WO2012176746A1 - Control device for cylinder-injection-type internal combustion engine - Google Patents

Control device for cylinder-injection-type internal combustion engine Download PDF

Info

Publication number
WO2012176746A1
WO2012176746A1 PCT/JP2012/065560 JP2012065560W WO2012176746A1 WO 2012176746 A1 WO2012176746 A1 WO 2012176746A1 JP 2012065560 W JP2012065560 W JP 2012065560W WO 2012176746 A1 WO2012176746 A1 WO 2012176746A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
internal combustion
combustion engine
fuel
ignition
Prior art date
Application number
PCT/JP2012/065560
Other languages
French (fr)
Japanese (ja)
Inventor
一浩 押領司
助川 義寛
木原 裕介
岡本 多加志
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2012176746A1 publication Critical patent/WO2012176746A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device and a control method for a direct injection internal combustion engine.
  • HC unburned hydrocarbons
  • NOx nitrogen oxides
  • CO carbon monoxide
  • PM particulate matter
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-88875
  • PM is nanometer-sized particles
  • the air-fuel ratio (ratio of air quantity to fuel quantity) locally formed in the engine cylinder is smaller than the theoretical (quantitative) air-fuel ratio (rich mixture).
  • Qi is produced when it burns.
  • a liquid film hereinafter referred to as a fuel liquid film
  • the fuel near the wall cannot be sufficiently diffused and mixed, and a large amount of rich air-fuel mixture is formed near the wall. Since this burns, a large amount of PM is discharged.
  • the present invention has been made in view of such problems, and an object of the present invention is to achieve both early activation of an exhaust catalyst and early increase in engine wall temperature.
  • the present invention provides an air amount detection device that detects and outputs the amount of air flowing into a combustion chamber of an internal combustion engine, a fuel injection device that supplies fuel to the combustion chamber, and a mixture of fuel and air
  • An in-cylinder internal combustion engine that includes an ignition device for igniting air, calculates a total fuel injection amount in one cycle based on an output of the air amount detection device, and performs split injection of fuel in one cycle
  • a control device wherein the first injection for injecting less than half of the total fuel injection amount and an amount corresponding to the difference between the total injection amount and the fuel amount injected in the first injection are And a second injection that is performed at a timing later than the injection of the first and second cylinders, and the ignition control by the ignition device is performed after the second injection and before the compression top dead center of the internal combustion engine.
  • a control device for an internal injection internal combustion engine is provided.
  • a region in which the flame can propagate and a region in which the flame cannot propagate and can self-ignite are formed in the engine cylinder, and the ignition is set before the compression top dead center. It can be burned by propagation and the remaining fuel can be burned by self-ignition. As a result, the combustion period can be extended, and both early activation of the exhaust catalyst and early high temperature of the engine wall can be achieved, and HC, NOx, CO and PM discharged from the engine can be reduced.
  • the block diagram of the engine in a 1st Example The block diagram of ECU in a 1st Example.
  • Explanatory drawing of a flame propagation limit Explanatory drawing of a self-ignition limit.
  • In-cylinder air-fuel mixture state that extends the combustion period by hybrid combustion. Heat generation history when the combustion period is extended by hybrid combustion.
  • the control flowchart in the 1st-3rd Example The flowchart of the injection and ignition control in a 1st Example.
  • Explanatory drawing of cooling water temperature, exhaust temperature, and catalyst temperature Explanatory drawing of the target air fuel ratio of the air-fuel mixture for self-ignition.
  • Explanatory drawing of the relationship between fuel injection quantity and injection pulse width The history of various signal waveforms and heat release rates in the first embodiment.
  • the engine block diagram in the 2nd and 3rd Example The block diagram of ECU in the 2nd and 3rd Example.
  • the flowchart of injection, ignition, and EGR adjustment valve control in a 2nd Example Explanatory drawing of the change of the laminar combustion speed by introduction of external EGR.
  • the flowchart of the injection and ignition control in a 3rd Example History of various signal waveforms and heat generation rates in the third embodiment.
  • FIG. 1 is a configuration diagram of a direct injection internal combustion engine in first and second embodiments of the present invention.
  • the engine 100 is an automobile gasoline engine that performs spark ignition combustion.
  • An air flow sensor 1 for measuring the intake air amount and an electronic control throttle 2 for adjusting the intake flow rate are provided at appropriate positions of the intake pipe 6.
  • the engine 100 is provided with an injector 3 for injecting fuel into a combustion chamber surrounded by the cylinder 7 and the piston 14 and an ignition plug 4 for supplying ignition energy at appropriate positions of the cylinder 7.
  • a variable valve 5 comprising an intake valve 5a and an exhaust valve 5b for adjusting exhaust gas discharged from the cylinder is provided at an appropriate position of each cylinder 7.
  • a three-way catalyst 10 for purifying exhaust and an air-fuel ratio detector, an air-fuel ratio sensor 9 for detecting the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 10, and an exhaust temperature detector
  • An exhaust temperature sensor 11 that measures the temperature of the exhaust gas upstream of the three-way catalyst 10 is provided at an appropriate position of each exhaust pipe 8.
  • the crankshaft 12 is provided with a crank angle sensor 13 for calculating a rotation angle.
  • a cooling water temperature sensor 15 for measuring the temperature of the engine cooling water is provided.
  • an accelerator opening sensor 16 that detects the accelerator opening is provided.
  • the accelerator opening sensor 16 detects the amount of depression of the accelerator pedal, that is, the accelerator opening.
  • the ECU 20 calculates the required torque based on the output signal of the accelerator opening sensor 16. That is, the accelerator opening sensor 16 is used as a required torque detection sensor that detects a required torque for the engine. Further, the ECU 20 calculates the rotational speed of the engine based on the output signal of the crank angle sensor 13.
  • the ECU 20 optimally calculates main engine operating amounts such as air flow rate, fuel injection amount, ignition timing, and intake / exhaust valve operation amount based on the engine operating state obtained from the outputs of the various sensors.
  • the fuel injection amount calculated by the ECU 20 is converted into a valve opening pulse signal and sent to the injector 3. Further, a spark plug drive signal is sent to the spark plug 4 so as to be ignited at the ignition timing calculated by the ECU 20.
  • the throttle opening calculated by the ECU 20 is sent to the electronic control throttle 2 as a throttle drive signal. Further, it is sent to the variable valve 5 as a variable valve drive signal so that the intake / exhaust valve opens and closes at the opening / closing valve timing of the intake / exhaust valve calculated by the ECU 20.
  • FIG. 2 is a system block diagram showing the configuration of the control device for a direct injection internal combustion engine according to the first to second embodiments of the present invention.
  • the output signals of the air flow sensor 1, the air-fuel ratio sensor 9, the exhaust temperature sensor 11, the crank angle sensor 13, the cooling water temperature sensor 15, and the accelerator opening sensor 16 are input to the input circuit 20a of the ECU 20.
  • the input signal is not limited to these.
  • the input signal of each input sensor is sent to the input port in the input / output port 20b.
  • the value sent to the input / output port 20b is stored in the RAM 20c and processed by the CPU 20e.
  • a control program describing the contents of the arithmetic processing is written in advance in the ROM 20d.
  • the value indicating the operation amount of each actuator calculated in accordance with the control program is stored in the RAM 20c, then sent to the output port in the input / output port 20b, and sent to each actuator via each drive circuit.
  • Each circuit controls the electronic control throttle 2, the injector 3, the spark plug 4, and the variable valve 5 respectively.
  • the device includes the drive circuit in the ECU 20.
  • the present invention is not limited to this, and any of the drive circuits may be provided outside the ECU 20.
  • FIG. 3 is a diagram for explaining the flame propagation limit.
  • An indicator for flame propagation is laminar burning velocity.
  • the laminar burning velocity of hydrocarbon fuel takes a maximum value under a condition (equivalent ratio of about 1.1) that is richer than the stoichiometric mixture ratio, and has a value only in a specific equivalent ratio range. This is because the flame cannot propagate through the air-fuel mixture depending on the equivalence ratio condition.
  • the boundary between the lean side and the rich side within the equivalence ratio range where flame propagation is possible is called the flame propagation limit.
  • the equivalent ratio of the flame propagation limit on the lean side is denoted by ⁇ FL
  • the equivalent ratio of the flame propagation limit on the rich side is denoted by ⁇ FR.
  • ⁇ FL differs depending on the type of fuel, but for hydrocarbon fuels, ⁇ FL is approximately 0.4.
  • the equivalent ratio means an index of fuel concentration.
  • FIG. 4 is a diagram for explaining the self-ignition limit.
  • the ignition delay time is a time from when the fuel and the oxidant are mixed to form an air-fuel mixture until rapid heat generation occurs.
  • the ignition delay time varies depending on the type of fuel and oxidant, pressure, temperature, and equivalence ratio. In general, the ignition delay time is small when the temperature and pressure are large. Also, the ignition delay time becomes the smallest in the vicinity of the equivalent ratio 1, and the ignition delay time becomes longer under the conditions where the equivalent ratio is small and large. Whether or not self-ignition occurs during a specific engine operation can be determined by comparing the engine rotation period and the ignition delay time.
  • the ignition delay time In order to self-ignite, at least the ignition delay time needs to be shorter than the rotation period of the engine.
  • the autoignition limit In particular, the equivalent ratio of the lean condition in which the engine rotation period and the ignition delay time are equivalent is denoted by ⁇ IL.
  • ⁇ IL varies depending on the fuel type, but is about 0.2.
  • the flame propagation limit ⁇ FL and the self-ignition limit ⁇ IL have the following relationship. ⁇ FL> ⁇ IL (1)
  • Fig. 5 shows the state of the air-fuel mixture in the engine cylinder when the combustion period is extended by hybrid combustion.
  • the air-fuel mixture is formed by dividing and injecting fuel into the engine cylinder and controlling the fuel injection amount, target air-fuel ratio, and injection timing of each injection.
  • a flame propagation mixture 200 having an equivalence ratio of ⁇ FL or more is formed around the spark plug 4.
  • a self-ignition mixture 201 having an equivalence ratio of less than ⁇ FL is formed around the flame propagation mixture 200.
  • the reason why the self-ignition mixture 201 is more diffused in the cylinder than the flame propagation mixture 200 is that it is formed by injection prior to the flame propagation mixture 200 in the divided injection. Detailed timing of divided injection will be described later.
  • the flame propagation mixture 200 when the flame propagation mixture 200 is ignited by the spark plug, first, the flame propagates through the flame propagation mixture 200 and the combustion proceeds. Since the equivalent ratio of the self-ignition mixture 201 is less than ⁇ FL, the flame cannot propagate through the self-ignition mixture 201. Due to the heat generated by the combustion of the flame propagation mixture 200, the temperature and pressure in the engine cylinder rise, and the self-ignition mixture 201 self-ignites and burns later than the flame propagation mixture 200. . As a result, the combustion period is prolonged, and it is possible to achieve both an increase in the wall surface temperature and an increase in the catalyst temperature. Thus, the combustion system that causes self-ignition following the flame propagation is called hybrid combustion in the present invention.
  • the heat generation history at this time shows a change having two peak values as shown in FIG. Among these, the peak of the heat generation history in the first half is caused by flame propagation, and the peak of the heat generation history in the second half is caused by self-ignition.
  • step S 1 engine required torque is detected based on the exhaust temperature based on the output of the exhaust temperature sensor 11, based on the output of the coolant temperature sensor 15 based on the output of the coolant temperature sensor 15, and on the output of the accelerator opening sensor 16.
  • step S2 it is determined whether the cooling water temperature is equal to or higher than the determination temperature Tw.
  • the determination temperature Tw is set to 80 ° C. When the cooling water temperature is equal to or higher than the determination temperature Tw, it is determined that the engine is warming up.
  • step S4 the fuel injection device, ignition device, electronic control throttle, and variable valve are controlled based on the warming up condition control recorded in the ROM 20d. To do.
  • step S3 it is determined whether the catalyst temperature estimated based on the detected exhaust gas temperature and cooling water temperature has reached the activation temperature.
  • the catalyst activation temperature is set to 300 ° C. Whether the catalyst has reached the activation temperature can be estimated from a map of exhaust temperature and cooling water temperature as shown in FIG.
  • step S3 If it is determined in step S3 that the catalyst temperature has not reached the activation temperature, the process proceeds to step S5, and the electronic control throttle 2, injector 3, spark plug 4, variable motion is performed based on the cold machine condition control recorded in the ROM 20d. The valve 5 is controlled. If it is determined in step S3 that the catalyst temperature has reached the activation temperature, the process proceeds to step S6, and based on the hybrid combustion control recorded in the ROM 20d, the electronic control throttle 2, injector 3, spark plug 4, variable motion The valve 5 is controlled. In this way, it is detected whether the exhaust catalyst is in an inactive state based on the cooling water temperature of the engine, and if it is in an inactive state, the hybrid combustion is performed. Thereby, both exhaust catalyst temperature rise and engine wall surface temperature rise can be achieved in an inactive state of the exhaust catalyst.
  • step S6 the process of step S6 is demonstrated using FIG.
  • step S60 the throttle opening is determined based on the required torque of the engine, and the throttle is controlled.
  • step S61 the intake air amount Qair is detected based on the signal from the air flow sensor 1.
  • step S62 a target air-fuel ratio (A / F) t is set.
  • the target air-fuel ratio (A / F) t is a target value of the ratio of the amount of air introduced into the engine cylinder and the amount of fuel.
  • 16 is set as an example.
  • step S63 a fuel amount (total injection amount) Qt to be injected in one cycle is calculated based on the intake air amount Qair detected in step S61 and the target air-fuel ratio (A / F) t.
  • the fuel amount Qt injected in one cycle is obtained by the following equation using the target air-fuel ratio (A / F) t and the intake air amount Qair.
  • Qt Qair / (A / F) t (2)
  • step S64 the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 formed by the first fuel injection in one cycle is set.
  • the self-ignition air-fuel mixture 201 is an air-fuel mixture having a characteristic that combustion by flame propagation is impossible but combustion by self-ignition is possible.
  • the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is set using a map. A map of the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is shown in FIG.
  • the map for determining the target air-fuel ratio (A / F) 1 is organized by the engine torque and the engine speed, and has a distribution having a smaller value as the engine speed is lower and the required torque is larger.
  • the map is stored in advance in the ROM 20d.
  • the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is determined based on the flame propagation limit and the self-ignition limit. For this reason, the values on the map can be freely set to satisfy the following expression. ⁇ FL> (A / F) st / (A / F) 1> ⁇ IL (3)
  • Equation (3) the equivalent ratio ⁇ FL of the flame propagation limit, the equivalent ratio ⁇ IL of the autoignition limit, and (A / F) st are air-fuel ratios in the stoichiometric mixture ratio.
  • (A / F) st is 14.7 when the fuel is gasoline. In this embodiment, gasoline is used as the fuel, so (A / F) st is 14.7.
  • step S65 the injection amount Q1 of the intake stroke is obtained by the following equation using the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 read in step S64.
  • Q1 Qair / (A / F) 1 (4)
  • step S66 a second injection amount Q2 is obtained from the difference between the total injection amount Qt and the first injection amount Q1.
  • Q2 Qt ⁇ Q1 (5)
  • step S67 the injection timing, the injection pulse width for driving the injector 3 to open the valve, and the ignition timing are set.
  • the first injection start timing is set during the intake stroke so that the self-ignition mixture 201 is sufficiently diffused in the cylinder.
  • the second injection timing can be set in an arbitrary range from the end of the first injection to before the compression top dead center, but in this embodiment, for example, is set to the timing of the compression stroke start.
  • the injection pulse width is determined based on a map in which the relationship between the injection pulse width and the fuel injection amount shown in FIG. 11 is arranged.
  • the injection pulse width corresponding to the injection amounts of Q1 and Q2 is calculated from the map, and the first and second injection pulse widths are determined.
  • the ignition timing is set between the compression completion dead center and the second injection completion timing.
  • step S68 control is performed based on the injection amount and ignition timing determined by the calculation by the ECU from step S61 to step S67.
  • FIG. 12 shows the drive signal waveform of the spray device when operated based on the control of FIGS.
  • the first injection was performed during the intake stroke, and the second injection was performed from the intake bottom dead center.
  • the second injection pulse width t2 is larger than the first injection pulse width t1 from the relationship between the first injection amount Q1 and the second injection amount Q2 so as to satisfy Expression (3).
  • the ignition signal is turned ON to start combustion, so that heat is generated before the compression top dead center.
  • the air-fuel mixture burns by flame propagation and generates heat, and then heat is generated by the occurrence of self-ignition. For this reason, the combustion period is prolonged, and the heat generation rate history has two peaks.
  • the history of heat release rate is calculated from the output value of the sensor that detects the in-cylinder pressure.
  • the amount of fuel injected during one cycle calculated based on the amount of air flowing into the engine cylinder
  • the first injection is performed for less than half of the amount
  • the difference between the total injection amount and the injection amount for the first shot is injected for the second shot
  • ignition is set to be performed before compression top dead center.
  • FIG. 13 is a block diagram of a direct injection internal combustion engine in the second and third embodiments of the present invention.
  • the internal combustion engine of the second and third embodiments is provided with an EGR pipe 17 for returning the exhaust gas to the upstream side of the air flow sensor.
  • An EGR cooler 18 for cooling the exhaust gas is installed in the middle of the EGR pipe 17.
  • the EGR pipe is provided with an EGR adjustment valve 19 for adjusting the amount of exhaust gas returned to the engine.
  • FIG. 14 is a system block diagram showing the configuration of the control device for the direct injection internal combustion engine according to the second and third embodiments.
  • an EGR adjustment valve drive circuit 20k for controlling the EGR adjustment valve 19 calculated by the CPU 20e is provided for controlling the EGR adjustment valve 19, and a knock sensor 21 is provided in the input circuit 20a. This is the point where the signal is input.
  • the ECU 20 includes the drive circuit.
  • the present invention is not limited to this, and any of the drive circuits may be provided in the ECU 20.
  • step S6 determines whether or not knocking has occurred based on the output of the knock sensor 21. If knock does not occur, the process proceeds to step S68a, and controls such as injection and ignition are performed based on the injection timing, injection pulse width, and ignition timing set in step S67. If it is determined in step S68a that knock has occurred, the process proceeds to step S68b, and the EGR valve opening amount is made larger than the current set value.
  • step S68a the flame propagation speed can be reduced by introducing the external EGR as compared with the case where the external EGR is not introduced. As a result, the increase in temperature and pressure in the engine cylinder can be moderated, and knocking can be suppressed.
  • combustion and self-ignition by flame propagation can be achieved by changing the external EGR rate.
  • the combustion due to can be slowed down and the combustion period can be extended.
  • step S67c control is performed based on the flowcharts shown in FIGS.
  • the control content in step S6 is different from the second embodiment.
  • the control in step S6 in the third embodiment will be described with reference to FIG.
  • a new part in the third embodiment is step S67c.
  • step S67c after determining that a knock has occurred based on the output of the knock sensor 21, the second injection timing is set to be retarded from the value set in S67.
  • the injection signal, ignition signal, and heat generation rate based on the control of this embodiment when knocking occurs are as shown in FIG.
  • the injection signal indicated by a broken line is an injection pulse signal in the previous cycle.
  • the second injection since it is determined in step S67b that knocking has occurred, the second injection is advanced.
  • the diffusion time of the fuel injected at the second shot is increased as compared with the original setting. Therefore, the ratio of the flame propagation mixture 200 in the engine cylinder is increased, and the self-ignition mixture 201 is increased. The ratio of can be reduced. As a result, the ratio of the air-fuel mixture combusted by self-ignition is reduced, and knocking can be suppressed.
  • the present embodiment is effective as a means for avoiding knocking during hybrid combustion by injection control.
  • the second injection timing can be advanced compared to before the vibration occurs.
  • the amount of fuel burned by flame propagation increases and the amount of fuel burned by self-ignition decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In order to balance the early activation of an exhaust catalyst and the early temperature increase of an engine-wall surface temperature in a cylinder-injection-type internal combustion engine at the time of a cold start, the following is performed: less than half of the fuel to be supplied to a combustion chamber is injected during a first injection in the interval of one cycle calculated on the basis of the amount of air flowing into the engine cylinder; the difference between the amount of fuel to be supplied to the combustion chamber in the interval of one cycle and the amount injected during the first injection is injected during a second injection; and part of the fuel is combusted by flame propagation, while the remaining fuel is combusted by self-ignition, by igniting using the ignition device before the compression top dead center of the internal combustion engine. As a result, it is possible to lengthen the combustion period, and balance the early activation of the exhaust catalyst and the early temperature increase of the engine-wall surface temperature.

Description

筒内噴射式内燃機関の制御装置In-cylinder injection internal combustion engine control device
 本発明は、筒内噴射式内燃機関の制御装置及び制御方法に関する。 The present invention relates to a control device and a control method for a direct injection internal combustion engine.
 自動車等に使用される内燃機関(エンジン)において排気成分の低減が必須課題である。エンジンの排気成分としては、未燃炭化水素(以下、HC),窒素酸化物(以下、NOx),一酸化炭素(以下、CO)及び、粒子状物質(Particulate Matter、以下、PM)がある。HC,NOx,COは、失火や燃焼温度の高温化,不完全燃焼によって生成する成分である。これらは、エンジン下流に設けた触媒を用いて無害化している。ただし、これらの成分を触媒によって無害化するには、触媒が活性化する温度に達している必要が有り、特にエンジンの始動直後には触媒の活性化まで時間がかかる。HC,NOx,COを低減するため、内燃機関の下流に設けた排気触媒の早期活性化する技術として、エンジン始動後の冷機時に、圧縮行程中の燃料噴射によりエンジン筒内の混合気を成層化し、かつ、圧縮上死点後に点火する技術が知られており,例えば特開2008-88875号公報(特許文献1)がある。 Reduction of exhaust components is an indispensable issue in internal combustion engines (engines) used in automobiles and the like. As exhaust components of the engine, there are unburned hydrocarbons (hereinafter referred to as HC), nitrogen oxides (hereinafter referred to as NOx), carbon monoxide (hereinafter referred to as CO), and particulate matter (hereinafter referred to as PM). HC, NOx, and CO are components generated by misfire, increase in combustion temperature, and incomplete combustion. These are detoxified using a catalyst provided downstream of the engine. However, in order to render these components harmless by the catalyst, it is necessary to reach a temperature at which the catalyst is activated, and it takes time until the catalyst is activated, particularly immediately after the engine is started. In order to reduce HC, NOx, and CO, as a technology for early activation of the exhaust catalyst provided downstream of the internal combustion engine, the air-fuel mixture in the engine cylinder is stratified by fuel injection during the compression stroke when the engine is cold after the engine is started. In addition, a technique for igniting after compression top dead center is known, for example, Japanese Patent Laid-Open No. 2008-88875 (Patent Document 1).
 一方、PMは、ナノメートルサイズの粒子であり、エンジン筒内に局所的に形成される空燃比(空気量と燃料量の比)が理論(量論)空燃比よりも小さい混合気(リッチ混合気)が燃焼すると生成する。エンジンの冷機始動時には、エンジン壁面に付着した燃料がピストン等の壁面に形成した液膜(以下、燃料液膜)が、点火時期以降も残存し、火炎が壁面に近づいてきた後に、気化する。この結果、壁面近傍の燃料が十分に拡散・混合できず、壁面近傍に大量のリッチ混合気が形成される。これが燃焼してしまうため、大量のPMが排出されることとなる。 On the other hand, PM is nanometer-sized particles, and the air-fuel ratio (ratio of air quantity to fuel quantity) locally formed in the engine cylinder is smaller than the theoretical (quantitative) air-fuel ratio (rich mixture). Qi) is produced when it burns. When the engine is cold-started, a liquid film (hereinafter referred to as a fuel liquid film) formed on the wall surface of the piston or the like by the fuel adhering to the engine wall surface remains after the ignition timing and vaporizes after the flame approaches the wall surface. As a result, the fuel near the wall cannot be sufficiently diffused and mixed, and a large amount of rich air-fuel mixture is formed near the wall. Since this burns, a large amount of PM is discharged.
特開2008-88875号公報JP 2008-88875 A
 大量のPMの排出を改善するには、点火時期より前に液膜を気化させることが必要となるが、液膜を気化させるには、エンジン壁面温度を高温化すれば良い。従来技術では、排気触媒の早期活性化は可能であるが、燃料が燃焼する際に放出する熱の大部分を触媒昇温に使用するため、エンジン壁面温度の早期高温化ができず、PMを削減できないという課題があった。このため、内燃機関の冷機始動時において排気触媒の早期活性化とエンジン壁面温度の早期高温化を両立する手段が必要であった。 In order to improve the emission of a large amount of PM, it is necessary to vaporize the liquid film before the ignition timing, but in order to vaporize the liquid film, the temperature of the engine wall surface may be increased. In the prior art, it is possible to activate the exhaust catalyst at an early stage. However, since most of the heat released when the fuel burns is used to raise the catalyst temperature, the engine wall temperature cannot be raised at an early stage. There was a problem that it could not be reduced. For this reason, there is a need for means for achieving both early activation of the exhaust catalyst and early increase in the engine wall temperature at the time of cold start of the internal combustion engine.
 本発明はこのような課題に鑑みてなされたものであり、本発明は排気触媒の早期活性化とエンジン壁面温度の早期高温化が両立することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to achieve both early activation of an exhaust catalyst and early increase in engine wall temperature.
 上記課題を解決するため本発明は、内燃機関の燃焼室へ流入する空気量を検出して出力する空気量検出装置と、前記燃焼室へ燃料を供給する燃料噴射装置と、燃料と空気の混合気に点火するための点火装置を備え、前記空気量検出装置の出力に基づいて一サイクル中の燃料総噴射量を算出し、一サイクル中に燃料の分割噴射を行う筒内噴射式内燃機関の制御装置であって、前記燃料総噴射量の半分未満を噴射する第一の噴射と、前記総噴射量と前記第一の噴射で噴射される燃料量との差分に相当する量を前記第一の噴射よりも後のタイミングで噴射する第二の噴射と、を行い、前記第二の噴射後前記内燃機関の圧縮上死点前に前記点火装置による点火制御を実施することを特徴とする筒内噴射式内燃機関の制御装置を提供する。 In order to solve the above problems, the present invention provides an air amount detection device that detects and outputs the amount of air flowing into a combustion chamber of an internal combustion engine, a fuel injection device that supplies fuel to the combustion chamber, and a mixture of fuel and air An in-cylinder internal combustion engine that includes an ignition device for igniting air, calculates a total fuel injection amount in one cycle based on an output of the air amount detection device, and performs split injection of fuel in one cycle A control device, wherein the first injection for injecting less than half of the total fuel injection amount and an amount corresponding to the difference between the total injection amount and the fuel amount injected in the first injection are And a second injection that is performed at a timing later than the injection of the first and second cylinders, and the ignition control by the ignition device is performed after the second injection and before the compression top dead center of the internal combustion engine. A control device for an internal injection internal combustion engine is provided.
 本発明によれば、エンジン筒内に火炎伝播可能な領域と火炎伝播不可能かつ自着火可能な領域を形成し、点火を圧縮上死点より前に設定することで、燃料の一部を火炎伝播により燃焼させ、残りの燃料を自着火により燃焼させることができる。これにより燃焼期間を長期化でき、排気触媒の早期活性化とエンジン壁面の早期高温化を両立し、エンジンから排出されるHC,NOx,COとPMを削減できる。
本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
According to the present invention, a region in which the flame can propagate and a region in which the flame cannot propagate and can self-ignite are formed in the engine cylinder, and the ignition is set before the compression top dead center. It can be burned by propagation and the remaining fuel can be burned by self-ignition. As a result, the combustion period can be extended, and both early activation of the exhaust catalyst and early high temperature of the engine wall can be achieved, and HC, NOx, CO and PM discharged from the engine can be reduced.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
第1の実施例におけるエンジンの構成図。The block diagram of the engine in a 1st Example. 第1の実施例におけるECUの構成図。The block diagram of ECU in a 1st Example. 火炎伝播限界の説明図。Explanatory drawing of a flame propagation limit. 自着火限界の説明図。Explanatory drawing of a self-ignition limit. ハイブリッド燃焼による燃焼期間の長期化を実施する筒内の混合気状態。In-cylinder air-fuel mixture state that extends the combustion period by hybrid combustion. ハイブリッド燃焼による燃焼期間の長期化を実施した際の熱発生履歴。Heat generation history when the combustion period is extended by hybrid combustion. 第1から第3の実施例における制御フローチャート。The control flowchart in the 1st-3rd Example. 第1の実施例における噴射及び点火制御のフローチャート。The flowchart of the injection and ignition control in a 1st Example. 冷却水温度及び排気温度と触媒温度の説明図。Explanatory drawing of cooling water temperature, exhaust temperature, and catalyst temperature. 自着火用混合気の目標空燃比の説明図。Explanatory drawing of the target air fuel ratio of the air-fuel mixture for self-ignition. 燃料噴射量と噴射パルス幅の関係の説明図。Explanatory drawing of the relationship between fuel injection quantity and injection pulse width. 第1の実施例における各種信号波形と熱発生率の履歴。The history of various signal waveforms and heat release rates in the first embodiment. 第2及び第3の実施例におけるエンジンの構成図。The engine block diagram in the 2nd and 3rd Example. 第2及び第3の実施例におけるECUの構成図。The block diagram of ECU in the 2nd and 3rd Example. 第2の実施例における噴射,点火及びEGR調整バルブ制御のフローチャート。The flowchart of injection, ignition, and EGR adjustment valve control in a 2nd Example. 外部EGRの導入による層流燃焼速度の変化の説明図。Explanatory drawing of the change of the laminar combustion speed by introduction of external EGR. 第3の実施例における噴射,点火制御のフローチャート。The flowchart of the injection and ignition control in a 3rd Example. 第3の実施例における各種信号波形,熱発生率の履歴。History of various signal waveforms and heat generation rates in the third embodiment.
 以下、図1から図18を用いて、本発明の第1から第3の実施例による筒内噴射式内燃機関の制御装置の構成及び動作について説明する。 Hereinafter, the configuration and operation of a control apparatus for a direct injection internal combustion engine according to first to third embodiments of the present invention will be described with reference to FIGS.
 図1は、本発明の第1及び第2の実施例における筒内噴射式内燃機関の構成図である。エンジン100は、火花点火燃焼を実施する自動車用ガソリンエンジンである。吸入空気量を計測するエアフローセンサ1と、吸気流量を調整する電子制御スロットル2とが、吸気管6の各々の適宜位置に備えられている。また、エンジン100には、シリンダ7とピストン14とで囲まれる燃焼室に燃料を噴射するインジェクタ3と、点火エネルギーを供給する点火プラグ4が、シリンダ7の各々の適宜位置に備えられている。また、吸気弁5aと筒内から排出される排気ガスを調整する排気弁5bで構成する可変動弁5が、シリンダ7の各々の適宜位置に備えられている。 FIG. 1 is a configuration diagram of a direct injection internal combustion engine in first and second embodiments of the present invention. The engine 100 is an automobile gasoline engine that performs spark ignition combustion. An air flow sensor 1 for measuring the intake air amount and an electronic control throttle 2 for adjusting the intake flow rate are provided at appropriate positions of the intake pipe 6. Further, the engine 100 is provided with an injector 3 for injecting fuel into a combustion chamber surrounded by the cylinder 7 and the piston 14 and an ignition plug 4 for supplying ignition energy at appropriate positions of the cylinder 7. In addition, a variable valve 5 comprising an intake valve 5a and an exhaust valve 5b for adjusting exhaust gas discharged from the cylinder is provided at an appropriate position of each cylinder 7.
 さらに、排気を浄化する三元触媒10と、空燃比検出器の一態様であって、三元触媒10の上流側にて排気の空燃比を検出する空燃比センサ9と、排気温度検出器の一態様であって、三元触媒10の上流側にて排気の温度を計測する排気温度センサ11とが排気管8の各々の適宜位置に備えられる。また、クランク軸12には、回転角度を算出するためのクランク角度センサ13が備えられている。加えて、エンジンの冷却水の温度を計測する冷却水温度センサ15が備えられている。さらに、アクセル開度を検出するアクセル開度センサ16が備えられている。 Further, a three-way catalyst 10 for purifying exhaust, and an air-fuel ratio detector, an air-fuel ratio sensor 9 for detecting the air-fuel ratio of the exhaust on the upstream side of the three-way catalyst 10, and an exhaust temperature detector An exhaust temperature sensor 11 that measures the temperature of the exhaust gas upstream of the three-way catalyst 10 is provided at an appropriate position of each exhaust pipe 8. The crankshaft 12 is provided with a crank angle sensor 13 for calculating a rotation angle. In addition, a cooling water temperature sensor 15 for measuring the temperature of the engine cooling water is provided. Further, an accelerator opening sensor 16 that detects the accelerator opening is provided.
 エアフローセンサ1,空燃比センサ9,排気温度センサ11,クランク角センサ13,冷却水温度センサ15及びアクセル開度センサ16から得られる信号は、エンジンコントロールユニット(ECU)20に送られる。アクセル開度センサ16は、アクセルペダルの踏み込み量、すなわち、アクセル開度を検出する。ECU20は、アクセル開度センサ16の出力信号に基づいて、要求トルクを演算する。すなわち、アクセル開度センサ16は、エンジンへの要求トルクを検出する要求トルク検出センサとして用いられる。また、ECU20は、クランク角度センサ13の出力信号に基づいて、エンジンの回転速度を演算する。ECU20は、上記各種センサの出力から得られるエンジンの運転状態に基づき、空気流量,燃料噴射量,点火時期,吸排気弁動作量のエンジンの主要な作動量を最適に演算する。 Signals obtained from the air flow sensor 1, air-fuel ratio sensor 9, exhaust temperature sensor 11, crank angle sensor 13, cooling water temperature sensor 15 and accelerator opening sensor 16 are sent to an engine control unit (ECU) 20. The accelerator opening sensor 16 detects the amount of depression of the accelerator pedal, that is, the accelerator opening. The ECU 20 calculates the required torque based on the output signal of the accelerator opening sensor 16. That is, the accelerator opening sensor 16 is used as a required torque detection sensor that detects a required torque for the engine. Further, the ECU 20 calculates the rotational speed of the engine based on the output signal of the crank angle sensor 13. The ECU 20 optimally calculates main engine operating amounts such as air flow rate, fuel injection amount, ignition timing, and intake / exhaust valve operation amount based on the engine operating state obtained from the outputs of the various sensors.
 ECU20で演算された燃料噴射量は開弁パルス信号に変換され、インジェクタ3に送られる。また、ECU20で演算された点火時期で点火されるように、点火プラグ駆動信号が点火プラグ4に送られる。また、ECU20で演算されたスロットル開度は、スロットル駆動信号として電子制御スロットル2に送られる。また、ECU20で演算された吸排気弁の開閉弁時期で、吸排気弁が開閉弁するように、可変動弁駆動信号として、可変動弁5に送られる。 The fuel injection amount calculated by the ECU 20 is converted into a valve opening pulse signal and sent to the injector 3. Further, a spark plug drive signal is sent to the spark plug 4 so as to be ignited at the ignition timing calculated by the ECU 20. The throttle opening calculated by the ECU 20 is sent to the electronic control throttle 2 as a throttle drive signal. Further, it is sent to the variable valve 5 as a variable valve drive signal so that the intake / exhaust valve opens and closes at the opening / closing valve timing of the intake / exhaust valve calculated by the ECU 20.
 図2は、本発明の第1から第2の実施形態による筒内噴射式内燃機関の制御装置の構成を示すシステムブロック図である。 FIG. 2 is a system block diagram showing the configuration of the control device for a direct injection internal combustion engine according to the first to second embodiments of the present invention.
 エアフローセンサ1,空燃比センサ9,排気温度センサ11,クランク角センサ13,冷却水温度センサ15,アクセル開度センサ16の出力信号は、ECU20の入力回路20aに入力する。但し、入力信号はこれらだけに限られない。入力された各センサの入力信号は入出力ポート20b内の入力ポートに送られる。入出力ポート20bに送られた値は、RAM20cに保管され、CPU20eで演算処理される。演算処理内容を記述した制御プログラムは、ROM20dに予め書き込まれている。 The output signals of the air flow sensor 1, the air-fuel ratio sensor 9, the exhaust temperature sensor 11, the crank angle sensor 13, the cooling water temperature sensor 15, and the accelerator opening sensor 16 are input to the input circuit 20a of the ECU 20. However, the input signal is not limited to these. The input signal of each input sensor is sent to the input port in the input / output port 20b. The value sent to the input / output port 20b is stored in the RAM 20c and processed by the CPU 20e. A control program describing the contents of the arithmetic processing is written in advance in the ROM 20d.
 制御プログラムに従って演算された各アクチュエータの作動量を示す値は、RAM20cに保管された後、入出力ポート20b内の出力ポートに送られ、各駆動回路を経て各アクチュエータに送られる。本実施形態の場合は、駆動回路として、電子スロットル駆動回路20f,インジェクタ駆動回路20g,点火出力回路20h,可変動弁駆動回路20jがある。各回路は、それぞれ、電子制御スロットル2,インジェクタ3,点火プラグ4,可変動弁5を制御する。本実施形態においては、ECU20内に上記駆動回路を備えた装置であるが、これに限るものではなく、上記駆動回路のいずれかをECU20外に備えるものであってもよい。 The value indicating the operation amount of each actuator calculated in accordance with the control program is stored in the RAM 20c, then sent to the output port in the input / output port 20b, and sent to each actuator via each drive circuit. In the case of this embodiment, there are an electronic throttle drive circuit 20f, an injector drive circuit 20g, an ignition output circuit 20h, and a variable valve drive circuit 20j as drive circuits. Each circuit controls the electronic control throttle 2, the injector 3, the spark plug 4, and the variable valve 5 respectively. In the present embodiment, the device includes the drive circuit in the ECU 20. However, the present invention is not limited to this, and any of the drive circuits may be provided outside the ECU 20.
 次に、図3から図6を用いて、火炎伝播と自着火を組み合わせたハイブリッド燃焼を用いた燃焼期間の長期化について説明する。ハイブリッド燃焼による燃焼期間の長期化には、燃料の燃焼特性である火炎伝播限界と自着火限界を利用する。まず、図3及び図4にて、火炎伝播限界と自着火限界について説明する。 Next, the lengthening of the combustion period using hybrid combustion combining flame propagation and self-ignition will be described with reference to FIGS. To extend the combustion period by hybrid combustion, the flame propagation limit and self-ignition limit, which are fuel combustion characteristics, are used. First, the flame propagation limit and the self-ignition limit will be described with reference to FIGS.
 図3は、火炎伝播限界を説明する図である。火炎伝播に関する指標に、層流燃焼速度がある。炭化水素系燃料の層流燃焼速度は、量論混合比より過濃な条件(当量比1.1程度)で最大値をとり、特定の当量比範囲でのみ値を持つ。これは、当量比の条件によっては、混合気中を火炎が伝播できなくなるためである。火炎伝播が可能な当量比範囲の希薄側と過濃側の境界を、火炎伝播限界という。本発明では、希薄側の火炎伝播限界の当量比をΦFLと、過濃側の火炎伝播限界の当量比をΦFRと示す。ΦFLは、燃料の種類によって異なるが、炭化水素系の燃料では、ΦFLは大体0.4程度である。なお、当量比とは、燃料濃度の指標を意味する。 FIG. 3 is a diagram for explaining the flame propagation limit. An indicator for flame propagation is laminar burning velocity. The laminar burning velocity of hydrocarbon fuel takes a maximum value under a condition (equivalent ratio of about 1.1) that is richer than the stoichiometric mixture ratio, and has a value only in a specific equivalent ratio range. This is because the flame cannot propagate through the air-fuel mixture depending on the equivalence ratio condition. The boundary between the lean side and the rich side within the equivalence ratio range where flame propagation is possible is called the flame propagation limit. In the present invention, the equivalent ratio of the flame propagation limit on the lean side is denoted by ΦFL, and the equivalent ratio of the flame propagation limit on the rich side is denoted by ΦFR. ΦFL differs depending on the type of fuel, but for hydrocarbon fuels, ΦFL is approximately 0.4. The equivalent ratio means an index of fuel concentration.
 図4は、自着火限界を説明する図である。燃料と酸化剤の混合気の自着火特性に関する指標に、着火遅れ時間がある。着火遅れ時間は、燃料と酸化剤が混ざり混合気を形成してから、急速な熱発生を生じるまでの時間である。着火遅れ時間は、燃料と酸化剤の種類,圧力,温度,当量比によって変化する。一般に、着火遅れ時間は、温度,圧力が大きい条件で小さい。また、当量比1近辺で最も小さくなり、当量比が小さい条件,大きい条件では着火遅れ時間が長くなる。特定のエンジン運転時に自着火が発生するかは、エンジン回転周期と着火遅れ時間の比較から判定できる。自着火するためには、少なくとも、エンジンの回転周期に比べ着火遅れ時間が短い必要がある。ここでは、エンジンの回転周期と着火遅れ時間が同等になる希薄側と過濃側の当量比を自着火限界という。特に、エンジンの回転周期と着火遅れ時間が同等になる希薄条件の当量比をΦILと示す。ΦILは、燃料種によって変化するが、大体0.2程度である。通常の炭化水素系の燃料では、火炎伝播限界ΦFLと自着火限界ΦILには、以下の関係が有る。
  ΦFL>ΦIL                           …(1)
FIG. 4 is a diagram for explaining the self-ignition limit. There is an ignition delay time as an index related to the self-ignition characteristics of the mixture of fuel and oxidant. The ignition delay time is a time from when the fuel and the oxidant are mixed to form an air-fuel mixture until rapid heat generation occurs. The ignition delay time varies depending on the type of fuel and oxidant, pressure, temperature, and equivalence ratio. In general, the ignition delay time is small when the temperature and pressure are large. Also, the ignition delay time becomes the smallest in the vicinity of the equivalent ratio 1, and the ignition delay time becomes longer under the conditions where the equivalent ratio is small and large. Whether or not self-ignition occurs during a specific engine operation can be determined by comparing the engine rotation period and the ignition delay time. In order to self-ignite, at least the ignition delay time needs to be shorter than the rotation period of the engine. Here, the equivalence ratio between the lean side and the rich side where the engine rotation period and the ignition delay time are equivalent is called the autoignition limit. In particular, the equivalent ratio of the lean condition in which the engine rotation period and the ignition delay time are equivalent is denoted by ΦIL. ΦIL varies depending on the fuel type, but is about 0.2. In a normal hydrocarbon fuel, the flame propagation limit ΦFL and the self-ignition limit ΦIL have the following relationship.
ΦFL> ΦIL (1)
 図5に、ハイブリッド燃焼による燃焼期間の長期化を実施する際のエンジン筒内の混合気状態を示す。混合気は、後述するように、エンジン筒内へ燃料を分割噴射し、各噴射の燃料噴射量と目標空燃比,噴射タイミングを制御することにより形成される。点火プラグ4周りに当量比がΦFL以上である火炎伝播用混合気200が形成される。また、火炎伝播用混合気200の周りには、当量比がΦFL未満である自着火用混合気201が形成される。自着火用混合気201が火炎伝播用混合気200よりも筒内で拡散が進んでいるのは、分割噴射の中で火炎伝播用混合気200よりも先の噴射により形成されるからである。詳細な分割噴射のタイミングは後述する。 Fig. 5 shows the state of the air-fuel mixture in the engine cylinder when the combustion period is extended by hybrid combustion. As will be described later, the air-fuel mixture is formed by dividing and injecting fuel into the engine cylinder and controlling the fuel injection amount, target air-fuel ratio, and injection timing of each injection. A flame propagation mixture 200 having an equivalence ratio of ΦFL or more is formed around the spark plug 4. A self-ignition mixture 201 having an equivalence ratio of less than ΦFL is formed around the flame propagation mixture 200. The reason why the self-ignition mixture 201 is more diffused in the cylinder than the flame propagation mixture 200 is that it is formed by injection prior to the flame propagation mixture 200 in the divided injection. Detailed timing of divided injection will be described later.
 ここで、点火プラグにより火炎伝播用混合気200に点火すると、まず、火炎伝播用混合気200の中を火炎が伝播し、燃焼が進む。自着火用混合気201の当量比はΦFL未満であるため、自着火用混合気201の中を火炎は伝播できない。そして、火炎伝播用混合気200の燃焼に伴う発熱により、エンジン筒内の温度,圧力が上昇し、自着火用混合気201が自着火して、火炎伝播用混合気200よりも遅れて燃焼する。これにより、燃焼期間が長期化し、壁面温度の上昇と、触媒温度の上昇が両立可能となる。このように、火炎伝播に引き続き自着火を引き起こす燃焼方式を本発明ではハイブリッド燃焼と呼ぶ。このときの熱発生履歴は、図6に示すように、二つのピーク値を持つ変化を示す。このうち前半の熱発生履歴のピークは火炎伝播により引き起こされ、また、後半の熱発生履歴のピークは自着火により引き起こされる。 Here, when the flame propagation mixture 200 is ignited by the spark plug, first, the flame propagates through the flame propagation mixture 200 and the combustion proceeds. Since the equivalent ratio of the self-ignition mixture 201 is less than ΦFL, the flame cannot propagate through the self-ignition mixture 201. Due to the heat generated by the combustion of the flame propagation mixture 200, the temperature and pressure in the engine cylinder rise, and the self-ignition mixture 201 self-ignites and burns later than the flame propagation mixture 200. . As a result, the combustion period is prolonged, and it is possible to achieve both an increase in the wall surface temperature and an increase in the catalyst temperature. Thus, the combustion system that causes self-ignition following the flame propagation is called hybrid combustion in the present invention. The heat generation history at this time shows a change having two peak values as shown in FIG. Among these, the peak of the heat generation history in the first half is caused by flame propagation, and the peak of the heat generation history in the second half is caused by self-ignition.
 ハイブリッド燃焼を実施するための、具体的なエンジンの制御方法を、図7から図11を用いて説明する。まず、図7,図8を用いて、本実施例にて実行する制御の流れを示す。ステップS1にて、排気温度センサ11の出力に基づき排気温度、冷却水温度センサ15の出力に基づき冷却水温度、アクセル開度センサ16の出力に基づきエンジン要求トルクを検出する。続いてステップS2にて冷却水温度が判定温度Tw以上かを判定する。本実施例では、判定温度Twを80℃と設定した。冷却水温度が判定温度Tw以上の場合、暖機条件と判断され、ステップS4に進み、ROM20dに記録された暖機条件制御に基づき燃料噴射装置,点火装置,電子制御スロットル,可変動弁を制御する。ステップS2にて冷却水温度が判定温度Tw未満と判断した場合、ステップS3に進む。ステップS3では、検出した排気温度と冷却水温度に基づき推定した触媒温度が活性化温度に達しているかを判定する。ここで、触媒活性化温度は300℃と設定する。触媒が活性化温度に達しているかは、図9のような排気温度と冷却水温度のマップから推定することができる。ステップS3にて、触媒温度が活性化温度に達していないと判定した場合、ステップS5に進み、ROM20dに記録された冷機条件制御に基づき、電子制御スロットル2,インジェクタ3,点火プラグ4,可変動弁5を制御する。ステップS3にて、触媒温度が活性化温度に達していると判定した場合、ステップS6に進み、ROM20dに記録されたハイブリッド燃焼制御に基づき、電子制御スロットル2,インジェクタ3,点火プラグ4,可変動弁5を制御する。このように、エンジンの冷却水温に基づき排気触媒が未活性状態かを検出し、未活性状態であれば、ハイブリッド燃焼を実施するように設定している。これにより、排気触媒が未活性の状態にて、排気触媒昇温とエンジン壁面昇温が両立できる。 A specific engine control method for performing hybrid combustion will be described with reference to FIGS. First, the flow of control executed in this embodiment will be described with reference to FIGS. In step S 1, engine required torque is detected based on the exhaust temperature based on the output of the exhaust temperature sensor 11, based on the output of the coolant temperature sensor 15 based on the output of the coolant temperature sensor 15, and on the output of the accelerator opening sensor 16. Subsequently, in step S2, it is determined whether the cooling water temperature is equal to or higher than the determination temperature Tw. In this embodiment, the determination temperature Tw is set to 80 ° C. When the cooling water temperature is equal to or higher than the determination temperature Tw, it is determined that the engine is warming up. The process proceeds to step S4, and the fuel injection device, ignition device, electronic control throttle, and variable valve are controlled based on the warming up condition control recorded in the ROM 20d. To do. When it is determined in step S2 that the cooling water temperature is lower than the determination temperature Tw, the process proceeds to step S3. In step S3, it is determined whether the catalyst temperature estimated based on the detected exhaust gas temperature and cooling water temperature has reached the activation temperature. Here, the catalyst activation temperature is set to 300 ° C. Whether the catalyst has reached the activation temperature can be estimated from a map of exhaust temperature and cooling water temperature as shown in FIG. If it is determined in step S3 that the catalyst temperature has not reached the activation temperature, the process proceeds to step S5, and the electronic control throttle 2, injector 3, spark plug 4, variable motion is performed based on the cold machine condition control recorded in the ROM 20d. The valve 5 is controlled. If it is determined in step S3 that the catalyst temperature has reached the activation temperature, the process proceeds to step S6, and based on the hybrid combustion control recorded in the ROM 20d, the electronic control throttle 2, injector 3, spark plug 4, variable motion The valve 5 is controlled. In this way, it is detected whether the exhaust catalyst is in an inactive state based on the cooling water temperature of the engine, and if it is in an inactive state, the hybrid combustion is performed. Thereby, both exhaust catalyst temperature rise and engine wall surface temperature rise can be achieved in an inactive state of the exhaust catalyst.
 続いて、図8を用いてステップS6の処理を説明する。まず、ステップS60にて、エンジンの要求トルクに基づきスロットル開度を決定し、スロットルを制御する。次に、ステップS61で、エアフローセンサ1の信号に基づき吸入空気量Qairを検出する。続いてステップS62で、目標空燃比(A/F)tを設定する。目標空燃比(A/F)tは、エンジン筒内に導入される空気量と燃料量の比の目標値である。本実施例では、一例として16に設定した。次に、ステップS63にて、ステップS61で検出した吸入空気量Qairと目標空燃比(A/F)tに基づき、一サイクルに噴射する燃料量(総噴射量)Qtを算出する。一サイクルに噴射する燃料量Qtは、目標空燃比(A/F)t,吸入空気量Qairを用いて、以下の式で求める。
  Qt=Qair/(A/F)t                    …(2)
Then, the process of step S6 is demonstrated using FIG. First, in step S60, the throttle opening is determined based on the required torque of the engine, and the throttle is controlled. Next, in step S61, the intake air amount Qair is detected based on the signal from the air flow sensor 1. Subsequently, in step S62, a target air-fuel ratio (A / F) t is set. The target air-fuel ratio (A / F) t is a target value of the ratio of the amount of air introduced into the engine cylinder and the amount of fuel. In this embodiment, 16 is set as an example. Next, in step S63, a fuel amount (total injection amount) Qt to be injected in one cycle is calculated based on the intake air amount Qair detected in step S61 and the target air-fuel ratio (A / F) t. The fuel amount Qt injected in one cycle is obtained by the following equation using the target air-fuel ratio (A / F) t and the intake air amount Qair.
Qt = Qair / (A / F) t (2)
 続いて、ステップS64に進み、一サイクル中一発目の燃料噴射により形成する自着火用混合気201の目標空燃比(A/F)1を設定する。自着火用混合気201とは、火炎伝播による燃焼は不可能であるが、自着火による燃焼が可能である特性を持つ混合気のことである。自着火用混合気201の目標空燃比(A/F)1は、マップを用いて設定する。自着火用混合気201の目標空燃比(A/F)1のマップを図10に示す。目標空燃比(A/F)1を決めるためのマップは、エンジントルクとエンジン回転速度で整理されており、エンジン回転速度が小さく、要求トルクが大きいほど、小さい値を持つ分布となっている。マップは、ROM20dに予め格納してある。自着火用混合気201の目標空燃比(A/F)1は、火炎伝播限界及び自着火限界に基づき決められている。このため、マップ上の値は、以下の式を満たすように自由に設定できる。
  ΦFL>(A/F)st/(A/F)1>ΦIL            …(3)
Subsequently, the process proceeds to step S64, and the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 formed by the first fuel injection in one cycle is set. The self-ignition air-fuel mixture 201 is an air-fuel mixture having a characteristic that combustion by flame propagation is impossible but combustion by self-ignition is possible. The target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is set using a map. A map of the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is shown in FIG. The map for determining the target air-fuel ratio (A / F) 1 is organized by the engine torque and the engine speed, and has a distribution having a smaller value as the engine speed is lower and the required torque is larger. The map is stored in advance in the ROM 20d. The target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 is determined based on the flame propagation limit and the self-ignition limit. For this reason, the values on the map can be freely set to satisfy the following expression.
ΦFL> (A / F) st / (A / F) 1> ΦIL (3)
 式(3)において、火炎伝播限界の当量比ΦFL、自着火限界の当量比ΦIL、(A/F)stは、量論混合比における空燃比である。(A/F)stは、燃料がガソリンの場合、14.7である。本実施例では燃料にガソリンを用いるので、(A/F)stは、14.7としている。 In Equation (3), the equivalent ratio ΦFL of the flame propagation limit, the equivalent ratio ΦIL of the autoignition limit, and (A / F) st are air-fuel ratios in the stoichiometric mixture ratio. (A / F) st is 14.7 when the fuel is gasoline. In this embodiment, gasoline is used as the fuel, so (A / F) st is 14.7.
 続いてステップS65に進み、ステップS64で読み込んだ自着火用混合気201の目標空燃比(A/F)1を用いて、吸気行程の噴射量Q1を、以下の式で求める。
  Q1=Qair/(A/F)1                    …(4)
Subsequently, the process proceeds to step S65, and the injection amount Q1 of the intake stroke is obtained by the following equation using the target air-fuel ratio (A / F) 1 of the self-ignition mixture 201 read in step S64.
Q1 = Qair / (A / F) 1 (4)
 続いて、ステップS66に進み、総噴射量Qtと一発目の噴射量Q1の差分から、二発目の噴射量Q2を求める。
  Q2=Qt-Q1                          …(5)
Subsequently, the process proceeds to step S66, and a second injection amount Q2 is obtained from the difference between the total injection amount Qt and the first injection amount Q1.
Q2 = Qt−Q1 (5)
 続いて、ステップS67で噴射時期、インジェクタ3を開弁駆動するための噴射パルス幅,点火時期を設定する。一発目の噴射開始時期は、自着火用混合気201が筒内で十分に拡散するように、吸気行程中に設定する。二発目の噴射時期は、一発目の噴射終了後から、圧縮上死点前までの任意の範囲で設定できるが、本実施例では例えば圧縮行程開始のタイミングに設定する。また、噴射パルス幅は、図11に示す噴射パルス幅と燃料噴射量の関係を整理したマップに基づき噴射パルス幅を決める。Q1及びQ2の噴射量に対応する噴射パルス幅をマップから計算し、一発目と二発目の噴射パルス幅を決定する。点火時期は、二発目の噴射完了時期から圧縮上死点の間に設定する。次にステップS68に進み、ステップS61からステップS67までにECUによる演算で決定した噴射量,点火時期に基づき、制御を実施する。 Subsequently, in step S67, the injection timing, the injection pulse width for driving the injector 3 to open the valve, and the ignition timing are set. The first injection start timing is set during the intake stroke so that the self-ignition mixture 201 is sufficiently diffused in the cylinder. The second injection timing can be set in an arbitrary range from the end of the first injection to before the compression top dead center, but in this embodiment, for example, is set to the timing of the compression stroke start. Further, the injection pulse width is determined based on a map in which the relationship between the injection pulse width and the fuel injection amount shown in FIG. 11 is arranged. The injection pulse width corresponding to the injection amounts of Q1 and Q2 is calculated from the map, and the first and second injection pulse widths are determined. The ignition timing is set between the compression completion dead center and the second injection completion timing. Next, the process proceeds to step S68, and control is performed based on the injection amount and ignition timing determined by the calculation by the ECU from step S61 to step S67.
 図12には、図7,図8の制御に基づき動作させたときの、噴霧装置の駆動信号波形を示す。本実施例では、吸気行程中に一発目の噴射を実施し、吸気下死点から二発目の噴射を実施した。式(3)を満たすように、一発目の噴射量Q1と二発目の噴射量Q2の関係から、一発目の噴射パルス幅t1に比べ、二発目の噴射パルス幅t2が大きい。また、圧縮上死点にピストンが達する前に、点火信号をONにして、燃焼を開始するため、圧縮上死点前から熱発生が生じる。点火後、火炎伝播により混合気が燃焼することで発熱し、続いて、自着火の発生により発熱が生じる。このため燃焼期間が長期化し、熱発生率の履歴に2つのピークを有する。熱発生率の履歴は、筒内圧を検出するセンサの出力値から演算する。 FIG. 12 shows the drive signal waveform of the spray device when operated based on the control of FIGS. In this example, the first injection was performed during the intake stroke, and the second injection was performed from the intake bottom dead center. The second injection pulse width t2 is larger than the first injection pulse width t1 from the relationship between the first injection amount Q1 and the second injection amount Q2 so as to satisfy Expression (3). Further, before the piston reaches the compression top dead center, the ignition signal is turned ON to start combustion, so that heat is generated before the compression top dead center. After ignition, the air-fuel mixture burns by flame propagation and generates heat, and then heat is generated by the occurrence of self-ignition. For this reason, the combustion period is prolonged, and the heat generation rate history has two peaks. The history of heat release rate is calculated from the output value of the sensor that detects the in-cylinder pressure.
 以上、火炎伝播と自着火を組み合わせたハイブリッド燃焼を実施する筒内噴射式内燃機関の制御装置で、エンジン筒内に流入する空気量に基づき算出した1サイクルの間に噴射する燃料量(総噴射量)の半分未満を一発目に噴射し、総噴射量と一発目に噴射した量の差分を二発目に噴射し、圧縮上死点前に点火を実施するように設定する。これにより、圧縮上死点前から燃焼を開始し、燃料の一部を火炎伝播により燃焼させ、残りの燃料を自着火により燃焼させることが可能となる。この結果、燃焼期間を長期化でき、排気触媒の早期活性化とエンジン壁面温度の早期高温化が両立できる。 As described above, in the control apparatus for a direct injection internal combustion engine that performs hybrid combustion combining flame propagation and self-ignition, the amount of fuel injected during one cycle (total injection) calculated based on the amount of air flowing into the engine cylinder The first injection is performed for less than half of the amount), the difference between the total injection amount and the injection amount for the first shot is injected for the second shot, and ignition is set to be performed before compression top dead center. Thereby, combustion can be started before compression top dead center, a part of the fuel can be burned by flame propagation, and the remaining fuel can be burned by self-ignition. As a result, the combustion period can be lengthened, and both early activation of the exhaust catalyst and early temperature increase of the engine wall surface can be achieved.
 図13から図18を用いて、本発明の第2及び第3の実施例を説明する。第2の実施例と第3の実施例は、エンジンと制御装置の構成が同じで、制御方法が異なる。以下、エンジンと制御装置の構成を説明した後、それぞれの実施例の制御方法を説明する。図13は、本発明の第2及び第3の実施例における筒内噴射式内燃機関の構成図である。第2及び第3の実施例の内燃機関には、第1の実施例に加え、排気ガスをエアフローセンサの上流側に戻すためのEGR配管17を設けている。EGR配管17の途中には、排気ガスを冷却するためのEGRクーラ18を設置する。また、EGR配管には、エンジンに戻す排気ガスの量を調整するためのEGR調整バルブ19を設置する。さらに、エンジン100に、エンジン100の振動に基づきノック発生の有無を検知するノックセンサ21を設置する。ノックセンサ21の検出信号は、ECU20に入力される。図14は、第2及び第3の実施例による筒内噴射式内燃機関の制御装置の構成を示すシステムブロック図である。第1の実施例との違いは、EGR調整バルブ19制御のため、CPU20eで演算処理されたEGR調整バルブ19を制御するためのEGR調整バルブ駆動回路20kを備える点、入力回路20aにノックセンサ21の信号が入力される点である。なお、本実施形態においては、ECU20内に上記駆動回路を備えた装置であるが、これに限るものではなく、上記駆動回路のいずれかをECU20内に備えるものであってもよい。 The second and third embodiments of the present invention will be described with reference to FIGS. The second and third embodiments have the same configuration of the engine and the control device, but differ in the control method. Hereinafter, after describing the configuration of the engine and the control device, the control method of each embodiment will be described. FIG. 13 is a block diagram of a direct injection internal combustion engine in the second and third embodiments of the present invention. In addition to the first embodiment, the internal combustion engine of the second and third embodiments is provided with an EGR pipe 17 for returning the exhaust gas to the upstream side of the air flow sensor. An EGR cooler 18 for cooling the exhaust gas is installed in the middle of the EGR pipe 17. The EGR pipe is provided with an EGR adjustment valve 19 for adjusting the amount of exhaust gas returned to the engine. Furthermore, a knock sensor 21 that detects whether knock has occurred or not based on vibration of engine 100 is installed in engine 100. A detection signal of knock sensor 21 is input to ECU 20. FIG. 14 is a system block diagram showing the configuration of the control device for the direct injection internal combustion engine according to the second and third embodiments. The difference from the first embodiment is that an EGR adjustment valve drive circuit 20k for controlling the EGR adjustment valve 19 calculated by the CPU 20e is provided for controlling the EGR adjustment valve 19, and a knock sensor 21 is provided in the input circuit 20a. This is the point where the signal is input. In this embodiment, the ECU 20 includes the drive circuit. However, the present invention is not limited to this, and any of the drive circuits may be provided in the ECU 20.
 第2の実施例では、図7と図15のフローチャートに沿って制御を実施する。第1の実施例とは、ステップS6における制御内容が異なる。図15を用いて、第2の実施例におけるステップS6の制御を説明する。図8と異なるステップ(ステップS67a,ステップS67b,ステップS68a)について説明する。ステップS67aでは、ノックセンサ21の出力に基づきノック発生の有無を判定する。ノックの発生が無ければ、ステップS68aに進み、ステップS67で設定した噴射時期,噴射パルス幅,点火時期に基づき、噴射,点火等の制御を実施する。ステップS68aで、ノックの発生が有りと判定した場合、ステップS68bに進み、EGRバルブ開弁量を現在の設定値よりも大きくする。続いて、ステップS68aに進む。図16に示すように、外部EGRを導入することで、導入しない場合に比べ、火炎伝播速度を小さくすることができる。この結果、エンジン筒内の温度,圧力の上昇を緩慢にでき、ノックの抑制が可能となる。 In the second embodiment, control is performed according to the flowcharts of FIGS. The control content in step S6 is different from the first embodiment. The control in step S6 in the second embodiment will be described with reference to FIG. Steps different from FIG. 8 (step S67a, step S67b, step S68a) will be described. In step S67a, whether or not knocking has occurred is determined based on the output of the knock sensor 21. If knock does not occur, the process proceeds to step S68a, and controls such as injection and ignition are performed based on the injection timing, injection pulse width, and ignition timing set in step S67. If it is determined in step S68a that knock has occurred, the process proceeds to step S68b, and the EGR valve opening amount is made larger than the current set value. Then, it progresses to step S68a. As shown in FIG. 16, the flame propagation speed can be reduced by introducing the external EGR as compared with the case where the external EGR is not introduced. As a result, the increase in temperature and pressure in the engine cylinder can be moderated, and knocking can be suppressed.
 このように、エンジン筒内に導入する排気ガスの量を調整する排気ガス調整弁を備える筒内噴射式内燃機関の制御装置において、外部EGR率を変化させることで、火炎伝播による燃焼と自着火による燃焼を緩慢化させ、燃焼期間を長期化できる。 In this way, in a control apparatus for an in-cylinder injection internal combustion engine that includes an exhaust gas adjustment valve that adjusts the amount of exhaust gas introduced into the engine cylinder, combustion and self-ignition by flame propagation can be achieved by changing the external EGR rate. The combustion due to can be slowed down and the combustion period can be extended.
 第3の実施例では、図7,図17に示すフローチャートに基づき制御を実施する。第2の実施例とは、ステップS6における制御内容が異なる。図17を用いて、第3の実施例におけるステップS6の制御を説明する。第3の実施例で新しい部分は、ステップS67cである。ステップS67cでは、ノックセンサ21の出力に基づきノックが発生したとの判定の後、2発目の噴射時期を、S67で設定した値よりも遅角化して設定する。ノックが発生した際の本実施例の制御に基づく、噴射信号,点火信号,発熱率は、図18に示す通りとなる。破線で示した噴射信号は、前サイクルでの噴射パルス信号である。本実施例では、ステップS67bでノックが発生したと判定されたため、2発目の噴射が進角化されている。この制御を実施すると、元々の設定に比べ、2発目に噴射された燃料の拡散時間が増えることから、エンジン筒内の火炎伝播用混合気200の割合を増加し、自着火用混合気201の割合を減少させることができる。この結果、自着火により燃焼する混合気の割合が減少し、ノックを抑制することができる。本実施例は、噴射制御によりハイブリッド燃焼時のノック発生を避ける手段として有効である。 In the third embodiment, control is performed based on the flowcharts shown in FIGS. The control content in step S6 is different from the second embodiment. The control in step S6 in the third embodiment will be described with reference to FIG. A new part in the third embodiment is step S67c. In step S67c, after determining that a knock has occurred based on the output of the knock sensor 21, the second injection timing is set to be retarded from the value set in S67. The injection signal, ignition signal, and heat generation rate based on the control of this embodiment when knocking occurs are as shown in FIG. The injection signal indicated by a broken line is an injection pulse signal in the previous cycle. In the present embodiment, since it is determined in step S67b that knocking has occurred, the second injection is advanced. When this control is performed, the diffusion time of the fuel injected at the second shot is increased as compared with the original setting. Therefore, the ratio of the flame propagation mixture 200 in the engine cylinder is increased, and the self-ignition mixture 201 is increased. The ratio of can be reduced. As a result, the ratio of the air-fuel mixture combusted by self-ignition is reduced, and knocking can be suppressed. The present embodiment is effective as a means for avoiding knocking during hybrid combustion by injection control.
 このように、センサ信号から検出した振動に基づき、二発目の噴射時期を振動が発生する前に比べて進角化することができる。これにより、火炎伝播で燃焼させる燃料量が増え、自着火で燃焼する燃料量が減る。この結果、ノックの発生によるエンジンの振動を抑制することが可能となる。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
Thus, based on the vibration detected from the sensor signal, the second injection timing can be advanced compared to before the vibration occurs. Thereby, the amount of fuel burned by flame propagation increases and the amount of fuel burned by self-ignition decreases. As a result, it is possible to suppress engine vibration due to knocking.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
1 エアフローセンサ
2 電子制御スロットル
3 インジェクタ
4 点火プラグ
5 可変動弁
5a 吸気弁
5b 排気弁
6 吸気管
7 シリンダ
8 排気管
9 空燃比センサ
10 三元触媒
11 排気温度センサ
12 クランク軸
13 クランク角度センサ
14 ピストン
15 冷却水温度センサ
16 アクセル開度センサ
17 EGR配管
18 EGRクーラ
19 EGR調整バルブ
20 ECU
20a 入力回路
20b 入出力ポート
20c RAM
20d ROM
20e CPU
20f 電子スロットル駆動回路
20g インジェクタ駆動回路
20h 点火出力回路
20j 可変動弁駆動回路
20k EGR調整バルブ駆動回路
21 ノックセンサ
100 エンジン
DESCRIPTION OF SYMBOLS 1 Airflow sensor 2 Electronic control throttle 3 Injector 4 Spark plug 5 Variable valve 5a Intake valve 5b Exhaust valve 6 Intake pipe 7 Cylinder 8 Exhaust pipe 9 Air-fuel ratio sensor 10 Three-way catalyst 11 Exhaust temperature sensor 12 Crankshaft 13 Crank angle sensor 14 Piston 15 Cooling water temperature sensor 16 Accelerator opening sensor 17 EGR piping 18 EGR cooler 19 EGR adjustment valve 20 ECU
20a Input circuit 20b Input / output port 20c RAM
20d ROM
20e CPU
20f Electronic throttle drive circuit 20g Injector drive circuit 20h Ignition output circuit 20j Variable valve drive circuit 20k EGR adjustment valve drive circuit 21 Knock sensor 100 Engine

Claims (9)

  1.  内燃機関の燃焼室へ流入する空気量を検出して出力する空気量検出装置と、
     前記燃焼室へ燃料を供給する燃料噴射装置と、
     燃料と空気の混合気に点火するための点火装置を備え、
     前記空気量検出装置の出力に基づいて一サイクル中の燃料総噴射量を算出し、
     一サイクル中に燃料の分割噴射を行い、火炎伝播に続いて自着火を引き起こして燃焼する筒内噴射式内燃機関の制御装置であって、
     前記燃料総噴射量の半分未満を噴射する第一の噴射と、
     前記総噴射量と前記第一の噴射で噴射される燃料量との差分に相当する量を前記第一の噴射よりも後のタイミングで噴射する第二の噴射と、を行い、
     前記第二の噴射後前記内燃機関の圧縮上死点前に前記点火装置による点火制御を実施することを特徴とする筒内噴射式内燃機関の制御装置。
    An air amount detection device for detecting and outputting the amount of air flowing into the combustion chamber of the internal combustion engine;
    A fuel injection device for supplying fuel to the combustion chamber;
    An ignition device for igniting a mixture of fuel and air;
    Calculate the total fuel injection amount in one cycle based on the output of the air amount detection device,
    A control device for an in-cylinder injection internal combustion engine that performs split injection of fuel during one cycle and burns by causing self-ignition following flame propagation,
    A first injection for injecting less than half of the total fuel injection amount;
    Performing a second injection that injects an amount corresponding to the difference between the total injection amount and the fuel amount injected in the first injection at a timing later than the first injection;
    A control device for a direct injection internal combustion engine, wherein ignition control by the ignition device is performed after the second injection and before compression top dead center of the internal combustion engine.
  2.  前記第一の噴射は前記内燃機関の吸気行程中に行われ、
     前記点火制御は前記内燃機関の圧縮行程中に行われ、
     前記第一の噴射により前記燃焼室内に形成される混合気の着火遅れ時間が、前記内燃機関の回転周期よりも短いことを特徴とする請求項1記載の筒内噴射式内燃機関の制御装置。
    The first injection is performed during an intake stroke of the internal combustion engine;
    The ignition control is performed during the compression stroke of the internal combustion engine,
    2. The control apparatus for a direct injection internal combustion engine according to claim 1, wherein an ignition delay time of an air-fuel mixture formed in the combustion chamber by the first injection is shorter than a rotation cycle of the internal combustion engine.
  3.  前記第一の噴射は前記内燃機関の吸気行程中に行われ、
     前記点火制御は前記内燃機関の圧縮行程中に行われ、
     前記第一の噴射により前記燃焼室内に形成される混合気の当量比が、0.2から0.4の範囲となるように、前記第一の噴射の燃料噴射量を設定することを特徴とする請求項1記載の筒内噴射式内燃機関の制御装置。
    The first injection is performed during an intake stroke of the internal combustion engine;
    The ignition control is performed during the compression stroke of the internal combustion engine,
    The fuel injection amount of the first injection is set so that the equivalence ratio of the air-fuel mixture formed in the combustion chamber by the first injection is in the range of 0.2 to 0.4. The control device for a direct injection internal combustion engine according to claim 1.
  4.  前記内燃機関の冷却水の温度を検出する温度検出装置を備え、
     前記温度検出装置の出力に基づき触媒未活性状態と判断した際に、前記第一の噴射および前記第二の噴射を含む分割噴射を行い、
     前記第二の噴射後前記内燃機関の圧縮上死点前に、前記点火制御を実施することを特徴とする請求項2または3いずれか一項に記載の筒内噴射式内燃機関の制御装置。
    A temperature detection device for detecting the temperature of the cooling water of the internal combustion engine,
    When it is determined that the catalyst is in an inactive state based on the output of the temperature detection device, split injection including the first injection and the second injection is performed,
    4. The control device for a direct injection internal combustion engine according to claim 2, wherein the ignition control is performed after the second injection and before the compression top dead center of the internal combustion engine. 5.
  5.  前記内燃機関は排気ガスを燃焼室へ導入する量を制御する排気ガス調整弁を備え、
     前記内燃機関のノッキングを抑制するために、前記排気ガス制御装置により燃焼室に導入する排気ガス量を増減する制御を行うことを特徴とする請求項2から4いずれか一項に記載の筒内噴射式内燃機関の制御装置。
    The internal combustion engine includes an exhaust gas regulating valve that controls the amount of exhaust gas introduced into the combustion chamber,
    The in-cylinder according to any one of claims 2 to 4, wherein in order to suppress knocking of the internal combustion engine, control is performed to increase or decrease the amount of exhaust gas introduced into the combustion chamber by the exhaust gas control device. A control device for an injection type internal combustion engine.
  6.  前記内燃機関の振動を直接または間接的に検出する振動検出装置を備え、
     前記振動検出装置にて振動を検出した際に、振動を検出する前に比べて前記第二の噴射を開始する時期を進角化する制御を行うことを特徴とする請求項2から請求項5いずれか一項に記載の筒内噴射式内燃機関の制御装置。
    Comprising a vibration detection device for directly or indirectly detecting the vibration of the internal combustion engine;
    6. The control for performing an advance of the timing at which the second injection is started when the vibration is detected by the vibration detection device as compared to before the vibration is detected. The control apparatus for a direct injection internal combustion engine according to any one of the preceding claims.
  7.  前記内燃機関は、熱発生率の検出値の履歴に少なくとも二つのピーク値を有することを特徴とする請求項2から6いずれか一項に記載の筒内噴射式内燃機関の制御装置。 The control apparatus for a direct injection internal combustion engine according to any one of claims 2 to 6, wherein the internal combustion engine has at least two peak values in a history of detection values of heat release rates.
  8.  前記熱発生率の検出値は前記内燃機関の筒内圧力を検出するセンサの信号に基づき検出することを特徴とする請求項7に記載の筒内噴射式内燃機関の制御装置。 8. The control apparatus for a cylinder injection internal combustion engine according to claim 7, wherein the detected value of the heat generation rate is detected based on a signal of a sensor for detecting a cylinder pressure of the internal combustion engine.
  9.  前記第二の噴射は前記内燃機関の圧縮行程中に行われることを特徴とする請求項2から8いずれか一項に記載の筒内噴射式内燃機関の制御装置。 The control apparatus for a cylinder injection internal combustion engine according to any one of claims 2 to 8, wherein the second injection is performed during a compression stroke of the internal combustion engine.
PCT/JP2012/065560 2011-06-24 2012-06-19 Control device for cylinder-injection-type internal combustion engine WO2012176746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140062 2011-06-24
JP2011140062A JP5560237B2 (en) 2011-06-24 2011-06-24 In-cylinder injection internal combustion engine control device

Publications (1)

Publication Number Publication Date
WO2012176746A1 true WO2012176746A1 (en) 2012-12-27

Family

ID=47422582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065560 WO2012176746A1 (en) 2011-06-24 2012-06-19 Control device for cylinder-injection-type internal combustion engine

Country Status (2)

Country Link
JP (1) JP5560237B2 (en)
WO (1) WO2012176746A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101197A1 (en) * 2019-11-18 2021-05-27 송청담 Constant current circuit for sensor, and capacitance detection device using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291751B2 (en) * 2013-09-04 2018-03-14 マツダ株式会社 Engine start control device
JP6098446B2 (en) * 2013-09-04 2017-03-22 トヨタ自動車株式会社 Engine control device
JP6195545B2 (en) * 2014-07-08 2017-09-13 本田技研工業株式会社 Control device for internal combustion engine
JP6104302B2 (en) 2015-03-12 2017-03-29 三菱電機株式会社 In-vehicle engine controller
JP6784214B2 (en) * 2017-04-12 2020-11-11 トヨタ自動車株式会社 Internal combustion engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264333A (en) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd Control device for cylinder direct fuel injection type internal combustion engine
JP2002256924A (en) * 2001-02-23 2002-09-11 Fuji Heavy Ind Ltd Combustion control device of compression ignition engine
JP3325230B2 (en) * 1998-08-03 2002-09-17 マツダ株式会社 Method and apparatus for warming up a catalyst in a direct injection engine
JP2003049691A (en) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd Control system for self-ignition type engine
JP2006169994A (en) * 2004-12-14 2006-06-29 Toyota Motor Corp Control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264333A (en) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd Control device for cylinder direct fuel injection type internal combustion engine
JP3325230B2 (en) * 1998-08-03 2002-09-17 マツダ株式会社 Method and apparatus for warming up a catalyst in a direct injection engine
JP2002256924A (en) * 2001-02-23 2002-09-11 Fuji Heavy Ind Ltd Combustion control device of compression ignition engine
JP2003049691A (en) * 2001-08-02 2003-02-21 Nissan Motor Co Ltd Control system for self-ignition type engine
JP2006169994A (en) * 2004-12-14 2006-06-29 Toyota Motor Corp Control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021101197A1 (en) * 2019-11-18 2021-05-27 송청담 Constant current circuit for sensor, and capacitance detection device using same

Also Published As

Publication number Publication date
JP5560237B2 (en) 2014-07-23
JP2013007314A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP4836088B2 (en) Control device and control method for compression self-ignition internal combustion engine
US20200141377A1 (en) Control apparatus for compression auto-ignition engine
US10982615B2 (en) Engine control device
JP4863980B2 (en) Control device for spark ignition internal combustion engine
JP5779331B2 (en) In-cylinder injection gasoline engine controller
JP5560237B2 (en) In-cylinder injection internal combustion engine control device
JP2011190784A (en) Control device of cylinder direct injection type internal combustion engine
JP5516465B2 (en) Control device for internal combustion engine
JP7047581B2 (en) Compression ignition engine controller
JP2018091267A (en) Controller of internal combustion engine
JP2009185628A (en) Fuel injection control system for internal combustion engine
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
JP5087569B2 (en) Control device for compression self-ignition internal combustion engine
JP2023182629A (en) Method for adjusting richness in controlled-ignition internal combustion engine
JP4631725B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP3775942B2 (en) Fuel injection control device for internal combustion engine
US9121363B2 (en) Fuel injection pattern and timing
JP2010216326A (en) Method for controlling switching of combustion method of internal combustion engine
JP2006177179A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
EP3246552B1 (en) Control system of compression ignition type internal combustion engine
JP6740915B2 (en) Internal combustion engine self-ignition timing estimation device
JP5435157B2 (en) Fuel injection control device for internal combustion engine
JP4281663B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP6597763B2 (en) Engine control device
JP5195383B2 (en) In-cylinder direct injection spark ignition internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12801943

Country of ref document: EP

Kind code of ref document: A1