, and is preferably performed under reduced pressure.
  • the non-oxidizing atmosphere refers to an inert gas atmosphere such as nitrogen, helium, and argon.
  • the reduced pressure condition means that the inside of the system is lower than the atmospheric pressure. For example, a range of 0.1 kPa to 50 kPa can be exemplified as a preferable range.
  • step [ii] the apparatus used is not particularly limited as long as it has a mechanism for impregnating the continuous reinforcing fiber bundle (A) with the mixture obtained in step [i].
  • An apparatus for passing the reinforcing fiber bundle through the mold die while supplying it to the mold die such as a slit die, or a molten mixture is supplied to the melting bath by a gear pump, and the reinforcing fiber bundle (A) is supplied in the melting bath.
  • a method of passing the bundle (A) can be exemplified.
  • These apparatuses may be used in combination for the purpose of improving the impregnation property, and the obtained composite may be looped and passed through the same apparatus a plurality of times.
  • the temperature at which the melt-kneaded material is impregnated is 160 to 450 ° C., preferably 200 to 400 ° C., more preferably 230 to 350 ° C., and particularly preferably 270 to 300 ° C.
  • the polyphenylene ether ether ketone oligomer (B) is difficult to solidify, thicken or solidify, and can be excellent in impregnation properties.
  • the time for impregnating the melt-kneaded product is not particularly limited, but it is preferable to secure a time that allows the melt-kneaded product to sufficiently impregnate the reinforcing fiber bundle (A).
  • the time range is from 0.001 to 1,000 minutes, preferably from 0.01 to 300 minutes, more preferably from 0.1 to 60 minutes, still more preferably from 0.3 to 30 minutes, and particularly preferably from 0.00. 5-10 minutes.
  • the impregnation time is within this preferable range, the reinforcing fiber bundle (A) is sufficiently impregnated with the melt-kneaded product, and the molding material can be produced efficiently.
  • the apparatus used is not particularly limited as long as it has a mechanism for adhering the thermoplastic resin (C) to the composite obtained in the step [ii], and a molten thermoplastic resin ( C) is supplied to a mold die such as a T die or a slit die, and a device for passing the composite through the mold die, or a molten thermoplastic resin (C) is supplied to a melting bath by a gear pump, A device for allowing the composite to pass through the melting bath, a device for supplying the melted thermoplastic resin (C) to the kiss coater with a plunger pump and applying it to the composite, and a device for melting the thermoplastic resin (C)
  • An example is a method in which a composite is passed through the surface of the roll supplied on a heated rotating roll.
  • the temperature at which the composite and the thermoplastic resin (C) are bonded is not unambiguous because it varies depending on various properties such as the molecular structure, molecular weight, and composition of the thermoplastic resin (C) to be used.
  • the melting point of the thermoplastic resin (C) to be used can be exemplified.
  • 80 ° C., preferably 50 ° C., more preferably 30 ° C., and further preferably 20 ° C. can be exemplified.
  • the thermoplastic resin (C) can be easily bonded to the composite and can suppress undesirable phenomena in production, such as thermal decomposition of the thermoplastic resin (C).
  • the melting point of the thermoplastic resin (C) can be measured by observing the endothermic peak temperature using a differential scanning calorimeter.
  • the time required for the composite to pass through the apparatus for bonding the composite and the thermoplastic resin is not particularly limited, but is 0.0001 to 120 minutes, preferably 0.001 to 60 minutes, More preferred is 0.01 to 10 minutes.
  • the time required for the composite to pass through the bonding apparatus is within this preferable range, the composite and the thermoplastic resin can be easily bonded to each other, and the molding material can be produced efficiently.
  • the polyphenylene ether ether ketone oligomer (B) may be converted into the polyphenylene ether ether ketone (B ′) in any of the steps [i] to [iii].
  • the polyphenylene ether ether ketone oligomer (B) is selectively used at the same time as and after the step [ii]. It is preferable to polymerize. In order to satisfy such requirements, conditions such as the apparatus, temperature, and time of the above-described steps [i] to [iii] are suitable.
  • heat treatment is further performed at 160 to 450 ° C., preferably 200 to 400 ° C., more preferably 230 to 350 ° C., particularly preferably 270 to 300 ° C. It is also significant to heat polymerize the remaining polyphenylene ether ether ketone oligomer (B).
  • heat treatment is performed at a temperature lower than 160 ° C., the polymerization of the polyphenylene ether ether ketone oligomer (B) does not proceed and it may take a long time.
  • heat treatment is performed at a temperature higher than 450 ° C., the thermoplastic resin (C) may melt in a short time, and the shape of the molding material may be lost.
  • the first preferred form of the molding material of the present invention comprises a reinforcing fiber bundle (A), a polyphenylene ether ether ketone oligomer (B) and a thermoplastic resin (C), and the polyphenylene ether ether ketone oligomer (B) has a melting point. Is excellent in impregnation process into the reinforcing fiber bundle (A), and a composite made of the reinforcing fiber bundle (A) and the polyphenylene ether ether ketone oligomer (B) can be easily produced. It is effective for improvement.
  • the polyphenylene ether ether ketone oligomer (B) is excellent in fluidity, for example, when the molding material of the present invention is injection-molded, it is melt-kneaded in a cylinder of an injection molding machine and has good fluidity.
  • the ether ketone oligomer (B) diffuses into the thermoplastic resin (C) and helps the reinforcing fiber bundle (A) to be dispersed in the thermoplastic resin (C).
  • the polyphenylene ether ether ketone oligomer (B) can easily disperse the reinforcing fiber bundle (A) by being easily replaced with the thermoplastic resin (C). From this effect, the polyphenylene ether ether ketone oligomer (B) has a role as a so-called impregnation aid / dispersion aid.
  • the polymerization catalyst (D) serves as a so-called polymerization catalyst that promotes the conversion of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) by heating.
  • a molding material of the present invention comprising the reinforcing fiber bundle (A), the polyphenylene ether ether ketone oligomer (B), the thermoplastic resin (C) and the polymerization catalyst (D) is molded to produce a molded product
  • the ether ether ketone oligomer (B) can be polymerized by heating in the presence of the polymerization catalyst (D) to be converted into polyphenylene ether ether ketone (B ′).
  • the polymerization catalyst (D) for example, when the molding material of the present invention containing the polymerization catalyst (D) is injection-molded, the polyphenylene ether ether ketone oligomer (B) in the cylinder and the mold in the injection molding process. Polymerization to polyphenylene ether ether ketone (B ′) progresses, and a molded article having excellent mechanical properties can be obtained.
  • the molding material of the present invention can be melted by heating and molded into a predetermined shape.
  • the temperature at which the molding material is melted varies depending on the raw material selected, but a preferred range is 160 ° C. to 450 ° C., more preferably 230 ° C. to 430 ° C., and still more preferably 270 ° C. to 400 ° C.
  • the temperature is lower than 160 ° C.
  • the polyphenylene ether ether ketone oligomer (B) or the polyphenylene ether ether ketone (B ′) and / or the thermoplastic resin (C) may not be melted and there may be a problem in moldability.
  • the thermoplastic resin (C) may be thermally decomposed to cause deterioration of physical properties of the molded product or voids.
  • the molding material of the present invention may be preheated before molding.
  • the temperature at which the molding material is preheated varies depending on the selected raw material, but can be exemplified by 160 ° C. to 450 ° C., more preferably 230 ° C. to 400 ° C., and still more preferably 270 ° C. to 400 ° C.
  • heat polymerization of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) proceeds, which may be effective in improving the mechanical properties of the molded product.
  • the molding material that has undergone such a preheating step may be directly fed into the molding machine.
  • the molding material of the present invention may be pretreated separately from the preheating step as long as the object of the present invention is not impaired. Examples of these include drying, degreasing, degassing, cutting, shaping, lamination, alignment, or adhesion.
  • the molding material of the present invention can be processed into a final molded product by various molding methods.
  • the molding method include press molding, stampable molding, transfer molding, injection molding, and combinations thereof.
  • the molding material of the present invention can be molded into various shapes such as a complex molded product such as a rib, a boss, and a gear, and a wide molded product such as a flat plate, a square plate, and a round plate.
  • a complex molded product such as a rib, a boss, and a gear
  • a wide molded product such as a flat plate, a square plate, and a round plate.
  • injection molding and transfer molding are preferably used, and injection molding is more preferably used from the viewpoint of productivity.
  • press molding and stamping are preferably used for wide molded articles.
  • the molding material of the present invention is used for injection molding, it is preferable to use a pellet-shaped molding material.
  • injection molding when plasticizing a pellet-shaped molding material, temperature, pressure, and kneading are applied. Therefore, according to the present invention, polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′). Exerts a great effect as an impregnation and dispersion aid.
  • a normal in-line screw type injection molding machine can be used, such as using a screw with a low compression ratio or setting a low back pressure during material plasticization. Even when the kneading effect by is weak, the reinforcing fiber is well dispersed in the matrix resin, and a molded product in which the fiber is impregnated with the resin can be obtained.
  • a molded product obtained by molding the molding material of the present invention may be further heat-treated.
  • the temperature at which the molded product is heated varies depending on the raw materials used for the molding material, but may be 160 ° C. to 450 ° C., more preferably 230 ° C. to 430 ° C., and still more preferably 270 ° C. to 400 ° C.
  • the heat polymerization of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) proceeds, which may be effective in improving the mechanical properties of the molded product.
  • the molded product obtained by the present invention may be subjected to post-treatment separately from the heating step as long as the object of the present invention is not impaired. Examples of these include annealing, polishing, cutting, grinding, adhesion, or painting.
  • annealing a polyphenylene ether ether ketone oligomer
  • D a polymerization catalyst
  • a preferred example is a form of a prepreg impregnated with.
  • the content of the reinforcing fiber substrate (A ′) is preferably 30% by weight or more, and 50% by weight. The above is more preferable, 60% by weight or more is further preferable, and 70% by weight or more is particularly preferable. If the reinforcing fiber substrate (A ′) is less than 30% by weight, the resulting molded article may have insufficient mechanical properties.
  • a reinforced fiber base material (A ') there is no restriction
  • 90 weight% or less is preferable, 80 weight% or less is more preferable, and 70 weight% or less is further more preferable.
  • the reinforcing fiber substrate (A ′) is larger than 90% by weight, it may be difficult to impregnate the reinforcing fiber substrate (A ′) with the polyphenylene ether ether ketone oligomer (B).
  • the content of the reinforcing fiber base (A ′) in the molding material of the present invention can be adjusted by controlling the supply amounts of the reinforcing fiber base (A ′) and the polyphenylene ether ether ketone oligomer (B). .
  • the content of the polymerization catalyst (D) is 0.001 to 20 mol%, preferably 0.005, based on 1 mol of the repeating unit of the following formula, which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). It is ⁇ 15 mol%, more preferably 0.01 to 10 mol%.
  • molding materials having different impregnation rates of the polyphenylene ether ether ketone oligomer (B) can be produced according to the usage and purpose.
  • a prepreg having a higher impregnation property, a semi-preg with a semi-impregnation, and a fabric with a low impregnation property In general, a molding material with higher impregnation property tends to provide a molded product with excellent mechanical properties in a short time.
  • molding materials with relatively low impregnation properties tend to be excellent in drape and excellent in shaping into curved shapes.
  • the first preferred embodiment for the impregnation rate of the polyphenylene ether ether ketone oligomer (B) is a molding material having such an impregnation rate of 80% or more and 100% or less. This is excellent from the viewpoint of manufacturing a simpler planar shaped product with high productivity.
  • a second preferred aspect of the impregnation rate of the polyphenylene ether ether ketone oligomer (B) is a molding material having such an impregnation rate of 20% or more and less than 80%. This is a molding material excellent in drapeability, and since the molding material can be pre-shaped according to the mold, it is excellent from the viewpoint of producing a relatively complicated molded product such as a curved shape with high productivity.
  • the impregnation rate of the polyphenylene ether ether ketone oligomer (B) referred to here is a cross section of the molding material observed using an optical microscope, and the area of the impregnated polyphenylene ether ether ketone oligomer (B) is expressed as follows. It is expressed as a percentage (%) divided by the sum of the impregnated area and the void area.
  • Examples of the method for controlling the impregnation rate include temperature and pressure applied when the polyphenylene ether ether ketone oligomer (B) is combined with the reinforcing fiber base (A ′). Usually, the higher the temperature and the applied pressure, the higher the impregnation rate. Further, the lower the melt viscosity of the polyphenylene ether ether ketone oligomer (B), the higher the impregnation property.
  • thermoplastic resins, oligomers, various thermosetting resins, and the like within a range not impairing the object of the present invention, Impact resistance improver such as elastomer or rubber component, inorganic filler, flame retardant, conductivity imparting agent, crystal nucleating agent, ultraviolet absorber, antioxidant, vibration damping agent, antibacterial agent, insecticide, deodorant, coloring
  • Impact resistance improver such as elastomer or rubber component, inorganic filler, flame retardant, conductivity imparting agent, crystal nucleating agent, ultraviolet absorber, antioxidant, vibration damping agent, antibacterial agent, insecticide, deodorant, coloring
  • An inhibitor, a heat stabilizer, a release agent, an antistatic agent, a plasticizer, a lubricant, a colorant, a pigment, a dye, a foaming agent, an antifoaming agent, or a coupling agent may be added.
  • thermoplastic resins include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PENp) resin, polyester resins such as liquid crystal polyester, Polyolefin resin such as polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, urethane resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, Polymethyl methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin, polyamide Mido (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone (PES) resin, poly(
  • thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, and phenol resins.
  • a tackifier to facilitate the lamination of the molding material.
  • a compound having a softening point of 150 ° C. or lower and a polar group in the molecule is preferably used.
  • Softening point is JIS This means the Vicat softening point specified in K 7206-1999, and those with a softening point of 150 ° C or lower have a relatively low molecular weight and thus have good fluidity, and improve the adhesiveness when the molding material is laminated.
  • a substance having a polar group is also preferable because it induces weak bonds such as hydrogen bonds and improves the adhesiveness when the molding material is laminated.
  • the third preferred form of the molding material of the present invention is that the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) are dissolved or dispersed in a solvent to lower the viscosity, and impregnated into the reinforcing fiber base (A ′).
  • It can be produced by a wet method or a hot melt method in which a mixture of the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) is reduced in viscosity by heating and impregnated into the reinforcing fiber base (A ′).
  • the reinforcing fiber substrate (A ′) is immersed in a solution or dispersion of the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D), then pulled up, and the solvent is evaporated using an oven or the like. It is a method of obtaining a material.
  • a molten mixture of a polyphenylene ether ether ketone oligomer (B) and a polymerization catalyst (D) whose viscosity has been reduced by heating is directly attached to a reinforcing fiber substrate (A ′), and further impregnated by heating and pressing.
  • the molding material is obtained by a method of impregnating the film by overlapping the film from one side and heating and pressing.
  • the hot melt method since no solvent is used, it is necessary to lower the resin viscosity to some extent in the step of impregnating the reinforcing fiber base (A ′), but this is preferable because substantially no solvent remains in the molding material.
  • a step of making the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) into a molten mixture a step of making the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) into a molten mixture, and a step of impregnating the reinforcing fiber (A) with the molten mixture It is preferable to set the temperature and time so that the heat polymerization of the polyphenylene ether ether ketone oligomer (B) does not occur as much as possible.
  • the temperature of the step of obtaining the molten mixture and the step of impregnating the molten mixture is 160 to 340 ° C., preferably 180 to 320 ° C., more preferably 200 to 300 ° C., and particularly preferably 230 to 270 ° C.
  • the polyphenylene ether ether ketone oligomer (B) can be melted in a short time, while the viscosity is hardly increased due to the formation of the polyphenylene ether ether ketone (B ′).
  • the time required for the step of obtaining the molten mixture and the step of impregnating the molten mixture is not particularly limited, but in order to prevent the polymerization of the polyphenylene ether ether ketone oligomer (B) from proceeding and thickening, polyphenylene ether ether ketone It is preferable to transfer the oligomer (B) and the polymerization catalyst (D) to the next step as soon as possible after heating.
  • the time range is 0.01 to 300 minutes, preferably 0.1 to 60 minutes, more preferably 0.3 to 30 minutes, and further preferably 0.5 to 10 minutes.
  • the polymerization catalyst (D) is sufficiently dispersed in the polyphenylene ether ether ketone oligomer (B), but the viscosity is hardly increased due to the formation of the polyphenylene ether ether ketone (B ′).
  • the atmosphere during heating is preferably performed in a non-oxidizing atmosphere, and it is also preferable to perform it under reduced pressure conditions.
  • the non-oxidizing atmosphere refers to an inert gas atmosphere such as nitrogen, helium, and argon.
  • the reduced pressure condition means that the inside of the system is lower than the atmospheric pressure. For example, a range of 0.1 kPa to 50 kPa can be exemplified as a preferable range.
  • a pressing force is applied in the step of impregnating the molten mixture.
  • the pressure range is preferably 0.1 to 10 MPa, and more preferably 0.2 to 5 MPa.
  • the molding material of the present invention in order to obtain a molding material excellent in moldability by relatively reducing the impregnation rate of the polyphenylene ether ether ketone oligomer (B), almost no pressure is applied in the step of impregnating the molten mixture. It is preferable.
  • the range of such pressure is preferably 0 to 0.1 MPa, and more preferably 0.01 to 0.05 MPa.
  • a method of removing the applied pressure after the applied pressure is applied and before the polyphenylene ether ether ketone oligomer (B) is cooled and solidified can also be preferably used.
  • polyphenylene ether ether ketone (B) is obtained by polymerizing the polyphenylene ether ether ketone oligomer (B) while applying heat and pressure after laminating one or more sheets in an arbitrary configuration.
  • a molded product using ') as a matrix resin is obtained.
  • a molding material laminated in an arbitrary configuration is placed in a mold or on a press plate, and then a press molding method in which the mold or the press plate is closed and pressed, molding with an arbitrary configuration is performed.
  • An autoclave molding method in which materials are put into an autoclave and then pressurized and heated.
  • a bagging molding method in which molding materials laminated in any configuration are wrapped in a film, etc., and the interior is decompressed and heated in an oven while being pressurized at atmospheric pressure.
  • Wrapping tape method in which tape is wound while applying tension to the molding material laminated in any configuration and heated in an oven, the molding material laminated in any configuration is installed in the mold, and the core is also installed in the mold
  • An internal pressure molding method or the like in which gas or liquid is injected into the inside and pressurized is used.
  • a molding method in which pressing is performed using a mold can be preferably exemplified because a molded product having few voids in the obtained molded product and excellent appearance quality can be obtained.
  • the lower limit of the heating temperature at the time of molding can be exemplified by 160 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 270 ° C. or higher.
  • the polyphenylene ether ether ketone oligomer (B) tends to melt and polyphenylene ether ether ketone (B ′) can be obtained in a short time.
  • the upper limit of the heating temperature at the time of molding can be exemplified by 450 ° C. or less, preferably 400 ° C. or less, more preferably 350 ° C. or less, and further preferably 300 ° C. or less. Below this temperature range, adverse effects on the properties of polyphenylene ether ether ketone (B ') due to undesirable side reactions tend to be suppressed.
  • the molding material of the present invention is preferably molded at a temperature not higher than the melting point of polyphenylene ether ether ketone (B ′).
  • This is a molding method utilizing the crystallization polymerization of the polyphenylene ether ether ketone oligomer (B) in the present invention.
  • the heat polymerization of the polyphenylene ether ether ketone oligomer (B) and the polyphenylene ether ether ketone (B ′) It is an excellent molding method in that the crystallization progresses at the same time, thereby shortening the mold cooling step necessary for molding a normal thermoplastic resin prepreg and removing the molded product.
  • molding can illustrate the method of measuring the surface temperature of a metal mold
  • the pressure range during molding is preferably 0.1 to 10 MPa, and 0.2 to 5 MPa can be exemplified as a more preferable range. If the pressure at the time of molding is within this preferred range, a large number of voids will not occur in the resulting molded product, while the arrangement of the reinforcing fibers (A) will not be greatly disturbed.
  • the range of time for heating and pressurizing at the time of molding is not particularly limited, but is 0.001 to 1,000 minutes, preferably 0.01 to 300 minutes, more preferably 0.1 to 60 minutes, still more preferably 0.00. 3 to 30 minutes, particularly preferably 0.5 to 10 minutes.
  • the impregnation time is within this preferable range, the polymerization of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) occurs sufficiently, while the molding material can also be produced efficiently.
  • the 4th preferable form of the molding material of this invention is comprised from a reinforced fiber base material (A '), polyphenylene ether ether ketone (B'), and a polymerization catalyst (D).
  • This method for producing a molding material is composed of at least the following steps.
  • Step [IV] A composite composed of the reinforcing fiber base (A ′) and the polyphenylene ether ether ketone (B ′) is cooled and taken off.
  • the method for producing a molding material of the present invention is characterized in that the polyphenylene ether ether ketone oligomer (B) used in the step [II] has a melting point of 270 ° C. or lower.
  • the method for producing a molding material of the present invention includes adding a polymerization catalyst (D) to the polyphenylene ether ether ketone oligomer (B) in the step [II], and then polyphenylene ether ether ketone oligomer (B ) To polyphenylene ether ether ketone (B ′).
  • each step can be performed offline, it is preferable to perform steps [I] to [IV] online from the viewpoint of economy and productivity.
  • steps [I] to [IV] are performed online means that all of the steps [I] to [IV] are continuously or intermittently performed on a continuous production line (for example, see FIGS. 13 to 15). Means to do.
  • Step [I] is a step of supplying the reinforcing fiber base (A ′) to the production line.
  • Step [I] is a step of supplying the reinforcing fiber base (A ′) to the production line.
  • Continuous means that the reinforcing fiber base material (A ′) as a raw material is continuously supplied without being completely cut, and the supply speed may be constant or intermittently supply and stop. May be repeated.
  • a step of cutting a part thereof may be included.
  • the step [I] includes the purpose of drawing out the reinforcing fiber base (A ′) and arranging it in a predetermined arrangement.
  • the reinforcing fiber substrate (A ′) to be supplied may be a yarn shape, a sheet shape aligned in one direction, or a preform shape provided with a shape in advance.
  • a plurality of reinforcing fiber bundles are arranged in one direction to form a sheet, and further supplied to the production line through a roll bar, or previously formed into a roll in the form of a woven fabric, non-woven fabric, or mat. Examples thereof include a method in which the reinforcing fiber base (A ′) is creeled, pulled out, passed through a roller, and supplied to the production line.
  • a method using a roll is preferably used. Moreover, the method etc. which pass the some roll bar arrange
  • the step [I] includes a step of heating the reinforcing fiber substrate (A ′) to 50 to 500 ° C., preferably 80 to 400 ° C., more preferably 100 to 300 ° C.
  • the fixing property of the polyphenylene ether ether ketone oligomer (B) to the reinforcing fiber substrate (A ′) in the step [II] can be improved.
  • the sizing agent attached to the reinforcing fiber substrate (A ′) can be softened and opened.
  • the heating method is not particularly limited, and examples thereof include non-contact heating using hot air or an infrared heater, and contact heating using a pipe heater or electromagnetic induction.
  • Step [I] when the reinforcing fiber substrate (A ′) is a unidirectional array substrate, it is more preferable to include a fiber opening operation. Opening is an operation of dividing the converged reinforcing fiber bundle, and an effect of further improving the impregnation property of the polyphenylene ether ether ketone oligomer (B) can be expected.
  • the thickness of the reinforcing fiber substrate (A ′) is reduced, the width of the reinforcing fiber bundle before opening is w 1 (mm), the thickness is t 1 ( ⁇ m), and the reinforcing fiber bundle after opening is
  • the width is w 2 (mm) and the thickness is t 2 ( ⁇ m)
  • the spread ratio (w 2 / t 2 ) / (w 1 / t 1 ) is preferably 2.0 or more, and 2.5 or more. Is more preferable.
  • the method for opening the reinforcing fiber base (A ′) is not particularly limited.
  • a method of alternately passing uneven rolls, a method of using a drum-type roll, a method of applying a tension fluctuation to axial vibration, A method of changing the tension of the reinforcing fiber base (A ′) by two reciprocating friction bodies and a method of blowing air to the reinforcing fiber base (A ′) can be used.
  • Step [II] is a step of combining the polyphenylene ether ether ketone oligomer (B) with the reinforcing fiber base (A ′).
  • the method of complexing is not particularly limited, but the following three methods [C1] to [C3] are preferably exemplified depending on the form of the polyphenylene ether ether ketone oligomer (B).
  • [C1] A method in which at least one polyphenylene ether ether ketone oligomer (B) selected from the group consisting of particles, fibers, and flakes is applied to the reinforcing fiber substrate (A ′) to form a composite. is there.
  • this method when complexing is performed, it is preferable that the polyphenylene ether ether ketone oligomer (B) is dispersed in a gas phase or a liquid phase.
  • the method using the polyphenylene ether ether ketone oligomer (B) dispersed in the gas phase means that the polyphenylene ether ether ketone oligomer (at least one form selected from the group consisting of particles, fibers, and flakes) (
  • B) is dispersed in the gas phase, and the reinforcing fiber substrate (A ′) is passed through the gas phase.
  • the polyphenylene ether ether ketone oligomer (B) is dispersed in a fluidized bed or the like, and the reinforcing fiber base (A ′) is passed through or the polyphenylene ether is directly applied to the reinforcing fiber base (A ′).
  • Examples thereof include a method of spraying the ether ketone oligomer (B), a method of charging the polyphenylene ether ether ketone oligomer (B), and electrostatically adhering it to the reinforcing fiber base (A ′).
  • the method using the polyphenylene ether ether ketone oligomer (B) dispersed in the liquid phase means that the polyphenylene ether ether ketone oligomer in at least one form selected from the group consisting of particles, fibers and flakes (
  • B) is dispersed or dissolved in the liquid phase and the reinforcing fiber substrate (A ′) is passed through the liquid phase.
  • distribution here maintains the inside of the range of the preferable size in each form mentioned later, without polyphenylene ether ether ketone oligomer (B) carrying out secondary aggregation, and forming the coarse aggregate of 1 mm or more. Means.
  • a method for dispersing or dissolving the polyphenylene ether ether ketone oligomer (B) in the liquid phase is not particularly limited, and a method using a stirring device, a method using a vibration device, a method using an ultrasonic generator, and a jet device are used. A method etc. can be illustrated. From the viewpoint of maintaining a dispersed state or a dissolved state, it is more preferable to use these methods even in a liquid phase that passes through the reinforcing fiber base (A ′).
  • the liquid phase used here may be water or an organic solvent, but it is more preferable to use pure water or industrial water from the viewpoints of economy and productivity.
  • various anionic, cationic and nonionic surfactants may be used in combination.
  • the amount of the surfactant used is not particularly limited, but a preferable range is 0.01 to 5% by weight.
  • an especially preferred form of the polyphenylene ether ether ketone oligomer (B) is an emulsion or a dispersion.
  • the average particle diameter is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 50 ⁇ m, and further preferably 0.1 to 20 ⁇ m.
  • the average particle diameter is preferably from 50 to 300 ⁇ m, more preferably from 80 to 250 ⁇ m, and even more preferably from 100 to 200 ⁇ m, from the viewpoint of processability and handleability of the particles. .
  • the average fiber diameter is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, and further preferably 5 to 20 ⁇ m.
  • the average fiber length is not particularly limited, but a preferred range is 1 to 10 mm. Further, when it is in the form of flakes, it preferably has the same thickness as that of the particles and has a length of 5 to 100 times the thickness.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the average fiber diameter, average fiber length, and flake-like thickness and length can be measured using an optical microscope.
  • the average value measured at an arbitrary 400 points may be obtained by enlarging 20 to 100 times. .
  • N-methyl-2-pyrrolidone dimethylformamide, dimethyl sulfoxide, acetone, methyl ethyl ketone, diethyl ketone, dimethyl ether, dipropyl ether, tetrahydrofuran, chloroform, methylene chloride, trichloroethylene, Ethylene dichloride, dichloroethane, tetrachloroethane, chlorobenzene, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, pheno Le, cresol, polyethylene glycol, benzene, toluene, xylene and the like. It is also possible to use an inorganic compound such as carbon dioxide, nitrogen, or water as a solvent in a supercritical fluid state. These solvents can be used as one kind or a mixture of two or more kinds.
  • an emulsion or dispersion of polyphenylene ether ether ketone oligomer (B) is supplied into a water tank, and a reinforcing fiber substrate (A ′) is passed through the water tank, or a jet is injected into the water tank.
  • a reinforcing fiber substrate (A ′) is passed through the water tank, or a jet is injected into the water tank.
  • Examples thereof include a method of passing through the reinforcing fiber base (A ′) while using, and a method of spraying an emulsion or dispersion of the polyphenylene ether ether ketone oligomer (B) directly on the reinforcing fiber base (A ′).
  • the liquid or organic solvent drainage rate of the composite is not particularly limited, but is preferably 50 to 100%, more preferably 70 to 100%, and still more preferably 90 to 100%.
  • the liquid phase after liquid removal is recovered and circulated and reused.
  • the liquid removal rate can be easily determined from the mass difference of the composite before and after the liquid removal operation.
  • [C2] A method in which at least one polyphenylene ether ether ketone oligomer (B) selected from the group consisting of a film shape, a sheet shape, and a non-woven fabric shape is applied to the reinforcing fiber substrate (A ′) to form a composite.
  • the film shape means a thickness having an average thickness of 200 ⁇ m or less
  • the sheet shape means a thickness having an average thickness exceeding 200 ⁇ m.
  • the non-woven fabric is a fiber sheet or web, in which fibers are oriented in one direction or randomly, and the fibers are bonded by any of entanglement, fusion, or adhesion.
  • the average thickness can be obtained by stacking a plurality of sheets or films, measuring arbitrary 10 points with calipers, and dividing the obtained thickness by the number of stacked sheets.
  • the reinforcing fiber substrate (A ′) is moved to a conveyor, and a film-like polyphenylene ether ether ketone oligomer (B) is laminated on one or both sides thereof with a hot roller, or a non-woven polyphenylene ether ether.
  • the polyphenylene ether ether ketone oligomer (B) is preferably roll-processed regardless of whether it is in the form of a film, sheet or nonwoven fabric.
  • a preferable method is to apply each form to a release paper after processing and roll processing.
  • the polyphenylene ether ether ketone oligomer (B) is melted using an extruder and supplied to a mold die such as a T die or a slit die, and a reinforcing fiber base (A ′ ), A method of passing the reinforcing fiber substrate (A ′) through the melt bath while squeezing it, and a polyphenylene ether ether ketone melted by a plunger pump.
  • An example is a method of supplying the ether ether ketone oligomer (B) and passing the reinforcing fiber substrate (A ′) through the roll surface. Kill.
  • the temperature of the step of obtaining the molten mixture and the step of impregnating the molten mixture is 160 to 340 ° C., preferably 180 to 320 ° C., more preferably 200 to 300 ° C., and particularly preferably 230 to 270 ° C.
  • the polyphenylene ether ether ketone oligomer (B) can be melted in a short time, while the viscosity is hardly increased due to the formation of the polyphenylene ether ether ketone (B ′).
  • the composite comprising the reinforcing fiber substrate (A ′) and the polyphenylene ether ether ketone oligomer (B) is 160 to 340 ° C., preferably 180 to 320 ° C., more preferably 200 to 300 ° C. It is particularly preferable to include a step of heating to 230 to 270 ° C. This heating step softens or melts the polyphenylene ether ether ketone oligomer (B) and can be firmly fixed by the reinforcing fiber base (A ′), which is advantageous for improving productivity.
  • the polyphenylene ether ether ketone oligomer (B) can be melted in a short time, while the viscosity is hardly increased due to the formation of the polyphenylene ether ether ketone (B ′).
  • the effect of impregnating the reinforcing fiber base material (A ′) with the polyphenylene ether ether ketone oligomer (B) can be obtained by applying pressure simultaneously with or immediately after the heating step, which is particularly preferable.
  • the pressing force at this time is preferably 0.1 to 5 MPa, more preferably 0.3 to 4 MPa, and further preferably 0.5 to 3 MPa from the viewpoint of productivity.
  • a method of arranging a plurality of pressure rollers in a heated chamber and passing the composite a method of similarly arranging a calender roll up and down and passing the composite, and heating using a hot roller
  • a method of simultaneously performing pressurization can be exemplified.
  • the polymerization catalyst (D) when used, it is preferable to add the polymerization catalyst (D) in the step [II] from the viewpoint of dispersibility in the polyphenylene ether ether ketone oligomer (B). At this time, the mixture composed of the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) is processed into the above-described particle shape, fiber shape, flake shape, film shape, sheet shape, nonwoven fabric shape, and heat-melted state. Can be used.
  • the average particle size of the polymerization catalyst (D) is 1 mm or less in order to enable more uniform dispersion ⁇ Step [III]>.
  • the composite comprising the reinforcing fiber base (A ′) and the polyphenylene ether ether ketone oligomer (B) obtained in the step [II] is heated to obtain the polyphenylene ether ether ketone oligomer (B).
  • This is a step of polymerizing polyphenylene ether ether ketone (B ′).
  • the polyphenylene ether ether ketone oligomer (B) is polymerized by heating in the presence of the polymerization catalyst (D) to be converted into polyphenylene ether ether ketone (B ′).
  • the lower limit of the temperature in the heat polymerization can be exemplified by 160 ° C. or higher, preferably 200 ° C. or higher, more preferably 230 ° C. or higher, and further preferably 270 ° C. or higher.
  • the polyphenylene ether ether ketone oligomer (B) tends to melt and polyphenylene ether ether ketone (B ′) can be obtained in a short time.
  • the upper limit of the temperature in the heat polymerization can be exemplified by 450 ° C. or less, preferably 400 ° C. or less, more preferably 350 ° C. or less, and further preferably 300 ° C. or less. Below this temperature range, adverse effects on the properties of polyphenylene ether ether ketone (B ') due to undesirable side reactions tend to be suppressed.
  • the polyphenylene ether ether ketone oligomer (B) in the present invention can be polymerized at a temperature lower than the melting point of the polyphenylene ether ether ketone (B ′) obtained by polymerization. In such a temperature range, the polyphenylene ether ether ketone oligomer (B) undergoes crystallization polymerization, so that a molding material having a polyphenylene ether ether ketone (B ′) having a higher degree of crystallinity and thus a higher melting enthalpy than usual as a matrix resin can be obtained. can get.
  • the reaction time is preferably 60 minutes or less, and more preferably 10 minutes or less. There is no restriction
  • the non-oxidizing atmosphere is an atmosphere having an oxygen concentration of 5% by volume or less, preferably 2% by volume or less, more preferably an oxygen-free atmosphere, that is, an inert gas atmosphere such as nitrogen, helium or argon. Of these, a nitrogen atmosphere is particularly preferred from the standpoints of economy and ease of handling.
  • step [III] it is preferable to heat under reduced pressure.
  • the atmosphere in the reaction system is once changed to a non-oxidizing atmosphere and then adjusted to a reduced pressure condition.
  • under reduced pressure means that the inside of the reaction system is lower than atmospheric pressure, preferably 0.1 to 50 kPa, and more preferably 0.1 to 10 kPa.
  • the step [III] includes a step of applying pressure simultaneously with heating or after heating. Since the impregnation of the polyphenylene ether ether ketone oligomer (B) and the polyphenylene ether ether ketone (B ′) into the reinforcing fiber substrate (A ′) can be further enhanced, it is preferable.
  • the pressure applied here is preferably from 0.1 to 10 MPa, more preferably from 0.2 to 5 MPa, and even more preferably from 2 to 6 MPa from the viewpoint of the balance between impregnation and productivity. When the pressure is within this preferable range, a large number of voids are not generated in the molding material and thus in the obtained molded article, but the arrangement of the reinforcing fiber base (A ′) is not greatly disturbed.
  • a method of passing the composite while applying pressure from above and below by a double belt press, or a combination of multiple calender rolls placed in a nitrogen-substituted heating furnace A method of passing the body while applying pressure, or placing the composite in a high-temperature press mold, sealing and pressurizing between the press molds, and simultaneously replacing the inside of the mold with nitrogen, and releasing the space between the press molds after completion of polymerization as a decompression condition
  • these devices may be used in combination for the purpose of improving the impregnation property, the line direction may be folded in order to increase the length, and the composite that has passed through the device is folded back.
  • Step [IV] is a step of cooling and taking up the composite obtained in the above step [III].
  • the cooling method is not particularly limited, and a method of cooling by jetting air, a method of spraying cooling water, a method of passing through a cooling bath, a method of passing over a cooling plate, or the like can be used.
  • the take-up speed is preferably 1 to 100 m / min, more preferably 5 to 100 m / min, further preferably 10 to 100 m / min.
  • a base material may be cut through a slitter, a sheet may be cut into a predetermined length with a guillotine cutter or the like, or it may be cut into a fixed length with a strand cutter or the like. Alternatively, it may be a roll shape.
  • an electron beam irradiation process a plasma treatment process, a strong magnetic field application process, a skin material laminating process, a protective film attaching process, an after-cure process, and the like can be given.
  • the molding material obtained by the method for producing a molding material of the present invention is composed of a reinforcing fiber substrate (A ′) and a polyphenylene ether ether ketone oligomer (B).
  • the content of the reinforcing fiber base (A ′) is preferably 10% by weight or more. 30% by weight or more is more preferable, 60% by weight or more is more preferable, and 70% by weight or more is particularly preferable. If the reinforcing fiber base (A ′) is less than 10% by weight, the resulting molded article may have insufficient mechanical properties.
  • a reinforced fiber base material (A ') there is no restriction
  • 90 weight% or less is preferable, 80 weight% or less is more preferable, and 70 weight% or less is further more preferable.
  • the reinforcing fiber substrate (A ′) is larger than 90% by weight, it may be difficult to impregnate the reinforcing fiber substrate (A ′) with the polyphenylene ether ether ketone oligomer (B).
  • the content of the reinforcing fiber base (A ′) in the molding material of the present invention can be adjusted by controlling the supply amounts of the reinforcing fiber base (A ′) and the polyphenylene ether ether ketone oligomer (B). .
  • the content thereof is preferably 0.001 to 20 mol%, preferably 1 to 20 mol% with respect to 1 mol of the repeating unit of the following formula, which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). Is 0.005 to 15 mol%, more preferably 0.01 to 10 mol%.
  • ratios can be easily implemented by controlling the supply amounts of the reinforcing fiber base (A ′) and the polyphenylene ether ether ketone oligomer (B).
  • the supply amount of the reinforcing fiber substrate (A ′) can be adjusted by the take-up speed in the step [IV]
  • the supply amount of the polyphenylene ether ether ketone oligomer (B) is determined by the quantitative feeder in the step [II].
  • Etc. can be used to adjust the supply amount.
  • the supply amount of a polymerization catalyst (D) can also adjust the addition amount in a molding material by adjusting the addition amount to a polyphenylene ether ether ketone oligomer (B).
  • molding materials having different impregnation rates can be produced according to the usage and purpose of the molding material.
  • a prepreg having a higher impregnation property, a semi-preg with a semi-impregnation, and a fabric with a low impregnation property In general, a molding material with higher impregnation property tends to provide a molded product with excellent mechanical properties in a short time.
  • molding materials with relatively low impregnation properties tend to be excellent in drape and excellent in shaping into curved shapes.
  • the first preferred aspect of the impregnation rate of polyphenylene ether ether ketone (B ′) is a molding material having such an impregnation rate of 80% or more and 100% or less. This is excellent from the viewpoint of manufacturing a simpler planar shaped product with high productivity.
  • the second preferred embodiment for the impregnation rate of polyphenylene ether ether ketone (B ′) is a molding material having such an impregnation rate of 20% or more and less than 80%.
  • This is a molding material excellent in drapeability, and since the molding material can be pre-shaped according to the mold, it is excellent from the viewpoint of producing a relatively complicated molded product such as a curved shape with high productivity.
  • the impregnation rate of the polyphenylene ether ether ketone (B ′) referred to here is a cross section of the molding material observed using an optical microscope, and the area of the impregnated polyphenylene ether ether ketone (B ′) It is expressed as a ratio (%) divided by the sum of the area and the area of voids (voids).
  • the average value measured for 20 arbitrary images may be obtained by enlarging the image by 20 to 100 times.
  • the temperature and pressure when the polyphenylene ether ether ketone oligomer (B) is compounded in the step [II], and the polyphenylene ether ether ketone oligomer (B) in the step [III] are polyphenylene.
  • Examples thereof include the temperature and pressure applied when polymerizing ether ether ketone (B ′).
  • the higher the temperature and the applied pressure the higher the impregnation rate.
  • impregnation can be improved, so that the form of a polyphenylene ether ether ketone oligomer (B) becomes finer.
  • a molding material laminated in an arbitrary configuration is placed in a mold or on a press plate, and then a press molding method in which the mold or the press plate is closed and pressed, molding with an arbitrary configuration is performed.
  • Autoclave molding method in which materials are put into an autoclave and pressurized and heated.
  • Bagging molding method in which molding materials laminated in any configuration are wrapped in a film, etc., and the interior is decompressed and heated in an oven while being pressurized at atmospheric pressure.
  • Wrapping tape method in which tape is wound while applying tension to the molding material laminated in any configuration and heated in an oven, the molding material laminated in any configuration is installed in the mold, and the core is also installed in the mold
  • An internal pressure molding method or the like in which gas or liquid is injected into the inside and pressurized is used.
  • a molding method of pressing using a mold can be preferably exemplified.
  • the range of the heating temperature at the time of molding 160 to 450 ° C., more preferably 230 to 430 ° C., and further preferably 270 to 400 ° C. can be exemplified.
  • the heating temperature at the time of molding is within this preferred range, the polyphenylene ether ether ketone (B ′) is likely to melt, but the thermal degradation of the polyphenylene ether ether ketone (B ′) is difficult to proceed.
  • molding can illustrate the method of measuring the surface temperature of a metal mold
  • the pressure range during molding is preferably 0.1 to 10 MPa, and 0.2 to 5 MPa can be exemplified as a more preferable range.
  • a large number of voids will not occur in the molding material and thus in the resulting molded product, while the arrangement of the reinforcing fiber base (A ′) will not be greatly disturbed. .
  • the range of time for heating and pressurizing at the time of molding is not particularly limited, but is 0.001 to 1,000 minutes, preferably 0.01 to 300 minutes, more preferably 0.1 to 60 minutes, still more preferably 0.00. 3 to 30 minutes, particularly preferably 0.5 to 10 minutes.
  • the impregnation time is within this preferable range, the polyphenylene ether ether ketone (B ′) is sufficiently melted, and the molding material can also be produced efficiently.
  • the molding material obtained by the present invention can be easily subjected to integral molding such as insert molding and outsert molding. Furthermore, it is possible to utilize an adhesive method having excellent productivity such as a correction treatment by heating, thermal welding, vibration welding, ultrasonic welding, etc. after molding.
  • a molded article using the molding material obtained by the present invention is excellent in heat resistance, mechanical properties, flame retardancy, chemical resistance and the like. Further, since the matrix resin is a thermoplastic resin, the resin can be plasticized by heating or the like, so that the molded product can be easily recycled and repaired.
  • Molded products include automotive parts such as thrust washers, oil filters, seals, bearings, gears, cylinder head covers, bearing retainers, intake manifolds, pedals, semiconductors such as silicon wafer carriers, IC chip trays, electrolytic capacitor trays, insulating films, etc.
  • automotive parts such as thrust washers, oil filters, seals, bearings, gears, cylinder head covers, bearing retainers, intake manifolds, pedals, semiconductors such as silicon wafer carriers, IC chip trays, electrolytic capacitor trays, insulating films, etc.
  • Examples include liquid crystal production equipment parts, compressor parts such as pumps, valves, and seals, industrial machine parts such as aircraft cabin interior parts, sterilization equipment, medical equipment parts such as columns and piping, and food and beverage production equipment parts.
  • the molding material of the present invention is excellent in fluidity, a thin molded product having a thickness of 0.5 to 2 mm can be obtained relatively easily.
  • Such thin-wall molding is required to be represented by, for example, a casing used for a personal computer, a mobile phone, or a keyboard support that is a member that supports the keyboard inside the personal computer.
  • a casing used for a personal computer a mobile phone
  • a keyboard support that is a member that supports the keyboard inside the personal computer.
  • members for electrical and electronic equipment In such a member for an electric / electronic device, when carbon fiber having conductivity is used as the reinforcing fiber, electromagnetic shielding properties are imparted, which is more preferable.
  • the first method for producing a fiber-reinforced composite material according to the present invention is an RTM (Resin Transfer Molding) method, in which a reinforcing fiber substrate (A ′) is placed in a mold (I-1), polyphenylene ether ether ketone Step (II-1) in which the oligomer (B) is heated and melted to form a melt, and the melt obtained in the step (II-1) is poured into the mold of the step (I-1), The step (III-1) of impregnating the component (B) into the component (A ′), and the step (IV-1) of polyphenylene ether ether ketone (B ′) by heating and polymerizing the component (B) And the polyphenylene ether ether ketone oligomer (B) used in the step (II-1) has a melting point of 270 ° C. or lower.
  • RTM Resin Transfer Molding
  • the step (I-1) is a step of placing the reinforcing fiber base (A ′) in the mold.
  • the mold is preferably a closed mold made of a rigid body.
  • various existing materials such as metals (steel, aluminum, INVAR, etc.), fiber reinforced composite materials, and the like are used.
  • the reinforcing fiber base (A ′) is preferably a woven fabric (cloth), a non-woven fabric, a mat, or a knitted fabric from the viewpoint of formability.
  • the shape of the reinforcing fiber substrate (A ′) may be planar or concavo-convex, and these may be arranged alone or in combination.
  • a preform formed by shaping a reinforcing fiber substrate (A ′) in accordance with the design surface of a mold is preferably used.
  • Step (II-1) is a step in which the polyphenylene ether ether ketone oligomer (B) is heated and melted to obtain a melt.
  • a device such as a melting bath can be used for heating and melting here, but it is preferable to have a function of transferring molten polyphenylene ether ether ketone oligomer (B) such as a screw, a gear pump, and a plunger. .
  • step (III-1) the molten liquid obtained in the step (II-1) is injected into the mold of the step (I-1), and the polyphenylene ether ether ketone oligomer (B) is reinforced with the reinforcing fiber substrate (A This is the step of impregnating in ()
  • a closed mold made of a rigid body When a closed mold made of a rigid body is used, it is usually performed by pressurizing and injecting a melt of polyphenylene ether ether ketone oligomer (B) into a mold clamped by pressurization. At this time, it is also possible to provide a suction port separately from the injection port and perform suction by means such as a vacuum pump. It is also possible to inject a solution of the polyphenylene ether ether ketone oligomer (B) only at atmospheric pressure without suction and using a special pressurizing means.
  • Step (IV-1) is a step of polyphenylene ether ether ketone (B ′) by heat polymerization of the polyphenylene ether ether ketone oligomer (B).
  • the polymerization temperature of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) is preferably used.
  • the conditions under which the crystallization polymerization occurs are preferably used since the cooling step of the mold can be simplified when the molded product is demolded after polymerization.
  • the measuring method of heating temperature here can illustrate the method of measuring the surface temperature of a shaping
  • the reaction time is preferably 60 minutes or less, and more preferably 10 minutes or less. There is no restriction
  • a foam core, a honeycomb core, a metal part, and the like are installed in a molding die in addition to the reinforcing fiber base (A ′), and integrated with these. It is also possible to obtain a reinforced fiber reinforced composite material.
  • a sandwich structure obtained by forming a reinforcing fiber substrate (A ′) on both sides of a foam core or a honeycomb core is useful because it is lightweight and has excellent bending rigidity.
  • the second method for producing a fiber-reinforced composite material according to the present invention is a so-called filament winding molding method, in which the reinforcing fiber base (A ′) is drawn and continuously supplied (I-2), polyphenylene ether ether ketone Step (II-2) in which the oligomer (B) is heated and melted in an impregnation tank to obtain a melt, and the component (A ′) is continuously passed through the impregnation tank in the step (II-2).
  • step (I-2) is a step of pulling out the reinforcing fiber base material (A ′) and continuously supplying it.
  • Continuous means that the reinforcing fiber base material (A ′) as a raw material is continuously supplied without being completely cut, and the supply speed may be constant or intermittently supply and stop. May be repeated.
  • the reinforcing fiber base (A ′) is preferably a reinforcing fiber bundle from the viewpoint of productivity. More preferably, the reinforcing fiber substrate (A ′) is opened and supplied.
  • the term “opening” as used herein refers to an operation of dividing the converged reinforcing fiber base (A ′), and an effect of further improving the impregnation property of the polyphenylene ether ether ketone oligomer (B) can be expected.
  • the method for opening the reinforcing fiber base (A ′) is not particularly limited.
  • a method of alternately passing uneven rolls a method of using a drum roll, a method of applying a tension fluctuation to axial vibration, A method of changing the tension of the reinforcing fiber base (A ′) by two reciprocating friction bodies and a method of blowing air to the reinforcing fiber base (A ′) can be used.
  • Step (II-2) is a step in which the polyphenylene ether ether ketone oligomer (B) is heated and melted in an impregnation tank to obtain a melt.
  • the impregnation tank here includes a heating source for heating and melting the polyphenylene ether ether ketone oligomer (B) to form a melt, and further storing for a predetermined time, and the reinforcing fiber substrate (A ′) is melted. It is preferable to provide a mechanism capable of continuously performing an operation of immersing in and taking out.
  • the reinforcing fiber base (A ′) is continuously passed through the impregnation tank of the step (II-2), and the polyphenylene ether ether ketone oligomer (B) is passed through the reinforcing fiber base (A ′). It is a step of impregnating and winding the resulting composite around a mandrel.
  • the composite obtained here is spirally wound around the mandrel at various angles with respect to its axial direction.
  • the surface may be wound with a surface layer or the like, and excess resin may be squeezed out.
  • Step (IV-2) is a step of polyphenylene ether ether ketone (B ′) by heat polymerization of the polyphenylene ether ether ketone oligomer (B).
  • the heating apparatus an oven or the like can be preferably used, and a method of polymerizing the polyphenylene ether ether ketone oligomer (B) by heating the mandrel around which the composite is wound in the step (III-2) can be preferably exemplified.
  • the polymerization temperature of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) is preferably used.
  • the measuring method of heating temperature here can illustrate the method of measuring the atmospheric temperature in oven with thermometers, such as a thermocouple, for example.
  • the reaction time is preferably 60 minutes or less, and more preferably 10 minutes or less. There is no restriction
  • the above shows one example of the filament winding method, and the method for producing the fiber-reinforced composite material of the present invention is not limited to this.
  • a cylindrical fiber-reinforced composite material can be easily obtained. Therefore, it is suitable for various industrial machine parts such as propeller shafts for automobiles, CNG tanks, flight wheels, and sports / leisure products such as golf shafts and fishing rods.
  • the third method for producing a fiber-reinforced composite material of the present invention is a so-called pultrusion method, in which a reinforcing fiber substrate (A ′) is drawn and continuously supplied (I-3), a polyphenylene ether ether ketone oligomer Step (II-3) in which (B) is heated and melted in an impregnation tank to form a melt, and the component (A ′) is continuously passed through the impregnation tank in the step (II-3), and the component (B ) To obtain a composite impregnated with the component (A ′) (III-3), and continuously pulling the resulting composite through a mold to heat the component (B) It is characterized by having a step (IV-3) of polyphenylene ether ether ketone (B ′) by polymerization, and further having a melting point of 270 ° C. or less of polyphenylene ether ether ket
  • step (I-3) is a step of pulling out the reinforcing fiber substrate (A ′) and continuously supplying it. Continuous means that the reinforcing fiber base material (A ′) as a raw material is continuously supplied without being completely cut, and the supply speed may be constant or intermittently supply and stop. May be repeated.
  • the reinforcing fiber substrate (A ′) is preferably a unidirectional array substrate from the viewpoint of productivity. Specifically, a method in which a plurality of reinforcing fiber bundles are arranged in one direction to form a sheet and then passed through a roll bar and supplied to the production line is preferably used.
  • the reinforcing fiber base (A ′) is opened and supplied.
  • the term “opening” as used herein refers to an operation of dividing the converged reinforcing fiber base (A ′), and an effect of further improving the impregnation property of the polyphenylene ether ether ketone oligomer (B) can be expected.
  • the method for opening the reinforcing fiber base (A ′) is not particularly limited.
  • a method of alternately passing uneven rolls a method of using a drum roll, a method of applying a tension fluctuation to axial vibration, A method of changing the tension of the reinforcing fiber base (A ′) by two reciprocating friction bodies and a method of blowing air to the reinforcing fiber base (A ′) can be used.
  • Step (II-3) is a step in which the polyphenylene ether ether ketone oligomer (B) is heated and melted in an impregnation tank to obtain a melt.
  • the impregnation tank here includes a heating source for heating and melting the polyphenylene ether ether ketone oligomer (B) to form a melt, and further storing for a predetermined time, and the reinforcing fiber substrate (A ′) is melted. It is preferable to provide a mechanism capable of continuously performing an operation of immersing in and taking out.
  • the reinforcing fiber base (A ′) is continuously passed through the impregnation tank of the step (II-3), and the polyphenylene ether ether ketone oligomer (B) is passed through the reinforcing fiber base (A ′).
  • This is a step of obtaining an impregnated composite.
  • the composite obtained in the step (II-3) may be passed through a squeeze die before passing through the mold of the step (III-3).
  • the squeeze die is a jig for scraping off excess melt from the reinforcing fiber base (A ′) after passing through the impregnation tank.
  • the shape of the squeeze die is not particularly limited as long as excessive melt can be scraped off, but examples of the shape of the cross section perpendicular to the drawing direction include a circle, a rectangle, and a square. Although there is no restriction
  • the obtained composite is continuously drawn through a mold, and the polyphenylene ether ether ketone oligomer (B) is polymerized by heating, thereby polyphenylene ether ether ketone (B ′ ).
  • the mold used here is not particularly limited as long as the shape is a cross-sectional shape corresponding to the shape of the fiber-reinforced composite material that is finally desired.
  • the cross-sectional shape is circular, elliptical, rectangular, or square. , L, U, etc.
  • the material of the mold include steel, aluminum, INVAR, and the like.
  • the polymerization temperature of the polyphenylene ether ether ketone oligomer (B) to the polyphenylene ether ether ketone (B ′) is preferably used.
  • the measuring method of heating temperature here can illustrate the method of measuring the surface temperature of a metal mold
  • the reaction time is preferably 60 minutes or less, and more preferably 10 minutes or less. There is no restriction
  • the method for pulling out the fiber reinforced composite material obtained in the present invention is not particularly limited, and examples thereof include a method of pulling out with a nip roller and a belt conveyor, and a method of winding with a drum winder.
  • the obtained fiber-reinforced composite material before the above-described drawing operation.
  • the method to pass through making it contact with the roller which equipped the cooling device, the method to pass through making it contact with a cooling plate, and the method to pass through a cooling bath can be illustrated.
  • a pressing force can be applied, a method of passing while contacting a roller equipped with a cooling device is preferably used.
  • the above shows one example of the pultrusion method, and the method for producing the fiber-reinforced composite material of the present invention is not limited to this.
  • the third method for producing a fiber-reinforced composite material of the present invention it is possible to easily obtain a long fiber-reinforced composite material. For this reason, it is suitably used as a reinforcing material for buildings, vehicles, and aircraft.
  • the manufacturing method of the fiber-reinforced composite material of the present invention can be combined with other steps within a range not impairing the effect.
  • an electron beam irradiation process, a plasma treatment process, a strong magnetic field application process, a skin material laminating process, a protective film attaching process, an after-cure process, and the like can be given.
  • the polyphenylene ether ether ketone oligomer (B) needs to be melted by heating and melting. There is.
  • a temperature at which the polyphenylene ether ether ketone oligomer (B) is heated and melted as much as possible as the temperature to be melted by heating.
  • the temperature range include 160 to 340 ° C., preferably 180 to 320 ° C., more preferably 200 to 300 ° C., and particularly preferably 230 to 270 ° C.
  • the melt viscosity of a polyphenylene ether ether ketone oligomer (B) can be adjusted to 10 Pa * s or less, and the impregnation to a reinforced fiber base material (A ') becomes easy.
  • the fiber-reinforced composite material obtained in the present invention is composed of a reinforcing fiber substrate (A ′) and a polyphenylene ether ether ketone oligomer (B).
  • the content of the reinforcing fiber base (A ′) is preferably 10% by weight or more. 30% by weight or more is more preferable, 60% by weight or more is more preferable, and 70% by weight or more is particularly preferable.
  • the upper limit of content of a reinforced fiber base material (A ') 90 weight% or less is preferable, 80 weight% or less is more preferable, and 70 weight% or less is further more preferable.
  • the resulting molded article has sufficient mechanical properties, while the polyphenylene ether ether ketone oligomer (B) has a reinforcing fiber base (A ′). Is easy to impregnate.
  • the content of the reinforcing fiber substrate (A ′) in the fiber-reinforced composite material obtained by the present invention controls the supply amount of the reinforcing fiber substrate (A ′) and the polyphenylene ether ether ketone oligomer (B). Can be adjusted.
  • the content thereof is preferably 0.001 to 20 mol%, preferably 1 to 20 mol% with respect to 1 mol of the repeating unit of the following formula, which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). Is 0.005 to 15 mol%, more preferably 0.01 to 10 mol%.
  • the supply amount of the polymerization catalyst (D) can be adjusted in the fiber-reinforced composite material by adjusting the addition amount to the polyphenylene ether ether ketone oligomer (B).
  • the fiber reinforced composite material obtained in the present invention preferably has a small void ratio.
  • An example of the void ratio is preferably 0 to 20%. By setting it as such a range, the fiber reinforced composite material excellent in a mechanical characteristic is obtained.
  • the void ratio of the fiber reinforced composite material referred to here is a ratio (%) obtained by observing the cross section of the fiber reinforced composite material using an optical microscope and dividing the void area by the total of the observed areas. ).
  • the average value measured for 20 arbitrary images may be obtained by enlarging the image by 20 to 100 times.
  • a polyphenylene ether ether ketone (B ′) of a polyphenylene ether ether ketone oligomer (B) is used.
  • a polyphenylene ether ether ketone (B ′) of a polyphenylene ether ether ketone oligomer (B) is used.
  • the above-described crystallization polymerization can proceed. Adjusting to such conditions is preferable in terms of productivity, such as shortening the cooling step of the fiber-reinforced composite material.
  • the fiber-reinforced composite material obtained in the present invention can be used for integral molding such as insert molding and outsert molding. Furthermore, it is possible to use an adhesive method having excellent productivity such as a correction treatment by heating, thermal welding, vibration welding, ultrasonic welding, or the like.
  • the fiber-reinforced composite material obtained in the present invention is excellent in heat resistance, mechanical properties, flame retardancy, chemical resistance and the like because the matrix resin is polyphenylene ether ether ketone. Further, since the matrix resin is thermoplastic polyphenylene ether ether ketone, the resin can be plasticized by heating or the like, so that the molded product can be easily recycled and repaired.
  • Applications include semiconductor parts and liquid crystals such as thrust washers, oil filters, seals, bearings, gears, cylinder head covers, bearing retainers, intake manifolds, pedals and other automotive parts, silicon wafer carriers, IC chip trays, electrolytic capacitor trays, insulating films, etc.
  • Examples include manufacturing equipment parts, compressor parts such as pumps, valves and seals, industrial machine parts such as aircraft cabin interior parts, sterilization equipment, medical equipment parts such as columns and piping, and food / beverage manufacturing equipment parts.
  • the evaluation method used in the present invention is described below.
  • (1) Quantification of cyclic polyphenylene ether ether ketone The cyclic polyphenylene ether ether ketone in the polyphenylene ether ether ketone oligomer (B) was quantified by high performance liquid chromatography. The measurement conditions are as follows.
  • Viscosity measurement The reduced viscosity was measured under the following conditions.
  • the defective product rate is less than 1 piece / 20 g. Especially excellent in productivity of molding materials.
  • the defective product rate is 1/20 g or more and less than 5/20 g. Excellent molding material productivity.
  • the defective product rate is 5/20 g or more. Poor productivity of molding materials.
  • Weight average fiber length (Lw) ⁇ (Li ⁇ Wi / 100)
  • N total Total number of fibers measured.
  • Density of molded product obtained using molding material Measured according to method A (underwater substitution method) described in 5 of JIS K 7112 (1999). A test piece of 1 cm ⁇ 1 cm was cut out from the molded product, put into a heat-resistant glass container, this container was vacuum-dried at a temperature of 80 ° C.
  • Fair The average number of defects is 0.1 or more and less than 0.5 / sheet. Slightly inferior in surface appearance.
  • Impregnation rate (%) 100 ⁇ (total area occupied by resin) / ⁇ (total area occupied by resin) + (total area occupied by voids) ⁇
  • the impregnation rate of the polyphenylene ether ether ketone oligomer (B) or polyphenylene ether ether ketone (B ′) was evaluated based on this impregnation rate in the following three stages, and fair or higher was determined to be acceptable.
  • impregnation rate is 80% or more and 100% or less.
  • Impregnation rate is less than 20%.
  • Evaluation of Drapability of Molding Material Drapability in the present invention means that when the molding material is deformed along the mold, the molding material is transferred to the mold without breaking the molding material or breaking the fiber. It represents the degree of flexibility. In this invention, it evaluated using the evaluation jig 5 shown in FIG. The jig 5 had a length a of 100 mm, a height b of 100 mm, and a block corner angle d of 90 °. The obtained prepreg is cut into a length of 100 mm and a width of 10 mm to obtain a test sample 6. Here, it is assumed that the length direction of the sample is aligned with the longitudinal direction of the reinforcing fiber base (A ′).
  • a 200 g weight 7 is attached to one end of the sample, and the other end and an intermediate point are fixed to the clamp 8 of the jig 12 (the length of the fixed portion c is 50 mm). Observe the molding material in a stationary state. The draping property of each sample was evaluated in four stages according to the following criteria.
  • the thickness or width of the molded article or fiber reinforced composite material ⁇ width of 500 ⁇ m was measured using an ultra-deep color 3D shape measuring microscope VK-9500 (controller part) / VK-9510 (measuring part) ( ) (Manufactured by Keyence) and photographed at a magnification of 400 times. In the photographed image, the area of a portion that was a void was obtained, and the impregnation rate was calculated by the following equation.
  • Void ratio (%) 100 ⁇ (total area of the part that is a void) / (total area of the observation part of the molded product or fiber-reinforced composite material)
  • the void ratio of molded products is evaluated using the void ratio as a criterion. The evaluation is made in the following three stages. The molded product obtained using the molding material is fair or better, and the fiber reinforced composite material is good. .
  • Void ratio is 0% or more and 20% or less.
  • the physical property variation is very small.
  • the amount of dimethyl sulfoxide with respect to 1.0 mole of the benzene ring component in the mixture is 3.13 liters. While passing through nitrogen, the temperature was raised to 140 ° C., held at 140 ° C. for 1 hour, then heated to 160 ° C. and held at 160 ° C. for 4 hours to carry out the reaction. After completion of the reaction, the reaction mixture was cooled to room temperature.
  • This white powder was confirmed to be a compound consisting of phenylene ether ketone units from the absorption spectrum in infrared spectroscopic analysis, mass spectral analysis (equipment: Hitachi M-1200H) separated by high-performance liquid chromatography, and MALDI- From the molecular weight information by TOF-MS, this white powder is found to be a polyphenylene ether ether ketone oligomer (B) whose main component is a mixture of five cyclic polyphenylene ether ether ketones having a repeating number m of 2-6. It was.
  • the weight fraction of the cyclic polyphenylene ether ether ketone mixture in the polyphenylene ether ether ketone oligomer (B) was 81%.
  • components other than cyclic polyphenylene ether ether ketone in the polyphenylene ether ether ketone oligomer (B) were linear polyphenylene ether ether ketone oligomers.
  • reaction vessel was sealed under nitrogen gas at room temperature and normal pressure, the temperature was raised from room temperature to 140 ° C. while stirring at 400 rpm, held at 140 ° C. for 1 hour, then heated to 180 ° C. The reaction was carried out by maintaining the time, then raising the temperature to 230 ° C. and holding at 230 ° C. for 5 hours.
  • the polyphenylene ether ether ketone oligomer (B) was obtained in a yield of 8.0%.
  • the weight fraction of the cyclic polyphenylene ether ether ketone mixture in the polyphenylene ether ether ketone oligomer (B) was 77%, and the melting point was 165 ° C. It turns out to have. It was also found that the reduced viscosity of the polyphenylene ether ether ketone oligomer (B) was less than 0.02 dL / g.
  • melt viscosity of the polyphenylene ether ether ketone oligomer (B) at 230 ° C. was 0.030 Pa ⁇ s.
  • the yield of the cyclic polyphenylene ether ether ketone mixture with respect to hydroquinone was less than 1%, which was a trace amount.
  • the reaction mixture was allowed to cool, pulverized, and washed with water and acetone to remove by-product salts and diphenylsulfone.
  • the obtained polymer was dried at 120 ° C. in a hot air dryer to obtain a powder.
  • the linear polyphenylene ether ether ketone oligomer is similar to the cyclic polyphenylene ether ether ketone in properties such as solvent solubility and is difficult to separate from the cyclic polyphenylene ether ether ketone.
  • reaction vessel was sealed under nitrogen gas at room temperature and normal pressure, the temperature was raised from room temperature to 140 ° C. while stirring at 400 rpm, held at 140 ° C. for 1 hour, then heated to 180 ° C. The reaction was carried out by maintaining the time, then raising the temperature to 230 ° C. and holding at 230 ° C. for 5 hours.
  • the polyphenylene ether ether ketone oligomer (B) was recovered from the reaction mixture by the method described in Reference Example 1. As a result, the polyphenylene ether ether ketone oligomer (B) was obtained in a yield of 13.7%. It was found that the weight fraction of the cyclic polyphenylene ether ether ketone mixture in the obtained polyphenylene ether ether ketone oligomer (B) was 79% and had a melting point of 165 ° C. It was also found that the polyphenylene ether ether ketone oligomer (B) was less than 0.02 dL / g.
  • Example 1 The polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was melted in a melting bath at 230 ° C. and supplied to the kiss coater with a gear pump. A polyphenylene ether ether ketone oligomer (B) was applied from a kiss coater onto a roll heated to 230 ° C. to form a film.
  • a carbon fiber “Torayca” (registered trademark) T700S-24K (manufactured by Toray Industries, Inc.) is passed through the roll while being in contact therewith, and a certain amount of polyphenylene ether ether ketone per unit length of the reinforcing fiber bundle (A). Oligomer (B) was deposited.
  • the carbon fiber to which the polyphenylene ether ether ketone oligomer (B) is attached is passed through 10 rolls ( ⁇ 50 mm) alternately arranged in a vertical line, rotating freely with a bearing heated to 230 ° C.,
  • the reinforcing fiber bundle (A) was sufficiently impregnated with the polyphenylene ether ether ketone oligomer (B).
  • thermoplastic resin (C) VICTREX “PEEK” (registered trademark) 151G (polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C.) was melted at 400 ° C. in a single screw extruder. And simultaneously extruding it into a crosshead die attached to the tip of the extruder, and continuously feeding the resulting composite into the crosshead die, thereby bringing the molten thermoplastic resin (C) into the composite. Covered. At this time, the discharge amount of the thermoplastic resin (C) was adjusted, and the content rate of the reinforcing fiber bundle (A) was adjusted to a predetermined value.
  • the strand obtained by the method described above was cooled and then cut into a length of 7 mm with a cutter to obtain a core-sheathed columnar pellet (long fiber pellet).
  • the obtained long fiber pellets showed no fuzz due to transportation and showed good handleability.
  • the obtained long fiber pellet was dried under vacuum at 150 ° C. for 5 hours or more.
  • the dried long fiber pellets were molded using a mold for each test piece using a J150EII-P type injection molding machine manufactured by Nippon Steel Works. The conditions were all injection molding temperature: 400 ° C., mold temperature: 160 ° C., and cooling time 30 seconds. After the molding, the test piece was dried at 80 ° C. for 12 hours under vacuum, and the dried test piece was stored in a desiccator at room temperature for 3 hours.
  • the bending test of the obtained molded product is ASTM In accordance with D790 (1997), using a three-point bending test jig (indenter 10 mm, fulcrum 4 mm), setting the support span to 100 mm, bending strength and flexural modulus under the test conditions of a crosshead speed of 2.8 mm / min was measured.
  • “Instron” registered trademark
  • universal testing machine type 4201 manufactured by Instron
  • Example 2 A core-sheath columnar pellet (long fiber pellet) was produced in the same manner as in Example 1 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 2 was used. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • Example 1 Columnar pellets having a core-sheath structure are the same as in Example 1 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 3 is used and the melting bath temperature, roll temperature, and bearing temperature are changed to 340 ° C. (Long fiber pellets) were produced. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results. (Example 3) Columnar pellets (long fiber pellets) having a core-sheath structure were produced in the same manner as in Example 1 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 4 was used. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) can be obtained by setting the melting point of the polyphenylene ether ether ketone oligomer (B) to 270 ° C. or less regardless of the production method of the polyphenylene ether ether ketone oligomer (B). It is clear that the continuous reinforcing fiber bundle (A) is excellent in impregnation property and the molding material can be easily produced. A molded product using the obtained molding material was excellent in mechanical properties and appearance quality.
  • Example 4 The same method as in Example 1 except that the amount of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 18% by weight and the amount of the thermoplastic resin (C) was changed to 62% by weight. A columnar pellet (long fiber pellet) having a core-sheath structure was produced.
  • Example 2 Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • Comparative Example 2 A columnar pellet with a core-sheath structure (excluding the use of the polyphenylene ether ether ketone oligomer (B) and the melting bath), except that the amount of the thermoplastic resin (C) was changed to 80% by weight.
  • C thermoplastic resin
  • Example 3 In the same manner as in Example 1 except that the amount of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 30% by weight and the amount of the thermoplastic resin (C) was changed to 50% by weight. A columnar pellet (long fiber pellet) having a core-sheath structure was produced. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • Example 4 Even when the amount of the polyphenylene ether ether ketone oligomer (B) is 18% by weight, the polyphenylene ether ether ketone oligomer (B) is excellent in impregnation into the continuous reinforcing fiber bundle (A), and a molding material is produced. It is clear that is easy. A molded product using the obtained molding material was excellent in appearance quality.
  • Example 6 The amount of polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 15% by weight, the amount of thermoplastic resin (C) was changed to 55% by weight, and the amount of reinforcing fiber bundle (A) was changed to 30%.
  • a columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 1 except that the weight% was used.
  • Table 1 shows the process conditions and evaluation results.
  • thermoplastic resin (C) As the thermoplastic resin (C), “Amilan” (registered trademark) CM3001 (nylon 66 resin manufactured by Toray Industries, Inc., melting point 265 ° C.) is used instead of polyphenylene ether ether ketone, and the thermoplastic resin (C A columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 1 except that the extrusion temperature was set to 280 ° C. Using the obtained long fiber pellets, injection molding was performed in the same manner as in Example 1 except that the injection molding temperature was changed to 300 ° C. and the mold temperature was changed to 80 ° C., and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • CM3001 nylon 66 resin manufactured by Toray Industries, Inc., melting point 265 ° C.
  • thermoplastic resin (C) “Torelina” (registered trademark) A900 (polyphenylene sulfide resin manufactured by Toray Industries, Inc., melting point 278 ° C.) is used instead of polyphenylene ether ether ketone, and the thermoplastic resin (C A columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 1 except that the extrusion temperature was set to 330 ° C. Using the obtained long fiber pellets, injection molding was performed in the same manner as in Example 1 except that the injection molding temperature was changed to 320 ° C. and the mold temperature was changed to 150 ° C., and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • the molding temperature of the resulting molding material can be lowered, and the thermoplastic resin (C) is made of nylon 66 resin. It is obvious that it is possible to select other than polyphenylene ether ether ketone resin such as PPS resin.
  • the obtained molding material was excellent in fiber dispersibility during molding and excellent in mechanical properties and appearance quality.
  • Example 9 As a polymerization catalyst (D), it is 5 with respect to the repeating unit of the formula — (O—Ph—O—Ph—CO—Ph) — which is the main structural unit of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1.
  • Columnar pellets (long fiber pellets) having a core-sheath structure were produced in the same manner as in Example 1 except that mol% of cesium fluoride was added to the melting bath. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 1 and subjected to each evaluation. Table 1 shows the process conditions and evaluation results.
  • the melting point of the polyphenylene ether ether ketone oligomer (B) is 270 ° C. or less, and the polymerization catalyst (D) is added to the molding material of the present invention, whereby the mechanical properties of the molding product using the molding material obtained are obtained. It is clear that the appearance quality is excellent.
  • Example 10 In the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1, cesium fluoride as a polymerization catalyst (D) is represented by the formula — (O—Ph—O—Ph) which is the main structural unit of the polyphenylene ether ether ketone oligomer (B).
  • -CO-Ph)- was added so as to be 5 mol%, and the mixture was melted in a melting bath at 230 ° C. to obtain a molten mixture.
  • the obtained molten mixture was supplied to the kiss coater with a gear pump.
  • the molten mixture was applied from a kiss coater on a roll heated to 230 ° C. to form a film.
  • a carbon fiber “Torayca” (registered trademark) T700S-24K (manufactured by Toray Industries, Inc.) is passed through the roll while contacting it, and a fixed amount of molten mixture is adhered per unit length of the reinforcing fiber bundle (A). A composite was obtained.
  • This composite is supplied into a furnace heated to 300 ° C., passed freely between 10 rolls ( ⁇ 50 mm) alternately rotated up and down on a straight line, freely rotated by bearings, and folded into the furnace. 10 roll bars ( ⁇ 200 mm) installed inside are looped several times and polyphenylene ether ether ketone ketone is sufficiently impregnated with the reinforcing fiber bundle (A) over 30 minutes in total. Converted to (B ′).
  • thermoplastic resin (C) VICTREX “PEEK” (registered trademark) 151G (polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C.) was melted at 400 ° C. in a single screw extruder. And simultaneously extruding it into a crosshead die attached to the tip of the extruder, and continuously feeding the resulting composite into the crosshead die, thereby bringing the molten thermoplastic resin (C) into the composite. Covered. At this time, the discharge amount of the thermoplastic resin (C) was adjusted, and the content rate of the reinforcing fiber bundle (A) was adjusted to a predetermined value.
  • the strand obtained by the method described above was cooled and then cut into a length of 7 mm with a cutter to obtain a core-sheathed columnar pellet (long fiber pellet).
  • the obtained long fiber pellets showed no fuzz due to transportation and showed good handleability.
  • the polyphenylene ether ether ketone (B ′) was separated from the obtained long fiber pellet by removing the coating of the thermoplastic resin (C) and further removing the reinforcing fiber (A).
  • the polyphenylene ether ether ketone (B ′) obtained here was subjected to melting point measurement and viscosity measurement.
  • the obtained long fiber pellet was dried under vacuum at 150 ° C. for 5 hours or more.
  • the dried long fiber pellets were molded using a mold for each test piece using a J150EII-P type injection molding machine manufactured by Nippon Steel Works. The conditions were all injection molding temperature: 400 ° C., mold temperature: 160 ° C., and cooling time 30 seconds. After the molding, the test piece was dried at 80 ° C. for 12 hours under vacuum, and the dried test piece was stored in a desiccator at room temperature for 3 hours.
  • the bending test of the obtained molded product is ASTM In accordance with D790 (1997), using a three-point bending test jig (indenter 10 mm, fulcrum 4 mm), setting the support span to 100 mm, bending strength and flexural modulus under the test conditions of a crosshead speed of 2.8 mm / min was measured.
  • “Instron” registered trademark
  • universal testing machine type 4201 manufactured by Instron
  • Example 11 A columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 10 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 2 was used. Using the obtained long fiber pellets, polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement.
  • polyphenylene ether ether ketone (B) proceeds in the melt bath to become polyphenylene ether ether ketone (B ′), which makes it difficult to impregnate the continuous reinforcing fiber bundle (A). It was because it was.
  • polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement. When injection molding was attempted in the same manner as in Example 10 using the obtained long fiber pellets, molding could not be performed due to poor biting into the screw. Table 2 shows the process conditions and evaluation results.
  • Example 12 A columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 10 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 4 was used. Using the obtained long fiber pellets, polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) can be obtained by setting the melting point of the polyphenylene ether ether ketone oligomer (B) to 270 ° C. or less regardless of the production method of the polyphenylene ether ether ketone oligomer (B). It is clear that the continuous reinforcing fiber bundle (A) is excellent in impregnation property and the molding material can be easily produced. In the obtained molding material, the polyphenylene ether ether ketone oligomer (B) was polymerized to polyphenylene ether ether ketone (B ′), and a molded product using this molding material was excellent in mechanical properties.
  • Example 13 Except that the amount of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 18% by weight and the amount of the thermoplastic resin (C) was changed to 62% by weight, the same method as in Example 10 was used. A columnar pellet (long fiber pellet) having a core-sheath structure was produced. Using the obtained long fiber pellets, polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • Example 14 In the same manner as in Example 10, except that the amount of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 30% by weight and the amount of the thermoplastic resin (C) was changed to 50% by weight. A columnar pellet (long fiber pellet) having a core-sheath structure was produced. Using the obtained long fiber pellets, polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • Example 5 A columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 14 except that cesium fluoride as the polymerization catalyst (D) was not used. Using the obtained long fiber pellets, polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement. Using the obtained long fiber pellets, injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • Example 6 The same as Example 10 except that the polyphenylene ether ether ketone oligomer (B), the cesium fluoride as the polymerization catalyst (D) and the melting bath were not used and the amount of the thermoplastic resin (C) was changed to 80% by weight.
  • the amount of the thermoplastic resin (C) was changed to 80% by weight.
  • Comparative Example 5 does not use cesium fluoride as the polymerization catalyst (D), the polyphenylene ether ether ketone oligomer (B) is not polymerized into the polyphenylene ether ether ketone (B ′) in the obtained molding material. Is clear. Further, it is clear that the comparative example 5 is greatly inferior in mechanical characteristics as compared with the example 14.
  • Example 15 A core-sheath columnar pellet (long fiber pellet) was produced in the same manner as in Example 10 except that the furnace temperature was changed to 350 ° C. and the furnace time was changed to 10 minutes.
  • polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement.
  • injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation.
  • Table 2 shows the process conditions and evaluation results.
  • a core-sheath columnar pellet (long fiber pellet) was produced in the same manner as in Example 10 except that the furnace temperature was changed to 400 ° C. and the furnace time was changed to 10 minutes.
  • polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement.
  • injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) was excellent in impregnation into the continuous reinforcing fiber bundle (A), and the production of the molding material was easy. It is clear that there is.
  • the polyphenylene ether ether ketone oligomer (B) was polymerized to polyphenylene ether ether ketone (B ′), and a molded article using this molding material was excellent in mechanical properties.
  • the melting enthalpy of polyphenylene ether ether ketone (B ′) in the molding material produced under these conditions was less than 40 kJ / g, which was equivalent to the known polyphenylene ether ether ketone.
  • Example 17 The amount of the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 3% by weight, the amount of the thermoplastic resin (C) was changed to 87% by weight, and the amount of the reinforcing fiber bundle (A) was changed to 10%.
  • a columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 10, except that the weight% was used.
  • polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement.
  • injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation.
  • Table 2 shows the process conditions and evaluation results.
  • the amount of polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 was changed to 15% by weight, the amount of thermoplastic resin (C) was changed to 55% by weight, and the amount of reinforcing fiber bundle (A) was changed to 30%.
  • a columnar pellet (long fiber pellet) having a core-sheath structure was produced in the same manner as in Example 10, except that the weight% was used.
  • polyphenylene ether ether ketone (B ′) was separated in the same manner as in Example 10, and subjected to melting point measurement and viscosity measurement.
  • injection molding was carried out in the same manner as in Example 10 and subjected to each evaluation. Table 2 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) is excellent in impregnation into the continuous reinforcing fiber bundle (A), and the molding material Obviously, it is easy to manufacture.
  • the polyphenylene ether ether ketone oligomer (B) was polymerized to polyphenylene ether ether ketone (B ′), and a molded product using this molding material was excellent in mechanical properties.
  • Example 19 In the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1, cesium fluoride as a polymerization catalyst (D) is represented by the formula — (O—Ph—O—Ph) which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). -CO-Ph)-was added so as to be 5 mol%, and the mixture was melted in a melting bath at 230 ° C. to obtain a molten mixture. The molten mixture was applied to a predetermined thickness on a release paper at 230 ° C. using a knife coater to prepare a resin film.
  • rolls of carbon fiber “TORAYCA” (registered trademark) T700S-24K (manufactured by Toray Industries, Inc.), which are aligned in one direction in a sheet shape, are laminated with two resin films on both sides of the carbon fiber and heated to 230 ° C. And a roll pressure of 0.2 MPa to impregnate the molten mixture to prepare a unidirectional prepreg.
  • the obtained unidirectional prepreg was cut into a predetermined size and subjected to evaluation of the content of the reinforcing fiber base (A ′), evaluation of the impregnation rate of the polyphenylene ether ether ketone oligomer (B), and evaluation of the drapeability of the molding material.
  • the mold surface temperature is 300 ° C.
  • the molding pressure is 0.5 MPa.
  • the polyphenylene ether ether ketone oligomer (B) was converted to polyphenylene ether ether ketone (B ′) by heating and pressurizing with a heating time of 30 minutes. Immediately after the heating and pressing, the press molding machine was opened and the molded product was demolded to obtain a laminate using the molding material of the present invention.
  • the polyphenylene ether ether ketone (B ′) was physically separated from the laminate obtained here and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement. Furthermore, the obtained laminated board was cut out to the predetermined dimension, and it used for the bending test and the void ratio evaluation of the molded article.
  • the bending test of the molded product is based on the JIS standard with the fiber axis direction as the long side from the molded product formed by laminating molding materials with the fiber direction aligned in one direction and molding with a thickness of 2 ⁇ 0.4mm. A test piece having dimensions according to K 7074-1988 was cut out.
  • Example 20 A three-point bending test was performed using an “Instron” (registered trademark) universal testing machine type 4201 (manufactured by Instron) as a testing machine, and 0 ° bending elastic modulus and 0 ° bending strength were calculated. Each process condition and evaluation result are shown in Table 3.
  • Example 20 A unidirectional prepreg was produced in the same manner as in Example 19 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 2 was used. Using the obtained unidirectional prepreg, the molding material was evaluated in the same manner as in Example 19.
  • Example 7 Example except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 3 was used, the resin melting temperature, filming temperature and fiber impregnation temperature were changed to 350 ° C., and the fiber impregnation roll pressure was changed to 0.5 MPa.
  • the resin did not impregnate the interior of the reinforcing fiber base (A ′).
  • Example 21 A unidirectional prepreg was produced in the same manner as in Example 19 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 4 was used. Using the obtained unidirectional prepreg, the molding material was evaluated in the same manner as in Example 19.
  • the polyphenylene ether ether ketone oligomer (B) can be obtained by setting the melting point of the polyphenylene ether ether ketone oligomer (B) to 270 ° C. or less regardless of the production method of the polyphenylene ether ether ketone oligomer (B). It is clear that the reinforced fiber base material (A ′) is excellent in impregnation property and the molding material can be easily produced. In the obtained molding material, the polyphenylene ether ether ketone oligomer (B) was polymerized to polyphenylene ether ether ketone (B ′), and a molded article using this molding material was excellent in mechanical properties.
  • the obtained unidirectional prepreg was subjected to press molding in the same manner as in Example 19 except that the mold was cooled to 150 ° C. at 10 ° C./min after heating and pressing with a press machine, and then the molded product was removed. went.
  • the obtained laminated board was used for melting
  • Table 3 Each process condition and evaluation result are shown in Table 3.
  • the obtained unidirectional prepreg was press-molded in the same manner as in Comparative Example 7, and the obtained laminate was subjected to each evaluation.
  • Each process condition and evaluation result are shown in Table 3.
  • the obtained unidirectional prepreg was changed to a mold surface temperature of 350 ° C., the heating time was changed to 10 minutes, the mold was cooled to 150 ° C. at 10 ° C./min after heating and pressing, and the molded product was Except for demolding, press molding was performed in the same manner as in Example 19, and the obtained laminate was subjected to each evaluation.
  • Table 3 Each process condition and evaluation result are shown in Table 3. (Example 23) A unidirectional prepreg was produced in the same manner as in Example 19, and the molding material was evaluated.
  • the obtained unidirectional prepreg was changed to a mold surface temperature of 400 ° C., the heating time was changed to 10 minutes, the mold was cooled to 150 ° C. at 10 ° C./min after heating and pressing, and the molded product was Except for demolding, press molding was performed in the same manner as in Example 19, and the obtained laminate was subjected to each evaluation.
  • Table 3 Each process condition and evaluation result are shown in Table 3.
  • molded products obtained by a molding method in which molding was performed at a mold surface temperature of 350 ° C. and 400 ° C. and the molded product was removed after cooling the mold were also excellent in mechanical properties. Even in this molded product, the polyphenylene ether ether ketone oligomer (B) was polymerized to polyphenylene ether ether ketone (B ′). Furthermore, the melting enthalpy of polyphenylene ether ether ketone (B ′) in the molding material produced under these conditions was less than 40 kJ / g, which was equivalent to that of known polyphenylene ether ether ketone.
  • Example 24 A unidirectional prepreg was produced in the same manner as in Example 19 except that the feed rate was adjusted so that the content of the reinforcing fiber base (A ′) was 76% by weight. Using the obtained unidirectional prepreg, the molding material was evaluated in the same manner as in Example 19.
  • Example 25 In the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1, cesium fluoride as a polymerization catalyst (D) is represented by the formula — (O—Ph—O—Ph) which is the main structural unit of the polyphenylene ether ether ketone oligomer (B). -CO-Ph)-was added so as to be 5 mol%, and the mixture was melted in a melting bath at 230 ° C. to obtain a molten mixture. The molten mixture was applied to a predetermined thickness on a release paper at 230 ° C. using a knife coater to prepare a resin film.
  • rolls of carbon fiber “TORAYCA” (registered trademark) T700S-24K (manufactured by Toray Industries, Inc.), which are aligned in one direction in a sheet shape, are laminated with two resin films on both sides of the carbon fiber and heated to 230 ° C. was used to impregnate the molten mixture at a roll pressure of 0 MPa to produce a unidirectional prepreg.
  • the obtained unidirectional prepreg was cut into a predetermined size and subjected to evaluation of the content of the reinforcing fiber base (A ′), evaluation of the impregnation rate of the polyphenylene ether ether ketone oligomer (B), and evaluation of the drapeability of the molding material.
  • the mold surface temperature is 300 ° C.
  • the molding pressure is 0.5 MPa.
  • the polyphenylene ether ether ketone oligomer (B) was converted to polyphenylene ether ether ketone (B ′) by heating and pressurizing with a heating time of 30 minutes. Immediately after the heating and pressing, the press molding machine was opened and the molded product was demolded to obtain a laminate using the molding material of the present invention.
  • the polyphenylene ether ether ketone (B ′) was physically separated from the laminate obtained here and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement. Furthermore, the obtained laminate is JIS It was subjected to a bending test according to K 7074-1988 and a void ratio evaluation of the molded product. Each process condition and evaluation result are shown in Table 3. (Example 26) A unidirectional prepreg was produced in the same manner as in Example 25, and the molding material was evaluated.
  • the obtained unidirectional prepreg was changed to a mold surface temperature of 400 ° C., the heating time was changed to 10 minutes, the mold was cooled to 150 ° C. at 10 ° C./min after heating and pressing, and the molded product was Except for demolding, press molding was performed in the same manner as in Example 25, and the resulting laminate was subjected to each evaluation.
  • Table 3 (Comparative Example 10) A unidirectional prepreg was produced in the same manner as in Example 25, and the molding material was evaluated.
  • the obtained unidirectional prepreg was subjected to press molding in the same manner as in Example 25 except that the mold surface temperature was changed to 400 ° C. and the heating time was changed to 10 minutes. A molded product could not be obtained.
  • the molding material in which the impregnation ratio of the polyphenylene ether ether ketone oligomer (B) is 20% or more and less than 80% is excellent in draping property, and in the obtained molding material, the polyphenylene ether ether ketone oligomer (B ) Has been polymerized into polyphenylene ether ether ketone (B ′), and a molded article using this molding material has excellent mechanical properties.
  • Comparative Example 10 shows that when molding is performed at a mold surface temperature of 400 ° C. and the molded product is removed without cooling the mold, the laminate is peeled off, and a sound molded product cannot be obtained.
  • Example 27 The manufacturing method of a molding material is demonstrated using the apparatus shown in FIG.
  • the apparatus configuration used in this manufacturing method is (E1).
  • a bundle of reinforcing fibers is applied to the roll bar 11 to form a sheet, which is further fed to an impregnation bath 12 and passed through a rotating roller 13 in the impregnation bath, and then passed through a hot air drying furnace 14 and further to a double belt press 15. Then, the heating chamber 25 and the hot roller 27 are passed through in this order, and the nip roller 16 applies tension to pull it out.
  • the take-up speed here is set to 3 m / min, and after the process is stabilized, the reinforcing fiber bundle is heated to 150 ° C. by the preheating infrared heater 17.
  • a polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 1 with a predetermined amount of a polymerization catalyst (D) added thereto was used as a dispersion and supplied to an impregnation bath by a pump 18.
  • the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) are imparted to the reinforcing fiber bundle.
  • the length of the reinforcing fiber bundle to be immersed is adjusted so that the weight content (Wf) of the polyphenylene ether ether ketone oligomer (B) and the polymerization catalyst (D) is 64%.
  • the hot air drying furnace 14 is adjusted to 140 ° C. to remove 90% or more of moisture from the reinforcing fiber bundle, and the reinforcing fiber substrate (A ′), polyphenylene ether ether ketone oligomer (B), and polymerization catalyst (D).
  • a composite consisting of
  • a double belt press having a length of 4 m in the line direction was used under the conditions of a temperature of 230 ° C. and a pressure of 3 MPa, and the composite was passed while being heated and pressed to reinforce the polyphenylene ether ether ketone oligomer (B).
  • (A ′) was heated and impregnated to obtain an impregnated body comprising a reinforcing fiber substrate (A ′), a polyphenylene ether ether ketone oligomer (B), and a polymerization catalyst (D).
  • nitrogen purge was performed from the inlet 20 of the chamber 19 surrounding the double belt press, and the oxygen concentration in the chamber was adjusted to 1% by volume or less.
  • the heating chamber 25 having a length of 30 m in the line direction is used under the condition of a temperature of 400 ° C., and the impregnated body is passed while heating to polymerize the polyphenylene ether ether ketone oligomer (B). Furthermore, it shape
  • Polyphenylene ether ether ketone (B ′) was physically separated from the obtained molding material and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement.
  • the mold surface temperature is 400 ° C. and the molding pressure is 3 MPa for 3 minutes.
  • the mold was cooled, and the molded product was demolded to obtain a laminate. From the resulting laminate, the fiber axis direction is the long side, JIS Cut out a test piece with dimensions conforming to K 7074-1988, and perform a three-point bending test using "Instron” (registered trademark) universal testing machine type 4201 (Instron) as the testing machine, and bend 0 ° The elastic modulus and 0 ° bending strength were calculated.
  • Table 4 shows the process conditions and evaluation results.
  • Example 28 A molding material was produced in the same manner as in Example 27 except that the heating chamber temperature in step (III) was changed to 300 ° C. and the take-up speed of the reinforcing fiber substrate (A ′) was changed to 1 m / min. The obtained molding material was subjected to various evaluations as in Example 27. The molding material obtained here was characterized by a higher melting point and melting enthalpy of polyphenylene ether ether ketone (B ′) than in Example 27. Table 4 shows the process conditions and the evaluation results.
  • Example 11 A molding material was produced in the same manner as in Example 27 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 3 was used. The obtained molding material was subjected to various evaluations as in Example 27. The molding material obtained here had a lower impregnation rate of polyphenylene ether ether ketone (B ′) than Example 27, and the molded product obtained had many voids and low mechanical properties. This is considered to be because the impregnation of the reinforcing fiber base (A ′) with the polyphenylene ether ether ketone oligomer (B) was insufficient. Table 4 shows the process conditions and the evaluation results.
  • Comparative Example 12 A molding material was produced in the same manner as in Comparative Example 11, except that the temperature of the double belt press in step (II) was changed to 350 ° C. The obtained molding material was subjected to various evaluations as in Example 27. The molding material obtained here had a relatively high impregnation rate of polyphenylene ether ether ketone (B ′), but it was not an economically preferable method because the temperature of the impregnation step was high and the apparatus load was large. Table 4 shows the process conditions and the evaluation results.
  • Example 13 In place of the polyphenylene ether ether ketone oligomer (B), VICTREX “PEEK” (registered trademark) 151G (polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C.) is used.
  • a molding material was produced in the same manner as in Example 27 except that the temperature of the belt press was changed to 400 ° C. The obtained molding material was subjected to various evaluations as in Example 27.
  • the molding material obtained here had a lower impregnation rate of polyphenylene ether ether ketone (B ′) than Example 27, and the molded product obtained had many voids and low mechanical properties. Furthermore, since the temperature of the impregnation process is high and the load on the apparatus is large, it is not an economically preferable method. Table 4 shows the process conditions and the evaluation results.
  • a bundle of reinforcing fibers is placed on the roll bar 31 to form a sheet, and further fed to a belt conveyor 32. Further, the roll bar 31 is sandwiched between hot rollers 33 that are paired up and down, and is tensioned by a nip roller 34 and taken up by a drum winder 35.
  • the take-up speed here is set to 5 m / min, and after the process is stabilized, the reinforcing fiber bundle is heated to 150 ° C. by the preheating infrared heater 36.
  • An impregnated body comprising a reinforcing fiber substrate (A ′), a polyphenylene ether ether ketone oligomer (B) and a polymerization catalyst (D) was obtained.
  • the release paper was removed by winding it with a winding winder 39.
  • the fiber weight content (Wf) was 64%.
  • Polyphenylene ether ether ketone (B ′) was physically separated from the obtained molding material and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement.
  • the mold surface temperature is 400 ° C. and the molding pressure is 3 MPa for 3 minutes.
  • the mold was cooled, and the molded product was demolded to obtain a laminate. From the resulting laminate, the fiber axis direction is the long side, JIS Cut out a test piece with dimensions conforming to K 7074-1988, and perform a three-point bending test using an “Instron” (registered trademark) Universal Testing Machine Model 4201 (Instron) as the testing machine.
  • the elastic modulus and 0 ° bending strength were calculated. Each process condition and evaluation result are shown in Table 5.
  • Example 30 A molding material was produced in the same manner as in Example 29 except that the heating chamber temperature in step (III) was changed to 300 ° C. and the take-up speed of the reinforcing fiber substrate (A ′) was changed to 1.7 m / min. .
  • the obtained molding material was subjected to various evaluations as in Example 29.
  • the molding material obtained here was characterized by a higher melting point and melting enthalpy of polyphenylene ether ether ketone (B ′) than in Example 29. Each process condition and evaluation result are shown in Table 5.
  • Example 15 In place of the polyphenylene ether ether ketone oligomer (B), VICTREX “PEEK” (registered trademark) 151G (polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C.) is used, and the film in the step (II) A molding material was produced in the same manner as in Example 29 except that the heating temperature and the temperature of the hot roller were changed to 400 ° C. The obtained molding material was subjected to various evaluations as in Example 29. The molding material obtained here had a lower impregnation rate of polyphenylene ether ether ketone (B ′) than Example 29, and the molded product obtained had many voids and low mechanical properties. Each process condition and evaluation result are shown in Table 5.
  • a bundle of reinforcing fibers is applied to the roll bar 51 to prepare a sheet, and the sheet is further fed to the calender roll 52, tensioned by the nip roller 53, and taken up by the drum winder 54.
  • the take-up speed here is set to 10 m / min, and after the process is stabilized, the reinforcing fiber bundle is heated to 150 ° C. by the preheating infrared heater 55.
  • the particles are dispersed from the quantitative powder feeder 56 onto the reinforcing fiber bundle so that the fiber weight content (Wf) is 64%, and further heated to a temperature of 230 ° C. with an infrared heater 62, thereby polyphenylene ether.
  • the mold surface temperature is 400 ° C. and the molding pressure is 3 MPa for 3 minutes.
  • the mold was cooled, and the molded product was demolded to obtain a laminate. From the resulting laminate, the fiber axis direction is the long side, JIS Cut out a test piece with dimensions conforming to K 7074-1988, and perform a three-point bending test using "Instron” (registered trademark) universal testing machine type 4201 (Instron) as the testing machine, and bend 0 ° The elastic modulus and 0 ° bending strength were calculated.
  • Example 32 A molding material was produced in the same manner as in Example 31, except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 2 was used. The obtained molding material was subjected to various evaluations as in Example 31. Table 6 shows the process conditions and evaluation results.
  • Comparative Example 16 A molding material was produced in the same manner as in Example 31, except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 3 was used and the temperature of the fusion process in Step (II) was changed to 350 ° C. . The obtained molding material was subjected to various evaluations as in Example 31.
  • the molding material obtained here had a lower impregnation rate of polyphenylene ether ether ketone (B ′) than that of Example 31, the molded product obtained had many voids, and the mechanical properties were low. This is presumably because the polymerization of the polyphenylene ether ether ketone oligomer (B) progressed at the time of the fusing step and the impregnation of the reinforcing fiber base (A ′) was insufficient. Table 6 shows the process conditions and evaluation results. (Example 33) A molding material was produced in the same manner as in Example 31 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 4 was used.
  • Example 31 The obtained molding material was subjected to various evaluations as in Example 31. Table 6 shows the process conditions and evaluation results.
  • Comparative Example 17 In place of the polyphenylene ether ether ketone oligomer (B), VICTREX “PEEK” (registered trademark) 151G (polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C.) is used. A molding material was produced in the same manner as in Example 31, except that the temperature of the attaching process was changed to 400 ° C. The obtained molding material was subjected to various evaluations as in Example 31.
  • the molding material obtained here had a lower impregnation rate of polyphenylene ether ether ketone (B ′) than Examples 31 to 33, and the molded product obtained had many voids and low mechanical properties.
  • Table 6 shows the process conditions and evaluation results.
  • Example 34 A molding material was produced in the same manner as in Example 31 except that the heating chamber temperature in step (III) was changed to 350 ° C. The obtained molding material was subjected to various evaluations as in Example 31. Table 6 shows the process conditions and evaluation results.
  • Example 35 A molding material was produced in the same manner as in Example 31 except that the heating chamber temperature in step (III) was changed to 300 ° C. and the take-up speed of the reinforcing fiber substrate (A ′) was changed to 3.3 m / min. .
  • the obtained molding material was subjected to various evaluations as in Example 31.
  • the molding material obtained here was characterized by a higher melting point and melting enthalpy of polyphenylene ether ether ketone (B ′) than in Example 31. Table 6 shows the process conditions and evaluation results.
  • Example 36 Except that the content of the reinforcing fiber substrate (A ′) was 76% by weight and the content of the polyphenylene ether ether ketone oligomer (B) in Reference Example 1 was changed to 24% by weight, the same method as in Example 31 was used. A molding material was produced. The obtained molding material was subjected to various evaluations as in Example 31. Table 6 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) in the present invention can be polymerized well even at 350 ° C. and 300 ° C., and these methods are performed at the process temperature in the production of the molding material. It is clear that this is an excellent method.
  • Example 36 From Example 36, according to the method for producing a molding material of the present invention, even when the content of the reinforcing fiber substrate (A ′) is 76% by weight, the process temperature and impregnation in the production of the molding material are excellent, It is clear that the molded article using this molding material is excellent in mechanical properties.
  • Eight carbon fiber fabrics, T700S-12K, structure: plain weave, basis weight: 300 g / m 2 ) were laminated and clamped with a press.
  • Step (II-1) The polyphenylene ether ether ketone oligomer (B) obtained in Reference Example 1 was melted by heating at 230 ° C. for 30 minutes to obtain a melt. Further, a predetermined amount of the polymerization catalyst (D) was added to the melt and dispersed by kneading.
  • Step (III-1) The surface temperature of the molding die was maintained at 300 ° C., and the inside of the die was depressurized by a vacuum pump until the pressure dropped to 0.1 MPa from atmospheric pressure.
  • the molten liquid was injected into the mold using a resin injection machine, and the reinforcing fiber base material (A ′) was impregnated with the polyphenylene ether ether ketone oligomer (B).
  • Step (IV-1) After the injection of the melt is completed, heating is continued for 30 minutes while the surface temperature of the mold is kept at 300 ° C. to convert the polyphenylene ether ether ketone oligomer (B) into the polyphenylene ether ether ketone (B ′). Was polymerized.
  • the content of the reinforcing fiber substrate (A ′) was calculated from the weight of the fiber-reinforced composite material and the weight of the reinforcing fiber substrate (A ′) used.
  • Polyphenylene ether ether ketone (B ′) was physically separated from the obtained fiber reinforced composite material and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement.
  • Example 38 A fiber-reinforced composite material was produced in the same manner as in Example 37 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 2 was used.
  • Example 37 The obtained fiber-reinforced composite material was subjected to various evaluations as in Example 37. Table 7 shows the process conditions and evaluation results.
  • Comparative Example 18 Using the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 3 and changing the heating and melting temperature in step (II-1) to 350 ° C., the surface of the mold in steps (III-1) and (IV-1) The temperature is changed to 400 ° C., the heating time in step (IV-1) is changed to 10 minutes, and the surface temperature of the mold is cooled from 400 ° C. to 150 ° C. over 25 minutes, and then the fiber-reinforced composite material is removed.
  • a fiber-reinforced composite material was produced in the same manner as in Example 37 except that the above was performed.
  • the obtained fiber-reinforced composite material was subjected to various evaluations as in Example 37.
  • the fiber-reinforced composite material obtained here had more voids than Example 37, and the obtained fiber-reinforced composite material was very brittle. This is presumably because the polymerization of the polyphenylene ether ether ketone oligomer (B) occurred before impregnation into the reinforcing fiber base (A ′).
  • Table 7 shows the process conditions and evaluation results.
  • Example 39 A fiber-reinforced composite material was produced in the same manner as in Example 37 except that the polyphenylene ether ether ketone oligomer (B) prepared in Reference Example 4 was used. The obtained fiber-reinforced composite material was subjected to various evaluations as in Example 37. Table 7 shows the process conditions and evaluation results.
  • VICTREX “PEEK” registered trademark
  • 151G polyether ether ketone resin manufactured by Victorex MC Ltd., melting point 343 ° C., melt viscosity 150 ° C.
  • step (II-1) The heating and melting temperature in step (II-1) is changed to 400 ° C.
  • the surface temperature of the mold in steps (III-1) and (IV-1) is changed to 400 ° C.
  • the heating in step (IV-1) is used.
  • the fibers were produced in the same manner as in Example 37, except that the time was changed to 10 minutes and the surface temperature of the mold was cooled from 400 ° C. to 150 ° C. over 25 minutes and the fiber reinforced composite material was removed. A reinforced composite material was produced.
  • the obtained fiber-reinforced composite material was subjected to various evaluations as in Example 37.
  • the fiber-reinforced composite material obtained here had more voids than Example 37, and the obtained fiber-reinforced composite material was very brittle.
  • Example 40 The surface temperature of the mold in steps (III-1) and (IV-1) is changed to 350 ° C., the heating time in step (IV-1) is changed to 10 minutes, and the surface temperature of the mold is further changed from 350 ° C. to 150 ° C.
  • a fiber-reinforced composite material was produced in the same manner as in Example 7, except that the fiber-reinforced composite material was demolded after cooling to 20 ° C. over 20 minutes.
  • Example 41 The surface temperature of the mold in steps (III-1) and (IV-1) is changed to 400 ° C., the heating time in step (IV-1) is changed to 10 minutes, and the surface temperature of the mold is changed from 400 ° C. to 150 ° C.
  • a fiber-reinforced composite material was produced in the same manner as in Example 37, except that the fiber-reinforced composite material was demolded after cooling to ° C over 25 minutes.
  • the obtained fiber-reinforced composite material was subjected to various evaluations as in Example 37. Table 7 shows the process conditions and evaluation results.
  • the polyphenylene ether ether ketone oligomer (B) according to the present invention has a lower process temperature in the production of the fiber-reinforced composite material than in Comparative Examples 18 and 19 regardless of the production method. It is apparent that the impregnation property to the reinforcing fiber substrate (A ′) is excellent, and voids in the obtained fiber-reinforced composite material can be reduced. It is also clear that the resulting fiber reinforced composite material is excellent in mechanical properties.
  • the polyphenylene ether ether ketone oligomer (B) in the present invention can be polymerized well at 350 ° C. and 400 ° C., and these methods are excellent in polymerization rate. It is clear that there is. ⁇ Manufacturing method of fiber reinforced composite material by filament winding method> (Example 42) This will be described with reference to FIGS. 16 and 17.
  • Step (II-2) The polyphenylene ether ether ketone oligomer (B) obtained in Reference Example 1 and the polymerization catalyst (D) were supplied to an impregnation tank and heated and melted at 230 ° C. to obtain a melt.
  • the spiral winding was performed at ⁇ 45 ° with a thickness of 0.5 mm and further with ⁇ 12 ° with a thickness of 1 mm, and then the outermost layer was formed with an 85 ° spiral winding layer 72c with a thickness of 0.2 mm.
  • the main layer is composed of a total of 2.9 mm.
  • a thickness constituted by ⁇ 83 ° with respect to the axial direction in order to improve the joint strength with the joint was formed in a portion corresponding to a length of 110 mm at both ends of the main body cylinder, which is a fitting portion.
  • a reinforcing layer 72d having a thickness of 2.5 mm was formed.
  • the reinforcing layer 72d is formed of a straight portion having a thickness of 2.5 mm and an axial length of 60 mm and a tapered portion having a length in the axial center direction of 50 mm.
  • Step (IV-2) The mandrel around which the composite was wound in Step (III-2) was heated in an oven at 300 ° C. for 30 minutes to polymerize the polyphenylene ether ether ketone oligomer (B).
  • the mandrel having undergone the step (IV-2) was taken out of the oven and air-cooled to obtain a cylindrical body 72 made of fiber-reinforced composite material. Further, a metal joint 73 was press-fitted and joined to both ends of the cylindrical body 72 to form a propeller shaft 71.
  • the content of the reinforcing fiber substrate (A ′) was calculated from the weight obtained by removing the mandrel from the obtained fiber reinforced composite material cylinder 72 and the weight of the reinforcing fiber substrate (A ′) used.
  • Polyphenylene ether ether ketone (B ′) was physically separated from the obtained fiber reinforced composite material and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement. Each process condition and evaluation result are shown in Table 8.
  • Example 43 A fiber-reinforced composite material was produced in the same manner as in Example 42 except that the heating condition in the oven in step (IV-2) was changed to 400 ° C. for 10 minutes. The obtained fiber reinforced composite material was subjected to various evaluations in the same manner as in Example 42. Each process condition and evaluation result are shown in Table 8.
  • Example 42 From the examples and comparative examples in Table 8, the following is clear. From the comparison between Example 42 and Comparative Examples 20 and 21, by using the polyphenylene ether ether ketone oligomer (B) in the present invention, the process temperature in the production of the fiber reinforced composite material can be suppressed to a low level. It is clear that the fiber base material (A ′) has excellent impregnation properties, and voids in the obtained fiber-reinforced composite material can be reduced.
  • Step (II-3) The polyphenylene ether ether ketone oligomer (B) obtained in Reference Example 1 and the polymerization catalyst (D) were supplied to an impregnation tank and heated and melted at 230 ° C. to obtain a melt.
  • Step (III-3) Reinforcing fiber substrate (A ') drawn in step (I-3) is supplied to the impregnation tank of step (II-3), and the melt is supplied to the reinforcing fiber substrate (A').
  • the composite was obtained by impregnating and passing through a squeeze die to remove excess melt.
  • Step (IV-3) The composite obtained in Step (III-3) is passed through a mold having holes so that the fiber-reinforced composite material has a width of 100 mm and a thickness of 1.4 mm.
  • the polyphenylene ether ether ketone oligomer (B) was polymerized by heating at 300 ° C. for 30 minutes.
  • the composite after the step (IV-3) was solidified by bringing it into contact with a 150 ° C. cooling roll, and further pulled out by a belt conveyor, thereby continuously obtaining a fiber reinforced composite material.
  • the content of the reinforcing fiber base (A ′) was calculated from the weight of the obtained fiber reinforced composite material and the weight of the reinforcing fiber base (A ′) used.
  • Polyphenylene ether ether ketone (B ′) was physically separated from the obtained fiber reinforced composite material and subjected to melting point measurement, melting enthalpy measurement and viscosity measurement. Each process condition and evaluation result are shown in Table 9.
  • Example 45 A fiber-reinforced composite material was produced in the same manner as in Example 44, except that the heating condition by the mold in the step (IV-3) was changed to 400 ° C. for 10 minutes. The obtained fiber reinforced composite material was subjected to various evaluations as in Example 44. Each process condition and evaluation result are shown in Table 9.
  • Example 44 In the same manner as in Example 44, except that the heating and melting temperature in the step (II-3) was changed to 400 ° C., and the heating condition by the mold in the step (IV-3) was changed to 400 ° C. for 10 minutes. A fiber reinforced composite material was produced. The obtained fiber reinforced composite material was subjected to various evaluations as in Example 44. The fiber-reinforced composite material obtained here had more voids than Example 44. This is presumably because the polymerization of the polyphenylene ether ether ketone oligomer (B) occurred before impregnation into the reinforcing fiber base (A ′). Each process condition and evaluation result are shown in Table 9.
  • the first preferred form of the molding material of the present invention uses the polyphenylene ether ether ketone oligomer (B), a molded product having excellent mechanical properties can be easily produced by using a molding material having excellent economic efficiency and productivity. be able to.
  • the second preferred form of the molding material of the present invention uses polyphenylene ether ether ketone (B ′), a molded product excellent in mechanical properties and heat resistance can be easily produced.
  • the third preferred form of the molding material of the present invention is excellent in economic efficiency, productivity, and handleability because it can be molded into a fiber-reinforced composite material by heating the molding material at a low temperature for a short time.
  • the method for producing a molding material of the present invention can be easily combined with a reinforcing fiber base material and polyphenylene ether ether ketone, so that it is possible to improve economy and productivity, and is useful for producing a molding material.
  • the method for producing a fiber reinforced composite material of the present invention can easily combine a reinforced fiber base material and a polyphenylene ether ether ketone, so that it is possible to improve economy and productivity, and to produce a fiber reinforced composite material. Useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 連続した強化繊維束(A)1~50重量%と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)0.1~20重量%からなる複合体に、熱可塑性樹脂(C)30~98.9重量%が接着されてなり、該成分(B)の融点が270℃以下である成形材料。該成形材料の成形方法。該成形材料の製造方法。繊維強化複合材料の製造方法。 成形材料を製造する過程での経済性、生産性を損なうことなく、かつ、高い耐熱性と力学特性を有する成形品を容易に製造できる。また、繊維強化複合材料を、より容易に、生産性よく製造できる。

Description

成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法
 本発明は、生産性、取扱性および成形性に優れ、得られる成形品の力学特性にも優れる成形材料とそれを用いた成形方法、およびその製造方法、ならびに経済性および生産性に優れる繊維強化複合材料の製造方法に関する。
 連続した強化繊維束と熱可塑性樹脂をマトリックスとする成形材料として、熱可塑性のプリプレグ、ヤーン、ガラスマット(GMT)など多種多様な形態が公知である。このような成形材料は、熱可塑性樹脂の特性を生かして成形が容易であったり、熱硬化性樹脂のような貯蔵の負荷を必要とせず、また得られる成形品の靭性が高く、リサイクル性に優れるといった特徴がある。とりわけ、ペレット状に加工した成形材料は、射出成形やスタンピング成形などの経済性、生産性に優れた成形法に適用でき、工業材料として有用である。
 しかしながら、成形材料を製造する過程で、熱可塑性樹脂を連続した強化繊維束に含浸させるには、経済性、生産性の面で問題があり、それほど広く用いられていないのが現状である。例えば、樹脂の溶融粘度が高いほど強化繊維束への含浸は困難とされることはよく知られている。靱性や伸度などの力学特性に優れた熱可塑性樹脂は、とりわけ高分子量体であり、熱硬化性樹脂に比べて粘度が高く、またプロセス温度もより高温を必要とするため、成形材料を容易に、生産性よく製造することには不向きであった。
 一方、含浸の容易さから低分子量の、すなわち低粘度の熱可塑性樹脂をマトリックス樹脂に用いると、得られる成形品の力学特性が大幅に低下するという問題がある。
 また、繊維強化複合材料がより過酷な環境で使用されるようになり、マトリックス樹脂にはより高い耐熱性が要求されるようになってきた。
 かかる状況では、融点の低い、低分子量の熱可塑性樹脂の存在は、高温条件下での成形品の変形の原因となるため、好ましくなかった。従って、含浸性と耐熱性に優れる熱可塑性樹脂を用いた成形材料が要望されるようになってきた。
 また、強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、軽量で優れた強度特性を付与できること、繊維配向を制御することで任意の強度設計が可能なことにより、ゴルフシャフト、釣り竿などのスポーツ用途をはじめ、航空機部品、人工衛星部品などの航空宇宙用途、自動車・船舶、電気電子機器筐体、ロボット部品、風車、タンク類、浴槽、ヘルメット等の一般産業用途などに広く用いられている。また、繊維強化複合材料を製造するにあたって、強化繊維にあらかじめマトリックス樹脂を含浸させたプリプレグを中間基材として使用し、プリプレグを積層して積層体とする製造方法は、一般に繊維含有率を高めやすく、取り扱いが比較的容易なことから広く行われている。プリプレグにおいて、強化繊維に含浸させるマトリックス樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂などの熱硬化性の樹脂が、繊維束への含浸の容易さから用いられる場合が多いが、熱硬化性樹脂は、硬化により三次元網目構造の不溶・不融のポリマーとなり、リサイクルが難しく、廃棄の問題がより深刻になる。
 一方、プリプレグに用いられる熱可塑性マトリックス樹脂は、ポリエチレン、ポリエステル、ポリアミド、ポリカーボネートなど多くの樹脂が使用されるが、航空宇宙用途などの高性能を要求される用途では耐熱性や耐薬品性、機械特性の点において優れるポリエーテルエーテルケトンやポリエーテルイミド、ポリフェニレンスルフィドなどが好適に用いられる。
 しかし、これらの熱可塑性樹脂プリプレグは、繊維束にマトリックス樹脂を含浸させる製造工程において、熱硬化性樹脂に比較して分子量が高いことから高温・高圧を要し、繊維含有率の高いプリプレグの製造が困難で、また、製造したプリプレグに未含浸が多く、機械特性が十分に得られないなどの問題があった。
 また、連続した強化繊維基材とマトリックス樹脂からなる繊維強化複合材料は、軽量で優れた力学特性を有し、スポーツ用品用途、航空宇宙用途および一般産業用途などに広く用いられている。とりわけ強化繊維に炭素繊維を用いた複合材料(CFRP)は、金属材料を上回る比強度、比剛性を有し、宇宙航空用途を中心に使用量が増大してきている。これまで強化繊維基材への含浸性の良さから、マトリックス樹脂には熱硬化性樹脂が好んで用いられてきた。熱可塑性樹脂は、高分子量体であり、熱硬化性樹脂に比べて粘度が高く、またプロセス温度もより高温を必要とするため、成形材料を容易に、生産性よく製造することには不向きであった。
 しかしながら、短時間での成形加工が可能である点や、得られる成形品がリサイクル可能な点、熱接着、熱矯正などの後加工性に優れる点などの理由により、近年になり、熱可塑性樹脂をマトリックス樹脂とする複合材料が脚光を浴びるようになってきた。
 また強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を活かした材料設計ができるため、航空宇宙分野をはじめ、輸送機器・産業機械分野、土木・建築分野、スポーツ・レジャー分野等に広く用途が拡大されている。
 強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等が用いられる。マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化性樹脂が用いられることが多い。しかしながら、熱硬化性樹脂を用いた繊維強化複合材料では、熱硬化に時間を要するため生産性が低いことや、プリプレグの可使時間に制約があるといった問題があった。
 これに対して、熱可塑性樹脂をマトリックスとして用いる繊維強化複合材料は、硬化反応が不要なため生産性が高いこと、さらには、溶接、補修、リサイクル等が容易であることから実用化されている。
 特許文献1には、連続した強化繊維束に熱可塑性樹脂を容易に含浸させるために、低分子量の熱可塑性樹脂を含浸させた後に、高分子量の熱可塑性樹脂で一体化する成形材料の製造方法が開示されている。
 特許文献2には、ポリアリーレンスルフィドプレポリマーと連続した強化繊維からなる複合体に、高分子量の熱可塑性樹脂が接するように配置されてなる成形材料が開示されている。ポリアリーレンスルフィドプレポリマーは強化繊維束に容易に含浸するため成形材料の生産性を高め、さらに成形工程においてマトリクス樹脂に容易に分散あるいは相溶することで強化繊維の成形品への分散を高める優れた材料である。
 特許文献3には、高分子量ポリアリーレンスルフィドと連続した強化繊維からなる複合体に、高分子量の熱可塑性樹脂が接するように配置されてなる成形材料が開示されている。ここでは、溶融粘度の低いポリアリーレンスルフィドプレポリマーを強化繊維に含浸させた後に重合させて、高分子量ポリアリーレンスルフィドとする、生産性に優れた成形材料の製造方法が記載されている。また、成形材料中のポリアリーレンスルフィドが高分子量であるために、得られる成形品の耐熱性にも優れる成形材料である。
 特許文献4には、環式ポリ(アリールエーテル)オリゴマー、その製造方法、および環式ポリ(アリールエーテル)オリゴマーの重合方法が開示されている。
 特許文献5には、ポリアリーレンスルフィド類を分散媒中でスラリー状にしてガラス繊維マットに含浸させやすくしてプリプレグを製造する方法が開示されている。また、特許文献6には、比較的低分子量のポリアリーレンスルフィドをシート状にして繊維基材と共に積層し、プリプレグを介さずに積層体を製造する方法が開示されている。
 特許文献7には、低分子量の環式ポリアリーレンスルフィドを強化繊維に含浸させたプリプレグが開示されている。この方法は、環式ポリアリーレンスルフィドが含浸性に優れるために、プリプレグの生産性に優れ、かつ成形時に環式ポリアリーレンスルフィドを加熱重合することで機械特性に優れた積層体を得ることができる。
 特許文献8には、連続した強化繊維からなるシ-ト状の基材の裏表に結晶性熱可塑性樹脂フィルムを配置して、樹脂の融点より150℃も高い温度で、5~30kg/cm(約0.5~3MPa)の圧力で加圧して、熱可塑性樹脂を強化繊維束に含浸させる方法が提案されている。
 特許文献9には、連続した強化繊維束に低分子量の環式ポリアリーレンスルフィドを複合化し、さらに200~450℃で加熱して環式ポリアリーレンスルフィドを高分子量のポリアリーレンスルフィドに重合させる繊維強化成形基材の製造方法が開示されている。
 特許文献10には、溶融粘度が300~2,000Pa・sであり、かつ引張破断伸度が10%以上であるポリアリーレンスルフィドを予めシート状に成形し、このシートと強化繊維基材とを交互に積層し、300~350℃の温度で、0.98~9.8MPaの圧力で圧縮してポリアリーレンスルフィドを強化繊維基材に含浸して繊維強化複合材料を製造する方法が開示されている。
 特許文献11には、ポリアリーレンスルフィドプレポリマーを200~300℃で加熱溶融して溶融粘度が10Pa・s以下の溶融液とし、強化繊維基材に含浸させた後300~400℃で加熱してポリアリーレンスルフィドプレポリマーを重合する繊維強化複合材料の製造方法が開示されている。この方法は、強化繊維基材と高分子量のポリアリーレンスルフィドとからなる繊維強化複合材料を、容易に、生産性良く製造することができる優れた製造方法である。
特開平10-138379号公報 特開2008-231291号公報 特開2008-231292号公報 特開平3-88828号公報 特開平5-39371号公報 特開平9-25346号公報 特開2008-231237号公報 特開平8-118489号公報 特開2008-231289号公報 特許第3598510号公報 特開2008-231236号公報
 特許文献1に開示された方法は、低分子量の熱可塑性樹脂を用いると含浸性は満足するものの、一方で、成形材料の取り扱い性は不十分であり、かつ成形品の特性を十分に高めることは困難であるといった課題を提示するものである。
 特許文献2に開示された成形材料は、ポリアリーレンスルフィドプレポリマーを用いているために、耐熱性に優れる。しかしながら、繊維強化複合材料へのニーズの多様化により、さまざまな熱可塑性樹脂がマトリクス樹脂に選択される状況において、マトリクス樹脂との相溶性の観点から、ポリアリーレンスルフィドプレポリマー以外にも高耐熱な含浸分散助剤が求められるようになってきた。
 特許文献3に開示された成形材料は、高分子量のポリアリーレンスルフィドを用いているために、耐熱性と力学特性に優れる。しかしながら、繊維強化複合材料へのニーズの多様化により、さまざまな熱可塑性樹脂がマトリクス樹脂に選択される中において、マトリクス樹脂との相溶性の観点から、ポリアリーレンスルフィド以外にも高耐熱な熱可塑性樹脂を用いた成形材料が求められるようになってきた。
 特許文献4に開示された方法では、得られる環式ポリ(アリールエーテル)オリゴマーの融点が340℃以上と高く、成形材料の製造に高温での加熱プロセスを必要とする問題があった。従って、工業的な経済性および生産性の観点から、より低温で、容易に製造可能な成形材料が要望されるようになってきた。
 特許文献5に開示された方法では、分散媒の乾燥に設備と時間を要するだけでなく、分散媒を完全に除去することが困難であり、積層成形時に分散媒の揮発により発生するボイドで機械特性が十分に得られない問題がある。また特許文献6に開示された方法では、高温・高圧の成形条件が必要であり、未含浸などの不良により、やはり機械特性が不十分になってしまう問題があった。
 特許文献7に開示されたプリプレグは、ポリアリーレンスルフィドプレポリマーを用いているために、耐熱性に優れる。しかしながら、繊維強化複合材料へのニーズが多様化したことで、ポリアリーレンスルフィド以外にも高耐熱な熱可塑性樹脂、例えばポリフェニレンエーテルエーテルケトンを用いた成形材料が求められるようになってきた。
 特許文献8に開示された方法では、熱可塑性樹脂の含浸に過酷な温度を必要とするため、樹脂の熱分解を引き起こし、成形品の特性を十分に高めることができず、また、成形材料を経済的に生産性よく製造するのは困難である。
 特許文献9に開示された方法は、連続した強化繊維束と高分子量のポリアリーレンスルフィドとからなる成形材料を、容易に、生産性良く製造することができる優れた製造方法である。しかしながら、熱可塑性樹脂を用いた繊維強化複合材料へのニーズが多様化したことで、ポリアリーレンスルフィド以外にも高耐熱な熱可塑性樹脂、例えばポリエーテルエーテルケトンを用いた成形材料が求められるようになってきた。
 特許文献10に開示された方法では、用いられるポリアリーレンスルフィドの溶融粘度が10Pa・sよりも大きいため、強化繊維基材への含浸が不十分となり、得られる繊維強化複合材料にボイドが生じて高い機械強度が得られないこと、また、強化繊維への含浸において高い圧力が必要となるために、注入装置や成形型に多大なコストが必要となることなどの問題があった。
 特許文献11に開示された方法は、ポリアリーレンスルフィドプレポリマーを用いているために、耐熱性に優れる。しかしながら、繊維強化複合材料へのニーズが多様化したことで、ポリアリーレンスルフィド以外にも高耐熱な熱可塑性樹脂、例えばポリフェニレンエーテルエーテルケトンを用いた繊維強化複合材料が求められるようになってきた。
 本発明は、かかる従来技術の問題点の改善を試み、連続した強化繊維束と熱可塑性樹脂からなる成形材料において、融解特性を改善したポリフェニレンエーテルエーテルケトンオリゴマーを用いることにより、生産性、取扱性および成形性に優れ、得られる成形品の力学特性にも優れる成形材料と、この成形材料を用いた生産性および成形性に優れる成形方法を提供することを課題とする。
 また、本発明は、上述した問題点を解決し、強化繊維基材とポリフェニレンエーテルエーテルケトンからなる成形材料および繊維強化複合材料を、より容易に、生産性よく製造する方法を提供することを課題とする。
 かかる課題を解決するため本発明の成形材料は、次の構成を有する。すなわち、
 連続した強化繊維束(A)1~50重量%とポリフェニレンエーテルエーテルケトンオリゴマー(B)0.1~20重量%からなる複合体に、熱可塑性樹脂(C)30~98.9重量%が接着されてなる成形材料であって、該成分(B)の融点が270℃以下である成形材料、である。
 本発明の成形方法は、次の構成を有する。すなわち、
上記成形材料を、金型を用いてプレス成形する成形方法、である。
 本発明の成形材料の製造方法は、次の構成を有する。すなわち、
強化繊維基材(A’)を引き出し、連続的に供給する工程(I)、該成分(A’)にポリフェニレンエーテルエーテルケトンオリゴマー(B)を複合化して複合体を得る工程(II)、該成分(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる工程(III)、および該成分(A’)、該成分(B’)からなる複合体を冷却し引き取る工程(IV)を有してなる成形材料の製造方法であって、該成分(B)の融点が270℃以下である成形材料の製造方法、である。
 本発明の繊維強化複合材料の製造方法は、次の(1)~(3)のいずれかの構成を有する。すなわち、
(1)強化繊維基材(A’)を成形型に配置する工程(I-1)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融させて溶融液とする工程(II-1)、該工程(I-1)の成形型に該工程(II-1)で得られた溶融液を注入して、該成分(B)を該成分(A’)に含浸させる工程(III-1)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-1)を有してなる繊維強化複合材料の製造方法であって、該工程(II-1)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法、または、
(2)強化繊維基材(A’)を引き出し、連続的に供給する工程(I-2)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-2)、該工程(II-2)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させ、得られた複合体をマンドレルに巻きつける工程(III-2)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-2)を有してなる繊維強化複合材料の製造方法であって、該工程(II-2)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法、または、
(3)強化繊維基材(A’)を引き出し、連続的に供給する工程(I-3)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-3)、該工程(II-3)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させた複合体を得る工程(III-3)、得られた複合体を金型に通して連続的に引き抜き成形することで、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-3)を有してなる繊維強化複合材料の製造方法であって、該工程(II-3)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法、である。
 なお、本発明の成形材料は、前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含むことが好ましい。
 本発明の成形材料は、前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物であることが好ましい。
 本発明の成形材料は、前記複合体がさらに、前記成分(B)中のエーテルエーテルケトン構成単位1モルに対し0.001~20モル%の重合触媒(D)を含むことが好ましい。
 本発明の成形材料は、連続した強化繊維束(A)1~50重量%とポリフェニレンエーテルエーテルケトン(B’)0.1~30重量%からなる複合体に、熱可塑性樹脂(C)20~98.9重量%が接着されてなる成形材料であって、該成分(B’)が、融点が270℃以下のポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合触媒(D)で重合させて得られるポリフェニレンエーテルエーテルケトンであることが好ましい。
 本発明の成形材料は、前記成分(B’)のDSCによる結晶融解エンタルピー△Hが40J/g以上であることが好ましい。
 本発明の成形材料は、前記成分(A)が、炭素繊維の単繊維を少なくとも10,000本含有してなることが好ましい。
 本発明の成形材料は、前記成分(C)が、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂から選択される少なくとも1種であることが好ましい。
 本発明の成形材料は、前記成分(D)がアルカリ金属塩であることが好ましい。
 本発明の成形材料は、前記成分(A)が軸心方向にほぼ平行に配列されており、かつ該成分(A)の長さが成形材料の長さと実質的に同じであることが好ましい。
 本発明の成形材料は、前記複合体が芯構造であり、前記成分(C)が該複合体の周囲を被覆した芯鞘構造であることが好ましい。
 本発明の成形材料は、成形材料の形態が、長繊維ペレットであることが好ましい。
 本発明の成形材料は、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる成形材料であって該成分(B)の融点が270℃以下であることが好ましい。
 本発明の成形材料は、前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含むことが好ましい。
 本発明の成形材料は、前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物であることが好ましい。
 本発明の成形材料は、前記成分(A’)が、炭素繊維であることが好ましい。
 本発明の成形材料は、前記成分(A’)の含有量が30重量%以上であることが好ましい。
 本発明の成形材料は、前記成分(D)の含有量が、前記成分(B)中のエーテルエーテルケトン構成単位1モルに対し0.001~20モル%であることが好ましい。
 本発明の成形方法は、前記金型内で前記成分(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させることが好ましい。
 本発明の成形方法は、前記成分(B)を前記成分(B’)に重合させる際の、前記金型の表面温度が前記成分(B’)の融点以下であることが好ましい。
 本発明の成形方法は、前記金型内で前記成分(B)を前記成分(B’)に重合させた後、金型を冷却せずに型開きして成形品を取り出すことが好ましい。
 本発明の成形材料の製造方法は、前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含むことが好ましい。
 本発明の成形材料の製造方法は、前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物であることが好ましい。
 本発明の成形材料の製造方法は、前記工程(II)において、さらに重合触媒(D)を複合化させることが好ましい。
 本発明の成形材料の製造方法は、前記工程(I)~(IV)がオンラインで実施されてなることが好ましい。
 本発明の成形材料の製造方法は、前記工程(IV)の引き取り速度が1~100m/分であることが好ましい。
 本発明の成形材料の製造方法は、前記工程(II)において、加熱溶融させた前記成分(B)を前記成分(A’)に付与して複合化させることが好ましい。
 本発明の成形材料の製造方法は、前記工程(II)において、粒子状、繊維状、フレーク状からなる群から選択される少なくとも1種の形態の前記成分(B)を前記成分(A’)に付与して複合化させることが好ましい。
 本発明の成形材料の製造方法は、前記工程(II)において、フィルム状、シート状、不織布状からなる群から選択される少なくとも1種の形態の前記成分(B)を前記成分(A’)に付与して複合化させることが好ましい。
 本発明の繊維強化複合材料の製造方法は、前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含むことが好ましい。
 本発明の繊維強化複合材料の製造方法は、前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物であることが好ましい。
 本発明の繊維強化複合材料の製造方法は、前記成分(B)の溶融液に、さらに重合触媒(D)を添加することが好ましい。
 本発明の繊維強化複合材料の製造方法は、前記工程(II-1)、(II-2)または(II-3)において、前記成分(B)からなる溶融液の溶融粘度を10Pa・s以下に調整することが好ましい
 本発明の繊維強化複合材料の製造方法は、前記工程(IV-1)、(IV-2)または(IV-3)において、160℃~330℃の温度で前記加熱重合を行うことが好ましい。
 本発明のポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)を用いる成形材料を用いることにより、経済性、生産性に優れる成形材料の使用において、力学特性に優れた成形品を容易に製造することができる。
 本発明の強化繊維基材(A’)を用いる成形材料は、取扱性、成形性に優れると共に繊維含有率を高くでき、機械特性に優れた成形品を与えることができる。また、成形材料を低温、短時間で加熱することにより繊維強化複合材料に成形することが可能であるため、経済性、生産性、取り扱い性に優れる。
 本発明の成形材料の製造方法によれば、強化繊維基材にポリフェニレンエーテルエーテルケトンを容易に複合化させることができるため、引き取り速度を上げるなど生産性の向上やプロセス温度を抑えるといった経済性の向上が可能であり、プリプレグ、セミプレグ、ファブリックなどの成形材料の製造に好適に用いられる。
 本発明の繊維強化複合材料の製造方法によれば、強化繊維基材にポリフェニレンエーテルエーテルケトンを容易に複合化させることができるため、含浸性の向上による生産性の向上やプロセス温度を抑えるといった経済性の向上が可能であり、繊維強化複合材料の製造に好適に用いられる。
強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体の形態の一例を示す概略図である。 本発明の成形材料の好ましい態様の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、軸心方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、直交方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、直交方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、直交方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、直交方向断面の形状の一例を示す概略図である。 本発明の成形材料の好ましい態様の、直交方向断面の形状の一例を示す概略図である。 ドレープ性を評価する冶具の斜視図である。 本発明に係る成形材料の製造方法に用いられる製造装置の一例である。矢印は、繊維強化成形基材の引き取り方向を表す。 本発明に係る成形材料の製造方法に用いられる製造装置の一例である。矢印は、繊維強化成形基材の引き取り方向を表す。 本発明に係る成形材料の製造方法に用いられる製造装置の一例である。矢印は、繊維強化成形基材の引き取り方向を表す。 本発明により得られるプロペラシャフトの一例を示す概略断面図である。 本発明により得られる繊維強化複合材料製本体筒の構成の一例を示す概略断面図である。
 本発明の成形材料は、連続した強化繊維束(A)または強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)、熱可塑性樹脂(C)から構成される。また、本発明の成形材料は、複合体にさらに重合触媒(D)を含んでいても良く、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、重合触媒(D)存在下で加熱重合することにより、ポリフェニレンエーテルエーテルケトン(B’)に転化させることが可能である。まず各構成要素について説明する。
<強化繊維>
 本発明の連続した強化繊維束(A)または強化繊維基材(A’)に用いられる強化繊維としては、特に限定されないが、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、鉱物繊維、炭化ケイ素繊維等が使用でき、これらの繊維を2種以上混在させることもできる。
 とりわけ、炭素繊維は比強度、比剛性に優れ、成形品の力学特性を向上させる観点で好ましい。これらの中でも、軽量かつ高強度、高弾性率の成形品を得る観点から、炭素繊維を用いるのが好ましく、特に引張弾性率で200~700GPaの炭素繊維を用いることが好ましい。さらには、炭素繊維や、金属を被覆した強化繊維は、高い導電性を有するため、成形品の導電性を向上させる効果があり、例えば電磁波シールド性の要求される電子機器などの筐体用途には特に好ましい。
 また、炭素繊維のより好ましい態様として、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面官能基量(O/C)が、0.05~0.4の範囲にあることがあげられる。O/Cが高いほど、炭素繊維表面の官能基量が多く、マトリックス樹脂との接着性を高めることができる。一方、O/Cが高すぎると、炭素繊維表面の結晶構造の破壊が懸念される。O/Cが好ましい範囲内で、力学特性のバランスにとりわけ優れた成形品を得ることが出来る。
 表面官能基量(O/C)は、X線光電子分光法により、次のような手順によって求められる。まず、溶媒でサイジング剤などを除去した炭素繊維をカットして銅製の試料支持台上に拡げて並べた後、光電子脱出角度を90゜とし、X線源としてMgKα1、2を用い、試料チャンバー中を1×10-8Torrに保つ。測定時の帯電に伴うピークの補正としてC1Sの主ピークの運動エネルギー値(K.E.)を969eVに合わせる。C1Sピーク面積は、K.E.として958~972eVの範囲で直線のベースラインを引くことにより求める。O1Sピーク面積は、K.E.として714~726eVの範囲で直線のベースラインを引くことにより求める。ここで表面官能基量(O/C)とは、上記O1Sピーク面積とC1Sピーク面積の比から、装置固有の感度補正値を用いて原子数比として算出する。
 本発明の成形材料に用いられる、連続した強化繊維束(A)とは、単繊維が一方向に配列された強化繊維束が長さ方向に亘り連続した状態であることを意味するが、強化繊維束の単繊維全てが全長に亘り連続している必要はなく、一部の単繊維が途中で分断されていても良い。このような連続した強化繊維束としては、一方向性繊維束、二方向性繊維束、多方向性繊維束などが例示できるが、成形材料を製造する過程での生産性の観点から、一方向性繊維束がより好ましく使用できる。
 本発明における強化繊維束(A)は、強化繊維の単糸数が多いほど経済性には有利であることから、単繊維は10,000本以上が好ましい。他方、強化繊維の単糸数が多いほどマトリックス樹脂の含浸性には不利となる傾向があるため、強化繊維束(A)として炭素繊維束を用いる場合、経済性と含浸性の両立を図る観点から、15,000本以上100,000本以下がより好ましく、20,000本以上50,000本以下がとりわけ好ましく使用できる。とりわけ、本発明の効果である、成形材料を製造する過程での熱可塑性樹脂の含浸性に優れている点、射出成形を行う際に強化繊維の成形品中への分散が良好である点は、より繊維数の多い強化繊維束に対して好適である。
 さらに、単繊維を強化繊維束に束ねる目的で、本発明のポリフェニレンエーテルエーテルケトンオリゴマー(B)とは別に、集束剤を使用してもよい。これは強化繊維束に集束剤を付着させることで、強化繊維の移送時の取扱性や、成形材料を製造する過程でのプロセス性を高める目的で、本発明の目的を損なわない範囲で、エポキシ樹脂、ウレタン樹脂、アクリル樹脂や種々の熱可塑性樹脂などのサイジング剤を1種または2種以上併用することができる。
 本発明で用いられる強化繊維基材(A’)の形態及び配列としては、特に限定されないが、例えば、連続した強化繊維を一方向に配列させた基材(以下、単に一方向配列基材ともいう)、織物(クロス)、不織布、マット、編み物、組み紐、ヤーン、トウ、等が用いられる。中でも、積層構成によって容易に強度特性を設計可能であることから、一方向配列基材を使用するのが好ましく、曲面にも容易に賦形できることから織物が好ましく、厚み方向に容易に成形できることから不織布およびマットが好ましく使用される。なお、ここで一方向配列基材とは、複数本の強化繊維を並行して配列させた基材のことである。かかる一方向配列基材は、例えば、複数本の前述した強化繊維束(A)を一方向に引きそろえ、シート状にする方法などにより得られる。
 強化繊維基材(A’)が一方向配列基材、織物、不織布、マットである場合は、強化繊維の単繊維数としては、特に限定されない。
 さらに、強化繊維基材(A’)には、単繊維の脱落を抑える目的で、本発明における成分(B)とは別に、結着剤を使用してもよい。これは強化繊維基材(A’)に結着剤を付着させることで、強化繊維基材(A’)の移送時の取扱性や、成形材料を製造する過程でのプロセス性を高める目的であり、本発明の目的を損なわない範囲で、エポキシ樹脂、ウレタン樹脂、アクリル樹脂や種々の熱可塑性樹脂などのバインダーを1種または2種以上併用することができる。
<ポリフェニレンエーテルエーテルケトンオリゴマー(B)>
 本発明で用いられるポリフェニレンエーテルエーテルケトンオリゴマー(B)は融点が270℃以下であり、さらに、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましく、180℃以下であることが特に好ましく例示できる。ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が低いほど加工温度を下げることが可能であり、プロセス温度を低く設定可能となるため加工に要するエネルギーを低減し得るとの観点で有利となる。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が低いほど、成形温度を下げることも可能となり、成形加工に要するエネルギーを低減し、かつ構成成分の熱による劣化を低減することが可能となる。また、プロセス温度を低く設定できることにより、例えば、後述する重合触媒(D)とポリフェニレンエーテルエーテルケトンオリゴマー(B)を溶融させて混合する工程において、溶融混練の温度を重合温度よりも十分に低く設定できるようになる。かかる効果により、成形材料の製造プロセスにおいて、貯蔵中や強化繊維束(A)または強化繊維基材(A’)への含浸の前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進行して溶融粘度が増加するといった好ましくない反応を抑制できる。なおここで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点は示差走査型熱量測定装置を用いて吸熱ピーク温度を観測することにより測定することが可能である。
 本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、環式ポリフェニレンエーテルエーテルケトンを60重量%以上含むポリフェニレンエーテルエーテルケトン組成物であることが好ましく、65重量%以上含む組成物であることがより好ましく、70重量%以上含むことがさらに好ましく、75重量%以上含む組成物であることがよりいっそう好ましい。
 本発明における環式ポリフェニレンエーテルエーテルケトンとは、パラフェニレンケトン、およびパラフェニレンエーテルを繰り返し構造単位に持つ、下記一般式(a)で表される環式化合物である。
Figure JPOXMLDOC01-appb-C000001
 式(a)における繰り返し数mの範囲は2~40であり、2~20がより好ましく、2~15がさらに好ましく、2~10が特に好ましい範囲として例示できる。繰り返し数mが大きくなるとポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が高くなる傾向にあるため、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を低温で溶融解させるとの観点から、繰り返し数mを前記範囲にすることが好ましい。
 また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物であることが好ましく、少なくとも異なる3つ以上の繰り返し数mからなる環式ポリフェニレンエーテルエーテルケトン混合物であることがさらに好ましく、4つ以上の繰り返し数mからなる混合物であることがより好ましく、5つ以上の繰り返し数mからなる混合物であることが特に好ましい。さらに、これら繰り返し数mが連続するものであることが特に好ましい。単一の繰り返し数mを有する単独化合物と比較して異なる繰り返し数mからなる混合物の融点は低くなる傾向にあり、さらに2種類の異なる繰り返し数mからなる環式ポリフェニレンエーテルエーテルケトン混合物と比較して、3種類以上の繰り返し数mからなる混合物の融点はさらに低くなる傾向にあり、さらに不連続の繰り返し数mからなる混合物よりも連続する繰り返し数mからなる混合物の方がさらに融点が低くなる傾向にある。なおここで、各繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンは高速液体クロマトグラフィーによる成分分割により分析が可能であり、さらにポリフェニレンエーテルエーテルケトンオリゴマー(B)の組成、すなわちポリフェニレンエーテルエーテルケトンオリゴマー(B)に含まれる各繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの重量分率は、高速液体クロマトグラフフィーにおける各環式ポリフェニレンエーテルエーテルケトンのピーク面積比率より算出することが可能である。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)における不純物成分、即ち環式ポリフェニレンエーテルエーテルケトン以外の成分としては線状ポリフェニレンエーテルエーテルケトンを主に挙げることができる。この線状ポリフェニレンエーテルエーテルケトンは融点が高いため、線状ポリフェニレンエーテルエーテルケトンの重量分率が高くなるとポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が高くなる傾向にある。従って、ポリフェニレンエーテルエーテルケトンオリゴマー(B)における環式ポリフェニレンエーテルエーテルケトンの重量分率が上記範囲にあることで、融点の低いポリフェニレンエーテルエーテルケトンオリゴマー(B)となる傾向にある。
 上記のような特徴を有する本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)の還元粘度(η)としては、0.1dL/g以下であることが好ましく例示でき、0.09dL/g以下であることがより好ましく、0.08dL/g以下であることがさらに好ましく例示できる。なお、本発明における還元粘度とは特に断りのない限り、濃度0.1g/dL(ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重量/98重量%濃硫酸の容量)の濃硫酸溶液について、スルホン化の影響を最小にするために溶解完了直後に、25℃においてオストワルド型粘度計を用いて測定した値である。また、還元粘度の計算は下記式により行った。
   η={(t/t)-1}/C
(ここで、tはサンプル溶液の通過秒数、tは溶媒(98重量%濃硫酸)の通過秒数、Cは溶液の濃度を表す。)。
 本発明で用いられるポリフェニレンエーテルエーテルケトンオリゴマー(B)を得る方法としては、例えば以下の[B1]~[B3]の方法が挙げられる。
[B1]少なくともジハロゲン化芳香族ケトン化合物、ジヒドロキシ芳香族化合物、塩基、および有機極性溶媒を含む混合物を加熱して反応させることによる製造方法。
[B2]少なくとも線状ポリフェニレンエーテルエーテルケトン、ジハロゲン化芳香族ケトン化合物、ジヒドロキシ芳香族化合物、塩基および有機極性溶媒を含む混合物を加熱して反応させることによる製造方法。
[B3]少なくとも線状ポリフェニレンエーテルエーテルケトン、塩基性化合物、有機極性溶媒を含む混合物を加熱して反応させることによる製造方法を用いることが強く望まれる。
 以上に述べたポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法[B1]~[B3]の代表的な反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000002
<重合触媒(D)>
 本発明において、重合触媒(D)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への加熱重合を加速させる効果のある化合物であれば特に制限はなく、光重合開始剤、ラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤、遷移金属触媒など公知の触媒を用いることができるが、なかでもアニオン重合開始剤が好ましい。アニオン重合開始剤としては、無機アルカリ金属塩または有機アルカリ金属塩などのアルカリ金属塩を例示することができ、無機アルカリ金属塩としてはフッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウムなどのアルカリ金属ハロゲン化物を例示でき、また有機アルカリ金属塩としては、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシドなどのアルカリ金属アルコキシドまたは、ナトリウムフェノキシド、カリウムフェノキシド、ナトリウム-4-フェノキシフェノキシド、カリウム-4-フェノキシフェノキシドなどのアルカリ金属フェノキシド、酢酸リチウム、酢酸ナトリウム、酢酸カリウムなどのアルカリ金属酢酸塩を例示することができる。また、これらアニオン重合開始剤は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を求核攻撃することにより触媒作用を発現していると推測している。従って、これらアニオン重合開始剤と同等の求核攻撃能を有する化合物を触媒として用いることも可能であり、このような求核攻撃能を有する化合物としては、アニオン重合性末端を有するポリマーを挙げることができる。これらアニオン重合開始剤は単独で用いても良いし、2種以上を混合して用いても良い。ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合をこれら好ましい触媒の存在下に行うことにより、ポリフェニレンエーテルエーテルケトン(B’)が短時間で得られる傾向にあり、具体的には加熱重合の加熱時間として、2時間以下、さらには1時間以下、0.5時間以下が例示できる。
 使用する触媒の量は、目的とするポリフェニレンエーテルエーテルケトン(B’)の分子量ならびに触媒の種類により異なるが、通常、ポリフェニレンエーテルエーテルケトン(B’)の主要構成単位である次式の繰り返し単位1モルに対して、0.001~20モル%、好ましくは0.005~15モル%、さらに好ましくは0.01~10モル%である。この好ましい範囲の触媒量を添加することによりポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合が短時間で進行する傾向にある。
Figure JPOXMLDOC01-appb-C000003
 重合触媒(D)の添加方法に際しては、特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる混合物を予め調製し、この混合物を強化繊維と複合化させる方法などが例示できる。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)との混合物を得る方法に、特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)に重合触媒(D)を添加した後、均一に分散させることが好ましい。均一に分散させる方法として、例えば機械的に分散させる方法、溶媒を用いて分散させる方法などが挙げられる。機械的に分散させる方法として、具体的には粉砕機、撹拌機、混合機、振とう機、乳鉢を用いる方法などが例示できる。溶媒を用いて分散させる方法として、具体的にはポリフェニレンエーテルエーテルケトンオリゴマー(B)を適宜な溶媒に溶解または分散し、これに重合触媒(D)を加えた後、溶媒を除去する方法などが例示できる。また、重合触媒(D)の分散に際して、重合触媒(D)が固体である場合、より均一な分散が可能となるため重合触媒(D)の平均粒径は1mm以下であることが好ましい。
<ポリフェニレンエーテルエーテルケトン(B’)>
 本発明におけるポリフェニレンエーテルエーテルケトン(B’)は重合触媒(D)存在下でポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合することにより転化することで得られる。なお、ここでのポリフェニレンエーテルエーテルケトン(B’)とは、パラフェニレンケトン、およびパラフェニレンエーテルを繰り返し構造単位に持つ、下記一般式(b)で表される線状化合物である。
Figure JPOXMLDOC01-appb-C000004
 本発明におけるポリフェニレンエーテルエーテルケトン(B’)の還元粘度(η)に特に制限はないが、好ましい範囲として0.1~2.5dL/g、より好ましくは0.2~2.0dL/g、さらに好ましくは0.3~1.8dL/gを例示できる。かかる好適な粘度範囲に調整することにより、成形性と成形品の力学特性に優れた成形材料が得られる。
 本発明におけるポリフェニレンエーテルエーテルケトン(B’)の融点は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の組成や分子量、ポリフェニレンエーテルエーテルケトンオリゴマー(B)に含まれる環式ポリフェニレンエーテルエーテルケトンの重量分率、さらには加熱時の環境により変化するため、一意的に示すことはできないが、好ましい範囲として、270~450℃、より好ましくは280~400℃、さらに好ましくは300~350℃を例示できる。かかる好適な温度範囲に調整することにより、成形性と耐熱性に優れた成形材料が得られる。なおここで、ポリフェニレンエーテルエーテルケトン(B’)の融点は、本発明の成形材料からポリフェニレンエーテルエーテルケトン(B’)に当たる部位を物理的に取り出し、このサンプルから示差走査型熱量測定装置を用いて吸熱ピーク温度を観測することにより測定することが可能である。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合することによりポリフェニレンエーテルエーテルケトン(B’)へと転化する際の加熱温度は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点以上であることが好ましく、このような温度条件であれば特に制限はない。加熱温度がポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点未満では加熱重合によりポリフェニレンエーテルエーテルケトン(B’)を得るのに長時間が必要になる、もしくは加熱重合が進行せずにポリフェニレンエーテルエーテルケトン(B’)が得られなくなる傾向にある。加熱温度の下限としては、160℃以上が例示でき、好ましくは200℃以上、より好ましくは230℃以上、さらに好ましくは270℃以上である。この温度範囲では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が溶融し、短時間でポリフェニレンエーテルエーテルケトン(B’)を得ることができる傾向にある。
 一方、加熱重合の温度が高すぎるとポリフェニレンエーテルエーテルケトンオリゴマー(B)間、加熱により生成したポリフェニレンエーテルエーテルケトン(B’)間、およびポリフェニレンエーテルエーテルケトン(B’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)間などでの架橋反応や分解反応に代表される好ましくない副反応が生じやすくなる傾向にあり、得られるポリフェニレンエーテルエーテルケトン(B’)の特性が低下する場合があるため、このような好ましくない副反応が顕著に生じる温度は避けることが望ましい。加熱温度の上限としては、450℃以下が例示でき、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。この温度範囲以下では、好ましくない副反応による得られるポリフェニレンエーテルエーテルケトン(B’)の特性への悪影響を抑制できる傾向にある。公知のポリフェニレンエーテルエーテルケトンオリゴマーを用いた場合、ポリフェニレンエーテルエーテルケトンオリゴマーの融点が高いため、上記の好適な温度範囲では加熱重合に長時間を要する、もしくは加熱重合が進行せずポリフェニレンエーテルエーテルケトンが得られない傾向になるのに対し、融点が270℃以下という特徴を有する、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は上記好適な温度範囲において、効率よく加熱重合が進行し、ポリフェニレンエーテルエーテルケトン(B’)が得られる。
 また、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、得られるポリフェニレンエーテルエーテルケトン(B’)の融点以下の温度で、加熱重合させることも可能である。かかる重合条件で得られたポリフェニレンエーテルエーテルケトン(B’)は、公知のポリフェニレンエーテルエーテルケトンに比べて、融解エンタルピー、ひいては結晶化度が高くなる傾向がある。これはポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合と重合によって得られたポリフェニレンエーテルエーテルケトン(B’)の結晶化が同時に進行する現象、いわゆる結晶化重合が進行しているためと考えている。結晶化重合により得られたポリフェニレンエーテルエーテルケトン(B’)の融解エンタルピーの下限としては、40J/g以上が例示でき、好ましくは45J/g以上、より好ましくは50J/g以上である。なおここで、ポリフェニレンエーテルエーテルケトン(B’)の融解エンタルピーは、本発明の成形材料からポリフェニレンエーテルエーテルケトン(B’)に当たる部位を物理的に取り出し、このサンプルから示差走査型熱量測定装置を用いて吸熱ピーク面積を観測することにより測定することが可能である。
 このような結晶化重合が起こる加熱温度範囲は、使用するポリフェニレンエーテルエーテルケトンオリゴマー(B)における環式ポリフェニレンエーテルエーテルケトンの重量分率や組成比、加熱重合方法などの条件によって異なるため一様には規定できないが、160~330℃、好ましくは200~300℃の範囲が例示できる。
 反応時間は、使用するポリフェニレンエーテルエーテルケトンオリゴマー(B)における環式ポリフェニレンエーテルエーテルケトンの重量分率や組成比、加熱温度や加熱重合方法などの条件によって異なるため一様には規定できないが、前記した架橋反応などの好ましくない副反応が起こらないように設定することが好ましく、0.001~100時間の範囲が例示でき、0.005~20時間が好ましく、0.005~10時間がより好ましい。これら好ましい反応時間とすることにより、架橋反応などの好ましくない副反応の進行による得られるポリフェニレンエーテルエーテルケトンの特性への悪影響を抑制できる傾向にある。
<熱可塑性樹脂(C)>
 本発明に用いられる熱可塑性樹脂(C)は、特に限定はなく、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PENp)樹脂、液晶ポリエステル等のポリエステル系樹脂や、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、スチレン系樹脂、ウレタン樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン(PES)樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。
 中でも、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂といったエンジニアプラスチック、あるいはスーパーエンジニアリングプラスチックが好ましく用いられ、ポリフェニレンエーテルエーテルケトンオリゴマー(B)との相溶性に優れ、繊維分散性が良く、外観に優れた成形品が得られる為にポリエーテルエーテルケトン樹脂が特に好ましく用いられる。
 かかる熱可塑性樹脂(C)を用いることにより、本発明における成形品の力学特性の改善効果をより一層引き出すことが可能となる。
 また、本発明で用いられる熱可塑性樹脂(C)の分子量は、成形材料を成形して得られる成形品の力学特性の観点から、重量平均分子量で好ましくは10,000以上であり、より好ましくは20,000以上であり、とりわけ好ましくは30,000以上である。これは重量平均分子量が大きいほど、マトリックス樹脂の強度や伸度が高くなる観点で有利である。一方、重量平均分子量の上限については特に制限は無いが、成形時の流動性の観点から好ましくは1,000,000以下であり、より好ましくは500,000以下を例示できる。なお、前記重量平均分子量は前記SEC(サイズ排除クロマトグラフィー)などの一般的なGPC(ゲルパーミレーションクロマトグラフィー)を使用して求めることができる。
 上記群に例示された熱可塑性樹脂(C)は、本発明の目的を損なわない範囲で、繊維強化剤、エラストマーあるいはゴム成分などの耐衝撃性向上剤、他の充填材や添加剤を含有しても良い。これらの例としては、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤が挙げられる。
<成形材料>
 本発明の成形材料の第1の好ましい形態は、強化繊維束(A)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)および熱可塑性樹脂(C)で構成される。
 このうち、(A)、(B)、(C)の各構成成分の合計が100重量%とした際の、強化繊維束(A)は1~50重量%、好ましくは5~45重量%、より好ましくは10~40重量%である。強化繊維束(A)が1重量%未満では、得られる成形品の力学特性が不十分となる場合があり、50重量%を超えると射出成形の際に流動性が低下する場合がある。
 また、(A)、(B)、(C)の各構成成分の合計が100重量%とした際の、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は0.1~20重量%、好ましくは1~18重量%、より好ましくは5~15重量%である。この範囲内で用いることで、成形性と取扱性に優れた成形材料が得られる。
 さらに、(A)、(B)、(C)の各構成成分の合計が100重量%とした際の、熱可塑性樹脂(C)は30~98.9重量%、好ましくは37~94重量%、より好ましくは45~85重量%であり、この範囲内で用いることで、成形性と取扱性に優れた成形材料が得られる。
 本発明の成形材料の第2の好ましい形態は、強化繊維束(A)、ポリフェニレンエーテルエーテルケトン(B’)、熱可塑性樹脂(C)および重合触媒(D)で構成される。
 このうち、(A)、(B’)、(C)の各構成成分の合計が100重量%とした際の、強化繊維束(A)は1~50重量%、好ましくは5~45重量%、より好ましくは10~40重量%である。強化繊維束(A)が1重量%未満では、得られる成形品の力学特性が不十分となる場合があり、50重量%を超えると射出成形の際に流動性が低下する場合がある。
 また、(A)、(B’)、(C)の各構成成分の合計が100重量%とした際の、ポリフェニレンエーテルエーテルケトン(B’)は0.1~30重量%、好ましくは1~18重量%、より好ましくは5~15重量%である。この範囲内で用いることで、成形性と取扱性に優れた成形材料が得られる。
 さらに、(A)、(B’)、(C)の各構成成分の合計が100重量%とした際の、熱可塑性樹脂(C)は20~98.9重量%、好ましくは37~94重量%、より好ましくは45~85重量%であり、この範囲内で用いることで、成形性と取扱性に優れた成形材料が得られる。
 さらに、重合触媒(D)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である次式の繰り返し単位1モルに対して、0.001~20モル%、好ましくは0.005~15モル%、さらに好ましくは0.01~10モル%である。
Figure JPOXMLDOC01-appb-C000005
 本発明の成形材料は、連続した強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体に熱可塑性樹脂(C)が接着するように配置されて構成される成形材料である。
 強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)は、この2者で複合体が形成される。この複合体の形態は図1に示すようなものであり、強化繊維束(A)の各単繊維間にポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)が満たされている。すなわち、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)の海に、強化繊維(A)が島のように分散している状態である。さらに重合触媒(D)は、その役割から、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)の海中、および/又は強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)との界面に存在することが好ましい。
 本発明の成形材料において、耐熱性に優れたポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)が強化繊維束(A)に良好に含浸した複合体とすることで、熱可塑性樹脂(C)と接着されていても、例えば、本発明の成形材料を射出成形すると、射出成形機のシリンダー内で溶融混練された、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)が熱可塑性樹脂(C)に拡散し、強化繊維束(A)が熱可塑性樹脂(C)に分散することを助ける。さらに、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)は、熱可塑性樹脂(C)と容易に置換されることで強化繊維束(A)をより容易に分散させることを可能としている。かかる効果から、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)は、いわゆる含浸助剤・分散助剤としての役割を持つ。
 本発明の第1および第2の成形材料においての好ましい態様としては、図2に示すように、強化繊維束(A)が成形材料の軸心方向にほぼ平行に配列され、かつ強化繊維束(A)の長さは成形材料の長さと実質的に同じ長さである。
 ここで言う、「ほぼ平行に配列されて」いるとは、強化繊維束の長軸の軸線と、成形材料の長軸の軸線とが、同方向を指向している状態を示し、軸線同士の角度のずれは、好ましくは20°以下であり、より好ましくは10°以下であり、さらに好ましくは5°以下である。また、「実質的に同じ長さ」とは、例えばペレット状の成形材料において、ペレット内部の途中で強化繊維束が切断されていたり、ペレット全長よりも有意に短い強化繊維束が実質的に含まれたりしないことである。特に、そのペレット全長よりも短い強化繊維束の量について規定されているわけではないが、ペレット全長の50%以下の長さの強化繊維の含有量が30重量%以下である場合には、ペレット全長よりも有意に短い強化繊維束が実質的に含まれていないと評価する。さらに、ペレット全長の50%以下の長さの強化繊維の含有量は20重量%以下であることが好ましい。なお、ペレット全長とはペレット中の強化繊維配向方向の長さである。強化繊維束(A)が成形材料と同等の長さを持つことで、成形品中の強化繊維長を長くすることが出来るため、優れた力学特性を得ることができる。
 図3~6は、本発明の成形材料の軸心方向断面の形状の例を模式的に表したものであり、図7~10は、本発明の成形材料の直交方向断面の形状の例を模式的に表したものである。
 成形材料の断面の形状は、強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体に、熱可塑性樹脂(C)が接着するように配置されていれば図に示されたものに限定されないが、好ましくは軸心方向断面である図3~5に示されるように、複合体が芯材となり熱可塑性樹脂(C)で層状に挟まれて配置されている構成が好ましい。
 また直交方向断面である図7~9に示されるように、複合体を芯に対して、熱可塑性樹脂(C)が周囲を被覆するような芯鞘構造に配置されている構成が好ましい。図11に示されるような複数の複合体を熱可塑性樹脂(C)が被覆するように配置する場合、複合体の数は2~6程度が望ましい。
 複合体と熱可塑性樹脂(C)の境界は接着され、境界付近で部分的に熱可塑性樹脂(C)が該複合体の一部に入り込み、複合体中のポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)と相溶しているような状態、あるいは強化繊維に含浸しているような状態になっていてもよい。
 成形材料の軸心方向は、ほぼ同一の断面形状を保ち連続であればよい。成形方法によってはこのような連続の成形材料をある長さにカットしてもよい。
 本発明の成形材料は、例えば射出成形やプレス成形などの手法により強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体に、熱可塑性樹脂(C)を混練して最終的な成形品を作製できる。成形材料の取扱性の点から、複合体と熱可塑性樹脂(C)は成形が行われるまでは分離せず、前述したような形状を保っていることが重要である。ポリフェニレンエーテルエーテルケトンオリゴマー(B)は低分子量であることから、常温においては通常比較的脆く破砕しやすい固体である場合が多い。このため、熱可塑性樹脂(C)を、複合体を保護するように配置し、成形までの材料の運搬、取り扱い時のショック、擦過などにより、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が破砕されて飛散したりしないようにすることが望ましい。また、複合体と熱可塑性樹脂(C)では、形状(サイズ、アスペクト比)、比重、重量が異なるため、成形までの材料の運搬、取り扱い時、成形工程での材料移送時に分離し、成形品の力学特性にバラツキを生じたり、流動性が低下して金型詰まりを起こしたり、成形工程でブロッキングする場合がある。
 そのため、図7~9に例示されるように、強化繊維である強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体に対して、熱可塑性樹脂(C)が該複合体の周囲を被覆するように配置されていること、すなわち、強化繊維である強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体が芯構造であり、熱可塑性樹脂(C)が該複合体の周囲を被覆した芯鞘構造とすることが好ましい。
 このような配置であれば、高分子量の熱可塑性樹脂(C)が破砕しやすいポリフェニレンエーテルエーテルケトンオリゴマー(B)を包んでいたり、擦過しやすい面に配置されたりしているため、成形材料として形状が保持されやすいし、複合体と熱可塑性樹脂(C)とを強固に複合化できる。また、熱可塑性樹脂(C)が強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体の周囲を被覆するように配置されるか、複合体と熱可塑性樹脂(C)が層状に配置されているか、いずれが有利であるかについては、製造の容易さと、材料の取り扱いの容易さから、熱可塑性樹脂(C)が複合体の周囲を被覆するように配置されることがより好ましい。
 前述したように、強化繊維束(A)はポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)によって完全に含浸されていることが望ましいが、現実的にそれは困難であり、強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)からなる複合体にはある程度のボイドが存在する。特に強化繊維束(A)の含有率が大きい場合にはボイドが多くなるが、ある程度のボイドが存在する場合でも本発明の含浸・繊維分散促進の効果は示される。ただしボイド率が40%を超えると顕著に含浸・繊維分散促進の効果が小さくなるので、ボイド率は0~40%の範囲が好ましい。より好ましいボイド率の範囲は20%以下である。ボイド率は、複合体の部分をASTM
D2734 (1997)試験法により測定する。
 本発明の成形材料は、好ましくは1~50mmの範囲の長さに切断して用いられる。前記の長さに調製することにより、成形時の流動性、取扱性を十分に高めることができる。このように適切な長さに切断された成形材料としてとりわけ好ましい態様は、射出成形用の長繊維ペレットが例示できる。
 また、本発明の成形材料は、連続、長尺のままでも成形法によっては使用可能である。例えば、熱可塑性ヤーンプリプレグとして、加熱しながらマンドレルに巻き付け、ロール状成形品を得たりすることができる。このような成形品の例としては、液化天然ガスタンクなどが挙げられる。また本発明の成形材料を、複数本一方向に引き揃えて加熱・融着させることにより一方向熱可塑性プリプレグを作製することも可能である。このようなプリプレグは、高い強度、弾性率、耐衝撃性が要求されるような分野、例えば航空機部材などに適用が可能である。
<成形材料の製造方法>
 本発明の成形材料の第2の好ましい形態は、強化繊維束(A)、ポリフェニレンエーテルエーテルケトン(B’)、熱可塑性樹脂(C)および重合触媒(D)から構成され、前述した形状を容易に製造できると言った観点から、以下の[i]~[iii]の工程を経て製造することが好ましい。
 工程[i]ポリフェニレンエーテルエーテルケトンオリゴマー(B)および重合触媒(D)からなる混合物を得る工程。
 工程[ii]前記混合物を連続した強化繊維束(A)に含浸させた複合体を得る工程。
 工程[iii]前記複合体を熱可塑性樹脂(C)と接着させる工程。
<工程[i]>
 工程[i]において、混合物を得る装置は、投入したポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を混合させる機構を具備した物であれば特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)とを均一に混合させる観点から、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融させるための加熱源を具備することが好ましい。また、溶融混合物を得た後に、速やかに工程[ii]に移す為に、送液機構を具備することがより好ましい。送液の駆動方式としては、自重式、圧空式、スクリュー式、およびポンプ式などが例示できる。
 工程[i]において、溶融混合物を得る際は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合をなるべく起こさないように温度や時間を設定するのが好ましい。溶融混合物を得る際の温度は160~340℃、好ましくは180~320℃、より好ましくは200~300℃、特に好ましくは230~270℃である。この好ましい温度範囲で溶融混合物を得る場合には、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を短時間で溶融でき、一方、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合を抑制できるのでポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
 工程[i]において、溶融混合物を得る際の時間は、特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進み、増粘することを避ける為に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を加熱後できるだけ速やかに工程[ii]に移ることが好ましい。かかる時間の範囲としては、0.01~300分、好ましくは0.1~60分、より好ましくは0.3~30分、さらに好ましくは0.5~10分となる。この好ましい加熱時間とすると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)への重合触媒(D)の分散が十分で、一方、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合を抑制できる。
 また、加熱の際の雰囲気は非酸化性雰囲気下で行うことが好ましく、減圧条件下で行うことも好ましい。ここで、非酸化性雰囲気とは、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指す。また、減圧条件下とは系内が大気圧よりも低いことを指し、例えば0.1kPa~50kPaの範囲が好ましい範囲として例示できる。これによりポリフェニレンエーテルエーテルケトンオリゴマー(B)間、加熱により生成したポリフェニレンエーテルエーテルケトン(B’)間、及びポリフェニレンエーテルエーテルケトン(B’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)間などで架橋反応や分解反応などの好ましくない副反応の発生を抑制できる傾向にある。
<工程[ii]>
 工程[ii]において、用いる装置は、工程[i]において得られた混合物を連続した強化繊維束(A)に含浸させる機構を具備したものであれば特に制限は無く、溶融混合物をTダイやスリットダイなどの金型ダイに供給しつつ該金型ダイ中に強化繊維束を通過させる装置や、溶融混合物をギアポンプにて溶融バスに供給し、該溶融バス内で強化繊維束(A)をしごきながら通過させる装置や、溶融混合物をプランジャーポンプでキスコーターに供給し、強化繊維束(A)に塗布する装置や、溶融混合物を加熱した回転ロールの上に供給し、このロール表面に強化繊維束(A)を通過させる方法が例示できる。これらの装置は、含浸性を向上させる目的で、組み合わせて使用しても良く、また得られた複合体をループさせて、複数回同じ装置を通過させても良い。
 工程[ii]において、溶融混練物を含浸させる際の温度は160~450℃、好ましくは200~400℃、より好ましくは230~350℃、特に好ましくは270~300℃である。溶融混練物を含浸させる際の温度がこの好ましい範囲であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が凝固、増粘あるいは固化し難く、含浸性を優れたものとできる一方、ポリフェニレンエーテルエーテルケトンオリゴマー(B)間、加熱により生成したポリフェニレンエーテルエーテルケトン(B’)間、及びポリフェニレンエーテルエーテルケトンオリゴマー(B)とポリフェニレンエーテルエーテルケトン(B’)間などで架橋反応や分解反応などの好ましくない副反応が発生し難い。
 工程[ii]において、溶融混練物を含浸させる際の時間は、特に制限は無いが、溶融混練物が強化繊維束(A)に十分に含浸できるだけの時間を確保することが好ましい。かかる時間の範囲としては、0.001~1,000分、好ましくは0.01~300分、より好ましくは0.1~60分、さらに好ましくは0.3~30分、特に好ましくは0.5~10分となる。含浸時間がこの好ましい範囲であると、溶融混練物の強化繊維束(A)への含浸が十分である一方、成形材料の生産も効率的に行うことができる。
<工程[iii]>
 工程[iii]において、用いる装置は、工程[ii]で得られた複合体に熱可塑性樹脂(C)を接着させる機構を具備したものであれば特に制限は無く、溶融させた熱可塑性樹脂(C)をTダイやスリットダイなどの金型ダイに供給しつつ該金型ダイ中に複合体を通過させる装置や、溶融させた熱可塑性樹脂(C)をギアポンプにて溶融バスに供給し、該溶融バス内に複合体を通過させる装置や、溶融させた熱可塑性樹脂(C)をプランジャーポンプでキスコーターに供給し、複合体に塗布する装置や、溶融させた熱可塑性樹脂(C)を加熱した回転ロールの上に供給し、このロール表面に複合体を通過させる方法が例示できる。
 工程[iii]において、複合体と熱可塑性樹脂(C)を接着させる際の温度は、使用する熱可塑性樹脂(C)の分子構造や分子量、組成といった各種特性によって異なるため一概ではないが、下限としては、使用する熱可塑性樹脂(C)の融点が例示できる。上限としては前記融点に加えて80℃、好ましくは50℃、より好ましくは30℃、さらに好ましくは20℃が例示できる。かかる温度範囲において、熱可塑性樹脂(C)は、複合体との接着が容易に行え、かつ熱可塑性樹脂(C)が熱分解するといった製造上好ましくない現象を抑えることができる。なおここで、熱可塑性樹脂(C)の融点は示差走査型熱量測定装置を用いて吸熱ピーク温度を観測することにより測定することが可能である。
 工程[iii]において、複合体が、複合体と熱可塑性樹脂とを接着させる装置を通過する時間としては、特に制限は無いが、0.0001~120分、好ましくは0.001~60分、より好ましくは0.01~10分が例示できる。複合体の当該接着装置を通過する時間がこの好ましい範囲であると、複合体と熱可塑性樹脂との接着が容易である一方、成形材料の生産も効率的に行うことができる。
 本発明の成形材料の製造工程において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に転化させるのは、工程[i]~[iii]のいずれの工程で行っても良いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維束(A)への含浸を効率良く行う為には、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を工程[ii]と同時およびそれ以降に選択的に重合させることが好ましい。かかる要件を満たすためにも、前記した工程[i]~[iii]の装置、温度、及び時間といった条件が好適となる。
 また、工程[i]~[iii]を経た後、さらに160~450℃、好ましくは200~400℃、より好ましくは230~350℃、特に好ましくは270~300℃で熱処理し、成形材料中に残存したポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合させることも有意である。160℃より低い温度で、熱処理した場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進行せず、長時間を要する場合がある。450℃より高温で熱処理した場合は、熱可塑性樹脂(C)が短時間で溶融し、成形材料の形態が崩れる場合がある。
<成形品の製造方法>
 本発明の成形材料の第1の好ましい形態は、強化繊維束(A)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)および熱可塑性樹脂(C)で構成され、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、融点が低い為に、強化繊維束(A)への含浸プロセス性に優れ、強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)からなる複合体が容易に製造できることから、成形材料の生産性向上に効果がある。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、流動性にも優れることから、例えば、本発明の成形材料を射出成形すると、射出成形機のシリンダー内で溶融混練された、流動性の良いポリフェニレンエーテルエーテルケトンオリゴマー(B)が熱可塑性樹脂(C)に拡散し、強化繊維束(A)が熱可塑性樹脂(C)に分散することを助ける。さらに、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、熱可塑性樹脂(C)と容易に置換されることで強化繊維束(A)をより容易に分散させることを可能としている。かかる効果から、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、いわゆる含浸助剤・分散助剤としての役割を持つ。
 さらに、本発明において、重合触媒(D)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱によるポリフェニレンエーテルエーテルケトン(B’)への転化を促す、いわゆる重合触媒としての役割を持つ。また、強化繊維束(A)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)、熱可塑性樹脂(C)および重合触媒(D)からなる本発明の成形材料を成形して成形品を製造する際に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合触媒(D)存在下で加熱することで重合させてポリフェニレンエーテルエーテルケトン(B’)へと転化させることができる。かかる重合触媒(D)の効果により、例えば重合触媒(D)を含んだ本発明の成形材料を射出成形すると、射出成形工程におけるシリンダー内および金型内において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合が進展し、力学特性に優れた成形品が得られる。
 本発明の成形材料は、加熱することで溶融させて所定の形状に成形することができる。成形材料を溶融させる温度は、選択する原料によって異なるが、好ましい範囲として160℃~450℃、より好ましくは230℃~430℃、さらに好ましくは270℃~400℃を例示できる。160℃より低い温度では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)および/または熱可塑性樹脂(C)が溶融せずに成形性に問題がある場合がある。450℃より高い温度では、熱可塑性樹脂(C)が熱分解して成形品物性の低下やボイドが生じる場合がある。
 また、本発明の成形材料は、成形前に予熱してもよい。成形材料を予熱する温度は、選択する原料によって異なるが、160℃~450℃、より好ましくは230℃~400℃、さらに好ましくは270℃~400℃を例示できる。かかる温度範囲で予熱することにより、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への加熱重合が進行し、成型品の力学特性の向上に効果がある場合がある。なお、生産性の観点から、かかる予熱工程を経た成形材料を直接成形機に投入しても良い。
 また、本発明の成形材料は、本発明の目的を損なわない範囲で、前記予熱工程とは別に、前処理を行っても良い。これらの例としては、乾燥、脱脂、脱気、裁断、賦形、積層、配列、あるいは、接着が挙げられる。
 本発明の成形材料は、各種成形方法によって最終的な形状の成形品に加工できる。成形方法としてはプレス成形、スタンパブル成形、トランスファー成形、射出成形や、これらの組合せ等が挙げられる。
 本発明の成形材料はリブ、ボス、歯車といった複雑形状の成形品や平板、角板、丸板といった幅広の成形品といった多様な形状に成形することが可能である。複雑形状の成形品の場合、射出成形およびトランスファー成形が好ましく用いられ、生産性の面から射出成形がより好ましく用いられる。幅広の成形品にはプレス成形、スタンピング成形が好ましく用いられる。
 本発明の成形材料を射出成形に用いる場合は、ペレット形状とした成形材料を用いることが好ましい。射出成形においては、ペレット状の成形材料を可塑化する際、温度、圧力、混練が加えられることから、本発明によれば、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)が含浸分散助剤として大きな効果を発揮する。この場合、通常のインラインスクリュー型射出成形機を用いることができ、たとえ圧縮比の低いような形状のスクリューを用いたり、材料可塑化の際の背圧を低く設定するなどしたりして、スクリューによる混練効果が弱い場合であっても、強化繊維がマトリックス樹脂中に良分散し、繊維への樹脂の含浸が良好な成形品を得ることができる。
 また、本発明の成形材料を成形して得られた成形品をさらに加熱処理してもよい。成形品を加熱する温度は、成形材料に用いた原料によって異なるが、160℃~450℃、より好ましくは230℃~430℃、さらに好ましくは270℃~400℃を例示できる。かかる温度範囲で加熱処理することにより、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への加熱重合が進行し、成形品の力学特性の向上に効果がある場合がある。
 また、本発明で得られる成形品は、本発明の目的を損なわない範囲で、前記加熱工程とは別に、後処理を行っても良い。これらの例としては、アニール、研磨、裁断、研削、接着、あるいは、塗装が挙げられる。
<プリプレグ>
 本発明の成形材料の第3の好ましい形態は強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)から構成される。本発明の成形材料の形態に特に制限は無いが、生産性と取り扱い性の観点から、強化繊維基材(A’)からなる基材にポリフェニレンエーテルエーテルケトンオリゴマー(B)および重合触媒(D)を含浸せしめてなるプリプレグの形態が好ましく例示できる。
 強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)の合計が100重量%とした際の、強化繊維基材(A’)の含有量は30重量%以上が好ましく、50重量%以上がより好ましく、60重量%以上がさらに好ましく、70重量%以上が特に好ましい。強化繊維基材(A’)が30重量%未満では、得られる成形品の力学特性が不十分となる場合がある。一方、強化繊維基材(A’)の含有量の上限については特に制限は無いが、90重量%以下が好ましく、80重量%以下がより好ましく、70重量%以下がさらに好ましい。強化繊維基材(A’)が90重量%より大きい場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への含浸が困難となる場合がある。なお、本発明の成形材料における、強化繊維基材(A’)の含有量は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の供給量を制御することで調節できる。
 さらに、重合触媒(D)の含有量は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である次式の繰り返し単位1モルに対して、0.001~20モル%、好ましくは0.005~15モル%、さらに好ましくは0.01~10モル%である。
Figure JPOXMLDOC01-appb-C000006
 また、本発明の成形材料では、用法や目的に応じて、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率の異なった成形材料を製造することができる。たとえば、より含浸性を高めたプリプレグや、半含浸でのセミプレグ、含浸性の低いファブリックなどである。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られる傾向がある。一方、含浸性が比較的低い成形材料では、ドレープ性に優れ、曲面形状などへの賦形に優れる傾向がある。
 従って、本発明の成形材料において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率についての第1の好ましい態様は、かかる含浸率が80%以上、100%以下である成形材料である。これは、より単純な平面形状の成形品を生産性良く製造する観点で優れている。
 また、本発明の成形材料において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率についての第2の好ましい態様は、かかる含浸率が20%以上、80%未満である成形材料である。これは、ドレープ性に優れる成形材料であって、成形材料を成形型に合わせてあらかじめ賦形できるため、曲面形状のような比較的複雑な成形品を生産性良く製造する観点で優れている。
 なお、ここで言うポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率とは、成形材料の断面を、光学顕微鏡を用いて観察し、含浸しているポリフェニレンエーテルエーテルケトンオリゴマー(B)の面積を、この含浸している面積と空隙(ボイド)の面積の合計で除した割合(%)で表される。
 含浸率を制御する方法としては、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に複合化する際の温度や加圧力などが例示できる。通常、前記温度や加圧力が高いほど、含浸率を高める効果がある。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の溶融粘度が低いほど含浸性を高めることができる。
 本発明の成形材料の第3の好ましい形態におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)には、本発明の目的を損なわない範囲で、各種の熱可塑性樹脂のポリマー、オリゴマー、各種の熱硬化性樹脂、エラストマーあるいはゴム成分などの耐衝撃性向上剤、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、あるいは、カップリング剤などを添加してもよい。
 熱可塑性樹脂の具体例としては、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PENp)樹脂、液晶ポリエステル等のポリエステル系樹脂や、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、スチレン系樹脂、ウレタン樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン(PES)樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、これらの共重合体、変性体、および2種類以上ブレンドした樹脂が挙げられる。
 熱硬化性樹脂の具体例としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂などが挙げられる。
 また、成形材料の積層を容易にするために粘着付与剤を配合することも好ましい。粘着付与剤としては軟化点150℃以下で分子内に極性基を有する化合物が好適に用いられる。軟化点は、JIS
K 7206-1999で規定されるビカット軟化点を意味し、軟化点が150℃以下の物は分子量が比較的小さいので流動性が良く、成形材料の積層時の粘着性が向上し、分子内に極性基を有する物も水素結合などの弱い結合を誘起して、成形材料の積層時の粘着性が向上するので好ましい。具体的には、エチレン-エチルアクリレート共重合体、エチレン-ビニルアクリレート共重合体、テルペン重合体、テルペンフェノール共重合体、ポリウレタンエラストマー、アクリロニトリルブタジエンゴム(NBR)などが好適に用いられる。
<プリプレグの製造方法>
 本発明の成形材料の第3の好ましい形態は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を溶媒に溶解または分散させて低粘度化し、強化繊維基材(A’)に含浸させるウェット法、またはポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる混合物を加熱により低粘度化し、強化繊維基材(A’)に含浸させるホットメルト法等によって製造できる。
 ウェット法は、強化繊維基材(A’)をポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)の溶液または分散液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発せしめ、成形材料を得る方法である。
 ホットメルト法は、加熱により低粘度化したポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)の溶融混合物を直接強化繊維基材(A’)に付着させ、さらに加熱加圧することにより含浸させる方法、またはポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)の溶融混合物を離型紙等の上にコーティングした樹脂フィルムを作製しておき、次に強化繊維基材(A’)の両側、又は片側からそのフィルムを重ね、加熱加圧することによりを含浸させる方法などにより、成形材料を得る方法である。ホットメルト法では溶剤を使用しないので強化繊維基材(A’)への含浸工程で樹脂粘度をある程度低くする必要があるが、成形材料中に残留する溶媒が実質的に皆無となるため好ましい。
 本発明の成形材料をホットメルト法で製造する場合において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を溶融混合物とする工程および、この溶融混合物を強化繊維(A)に含浸させる工程は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合をなるべく起こさないように温度や時間を設定するのが好ましい。溶融混合物を得る工程および、溶融混合物を含浸させる工程の温度は160~340℃、好ましくは180~320℃、より好ましくは200~300℃、特に好ましくは230~270℃である。この好ましい温度であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を短時間で溶融できる一方、ポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
 溶融混合物を得る工程および、溶融混合物を含浸させる工程にかける時間は、特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進み、増粘することを避ける為に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を加熱後できるだけ速やかに次の工程に移ることが好ましい。かかる時間の範囲としては、0.01~300分、好ましくは0.1~60分、より好ましくは0.3~30分、さらに好ましくは0.5~10分となる。加熱時間がこの好ましい範囲であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)への重合触媒(D)の分散が十分である一方、ポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
 また、加熱の際の雰囲気は非酸化性雰囲気下で行うことが好ましく、減圧条件下で行うことも好ましい。ここで、非酸化性雰囲気とは、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指す。また、減圧条件下とは系内が大気圧よりも低いことを指し、例えば0.1kPa~50kPaの範囲が好ましい範囲として例示できる。これによりポリフェニレンエーテルエーテルケトンオリゴマー(B)間、加熱により生成したポリフェニレンエーテルエーテルケトン(B’)間、及びポリフェニレンエーテルエーテルケトン(B’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)間などで架橋反応や分解反応などの好ましくない副反応の発生を抑制できる傾向にある。
 本発明の成形材料において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率が高く、成型品の力学特性が高い成形材料を得るためには、溶融混合物を含浸させる工程において、加圧力を付与することが好ましい。かかる加圧力の範囲としては0.1~10MPaが好ましく、0.2~5MPaがより好ましい範囲として例示できる。
 本発明の成形材料において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率を比較的下げて、成形性に優れる成形材料を得るためには、溶融混合物を含浸させる工程において、加圧力をほとんど付与しないことが好ましい。かかる加圧力の範囲としては0~0.1MPaが好ましく、0.01~0.05MPaがより好ましい範囲として例示できる。また、一度加圧力を付与した後、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が冷却固化する前に加圧力を取り除く方法も好ましく用いることができる。なお、加圧力を付与するために用いる加圧装置には特に制限は無く、プレス機やローラーなどが例示できる。
<プリプレグの成形方法>
 本発明の成形材料の第3の好ましい形態は、任意の構成で1枚以上積層後、熱及び圧力を付与しながらポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させることで、ポリフェニレンエーテルエーテルケトン(B’)をマトリクス樹脂とする成形品が得られる。
 熱及び圧力を付与する方法としては、任意の構成で積層した成形材料を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した成形材料に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した成形材料を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が使用される。とりわけ、得られる成型品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく例示できる。
 成形時の加熱温度の下限としては、160℃以上が例示でき、好ましくは200℃以上、より好ましくは230℃以上、さらに好ましくは270℃以上である。この温度範囲では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が溶融し、短時間でポリフェニレンエーテルエーテルケトン(B’)を得ることができる傾向にある。
 一方、成形時の加熱温度の上限としては、450℃以下が例示でき、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。この温度範囲以下では、好ましくない副反応によるポリフェニレンエーテルエーテルケトン(B’)の特性への悪影響を抑制できる傾向にある。
 さらに、本発明の成形材料は、ポリフェニレンエーテルエーテルケトン(B’)の融点以下の温度で成形することが好ましい。これは、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)の結晶化重合を生かした成形方法であり、成形中にポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合とポリフェニレンエーテルエーテルケトン(B’)の結晶化が同時に進行することで、通常の熱可塑性樹脂プリプレグの成形の際には必要な、金型の冷却工程を短縮して、成形品の脱型ができる点で優れた成形方法である。
 なお、ここでの成形時の加熱温度の測定方法は、例えば金型を用いて成形を行う成形方法の場合は、金型の表面温度を熱伝対などの温度計で測定する方法が例示できる。
 成形時の圧力の範囲としては、0.1~10MPaが好ましく、0.2~5MPaがより好ましい範囲として例示できる。成形時の圧力がこの好ましい範囲であると、得られる成形品中に多数のボイドが発生することはなく、一方、強化繊維(A)の配列が大きく乱れることもない。
 成形時に加熱加圧する時間の範囲としては、特に制限はないが、0.001~1,000分、好ましくは0.01~300分、より好ましくは0.1~60分、さらに好ましくは0.3~30分、特に好ましくは0.5~10分となる。含浸時間がこの好ましい範囲であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合が十分に起こる一方、成形材料の生産も効率的に行うことができる。
<成形材料の製造方法>
 本発明の成形材料の第4の好ましい形態は強化繊維基材(A’)とポリフェニレンエーテルエーテルケトン(B’)と重合触媒(D)から構成される。この成形材料の製造方法は、少なくとも以下の工程から構成される。
 工程[I]:強化繊維基材(A’)を引き出し、連続的に供給する。
 工程[II]:強化繊維基材(A’)にポリフェニレンエーテルエーテルケトンオリゴマー(B)を複合化して複合体を得る。
 工程[III]:ポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる。
 工程[IV]:強化繊維基材(A’)、ポリフェニレンエーテルエーテルケトン(B’)からなる複合体を冷却し引き取る。
 さらに、本発明の成形材料の製造方法は、工程[II]において用いる、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が270℃以下であることを特徴とする。
 また、生産性の観点からは、本発明の成形材料の製造方法は、工程[II]において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)に重合触媒(D)を添加し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合を促進することが好ましい。
 各工程は、オフラインで実施することもできるが、経済性、生産性の面から、工程[I]~[IV]をオンラインで実施することが好ましい。
 ここで、工程[I]~[IV]をオンラインで行うとは、工程[I]~[IV]の全てを一続きの製造ライン(例えば、図13~15参照)にて連続的ないしは間欠的に行うことを意味する。
 各工程について、それぞれ説明する。
<工程[I]>
 工程[I]は、強化繊維基材(A’)を製造ラインに供給する工程である。ここで、経済性と生産性良く成形材料を製造する目的から、強化繊維基材(A’)を連続的に供給することが好ましい。連続的とは、原料となる強化繊維基材(A’)を完全に切断せずに持続的に供給することを意味し、供給速度は一定であってもよいし、間欠的に供給と停止を繰り返してもよい。また、得られる成形材料の賦形性を高める目的で、強化繊維基材(A’)にスリット(切れ目)を入れるため、その一部を切断する工程を含んでもよい。
 また、工程[I]では、強化繊維基材(A’)を引き出し、所定の配列に配置する目的も含む。すなわち、供給される強化繊維基材(A’)は、ヤーン状であっても、一方向に引き揃えたシート状であっても、予め形状を付与したプリフォーム状であってもよい。具体的には、複数の強化繊維束を一方向に配列させてシート状にして、さらにロールバーを通過させて製造ラインに供給する方法や、あらかじめ織物や不織布、マットの形態でロール状にした強化繊維基材(A’)をクリールにかけ、引き出し、ローラーを通過させて製造ラインに供給する方法などが挙げられる。ここで、一度に大量の成形材料を製造可能であることからロールを用いた方法が好ましく用いられる。また、所定の形状になるように配置された複数のロールバーを通過させて製造ラインに供給する方法などが例示できる。さらに、強化繊維基材(A’)が平面状に加工されている場合には、葛折りされた状態などから、直接に製造ラインに供給してもよい。なお、各種ローラーやロールバーに駆動装置を設けると、供給速度の調整などを行うことができ、生産管理の上でより好ましい。
 さらに、工程[I]では、強化繊維基材(A’)を50~500℃、好ましくは80~400℃、より好ましくは100~300℃に加熱する工程を含むことが、生産上好ましい。強化繊維基材(A’)を加熱することで、工程[II]においてポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への定着性を向上させることができる。また、強化繊維基材(A’)に付着している収束剤などを軟化させ開繊させることもできる。加熱の方法については、特に制限はなく、熱風や赤外線ヒーターによる非接触加熱、パイプヒーターや電磁誘導による接触加熱などの方法が例示できる。
 また、工程[I]において、例えば、強化繊維基材(A’)が一方向配列基材である場合、開繊操作を含むことがより好ましい。開繊とは収束された強化繊維束を分繊させる操作であり、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸性をさらに高める効果が期待できる。開繊により、強化繊維基材(A’)の厚みは薄くなり、開繊前の強化繊維束の幅をw(mm)、厚みをt(μm)、開繊後の強化繊維束の幅をw(mm)、厚みをt(μm)とした場合、開繊比=(w/t)/(w/t)は2.0以上が好ましく、2.5以上がさらに好ましい。
 強化繊維基材(A’)の開繊方法としては、特に制限はなく、例えば凹凸ロールを交互に通過させる方法、太鼓型ロールを使用する方法、軸方向振動に張力変動を加える方法、垂直に往復運動する2個の摩擦体による強化繊維基材(A’)の張力を変動させる方法、強化繊維基材(A’)にエアを吹き付ける方法を利用できる。
<工程[II]>
 工程[II]は、強化繊維基材(A’)にポリフェニレンエーテルエーテルケトンオリゴマー(B)を複合化する工程である。複合化する方法は、特に制限はないが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の形態により、以下の[C1]~[C3]の3つの方法が好ましく例示できる。
 [C1]粒子状、繊維状、フレーク状からなる群から選択される少なくとも1種の形態のポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に付与して複合化する方法である。かかる方法において、複合化を行う場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は気相中あるいは液相中で分散していることが好ましい。
 気相中に分散させたポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いる方法とは、すなわち、粒子状、繊維状、フレーク状からなる群から選択される少なくとも1種の形態のポリフェニレンエーテルエーテルケトンオリゴマー(B)を気相に散布させ、該気相中に強化繊維基材(A’)を通過させる方法である。具体的には、流動床などでポリフェニレンエーテルエーテルケトンオリゴマー(B)が散布された中に、強化繊維基材(A’)を通過させる方法や、強化繊維基材(A’)に直接ポリフェニレンエーテルエーテルケトンオリゴマー(B)を散布する方法や、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を荷電させ、強化繊維基材(A’)に静電的に付着させる方法などが挙げられる。
 液相中に分散させたポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いる方法とは、すなわち、粒子状、繊維状、フレーク状からなる群から選択される少なくとも1種の形態のポリフェニレンエーテルエーテルケトンオリゴマー(B)を液相に分散または溶解させ、該液相中に強化繊維基材(A’)を通過させる方法である。なお、ここでの分散とは、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が二次凝集して1mm以上の粗大凝集体を形成することなく、後述する各形態での好ましいサイズの範囲内を維持することを意味する。かかるポリフェニレンエーテルエーテルケトンオリゴマー(B)を液相に分散または溶解させる方法には、特に制限はなく、撹拌装置を用いる方法、振動装置を用いる方法、超音波発生装置を用いる方法、噴流装置を用いる方法などが例示できる。なお、分散状態もしくは溶解状態を維持する観点で、強化繊維基材(A’)を通過させる液相でも、これらの方法を用いることがより好ましい。
 ここで用いる液相とは、水もしくは有機溶媒が挙げられるが、経済性、生産性の観点から、純水または工業用水を用いることがより好ましい。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の分散を補助する目的で、アニオン性、カチオン性、非イオン性の各種界面活性剤を併用してもよい。界面活性剤の使用量は、特に制限はないが、0.01~5重量%が好ましい範囲として例示できる。
 また、液相を用いた複合化の方法において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のとりわけ好ましい形態は、エマルジョンまたはディスパージョンである。このときの分散性の観点から、平均粒径は0.01~100μmが好ましく、0.05~50μmがより好ましく、0.1~20μmがさらに好ましい。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)が粒子状である場合、粒子の加工性と取扱性の観点から、その平均粒径は50~300μmが好ましく、80~250μmがより好ましく、100~200μmがさらに好ましい。また、繊維状である場合、同様に、平均繊維径は0.5~50μmが好ましく、1~30μmがより好ましく、5~20μmがさらに好ましい。平均繊維長は特に制限はないが、1~10mmが好ましい範囲として例示できる。また、フレーク状である場合、前記粒子状と同様の厚みを有し、厚みの5~100倍の長さを有することが好ましい。
 なお、平均粒径は、レーザ回折/散乱式粒度分布測定装置などを用いて測定することができる。平均繊維径、平均繊維長やフレーク状の厚みや長さは光学顕微鏡を用いて測定するこができる。なお、光学顕微鏡を用いて、平均繊維径、平均繊維長やフレーク状の厚みや長さの測定を行うに際し、20~100倍に拡大し、任意の400点について測定した平均値を求めればよい。
 また、液相に有機溶媒を用いる場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱による重合の阻害や、生成されるポリフェニレンエーテルエーテルケトン(B’)の分解や架橋など好ましくない副反応を実質的に引き起こさないものであれば特に制限はなく、例えば、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、アセトン、メチルエチルケトン、ジエチルケトン、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフラン、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、ジクロルエタン、テトラクロルエタン、クロルベンゼン、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ベンゼン、トルエン、キシレンなどがあげられる。また、二酸化炭素、窒素、水等の無機化合物を超臨界流体状態として溶媒に用いることも可能である。これらの溶媒は1種類または2種類以上の混合物として使用することができる。
 具体的には、水槽中にポリフェニレンエーテルエーテルケトンオリゴマー(B)のエマルジョンやディスパージョンを供給し、該水槽中に強化繊維基材(A’)を通過させる方法や、さらに該水槽中に噴流を用いながら強化繊維基材(A’)を通過される方法や、強化繊維基材(A’)に直接、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のエマルジョンやディスパージョンを噴霧する方法などが挙げられる。
 さらに、液相を用いた複合化の方法では、強化繊維基材(A’)を通過させた後、用いた水または有機溶媒を除去(脱液)することが、生産上、より好ましい。例えば、エアブロー、熱風乾燥、吸引濾過などの方法が例示できる。このとき、複合体の水または有機溶媒の脱液率は、特に制限はないが、50~100%が好ましく、70~100%がより好ましく、90~100%がさらに好ましい。また、脱液後の液相は、回収循環され、再利用されることが、生産上および環境上、とりわけ好ましい。ここで、脱液率は、脱液操作前後の複合体の質量差から容易に求めることができる。
 [C2]フィルム状、シート状、不織布状からなる群から選択される少なくとも1種の形態のポリフェニレンエーテルエーテルケトンオリゴマー(B)を、強化繊維基材(A’)に付与して複合化する方法である。ここで、フィルム状とは平均厚みが200μm以下の厚さのものを言い、シート状とは平均厚みが200μmを超えるものを言う。不織布状とは繊維シート状、ウェブ状で、繊維が一方向またはランダムに配向しており、交絡、融着、接着のいずれかによって繊維間が結合されたものを言う。なお、平均厚みは、シートもしくはフィルムを複数枚重ね、任意の10点をノギスで測定し、得られた厚みを重ねた枚数で除することで求めることができる。
 具体的には、強化繊維基材(A’)をコンベアに移動させ、その片面または両面にフィルム状のポリフェニレンエーテルエーテルケトンオリゴマー(B)をホットローラーで積層する方法や、不織布状のポリフェニレンエーテルエーテルケトンオリゴマー(B)をパンチングで固定する方法や、強化繊維基材(A’)と不織布状のポリフェニレンエーテルエーテルケトンオリゴマー(B)をエアジェットで絡合する方法などが例示できる。
 また、経済性、生産性の観点から、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は、フィルム状、シート状、不織布状のいずれの形態であってもロール加工されていることが好ましい。ポリフェニレンエーテルエーテルケトンオリゴマー(B)が単独でロール加工困難な場合、各形態に加工後に離型紙上に塗布して、ロール加工することが、好ましい方法の1つとして例示できる。
 [C3]加熱溶融させたポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に付与して複合化する方法である。ここでの加熱溶融には、押出機、溶融バスなどの装置を用いることができるが、スクリュウ、ギアポンプ、プランジャーなどの溶融したポリフェニレンエーテルエーテルケトンオリゴマー(B)を移送する機能を具備していることが好ましい。
 具体的には、押出機を用いてポリフェニレンエーテルエーテルケトンオリゴマー(B)を溶融させつつ、Tダイやスリットダイなどの金型ダイに供給し、該金型ダイ中に強化繊維基材(A’)を通過させる方法や、同様にギアポンプにて溶融バスに供給し、該溶融バス内で強化繊維基材(A’)をしごきながら通過させる方法や、プランジャーポンプで溶融させたポリフェニレンエーテルエーテルケトンオリゴマー(B)をキスコーターに供給し、強化繊維基材(A’)にポリフェニレンエーテルエーテルケトンオリゴマー(B)の溶融物を塗布する方法や、同様に、加熱した回転ロールの上に溶融させたポリフェニレンエーテルエーテルケトンオリゴマー(B)を供給し、このロール表面に強化繊維基材(A’)を通過させる方法が例示できる。
 また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を溶融させる工程は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合をなるべく起こさないような温度を設定するのが好ましい。溶融混合物を得る工程および、溶融混合物を含浸させる工程の温度は160~340℃、好ましくは180~320℃、より好ましくは200~300℃、特に好ましくは230~270℃である。この好ましい温度であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を短時間で溶融できる一方、ポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
 さらに、工程[II]では、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)からなる複合体を160~340℃、好ましくは180~320℃、より好ましくは200~300℃、特に好ましくは230~270℃に加熱する工程を含むことが好ましい。この加熱工程により、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が軟化もしくは溶融し、強化繊維基材(A’)により強固に定着でき、生産性を高めるのに有利である。この好ましい加熱温度であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を短時間で溶融できる一方、ポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
 さらに、加熱工程と同時に、または直後に加圧力を付与することで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が強化繊維基材(A’)に含浸する効果が得られ、とりわけ好ましい。このときの加圧力は、生産性の観点から、0.1~5MPaが好ましく、0.3~4MPaがより好ましく、0.5~3MPaがさらに好ましい。
 具体的には、加熱したチャンバー内に複数の加圧ローラーを配置し複合体を通過させる方法や、同様にカレンダーロールを上下に配置し複合体を通過させる方法や、ホットローラーを用いて加熱と加圧を同時に行う方法が例示できる。
 また、重合触媒(D)を用いる場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)への分散性の観点から、工程[II]において重合触媒(D)を添加することが好ましい。この際、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる混合物を、前記した、粒子状、繊維状、フレーク状、フィルム状、シート状、不織布状および加熱溶融させた状態に加工して用いればよい。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)との混合物を得る方法に、特に制限は無いが、ポリフェニレンエーテルエーテルケトンオリゴマー(B)に重合触媒(D)を添加した後、均一に分散させることが好ましい。均一に分散させる方法として、例えば機械的に分散させる方法が挙げられる。機械的に分散させる方法として、具体的には粉砕機、撹拌機、混合機、振とう機、乳鉢を用いる方法などが例示できる。また、重合触媒(D)の分散に際して、より均一な分散が可能となるため重合触媒(D)の平均粒径は1mm以下であることが好ましい
<工程[III]>
 工程[III]は、前記工程[II]で得られた強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)からなる複合体を加熱して、ポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる工程である。特に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合触媒(D)存在下で加熱することで重合させ、ポリフェニレンエーテルエーテルケトン(B’)に転化させることが好ましい。
 加熱重合の際の温度の下限としては、160℃以上が例示でき、好ましくは200℃以上、より好ましくは230℃以上、さらに好ましくは270℃以上である。この温度範囲では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が溶融し、短時間でポリフェニレンエーテルエーテルケトン(B’)を得ることができる傾向にある。
 一方、加熱重合の際の温度の上限としては、450℃以下が例示でき、好ましくは400℃以下、より好ましくは350℃以下、さらに好ましくは300℃以下である。この温度範囲以下では、好ましくない副反応によるポリフェニレンエーテルエーテルケトン(B’)の特性への悪影響を抑制できる傾向にある。
 さらに、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、重合により得られるポリフェニレンエーテルエーテルケトン(B’)の融点以下の温度で重合することも可能である。かかる温度範囲では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)が結晶化重合することで、通常に比べて結晶化度、ひいては融解エンタルピーの大きいポリフェニレンエーテルエーテルケトン(B’)をマトリクス樹脂とする成形材料が得られる。
 工程[III]での重合が完結するまでの反応時間は、短いほど、工程長を短くすることができたり、または引き取り速度を高めることができたりするなど、生産性、経済性に優れるため好ましい。反応時間としては60分以下が好ましく、10分以下がより好ましく例示できる。反応時間の下限については、特に制限はなく、例えば、0.05分以上が例示できる。
 また、工程[III]では、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合において、架橋反応や分解反応などの好ましくない副反応の発生を抑制する観点から、非酸化性雰囲気下で加熱することが好ましい。ここで、非酸化性雰囲気とは酸素濃度が5体積%以下、好ましくは2体積%以下、さらに好ましくは酸素を含有しない雰囲気、すなわち、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であることを指し、この中でも特に経済性および取り扱いの容易さの面から、窒素雰囲気が好ましい。
 同様に、工程[III]では、減圧下で加熱することが好ましい。ここでは、反応系内の雰囲気を一度、非酸化性雰囲気としてから、減圧条件に調整することがより好ましい。ここでの減圧下とは、反応系内が大気圧よりも低いことを指し、好ましくは0.1~50kPaであり、0.1~10kPaがさらに好ましい。
 さらに、工程[III]では、加熱させると同時に、または加熱させた後に加圧力を付与する工程を含むことが好ましい。強化繊維基材(A’)へのポリフェニレンエーテルエーテルケトンオリゴマー(B)およびポリフェニレンエーテルエーテルケトン(B’)の含浸をより高めることができるため好ましい。ここでの加圧力としては、含浸性と生産性のバランスの観点から、0.1~10MPaが好ましく、0.2~5MPaがより好ましく、2~6MPaがさらに好ましい。圧力がこの好ましい範囲であると、成形材料中、ひいては得られる成形品中に多数のボイドが発生することはない一方、強化繊維基材(A’)の配列が大きく乱れることもない。
 具体的には、窒素置換された系内で、ダブルベルトプレスにより上下から加圧力を付与しながら複合体を通過させる方法や、窒素置換された加熱炉内で、複数配置されたカレンダーロールに複合体を加圧しながら通過させる方法や、複合体を高温のプレス型に配置し、プレス型間を密封して加圧すると同時に型内を窒素置換、そして減圧条件として重合完了後にプレス型間を開放して複合体を引き抜く方法が例示できる。また、これらの装置は、含浸性を向上させる目的で、組み合わせて使用しても良く、長さを稼ぐ目的でライン方向を葛折り状にしても良く、また装置を通過した複合体を折り返して使用し、複数回同じ装置をループさせても良い。
<工程[IV]>
 工程[IV]は前記工程[III]で得られた複合体を冷却し、引き取る工程である。冷却する方法は、特に制限はなく、エアを噴射して冷却する方法や、冷却水を噴霧する方法や、冷却バスを通過させる方法や、冷却板の上を通過させる方法などが使用できる。
 成形材料の製造がオンラインであった場合、引き取り速度は、経済性、生産性に直接影響するため、高いほど好ましい。引き取り速度としては、1~100m/分が好ましく、5~100m/分がより好ましく、10~100m/分がさらに好ましい。
 具体的には、ニップローラーで引き出す方法や、ドラムワインダーで巻き取る方法や、固定治具で基材を把持して治具ごと引き取る方法が例示できる。また、引き取る際に、基材をスリッターに通して一部を切断してもよいし、ギロチンカッターなどで所定の長さにシート加工してもよいし、ストランドカッターなどで一定長に切断してもよいし、ロール形状のままとしてもよい。
 なお、本発明の成形材料の製造方法には、その効果を損なわない範囲内で、他の工程を組み合わせることができる。例えば、電子線照射工程、プラズマ処理工程、強磁場付与工程、表皮材積層工程、保護フィルムの貼付工程、アフターキュア工程などが挙げられる。
 本発明の成形材料の製造方法で得られる成形材料は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)から構成される。
 このうち、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)の合計が100重量%とした際の、強化繊維基材(A’)の含有量は10重量%以上が好ましく、30重量%以上がより好ましく、60重量%以上がさらに好ましく、70重量%以上が特に好ましい。強化繊維基材(A’)が10重量%未満では、得られる成形品の力学特性が不十分となる場合がある。一方、強化繊維基材(A’)の含有量の上限については特に制限は無いが、90重量%以下が好ましく、80重量%以下がより好ましく、70重量%以下がさらに好ましい。強化繊維基材(A’)が90重量%より大きい場合、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への含浸が困難となる場合がある。なお、本発明の成形材料における、強化繊維基材(A’)の含有量は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の供給量を制御することで調節できる。
 さらに、重合触媒(D)を含む場合、その含有量は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である次式の繰り返し単位1モルに対して、0.001~20モル%、好ましくは0.005~15モル%、さらに好ましくは0.01~10モル%である。
Figure JPOXMLDOC01-appb-C000007
 これらの割合は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の供給量を制御することで容易に実施できる。例えば、強化繊維基材(A’)の供給量は、工程[IV]での引き取り速度で調整することができ、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の供給量は、工程[II]で定量フィーダーなどを用いて供給量を調整することができる。さらに重合触媒(D)の供給量は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)への添加量を調整することで、成形材料中での添加量も調整できる。
 また、本発明の製造方法では、成形材料の用法や目的に応じて、含浸率の異なった成形材料を製造することができる。たとえば、より含浸性を高めたプリプレグや、半含浸でのセミプレグ、含浸性の低いファブリックなどである。一般的に、含浸性の高い成形材料ほど、短時間の成形で力学特性に優れる成形品が得られる傾向がある。一方、含浸性が比較的低い成形材料では、ドレープ性に優れ、曲面形状などへの賦形に優れる傾向がある。
 従って、本発明で得られる成形材料において、ポリフェニレンエーテルエーテルケトン(B’)の含浸率についての第1の好ましい態様は、かかる含浸率が80%以上、100%以下である成形材料である。これは、より単純な平面形状の成形品を生産性良く製造する観点で優れている。
 また、本発明で得られる成形材料において、ポリフェニレンエーテルエーテルケトン(B’)の含浸率についての第2の好ましい態様は、かかる含浸率が20%以上、80%未満である成形材料である。これは、ドレープ性に優れる成形材料であって、成形材料を成形型に合わせてあらかじめ賦形できるため、曲面形状のような比較的複雑な成形品を生産性良く製造する観点で優れている。
 なお、ここで言うポリフェニレンエーテルエーテルケトン(B’)の含浸率とは、成形材料の断面を、光学顕微鏡を用いて観察し、含浸しているポリフェニレンエーテルエーテルケトン(B’)の面積を、該面積とボイド(空隙)の面積の合計で除した割合(%)で表される。
 なお、光学顕微鏡を用いて、それぞれの面積の測定を行うに際し、20~100倍に拡大し、任意の20個の像について測定した平均値を求めればよい。
 含浸率を制御する方法としては、工程[II]でのポリフェニレンエーテルエーテルケトンオリゴマー(B)を複合化する際の温度や加圧力、工程[III]でのポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる際の温度や加圧力などが例示できる。通常、前記温度や加圧力が高いほど、含浸率を高める効果がある。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の形態がより微細化するほど含浸性を高めることができる。
<成形材料の成形方法>
 本発明によって得られた成形材料は、任意の構成で1枚以上積層後、熱及び圧力を付与しながら成形することで成形品が得られる。
 熱及び圧力を付与する方法としては、任意の構成で積層した成形材料を型内もしくはプレス板上に設置した後、型もしくはプレス板を閉じて加圧するプレス成形法、任意の構成で積層した成形材料をオートクレーブ内に投入して加圧・加熱するオートクレーブ成形法、任意の構成で積層した成形材料をフィルムなどで包み込み、内部を減圧にして大気圧で加圧しながらオーブン中で加熱するバッギング成形法、任意の構成で積層した成形材料に張力をかけながらテープを巻き付け、オーブン内で加熱するラッピングテープ法、任意の構成で積層した成形材料を型内に設置し、同じく型内に設置した中子内に気体や液体などを注入して加圧する内圧成形法等が使用される。とりわけ、得られる成形品内のボイドが少なく、外観品位にも優れる成形品が得られることから、金型を用いてプレスする成形方法が好ましく例示できる。
 成形時の加熱温度の範囲としては、160~450℃、より好ましくは230~430℃、さらに好ましくは270~400℃が例示できる。成形時の加熱温度がこの好ましい範囲であると、ポリフェニレンエーテルエーテルケトン(B’)が溶融しやすい一方、ポリフェニレンエーテルエーテルケトン(B’)の熱劣化が進み難い。
 なお、ここでの成形時の加熱温度の測定方法は、例えば金型を用いて成形を行う成形方法の場合は、金型の表面温度を熱伝対などの温度計で測定する方法が例示できる。
 成形時の圧力の範囲としては、0.1~10MPaが好ましく、0.2~5MPaがより好ましい範囲として例示できる。成形時の圧力がこの好ましい範囲であると、成形材料中、ひいては得られる成形品中に多数のボイドが発生することはない一方、強化繊維基材(A’)の配列が大きく乱れることもない。
 成形時に加熱加圧する時間の範囲としては、特に制限はないが、0.001~1,000分、好ましくは0.01~300分、より好ましくは0.1~60分、さらに好ましくは0.3~30分、特に好ましくは0.5~10分となる。含浸時間がこの好ましい範囲であると、ポリフェニレンエーテルエーテルケトン(B’)の溶融が十分となる一方、成形材料の生産も効率的に行うことができる。
 本発明によって得られた成形材料は、インサート成形、アウトサート成形などの一体化成形も容易に実施できる。さらに、成形後にも加熱による矯正処置や、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法を活用することもできる。
<成形品>
 本発明によって得られた成形材料を用いた成形品は、耐熱性、機械特性、難燃性、耐薬品性などに優れる。また、マトリックス樹脂が熱可塑性樹脂であるため、加熱などにより樹脂を可塑化できるのでリサイクルやリペアが容易な成形品となる。成形品としては、スラストワッシャー、オイルフィルター、シール、ベアリング、ギア、シリンダーヘッドカバー、ベアリングリテーナ、インテークマニホールド、ペダル等の自動車部品、シリコンウエハーキャリアー、ICチップトレイ、電解コンデンサートレイ、絶縁フィルム等の半導体・液晶製造装置部品、ポンプ、バルブ、シール等のコンプレッサー部品や航空機のキャビン内装部品といった産業機械部品、滅菌器具、カラム、配管等の医療器具部品や食品・飲料製造設備部品が挙げられる。また、本発明の成形材料は、流動性に優れるため成形品の厚みが0.5~2mmといった薄肉の成形品を比較的容易に得ることができる。このような薄肉成形が要求されるものとしては、例えばパーソナルコンピューター、携帯電話などに使用されるような筐体や、パーソナルコンピューターの内部でキーボードを支持する部材であるキーボード支持体に代表されるような電気・電子機器用部材が挙げられる。このような電気・電子機器用部材では、強化繊維に導電性を有する炭素繊維を使用した場合に、電磁波シールド性が付与されるためにより好ましい。
<第1の繊維強化複合材料の製造方法>
 本発明の第1の繊維強化複合材料の製造方法は、RTM(Resin Transfer Molding)法であり、強化繊維基材(A’)を成形型に配置する工程(I-1)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融させて溶融液とする工程(II-1)、該工程(I-1)の成形型に該工程(II-1)で得られた溶融液を注入して、該成分(B)を該成分(A’)に含浸させる工程(III-1)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-1)を有し、さらに、工程(II-1)において用いるポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点が270℃以下であることを特徴とする。
 ここで、工程(I-1)は、強化繊維基材(A’)を成形型に配置する工程である。成形型は剛体からなるクローズドモールドを用いることが好ましい。成形型の材料としては、金属(スチール、アルミニウム、INVARなど)、繊維強化複合材料など既存の各種のものが用いられる。
 ここで、強化繊維基材(A’)は賦形性の観点から、織物(クロス)、不織布、マット、編み物が好ましく用いられる。強化繊維基材(A’)の形状は、平面状であっても、凹凸形状を有していても良く、これらを単独、または複数組み合わせて配置しても良い。とりわけ、凹凸形状を有する繊維強化複合材料を目的とする場合は、強化繊維基材(A’)を成形型の意匠面に合わせて賦形したプリフォームが好ましく用いられる。
 工程(II-1)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融させて溶融液とする工程である。ここでの加熱溶融には、溶融バスなどの装置を用いることができるが、スクリュウ、ギアポンプ、プランジャーなどの溶融したポリフェニレンエーテルエーテルケトンオリゴマー(B)を移送する機能を具備していることが好ましい。
 工程(III-1)は、工程(I-1)の成形型に工程(II-1)で得られた溶融液を注入して、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に含浸させる工程である。
 剛体からなるクローズドモールドを用いる場合は、加圧により型締めした成形型に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の溶融液を加圧して注入することが通常行われる。このとき、注入口とは別に吸引口を設け、真空ポンプなどの手段により吸引することも可能である。吸引を行い、特別な加圧手段を用いず、大気圧のみでポリフェニレンエーテルエーテルケトンオリゴマー(B)の溶解液を注入することも可能である。
 工程(IV-1)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程である。
 加熱重合の際の温度としては、前記したポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合温度が好ましく用いられる。とりわけ、重合後に成形品を脱型する際に、成形型の冷却工程を簡略化できることから、前記結晶化重合が起こる条件が好ましく用いられる。なお、ここでの加熱温度の測定方法は、例えば成形型の表面温度を熱伝対などの温度計で測定する方法が例示できる。
 工程(IV-1)での重合が完結するまでの反応時間は、短いほど生産性、経済性に優れるため好ましい。反応時間としては60分以下が好ましく、10分以下がより好ましく例示できる。反応時間の下限については、特に制限はなく、例えば、0.05分以上が例示できる。
 なお、前記はRTM法の一例を示したものであり、本発明の繊維強化複合材料の製造方法はこれに限定されるものではない。
 また、本発明の第1の繊維強化複合材料の製造方法では、成形型内に、強化繊維基材(A’)以外に、フォームコア、ハニカムコア、金属部品などを設置し、これらと一体化させた繊維強化複合材料を得ることも可能である。特にフォームコアやハニカムコアの両面に強化繊維基材(A’)を配置して成形して得られるサンドイッチ構造体は、軽量で、曲げ剛性に優れるので有用である。
 さらに、強化繊維基材(A’)を成形型内への配置に先立って、成形型の表面にゲルコートを塗布することも可能である。
<第2の繊維強化複合材料の製造方法>
 本発明の第2の繊維強化複合材料の製造方法は、いわゆるフィラメントワインディング成形法であり、強化繊維基材(A’)を引き出し、連続的に供給する工程(I-2)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-2)、該工程(II-2)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させ、得られた複合体をマンドレルに巻きつける工程(III-2)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-2)を有し、さらにポリフェニレンエーテルエーテルケトン(B)の融点が270℃以下であることを特徴とする。
 ここで、工程(I-2)は、強化繊維基材(A’)を引き出し、連続的に供給する工程である。連続的とは、原料となる強化繊維基材(A’)を完全に切断せずに持続的に供給することを意味し、供給速度は一定であってもよいし、間欠的に供給と停止を繰り返してもよい。
 ここで、強化繊維基材(A’)は生産性の観点から、強化繊維束が好ましく用いられる。さらに強化繊維基材(A’)を開繊させて供給することがより好ましい。ここで言う、開繊とは収束された強化繊維基材(A’)を分繊させる操作であり、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸性をさらに高める効果が期待できる。強化繊維基材(A’)の開繊方法としては、特に制限はなく、例えば凹凸ロールを交互に通過させる方法、太鼓型ロールを使用する方法、軸方向振動に張力変動を加える方法、垂直に往復運動する2個の摩擦体による強化繊維基材(A’)の張力を変動させる方法、強化繊維基材(A’)にエアを吹き付ける方法を利用できる。
 工程(II-2)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程である。ここでの含浸槽は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融して溶融液とし、さらに所定時間貯蔵する為の加熱源を具備すること、および強化繊維基材(A’)を溶融液に浸漬させ、引き取る操作を連続的に行える機構を具備することが好ましい。
 工程(III-2)は、工程(II-2)の含浸槽に強化繊維基材(A’)を連続的に通し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に含浸させ、得られた複合体をマンドレルに巻きつける工程である。ここで得られた複合体は、マンドレルにその軸方向に対して種々の角度で螺旋状に巻きつける。次に表面を表層材などで巻締め、余剰の樹脂を搾り出しても良い。
 工程(IV-2)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程である。加熱装置としては、オーブン等が好ましく使用でき、工程(III-2)において複合体を巻きつけたマンドレルを加熱し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させる方法が好ましく例示できる。
 加熱重合の際の温度としては、前記したポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合温度が好ましく用いられる。なお、ここでの加熱温度の測定方法は、例えばオーブン内の雰囲気温度を熱伝対などの温度計で測定する方法が例示できる。
 工程(IV-2)での重合が完結するまでの反応時間は、短いほど生産性、経済性に優れるため好ましい。反応時間としては60分以下が好ましく、10分以下がより好ましく例示できる。反応時間の下限については、特に制限はなく、例えば、0.05分以上が例示できる。
 なお、前記はフィラメントワインディング法の一例を示したものであり、本発明の繊維強化複合材料の製造方法はこれに限定されるものではない。
 また、本発明の第2の繊維強化複合材料の製造方法では、円筒状の繊維強化複合材料を容易に得ることが可能である。この為、自動車用プロペラシャフト、CNGタンク、フライトホイールをはじめとした各種産業用途機械部品や、ゴルフシャフトと釣竿などのスポーツ・レジャー製品に好適である。
<第3の繊維強化複合材料の製造方法>
 本発明の第3の繊維強化複合材料の製造方法は、いわゆる引き抜き成形法であり、強化繊維基材(A’)を引き出し、連続的に供給する工程(I-3)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-3)、該工程(II-3)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させた複合体を得る工程(III-3)、得られた複合体を金型に通して連続的に引き抜き成形することで、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-3)を有し、さらにポリフェニレンエーテルエーテルケトン(B)の融点が270℃以下であることを特徴とする。
 ここで、工程(I-3)は、強化繊維基材(A’)を引き出し、連続的に供給する工程である。連続的とは、原料となる強化繊維基材(A’)を完全に切断せずに持続的に供給することを意味し、供給速度は一定であってもよいし、間欠的に供給と停止を繰り返してもよい。
 ここで、強化繊維基材(A’)は生産性の観点から、一方向配列基材が好ましく用いられる。具体的には、複数の強化繊維束を一方向に配列させてシート状にして、さらにロールバーを通過させて製造ラインに供給する方法などが好ましく用いられる。
 さらに強化繊維基材(A’)を開繊させて供給することがより好ましい。ここで言う、開繊とは収束された強化繊維基材(A’)を分繊させる操作であり、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸性をさらに高める効果が期待できる。強化繊維基材(A’)の開繊方法としては、特に制限はなく、例えば凹凸ロールを交互に通過させる方法、太鼓型ロールを使用する方法、軸方向振動に張力変動を加える方法、垂直に往復運動する2個の摩擦体による強化繊維基材(A’)の張力を変動させる方法、強化繊維基材(A’)にエアを吹き付ける方法を利用できる。
 工程(II-3)は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程である。ここでの含浸槽は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融して溶融液とし、さらに所定時間貯蔵する為の加熱源を具備すること、および強化繊維基材(A’)を溶融液に浸漬させ、引き取る操作を連続的に行える機構を具備することが好ましい。
 工程(III-3)は、工程(II-3)の含浸槽に強化繊維基材(A’)を連続的に通し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に含浸させた複合体を得る工程である。
 さらに、工程(II-3)で得られた複合体は、工程(III-3)の金型に通す前に、スクイーズダイを通しても良い。ここで言う、スクイーズダイとは、含浸槽を通過した後の強化繊維基材(A’)から過剰の溶融液を掻き取る為の冶具である。スクイーズダイの形状は過剰の溶融液を掻き取ることができれば特に制限は無いが、引き抜き方向と垂直な断面の形状が円形、長方形、正方形などが挙げられる。スクイーズダイの材質に特に制限は無いが、金属、プラスチック、セラミックなどが好ましい例として挙げられる。
 工程(IV-3)は、得られた複合体を金型に通して連続的に引き抜き成形することで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程である。
 ここで用いられる金型としては、形状が最終的に所望する繊維強化複合材料の形状に対応した、断面形状であれば、特に制限は無く、例えば、断面形状が円形、楕円形、長方形、正方形、L字、U字などが挙げられる。また、金型の材質としては、スチール、アルミニウム、INVARなどが挙げられる。
 加熱重合の際の温度としては、前記したポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合温度が好ましく用いられる。なお、ここでの加熱温度の測定方法は、例えば金型の表面温度を熱伝対などの温度計で測定する方法が例示できる。
 工程(IV-3)での重合が完結するまでの反応時間は、短いほど生産性、経済性に優れるため好ましい。反応時間としては60分以下が好ましく、10分以下がより好ましく例示できる。反応時間の下限については、特に制限はなく、例えば、0.05分以上が例示できる。
 本発明において得られる繊維強化複合材料を引き抜く方法としては、特に制限は無いが、例えば、ニップローラーやベルトコンベヤーで引き出す方法や、ドラムワインダーで巻き取る方法などが例示できる。
 また、前記した引き抜き操作の前に、得られた繊維強化複合材料を冷却しておくことが好ましい。冷却方法は、特に制限は無いが、冷却装置を具備したローラーに接触させながら通過させる方法や、冷却板に接触させながら通過させる方法や、冷却バスの中を通過させる方法が例示できる。とりわけ加圧力を付与できる為、冷却装置を具備したローラーに接触させながら通過させる方法が好ましく用いられる。
 なお、前記は引き抜き成形法の一例を示したものであり、本発明の繊維強化複合材料の製造方法はこれに限定されるものではない。
 また、本発明の第3の繊維強化複合材料の製造方法では、長尺の繊維強化複合材料を容易に得ることが可能である。この為、建築物や車両、航空機の補強材として好適に用いられる。
 本発明の繊維強化複合材料の製造方法には、その効果を損なわない範囲内で、他の工程を組み合わせることができる。例えば、電子線照射工程、プラズマ処理工程、強磁場付与工程、表皮材積層工程、保護フィルムの貼付工程、アフターキュア工程などが挙げられる。
<ポリフェニレンエーテルエーテルケトンオリゴマー(B)を溶融液とする工程>
 本発明の繊維強化複合材料の製造方法において、工程(II-1)、(II-2)または、(II-3)において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は加熱溶融により溶融液とする必要がある。加熱溶融させて溶融液とする温度は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の加熱重合をなるべく起こさないような温度を設定するのが好ましい。かかる温度の範囲としては、160~340℃、好ましくは180~320℃、より好ましくは200~300℃、特に好ましくは230~270℃が例示できる。また、この温度範囲であれば、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の溶融粘度を10Pa・s以下に調整することができ、強化繊維基材(A’)への含浸が容易となる。この好ましい温度範囲であると、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を短時間で溶融できる一方、ポリフェニレンエーテルエーテルケトン(B’)の生成による粘度上昇が起こり難い。
<繊維強化複合材料>
 本発明において得られる繊維強化複合材料は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)から構成される。
 このうち、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)の合計が100重量%とした際の、強化繊維基材(A’)の含有量は10重量%以上が好ましく、30重量%以上がより好ましく、60重量%以上がさらに好ましく、70重量%以上が特に好ましい。一方、強化繊維基材(A’)の含有量の上限については特に制限は無いが、90重量%以下が好ましく、80重量%以下がより好ましく、70重量%以下がさらに好ましい。強化繊維基材(A’)の含有量がこの好ましい範囲であると、得られる成形品の力学特性が十分である一方、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への含浸が容易である。なお、本発明で得られる繊維強化複合材料における、強化繊維基材(A’)の含有量は、強化繊維基材(A’)と、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の供給量を制御することで調節できる。
 さらに、重合触媒(D)を含む場合、その含有量は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である次式の繰り返し単位1モルに対して、0.001~20モル%、好ましくは0.005~15モル%、さらに好ましくは0.01~10モル%である。
Figure JPOXMLDOC01-appb-C000008
 重合触媒(D)の供給量は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)への添加量を調整することで、繊維強化複合材料中での添加量も調整できる。
 本発明において得られる繊維強化複合材料は、ボイド率が小さいことが好ましい。かかるボイド率としては、0~20%が好ましい範囲として例示できる。かかる範囲とすることで、力学特性に優れる繊維強化複合材料が得られる。
 なお、ここで言う繊維強化複合材料のボイド率とは、繊維強化複合材料の断面を、光学顕微鏡を用いて観察し、ボイド(空隙)の面積を、観察した面積の合計で除した割合(%)で表される。
 なお、光学顕微鏡を用いて、それぞれの面積の測定を行うに際し、20~100倍に拡大し、任意の20個の像について測定した平均値を求めればよい。
 また本発明の繊維強化複合材料の製造方法において、工程(IV-1)、(IV-2)または、(IV-3)において、ポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合反応を160~330℃、好ましくは200~300℃の温度範囲で行うことにより、前述した結晶化重合を進行させることが可能となる。かかる条件に調整することにより、繊維強化複合材料の冷却工程を短縮できるなど、生産性の面で好ましい。
 本発明において得られる繊維強化複合材料は、インサート成形、アウトサート成形などの一体化成形に用いることができる。さらに、加熱による矯正処置や、熱溶着、振動溶着、超音波溶着などの生産性に優れた接着工法を活用することもできる。
 本発明において得られる繊維強化複合材料は、マトリックス樹脂がポリフェニレンエーテルエーテルケトンであるため、耐熱性、機械特性、難燃性、耐薬品性などに優れたものとなる。また、マトリックス樹脂が熱可塑性のポリフェニレンエーテルエーテルケトンであるため、加熱などにより樹脂を可塑化できるのでリサイクルやリペアが容易な成形品となる。
 用途としては、スラストワッシャー、オイルフィルター、シール、ベアリング、ギア、シリンダーヘッドカバー、ベアリングリテーナ、インテークマニホールド、ペダル等の自動車部品、シリコンウエハーキャリアー、ICチップトレイ、電解コンデンサートレイ、絶縁フィルム等の半導体・液晶製造装置部品、ポンプ、バルブ、シール等のコンプレッサー部品や航空機のキャビン内装部品といった産業機械部品、滅菌器具、カラム、配管等の医療器具部品や食品・飲料製造設備部品が挙げられる。
 以下に実施例を示し、本発明をさらに具体的に説明する。
 本発明に使用した評価方法を下記する。
(1)環式ポリフェニレンエーテルエーテルケトンの定量
 高速液体クロマトグラフィーによって、ポリフェニレンエーテルエーテルケトンオリゴマー(B)中の環式ポリフェニレンエーテルエーテルケトンの定量を行った。測定条件を下記する。
 装置:島津株式会社製 LC-10Avpシリーズ
 カラム:Mightysil RP-18GP150-4.6
 検出器:フォトダイオードアレイ検出器(UV=270nmを使用)
 カラム温度:40℃
 サンプル:0.1重量%THF溶液
 移動相:THF/0.1w%トリフルオロ酢酸水溶液。
(2)示差走査型熱量測定装置
 JIS K 7121 (1987)に準拠し、示差走査型熱量測定装置、DSCシステムTA3000(メトラー社製)を用い、昇温速度10℃/分で測定し、融解ピーク温度を融点とし、融解ピーク面積から融解エンタルピーを求めた。
(3)赤外分光分析装置
 下記条件により、赤外分光における吸収スペクトルの測定を行った。
 装置:Perkin Elmer System 2000 FT-IR
 サンプル調製:KBr法。
(4)粘度測定
 下記条件により、還元粘度の測定を行った。
 粘度計:オストワルド型粘度計
 溶媒:98重量%硫酸
 サンプル濃度:0.1g/dL(サンプル重量/溶媒容量)
 測定温度:25℃
 還元粘度計算式:η={(t/t)-1}/C
 t:サンプル溶液の通過秒数
 t:溶媒の通過秒数
 C:溶液の濃度
(5)成形材料の生産性評価
 得られた成形材料の形状を目視で観察し、不良品(樹脂の割れ、強化繊維の素抜け)を測定した。測定は、得られた成形材料から20gを無作為に抽出し、その内の不良品の総数に当たる不良品率を判断基準とし、以下の3段階で評価し、fair以上を合格とした。
 good:不良品率が1個/20g未満である。成形材料の生産性に特に優れる。
 fair:不良品率が1個/20g以上、5個/20g未満である。成形材料の生産性に優れる。
 bad :不良品率が5個/20g以上である。成形材料の生産性に劣る。
(6)成形材料を用いて得られた成形品に含まれる強化繊維の平均繊維長
 成形品の一部を切り出し、400℃で加熱プレスし、30μm厚のフィルムを得た。得られたフィルムを光学顕微鏡にて150倍に拡大観察し、フィルム内で分散した繊維を観察した。その長さを1μm単位まで測定して、次式により重量平均繊維長(Lw)および数平均繊維長(Ln)を求めた。
 重量平均繊維長(Lw)=Σ(Li×Wi/100)
 数平均繊維長(Ln)=(ΣLi)/Ntotal
 Li:測定した繊維長さ(i=1、2、3、・・・、n)
 Wi:繊維長さLiの繊維の重量分率(i=1、2、3、・・・、n)
 Ntotal:繊維長さを測定した総本数。
(7)成形材料を用いて得られた成形品の密度
 JIS K 7112 (1999)の5に記載のA法(水中置換法)に準拠し測定した。成形品から1cm×1cmの試験片を切り出し、耐熱性ガラス容器に投入し、この容器を80℃の温度で12時間真空乾燥し、吸湿しないようにデシケーターで室温まで冷却した。浸漬液にはエタノールを用いた。
(8)成形材料を用いて得られた成形品の外観評価
 射出成形によって得られた幅150mm×長さ150mm×厚み1.2mmの薄肉平板成形品の表面を目視観察し、強化繊維の分散性不良欠陥(浮き、膨れ)を測定した。測定は、20サンプルについて行い、分散不良欠陥箇所の総数をサンプル数で除した平均欠陥数を判断基準とし、以下の4段階で評価し、good以上を合格とした。
 excellent:全成形品に分散不良欠陥が全く見られない。表面外観に特に優れる。
 good:平均欠陥数が0個より多く、0.1個/枚未満である。表面外観に優れる。
 fair:平均欠陥数が0.1個/枚以上、0.5個/枚未満である。表面外観にやや劣る。
 bad :平均欠陥数が0.5個/枚以上である。表面外観に劣る。
(9)成形材料中の強化繊維基材(A’)の含有量の測定
 成形材料を20mm角に切り出し、80℃、100gのクロロホルムで5時間かけてポリフェニレンエーテルエーテルケトンオリゴマー(B)をソックスレー抽出した。残った残渣を乾燥させて、抽出前後の重量差から繊維重量含有率を算出した。測定n数は3とした。
(10)成形材料中のポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)の含浸率の評価
 成形材料の厚み方向断面を以下のように観察して測定した。成形材料をエポキシ樹脂で包埋したサンプルを用意し、成形材料の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。ここで得られたサンプルを用いて、成形材料の厚み×幅500μmの範囲を超深度カラー3D形状測定顕微鏡VK-9500(コントローラー部)/VK-9510(測定部)((株)キーエンス製)を使用して拡大倍率400倍で撮影した。撮影画像において、樹脂が占める部位の面積および、空隙(ボイド)となっている部位の面積を求め、次式により含浸率を算出した。
   含浸率(%)=100×(樹脂が占める部位の総面積)/{(樹脂が占める部位の総面積)+(空隙となっている部位の総面積)}
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)の含浸率の評価は、この含浸率を判断基準とし、以下の3段階で評価し、fair以上を合格とした。
 good:含浸率が80%以上、100%以下である。
 fair:含浸率が20%以上、80%未満である。
 bad :含浸率が20%未満である。
(11)成形材料のドレープ性の評価
 本発明でのドレープ性とは、成形材料を型に沿って変形させた場合に、成形材料の破壊や繊維の折損を伴うことなく、成形材料が型に柔軟に追随する度合いを表すものである。本発明においては、図12に示す評価冶具5を用いて評価を行った。冶具5は、長さaが100mm、高さbが100mm、ブロックコーナー角度dが90°であった。得られたプリプレグを長さ100mm×幅10mmにカットし、試験サンプル6とする。ここで、サンプルの長さ方向と、強化繊維基材(A’)の長手方向を揃えるものとする。図12に示すようにサンプルの一方の端に200gの重錘7を取り付け、もう一方の端と中間点を冶具12のクランプ8に固定し(固定部分cの長さ50mm)、重錘7が静止した状態での成形材料を観察する。各サンプルのドレープ性を下記基準に従い、4段階で評価を行った。
 excellent:成形材料の破壊、強化繊維の折損無く、90°の角度をなすブロック面に実質的に接する。(ドレープ性に特に優れる。)
 good:成形材料の破壊、強化繊維の折損無く、90°の角度をなすブロックコーナーで屈折している。さらに力を加えるとプリプレグの破壊、強化繊維の折損を伴うことなく、強制的にブロック面に接することができる。(ドレープ性に優れる。)
 fair:成形材料の破壊、強化繊維の折損無く、90°の角度をなすブロックコーナーで屈折している。さらに力を加えても、強制的にブロック面に接することができない、もしくは成形材料の破壊、強化繊維の折損を伴う。(ドレープ性にやや劣る。)
 bad :90°の角度をなすブロックコーナーで屈折するが、プリプレグの破壊、強化繊維の折損を伴う。または、90°の角度をなすブロックコーナーで屈折しない。(ドレープ性に劣る。)
(12)成形材料を用いて得られた成形品または繊維強化複合材料のボイド率評価
 成形品または繊維強化複合材料の厚み方向断面を以下のように観察して測定した。成形品または繊維強化複合材料をエポキシ樹脂で包埋したサンプルを用意し、成形品または繊維強化複合材料の厚み方向断面が良好に観察できるようになるまで、前記サンプルを研磨した。ここで得られたサンプルを用いて、成形品または繊維強化複合材料の厚み×幅500μmの範囲を超深度カラー3D形状測定顕微鏡VK-9500(コントローラー部)/VK-9510(測定部)((株)キーエンス製)を使用して拡大倍率400倍で撮影した。撮影画像において、空隙(ボイド)となっている部位の面積を求め、次式により含浸率を算出した。
   ボイド率(%)=100×(空隙となっている部位の総面積)/(成形品または繊維強化複合材料の観察部位の総面積)
 成形品のボイド率評価は、このボイド率を判断基準とし、以下の3段階で評価し、成形材料を用いて得られた成形品はfair以上を、繊維強化複合材料についてはgoodを合格とした。
 good:ボイド率が0%以上、20%以下である。物性バラつきが非常に小さい。
 fair:ボイド率が20%より大きく、40%以下である。物性バラつきが小さい。
 bad :ボイド率が40%より大きい。物性バラつきが大きい。
(13)溶融粘度測定
 溶融粘度は、動的粘弾性測定装置にて以下の条件で行った。
 装置:ティー・エイ・インスツルメント社製ARES
 プレート:パラレルプレート直径40mm
(14)繊維強化複合材料中の強化繊維基材(A’)の含有量
 繊維強化複合材料中の強化繊維基材(A’)の含有量は、繊維強化複合材料の製造に使用した強化繊維基材(A’)の重量と、得られた繊維強化複合材料の重量とから、下式により求めた。
   強化繊維基材(A’)の含有量(重量%)=100×(用いた強化繊維基材(A’)の重量)/(得られた繊維強化複合材料の重量)
<ポリフェニレンエーテルエーテルケトンオリゴマー(B)の調製>
(参考例1)ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法[B1]
 攪拌機、窒素吹き込み管、ディーン・スターク装置、冷却管、温度計を具備した4つ口フラスコに、4、4’-ジフルオロベンゾフェノン2.40g(11mmol)、ヒドロキノン1.10g(10mmol)、無水炭酸カリウム1.52g(11mmol)、ジメチルスルホキシド100mL、トルエン10mLを仕込んだ。混合物中のベンゼン環成分1.0モルに対するジメチルスルホキシドの量は3.13リットルである。窒素を通じながら140℃まで昇温し、140℃で1時間保持、その後160℃にまで昇温し160℃で4時間保持して反応を行った。反応終了後、室温にまで冷却して反応混合物を調製した。
 得られた反応混合物を約0.2g秤取り、THF約4.5gで希釈、濾過によりTHF不溶成分を分離除去することにより高速液体クロマトグラフィー分析サンプルを調製、反応混合物の分析を行った。結果、繰り返し数m=2~6の連続する5種類の環式ポリフェニレンエーテルエーテルケトンの生成を確認、ヒドロキノンに対するポリフェニレンエーテルエーテルケトンオリゴマー(B)の収率は15.3%であった。
 このようにして得られた反応混合物50gを分取し、1重量%酢酸水溶液150gを加えた。撹拌してスラリー状にした後、70℃に加熱して30分間撹拌を継続した。スラリーをガラスフィルター(平均孔径10~16μm)で濾過して固形分を得た。得られた固形分を脱イオン水50gに分散させ70℃で30分間保持して濾過して固形分を得る操作を3回繰り返した。得られた固形分を70℃で一晩真空乾燥に処し、乾燥固体約1.24gを得た。
 さらに、上記で得られた乾燥固体1.0gをクロロホルム100gを用いて、浴温80℃で5時間ソックスレー抽出を行った。得られた抽出液からエバポレーターを用いてクロロホルムを除去して固形分を得た。この固形分にクロロホルム2gを加えた後、超音波洗浄器を用いて分散液として、メタノール30gに滴下した。これにより生じた析出成分を平均ポアサイズ1μmの濾紙を用いて濾別後、70℃で3時間真空乾燥に処し、白色固体を得た。得られた白色固体は0.14g、反応に用いたヒドロキノンに対する収率は14.0%であった。
 この白色粉末は赤外分光分析における吸収スペクトルよりフェニレンエーテルケトン単位からなる化合物であることを確認、また高速液体クロマトグラフィーにより成分分割したマススペクトル分析(装置;日立製M-1200H)、さらにMALDI-TOF-MSによる分子量情報により、この白色粉末は繰り返し数mが2~6の連続する5種類の環式ポリフェニレンエーテルエーテルケトン混合物を主要成分とするポリフェニレンエーテルエーテルケトンオリゴマー(B)であることが分かった。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)中における環式ポリフェニレンエーテルエーテルケトン混合物の重量分率は81%であった。なお、ポリフェニレンエーテルエーテルケトンオリゴマー(B)における環式ポリフェニレンエーテルエーテルケトン以外の成分は線状ポリフェニレンエーテルエーテルケトンオリゴマーであった。
 このようなポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を測定した結果、163℃の融点を有することが分かった。また、還元粘度を測定した結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は0.02dL/g未満の還元粘度を有していることが分かった。
 また、上記したソックスレー抽出によるポリフェニレンエーテルエーテルケトンオリゴマー(B)の回収における、クロロホルム不溶の固形成分を70℃で一晩真空乾燥に処しオフホワイト色の固形分約0.85gを得た。分析の結果、赤外分光分析における吸収スペクトルより線状ポリフェニレンエーテルエーテルケトンであることを確認した。また、還元粘度の測定を行った結果、この線状ポリフェニレンエーテルエーテルケトンは0.45dL/gの還元粘度を有していることが分かった。
 また、溶融粘度測定を行った結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の230℃における溶融粘度は0.034Pa・sであった。
(参考例2)ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法[B2]
 ここでは、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法により副生する線状ポリフェニレンエーテルエーテルケトンを用いたポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法について記す。
 攪拌機を具備した100mLのオートクレーブに4、4’-ジフルオロベンゾフェノン0.22g(1mmol)、ヒドロキノン0.11g(1mmol)、無水炭酸カリウム0.14g(1mmol)、参考例1記載の方法により得られた線状ポリフェニレンエーテルエーテルケトン(還元粘度;0.45dL/g)1.15g(4mmol)、N-メチル-2-ピロリドン50mLを仕込んだ。混合物中のベンゼン環成分1.0モルに対するN-メチル-2-ピロリドンの量は3.33リットルである。
 反応容器を室温・常圧下にて窒素ガス下に密閉した後、400rpmで撹拌しながら、室温から140℃まで昇温し140℃で1時間保持、その後180℃にまで昇温し180℃で3時間保持、次いで230℃にまで昇温し230℃で5時間保持し反応を行った。
 得られた反応混合物を約0.2g秤取り、THF約4.5gで希釈、濾過によりTHF不溶成分を分離除去することにより高速液体クロマトグラフィー分析サンプルを調製、反応混合物の分析を行った。結果、繰り返し数m=2~8の連続する7種類の環式ポリフェニレンエーテルエーテルケトンの生成を確認、環式ポリフェニレンエーテルエーテルケトン混合物の収率は8.3%であった。
 また、参考例1記載の方法により上記反応混合物からポリフェニレンエーテルエーテルケトンオリゴマー(B)の回収を行った結果、収率8.0%でポリフェニレンエーテルエーテルケトンオリゴマー(B)を得た。得られたポリフェニレンエーテルエーテルケトンオリゴマー(B)の分析を行った結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)中における環式ポリフェニレンエーテルエーテルケトン混合物の重量分率は77%であり、165℃の融点を有することが分かった。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の還元粘度は0.02dL/g未満であることも分かった。
 また、溶融粘度測定を行った結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の230℃における溶融粘度は0.030Pa・sであった。
(参考例3)
 ここでは、特表2007-506833号公報の実施例に記載の一般的な方法によるポリフェニレンエーテルエーテルケトンの製造方法に準じた合成について記す。
 攪拌機、窒素吹き込み管、ディーン・スターク装置、冷却管、温度計を具備した4つ口フラスコに4、4’-ジフルオロベンゾフェノン22.5g(103mmol)、ヒドロキノン11.0g(100mmol)、およびジフェニルスルホン49gを仕込んだ。混合物中のベンゼン環成分1.0モルに対するジフェニルスルホンの量は約0.16リットルである。窒素を通じながら140℃にまで昇温したところ、ほぼ無色の溶液を形成した。この温度で無水炭酸ナトリウム10.6g(100mmol)及び無水炭酸カリウム0.28g(2mmol)を加えた。温度を200℃に上げて1時間保持し、250℃に上げて1時間保持、次いで315℃に上げて3時間保持した。
 得られた反応混合物を高速液体クロマトグラフィーにて分析した結果、ヒドロキノンに対する環式ポリフェニレンエーテルエーテルケトン混合物の収率は1%未満と痕跡量であった。
 反応混合物を放冷して粉砕し、水およびアセトンで洗浄することにより、副生塩及びジフェニルスルホンを洗浄除去した。得られたポリマーを熱風乾燥機中、120℃で乾燥させて粉末を得た。
 得られた粉末約1.0gを、クロロホルム100gを用いて浴温80℃で5時間ソックスレー抽出を行った。得られた抽出液からエバポレーターを用いてクロロホルムを除去して少量のクロロホルム可溶成分を得た。この回収したクロロホルム可溶成分の、反応に用いたヒドロキノンに対する収率は1.2%であった。高速液体クロマトグラフィーにより、回収したクロロホルム可溶成分の分析を行った結果、このクロロホルム可溶成分中には環式ポリフェニレンエーテルエーテルケトンおよび線状ポリフェニレンエーテルエーテルケトンオリゴマーが含まれていることが分かった。この線状ポリフェニレンエーテルエーテルケトンオリゴマーは溶剤溶解性などの特性が環式ポリフェニレンエーテルエーテルケトンと類似しており、環式ポリフェニレンエーテルエーテルケトンからの分離が困難な化合物である。また、上記の回収したクロロホルム可溶成分中に含まれる環式ポリフェニレンエーテルエーテルケトン混合物は、繰り返し数m=4、5からなり、さらに繰り返し数m=4の環式ポリフェニレンエーテルエーテルケトンの重量分率が80%以上を占めるものであった。また、この回収したクロロホルム可溶成分の融点は約320℃であった。これは、この方法により得られたクロロホルム可溶成分を占める環式ポリフェニレンエーテルエーテルケトン4量体(m=4)の含有率が高いことに起因すると推測している。
 また、上記したソックスレー抽出において、クロロホルムに不溶の固形成分を70℃で一晩真空乾燥に処しオフホワイト色の固形分約0.98gを得た。分析の結果、赤外分光分析における吸収スペクトルより線状ポリフェニレンエーテルエーテルケトンであることを確認した。また、還元粘度の測定を行った結果、この線状ポリフェニレンエーテルエーテルケトンは0.75dL/gの還元粘度を有していることが分かった。
 また、溶融粘度測定を行った結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の350℃における溶融粘度は0.15Pa・sであった。
(参考例4)ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法[B3]
 ここでは、参考例3による方法で得られた線状ポリフェニレンエーテルエーテルケトン(還元粘度;0.75dL/g)を用いた環式ポリフェニレンエーテルエーテルケトンの製造方法について記す。
 攪拌機を具備した1リットルのオートクレーブに参考例3記載の方法により得られたポリフェニレンエーテルエーテルケトン14.4g(50mmol)、フッ化セシウム1.52g(10mmol)、N-メチル-2-ピロリドン500mLを仕込んだ。混合物中のベンゼン環成分1.0モルに対するN-メチル-2-ピロリドンの量は3.33リットルである。
 反応容器を室温・常圧下にて窒素ガス下に密閉した後、400rpmで撹拌しながら、室温から140℃まで昇温し140℃で1時間保持、その後180℃にまで昇温し180℃で3時間保持、次いで230℃にまで昇温し230℃で5時間保持し反応を行った。
 得られた反応混合物を約0.2g秤取り、THF約4.5gで希釈、濾過によりTHF不溶成分を分離除去することにより高速液体クロマトグラフィー分析サンプルを調製、反応混合物の分析を行った。結果、繰り返し数m=2~8の連続する7種類の環式ポリフェニレンエーテルエーテルケトン混合物の生成を確認、環式ポリフェニレンエーテルエーテルケトン混合物の収率は13.7%であった。(ここでの環式ポリフェニレンエーテルエーテルケトン混合物の収率は、環式ポリフェニレンエーテルエーテルケトンの生成量と、反応に用いたポリフェニレンエーテルエーテルケトンの量の比較により算出した。)。
 また、参考例1記載の方法により上記反応混合物からポリフェニレンエーテルエーテルケトンオリゴマー(B)の回収を行った結果、収率13.7%でポリフェニレンエーテルエーテルケトンオリゴマー(B)を得た。得られたポリフェニレンエーテルエーテルケトンオリゴマー(B)中における環式ポリフェニレンエーテルエーテルケトン混合物の重量分率は79%であり、165℃の融点を有することが分かった。また、ポリフェニレンエーテルエーテルケトンオリゴマー(B)は0.02dL/g未満であることも分かった。
 また、溶融粘度測定を行った結果、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の230℃における溶融粘度は0.036Pa・sであった。
<成形材料>
(実施例1)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を230℃の溶融バス中で溶融させ、ギアポンプにてキスコーターに供給した。230℃に加熱されたロール上にキスコーターからポリフェニレンエーテルエーテルケトンオリゴマー(B)を塗布し、被膜を形成させた。
 このロール上に炭素繊維“トレカ”(登録商標)T700S-24K(東レ(株)製)を接触させながら通過させて、強化繊維束(A)の単位長さあたりに一定量のポリフェニレンエーテルエーテルケトンオリゴマー(B)を付着させた。
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)を付着させた炭素繊維を、230℃に加熱されたベアリングで自由に回転する、一直線上に上下交互に配置された10個のロール(φ50mm)間に通過させ、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維束(A)に十分含浸させた。
 続いて、熱可塑性樹脂(C)として、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を400℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、得られた複合体も上記クロスヘッドダイ中に連続的に供給することによって、溶融した熱可塑性樹脂(C)を複合体に被覆した。このとき、熱可塑性樹脂(C)の吐出量を調整し、強化繊維束(A)の含有率を所定の値に調整した。
 上記記載の方法により得られたストランドを、冷却後、カッターにて7mmの長さに切断して芯鞘構造の柱状ペレット(長繊維ペレット)を得た。得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。
 得られた長繊維ペレットを150℃、5時間以上真空下で乾燥させた。乾燥させた長繊維ペレットを、日本製鋼所(株)製J150EII-P型射出成形機を用いて、各試験片用の金型を用いて成形を行った。条件はいずれも射出成形温度:400℃、金型温度:160℃、冷却時間30秒とした。成形後、真空下で80℃、12時間の乾燥を行い、かつデシケーター中で室温、3時間保管した乾燥状態の試験片について評価を行った。得られた成形品の曲げ試験は、ASTM
D790 (1997)に準拠し、3点曲げ試験冶具(圧子10mm、支点4mm)を用いて支持スパンを100mmに設定し、クロスヘッド速度2.8mm/分の試験条件にて曲げ強度および曲げ弾性率を測定した。試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いた。得られた成形品のアイゾット衝撃試験は、ASTM
D256 (1993)に準拠し、モールドノッチ付きアイゾット衝撃試験を行った。用いた試験片の厚みは3.2mm、試験片の水分率0.1重量%以下において、アイゾット衝撃強度(J/m)を測定した。評価結果を表1に記載した。
(実施例2)
 参考例2で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
(比較例1)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、溶融バス温度、ロール温度およびベアリング温度を340℃に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
(実施例3)
 参考例4で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
 実施例1~3の結果より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法によらず、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とすることで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易になることは明らかである。得られた成形材料を用いた成形品は、力学特性および外観品位に優れていた。
 比較例1より、融点が270℃より大きいポリフェニレンエーテルエーテルケトン組成物を用いた場合、ポリフェニレンエーテルエーテルケトン組成物の溶融が困難となる為に、連続した強化繊維束(A)への含浸性で劣ることは明らかである。さらにこの成形材料は、成形時の繊維分散性にも劣り、この成形材料を用いた成形品では、外観に欠陥が確認できた。
(実施例4)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を18重量%に代えて、熱可塑性樹脂(C)の量を62重量%に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
(比較例2)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)および溶融バスを使用せず、熱可塑性樹脂(C)の量を80重量%に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)の製造を試みたところ、多数の成形材料が不良品となった。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を試みたところ、スクリューへの噛み込み不良により成形ができなかった。各プロセス条件を表1に記載した。
(比較例3)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を30重量%に代えて、熱可塑性樹脂(C)の量を50重量%に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
 実施例4より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を18重量%としても、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易であることは明らかである。得られた成形材料を用いた成形品は、外観品位に優れていた。
 比較例2より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いない場合は、高粘度の熱可塑性樹脂(C)では連続した強化繊維束(A)への含浸が不十分である為に、成形材料の生産性および成形性で大きく劣ることは明らかである。
 比較例3より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を30重量%とした場合、成形材料の生産性には優れるものの、得られた成形材料を用いた成形品の力学特性が大きく劣ることは明らかである。
(実施例5)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を3重量%に代えて、熱可塑性樹脂(C)の量を87重量%に代えて、強化繊維束(A)の量を10重量%に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
(実施例6)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を15重量%に代えて、熱可塑性樹脂(C)の量を55重量%に代えて、強化繊維束(A)の量を30重量%に代えた以外は、実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
 実施例5および6より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とすることで、成形材料の繊維含有量を10重量%および30重量%としても、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の生産性に優れ、成形材料の製造が容易になることは明らかである。得られた成形材料を用いた成形品は、力学特性および外観品位に優れていた。
(実施例7)
 熱可塑性樹脂(C)として、ポリフェニレンエーテルエーテルケトンに代えて“アミラン”(登録商標)CM3001(東レ(株)製ナイロン66樹脂、融点265℃)を用い、成形材料製造時の熱可塑性樹脂(C)の押出温度を280℃とした以外は実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、射出成形温度を300℃、金型温度を80℃に代えた以外は、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
(実施例8)
 熱可塑性樹脂(C)として、ポリフェニレンエーテルエーテルケトンに代えて“トレリナ”(登録商標)A900(東レ(株)製ポリフェニレンスルフィド樹脂、融点278℃)を用い、成形材料製造時の熱可塑性樹脂(C)の押出温度を330℃とした以外は実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、射出成形温度を320℃、金型温度を150℃に代えた以外は、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
 実施例7および8より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とすることで、得られる成形材料の成形温度を下げることが可能となり、熱可塑性樹脂(C)にナイロン66樹脂およびPPS樹脂といった、ポリフェニレンエーテルエーテルケトン樹脂以外を選択することが可能となることは明らかである。得られた成形材料は、成形時の繊維分散性に優れ、力学特性および外観品位に優れていた。
(実施例9)
 重合触媒(D)として、参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である式-(O-Ph-O-Ph-CO-Ph)-の繰り返し単位に対して5モル%のフッ化セシウムを溶融バスに添加した以外は実施例1と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例1と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表1に記載した。
 実施例9より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とし、本発明の成形材料に重合触媒(D)を添加することで、得られる成形材料を用いた成形品の力学特性および外観品位が優れることは明らかである。
Figure JPOXMLDOC01-appb-T000009
(実施例10)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)に、重合触媒(D)としてフッ化セシウムをポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である式-(O-Ph-O-Ph-CO-Ph)-の繰り返し単位に対して5モル%となるよう添加し、230℃の溶融バス中で溶融させ溶融混合物を得た。得られた溶融混合物をギアポンプにてキスコーターに供給した。230℃に加熱されたロール上にキスコーターから溶融混合物を塗布し、被膜を形成させた。
 このロール上に炭素繊維“トレカ”(登録商標)T700S-24K(東レ(株)製)を接触させながら通過させて、強化繊維束(A)の単位長さあたりに一定量の溶融混合物を付着させた複合体を得た。
 この複合体を、300℃に加熱された炉内へ供給し、ベアリングで自由に回転する、一直線上に上下交互に配置された10個のロール(φ50mm)間に通過させ、かつ葛折りに炉内に設置された10個のロールバ(φ200mm)を複数回ループさせて通過させ、合計30分間かけてポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維束(A)に十分含浸させながらポリフェニレンエーテルエーテルケトン(B’)に転化させた。
 続いて、熱可塑性樹脂(C)として、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を400℃で単軸押出機にて溶融させ、押出機の先端に取り付けたクロスヘッドダイ中に押し出すと同時に、得られた複合体も上記クロスヘッドダイ中に連続的に供給することによって、溶融した熱可塑性樹脂(C)を複合体に被覆した。このとき、熱可塑性樹脂(C)の吐出量を調整し、強化繊維束(A)の含有率を所定の値に調整した。
 上記記載の方法により得られたストランドを、冷却後、カッターにて7mmの長さに切断して芯鞘構造の柱状ペレット(長繊維ペレット)を得た。得られた長繊維ペレットは運搬による毛羽立ちもなく、良好な取扱性を示した。
 得られた長繊維ペレットから、熱可塑性樹脂(C)の被覆を剥がし、さらに強化繊維(A)を取り除くことで、ポリフェニレンエーテルエーテルケトン(B’)を分離した。ここで得られたポリフェニレンエーテルエーテルケトン(B’)を融点測定および粘度測定に供した。
 得られた長繊維ペレットを150℃、5時間以上真空下で乾燥させた。乾燥させた長繊維ペレットを、日本製鋼所(株)製J150EII-P型射出成形機を用いて、各試験片用の金型を用いて成形を行った。条件はいずれも射出成形温度:400℃、金型温度:160℃、冷却時間30秒とした。成形後、真空下で80℃、12時間の乾燥を行い、かつデシケーター中で室温、3時間保管した乾燥状態の試験片について評価を行った。得られた成形品の曲げ試験は、ASTM
D790 (1997)に準拠し、3点曲げ試験冶具(圧子10mm、支点4mm)を用いて支持スパンを100mmに設定し、クロスヘッド速度2.8mm/分の試験条件にて曲げ強度および曲げ弾性率を測定した。試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いた。得られた成形品のアイゾット衝撃試験は、ASTM
D256 (1993)に準拠し、モールドノッチ付きアイゾット衝撃試験を行った。用いた試験片の厚みは3.2mm、試験片の水分率0.1重量%以下において、アイゾット衝撃強度(J/m)を測定した。各プロセス条件および評価結果を表2に記載した。
(実施例11)
 参考例2で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(比較例4)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、溶融バス温度、ロール温度および炉内温度を350℃に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)の製造を試みたところ、多数の成形材料が不良品となった。これは、溶融バス内でポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進行し、ポリフェニレンエーテルエーテルケトン(B’)となったことで、連続した強化繊維束(A)への含浸が困難になったためであった。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を試みたところ、スクリューへの噛み込み不良により成形ができなかった。各プロセス条件および評価結果を表2に記載した。
(実施例12)
 参考例4で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
 実施例10~12の結果より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法によらず、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とすることで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易になることは明らかである。得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)はポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。
 比較例4より、融点が270℃より大きいポリフェニレンエーテルエーテルケトン組成物を用いた場合、プロセス温度を高く設定する必要があり、溶融バス内でポリフェニレンエーテルエーテルケトン組成物の重合が進行し、強化繊維束(A)への含浸性が大きく低下することは明らかである。この成形材料は、生産性と成形性で大きく劣るだけでなく、プロセス温度を高く設定する必要があるため、経済性の面でも劣ることは明らかである。
(実施例13)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を18重量%に代えて、熱可塑性樹脂(C)の量を62重量%に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(実施例14)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を30重量%に代えて、熱可塑性樹脂(C)の量を50重量%に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(比較例5)
 重合触媒(D)としてのフッ化セシウムを用いない以外は、実施例14と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(比較例6)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)、重合触媒(D)としてのフッ化セシウムおよび溶融バスを使用せず、熱可塑性樹脂(C)の量を80重量%に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)の製造を試みたところ、多数の成形材料が不良品となった。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を試みたところ、スクリューへの噛み込み不良により成形ができなかった。各プロセス条件を表2に記載した。
 実施例13および14より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を18重量%および30重量%としても、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易であることは明らかである。得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)はポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。
 比較例5および実施例14の比較より以下のことが明らかである。比較例5は重合触媒(D)としてのフッ化セシウムを用いない為に、得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)がポリフェニレンエーテルエーテルケトン(B’)に重合していないことが明らかである。さらに比較例5は実施例14に比べて力学特性が大きく劣ることは明らかである。
 比較例6より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)および重合触媒(D)を用いない場合は、高粘度の熱可塑性樹脂(C)では連続した強化繊維束(A)への含浸が不十分である為に、成形材料の生産性および成形性で大きく劣ることは明らかである。
(実施例15)
 炉内温度を350℃に代えて、炉内時間を10分に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(実施例16)
 炉内温度を400℃に代えて、炉内時間を10分に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
 実施例15および16より、炉内温度を350℃および400℃としても、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易であることは明らかである。得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)はポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。さらに、この条件で製造された、成形材料中のポリフェニレンエーテルエーテルケトン(B’)の融解エンタルピーは40kJ/g未満であり、公知のポリフェニレンエーテルエーテルケトン同等であった。
(実施例17)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を3重量%に代えて、熱可塑性樹脂(C)の量を87重量%に代えて、強化繊維束(A)の量を10重量%に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
(実施例18)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)の量を15重量%に代えて、熱可塑性樹脂(C)の量を55重量%に代えて、強化繊維束(A)の量を30重量%に代えた以外は、実施例10と同様の方法で、芯鞘構造の柱状ペレット(長繊維ペレット)を製造した。得られた長繊維ペレットを用いて、実施例10と同様の方法で、ポリフェニレンエーテルエーテルケトン(B’)を分離し、融点測定および粘度測定に供した。得られた長繊維ペレットを用いて、実施例10と同様に射出成形を行い、各評価に供した。各プロセス条件および評価結果を表2に記載した。
 実施例17および18より成形材料の繊維含有量を10重量%および30重量%としても、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の連続した強化繊維束(A)への含浸性に優れ、成形材料の製造が容易であることは明らかである。得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)はポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。
Figure JPOXMLDOC01-appb-T000010
(実施例19)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)に、重合触媒(D)としてフッ化セシウムをポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である式-(O-Ph-O-Ph-CO-Ph)-の繰り返し単位に対して5モル%となるよう添加し、230℃の溶融バス中で溶融させ溶融混合物を得た。溶融混合物を、ナイフコーターを使用して230℃で離型紙上に所定の厚みに塗布し、樹脂フィルムを作製した。
 次に、シート状に一方向に整列させた炭素繊維“トレカ”(登録商標)T700S-24K(東レ(株)製)に樹脂フィルム2枚を炭素繊維の両面から重ね、230℃に加熱したロールを用い、ロール圧力0.2MPaで加圧して溶融混合物を含浸させ、一方向プリプレグを作製した。得られた一方向プリプレグを所定の寸法に切り出し、強化繊維基材(A’)の含有量評価、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率評価、成形材料のドレープ性評価に供した。
 得られた一方向プリプレグの繊維方向をそろえて、成形品の厚さが2±0.4mmとなるよう積層した後、プレス成形機を用いて、金型表面温度300℃、成形圧力0.5MPa、加熱時間30分で加熱加圧してポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に転化させた。加熱加圧後、すぐにプレス成形機を型開きし、成形品を脱型して、本発明の成形材料を用いた積層板を得た。ここで得られた積層板からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。さらに、得られた積層板を所定の寸法に切り出し、曲げ試験および成形品のボイド率評価に供した。成形品の曲げ試験は、繊維方向を一方向に揃えて成形材料を積層し、厚さ2±0.4mmで成形した成形品から、繊維軸方向を長辺として、JIS
K 7074-1988に準拠した寸法の試験片を切り出した。試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて3点曲げ試験を行い、0°曲げ弾性率および0°曲げ強度を算出した。各プロセス条件および評価結果を表3に記載した。
(実施例20)
 参考例2で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例19と同様の方法で、一方向プリプレグを製造した。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを用いて、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
(比較例7)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、樹脂溶融温度、フィルム化温度および繊維含浸温度を350℃に代え、繊維含浸ロール圧力を0.5MPaに代えた以外は、実施例19と同様の方法で、一方向プリプレグの製造を試みたところ、樹脂が強化繊維基材(A’)の内部まで含浸しなかった。これは、プロセス温度が高い為に、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進行し、ポリフェニレンエーテルエーテルケトン(B’)となったことで、強化繊維基材(A’)への含浸が困難になったためであった。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを、金型表面温度400℃に代えて、加熱加圧後に金型を10℃/分で150℃まで冷却してから、成形品を脱型した以外は、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
(実施例21)
 参考例4で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例19と同様の方法で、一方向プリプレグを製造した。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを用いて、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
 実施例19~21の結果より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の製造方法によらず、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の融点を270℃以下とすることで、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への含浸性に優れ、成形材料の製造が容易になることは明らかである。得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)は、ポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。
 比較例7より、融点が270℃より大きいポリフェニレンエーテルエーテルケトン組成物を用いた場合、プロセス温度を高く設定する必要があり、溶融バス内などでポリフェニレンエーテルエーテルケトン組成物の重合が進行し、強化繊維基材(A’)への含浸性が大きく低下することは明らかである。また、この成形材料は、プロセス温度を高く設定する必要があるため、経済性の面でも劣り、得られる成形品の力学特性にも劣ることは明らかである。
(比較例8)
 重合触媒(D)としてのフッ化セシウムを用いない以外は、実施例19と同様の方法で、一方向プリプレグを製造した。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを、プレス機での加熱加圧後に金型を10℃/分で150℃まで冷却してから、成形品を脱型した以外は、実施例19と同様にプレス成形を行った。得られた積層板を融点測定に供したところ、融点が276℃と低いままであることがわかった。各プロセス条件および評価結果を表3に記載した。
 比較例8より、重合触媒(D)を添加していない成形材料は、成形中にポリフェニレンエーテルエーテルケトンオリゴマー(B)のポリフェニレンエーテルエーテルケトン(B’)への重合が進行していないことは明らかである。
(比較例9)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を用い、樹脂溶融温度、フィルム化温度および繊維含浸温度を400℃に代え、繊維含浸ロール圧力を0.5MPaに代えた以外は実施例19と同様の方法で、一方向プリプレグの製造を試みたところ、樹脂の粘度が高く強化繊維基材(A’)の内部まで含浸しなかった。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを、比較例7と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
 比較例9より、高分子量のポリエーテルエーテルケトン樹脂を用いた場合、強化繊維基材(A’)への含浸が困難であり、成形材料の生産性に劣ることは明らかである。この成形材料は、プロセス温度を高く設定する必要があるため、経済性の面でも劣り、得られる成形品の力学特性にも劣ることは明らかである。
(実施例22)
 実施例19と同様に一方向プリプレグを製造し、成形材料の評価を行った。
 得られた一方向プリプレグを、金型表面温度350℃に代えて、加熱時間を10分に代えて、加熱加圧後に金型を10℃/分で150℃まで冷却してから、成形品を脱型した以外は、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
(実施例23)
 実施例19と同様に一方向プリプレグを製造し、成形材料の評価を行った。
 得られた一方向プリプレグを、金型表面温度400℃に代えて、加熱時間を10分に代えて、加熱加圧後に金型を10℃/分で150℃まで冷却してから、成形品を脱型した以外は、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
 実施例22および23より、金型表面温度350℃および400℃で成形し、金型を冷却後に成形品を脱型する成形方法で得られた成形品も力学特性に優れた。この成形品中でもポリフェニレンエーテルエーテルケトンオリゴマー(B)はポリフェニレンエーテルエーテルケトン(B’)に重合していた。さらに、この条件で製造された、成形材料中のポリフェニレンエーテルエーテルケトン(B’)の融解エンタルピーは40kJ/g未満であり、公知のポリフェニレンエーテルエーテルケトンと同等であった。
(実施例24)
 強化繊維基材(A’)の含有量が76重量%になるように、原料の供給量を調整した用いた以外は、実施例19と同様の方法で、一方向プリプレグを製造した。得られた一方向プリプレグを用いて、実施例19と同様の方法で、成形材料の評価を行った。
 得られた一方向プリプレグを用いて、実施例19と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
 実施例24より、強化繊維(A)の含有量を76重量%としても、成形材料の生産性に優れ、得られる成形品の力学特性に優れることは明らかである。
(実施例25)
 参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)に、重合触媒(D)としてフッ化セシウムをポリフェニレンエーテルエーテルケトンオリゴマー(B)の主要構成単位である式-(O-Ph-O-Ph-CO-Ph)-の繰り返し単位に対して5モル%となるよう添加し、230℃の溶融バス中で溶融させ溶融混合物を得た。溶融混合物を、ナイフコーターを使用して230℃で離型紙上に所定の厚みに塗布し、樹脂フィルムを作製した。
 次に、シート状に一方向に整列させた炭素繊維“トレカ”(登録商標)T700S-24K(東レ(株)製)に樹脂フィルム2枚を炭素繊維の両面から重ね、230℃に加熱したロールを用い、ロール圧力0MPaで溶融混合物を含浸させ、一方向プリプレグを作製した。得られた一方向プリプレグを所定の寸法に切り出し、強化繊維基材(A’)の含有量評価、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率評価、成形材料のドレープ性評価に供した。
 得られた一方向プリプレグの繊維方向をそろえて、成形品の厚さが2±0.4mmとなるよう積層した後、プレス成形機を用いて、金型表面温度300℃、成形圧力0.5MPa、加熱時間30分で加熱加圧してポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に転化させた。加熱加圧後、すぐにプレス成形機を型開きし、成形品を脱型して、本発明の成形材料を用いた積層板を得た。ここで得られた積層板からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。さらに、得られた積層板をJIS
K 7074-1988に準拠した曲げ試験および成形品のボイド率評価に供した。各プロセス条件および評価結果を表3に記載した。
(実施例26)
 実施例25と同様に一方向プリプレグを製造し、成形材料の評価を行った。
 得られた一方向プリプレグを、金型表面温度400℃に代えて、加熱時間を10分に代えて、加熱加圧後に金型を10℃/分で150℃まで冷却してから、成形品を脱型した以外は、実施例25と同様にプレス成形を行い、得られた積層板を各評価に供した。各プロセス条件および評価結果を表3に記載した。
(比較例10)
 実施例25と同様に一方向プリプレグを製造し、成形材料の評価を行った。
 得られた一方向プリプレグを、金型表面温度400℃に代えて、加熱時間を10分に代えた以外は、実施例25と同様にプレス成形を行ったところ、脱型時に積層がはがれ、健全な成形品が得られなかった。
 実施例25および26より、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の含浸率が20%以上、80%未満である成形材料はドレープ性に優れ、得られた成形材料中ではポリフェニレンエーテルエーテルケトンオリゴマー(B)が、ポリフェニレンエーテルエーテルケトン(B’)に重合しており、この成形材料を用いた成形品は、力学特性に優れていた。
 比較例10より、金型表面温度400℃で成形し、金型冷却を行わずに成形品を脱型した場合、積層がはがれ、健全な成形品が得られないことがわかる。
Figure JPOXMLDOC01-appb-T000011
 (実施例27)
 図13に示す装置を用いて、成形材料の製造方法を説明する。なお、この製造方法で用いる装置構成を(E1)とする。
 工程(I):炭素繊維“トレカ”(登録商標)T700S-12K(東レ(株)製)を強化繊維束の間隔が1~5mmとなるように、幅100mmの間に複数本引き揃え、製造ラインに供する。ロールバー11に強化繊維束をかけてシート状にそろえ、さらに含浸バス12にフィードし、該含浸バス中の回転ローラー13を通過させ、次に、熱風乾燥炉14を通し、さらにダブルベルトプレス15、加熱チャンバー25、ホットローラー27の順で通過させ、ニップローラー16で張力をかけて引き取る。ここでの引き取り速度を3m/分に設定して、工程が安定した後、予熱用の赤外線ヒーター17で強化繊維束を150℃に加熱する。
 工程(II):参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)に、重合触媒(D)を所定量添加したものをディスパージョンとし、ポンプ18にて含浸バスに供給した。回転ローラーがディスパージョンに浸漬されることで、強化繊維束にポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)が付与される。このときの、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)の付着量を、繊維重量含率(Wf)が64%となるように、強化繊維束を浸漬させる長さを調整する。さらに、熱風乾燥炉14を140℃に調整して、強化繊維束から水分の90%以上を除去し、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる複合体を得た。
 ライン方向に4mの長さを有するダブルベルトプレスを、温度230℃、圧力3MPaの条件にて用い、複合体を加熱プレスしながら通過させて、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に加熱含浸させて、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる含浸体を得た。この際、ダブルベルトプレスを囲うチャンバー19の吸気口20から窒素パージを行い、チャンバー中の酸素濃度を1体積%以下に調整した。
 工程(III):ライン方向に30mの長さを有する加熱チャンバー25を、温度400℃の条件にて用い、含浸体を加熱しながら通過させて、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させる。さらにホットローラー27を用いて、400℃、圧力1MPaの条件で成形し、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトン(B’)と重合触媒(D)からなる重合体を得た。この際、加熱チャンバー25の吸気口26から窒素パージを行い、チャンバー中の酸素濃度を1体積%以下に調整した。
 工程(IV):温度50℃の冷却板21に重合体を通し、ポリフェニレンエーテルエーテルケトン(B’)を固化させ、ニップロールで引き取った後、ギロチンカッター22で長さ1m毎にカットして、幅100mmのシート状の成形材料とした。
 上記工程は全てオンラインで実施され、連続的に成形材料を製造できた。得られた成形材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。
 得られた成形材料の繊維方向をそろえて、成形品の厚さが2±0.4mmとなるよう積層した後、プレス成形機を用いて、金型表面温度400℃、成形圧力3MPaで3分間加熱加圧した後、金型を冷却し、成形品を脱型することで積層板を得た。得られた積層板から、繊維軸方向を長辺として、JIS
K 7074-1988に準拠した寸法の試験片を切り出し、試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて3点曲げ試験を行い、0°曲げ弾性率および0°曲げ強度を算出した。各プロセス条件および評価結果を表4に記載した。
(実施例28)
 工程(III)における加熱チャンバー温度を300℃に代えて、強化繊維基材(A’)の引き取り速度を1m/分に変更した以外は実施例27と同様の方法で成形材料を製造した。得られた成形材料を実施例27と同様に各種評価に供した。ここで得られた成形材料は実施例27よりも、ポリフェニレンエーテルエーテルケトン(B’)の融点、および融解エンタルピーが高い特徴があった。各プロセス条件及び評価結果を表4に記載した。
(比較例11)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例27と同様の方法で成形材料を製造した。得られた成形材料を実施例27と同様に各種評価に供した。ここで得られた成形材料は実施例27に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。これは、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の強化繊維基材(A’)への含浸が不十分であった為だと考えられる。各プロセス条件及び評価結果を表4に記載した。
(比較例12)
 工程(II)における、ダブルベルトプレスの温度を350℃に変更した以外は、比較例11と同様の方法で成形材料を製造した。得られた成形材料を実施例27と同様に各種評価に供した。ここで得られた成形材料は、比較的ポリフェニレンエーテルエーテルケトン(B’)の含浸率が高かったが、含浸工程の温度が高く、装置負荷が大きい為に、経済的に好ましい方法では無かった。各プロセス条件及び評価結果を表4に記載した。
(比較例13)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を用い、工程(II)における、ダブルベルトプレスの温度を400℃に変更した以外は実施例27と同様の方法で成形材料を製造した。得られた成形材料を実施例27と同様に各種評価に供した。ここで得られた成形材料は実施例27に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。さらに、含浸工程の温度が高く、装置負荷が大きい為に、経済的に好ましい方法では無かった。各プロセス条件及び評価結果を表4に記載した。
Figure JPOXMLDOC01-appb-T000012
 表4の実施例および比較例より以下のことが明らかである。実施例27、および28の成形材料の製造方法は、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いるため、比較例11~13に比べて成形材料の製造におけるプロセス温度および含浸性で優れ、また、この成形材料を用いた成形品の力学特性に優れることは明らかである。
(実施例29)
 図14に示す装置を用いて、成形材料の製造方法を説明する。なお、この製造方法で用いる装置構成を(E2)とする。
 工程(I):炭素繊維“トレカ”(登録商標)T700S-12K(東レ(株)製)を強化繊維束の間隔が1~5mmとなるように、幅100mmの間に複数本引き揃え、製造ラインに供する。ロールバー31に強化繊維束をかけてシート状にそろえ、さらにベルトコンベア32にフィードし、さらに上下が対になったホットローラー33に挟み込み、ニップローラー34で張力をかけてドラムワインダー35で引き取る。ここでの引き取り速度を5m/分に設定して、工程が安定した後、予熱用の赤外線ヒーター36で強化繊維束を150℃に加熱する。
 工程(II):参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる混合物を230℃で溶融させ、得られた溶融物を、ナイフコーターを使用して離型紙上に所定に厚みに塗布し、フィルムを製造した。このフィルムを引き出しワインダー37に掛けて、離型紙とともに、230℃、1MPaの条件でホットローラー38に供給し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に加熱含浸させて、強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる含浸体を得た。なお、離型紙は巻き取りワインダー39にて巻き取ることで除去した。このとき、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の付着量を測定した結果、繊維重量含率(Wf)が64%であった。
 工程(III):ライン方向に50mの長さを持つ加熱チャンバー40の温度を400℃とし、ホットローラー33を圧力0.1MPaの条件にて、含浸体を通過させて、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させることで重合体を得た。この際、加熱チャンバー40の吸気口41から窒素パージを行い、加熱チャンバー中の酸素濃度を1体積%以下に調整した。
 工程(IV):温度50℃の冷却板42に重合体を通し、ポリフェニレンエーテルエーテルケトン(B’)を固化させ、ニップロールで引き取った後、ドラムワインダーに巻き取って、幅100mmの成形材料とした。
 上記工程は全てオンラインで実施され、連続的に成形材料を製造できた。得られた成形材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。
 得られた成形材料の繊維方向をそろえて、成形品の厚さが2±0.4mmとなるよう積層した後、プレス成形機を用いて、金型表面温度400℃、成形圧力3MPaで3分間加熱加圧した後、金型を冷却し、成形品を脱型することで積層板を得た。得られた積層板から、繊維軸方向を長辺として、JIS
K 7074-1988に準拠した寸法の試験片を切り出し、試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて3点曲げ試験を行い、0°曲げ弾性率および0°曲げ強度を算出した。各プロセス条件および評価結果を表5に記載した。
(実施例30)
 工程(III)における加熱チャンバー温度を300℃に代えて、強化繊維基材(A’)の引き取り速度を1.7m/分に変更した以外は実施例29と同様の方法で成形材料を製造した。得られた成形材料を実施例29と同様に各種評価に供した。ここで得られた成形材料は実施例29よりも、ポリフェニレンエーテルエーテルケトン(B’)の融点、および融解エンタルピーが高い特徴があった。各プロセス条件及び評価結果を表5に記載した。
(比較例14)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、工程(II)における、フィルム化温度、およびホットローラーの温度を350℃に変更した以外は、実施例29と同様の方法で成形材料を製造した。得られた成形材料を実施例29と同様に各種評価に供した。ここで得られた成形材料は実施例29に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。これは、フィルム化の時点で、ポリフェニレンエーテルエーテルケトンオリゴマー(B)重合が進行し、強化繊維基材(A’)への含浸が不十分であった為だと考えられる。各プロセス条件及び評価結果を表5に記載した。
(比較例15)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を用い、工程(II)における、フィルム化温度、およびホットローラーの温度を400℃に変更した以外は、実施例29と同様の方法で成形材料を製造した。得られた成形材料を実施例29と同様に各種評価に供した。ここで得られた成形材料は実施例29に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。各プロセス条件及び評価結果を表5に記載した。
Figure JPOXMLDOC01-appb-T000013
 表5の実施例および比較例より以下のことが明らかである。実施例29、および30の成形材料の製造方法は、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いるため、比較例14、および15に比べて成形材料の製造におけるプロセス温度および含浸性で優れ、また、この成形材料を用いた成形品の力学特性に優れることは明らかである。
(実施例31)
 図15に示す装置を用いて、成形材料の製造方法を説明する。なお、この製造方法で用いる装置構成を(E3)とする。
 工程(I):炭素繊維“トレカ”(登録商標)T700S-12K(東レ(株)製)を強化繊維束の間隔が1~5mmとなるように、幅100mmの間に複数本引き揃え、製造ラインに供する。ロールバー51に強化繊維束をかけてシート状にそろえ、さらにカレンダーロール52にフィードし、ニップローラー53で張力をかけてドラムワインダー54で引き取る。ここでの引き取り速度を10m/分に設定して、工程が安定した後、予熱用の赤外線ヒーター55で強化繊維束を150℃に加熱する。
 工程(II):参考例1で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)に、重合触媒(D)を所定量添加したものを粉砕により粒子化した。この粒子を、定量粉体供給機56から、繊維重量含率(Wf)が64%となるよう、強化繊維束に散布し、さらに赤外線ヒーター62で230℃の温度に加熱することにより、ポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)を強化繊維基材(A’)に融着させた複合体を得た。
 工程(III):加熱チャンバー57の温度を400℃とし、複合体を、カレンダーローラー52で張力をかけながら、ライン長さとして100mの距離を通過させることにより、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させた重合体を得た。この際、加熱チャンバー57の吸気口58から窒素パージを行い、加熱チャンバー中の酸素濃度を1体積%以下に調整した。
 工程(IV):温度50℃の冷却板59に重合体を通し、ポリフェニレンエーテルエーテルケトン(B’)を固化させ、ニップロールで引き取った後、ドラムワインダーに巻き取って、幅100mmの成形材料とした。
上記工程は全てオンラインで実施され、連続的に成形材料を製造できた。得られた成形材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。
 得られた成形材料の繊維方向をそろえて、成形品の厚さが2±0.4mmとなるよう積層した後、プレス成形機を用いて、金型表面温度400℃、成形圧力3MPaで3分間加熱加圧した後、金型を冷却し、成形品を脱型することで積層板を得た。得られた積層板から、繊維軸方向を長辺として、JIS
K 7074-1988に準拠した寸法の試験片を切り出し、試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて3点曲げ試験を行い、0°曲げ弾性率および0°曲げ強度を算出した。各プロセス条件および評価結果を表6に記載した。
(実施例32)
 参考例2で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。各プロセス条件及び評価結果を表6に記載した。
(比較例16)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、工程(II)における、融着工程の温度を350℃に変更した以外は、実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。ここで得られた成形材料は実施例31に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。これは、融着工程の時点で、ポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が進行し、強化繊維基材(A’)への含浸が不十分であった為だと考えられる。各プロセス条件及び評価結果を表6に記載した。
(実施例33)
 参考例4で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。各プロセス条件及び評価結果を表6に記載した。
(比較例17)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃)を用い、工程(II)における、融着工程の温度を400℃に変更した以外は、実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。ここで得られた成形材料は実施例31~33に比べ、ポリフェニレンエーテルエーテルケトン(B’)の含浸率が低く、得られる成形品もボイドが多く、力学特性が低かった。各プロセス条件及び評価結果を表6に記載した。
 (実施例34)
 工程(III)における加熱チャンバー温度を350℃に変更した以外は実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。各プロセス条件及び評価結果を表6に記載した。
 (実施例35)
 工程(III)における加熱チャンバー温度を300℃に代えて、強化繊維基材(A’)の引き取り速度を3.3m/分に変更した以外は実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。ここで得られた成形材料は実施例31よりも、ポリフェニレンエーテルエーテルケトン(B’)の融点、および融解エンタルピーが高い特徴があった。各プロセス条件及び評価結果を表6に記載した。
(実施例36)
 強化繊維基材(A’)の含有量を76重量%とし、参考例1のポリフェニレンエーテルエーテルケトンオリゴマー(B)の含有量を24重量%に変更した以外は、実施例31と同様の方法で成形材料を製造した。得られた成形材料を実施例31と同様に各種評価に供した。各プロセス条件及び評価結果を表6に記載した。
Figure JPOXMLDOC01-appb-T000014
 表6の実施例および比較例より以下のことが明らかである。実施例31~33の結果より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)はその製造方法によらず、比較例16、および17に比べて成形材料の製造におけるプロセス温度および含浸性で優れ、また、この成形材料を用いた成形品の力学特性に優れることは明らかである。
 実施例34、および35より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、350℃、および300℃でも良好に重合させることが可能であり、これらの方法が、成形材料の製造においてプロセス温度に優れた方法であることは明らかである。
 実施例36より、本発明の成形材料の製造方法によれば、強化繊維基材(A’)の含有量を76重量%としても、成形材料の製造におけるプロセス温度および含浸性で優れ、また、この成形材料を用いた成形品の力学特性に優れることは明らかである。
<RTM法による繊維強化複合材料の製造方法>
(実施例37)
 工程(I-1):長さ300mm×幅300mm×厚み2mmの板状キャビティを持つ成形型内に強化繊維基材(A’)として“トレカ”(登録商標)BT70-30(東レ(株)製炭素繊維織物、T700S-12K、組織:平織、目付:300g/m)を8枚積層し、プレス装置で型締めを行った。
 工程(II-1):参考例1で得られたポリフェニレンエーテルエーテルケトンオリゴマー(B)を230℃で30分間加熱融解して溶融液とした。さらに所定量の重合触媒(D)を溶融液に添加し、混練することで分散させた。
 工程(III-1):成形型の表面温度を300℃に保持し、型内を真空ポンプにより大気圧より0.1MPa下がるまで減圧した。この成形型内に、樹脂注入機を用いて溶融液を注入し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を強化繊維基材(A’)に含浸させた。
 工程(IV-1):溶融液の注入完了後、さらに成形型の表面温度を300℃のまま、30分間加熱を継続し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させた。
 上記工程(I-1)~(IV-1)完了後、成形型を開き、脱型して、繊維強化複合材料を得た。
 樹脂バリを除去し、得られた繊維強化複合材料の重量を測定した。この繊維強化複合材料の重量と用いた強化繊維基材(A’)の重量から、強化繊維基材(A’)の含有率を計算した。
 得られた繊維強化複合材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。
 また、得られた繊維強化複合材料から、使用した強化繊維基材(A’)の経糸方向を長辺として、JIS K 7074-1988に準拠した寸法の試験片を切り出した。試験機として、“インストロン”(登録商標)万能試験機4201型(インストロン社製)を用いて3点曲げ試験を行い、曲げ強度を算出した。各プロセス条件および評価結果を表7に記載した。
(実施例38)
 参考例2で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例37と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。各プロセス条件及び評価結果を表7に記載した。
(比較例18)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、工程(II-1)における加熱溶融温度を350℃に代え、工程(III-1)および(IV-1)における成形型の表面温度を400℃に代え、工程(IV-1)における加熱時間を10分に代え、さらに成形型の表面温度を400℃から150℃まで25分かけて冷却してから繊維強化複合材料の脱型を行った以外は、実施例37と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例37に比べ、ボイドが多く、得られた繊維強化複合材料は非常にもろいものであった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表7に記載した。
(実施例39)
 参考例4で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いた以外は、実施例37と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。各プロセス条件及び評価結果を表7に記載した。
(比較例19)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃、400℃における溶融粘度150Pa・s)を用い、工程(II-1)における加熱溶融温度を400℃に代え、工程(III-1)および(IV-1)における成形型の表面温度を400℃に代え、工程(IV-1)における加熱時間を10分に代え、さらに成形型の表面温度を400℃から150℃まで25分かけて冷却してから繊維強化複合材料の脱型を行った以外は、実施例37と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例37に比べ、ボイドが多く、得られた繊維強化複合材料は非常にもろいものであった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表7に記載した。
(実施例40)
 工程(III-1)および(IV-1)における成形型の表面温度を350℃に代え、工程(IV-1)における加熱時間を10分に代え、さらに成形型の表面温度を350℃から150℃まで20分かけて冷却してから繊維強化複合材料の脱型を行った以外は、実施例7と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。各プロセス条件及び評価結果を表7に記載した。
(実施例41)
 工程(III-1)および(IV-1)における成形型の表面温度を400℃に代え、工程(IV-1)における加熱時間を10分に代え、さらに成形型の表面温度を400℃から150℃まで25分かけて冷却してから繊維強化複合材料の脱型を行った以外は、実施例37と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例37と同様に各種評価に供した。各プロセス条件及び評価結果を表7に記載した。
Figure JPOXMLDOC01-appb-T000015
 表7の実施例および比較例より以下のことが明らかである。実施例37~39の結果より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)はその製造方法によらず、比較例18、および19に比べて繊維強化複合材料の製造におけるプロセス温度を低く抑えることが可能であり、強化繊維基材(A’)への含浸性に優れ、また、得られる繊維強化複合材料中のボイドが低減可能であることは明らかである。また、得られる繊維強化複合材料の力学特性に優れることは明らかである。
 実施例40、および41より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、350℃、および400℃でも良好に重合させることが可能であり、これらの方法が、重合速度において優れた方法であることは明らかである。
<フィラメントワインディング法による繊維強化複合材料の製造方法>
(実施例42)
 図16および図17を参照しながら説明する。
 工程(I-2):強化繊維基材(A’)として“トレカ”(登録商標)T700S-24K(東レ(株)製炭素繊維)を連続的に引き出し、3本を引き揃えた。
 工程(II-2):参考例1で得られたポリフェニレンエーテルエーテルケトンオリゴマー(B)、および重合触媒(D)を含浸槽に供給し、230℃で加熱融解して溶融液とした。
 工程(III-2):工程(I-2)で引き揃えた強化繊維基材(A’)を工程(II-2)の含浸槽に供給し、溶融液を強化繊維基材(A’)に含浸させた複合体を得た。得られた複合体をフィラメントワインディング法によって、φ70mmのマンドレルにその軸方向に対し内層に85°の螺旋巻き層72aとして0.2mmを形成した後、主層72bとして±12°で厚さ1mmを螺旋巻きした後、±45°にて厚さ0.5mm、さらに±12°で厚さ1mmの螺旋巻きした後、最外層を85°の螺旋巻き層72c厚さ0.2mmを実施した。主層は合計2.9mmで構成される。なお、継手の装着部となる、本体筒の両端部の110mmの長さに相当する部分には、継手との接合強度を向上させるために、軸方向に対し、±83°で構成される厚みが2.5mmからなる補強層72dを形成した。補強層72dは、厚さ2.5mm、軸方向長さ60mmのストレート部および軸中央方向に向かった長さが50mmのテーパー部にて形成されている。
 工程(IV-2):工程(III-2)で複合体を巻きつけたマンドレルをオーブンによって300℃で30分間加熱し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させた。
 さらに、工程(IV-2)を経たマンドレルをオーブンから取り出し、空冷することで、繊維強化複合材料製の円筒体72を得た。
さらに、円筒体72の両端部に金属製継手73を圧入接合し、プロペラシャフト71とした。
 得られた繊維強化複合材料製の円筒体72からマンドレルを除いた重量と、用いた強化繊維基材(A’)の重量から、強化繊維基材(A’)の含有量を計算した。
 得られた繊維強化複合材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。また、各プロセス条件および評価結果を表8に記載した。
(実施例43)
 工程(IV-2)におけるオーブンによる加熱条件を400℃で10分間に代えた以外は、実施例42と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例42と同様に各種評価に供した。各プロセス条件及び評価結果を表8に記載した。
(比較例20)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、工程(II-2)における加熱溶融温度を350℃に代え、工程(IV-2)におけるオーブンによる加熱条件を400℃で10分間に代えた以外は、実施例42と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例42と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例42に比べ、ボイドが多かった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表8に記載した。
(比較例21)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃、400℃における溶融粘度150Pa・s)を用い、工程(II-2)における加熱溶融温度を400℃に代え、工程(IV-2)におけるオーブンによる加熱条件を400℃で10分間に代えた以外は、実施例42と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例42と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例42に比べ、ボイドが多かった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表8に記載した。
Figure JPOXMLDOC01-appb-T000016
 表8の実施例および比較例より以下のことが明らかである。実施例42と、比較例20、および21の比較より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いることにより、繊維強化複合材料の製造におけるプロセス温度を低く抑えることが可能であり、強化繊維基材(A’)への含浸性に優れ、また、得られる繊維強化複合材料中のボイドが低減可能であることは明らかである。
 実施例43より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、400℃でも良好に重合させることが可能であり、この方法が、重合速度において優れた方法であることは明らかである。
<引き抜き成形法による繊維強化複合材料の製造方法>
(実施例44)
 工程(I-3):強化繊維基材(A’)として“トレカ”(登録商標)T700S-24K(東レ(株)製炭素繊維)112本を連続的に引き出した。
 工程(II-3):参考例1で得られたポリフェニレンエーテルエーテルケトンオリゴマー(B)、および重合触媒(D)を含浸槽に供給し、230℃で加熱融解して溶融液とした。
 工程(III-3):工程(I-3)で引き出した強化繊維基材(A’)を工程(II-3)の含浸槽に供給し、溶融液を強化繊維基材(A’)に含浸させ、さらに、スクイーズダイに通して余分な溶融液を落とした複合体を得た。
 工程(IV-3):工程(III-3)で得られた複合体を、繊維強化複合材料が幅100mm、厚み1.4mmとなるよう孔が空いた金型に通し、この金型内で300℃、30分間加熱し、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合させた。
 工程(IV-3)を経た複合体を150℃の冷却ロールに接触させることで固化させ、さらにベルトコンベヤーで引き出すことで、繊維強化複合材料を連続的に得た。
 得られた繊維強化複合材料の重量と、用いた強化繊維基材(A’)の重量から、強化繊維基材(A’)の含有量を計算した。
 得られた繊維強化複合材料からポリフェニレンエーテルエーテルケトン(B’)を物理的に分離し、融点測定、融解エンタルピー測定および粘度測定に供した。また、各プロセス条件および評価結果を表9に記載した。
(実施例45)
 工程(IV-3)における金型による加熱条件を400℃で10分間に代えた以外は、実施例44と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例44と同様に各種評価に供した。各プロセス条件及び評価結果を表9に記載した。
(比較例22)
 参考例3で調製したポリフェニレンエーテルエーテルケトンオリゴマー(B)を用い、工程(II-3)における加熱溶融温度を350℃に代え、工程(IV-3)における金型による加熱条件を400℃で10分間に代えた以外は、実施例44と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例44と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例44に比べ、ボイドが多かった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表9に記載した。
(比較例23)
 ポリフェニレンエーテルエーテルケトンオリゴマー(B)に代えて、VICTREX“PEEK”(登録商標)151G(ビクトレックス・エムシー(株)製ポリエーテルエーテルケトン樹脂、融点343℃、400℃における溶融粘度150Pa・s)を用い、工程(II-3)における加熱溶融温度を400℃に代え、工程(IV-3)における金型による加熱条件を400℃で10分間に代えた以外は、実施例44と同様の方法で繊維強化複合材料を製造した。得られた繊維強化複合材料を実施例44と同様に各種評価に供した。ここで得られた繊維強化複合材料は実施例44に比べ、ボイドが多かった。これは、強化繊維基材(A’)への含浸前にポリフェニレンエーテルエーテルケトンオリゴマー(B)の重合が起こった為だと考えられる。各プロセス条件及び評価結果を表9に記載した。
Figure JPOXMLDOC01-appb-T000017
 表9の実施例および比較例より以下のことが明らかである。実施例44と、比較例22、および23の比較より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いることにより、繊維強化複合材料の製造におけるプロセス温度を低く抑えることが可能であり、強化繊維基材(A’)への含浸性に優れ、また、得られる繊維強化複合材料中のボイドが低減可能であることは明らかである。
 実施例45より、本発明におけるポリフェニレンエーテルエーテルケトンオリゴマー(B)は、400℃でも良好に重合させることが可能であり、この方法が、重合速度において優れた方法であることは明らかである。
 本発明の成形材料の第1の好ましい形態は、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を用いるため、経済性、生産性に優れる成形材料の使用において、力学特性に優れた成形品を容易に製造することができる。
 本発明の成形材料の第2の好ましい形態は、ポリフェニレンエーテルエーテルケトン(B’)を用いるため、力学特性と耐熱性に優れた成形品を容易に製造することができる。
 本発明の成形材料の第3の好ましい形態は、成形材料を低温、短時間で加熱することにより繊維強化複合材料に成形することが可能であるため、経済性、生産性、取り扱い性に優れる。
 本発明の成形材料の製造方法は、強化繊維基材とポリフェニレンエーテルエーテルケトンを容易に複合化させることができるため、経済性、生産性を高めることができ、成形材料の製造に有用である。
 本発明の繊維強化複合材料の製造方法は、強化繊維基材とポリフェニレンエーテルエーテルケトンを容易に複合化させることができるため、経済性、生産性を高めることができ、繊維強化複合材料の製造に有用である。
 1:強化繊維束(A)
 2:ポリフェニレンエーテルエーテルケトンオリゴマー(B)または、ポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)および重合触媒(D)
 3:強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)または、強化繊維束(A)とポリフェニレンエーテルエーテルケトンオリゴマー(B)またはポリフェニレンエーテルエーテルケトン(B’)と重合触媒(D)からなる複合体
 4:熱可塑性樹脂(C)
 5:ドレープ性を評価するための冶具
 6:ドレープ性を評価する為のサンプル
 7:重錘
 8:サンプルを固定する為のクランプ
 11,31,51:ロールバー
 12:含浸バス
 13:回転ローラー
 14:熱風乾燥炉
 15:ダブルベルトプレス
 16,34,53:ニップローラー
 17,36,55,62:赤外線ヒーター
 18:ポンプ
 19:チャンバー
 20,26,41,58:吸気口
 21,42,59:冷却板
 22:ギロチンカッター
 23,43,60:強化繊維束
 24,44,61:成形材料
 32:ベルトコンベア
 35,54:ドラムワインダー
 37:引き出しワインダー
 27,33,38:ホットローラー
 39:巻き取りワインダー
 25,40,57:加熱チャンバー
 52:カレンダーロール
 56:定量粉体供給機
 71:プロペラシャフト
 72:繊維強化複合材料製の円筒体
 72a:内層
 72b:主層
 72c:外層
 72d:補強層
 73 :金属製継手

Claims (39)

  1. 連続した強化繊維束(A)1~50重量%とポリフェニレンエーテルエーテルケトンオリゴマー(B)0.1~20重量%からなる複合体に、熱可塑性樹脂(C)30~98.9重量%が接着されてなる成形材料であって、該成分(B)の融点が270℃以下である成形材料。
  2. 前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含む請求項1記載の成形材料。
  3. 前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物である請求項1または2のいずれかに記載の成形材料。
  4. 前記複合体がさらに、前記成分(B)中のエーテルエーテルケトン構成単位1モルに対し0.001~20モル%の重合触媒(D)を含む請求項1~3のいずれかに記載の成形材料。
  5. 連続した強化繊維束(A)1~50重量%とポリフェニレンエーテルエーテルケトン(B’)0.1~30重量%からなる複合体に、熱可塑性樹脂(C)20~98.9重量%が接着されてなる成形材料であって、該成分(B’)が、融点が270℃以下のポリフェニレンエーテルエーテルケトンオリゴマー(B)を重合触媒(D)で重合させて得られるポリフェニレンエーテルエーテルケトンである成形材料。
  6. 前記成分(B’)のDSCによる結晶融解エンタルピー△Hが40J/g以上である請求項5に記載の成形材料。
  7. 前記成分(A)が、炭素繊維の単繊維を少なくとも10,000本含有してなる、請求項1~6のいずれかに記載の成形材料。
  8. 前記成分(C)が、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンスルフィド樹脂から選択される少なくとも1種である、請求項1~7のいずれかに記載の成形材料。
  9. 前記成分(D)がアルカリ金属塩である請求項4~8のいずれかに記載の成形材料。
  10. 前記成分(A)が軸心方向にほぼ平行に配列されており、かつ該成分(A)の長さが成形材料の長さと実質的に同じである、請求項1~9のいずれかに記載の成形材料。
  11. 前記複合体が芯構造であり、前記成分(C)が該複合体の周囲を被覆した芯鞘構造である、請求項10に記載の成形材料。
  12. 成形材料の形態が、長繊維ペレットである請求項11に記載の成形材料。
  13. 強化繊維基材(A’)とポリフェニレンエーテルエーテルケトンオリゴマー(B)と重合触媒(D)からなる成形材料であって該成分(B)の融点が270℃以下である成形材料。
  14. 前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含む請求項13に記載の成形材料。
  15. 前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物である請求項13または14のいずれかに記載の成形材料。
  16. 前記成分(A’)が、炭素繊維である請求項13~15のいずれかに記載の成形材料。
  17. 前記成分(A’)の含有量が30重量%以上である請求項13~16のいずれかに記載の成形材料。
  18. 前記成分(D)の含有量が、前記成分(B)中のエーテルエーテルケトン構成単位1モルに対し0.001~20モル%である請求項13~17のいずれかに記載の成形材料。
  19. 請求項13~18のいずれかに記載の成形材料を、金型を用いてプレス成形する成形方法。
  20. 前記金型内で前記成分(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる請求項19に記載の成形方法。
  21. 前記成分(B)を前記成分(B’)に重合させる際の、前記金型の表面温度が前記成分(B’)の融点以下である請求項20に記載の成形方法。
  22. 前記金型内で前記成分(B)を前記成分(B’)に重合させた後、金型を冷却せずに型開きして成形品を取り出す請求項20~21のいずれかに記載の成形方法。
  23. 強化繊維基材(A’)を引き出し、連続的に供給する工程(I)、該成分(A’)にポリフェニレンエーテルエーテルケトンオリゴマー(B)を複合化して複合体を得る工程(II)、該成分(B)をポリフェニレンエーテルエーテルケトン(B’)に重合させる工程(III)、および該成分(A’)、該成分(B’)からなる複合体を冷却し引き取る工程(IV)を有してなる成形材料の製造方法であって、該成分(B)の融点が270℃以下である成形材料の製造方法。
  24. 前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含む請求項23に記載の成形材料の製造方法。
  25. 前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物である請求項23または24のいずれかに記載の成形材料の製造方法。
  26. 前記工程(II)において、さらに重合触媒(D)を複合化させる請求項23~25のいずれかに記載の成形材料の製造方法。
  27. 前記工程(I)~(IV)がオンラインで実施されてなる、請求項23~26に記載の成形材料の製造方法。
  28. 前記工程(IV)の引き取り速度が1~100m/分である、請求項23~27のいずれかに記載の成形材料の製造方法。
  29. 前記工程(II)において、加熱溶融させた前記成分(B)を前記成分(A’)に付与して複合化させる請求項23~28のいずれかに記載の成形材料の製造方法。
  30. 前記工程(II)において、粒子状、繊維状、フレーク状からなる群から選択される少なくとも1種の形態の前記成分(B)を前記成分(A’)に付与して複合化させる、請求項23~28のいずれかに記載の成形材料の製造方法。
  31. 前記工程(II)において、フィルム状、シート状、不織布状からなる群から選択される少なくとも1種の形態の前記成分(B)を前記成分(A’)に付与して複合化させる、請求項23~28のいずれかに記載の成形材料の製造方法。
  32. 強化繊維基材(A’)を成形型に配置する工程(I-1)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を加熱溶融させて溶融液とする工程(II-1)、該工程(I-1)の成形型に該工程(II-1)で得られた溶融液を注入して、該成分(B)を該成分(A’)に含浸させる工程(III-1)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-1)を有してなる繊維強化複合材料の製造方法であって、該工程(II-1)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法。
  33. 強化繊維基材(A’)を引き出し、連続的に供給する工程(I-2)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-2)、該工程(II-2)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させ、得られた複合体をマンドレルに巻きつける工程(III-2)、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-2)を有してなる繊維強化複合材料の製造方法であって、該工程(II-2)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法。
  34. 強化繊維基材(A’)を引き出し、連続的に供給する工程(I-3)、ポリフェニレンエーテルエーテルケトンオリゴマー(B)を含浸槽内で加熱溶融させて溶融液とする工程(II-3)、該工程(II-3)の含浸槽に該成分(A’)を連続的に通し、該成分(B)を該成分(A’)に含浸させた複合体を得る工程(III-3)、得られた複合体を金型に通して連続的に引き抜き成形することで、該成分(B)を加熱重合させることにより、ポリフェニレンエーテルエーテルケトン(B’)とする工程(IV-3)を有してなる繊維強化複合材料の製造方法であって、該工程(II-3)で用いられる該成分(B)の融点が270℃以下である繊維強化複合材料の製造方法。
  35. 前記成分(B)が環式ポリフェニレンエーテルエーテルケトンを60重量%以上含む請求項32~34のいずれかに記載の繊維強化複合材料の製造方法。
  36. 前記成分(B)が異なる繰り返し数mを有する環式ポリフェニレンエーテルエーテルケトンの混合物である請求項32~35のいずれかに記載の繊維強化複合材料の製造方法。
  37. 前記成分(B)の溶融液に、さらに重合触媒(D)を添加する請求項32~36のいずれかに記載の繊維強化複合材料の製造方法。
  38. 前記工程(II-1)、(II-2)または(II-3)において、前記成分(B)からなる溶融液の溶融粘度を10Pa・s以下に調整する請求項32~37のいずれかに記載の繊維強化複合材料の製造方法。
  39. 前記工程(IV-1)、(IV-2)または(IV-3)において、160℃~330℃の温度で前記加熱重合を行う請求項32~38のいずれかに記載の繊維強化複合材料の製造方法。
PCT/JP2012/065701 2011-06-24 2012-06-20 成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法 WO2012176788A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137027510A KR101513112B1 (ko) 2011-06-24 2012-06-20 성형 재료 및 그것을 사용한 성형 방법, 성형 재료의 제조 방법 및 섬유 강화 복합 재료의 제조 방법
ES12802922.0T ES2650727T3 (es) 2011-06-24 2012-06-20 Material de moldeo, método de moldeo que lo utiliza, método para producir un material de moldeo y método para producir un material compuesto reforzado con fibras
CN201280031117.5A CN103608386B (zh) 2011-06-24 2012-06-20 成型材料和使用其的成型方法、成型材料的制造方法以及纤维强化复合材料的制造方法
EP12802922.0A EP2725055B1 (en) 2011-06-24 2012-06-20 Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material
US14/128,868 US10023737B2 (en) 2011-06-24 2012-06-20 Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material
US16/008,926 US20180362760A1 (en) 2011-06-24 2018-06-14 Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011140691A JP5589972B2 (ja) 2011-06-24 2011-06-24 成形材料およびそれを用いた成形方法
JP2011140693A JP5589974B2 (ja) 2011-06-24 2011-06-24 繊維強化複合材料の製造方法
JP2011-140689 2011-06-24
JP2011-140693 2011-06-24
JP2011140689A JP5589971B2 (ja) 2011-06-24 2011-06-24 成形材料
JP2011140692A JP5589973B2 (ja) 2011-06-24 2011-06-24 成形材料の製造方法
JP2011140690A JP5614382B2 (ja) 2011-06-24 2011-06-24 成形材料の製造方法
JP2011-140690 2011-06-24
JP2011-140692 2011-06-24
JP2011-140691 2011-06-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/128,868 A-371-Of-International US10023737B2 (en) 2011-06-24 2012-06-20 Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material
US16/008,926 Division US20180362760A1 (en) 2011-06-24 2018-06-14 Molding material, molding method using same, method for producing molding material, and method for producing fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
WO2012176788A1 true WO2012176788A1 (ja) 2012-12-27

Family

ID=47422620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065701 WO2012176788A1 (ja) 2011-06-24 2012-06-20 成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法

Country Status (7)

Country Link
US (2) US10023737B2 (ja)
EP (1) EP2725055B1 (ja)
KR (1) KR101513112B1 (ja)
CN (1) CN103608386B (ja)
ES (1) ES2650727T3 (ja)
TW (1) TWI544013B (ja)
WO (1) WO2012176788A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160491A3 (en) * 2013-03-13 2014-11-20 T-Ink, Inc. Automatic sensing methods and devices for inventory control
US9123018B2 (en) 2013-03-13 2015-09-01 T+Ink, Inc. System and method for identifying one or more objects hung from a display peg
JPWO2018079700A1 (ja) * 2016-10-27 2019-09-19 ダイセルポリマー株式会社 Peek樹脂組成物成形体
WO2020213406A1 (ja) * 2019-04-19 2020-10-22 帝人株式会社 熱可塑性樹脂プリプレグ、その製造方法及び繊維強化複合材料
US11059647B2 (en) 2015-03-03 2021-07-13 Touchcode Holdings, Llc Apparatus, systems and methods for identifying products

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2518006A (en) * 2013-09-10 2015-03-11 Magma Global Ltd Heating method
EP3195994B1 (en) * 2014-09-17 2022-08-03 Toray Industries, Inc. Fiber-reinforced resin molding material
FR3027546B1 (fr) * 2014-10-24 2017-07-21 Porcher Ind Meches poudrees par procede electrostatique
DE102015204494A1 (de) 2015-03-12 2016-09-15 Hyundai Motor Company Hybrid-Seitenschweller für ein Kraftfahrzeug und Herstellungsverfahren desselben
US9943129B2 (en) * 2015-04-06 2018-04-17 Cascade Maverik Lacrosse, Llc Protective headgear
ES2721638T3 (es) 2015-04-07 2019-08-02 Ems Patent Ag Procedimiento para la producción de un cuerpo de moldeado reforzado con un elemento de refuerzo
KR102063602B1 (ko) * 2015-06-08 2020-01-09 (주)엘지하우시스 섬유 강화 복합재 시트 및 이의 제조방법
US20190016015A1 (en) * 2015-08-03 2019-01-17 Kordsa Teknik Tekstil Anonim Sirketi Thermoplastic prepreg production method
KR20170053416A (ko) * 2015-11-06 2017-05-16 주식회사 엘지화학 반도체 장치 및 반도체 장치의 제조 방법
KR102115739B1 (ko) 2015-12-24 2020-05-27 미쯔비시 케미컬 주식회사 섬유 강화 수지 재료 성형체, 섬유 강화 수지 재료 성형체의 제조 방법 및 섬유 강화 수지 재료의 제조 방법
JP6667391B2 (ja) * 2016-07-06 2020-03-18 三菱重工業株式会社 複合材、引抜成形装置及び引抜成形方法
EP3536472B1 (en) * 2016-11-01 2022-01-26 Teijin Limited Assembly of molding materials, and method for producing assembly of molding materials
JP7005917B2 (ja) * 2017-03-27 2022-02-10 三菱ケミカル株式会社 繊維強化樹脂成形品と金属のハイブリット構造部材
FR3067968B1 (fr) 2017-06-22 2020-11-06 Arkema France Materiau fibreux impregne de polymere thermoplastique
FR3067961B1 (fr) * 2017-06-22 2020-11-06 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
FR3067962B1 (fr) * 2017-06-22 2020-11-06 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
CN107297840B (zh) * 2017-08-01 2023-02-03 江苏恒神股份有限公司 一种预浸料生产用换纸设备
JP2019093700A (ja) * 2017-11-20 2019-06-20 株式会社ジェイテクト 樹脂成形体の製造方法
KR102202381B1 (ko) * 2017-12-12 2021-01-12 (주)엘지하우시스 섬유강화 복합재 제조 장치 및 제조 방법
EP3760666A4 (en) * 2018-02-27 2021-04-28 Mitsubishi Chemical Corporation FIBER REINFORCED THERMOPLASTIC RESIN PRE-IMPREGNATE AND MOLDED BODY
KR102179417B1 (ko) * 2018-03-08 2020-11-16 주식회사 엘지화학 유리섬유 보강 폴리아미드 얼로이 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
FR3079163B1 (fr) 2018-03-23 2021-10-15 Arkema France Nappe de materiau fibreux impregne, son procede de fabrication et son utilisation pour la fabrication de pieces composites en trois dimensions
EP3670127A1 (fr) 2018-12-18 2020-06-24 Arkema France Procede de fabrication d'un materiau fibreux impregne de polymere thermoplastique
JP2020146268A (ja) * 2019-03-14 2020-09-17 グローブライド株式会社 ゴルフクラブ、及び、ゴルフクラブのシャフトの製造方法
CN115516013B (zh) * 2020-05-15 2023-08-29 三菱瓦斯化学株式会社 纤维增强复合材料的制造方法
JP7251523B2 (ja) * 2020-06-15 2023-04-04 トヨタ自動車株式会社 積層状態算出方法、積層状態算出装置及び積層状態算出プログラム
CN114476145B (zh) * 2022-01-18 2022-10-04 大连理工大学 短切碳纤维增强热塑性复合材料的卫星隔/减振支架
CN115284487B (zh) * 2022-09-28 2023-02-17 北京玻钢院复合材料有限公司 石英纤维增强酚醛模压件用预混料制备***及制备方法
GB202216920D0 (en) 2022-11-14 2022-12-28 Victrex Mfg Ltd A component and method of formation of a component

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388828A (ja) 1989-08-14 1991-04-15 Dow Chem Co:The 環状ポリ(アリールエーテル)オリゴマー、その製造法、および環状ポリ(アリールエーテル)オリゴマーの重合法
JPH0539371A (ja) 1991-05-29 1993-02-19 Dainippon Ink & Chem Inc ポリアリーレンスルフイド系樹脂プリプレーグおよびその成形品
JPH06320536A (ja) * 1993-05-13 1994-11-22 Kobe Steel Ltd 長繊維強化合成樹脂ストランドまたはペレット
JPH08118489A (ja) 1994-10-28 1996-05-14 Nitto Boseki Co Ltd 繊維強化熱可塑性樹脂シート材料の製造方法
JPH0925346A (ja) 1995-07-07 1997-01-28 Tonen Chem Corp 繊維強化複合材料
JPH10138379A (ja) 1996-11-06 1998-05-26 Toray Ind Inc 成形材料およびその製造方法
JP2007506833A (ja) 2003-09-26 2007-03-22 ビクトレックス マニュファクチャリング リミテッド 高分子量ケトン
JP2008231236A (ja) 2007-03-20 2008-10-02 Toray Ind Inc 繊維強化複合材料の製造方法、および繊維強化複合材料
JP2008231237A (ja) 2007-03-20 2008-10-02 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2008231291A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2008231289A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 繊維強化成形基材の製造方法
JP2008231292A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2010095613A (ja) * 2008-10-16 2010-04-30 Kaneka Corp ポリエーテルエーテルケトン系樹脂組成物
WO2011081080A1 (ja) * 2009-12-28 2011-07-07 東レ株式会社 環式ポリフェニレンエーテルエーテルケトン組成物およびその製造方法
WO2012081455A1 (ja) * 2010-12-13 2012-06-21 東レ株式会社 樹脂組成物ならびにそれを用いた複合硬化物およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953400A (en) * 1972-01-17 1976-04-27 Raychem Corporation Polyketones and methods therefor
EP0031198B2 (en) * 1979-12-14 1992-11-04 Imperial Chemical Industries Plc Compositions of aromatic polyetherketones and glass and/or carbon fibres
US4624997A (en) * 1984-09-28 1986-11-25 Union Carbide Corporation Article molded from a blend of a poly(aryl ether ketone) and a poly(aryl ether sulfone)
DE3804159A1 (de) * 1988-02-11 1989-08-24 Basf Ag Polyaryletherketone mit verbesserter verarbeitbarkeit
US5264538A (en) * 1989-08-14 1993-11-23 The Dow Chemical Company Cyclic poly(aryl ether) oligomers
US20060183841A1 (en) * 2005-02-11 2006-08-17 Ashish Aneja Thermally stable thermoplastic resin compositions, methods of manufacture thereof and articles comprising the same
AU2006292575A1 (en) * 2005-09-16 2007-03-29 Sabic Innovative Plastics Ip B.V. Improved poly aryl ether ketone polymer blends
US7815993B2 (en) * 2006-12-15 2010-10-19 E.I. Du Pont De Nemours And Company Honeycomb from paper having flame retardant thermoplastic binder
EP2138530B1 (en) * 2007-03-20 2017-03-29 Toray Industries, Inc. Molding material, prepreg, fiber-reinforced composite material, and process for production of fiber-reinforced molding base material

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388828A (ja) 1989-08-14 1991-04-15 Dow Chem Co:The 環状ポリ(アリールエーテル)オリゴマー、その製造法、および環状ポリ(アリールエーテル)オリゴマーの重合法
JPH0539371A (ja) 1991-05-29 1993-02-19 Dainippon Ink & Chem Inc ポリアリーレンスルフイド系樹脂プリプレーグおよびその成形品
JPH06320536A (ja) * 1993-05-13 1994-11-22 Kobe Steel Ltd 長繊維強化合成樹脂ストランドまたはペレット
JPH08118489A (ja) 1994-10-28 1996-05-14 Nitto Boseki Co Ltd 繊維強化熱可塑性樹脂シート材料の製造方法
JPH0925346A (ja) 1995-07-07 1997-01-28 Tonen Chem Corp 繊維強化複合材料
JP3598510B2 (ja) 1995-07-07 2004-12-08 大日本インキ化学工業株式会社 繊維強化複合材料
JPH10138379A (ja) 1996-11-06 1998-05-26 Toray Ind Inc 成形材料およびその製造方法
JP2007506833A (ja) 2003-09-26 2007-03-22 ビクトレックス マニュファクチャリング リミテッド 高分子量ケトン
JP2008231236A (ja) 2007-03-20 2008-10-02 Toray Ind Inc 繊維強化複合材料の製造方法、および繊維強化複合材料
JP2008231237A (ja) 2007-03-20 2008-10-02 Toray Ind Inc プリプレグおよび繊維強化複合材料
JP2008231291A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2008231289A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 繊維強化成形基材の製造方法
JP2008231292A (ja) 2007-03-22 2008-10-02 Toray Ind Inc 成形材料
JP2010095613A (ja) * 2008-10-16 2010-04-30 Kaneka Corp ポリエーテルエーテルケトン系樹脂組成物
WO2011081080A1 (ja) * 2009-12-28 2011-07-07 東レ株式会社 環式ポリフェニレンエーテルエーテルケトン組成物およびその製造方法
WO2012081455A1 (ja) * 2010-12-13 2012-06-21 東レ株式会社 樹脂組成物ならびにそれを用いた複合硬化物およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725055A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014160491A3 (en) * 2013-03-13 2014-11-20 T-Ink, Inc. Automatic sensing methods and devices for inventory control
US9123018B2 (en) 2013-03-13 2015-09-01 T+Ink, Inc. System and method for identifying one or more objects hung from a display peg
US11059647B2 (en) 2015-03-03 2021-07-13 Touchcode Holdings, Llc Apparatus, systems and methods for identifying products
JPWO2018079700A1 (ja) * 2016-10-27 2019-09-19 ダイセルポリマー株式会社 Peek樹脂組成物成形体
WO2020213406A1 (ja) * 2019-04-19 2020-10-22 帝人株式会社 熱可塑性樹脂プリプレグ、その製造方法及び繊維強化複合材料
JPWO2020213406A1 (ja) * 2019-04-19 2021-12-23 帝人株式会社 熱可塑性樹脂プリプレグ、その製造方法及び繊維強化複合材料
JP7189333B2 (ja) 2019-04-19 2022-12-13 帝人株式会社 熱可塑性樹脂プリプレグ、その製造方法及び繊維強化複合材料

Also Published As

Publication number Publication date
TW201307449A (zh) 2013-02-16
EP2725055A1 (en) 2014-04-30
ES2650727T3 (es) 2018-01-22
KR101513112B1 (ko) 2015-04-17
US20180362760A1 (en) 2018-12-20
TWI544013B (zh) 2016-08-01
CN103608386A (zh) 2014-02-26
EP2725055A4 (en) 2014-12-24
EP2725055B1 (en) 2017-10-11
CN103608386B (zh) 2015-09-30
US10023737B2 (en) 2018-07-17
US20140155540A1 (en) 2014-06-05
KR20140024870A (ko) 2014-03-03

Similar Documents

Publication Publication Date Title
WO2012176788A1 (ja) 成形材料およびそれを用いた成形方法、成形材料の製造方法ならびに繊維強化複合材料の製造方法
KR101449232B1 (ko) 프리프레그 및 섬유 강화 복합 재료, 및 섬유 강화 성형 기재의 제조 방법
US10005905B2 (en) Molding material, prepreg, fiber-reinforced composite material, fiber-reinforced composite material laminate, and process for production of fiber-reinforced molding base material
JP5245266B2 (ja) 繊維強化成形基材の製造方法
JP7041694B2 (ja) 反応性熱可塑性プレポリマーを含浸させた繊維材料
JP5589973B2 (ja) 成形材料の製造方法
KR20170123318A (ko) 수지 공급 재료, 프리폼, 및 섬유 강화 수지의 제조 방법
JP5589971B2 (ja) 成形材料
JP5589974B2 (ja) 繊維強化複合材料の製造方法
EP3719184B1 (en) Carbon fiber bundle, prepreg, and fiber-reinforced composite material
CN117944283A (zh) 纤维增强树脂基材、一体化成型品及纤维增强树脂基材的制造方法
JP5589972B2 (ja) 成形材料およびそれを用いた成形方法
JP5614382B2 (ja) 成形材料の製造方法
CN111527135A (zh) 纤维增强热塑性树脂片、纤维增强热塑性树脂片的成型体及纤维增强热塑性树脂片的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137027510

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012802922

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14128868

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE