WO2012175823A1 - Novel hybrid organic/inorganic im-22 solid, and use thereof in the separation of multi-branched paraffins from linear and single-branched paraffins - Google Patents

Novel hybrid organic/inorganic im-22 solid, and use thereof in the separation of multi-branched paraffins from linear and single-branched paraffins Download PDF

Info

Publication number
WO2012175823A1
WO2012175823A1 PCT/FR2012/000209 FR2012000209W WO2012175823A1 WO 2012175823 A1 WO2012175823 A1 WO 2012175823A1 FR 2012000209 W FR2012000209 W FR 2012000209W WO 2012175823 A1 WO2012175823 A1 WO 2012175823A1
Authority
WO
WIPO (PCT)
Prior art keywords
paraffins
solid
branched
branched paraffins
linear
Prior art date
Application number
PCT/FR2012/000209
Other languages
French (fr)
Inventor
David Peralta
Karin Barthelet
Gerhard Pirngruber
Gérald CHAPLAIS
Angélque SIMON-MASSERON
Joël Patarin
Original Assignee
IFP Energies Nouvelles
Centre National De La Recherche Scientifique
Universite De Haute Alsace (Etablissement Public A Caractere Scientifique, Culturel Et Professionnel)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Centre National De La Recherche Scientifique, Universite De Haute Alsace (Etablissement Public A Caractere Scientifique, Culturel Et Professionnel) filed Critical IFP Energies Nouvelles
Publication of WO2012175823A1 publication Critical patent/WO2012175823A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes

Definitions

  • the present invention relates to a novel crystalline hybrid solid zeolitic structured structural type CHA belonging to the family of ZIF and its method of preparation. Said new crystalline hybrid solid is called IM-22.
  • the present invention also relates to the use of said crystalline hybrid solid according to the invention as an adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins having from 5 to 7 carbon atoms per molecule, comprising contacting said feedstock with said adsorbent solid, so as to produce at least a first stream enriched in multibranched paraffins and a second stream enriched in linear and mono-branched paraffins.
  • the C5-C6 cut obtained by the direct distillation of crude oil is a constituent of the gasoline pool.
  • This defect has historically been offset by the addition of lead to the gasoline pool and / or by a high aromatic content in order to reach an average octane number greater than 89.
  • the addition of lead is banned in most countries and the new European legislation limits the benzene content in the 1% by weight gasoline pool and the total aromatic content to 35% by weight.
  • Catalytic isomerization processes convert the C5-C6 cut, which is very rich in linear paraffins and very poor in multi-branched paraffins, into an isomerate. a cut reduced linear paraffins content and increased content of mono- and di-branched paraffins. The higher the degree of branching of paraffins, the higher their octane numbers are: thus a gasoline containing dimethylbutanes has a better octane number than a gasoline containing methylpentanes. Unfortunately the conversion of linear paraffins into mono- and multibranched paraffins is limited by the thermodynamic equilibrium (and always remains partial).
  • the adsorptive separation processes very often employ an LTA structural zeolite A as an adsorbent material.
  • Zeolite A separates linear paraffins from branched paraffins by molecular sieving.
  • the pore opening diameter of the zeolite is such that only linear paraffins can diffuse into the porosity and adsorb to it. They are then desorbed and recycled to the isomerization reactor.
  • the mono-and di-branched paraffins remain excluded from the molecular sieve and constitute the product: the zeolite A does not separate the mono-branched paraffins from the paraffins which have been dibranched.
  • US-A-4,717,784, US-A-4,804,802 US-A-4,855,529 and US-A-4,982,048 use intermediate channel size adsorbents, particularly ferrierite.
  • US-A-4,982,052 teaches the use of siiicalite.
  • MOFs Metal-Organic Frameworks
  • coordination polymers are porous crystalline solids in which the sub-networks of metal cations (dimers, trimers, tetramers, chain, plane) are connected to each other by organic molecules serving as multidentate ligands to form a two- or three-dimensional crystalline structure.
  • a subfamily of the MOFs is constituted by the ZIF (Zeolitic Imidazolate Framework) family whose structure and preparation are described, for example, in the document US 2007/202038 A.
  • ZIFs consist of assemblages of tetrahedral units which consist of a bivalent cation M 2+ (Zn 2+ or Co 2+ ) in the center of the tetrahedron and four imidazolates 1m ' at the vertices of the tetrahedron.
  • the tetrahedra are connected to each other by the vertices, that is to say that each imidazolate is shared between two tetrahedra.
  • the units M 2+ (lm ”) are analogous to the units 4/2 Si0 4/2 in zeolites and the angle H-lm-M is close to the angle Si-O-Si in a zeolite.
  • ZIF structures are obtained with the same topology or structural type as the zeolites.
  • the length of the Im-M-1m bond is greater than that of the O-Si-O bond, the pore size and the pore volume.
  • a ZIF solid may be larger than those of the analogous zeolite structure, under conditions that the pores of ZIF are not clogged with organic ligands.
  • ZIFs are known to have already been used in the separation of compounds present in a gaseous mixture.
  • the patent application WO 2008/140788 teaches the use of ZIF-8 for the separation of C0 2 present in a mixture CO 2 / CH and CO 2 / CO.
  • the subject of the present invention is a new crystalline hybrid solid with an organic-inorganic mixed matrix having a three-dimensional structure.
  • This new solid is called IM-22. It belongs to the family of ZIFs and contains an inorganic network of metal centers based on Zn 2+ cations connected to each other by organic imidazolate ligands.
  • Said solid IM-22 is obtained by combining two ligands, 2-methylimidazolate (mIM) and a benzimidazolate (b
  • the subject of the present invention is also a process for the preparation of said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type.
  • the present invention also relates to the use of said new IM-22 crystallized hybrid solid as an adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins having from 5 to 7 atoms. of carbon per molecule, comprising contacting said feedstock with said new adsorbent solid IM-22 according to the invention, so as to produce at least a first stream enriched in multibranched paraffins and a second stream enriched in linear paraffins and mono-branched.
  • said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type used as an adsorbent in a process for separating a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins, allows the separation of linear and mono-branched paraffins from multi-branched paraffins.
  • the enriched flow of multibranched paraffins and depleted, or lacking in mono-branched and linear paraffins has a high octane number and is advantageously integrated into the gasoline pool to improve the quality of gasoline.
  • Said new crystalline hybridized solid-structured hybrid zeolite structure IM-22 CHA implemented as an adsorbent in the separation process according to the invention has a high adsorption selectivity towards linear and mono-branched paraffins compared to paraffins. multi-branched.
  • the subject of the present invention is a new hybrid solid hybrid organic-inorganic mixed matrix called IM-22 of three-dimensional structure having a zeolite framework of structural type CHA, a topology that is unpublished in the family of ZIFs.
  • Said solid IM-22 contains an inorganic network of metal centers based on Zn 2+ cations connected between them by two organic imidazolate ligands, 2-methylimidazolate (mIM) and a benzimidazolate (bIM) substituted on the benzene ring.
  • Said IM-22 solid has an X-ray diffraction pattern including at least the lines listed in Table 1.
  • is calculated by means of the Bragg relation as a function of the absolute error ⁇ (2 ⁇ ) assigned to the measurement of 2 ⁇ .
  • An absolute error of ⁇ (2 ⁇ ) is estimated at ⁇ 0, 1 °.
  • the relative intensity l / l 0 assigned to each value of d hk i is measured from the height of the corresponding diffraction peak.
  • Table 1 Mean values of d hkl iet relative intensities measured on an X-ray diffraction pattern X hybrid crystalline solid IM-22.
  • the relative intensity l / l 0 is given in relation to a relative intensity scale where it is assigned a value of 100 to the most intense line of the X-ray diffraction pattern.
  • the IM-22 solid has the combination of two ligands, 2-methylimidazolate (mlM) and a benzimidazolate (bIM) substituted on the benzene ring.
  • benzimidazolate (bIM) is substituted at the 5-position.
  • Preferred examples of benzene ring substitution of benzimidazolate (bIM) are 5-chlorobenzimidazolate, 5-bromobenzimidazolate and 5-methylbenzimidazolate.
  • the metal centers of the zinc-based IM-22 solid are connected to each other by the two ligands mIM and bIM, bIM being chosen from the group consisting of 5-chlorobenzimidazolate (denoted cblM), 5-methylbenzimidazolate (denoted mbIM) and 5-bromobenzimidazolate (noted bblM).
  • bIM being chosen from the group consisting of 5-chlorobenzimidazolate (denoted cblM), 5-methylbenzimidazolate (denoted mbIM) and 5-bromobenzimidazolate (noted bblM).
  • the mole / mM ligand molar ratio is advantageously between 0.5 and 2, preferably between 0.7 and 1.5, preferably between 0.75 and 1.2.
  • the specific surface area of said IM-22 solid varies in a range between 500 and 1000 m 2 / g and its microporous volume between 0.20 and 0.40 cm 3 / g. Said solid has a very predominantly microporous porosity.
  • the subject of the present invention is also a process for the preparation of said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type.
  • the process for preparing the IM-22 solid comprises at least the following steps:
  • the zinc precursor is advantageously chosen from zinc (II) salts such as zinc chlorides, sulphates, acetates or nitrates.
  • said precursor used is a zinc nitrate.
  • the solvent S is a polar organic solvent, advantageously a solvent chosen from dimethylformamide (DMF), diethylformamide (DEF) and the mixture of the two solvents (DMF / DEF).
  • the solvent S is a mixture of dimethylformamide / diethylformamide (DMF / DEF).
  • the volume ratio DMF / DEF is preferably between 0.5 and 2.
  • the benzimidazolate (bIM) is selected from the group consisting of 5-chlorobenzimidazolate (noted cblM), 5-methylbenzimidazolate (noted mbIM) and 5-bromobenzimidazolate (noted bblM).
  • the ligands used in the present process namely 2-methylimidazolate (mIM) and benzimidazolate (bIM) selected from cblM, mbIM and bblM are commercially available compounds.
  • the heating period of the mixture resulting from stage ii) is advantageously between 1 and 30 days, preferably between 1 and 20 days and more preferably between 7 and 20 days. days, and the temperature is advantageously between 60 and 150 ° C, preferably between 80 and 120 ° C and even more preferably between 90 and 110 ° C.
  • the washing solvent is a polar solvent selected from methanol, ethanol, dimethylformamide and diethylformamide, preferably the washing solvent is chosen from dimethylformamide, and diethylformamide, more preferably the washing solvent is dimethylformamide.
  • the drying is advantageously carried out for a period of between 1 and 24 hours, preferably between 1 and 15 hours, preferably between 1 and 10 hours, and more preferably between 1 and 10 hours. and 6 hours; and advantageously at a temperature between 25 and 120 ° C, preferably between 25 and 100 ° C.
  • Said heat treatment generally carried out under a flow of gas is advantageously carried out for a period of between 1 and 24 hours, preferably between 1 and 15 hours, preferably between 1 and 10 hours and more preferably between 1 and 7 hours, at a temperature advantageously between 200 and 500 ° C, preferably between 200 and 300 ° C.
  • the reaction mixture obtained at the end of stage ii) advantageously has the following molar composition:
  • the molar composition is as follows:
  • the process also comprises, between the steps iii) and iv) described above, a step of adding a base B in the mixture resulting from step iii followed by a second step of heating the mixture obtained.
  • the base B is advantageously selected from the group consisting of the following compounds; NaOH, KOH, NH 3 and ⁇ (O 2 ⁇ 5 ) 3 , preferably in the group consisting of NaOH and KOH and more preferably base B is NaOH.
  • the duration of said second step of heating the mixture, after addition of the base B is advantageously between 1 and 30 days, preferably between 1 and 15 days, preferably between 1 and 7 days. days and more preferably between 3 and 7 days, and the temperature is preferably between 60 and 150 ° C, preferably between 80 and 120 ° C and even more preferably between 90 and 1 0 ° C.
  • the reaction mixture obtained at the end of the step of adding the base B and before the second heating step advantageously has the following molar composition:
  • the molar composition is as follows:
  • the present invention also relates to the use of said hybrid solid IM-22 as adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feedstock containing linear paraffins, mono-branched paraffins and multibranched paraffins having 5 to 7 carbon atoms per molecule, comprising contacting said feedstock with at least said IM-22 adsorbent to produce at least a first multi-branched paraffin-enriched stream and a second paraffin-enriched stream linear and mono-branched.
  • multi-branched paraffins refers to paraffins having at least two branches. According to the invention, the multi-branched paraffins therefore include the paraffins dibranchées.
  • the feedstock treated in the process according to the invention contains hydrocarbon compounds having from 5 to 7 carbon atoms per molecule. In particular, it contains linear paraffins, monobranched paraffins and multibranched paraffins having from 5 to 7 carbon atoms, more preferably having 5 and / or 6 carbon atoms per molecule. It also advantageously contains olefinic compounds having from 5 to 7 carbon atoms per molecule.
  • the compounds having at least 7 carbon atoms per molecule and present in said feedstock to be treated are advantageously naphthenic compounds, for example methylcyclohexane, and aromatic compounds, in particular toluene and xylenes.
  • Said feedstock treated in the process according to the invention is preferably derived from the atmospheric distillation of crude oil, a catalytic isomerization unit of paraffins, for example paraffins C5-C6, a reforming unit (light reformate). ) or a conversion unit (eg hydrocracking naphtha).
  • the filler treated in the process according to the invention may in particular contain n-pentane, 2-methylbutane, neopentane, n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2-methylpentane, , 3-dimethylbutane. It may further contain cyclic alkanes, such as cyclopentane, methylcyclopentane, cyclohexane, as well as aromatic compounds such as benzene and toluene.
  • the linear, mono-branched and multi-branched paraffins represent at least 70% by weight of the feedstock to be treated.
  • the C7 + hydrocarbons (that is to say the hydrocarbon compounds containing at least 7 carbon atoms) are present in a minor amount and preferably represent at most 10% by weight, preferably at most 5% by weight of the feedstock to be treated in the separation process. according to the invention.
  • the feedstock to be treated is generally of low octane number and the process according to the invention consists in breaking it down into at least two distinct effluents, namely a first stream enriched in multibranched paraffins and a second stream enriched in linear paraffins and in mono-branched paraffins. Said first stream is enriched in multi-branched paraffins preferably having 5 and / or 6 carbon atoms per molecule.
  • Multibranched paraffins preferably represent from 60 to 100% by weight, very preferably from 70 to 99% by weight, of said first stream.
  • Said first stream has a search octane gain of at least 2 points relative to the hydrocarbon feedstock to be treated.
  • Said second stream is enriched in linear paraffins having preferentially 5 and / or 6 carbon atoms per molecule and in monobranched paraffins preferably having 5 and / or 6 carbon atoms per molecule. It has an engine octane number and search lower than that of said first stream.
  • the linear and mono-branched paraffins preferably represent from 80 to 100% by weight of said second stream.
  • said ads-22 adsorbent adsorbs preferably linear paraffins and mono-branched paraffins present in the feedstock to be treated. Said linear and monobranched paraffins, selectively retained by said adsorbent, represent the major part of said second stream produced by the separation process of the invention. The multi-branched paraffins are not retained by said adsorbent and represent the major part of said first stream produced by the separation process of the invention. More particularly, said IM-22 adsorbent separates the isomers of paraffins present in said hydrocarbon feed so that at least said first stream and at least said second stream are produced.
  • the feedstock is separated into three distinct streams respectively rich in linear paraffins, rich in monobranched paraffins and rich in multibranched paraffins with possibly naphthenic and / or aromatic compounds.
  • Said three distinct streams respectively rich in linear paraffins, rich in monobranched paraffins and rich in multibranched paraffins respectively show increasing motor octane and search index.
  • the fractionation of the hydrocarbon feedstock to be treated is advantageously carried out in a separation unit containing one or more adsorbents, at least one of the adsorbents being the IM-22 adsorbent as described above. in the present description.
  • the separation process according to the invention is carried out according to adsorption separation techniques well known to those skilled in the art.
  • PSA pressure swing adsorption
  • TSA temperature-modulated adsorption
  • LMS simulated moving bed
  • At least one bed of said IM-22 adsorbent as described above in the present description is placed in at least one adsorption column.
  • Several columns provided with said adsorbent are generally installed in parallel.
  • Each column undergoes a cycle comprising at least one adsorption step and at least one desorption step, which are optionally interrupted by depressurization, pressure equalization and re-pressurization steps.
  • the continuous treatment of the load is ensured by permutation of the periods of the cycles practiced in the different columns placed in parallel.
  • the very principle of the PSA process lies in the cyclic sequence of the high-pressure adsorption and low-pressure desorption phases, possibly with additional steps of pressure equalization and purge.
  • the operating mode of the PSA process is recalled in the patent application FR-A-2 910 457. .
  • the hydrocarbon feedstock to be treated is introduced into at least one adsorption column by the feed end.
  • the partial pressure of the paraffins in said feedstock to be treated is at least 10 -3 MPa (1 kPa), preferably at least 0.01 MPa.
  • the partial pressure of the paraffins in said feedstock to be treated is at most equal to 7MPa, preferably at most equal to 5 MPa.
  • the total pressure at which said adsorption step is carried out is preferably between 0.01 and 7 MPa, preferably between 0.1 and 5 MPa.
  • Said adsorption step leads to producing said first multi-branched paraffin enriched stream, which have no affinity for said IM-22 adsorbent so that they do not adsorb or little while the linear and mono-branched paraffins are adsorbed by the IM-22 adsorbent bed (s)
  • the desorption of linear and mono-branched paraffins is carried out by lowering the pressure in the adsorption column (s), the desorption pressure generally being between 0.01 and 1 MPa, and / or by a purge gas which is introduced into the column (s) by the production end.
  • the purge gas is preferably formed of compounds that are only slightly adsorbed by the adsorbent.
  • the purge gas is either hydrogen or a hydrocarbon stream rich in isopentane, said stream being advantageously obtained by a distillation (a deisopentanizer column) of the C5-C7 feed to be treated, preferentially the charge C5-C6 to be treated, upstream or downstream of the separation process.
  • the desorption steps produce said second stream enriched in linear paraffins and monobranched paraffins.
  • the separation process according to the invention implemented by pressure swing adsorption (PSA), is advantageously carried out at a temperature of between 100 and 200 ° C.
  • the separation process according to the invention is carried out by adsorption at modulated temperature (TSA)
  • TSA adsorption at modulated temperature
  • the operation of the process resumes the same cyclic sequence of adsorption and desorption phases as that implemented for a PSA process as described above, the desorption of linear and monobranched paraffins being achieved by an increase in temperature in the (s) column (s) of adsorption.
  • the adsorption step is carried out at a temperature between 100 and 200 ° C and the desorption step is carried out at a temperature between 200 and 300 ° C.
  • the separation process according to the invention, implemented by adsorption at modulated temperature (TSA) is advantageously carried out at a pressure of between 0.01 and 7 MPa.
  • the separation process according to the invention is carried out in the gas phase.
  • the paraffins partial pressure in the feedstock to be treated is at least 10 -3 MPa, preferably at least 0.01 MPa.
  • a third adsorption separation technique advantageously used to carry out the separation process of the invention consists in splitting the feedstock to be treated in a simulated moving bed process (LMS) to produce at least said first stream and at least said second stream. flux.
  • LMS simulated moving bed process
  • the principle of the LMS process is well known to those skilled in the art and is described in detail in the document G. Ash, K. Barth, G. Hotier, L. Mank and P. Renard, Review of the French Petroleum Industry. , 49, 541 (1994) and in US Patent 2,985,589.
  • the LMS process, carried out in the liquid phase uses at least one adsorption column in which the adsorption and desorption phases are carried out simultaneously within distinct zones.
  • said adsorption column is provided with at least one bed of said IM-22 adsorbent as described above in the present description.
  • the desorption of linear and monobranched paraffins is carried out by passing an eluent having less affinity for said IM-22 adsorbent than linear and mono-branched paraffins but more affinity for said adsorbent than multi-branched paraffins.
  • An advantageous choice of eluent is isopentane.
  • the LMS process is carried out in the liquid phase. It is operated at a temperature between 100 and 200 ° C.
  • the pressure is chosen so as to maintain the charge in the liquid phase under the conditions of the separation process according to the invention. Preferably, it is between 1 and 4 MPa.
  • the amount of paraffins involved in the implementation of said LMS process is such that the equivalent partial pressure of said paraffins in the feed is between 0.6 and 4 MPa.
  • said process comprises at least one hydroisomerization step. More precisely, said second stream enriched in linear and mono-branched paraffins, produced by the process of the invention, is recycled to a reaction unit for carrying out said hydroisomerization step. Said hydroisomerization step converts said linear and mono-branched paraffins present in said second low-octane stream into higher octane multibranched paraffins.
  • the dried solid then undergoes heat treatment at 250 ° C for 6 hours.
  • the BET surface of the solid IM-22 after heat treatment is 740 m 2 / g, the microporous volume is 0.33 cm 3 / g.
  • This example illustrates the separation of multibranched paraffins from single-branched paraffins operated in the presence of the solid IM-22 used as a zeolitic structure-structured adsorbent CHA.
  • the separating performance, particularly the adsorption capacity and the adsorption selectivity, of the IM-22 solid were evaluated by the method of drilling curves.
  • IM-22 is tested for separation of 3-methylpentane / 2,2-dimethylbutane. The test was carried out under the following conditions: temperature equal to 125 ° C., partial pressure of hydrocarbons equal to 13 kPa (0.13 bar), and flow rate of 1 NL / h.
  • the ratio of the molar concentrations of 3MP and 22DMB in the feed is 1:
  • the curves representing the concentrations of the constituents as a function of time are called "drilling curves".
  • the first moment of the piercing curve of a given compound in this case 3MP and 22 DMB, makes it possible to calculate the adsorbed quantity of each compound by the well-known method called “moments” (Ruthven, DM Principles of adsorption and adsorption processes, John Wiley & Sons ed, 1984).
  • the first moment of the curve is obtained by the integration
  • C / o is the initial concentration of component i in the load and c is the concentration iit output of component i as a function of time.
  • the adsorbed amount of compound i is proportional to the first moment of the drilling curve (after correction for the dead time). It is given by the formula:
  • Pi is the partial pressure of component i in the feed
  • P tot total pressure m the mass of adsorbent
  • p grain density of the adsorbent
  • F is the total molar flow rate
  • ⁇ ⁇ the first moment of the curve piercing compound i
  • Q adSii the adsorbed amount of compound i.
  • the adsorption selectivity ⁇ between compounds i and j, namely between 3MP and 22DMB in the present example, is calculated according to the formula:
  • P 1 and j are respectively the partial pressures of the compound i and the compound j and Q ads
  • i and Qads j are respectively the adsorbed amounts of the compound i and the compound j.
  • Table 2 summarizes the separating performance of the IM-22 solid in terms of adsorption capacity (amount adsorbed in 3MP and 22DMB) and adsorption selectivity.
  • zeolite 5A conventionally used for the separation of linear and mono-branched paraffin isomers, does not make it possible to separate branched paraffins as a function of their degree of branching: all branched paraffins, including mono-branched paraffins, remain excluded from the porosity of zeolite 5A.
  • the adsorption capacity of the zeolite solid 5A is, moreover, virtually zero.
  • Example 3 Separating performance of IM-22 for the separation of a n-hexane / 3-methylpentane / 2,2-dimethylbutane mixture (n-C6 / 3MP / 22DMB mixture)
  • This example illustrates the separation of multibranched paraffins from monobranched and linear paraffins operated in the presence of the IM-22 solid.
  • the separating performance, particularly the adsorption capacity and the adsorption selectivity, of the IM-22 solid were evaluated by the method of drilling curves.
  • the IM-22 solid is tested for the separation of the mixture n-hexane / 3-methylpentane / 2,2-dimethylbutane. The test was carried out under the following conditions: adsorption temperature equal to 125 ° C., partial pressure of the hydrocarbons equal to 20 kPa (0.20 bar), molar concentration ratio of n-C6 / 3MP / 22DMB in the load equal to 1/1/1 and the flow rate of 1 N ' Uh.
  • the separation is. made by a column of a length of about 10 cm, filled with 2 grams of solid IM-22.
  • the IM-22 solid is pretreated under a stream of helium at a temperature of 250 ° C. Then the temperature of the column is stabilized at the adsorption temperature equal to 125 ° C.
  • the total pressure in the column is equal to 0.1 MPa.
  • the drilling curve is triggered by switching the feed of the column consisting of a pure helium stream on a mixture of nC6, 3MP and 22DMB diluted in helium.
  • the concentration at the outlet of the column of n-C6, 3MP and 22DMB is monitored over time by gas chromatography until all the concentrations stabilize at their input values.
  • the piercing curve of each constituent can thus be constructed.
  • Table 3 adsorption capacity of the solid IM-22 and zeolite 5A for the adsorption of the mixture n-hexane / 3-methylpentane / 2,2-dimethylbutane (n-C6 / 3MP / 22DMB)
  • zeolite 5A adsorbs n-C6 but adsorbs neither 3MP nor 22DMB.
  • the zeolite 5A thus makes it possible to separate linear paraffins from branched paraffins, but does not separate the branched paraffins from one another according to their degree of branching.

Abstract

The invention relates to a novel hybrid solid having a structural zeolite framework. CHA belongs to the ZIF family containing an inorganic network of Zn2+ cation metal centers connected together by two organic ligands, 2-methylimidazolate, and a benzimidazolate. The invention also relates to the preparation and use of said adsorbent solid in a method for separating multi-branched paraffins included in a hydrocarbon feedstock containing linear paraffins, single-branched paraffins, and multi-branched paraffins having 5 to 7 carbon atoms per molecule, wherein said method includes placing said filler in contact with said adsorbent solid so as to produce at least a first stream enriched with multi-branched paraffins, and a second stream enriched with linear and single-branched paraffins.

Description

NOUVEAU SOLIDE HYBRIDE ORGANIQUE-INORGANIQUE IM-22 ET SON UTILISATION DANS LA SEPARATION DE PARAFFINES MULTIBRANCHEES DES PARAFFINES LINEAIRES ET MONO-BRANCHEES NEW IM-22 ORGANIC-INORGANIC HYBRID SOLID AND ITS USE IN THE SEPARATION OF MULTI-LINEAR PARAFFINS FROM LINEAR AND MONO-BRANCHED PARAFFINS
Domaine technique de l'invention Technical field of the invention
La présente invention se rapporte à un nouveau solide hybride cristallisé à charpente zéolithique de type structural CHA appartenant à la famille des ZIF et à son procédé de préparation. Ledit nouveau solide hybride cristallisé est appelé IM-22. The present invention relates to a novel crystalline hybrid solid zeolitic structured structural type CHA belonging to the family of ZIF and its method of preparation. Said new crystalline hybrid solid is called IM-22.
La présente invention se rapporte également à l'utilisation dudit solide hybride cristallisé selon l'invention comme adsorbant dans un procédé de séparation des paraffines multibranchées comprises dans une charge hydrocarbonée contenant des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant de 5 à 7 atomes de carbone par molécule, comprenant la mise en contact de ladite charge avec ledit solide adsorbant, de manière à produire au moins un premier flux enrichi en paraffines multibranchées et un deuxième flux enrichi en paraffines linéaires et monobranchées. Art antérieur The present invention also relates to the use of said crystalline hybrid solid according to the invention as an adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins having from 5 to 7 carbon atoms per molecule, comprising contacting said feedstock with said adsorbent solid, so as to produce at least a first stream enriched in multibranched paraffins and a second stream enriched in linear and mono-branched paraffins. Prior art
La coupe C5-C6 obtenue par distillation directe du pétrole brut est un constituant du pool essence. Or, l'indice d'octane de cette coupe est faible (RON = 68 - 70). Ce défaut a historiquement été compensé par l'ajout du plomb au pool d'essence et/ou par une forte teneur en aromatiques afin d'arriver à un indice d'octane moyen supérieur à 89. A ce jour, l'ajout du plomb est interdit dans la plupart des pays et la nouvelle législation européenne limite la teneur en benzène dans le pool essence à 1 % poids et la teneur totale en aromatique à 35% poids. Pour compenser la limitation de ces composés à très fort indice d'octane, il convient d'améliorer la qualité de la coupe C5-C6 en termes d'indice d'octane. The C5-C6 cut obtained by the direct distillation of crude oil is a constituent of the gasoline pool. However, the octane number of this section is low (RON = 68 - 70). This defect has historically been offset by the addition of lead to the gasoline pool and / or by a high aromatic content in order to reach an average octane number greater than 89. To date, the addition of lead is banned in most countries and the new European legislation limits the benzene content in the 1% by weight gasoline pool and the total aromatic content to 35% by weight. To compensate for the limitation of these compounds with a high octane number, it is necessary to improve the quality of the C5-C6 cut in terms of octane number.
Des procédés d'isomérisation catalytique transforment la coupe C5-C6 qui est très riche en paraffines linéaires et très pauvre en paraffines multibranchées en un isomérat, Le. une coupe à teneur réduite en paraffines linéaires et à teneur augmentée en paraffines mono- et di-branchées. Plus le degré de ramifications des paraffines est important, plus leurs indices d'octane sont élevés : ainsi une essence contenant des diméthylbutanes présente un meilleur indice d'octane qu'une essence contenant des méthylpentanes. Malheureusement la conversion des paraffines linéaires en paraffines mono- et multibranchées est limitée par l'équilibre thermodynamique (et reste toujours partielle). Lors d'un passage unique dans un réacteur d'isomérisation on peut donc obtenir une augmentation de l'indice d'octane de la coupe C5-C6, mais cette augmentation reste souvent insuffisante. Pour augmenter davantage l'indice d'octane de cette coupe, une étape de séparation des composés à bas indice d'octane peut être ajoutée, avec un recyclage de ces composés dans le réacteur d'isomérisation. Cette séparation peut se faire par distillation, par adsorption ou par une combinaison des deux opérations. Plusieurs schémas d'enchaînement des étapes de séparation ont été proposés dans l'art antérieur (voir, par exemple, "Handbook of Petroluem Refining", R.A. Meyers (Ed.), McGraw-Hill, 1997). Les procédés de séparation par adsorption emploient très souvent une zéolithe A de type structural LTA comme matériau adsorbant. La zéolithe A sépare les paraffines linéaires des paraffines ramifiées par tamisage moléculaire. Le diamètre de l'ouverture des pores de la zéolithe est tel que seules les paraffines linéaires peuvent diffuser à l'intérieur de la porosité et s'y adsorber. Elles sont ensuite désorbées et recyclées au réacteur d'isomérisation. Les paraffines mono- et di-branchées restent exclues du tamis moléculaire et constituent le produit : la zéolithe A ne réalise pas la séparation des paraffines monobranchées des paraffines dibranchées. Catalytic isomerization processes convert the C5-C6 cut, which is very rich in linear paraffins and very poor in multi-branched paraffins, into an isomerate. a cut reduced linear paraffins content and increased content of mono- and di-branched paraffins. The higher the degree of branching of paraffins, the higher their octane numbers are: thus a gasoline containing dimethylbutanes has a better octane number than a gasoline containing methylpentanes. Unfortunately the conversion of linear paraffins into mono- and multibranched paraffins is limited by the thermodynamic equilibrium (and always remains partial). During a single pass through an isomerization reactor, an increase in the octane number of the C5-C6 cut can therefore be obtained, but this increase is often insufficient. To further increase the octane number of this cut, a step of separating the low octane compounds can be added, with a recycle of these compounds in the isomerization reactor. This separation can be carried out by distillation, by adsorption or by combination of both operations. Several sequencing schemes of the separation steps have been proposed in the prior art (see, for example, "Handbook of Petroluem Refining", RA Meyers (Ed.), McGraw-Hill, 1997). The adsorptive separation processes very often employ an LTA structural zeolite A as an adsorbent material. Zeolite A separates linear paraffins from branched paraffins by molecular sieving. The pore opening diameter of the zeolite is such that only linear paraffins can diffuse into the porosity and adsorb to it. They are then desorbed and recycled to the isomerization reactor. The mono-and di-branched paraffins remain excluded from the molecular sieve and constitute the product: the zeolite A does not separate the mono-branched paraffins from the paraffins which have been dibranched.
Le recyclage des paraffines linéaires à l'unité d'isomérisation permet d'augmenter significativement l'indice d'octane de la coupe C5-C6. Afin d'augmenter encore davantage la qualité de la coupe C5-C6, l'intérêt de la mise à disposition, pour l'industrie pétrolière, d'un nouveau solide réalisant la séparation des paraffines linéaires et mono-branchées des paraffines dibranchées est élevé.  The recycling of linear paraffins to the isomerization unit makes it possible to significantly increase the octane number of the C5-C6 cut. In order to further increase the quality of the C5-C6 cut, the interest in providing the petroleum industry with a new solid separating the linear and mono-branched paraffins from the paraffins that are dibranched is high. .
Plusieurs zéolithes ont été proposées pour effectuer la séparation des paraffines mono- et dibranchées. Several zeolites have been proposed to effect the separation of mono- and dibranched paraffins.
Les brevets US-A-4,717,784, US-A-4,804,802, US-A-4,855,529 et US-A-4,982,048 utilisent des adsorbants de taille de canaux intermédiaires, en particulier la ferriérite. Le brevet US-A-4,982,052 enseigne l'utilisation de la siiicalite.  US-A-4,717,784, US-A-4,804,802, US-A-4,855,529 and US-A-4,982,048 use intermediate channel size adsorbents, particularly ferrierite. US-A-4,982,052 teaches the use of siiicalite.
Néanmoins, les performances séparatrices de ces zéolithes ne sont pas optimales et la recherche d'un adsorbant ayant de meilleures performances de séparation que la zéolithe A est toujours actuelle.  Nevertheless, the separating performance of these zeolites is not optimal and the search for an adsorbent having better separation performance than zeolite A is still current.
Depuis les années 1990, un intérêt particulier s'est manifesté pour des composés hybrides à matrice mixte organique-inorganique, aussi appelés MOFs (Metal-Organic Frameworks) ou polymères de coordination. Les MOFs sont des solides cristallisés poreux dans lesquels les sous-réseaux de cations métalliques (dimères, trimères, tétramères, chaîne, plan) sont connectés entre eux par des molécules organiques servant de ligands multidentates pour former une structure cristalline bi- ou tridimensionnelle.  Since the 1990s, there has been a particular interest in hybrids with mixed organic-inorganic matrix, also called MOFs (Metal-Organic Frameworks) or coordination polymers. MOFs are porous crystalline solids in which the sub-networks of metal cations (dimers, trimers, tetramers, chain, plane) are connected to each other by organic molecules serving as multidentate ligands to form a two- or three-dimensional crystalline structure.
Une sous-famille des MOFs est constituée par la famille des ZIF (Zeolitic Imidazolate Framework en anglais ou composés imidazolates à charpente zéolithique) dont la structure et la préparation sont décrites, par exemple, dans le document US 2007/202038 A .  A subfamily of the MOFs is constituted by the ZIF (Zeolitic Imidazolate Framework) family whose structure and preparation are described, for example, in the document US 2007/202038 A.
Les ZIF sont formés d'assemblages d'unités tétraédriques qui sont constituées d'un cation bivalent M2+ (Zn2+ ou Co2+) au centre du tétraèdre et de quatre imidazolates lm' aux sommets du tétraèdre. Les tétraèdres sont connectés entre eux par les sommets, c'est-à-dire que chaque imidazolate est partagé entre deux tétraèdres. Les unités M2+(lm")4/2 sont analogues aux unités Si04/2 dans les zéolithes et l'angle M-lm-M est proche de l'angle Si-O-Si dans une zéolithe. Par conséquent, des structures ZIF sont obtenus avec la même topologie ou type structural que les zéolithes. La longueur de la liaison Im-M-lm étant plus grande que celle de la liaison O-Si-O, la taille des pores et le volume poreux d'un solide ZIF peuvent être plus grands que ceux de la structure zéolithique analogue, sous conditions que les pores du ZIF ne soient pas bouchés par des ligands organiques. ZIFs consist of assemblages of tetrahedral units which consist of a bivalent cation M 2+ (Zn 2+ or Co 2+ ) in the center of the tetrahedron and four imidazolates 1m ' at the vertices of the tetrahedron. The tetrahedra are connected to each other by the vertices, that is to say that each imidazolate is shared between two tetrahedra. The units M 2+ (lm ") are analogous to the units 4/2 Si0 4/2 in zeolites and the angle H-lm-M is close to the angle Si-O-Si in a zeolite. Therefore, ZIF structures are obtained with the same topology or structural type as the zeolites.The length of the Im-M-1m bond is greater than that of the O-Si-O bond, the pore size and the pore volume. a ZIF solid may be larger than those of the analogous zeolite structure, under conditions that the pores of ZIF are not clogged with organic ligands.
Les ZIF sont connus pour avoir déjà été utilisés dans la séparation de composés présents dans un mélange gazeux. En particulier, la demande de brevet WO 2008/140788 enseigne l'utilisation du ZIF-8 pour la séparation de C02 présent dans un mélange C02/CH et C02/CO. ZIFs are known to have already been used in the separation of compounds present in a gaseous mixture. In particular, the patent application WO 2008/140788 teaches the use of ZIF-8 for the separation of C0 2 present in a mixture CO 2 / CH and CO 2 / CO.
Résumé et intérêt de l'invention La présente invention a pour objet un nouveau solide hybride cristallisé à matrice mixte organique-inorganique présentant une structure tridimensionnelle. Ce nouveau solide est appelé IM-22. Il appartient à la famille des ZIFs et contient un réseau inorganique de centres métalliques à base de cations Zn2+ connectés entre eux par des ligands organiques imidazolates. Ledit solide IM-22 est obtenu pâr l'association de deux ligands, le 2-méthylimidazolate (mIM) et, un benzimidazolate (b|M) substitué sur le cycle benzénique. L'association de ces deux ligands donne, dans certaines conditions de synthèse, un solide de type structural CHA. Cette topologie est encore inédite parmi la famille des ZIFs. SUMMARY AND INTEREST OF THE INVENTION The subject of the present invention is a new crystalline hybrid solid with an organic-inorganic mixed matrix having a three-dimensional structure. This new solid is called IM-22. It belongs to the family of ZIFs and contains an inorganic network of metal centers based on Zn 2+ cations connected to each other by organic imidazolate ligands. Said solid IM-22 is obtained by combining two ligands, 2-methylimidazolate (mIM) and a benzimidazolate (b | M) substituted on the benzene ring. The combination of these two ligands gives, under certain synthesis conditions, a solid of structural type CHA. This topology is still unpublished among the family of ZIFs.
La présente invention a également pour objet un procédé de préparation dudit solide hybride cristallisé IM-22 à charpente zéolithique de type structural CHA. The subject of the present invention is also a process for the preparation of said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type.
La présente invention porte également sur l'utilisation dudit nouveau solide hybride cristallisé IM-22 comme adsorbant dans un procédé de séparation de paraffines multibranchées comprises dans une charge hydrocarbonée contenant des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant de 5 à 7 atomes de carbone par molécule, comprenant la mise en contact de ladite charge avec ledit nouveau solide adsorbant IM-22 selon l'invention, de manière à produire au moins un premier flux enrichi en paraffines multibranchées et un deuxième flux enrichi en paraffines linéaires et monobranchées. The present invention also relates to the use of said new IM-22 crystallized hybrid solid as an adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins having from 5 to 7 atoms. of carbon per molecule, comprising contacting said feedstock with said new adsorbent solid IM-22 according to the invention, so as to produce at least a first stream enriched in multibranched paraffins and a second stream enriched in linear paraffins and mono-branched.
Il a été découvert que ledit solide hybride cristallisé IM-22 à charpente zéolithique de type structural CHA, mis en oeuvre comme adsorbant dans un procédé de séparation d'une charge hydrocarbonée contenant des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées, permet la séparation des paraffines linéaires et monobranchées des paraffines multibranchées. Le flux enrichi en paraffines multibranchées et appauvri, voire dépourvu en paraffines monobranchées et linéaires présente un indice d'octane élevé et est avantageusement intégré au pool essence pour améliorer la qualité de l'essence. It has been discovered that said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type, used as an adsorbent in a process for separating a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins, allows the separation of linear and mono-branched paraffins from multi-branched paraffins. The enriched flow of multibranched paraffins and depleted, or lacking in mono-branched and linear paraffins has a high octane number and is advantageously integrated into the gasoline pool to improve the quality of gasoline.
Ledit nouveau solide hybride cristallisé IM-22 à charpente zéolithique de type structural CHA mis en œuvre comme adsorbant dans le procédé de séparation selon l'invention présente une sélectivité d'adsorption vis-à-vis des paraffines linéaires et monobranchées élevée par rapport aux paraffines multibranchées. Said new crystalline hybridized solid-structured hybrid zeolite structure IM-22 CHA implemented as an adsorbent in the separation process according to the invention has a high adsorption selectivity towards linear and mono-branched paraffins compared to paraffins. multi-branched.
Les performances séparatrices dudit solide IM-22 comme adsorbant étant sensiblement améliorées par rapport aux performances d'un adsorbant zéolithique conventionnel, il en résulte une amélioration des performances du procédé de séparation par adsorption. La productivité du procédé de séparation selon l'invention s'en trouve améliorée. Since the separating performance of said IM-22 solid as adsorbent is substantially improved with respect to the performance of a conventional zeolite adsorbent, the result is an improvement in the performance of the adsorptive separation process. The productivity of the separation process according to the invention is thereby improved.
Description de l'invention Description of the invention
La présente invention a pour objet un nouveau solide hybride cristallisé à matrice mixte organique-inorganique appelé IM-22 de structure tridimensionnelle possédant une charpente zéolithique de type structural CHA, une topologie qui est à ce jour inédite dans la famille des ZIFs. Ledit solide IM-22 contient un réseau inorganique de centres métalliques à base de cations Zn2+ connectés entre éux par deux ligands organiques imidazolates, le 2-méthylimidazolate (mIM) et un benzimidazolate (bIM) substitué sur le cycle benzénique. Ledit solide IM-22 présente un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau 1. The subject of the present invention is a new hybrid solid hybrid organic-inorganic mixed matrix called IM-22 of three-dimensional structure having a zeolite framework of structural type CHA, a topology that is unpublished in the family of ZIFs. Said solid IM-22 contains an inorganic network of metal centers based on Zn 2+ cations connected between them by two organic imidazolate ligands, 2-methylimidazolate (mIM) and a benzimidazolate (bIM) substituted on the benzene ring. Said IM-22 solid has an X-ray diffraction pattern including at least the lines listed in Table 1.
Le solide cristallisé IM-22 selon l'invention appartient à un réseau de Bravais de type R, le paramètre de maille est a = b = 27,4 (+/- 0,2 A), c = 24,4 (+/- 0,2 A), et les angles α = β = 90°, y = 120°. Ce diagramme de diffraction est obtenu par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Ka1 du cuivre (A=1 ,5406Â). A partir de la position des pics de diffraction représentée par l'angle 2Θ, on calcule, en appliquant la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l'échantillon. L'erreur de mesure A(dhk|) sur dhk| est calculée grâce à la relation de Bragg en fonction de l'erreur absolue Δ(2Θ) affectée à la mesure de 2Θ. Une erreur absolue de Δ(2Θ) est estimé à ±0, 1 °. L'intensité relative l/l0 affectée à chaque valeur de dhki est mesurée d'après la hauteur du pic de diffraction correspondant. Dans la colonne des dhki, on a indiqué les valeurs moyennes des distances inter-réticulaires en Angstrôms (Â). Chacune de ces valeurs doit être affectée de l'erreur de mesure A(dhki) comprise entre ±0,5 Â et ±0,02 Â. The crystallized solid IM-22 according to the invention belongs to a Bravais network of type R, the mesh parameter is a = b = 27.4 (+/- 0.2 A), c = 24.4 (+/- - 0.2 A), and the angles α = β = 90 °, y = 120 °. This diffraction pattern is obtained by radiocrystallographic analysis using a diffractometer using the conventional powder method with copper Ka1 radiation (A = 1.5406). From the position of the diffraction peaks represented by the angle 2Θ, we calculate, by applying the Bragg relation, the lattice equidistances d hk i characteristics of the sample. The measurement error A (d hk |) on d hk | is calculated by means of the Bragg relation as a function of the absolute error Δ (2Θ) assigned to the measurement of 2Θ. An absolute error of Δ (2Θ) is estimated at ± 0, 1 °. The relative intensity l / l 0 assigned to each value of d hk i is measured from the height of the corresponding diffraction peak. In the column of d hk i, the mean values of the distances inter-reticular in Angstroms (Â). Each of these values shall be assigned the measurement error A (d hk i) of between ± 0,5 Å and ± 0,02 Å.
Tableau 1 : Valeurs moyennes des dhkiet intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide hybride cristallisé IM-22. Table 1 Mean values of d hkl iet relative intensities measured on an X-ray diffraction pattern X hybrid crystalline solid IM-22.
Figure imgf000006_0001
Figure imgf000006_0001
L'intensité relative l/l0 est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction de rayons X. The relative intensity l / l 0 is given in relation to a relative intensity scale where it is assigned a value of 100 to the most intense line of the X-ray diffraction pattern.
Le solide IM-22 présente l'association de deux ligands, le 2-méthylimidazolate (mlM) et un benzimidazolate (bIM) substitué sur le cycle benzénique. De préférence le benzimidazolate (bIM) est substitué en position 5. Des exemples préférés de substitution sur le cycle benzénique du benzimidazolate (bIM) sont le 5-chlorobenzimidazolate, le 5-bromobenzimidazolate et le 5-méthylbenzimidazolate. Les formules développées de chacun desdits ligands sont données ci-dessous (a = 5-chlorobenzimidazolate (noté cblM), b = 5-méthylbenzimidazolate (noté mbIM), c= 5-bromobenzimidazolate (noté bblM), d = 2-méthylimidazolate (noté mlM)). The IM-22 solid has the combination of two ligands, 2-methylimidazolate (mlM) and a benzimidazolate (bIM) substituted on the benzene ring. Preferably benzimidazolate (bIM) is substituted at the 5-position. Preferred examples of benzene ring substitution of benzimidazolate (bIM) are 5-chlorobenzimidazolate, 5-bromobenzimidazolate and 5-methylbenzimidazolate. The developed formulas for each of said ligands are given below (a = 5-chlorobenzimidazolate (denoted cblM), b = 5-methylbenzimidazolate (denoted mbIM), c = 5-bromobenzimidazolate (denoted bblM), d = 2-methylimidazolate (noted MLM)).
Figure imgf000007_0001
Figure imgf000007_0001
Figure imgf000007_0002
Figure imgf000007_0002
C) d) C) d)
Les centres métalliques du solide IM-22 à base de zinc sont connectés entre eux par les deux ligands mIM et bIM, bIM étant choisi dans le groupe constitué par le 5-chlorobenzimidazolate (noté cblM), le 5-méthylbenzimidazolate (noté mbIM) et le 5-bromobenzimidazolate (noté bblM). Le rapport molaire des ligands mIM/blM est avantageusement entre 0,5 et 2 , de préférence entre 0,7 et 1 ,5 , de préférence entre 0,75 et 1 ,2. Autrement dit, la composition chimique de la charpente zéolithique de type structural CHA du solide IM-22 a pour motif de base Zn(mlM)x(blM)y, avec x + y = 2; 0,5 < x < 1 ,5 et 0,5 < y <1 ,5, de préférence avec x + y = 2; 0,75 < x < 1 ,25 et 0,75≤ y <1 ,25. The metal centers of the zinc-based IM-22 solid are connected to each other by the two ligands mIM and bIM, bIM being chosen from the group consisting of 5-chlorobenzimidazolate (denoted cblM), 5-methylbenzimidazolate (denoted mbIM) and 5-bromobenzimidazolate (noted bblM). The mole / mM ligand molar ratio is advantageously between 0.5 and 2, preferably between 0.7 and 1.5, preferably between 0.75 and 1.2. In other words, the chemical composition of the structural type zeolite framework CHA of the solid IM-22 has the basic motif Zn (mlM) x (bM) y , with x + y = 2; 0.5 <x <1.5 and 0.5 <y <1.5, preferably with x + y = 2; 0.75 <x <1, 25 and 0.75 ≤ y <1.25.
De manière avantageuse, la surface spécifique dudit solide IM-22 varie dans une gamme située entre 500 et 1000 m2/g et son volume microporeux entre 0,20 et 0,40 cm3/g. Ledit solide présente une porosité très majoritairement microporeuse. Advantageously, the specific surface area of said IM-22 solid varies in a range between 500 and 1000 m 2 / g and its microporous volume between 0.20 and 0.40 cm 3 / g. Said solid has a very predominantly microporous porosity.
La présente invention a également pour objet un procédé de préparation dudit solide hybride cristallisé IM-22 à charpente zéolithique de type structural CHA. The subject of the present invention is also a process for the preparation of said IM-22 crystallized hybrid solid with zeolitic framework of CHA structural type.
Le procédé de préparation du solide IM-22 comprend au moins les étapes suivantes : The process for preparing the IM-22 solid comprises at least the following steps:
i) la dissolution d'au moins un précurseur du zinc (noté Prec-Zn) dans au moins un solvant S organique polaire,  i) dissolving at least one precursor of zinc (denoted Prec-Zn) in at least one polar organic solvent S,
ii) l'ajout de deux ligands constitués par le 2-méthylimidazolate (mIM) et un benzimidazolate (bIM) dans la solution obtenue à l'étape i)  ii) the addition of two ligands consisting of 2-methylimidazolate (mIM) and a benzimidazolate (bIM) in the solution obtained in step i)
iii) une période de chauffage du mélange issu de l'étape ii) iv) la filtration et le lavage du solide IM-22 obtenu, et iii) a heating period of the mixture resulting from step ii) iv) filtration and washing of the resulting IM-22 solid, and
v) le séchage dudit solide IM-22 suivi d'un traitement thermique.  v) drying said IM-22 solid followed by a heat treatment.
Conformément à ladite étape i) du procédé de préparation du solide hybride cristallisé IM-22 selon l'invention, le précurseur de zinc est avantageusement choisi parmi les sels de zinc (II) tels que les chlorures, sulfates, acétates ou nitrates de zinc. Très préférentiellement, ledit précurseur utilisé est un nitrate de zinc. According to said step i) of the process for preparing the crystallized hybrid solid IM-22 according to the invention, the zinc precursor is advantageously chosen from zinc (II) salts such as zinc chlorides, sulphates, acetates or nitrates. Very preferably, said precursor used is a zinc nitrate.
Conformément à ladite étape i) du procédé de préparation, le solvant S est un sojvant organique polaire, avantageusement un solvant choisi parmi le diméthylformamide (DMF), le diéthylformamide (DEF) et le mélange des deux solvants (DMF/DEF). Très préférentiellement le solvant S est un mélange de diméthylformamide/diéthylformamide (DMF/DEF). Dans le cas où le solvant S est un mélange DMF/DEF, le rapport volumique DMF/DEF est compris de préférence entre 0,5 et 2. According to said step i) of the preparation process, the solvent S is a polar organic solvent, advantageously a solvent chosen from dimethylformamide (DMF), diethylformamide (DEF) and the mixture of the two solvents (DMF / DEF). Very preferably, the solvent S is a mixture of dimethylformamide / diethylformamide (DMF / DEF). In the case where the solvent S is a DMF / DEF mixture, the volume ratio DMF / DEF is preferably between 0.5 and 2.
Conformément à ladite étape ii) du procédé de préparation, le benzimidazolate (bIM) est choisi dans le groupe constitué par le 5-chlorobenzimidazolate (noté cblM), le 5-méthylbenzimidazolate (noté mbIM) et le 5-bromobenzimidazolate (noté bblM). Les ligands utilisés dans le présent procédé à savoir le 2-méthylimidazolate (mIM) et le benzimidazolate (bIM) choisi parmi le cblM, le mbIM et le bblM sont des composés disponibles commercialement. According to said step ii) of the preparation process, the benzimidazolate (bIM) is selected from the group consisting of 5-chlorobenzimidazolate (noted cblM), 5-methylbenzimidazolate (noted mbIM) and 5-bromobenzimidazolate (noted bblM). The ligands used in the present process namely 2-methylimidazolate (mIM) and benzimidazolate (bIM) selected from cblM, mbIM and bblM are commercially available compounds.
Conformément à ladite étape iii) du procédé de préparation, la période de chauffage du mélange issu de l'étape ii) est avantageusement comprise entre 1 et 30 jours, de manière préférée entre 1 et 20 jours et de manière plus préférée entre 7 et 20 jours, et la température est avantageusement comprise entre 60 et 150°C, de préférence entre 80 et 120°C et de manière encore plus préférentielle entre 90 et 110°C. According to said step iii) of the preparation process, the heating period of the mixture resulting from stage ii) is advantageously between 1 and 30 days, preferably between 1 and 20 days and more preferably between 7 and 20 days. days, and the temperature is advantageously between 60 and 150 ° C, preferably between 80 and 120 ° C and even more preferably between 90 and 110 ° C.
Conformément à ladite étape iv) du procédé de préparation, le solvant de lavage est un solvant polaire choisi parmi le méthanol, l'éthanol, le diméthylformamide et le diéthylformamide, de préférence le solvant de lavage est choisi parmi le diméthylformamide, et le diéthylformamide, de manière plus préférée le solvant de lavage est le diméthylformamide. Conformément à ladite étape v) du procédé de préparation, le séchage est avantageusement réalisé pendant une durée comprise entre 1 et 24 heures, de préférence entre 1 et 15 heures, de préférence entre 1 et 10 heures et de manière plus préférée entre 1 et 6 heures; et avantageusement à une température comprise entre 25 et 120°C, de préférence entre 25 et 100°C. Ledit traitement thermique généralement réalisé sous un flux de gaz (azote, hélium, air, etc.) est avantageusement réalisé pendant une durée comprise entre 1 et 24 heures, de préférence entre 1 et 15 heures, de préférence entre 1 et 10 heures et de manière plus préférée entre 1 et 7 heures, à une température avantageusement comprise entre 200 et 500°C, de préférence entre 200 et 300°C. „ According to said step iv) of the preparation process, the washing solvent is a polar solvent selected from methanol, ethanol, dimethylformamide and diethylformamide, preferably the washing solvent is chosen from dimethylformamide, and diethylformamide, more preferably the washing solvent is dimethylformamide. According to said step v) of the preparation process, the drying is advantageously carried out for a period of between 1 and 24 hours, preferably between 1 and 15 hours, preferably between 1 and 10 hours, and more preferably between 1 and 10 hours. and 6 hours; and advantageously at a temperature between 25 and 120 ° C, preferably between 25 and 100 ° C. Said heat treatment generally carried out under a flow of gas (nitrogen, helium, air, etc.) is advantageously carried out for a period of between 1 and 24 hours, preferably between 1 and 15 hours, preferably between 1 and 10 hours and more preferably between 1 and 7 hours, at a temperature advantageously between 200 and 500 ° C, preferably between 200 and 300 ° C. "
Le mélange réactionnel obtenu à l'issue de l'étape ii) présente avantageusement la composition molaire suivante : The reaction mixture obtained at the end of stage ii) advantageously has the following molar composition:
1 (Prec-Zn) : 1 à 3 (mIM) : 1 à 3 (bIM) : 40 à 500 de S 1 (Prec-Zn): 1 to 3 (mIM): 1 to 3 (bIM): 40 to 500 of S
De préférence, la composition molaire est la suivante : Preferably, the molar composition is as follows:
1 (Prec-Zn) : 1 à 2 (mIM) : 1 à 2 (bIM) : 40 à 200 de S 1 (Prec-Zn): 1 to 2 (mIM): 1 to 2 (bIM): 40 to 200 of S
Selon une variante du procédé de préparation du solide IM-22, le procédé comprend en outre entre les étapes iii) et iv) décrites ci-dessus, une étape d'ajout d'une base B dans le mélange issu de l'étape iii) suivie d'une deuxième étape de chauffage du mélange obtenu. According to a variant of the process for the preparation of the solid IM-22, the process also comprises, between the steps iii) and iv) described above, a step of adding a base B in the mixture resulting from step iii followed by a second step of heating the mixture obtained.
Selon cette variante du procédé, la base B est avantageusement sélectionnée dans le groupe constitué p^r les composés suivants; NaOH, KOH, NH3 et Ν(02Η5)3, de manière préférée dans le groupe constitué par NaOH et KOH et de manière plus préférentielle la base B est NaOH. Conformément à cette variante du procédé, la durée de ladite deuxième étape de chauffage du mélange, après ajout de la base B, est avantageusement comprise entre 1 et 30 jours, de manière préférée entre 1 et 15 jours, de manière préférée entre 1 et 7 jours et de manière plus préférée entre 3 et 7 jours, et la température est avantageusement comprise entre 60 et 150°C, de préférence entre 80 et 120°C et de manière encore plus préférentielle entre 90 et 1 0°C . According to this variant of the process, the base B is advantageously selected from the group consisting of the following compounds; NaOH, KOH, NH 3 and Ν (O 2 Η 5 ) 3 , preferably in the group consisting of NaOH and KOH and more preferably base B is NaOH. According to this variant of the process, the duration of said second step of heating the mixture, after addition of the base B, is advantageously between 1 and 30 days, preferably between 1 and 15 days, preferably between 1 and 7 days. days and more preferably between 3 and 7 days, and the temperature is preferably between 60 and 150 ° C, preferably between 80 and 120 ° C and even more preferably between 90 and 1 0 ° C.
Selon cette variante du procédé, le mélange réactionnel obtenu à l'issue de l'étape d'ajout de la base B et avant la deuxième étape de chauffage, présente avantageusement la composition molaire suivante : According to this variant of the process, the reaction mixture obtained at the end of the step of adding the base B and before the second heating step advantageously has the following molar composition:
1 (Prec-Zn) : 1 à 3 (mIM) : 1 à 3 (bIM) : 0 à 2 B : 40 à 500 de S  1 (Prec-Zn): 1 to 3 (mIM): 1 to 3 (bIM): 0 to 2 B: 40 to 500 of S
De préférence, la composition molaire est la suivante :  Preferably, the molar composition is as follows:
1 (Prec-Zn) : 1 à 2 (mIM) : 1 à 2 (bIM) : 0,5 à 2 B : 40 à 200 de S La présente invention se rapporte également à l'utilisation dudit solide hybride IM-22 comme adsorbant dans un procédé de séparation de paraffines multibranchées comprises dans une charge hydrocarbonée contenant des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant de 5 à 7 atomes de carbone par molécule, comprenant la mise en contact de ladite charge avec au moins ledit adsorbant IM-22 de manière à produire au moins un premier flux enrichi en paraffines multibranchées et un deuxième flux enrichi en paraffines linéaires et monobranchées. 1 (Prec-Zn): 1 to 2 (mIM): 1 to 2 (bIM): 0.5 to 2 B: 40 to 200 of S The present invention also relates to the use of said hybrid solid IM-22 as adsorbent in a multi-branched paraffin separation process comprised in a hydrocarbon feedstock containing linear paraffins, mono-branched paraffins and multibranched paraffins having 5 to 7 carbon atoms per molecule, comprising contacting said feedstock with at least said IM-22 adsorbent to produce at least a first multi-branched paraffin-enriched stream and a second paraffin-enriched stream linear and mono-branched.
On entend, au sens de la présente invention, par paraffines multibranchées des paraffines présentant au moins deux ramifications. Selon l'invention, les paraffines multibranchées incluent donc les paraffines dibranchées. La charge traitée dans le procédé selon l'invention contient des composés hydrocarbonés ayant de 5 à 7 atomes de carbone par molécule. En particulier, elle contient des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant de 5 à 7 atomes de carbone, plus avantageusement ayant 5 et/ou 6 atomes de carbone par molécule. Elle contient également avantageusement des composés oléfiniques ayant de 5 à 7 atomes de carbone par molécule. Les composés ayant au moins 7 atomes de carbone par molécule et présents dans ladite charge à traiter sont avantageusement des composés naphténiques, par exemple le méthylcyclohexane, et des composés aromatiques, en particulier du toluène et des xylènes. Ladite charge traitée dans le procédé selon l'invention est préférentiellement issue de la distillation atmosphérique du pétrole brut, d'une unité d'isomérisation catalytique de paraffines, par exemple de paraffines en C5-C6, d'une unité de réformage (réformat léger) ou d'une unité de conversion (naphta d'hydrocraquage par exemple). For the purposes of the present invention, the term "multi-branched paraffins" refers to paraffins having at least two branches. According to the invention, the multi-branched paraffins therefore include the paraffins dibranchées. The feedstock treated in the process according to the invention contains hydrocarbon compounds having from 5 to 7 carbon atoms per molecule. In particular, it contains linear paraffins, monobranched paraffins and multibranched paraffins having from 5 to 7 carbon atoms, more preferably having 5 and / or 6 carbon atoms per molecule. It also advantageously contains olefinic compounds having from 5 to 7 carbon atoms per molecule. The compounds having at least 7 carbon atoms per molecule and present in said feedstock to be treated are advantageously naphthenic compounds, for example methylcyclohexane, and aromatic compounds, in particular toluene and xylenes. Said feedstock treated in the process according to the invention is preferably derived from the atmospheric distillation of crude oil, a catalytic isomerization unit of paraffins, for example paraffins C5-C6, a reforming unit (light reformate). ) or a conversion unit (eg hydrocracking naphtha).
La charge traitée dans le procédé selon l'invention peut notamment contenir du n-pentane, du 2-méthylbutane, du néopentane, du n-hexane, du 2-méthylpentane, du 3-méthylpentane, du 2,2-diméthylbutane, du 2,3-diméthylbutane. Elle peut de plus contenir des alcanes cycliques, tels que le cyclopentane, le méthylcyclopentane, le cyclohexane, ainsi que des composés aromatiques tels que le benzène et le toluène. De manière préférée, les paraffines linéaires, monobranchées et multibranchées représentent au moins 70 % poids de la charge à traiter. Les hydrocarbures C7+ (c'est à dire les composés hydrocarbonés contenant au moins 7 atomes de carbone) sont présents en quantité minoritaire et représentent préférentiellement au plus 10 % poids, préférentiellement au plus 5 % poids de la charge à traiter dans le procédé de séparation selon l'invention. La charge à traiter est en général de faible indice d'octane et le procédé selon l'invention consiste à la fractionner en au moins deux effluents distincts, à savoir un premier flux enrichi en paraffines multibranchées et un deuxième flux enrichi en paraffines linéaires et en paraffines monobranchées. Ledit premier flux est enrichi en paraffines multibranchées ayant préférentiellement 5 et/ou 6 atomes de carbone par molécule. Il présente un indice d'octane moteur et recherche élevé (RON au moins égal à 86, préférentiellement au 'moins égal à 90) et contient avantageusement des composés naphténiques et/ou aromatiques. Les paraffines multibranchées représentent préférentiellement de 60 à 100 % poids, très préférentiellement de 70 à 99 % poids, dudit premier flux. Ledit premier flux présente un gain d'indice d'octane recherche d'au moins 2 points par rapport à la charge hydrocarbonée à traiter. The filler treated in the process according to the invention may in particular contain n-pentane, 2-methylbutane, neopentane, n-hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2-methylpentane, , 3-dimethylbutane. It may further contain cyclic alkanes, such as cyclopentane, methylcyclopentane, cyclohexane, as well as aromatic compounds such as benzene and toluene. Preferably, the linear, mono-branched and multi-branched paraffins represent at least 70% by weight of the feedstock to be treated. The C7 + hydrocarbons (that is to say the hydrocarbon compounds containing at least 7 carbon atoms) are present in a minor amount and preferably represent at most 10% by weight, preferably at most 5% by weight of the feedstock to be treated in the separation process. according to the invention. The feedstock to be treated is generally of low octane number and the process according to the invention consists in breaking it down into at least two distinct effluents, namely a first stream enriched in multibranched paraffins and a second stream enriched in linear paraffins and in mono-branched paraffins. Said first stream is enriched in multi-branched paraffins preferably having 5 and / or 6 carbon atoms per molecule. It has a high motor and research octane number (RON at least equal to 86, preferably at least 90) and advantageously contains naphthenic and / or aromatic compounds. Multibranched paraffins preferably represent from 60 to 100% by weight, very preferably from 70 to 99% by weight, of said first stream. Said first stream has a search octane gain of at least 2 points relative to the hydrocarbon feedstock to be treated.
Ledit deuxième flux est enrichi en paraffines linéaires ayant préférentiellement 5 et/ou 6 atomes de carbone par molécule et en paraffines monobranchées ayant préférentiellement 5 et/ou 6 atomes de carbone par molécule. Il présente un indice d'octane moteur et recherche inférieur à celui dudit premier flux. Les paraffines linéaires et monobranchées représentent préférentiellement de 80 à 100 % poids dudit deuxième flux. Said second stream is enriched in linear paraffins having preferentially 5 and / or 6 carbon atoms per molecule and in monobranched paraffins preferably having 5 and / or 6 carbon atoms per molecule. It has an engine octane number and search lower than that of said first stream. The linear and mono-branched paraffins preferably represent from 80 to 100% by weight of said second stream.
Selon l'invention, ledit adsorbant ΊΜ-22 adsorbe préférentiellement les paraffines linéaires et les paraffines monobranchées présentes dans la charge à traiter. Lesdites paraffines linéaires et monobranchées, sélectivement retenues par ledit adsorbant, représentent la majeure partie dudit deuxième flux produit par le procédé de séparation de l'invention. Les paraffines multibranchées ne sont pas retenues par ledit adsorbant et représentent la majeure partie dudit premier flux produit par le procédé de séparation de l'invention. Plus particulièrement, ledit adsorbant IM-22 réalise la séparation des isomères de paraffines présents dans ladite charge hydrocarbonée de sorte qu'au moins ledit premier flux et au moins ledit deuxième flux soient produits. According to the invention, said ads-22 adsorbent adsorbs preferably linear paraffins and mono-branched paraffins present in the feedstock to be treated. Said linear and monobranched paraffins, selectively retained by said adsorbent, represent the major part of said second stream produced by the separation process of the invention. The multi-branched paraffins are not retained by said adsorbent and represent the major part of said first stream produced by the separation process of the invention. More particularly, said IM-22 adsorbent separates the isomers of paraffins present in said hydrocarbon feed so that at least said first stream and at least said second stream are produced.
Selon une variante de réalisation particulière du procédé de séparation de l'invention, la charge est séparée en trois flux distincts respectivement riche en paraffines linéaires, riche en paraffines monobranchées et riche en paraffines multibranchées avec éventuellement des composés naphténiques et/ou aromatiques. Lesdits trois flux distincts respectivement riche en paraffines linéaires, riche en paraffines monobranchées et riche en paraffines multibranchées présentent respectivement des indices d'octane moteur et recherche croissants. According to a particular variant embodiment of the separation process of the invention, the feedstock is separated into three distinct streams respectively rich in linear paraffins, rich in monobranched paraffins and rich in multibranched paraffins with possibly naphthenic and / or aromatic compounds. Said three distinct streams respectively rich in linear paraffins, rich in monobranched paraffins and rich in multibranched paraffins respectively show increasing motor octane and search index.
Selon le procédé de séparation selon l'invention, le fractionnement de la charge hydrocarbonée à traiter s'effectue avantageusement dans une unité de séparation contenant un ou plusieurs adsorbants, au moins un des adsorbants étant l'adsorbant IM-22 tel que décrit plus haut dans la présente description. According to the separation process according to the invention, the fractionation of the hydrocarbon feedstock to be treated is advantageously carried out in a separation unit containing one or more adsorbents, at least one of the adsorbents being the IM-22 adsorbent as described above. in the present description.
Le procédé de séparation selon l'invention est mis en œuvre selon des techniques de séparation par adsorption bien connues de l'Homme du métier. En particulier, il est avantageusement mis en oeuvre par un procédé d'adsorption à pression modulée (PSA ou Pressure Swing Adsorption selon la terminologie anglaise) ou par un procédé d'adsorption à température modulée (TSA ou Température Swing Adsorption selon la terminologie anglaise). Il est encore avantageusement mis en oeuvre par un procédé de type lit mobile simulé (LMS). The separation process according to the invention is carried out according to adsorption separation techniques well known to those skilled in the art. In particular, it is advantageously implemented by a pressure swing adsorption (PSA) method or by a temperature-modulated adsorption (TSA or Temperature Swing Adsorption according to English terminology). It is still advantageously implemented by a simulated moving bed (LMS) type method.
Dans le cas préféré où le procédé de séparation selon l'invention est mis en oeuvre par adsorption à pression modulée (PSA), au moins un lit dudit adsorbant IM-22 tel que décrit plus haut dans la présente description est placé dans au moins une colonne d'adsorption. Plusieurs colonnes pourvues dudit adsorbant sont généralement installées en parallèle. Chaque colonne subit un cycle comportant au moins une étape d'adsorption et au moins une étape de désorption, lesquelles sont éventuellement entrecoupées par des étapes de dépressurisation, d'égalisation de pression et de re-pressurisation. Le traitement continu de la charge est assuré par permutation des périodes des cycles pratiquées dans les différentes colonnes placées en parallèle. Le principe même du procédé PSA réside dans l'enchaînement cyclique des phases d'adsorption à haute pression et de désorption à basse pression, avec éventuellement des étapes supplémentaires d'égalisation de pression et de purge. Le mode de fonctionnement du procédé PSA est rappelé dans la demande de brevet FR-A-2.910.457. . In the preferred case where the separation process according to the invention is carried out by pressure swing adsorption (PSA), at least one bed of said IM-22 adsorbent as described above in the present description is placed in at least one adsorption column. Several columns provided with said adsorbent are generally installed in parallel. Each column undergoes a cycle comprising at least one adsorption step and at least one desorption step, which are optionally interrupted by depressurization, pressure equalization and re-pressurization steps. The continuous treatment of the load is ensured by permutation of the periods of the cycles practiced in the different columns placed in parallel. The very principle of the PSA process lies in the cyclic sequence of the high-pressure adsorption and low-pressure desorption phases, possibly with additional steps of pressure equalization and purge. The operating mode of the PSA process is recalled in the patent application FR-A-2 910 457. .
Pour la mise en œuvre de l'étape d'adsorption, la charge hydrocarbonée à traiter est introduite dans au moins une colonne d'adsorption par l'extrémité d'alimentation. La pression partielle des paraffines dans ladite charge à traiter est au moins égale à 10"3 MPa (1 kPa), de préférence au moins égale à 0,01 MPa. La pression partielle des paraffines dans ladite charge à traiter est au plus égale à 7MPa, préférentiellement au plus égale à 5 MPa. La pression totale à laquelle est mise en oeuvre ladite étape d'adsorption est préférentiellement comprise entre 0,01 et 7 MPa, préférentiellement entre 0,1 et 5 MPa. Ladite étape d'adsorption conduit à la production dudit premier flux enrichi en paraffines multibranchées, lesquelles n'ont pas d'affinité pour ledit adsorbant IM-22 de sorte qu'elles ne s'adsorbent pas ou peu tandis que les paraffines linéaires et monobranchées sont adsorbées par le(s) lit(s) d'adsorbants IM-22. La désorption des paraffines linéaires et monobranchées est réalisée par abaissement de la pression dans la(es) colonne(s) d'adsorption, la pression de désorption étant généralement comprise entre 0,01 et 1 MPa, et/ou par un gaz de purge qui est introduit dans la(es) colonne(s) par l'extrémité de production. Le gaz de purge est préférentiellement formé de composés qui ne sont que faiblement adsorbés par l'adsorbant. De manière préférée, le gaz de purge est soit de l'hydrogène soit un flux d'hydrocarbures riche en isopentane, ledit flux étant avantageusement obtenu par une distillation (une colonne de déisopentaniseur) de la charge C5-C7 à traiter, préférentiellement de la charge C5-C6 à traiter, en amont ou en aval du procédé de séparation. Les étapes de désorption produisent ledit deuxième flux enrichi en paraffines linéaires et paraffines monobranchées. Le procédé de séparation selon l'invention, mis en œuvre par adsorption à pression modulée (PSA), est avantageusement réalisé à une température comprise entre 100 et 200°C. Dans le cas préféré où le procédé de séparation selon l'invention est mis en oeuvre par adsorption à température modulée (TSA), le fonctionnement du procédé reprend le même enchaînement cyclique de phases d'adsorption et de désorption que celui mis en œuvre pour un procédé PSA tel que décrit ci-dessus, la désorption des paraffines linéaires et monobranchées étant réalisée par une augmentation de la température dans la(es) colonne(s) d'adsorption. De manière préférée, l'étape d'adsorption est opérée à une température comprise entre 100 et 200°C et l'étape de désorption est opérée à une température comprise entre 200 et 300°C. Le procédé de séparation selon l'invention, mis en œuvre par adsorption à température modulée (TSA), est avantageusement réalisé à une pression comprise entre 0,01 et 7 MPa. For the implementation of the adsorption step, the hydrocarbon feedstock to be treated is introduced into at least one adsorption column by the feed end. The partial pressure of the paraffins in said feedstock to be treated is at least 10 -3 MPa (1 kPa), preferably at least 0.01 MPa.The partial pressure of the paraffins in said feedstock to be treated is at most equal to 7MPa, preferably at most equal to 5 MPa.The total pressure at which said adsorption step is carried out is preferably between 0.01 and 7 MPa, preferably between 0.1 and 5 MPa. Said adsorption step leads to producing said first multi-branched paraffin enriched stream, which have no affinity for said IM-22 adsorbent so that they do not adsorb or little while the linear and mono-branched paraffins are adsorbed by the IM-22 adsorbent bed (s) The desorption of linear and mono-branched paraffins is carried out by lowering the pressure in the adsorption column (s), the desorption pressure generally being between 0.01 and 1 MPa, and / or by a purge gas which is introduced into the column (s) by the production end. The purge gas is preferably formed of compounds that are only slightly adsorbed by the adsorbent. Preferably, the purge gas is either hydrogen or a hydrocarbon stream rich in isopentane, said stream being advantageously obtained by a distillation (a deisopentanizer column) of the C5-C7 feed to be treated, preferentially the charge C5-C6 to be treated, upstream or downstream of the separation process. The desorption steps produce said second stream enriched in linear paraffins and monobranched paraffins. The separation process according to the invention, implemented by pressure swing adsorption (PSA), is advantageously carried out at a temperature of between 100 and 200 ° C. In the preferred case where the separation process according to the invention is carried out by adsorption at modulated temperature (TSA), the operation of the process resumes the same cyclic sequence of adsorption and desorption phases as that implemented for a PSA process as described above, the desorption of linear and monobranched paraffins being achieved by an increase in temperature in the (s) column (s) of adsorption. Preferably, the adsorption step is carried out at a temperature between 100 and 200 ° C and the desorption step is carried out at a temperature between 200 and 300 ° C. The separation process according to the invention, implemented by adsorption at modulated temperature (TSA), is advantageously carried out at a pressure of between 0.01 and 7 MPa.
Mis en œuvre par adsorption à pression modulée (PSA) ou par adsorption à température modulée (TSA), le procédé de séparation selon l'invention est réalisé en phase gaz. Selon l'un ou l'autre des modes de réalisation (PSA ou TSA), la pression partielle des paraffines dans la charge à traiter est au moins égale à 10"3 MPà, de préférence au moins égale à 0,01 MPa. Implemented by adsorption at modulated pressure (PSA) or by adsorption at modulated temperature (TSA), the separation process according to the invention is carried out in the gas phase. According to one or other of the embodiments (PSA or TSA), the paraffins partial pressure in the feedstock to be treated is at least 10 -3 MPa, preferably at least 0.01 MPa.
Une troisième technique de séparation par adsorption avantageusement mise en œuvre pour réaliser le procédé de séparation de l'invention consiste à fractionner la charge à traiter dans un procédé en lit mobile simulé (LMS) pour produire au moins ledit premier flux et au moins ledit deuxième flux. Le principe du procédé LMS est bien connu de l'Homme du métier et est décrit en détail dans le document G. Ash, K. Barth, G. Hotier, L. Mank and P. Renard, Revue de l'Industrie Français du Pétrole, 49, 541 (1994) et dans le brevet US 2,985,589. Le procédé LMS, réalisé en phase liquide, met en œuvre au moins une colonne d'adsorption dans laquelle sont menées simultanément les phases d'adsorption et de désorption au sein de zones distinctes. Conformément à l'invention, ladite colonne d'adsorption est pourvue d'au moins un lit dudit adsorbant IM-22 tel que décrit plus haut dans la présente description. La désorption des paraffines linéaires et monobranchées est réalisée par passage d'un éluant ayant moins d'affinité pour ledit adsorbant IM-22 que les paraffines linéaires et monobranchées mais plus d'affinité pour ledit adsorbant que les paraffines multibranchées. Un choix avantageux d'éluant est l'isopentane. A third adsorption separation technique advantageously used to carry out the separation process of the invention consists in splitting the feedstock to be treated in a simulated moving bed process (LMS) to produce at least said first stream and at least said second stream. flux. The principle of the LMS process is well known to those skilled in the art and is described in detail in the document G. Ash, K. Barth, G. Hotier, L. Mank and P. Renard, Review of the French Petroleum Industry. , 49, 541 (1994) and in US Patent 2,985,589. The LMS process, carried out in the liquid phase, uses at least one adsorption column in which the adsorption and desorption phases are carried out simultaneously within distinct zones. According to the invention, said adsorption column is provided with at least one bed of said IM-22 adsorbent as described above in the present description. The desorption of linear and monobranched paraffins is carried out by passing an eluent having less affinity for said IM-22 adsorbent than linear and mono-branched paraffins but more affinity for said adsorbent than multi-branched paraffins. An advantageous choice of eluent is isopentane.
Le procédé LMS est mis en oeuvre en phase liquide. Il est opéré à une température comprise entre 100 et 200 °C. La pression est choisie afin de maintenir la charge en phase liquide dans les conditions du procédé de séparation selon l'invention. De manière préférée, elle est comprise entre 1 et 4 MPa. La quantité de paraffines impliquée dans la mise en oeuvre dudit procédé LMS est telle que la pression partielle équivalente desdites paraffines dans la charge est comprise en 0,6 et 4 MPa. Par un calcul d'équilibre liquide-vapeur, on détermine une pression partielle équivalente dans une phase gaz qui serait en équilibre avec la phase liquide. The LMS process is carried out in the liquid phase. It is operated at a temperature between 100 and 200 ° C. The pressure is chosen so as to maintain the charge in the liquid phase under the conditions of the separation process according to the invention. Preferably, it is between 1 and 4 MPa. The amount of paraffins involved in the implementation of said LMS process is such that the equivalent partial pressure of said paraffins in the feed is between 0.6 and 4 MPa. By a liquid-vapor equilibrium calculation, an equivalent partial pressure is determined in a gas phase which would be in equilibrium with the liquid phase.
Selon un mode de réalisation préférée du procédé de séparation de l'invention, ledit procédé comprend au moins une étape d'hydroisomérisation. Plus précisément, ledit deuxième flux enrichi en paraffines linéaires et monobranchées, produit par le procédé de l'invention, est recyclé vers une unité réactionnelle pour la mise en oeuvre de ladite étape d'hydroisomérisation. Ladite étape d'hydroisomérisation convertit lesdites paraffines linéaires et monobranchées présentes dans ledit deuxième flux de faible indice d'octane en paraffines multibranchées à indice d'octane plus élevé. Les exemples qui suivent illustrent l'invention sans toutefois en limiter la portée. According to a preferred embodiment of the separation process of the invention, said process comprises at least one hydroisomerization step. More precisely, said second stream enriched in linear and mono-branched paraffins, produced by the process of the invention, is recycled to a reaction unit for carrying out said hydroisomerization step. Said hydroisomerization step converts said linear and mono-branched paraffins present in said second low-octane stream into higher octane multibranched paraffins. The examples which follow illustrate the invention without, however, limiting its scope.
Exemple 1 : protocole de préparation du IM-22 avec les ligands 2-méthylimidazole (mIM) et 5-chlorobenzimidazole (cblM) EXAMPLE 1 Protocol for the Preparation of IM-22 with the 2-methylimidazole (MIM) and 5-Chlorobenzimidazole (cblM) Ligands
80 mmol de 2-méthylimidazole, 80 mmol de 5-chlorobenzimidazole et 40 mmol de nitrate de zinc hexahydraté sont dissous dans 500 mL d'un mélange diméthylformamide/diéthylformamide (rapport volumique 1 :1 ) dans une bouteille en Téflon de 1 L. Le mélange est ensuite chauffé à 100°C pendant 14 jours. Le produit obtenu est filtré, puis lavé par du diméthylformamide avant d'être déposé dans un creuset et mis à sécher à 100 °C pendant 2 heures. Au final le produit est obtenu sous forme de poudre cristalline. 80 mmol of 2-methylimidazole, 80 mmol of 5-chlorobenzimidazole and 40 mmol of zinc nitrate hexahydrate are dissolved in 500 ml of a dimethylformamide / diethylformamide mixture (volume ratio 1: 1) in a 1 L Teflon bottle. The mixture is then heated at 100 ° C for 14 days. The product obtained is filtered and then washed with dimethylformamide before being placed in a crucible and allowed to dry at 100 ° C. for 2 hours. Finally the product is obtained in the form of crystalline powder.
Le solide séché subit ensuite un traitement thermique à 250°C pendant 6 heures. La surface BET du solide IM-22 après traitement thermique est de 740 m2/g, le volume microporeux est de 0,33 cm3/g. The dried solid then undergoes heat treatment at 250 ° C for 6 hours. The BET surface of the solid IM-22 after heat treatment is 740 m 2 / g, the microporous volume is 0.33 cm 3 / g.
Une analyse CHNO après traitement thermique à 250°C du solide IM-22 donne la composition suivante : C 42,45%; H 2,68%; N 17,64%; O 6, 18%, le reste de la composition étant assurée par le zinc et le chlore. A partir de l'analyse CHNO, le rapport molaire mIM/cblM obtenu est de 0,85. Exemple 2 : performances séparatrices du IM-22 pour la séparation d'un mélangeAn CHNO analysis after heat treatment at 250 ° C. of the IM-22 solid gives the following composition: C 42.45%; H, 2.68%; N 17.64%; O 6, 18%, the rest of the composition being provided by zinc and chlorine. From the CHNO analysis, the molar ratio mIM / cblM obtained is 0.85. Example 2: Separating Performance of the IM-22 for the Separation of a Mixture
3-méthylpentane/2,2-diméthylbutane (mélange 3MP/22DMB) 3-methylpentane / 2,2-dimethylbutane (3MP / 22DMB mixture)
Cet exemple illustre la séparation de paraffines multibranchées de paraffines monobranchées opérée en présence du solide IM-22 utilisé comme adsorbant à charpente zéolithique de type structural CHA. Les performances séparatrices, particulièrement la capacité d'adsorption et la sélectivité d'adsorption, du solide IM-22 ont été évaluées par la méthode des courbes de perçage. L'IM-22 est testé pour la séparation du mélange 3-méthylpentane/2,2-diméthylbutane. L'essai a été réalisé dans les conditions suivantes : température égale à 125°C, pression partielle des hydrocarbures égale à 13 kPa (0,13 bar), et débit de 1 NL/h. Le rapport des concentrations molaires du 3MP et du 22DMB dans la charge est égal à 1 : This example illustrates the separation of multibranched paraffins from single-branched paraffins operated in the presence of the solid IM-22 used as a zeolitic structure-structured adsorbent CHA. The separating performance, particularly the adsorption capacity and the adsorption selectivity, of the IM-22 solid were evaluated by the method of drilling curves. IM-22 is tested for separation of 3-methylpentane / 2,2-dimethylbutane. The test was carried out under the following conditions: temperature equal to 125 ° C., partial pressure of hydrocarbons equal to 13 kPa (0.13 bar), and flow rate of 1 NL / h. The ratio of the molar concentrations of 3MP and 22DMB in the feed is 1:
2 grammes du solide IM-22, préparé selon le protocole dans l'exemple 1, sont placés dans une colonne d'une longueur d'environ 10 cm. Le solide IM-22 est prétraité sous un flux d'hélium à une température égale à 250°C. Ensuite la température de la colonne est stabilisée à la température d'adsorption égale à 125°C et la pression totale dans la colonne est égale à 0,1 MPa. La courbe de perçage est déclenchée en basculant l'alimentation de la colonne constituée d'un flux d'hélium pur sur un mélange composé de 3MP et de 22DMB dilué dans l'hélium. La concentration du 3 MP et du 22DMB en sortie de la colonne est suivie au cours du temps par chromatographie en phase gaz jusqu'à ce que l'ensemble des concentrations se stabilisent à leurs valeurs d'entrées. La courbe de perçage de chaque constituant de la charge peut ainsi être construite.  2 grams of the solid IM-22, prepared according to the protocol in Example 1, are placed in a column of a length of about 10 cm. The IM-22 solid is pretreated under a stream of helium at a temperature of 250 ° C. Then the temperature of the column is stabilized at the adsorption temperature equal to 125 ° C and the total pressure in the column is equal to 0.1 MPa. The drilling curve is triggered by switching the feed of the column consisting of a pure helium stream on a mixture of 3MP and 22DMB diluted in helium. The concentration of 3 MP and 22DMB at the outlet of the column is monitored over time by gas phase chromatography until all the concentrations stabilize at their inlet values. The piercing curve of each constituent of the load can thus be constructed.
Les courbes représentant les concentrations des constituants en fonction du temps sont appelées "courbes de perçage". Le premier moment de la courbe de perçage d'un composé donné, dans le cas présent du 3MP et du 22 DMB, permet de calculer la quantité adsorbée de chaque composé par la méthode bien connue dite "des moments" (Ruthven, D.M. Principles of adsorption and adsorption processes. John Wiley & Sons ed, 1984). The curves representing the concentrations of the constituents as a function of time are called "drilling curves". The first moment of the piercing curve of a given compound, in this case 3MP and 22 DMB, makes it possible to calculate the adsorbed quantity of each compound by the well-known method called "moments" (Ruthven, DM Principles of adsorption and adsorption processes, John Wiley & Sons ed, 1984).
Le premier moment de la courbe est obtenu par l'intégration
Figure imgf000015_0001
The first moment of the curve is obtained by the integration
Figure imgf000015_0001
où C/,o est la concentration initiale du composé i dans la charge et ciit est la concentration en sortie du composé i, en fonction du temps. La quantité adsorbee en composé i est proportionnelle au premier moment de la courbe de perçage (après correction pour le temps mort). Elle est donnée par la formule : where C / o is the initial concentration of component i in the load and c is the concentration iit output of component i as a function of time. The adsorbed amount of compound i is proportional to the first moment of the drilling curve (after correction for the dead time). It is given by the formula:
m p ? m p?
Pi est la pression partielle du composé i dans la charge, Ptot la pression totale, m la masse d'adsorbant, p la densité de grain de l'adsorbant, F le débit molaire total, μυ le premier moment de la courbe de perçage du composé i, et QadSii la quantité adsorbée du composé i. La sélectivité d'adsorption a entre les composés i et j, à savoir entre le 3MP et le 22DMB dans le présent exemple, est calculée selon la formule : Pi is the partial pressure of component i in the feed, P tot total pressure, m the mass of adsorbent, p the grain density of the adsorbent, F is the total molar flow rate, μ υ the first moment of the curve piercing compound i, and Q adSii the adsorbed amount of compound i. The adsorption selectivity α between compounds i and j, namely between 3MP and 22DMB in the present example, is calculated according to the formula:
où Pj et j sont respectivement les pressions partielles du composé i et du composé j et Qads,i et Qadsj sont respectivement les quantités adsorbées du composé i et du composé j. where P 1 and j are respectively the partial pressures of the compound i and the compound j and Q ads, i and Qads j are respectively the adsorbed amounts of the compound i and the compound j.
Le tableau 2 rassemble les performances séparatrices du solide IM-22 en termes dè capacité d'adsorption (quantité adsorbée en 3MP et en 22DMB) et de sélectivité d'adsorption. Table 2 summarizes the separating performance of the IM-22 solid in terms of adsorption capacity (amount adsorbed in 3MP and 22DMB) and adsorption selectivity.
On reproduit le test décrit ci-dessus pour la détermination de la capacité d'adsorption de la zéolithe 5A conventionnellement utilisée pour la séparation d'isomères de paraffines. Les résultats figurent dans le tableau 2. The test described above is reproduced for the determination of the adsorption capacity of the zeolite 5A conventionally used for the separation of paraffin isomers. The results are shown in Table 2.
Tableau 2 : Capacité d'adsorption et sélectivité d'adsorption du solide IM-22 et de la zéolithe 5A pour l'adsorption du mélange 3-méthylpentane/2,2-diméthylbutane (3MP/22DMB) TABLE 2 Adsorption Capacity and Adsorption Selectivity of the IM-22 Solid and Zeolite 5A for the Adsorption of the 3-methylpentane / 2,2-Dimethylbutane (3MP / 22DMB) Mixture
Figure imgf000016_0001
Les résultats figurant dans le tableau 2 démontrent que ΙΊΜ-22 présente une sélectivité envers le 3-méthylpentane par rapport au 2,2-diméthylbutane. La sélectivité, directement proportionnelle au rapport des quantités adsorbées de 3MP et de 22DMB, démontre que la quantité de 3MP adsorbée est huit fois supérieure à celle du 22DMB. Le solide IM-22 est donc sélectif pour séparer le 3-méthylpentane (paraffine monobranchée) du 2,2-diméthylbutane (paraffine dibranchée). Au contraire, la zéolithe 5A, conventionnellement utilisée pour la séparation des isomères de paraffines linéaires et monobranchées, ne permet pas de séparer les paraffines branchées en fonction de leur degré de branchement : toutes les paraffines branchées, y compris les paraffines monobranchées, restent exclues de la porosité de la zéolithe 5A. La capacité d'adsorption du solide zéolithique 5A est d'ailleurs quasi nulle. Exemple 3 : performances séparatrices du IM-22 pour la séparation d'un mélange n-hexane/3-méthylpentane/2,2-diméthylbutane (mélange n-C6/3MP/22DMB)
Figure imgf000016_0001
The results in Table 2 demonstrate that ΙΊΜ-22 exhibits selectivity to 3-methylpentane over 2,2-dimethylbutane. The selectivity, directly proportional to the ratio of adsorbed quantities of 3MP and 22DMB, demonstrates that the the amount of adsorbed 3MP is eight times that of 22DMB. The IM-22 solid is therefore selective for separating 3-methylpentane (mono-branched paraffin) from 2,2-dimethylbutane (dibranched paraffin). In contrast, zeolite 5A, conventionally used for the separation of linear and mono-branched paraffin isomers, does not make it possible to separate branched paraffins as a function of their degree of branching: all branched paraffins, including mono-branched paraffins, remain excluded from the porosity of zeolite 5A. The adsorption capacity of the zeolite solid 5A is, moreover, virtually zero. Example 3: Separating performance of IM-22 for the separation of a n-hexane / 3-methylpentane / 2,2-dimethylbutane mixture (n-C6 / 3MP / 22DMB mixture)
Cet exemple illustre la séparation de paraffines multibranchées de paraffines monobranchées et linéaires opérée en présence du solide IM-22. Les performances séparatrices, particulièrement la capacité d'adsorption et la sélectivité d'adsorption, du solide IM-22 ont été évaluées par la méthode des courbes de perçage. Le solide IM-22 est testé pour la séparation du mélange n-hexane/3-méthylpentane/2,2-diméthylbutane. L'essai a été réalisé dans les conditions suivantes : température d'adsorption égale à 125°C, pression partielle des hydrocarbures égale à 20 kPa (0,20 bar), rapport des concentrations molaires de n-C6/3MP/22DMB dans la charge égale à 1/1/1 et le débit de 1 N'Uh. This example illustrates the separation of multibranched paraffins from monobranched and linear paraffins operated in the presence of the IM-22 solid. The separating performance, particularly the adsorption capacity and the adsorption selectivity, of the IM-22 solid were evaluated by the method of drilling curves. The IM-22 solid is tested for the separation of the mixture n-hexane / 3-methylpentane / 2,2-dimethylbutane. The test was carried out under the following conditions: adsorption temperature equal to 125 ° C., partial pressure of the hydrocarbons equal to 20 kPa (0.20 bar), molar concentration ratio of n-C6 / 3MP / 22DMB in the load equal to 1/1/1 and the flow rate of 1 N ' Uh.
... ..à - ... ..at -
La séparation est. réalïsée par une colonne d'une longueur d'environ 10 cm, remplie de 2 grammes du solide IM-22. Le solide IM-22 est prétraité sous un flux d'hélium à une température égale à 250°C. Ensuite la température de la colonne est stabilisée à la température d'adsorption égale à 125°C. La pression totale dans la colonne est égale 0,1 MPa. La courbe de perçage est déclenchée en basculant l'alimentation de la colonne constituée d'un flux d'hélium pur sur un mélange composé de nC6, 3MP et 22DMB dilué dans l'hélium. La concentration, en sortie de la colonne, du n-C6, du 3MP et du 22DMB est suivie au cours du temps par chromatographie en phase gaz jusqu'à ce que l'ensemble des concentrations se stabilisent à leurs valeurs d'entrées. La courbe de perçage de chaque constituant peut être ainsi construite. The separation is. made by a column of a length of about 10 cm, filled with 2 grams of solid IM-22. The IM-22 solid is pretreated under a stream of helium at a temperature of 250 ° C. Then the temperature of the column is stabilized at the adsorption temperature equal to 125 ° C. The total pressure in the column is equal to 0.1 MPa. The drilling curve is triggered by switching the feed of the column consisting of a pure helium stream on a mixture of nC6, 3MP and 22DMB diluted in helium. The concentration at the outlet of the column of n-C6, 3MP and 22DMB is monitored over time by gas chromatography until all the concentrations stabilize at their input values. The piercing curve of each constituent can thus be constructed.
Les quantités adsorbées en n-C6, 3MP et 22DMB par le solide IM-22 ainsi que les sélectivités d'adsorption sont calculées d'une manière analogue à celle expliquée dans l'exemple 2. Les résultats figurent dans le tableau 3. The adsorbed amounts of n-C6, 3MP and 22DMB by the IM-22 solid as well as the adsorption selectivities are calculated in a manner analogous to that explained in Example 2. The results are shown in Table 3.
On reproduit le test décrit ci-dessus pour évaluer les performances séparatrices de la zéolithe 5A, conventionnellement utilisée pour la séparation d'isomères de paraffines, dans la séparation du mélange n-hexane/3-méthylpentane/2,2-diméthylbutane. Les résultats figurent dans le tableau 3. The test described above is reproduced to evaluate the separating performance of the zeolite 5A, conventionally used for the separation of paraffin isomers, in separation of the n-hexane / 3-methylpentane / 2,2-dimethylbutane mixture. The results are shown in Table 3.
Tableau 3 : Capacité d'adsorption du solide IM-22 et de la zéolithe 5A pour l'adsorption du mélange n-hexane/3-méthylpentane/2,2-diméthylbutane (n-C6/3MP/22DMB) Table 3: adsorption capacity of the solid IM-22 and zeolite 5A for the adsorption of the mixture n-hexane / 3-methylpentane / 2,2-dimethylbutane (n-C6 / 3MP / 22DMB)
Figure imgf000018_0001
Figure imgf000018_0001
Les résultats figurant dans le tableau 3 démontrent que le solide IM-22 présente une sélectivité envers le nC6 et le 3MP tandis que le 22DMB ne s'adsorbe pas. Le solide IM-22 est donc capable de séparer les paraffines linéaires et mpnobranchées des paraffines multibranchées. La sélectivité d'adsorption du solide IM-22 pour le n-C6 et le 3-MP envers le 22DMB est très élevée. The results in Table 3 demonstrate that the IM-22 solid exhibits selectivity for nC6 and 3MP while 22DMB is not adsorbed. The IM-22 solid is therefore capable of separating linear and microbranched paraffins from multi-branched paraffins. The adsorption selectivity of the IM-22 solid for n-C6 and 3-MP towards 22DMB is very high.
Au contraire, la zéolithe 5A, adsorbe le n-C6 mais n'adsorbe ni le 3MP ni le 22DMB. La zéolithe 5A permet donc de séparer des paraffines linéaires de paraffines branchées, mais ne sépare pas les paraffines branchées entre elles selon leur degré de branchement.  In contrast, zeolite 5A adsorbs n-C6 but adsorbs neither 3MP nor 22DMB. The zeolite 5A thus makes it possible to separate linear paraffins from branched paraffins, but does not separate the branched paraffins from one another according to their degree of branching.

Claims

REVENDICATIONS
Solide hybride cristallisé à matrice mixte organique-inorganique IM-22, de structure tridimensionnelle, possédant une charpente zéolithique de type structural CHA contenant un réseau inorganique de centres métalliques à base de cations Zn2+ connectés entre eux par deux ligands organiques imidazolates, le 2-méthylimidazolate (mIM) et un benzimidazolate (bIM) substitué sur le cycle benzénique, ledit solide présentant un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau ci-dessous: Crystalline hybrid solid hybrid with an organic-inorganic mixed matrix IM-22, of three-dimensional structure, having a zeolite framework of structural type CHA containing an inorganic network of metal centers based on Zn 2+ cations connected to each other by two organic imidazolate ligands, the 2 -methylimidazolate (mIM) and a benzimidazolate (bIM) substituted on the benzene ring, said solid having an X-ray diffraction pattern including at least the lines listed in the table below:
Figure imgf000019_0001
Figure imgf000019_0001
L'intensité relative l/l0 est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction de rayons X. The relative intensity l / l 0 is given in relation to a relative intensity scale where it is assigned a value of 100 to the most intense line of the X-ray diffraction pattern.
Solide hybride cristallisé IM-22 selon la revendication 1 dans lequel ledit benzimidazolate (bIM) substitué sur le cycle benzénique est choisi parmi le 5-chlorobenzimidazolate, le 5-bromobenzimidazolate et le 5-méthylbenzimidazolate. An IM-22 crystallized hybrid solid according to claim 1 wherein said benzenediazolate (bIM) substituted on the benzene ring is selected from 5-chlorobenzimidazolate, 5-bromobenzimidazolate and 5-methylbenzimidazolate.
Solide hybride cristallisé IM-22 selon l'une des revendications 1 ou 2 appartenant à un réseau de Bravais de type R, avec comme paramètres de maille a = b = 27,4 {+/- 0,2 A), c = 24,4 (+/- 0,2 A), et les angles α = β = 90°, γ = 120°. IM-22 crystallized hybrid solid according to one of claims 1 or 2 belonging to a Bravais network of type R, with as a = b = 27.4 {+/- 0.2 A), c = 24 , 4 (+/- 0.2 A), and the angles α = β = 90 °, γ = 120 °.
4. Solide hybride cristallisé IM-22 selon l'une des revendications 1 à 3 tel qu'il présente une composition chimique de charpente structural de type CHA ayant pour motif de base Zn(mlM)x(blM)y, dans lequel le rapport molaire des ligands mIM/blM est compris entre 0,5 et 2. An IM-22 crystallized hybrid solid according to one of claims 1 to 3 as having a CHA structural structural chemical composition having the base unit Zn (mlM) x (bM) y , in which the ratio molar ligands mIM / blM is between 0.5 and 2.
5. Solide hybride cristallisé IM-22 selon l'une des revendications 1 à 4 tel qu'il présente une composition chimique de charpente structural de type CHA ayant pour motif de base Zn(mlM)x(blM)y, avec x + y = 2; 0,5 < x < 1 ,5 et 0,5 < y <1 ,5, An IM-22 crystallized hybrid solid according to one of claims 1 to 4 as it has a CHA structural structure chemical composition having the base motif Zn (mlM) x (bM) y , with x + y = 2; 0.5 <x <1, 5 and 0.5 <y <1.5,
6. Solide hybride cristallisé IM-22 selon l'une des revendications 1 à 5 tel qu'il présente une surface spécifique comprise entre 500 et 1000 m2/g et un volume microporeux compris entre 0,20 et 0,40 cm3/g. 6. Crystallized hybrid hybrid IM-22 according to one of claims 1 to 5 as it has a specific surface area of between 500 and 1000 m 2 / g and a microporous volume of between 0.20 and 0.40 cm 3 / boy Wut.
7. Procédé de préparation d'un solide hybride cristallisé IM-22 à matrice mixte organique- inorganique comprenant au moins les étapes suivantes : A process for the preparation of an IM-22 crystallized hybrid solid organic-inorganic matrix comprising at least the following steps:
i) la dissolution d'au moins un précurseur du zinc (noté Prec-Zn) dans au moins un solvant S organique polaire,  i) dissolving at least one precursor of zinc (denoted Prec-Zn) in at least one polar organic solvent S,
ii) l'ajout de deux ligands constitués par le 2-méthylimidazolate (mIM) et un bénzimidazolate (bIM) dans la solution obtenue à l'étape i)  ii) the addition of two ligands consisting of 2-methylimidazolate (mIM) and a benzimidazolate (bIM) in the solution obtained in step i)
iii) une période de chauffage du mélange issu de l'étape ii)  iii) a heating period of the mixture resulting from step ii)
iv) la filtration et le lavage du solide IM-22 obtenu, et  iv) filtration and washing of the resulting IM-22 solid, and
v) le séchage dudit solide IM-22 suivi d'un traitement thermique.  v) drying said IM-22 solid followed by a heat treatment.
8. Procédé selon la revendication 7, dans lequel la composition molaire du mélange obtenu à l'issue de l'étape ii) est la suivante : 8. The method of claim 7, wherein the molar composition of the mixture obtained at the end of step ii) is as follows:
1 (Prec-Zn) : 1 à 3 (mIM) : 1 à 3 (bIM) : 40 à 500 de S.  1 (Prec-Zn): 1 to 3 (mIM): 1 to 3 (bIM): 40 to 500 of S.
9. Procédé selon la revendication 7 comprenant en outre entre les étapes ii) et iii) une étape d'ajout de base B suivi d'une deuxième étape de chauffage. 9. The method of claim 7 further comprising between steps ii) and iii) a step of adding base B followed by a second heating step.
10. Procédé selon la revendication 9 dans lequel la composition molaire du mélange obtenu à l'issue de l'étape d'ajout de la base B est la suivante: 10. The method of claim 9 wherein the molar composition of the mixture obtained at the end of the step of adding the base B is as follows:
1 (Prec-Zn) : 1 à 3 (mIM) : 1 à 3 (bIM) : 0 à 2 B : 40 à 500 de S. 1 (Prec-Zn): 1 to 3 (mIM): 1 to 3 (bIM): 0 to 2 B: 40 to 500 of S.
11. Procédé de séparation de paraffines multibranchées comprises dans une charge hydrocarbonée contenant des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant de 5 à 7 atomes de carbone par molécule, comprenant la mise en contact de ladite charge avec au moins le solide hybride IM-22 selon l'une des revendications 1 à 6 ou préparé selon l'une des revendications 7 à 10, de manière à produire au moins un premier flux enrichi en paraffines multibranchées et un deuxième flux enrichi en paraffines linéaires et monobranchées. 11. A process for separating multi-branched paraffins included in a hydrocarbon feed containing linear paraffins, single-branched paraffins and multi-branched paraffins having from 5 to 7 carbon atoms per molecule, comprising contacting said feed with at least one hybrid solid. IM-22 according to one of claims 1 to 6 or prepared according to one of claims 7 to 10, so as to produce at least a first multi-branched paraffin-enriched stream and a second stream enriched in linear paraffins and mono-branched.
12. Procédé de séparation selon la revendication 11 , dans lequel ladite charge contient des paraffines linéaires, des paraffines monobranchées et des paraffines multibranchées ayant 5 et/ou 6 atomes de carbone par molécule The separation process according to claim 11, wherein said feed contains linear paraffins, mono-branched paraffins and multi-branched paraffins having 5 and / or 6 carbon atoms per molecule.
13. Procédé de séparation selon l'une des revendications 11 à 12 dans lequel les paraffines multibranchées représentent de 60 à 100% poids dudit premier flux. 13. Separation process according to one of claims 11 to 12 wherein the multibranched paraffins represent 60 to 100% by weight of said first stream.
14. Procédé de séparation selon l'une des revendications 11 à 13 tel qu'il est mis en oeuvre par un procédé d'adsorption à pression modulée (PSA) ou par un procédé d'adsorption à température modulée (TSA) ou par un procédé de type lit mobile simulé (LMS). 15. Procédé de séparation selon l'une des revendications 11 à 14 comprenant au moins une étape d'hydroisomérisation. 14. Separation process according to one of claims 11 to 13 as implemented by a pressure swing adsorption (PSA) method or a temperature-modulated adsorption (TSA) process or by a simulated moving bed (LMS) method. 15. Separation process according to one of claims 11 to 14 comprising at least one hydroisomerisation step.
PCT/FR2012/000209 2011-06-24 2012-05-24 Novel hybrid organic/inorganic im-22 solid, and use thereof in the separation of multi-branched paraffins from linear and single-branched paraffins WO2012175823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR11/01.959 2011-06-24
FR1101959A FR2976934B1 (en) 2011-06-24 2011-06-24 NEW ORGANIC-INORGANIC HYBRID SOLID IM-22 AND ITS USE IN THE SEPARATION OF MULTI-CORE PARAFFINS FROM LINEAR AND MONO-BRANCHED PARAFFINS.

Publications (1)

Publication Number Publication Date
WO2012175823A1 true WO2012175823A1 (en) 2012-12-27

Family

ID=46354392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/000209 WO2012175823A1 (en) 2011-06-24 2012-05-24 Novel hybrid organic/inorganic im-22 solid, and use thereof in the separation of multi-branched paraffins from linear and single-branched paraffins

Country Status (2)

Country Link
FR (1) FR2976934B1 (en)
WO (1) WO2012175823A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048693A1 (en) * 2014-09-11 2016-03-31 King Abdullah University Of Science And Technology Fuel upgrading and reforming with metal organic framework
CN107469467A (en) * 2017-09-21 2017-12-15 陕西科技大学 A kind of preparation method of efficient gas absorbent-type air filting material
US10759724B2 (en) 2014-09-11 2020-09-01 King Abdullah University Of Science And Technology Zeolite-like metal-organic frameworks with ana topology
US11491459B2 (en) 2014-09-11 2022-11-08 King Abdullah University Of Science And Technology Zeolite-like metal-organic frameworks with ana topology

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US4717784A (en) 1986-12-10 1988-01-05 Shell Oil Company Total isomerization process with mono-methyl-branched plus normal paraffin recycle stream
US4804802A (en) 1988-01-25 1989-02-14 Shell Oil Company Isomerization process with recycle of mono-methyl-branched paraffins and normal paraffins
US4855529A (en) 1988-04-25 1989-08-08 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
US4982048A (en) 1989-02-24 1991-01-01 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
US4982052A (en) 1988-12-23 1991-01-01 Texaco Inc. Separation of a mixture of normal paraffins branched chain paraffins and cyclic paraffins
US20070202038A1 (en) 2006-02-28 2007-08-30 The Regents Of The University Of Michigan Preparation of functionalized zeolitic frameworks
FR2910457A1 (en) 2006-12-22 2008-06-27 Inst Francais Du Petrole Producing hydrogen from a charge containing hydrogen comprises partial/complete pressurization of the charge through an additional flow of pure hydrogen/charge, adsorption of impurities, depressurization and desorption at high pressure
WO2008140788A1 (en) 2007-05-11 2008-11-20 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
WO2009020745A2 (en) * 2007-07-17 2009-02-12 The Regents Of The University Of California Preparation of functionalized zeolitic frameworks
US20090211440A1 (en) * 2008-02-21 2009-08-27 Reyes Sebastian C Separation of hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US4717784A (en) 1986-12-10 1988-01-05 Shell Oil Company Total isomerization process with mono-methyl-branched plus normal paraffin recycle stream
US4804802A (en) 1988-01-25 1989-02-14 Shell Oil Company Isomerization process with recycle of mono-methyl-branched paraffins and normal paraffins
US4855529A (en) 1988-04-25 1989-08-08 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
US4982052A (en) 1988-12-23 1991-01-01 Texaco Inc. Separation of a mixture of normal paraffins branched chain paraffins and cyclic paraffins
US4982048A (en) 1989-02-24 1991-01-01 Shell Oil Company Isomerization process with preliminary normal paraffin and mono-methyl paraffin feed capture step
US20070202038A1 (en) 2006-02-28 2007-08-30 The Regents Of The University Of Michigan Preparation of functionalized zeolitic frameworks
FR2910457A1 (en) 2006-12-22 2008-06-27 Inst Francais Du Petrole Producing hydrogen from a charge containing hydrogen comprises partial/complete pressurization of the charge through an additional flow of pure hydrogen/charge, adsorption of impurities, depressurization and desorption at high pressure
WO2008140788A1 (en) 2007-05-11 2008-11-20 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
WO2009020745A2 (en) * 2007-07-17 2009-02-12 The Regents Of The University Of California Preparation of functionalized zeolitic frameworks
US20090211440A1 (en) * 2008-02-21 2009-08-27 Reyes Sebastian C Separation of hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Handbook of Petroluem Refining", 1997, MCGRAW-HILL
ANDREW SIRJOOSINGH ET AL: "Grand-Canonical Monte Carlo and Molecular-Dynamics Simulations of Carbon-Dioxide and Carbon-Monoxide Adsorption in Zeolitic Imidazolate Framework Materials", JOURNAL OF PHYSICAL CHEMISTRY C, vol. 114, no. 5, 11 February 2010 (2010-02-11), pages 2171 - 2178, XP055016168, ISSN: 1932-7447, DOI: 10.1021/jp908058n *
CANAN GÜCÜYENER ET AL: "Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal-Organic Framework ZIF-7 through a Gate-Opening Mechanism", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 50, 22 December 2010 (2010-12-22), pages 17704 - 17706, XP055016114, ISSN: 0002-7863, DOI: 10.1021/ja1089765 *
G. ASH; K. BARTH; G. HOTIER; L. MANK; P. RENARD, REVUE DE L'INDUSTRIE FRANÇAIS DU PÉTROLE, vol. 49, 1994, pages 541
K. SUNG PARK, Z. NI, A. CÔTÉ, J. YONG CHOI, R. HUANG, F. URIBE-ROMO, H. CHAE, M. O'KEEFFE, O. YAGHI: "Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 103, no. 27, 5 July 2006 (2006-07-05), pages 10186 - 10191, XP002667019 *
NATARAJAN S ET AL: "Non-carboxylate based metal-organic frameworks (MOFs) and related aspects", CURRENT OPINION IN SOLID STATE AND MATERIALS SCIENCE, ELSEVIER SCIENCE LTD, OXFORD, GB, vol. 13, no. 3-4, 1 June 2009 (2009-06-01), pages 46 - 53, XP026524555, ISSN: 1359-0286, [retrieved on 20090614], DOI: 10.1016/J.COSSMS.2009.05.002 *
R. BANERJEE, A. PHAN, B. WANG, C. KNOBLER, H. FURUKAWA, M. O'KEEFFE, O. YAGHI: "High-Throughput Synthesis of Zeolitic Imidazolate Framework and Application to CO2 Capture", SCIENCE, vol. 319, 15 February 2008 (2008-02-15), pages 939 - 943, XP002667018 *
RUTHVEN, D.M.: "Principles of adsorption and adsorption processes", 1984, JOHN WILEY & SONS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048693A1 (en) * 2014-09-11 2016-03-31 King Abdullah University Of Science And Technology Fuel upgrading and reforming with metal organic framework
US10486133B2 (en) 2014-09-11 2019-11-26 King Abdullah University Of Science And Technology Fuel upgrading and reforming with metal organic framework
US10759724B2 (en) 2014-09-11 2020-09-01 King Abdullah University Of Science And Technology Zeolite-like metal-organic frameworks with ana topology
US10926242B2 (en) 2014-09-11 2021-02-23 King Abdullah University Of Science And Technology Fuel upgrading and reforming with metal organic framework
US11491459B2 (en) 2014-09-11 2022-11-08 King Abdullah University Of Science And Technology Zeolite-like metal-organic frameworks with ana topology
CN107469467A (en) * 2017-09-21 2017-12-15 陕西科技大学 A kind of preparation method of efficient gas absorbent-type air filting material

Also Published As

Publication number Publication date
FR2976934A1 (en) 2012-12-28
FR2976934B1 (en) 2013-06-14

Similar Documents

Publication Publication Date Title
EP0922748B1 (en) Process for the separation of a C5-C8 feed in three fractions rich in normal , mono-branched and multi-branched paraffins
CA2252068C (en) High octane gasolines and their production using a hydro-isomerization and separation process
EP0324675B1 (en) Process for separating the components of a gaseous mixture using a composite membrane
EP1640436B1 (en) Process of isomerisation of a C7 cut with coproduction of a cyclic cut comprising mainly methyl cyclohexane
EP1442784B1 (en) Inorganic porous membrane containing carbon, method of manufacturing and use thereof
FR2922547A1 (en) Preparing paraxylene from an aromatic hydrocarbon charge, comprises separation by adsorption in simulated moving bed producing distilled extract, and recycling a part of distilled raffinate upstream of simulated moving bed
CA2707049A1 (en) Method for separating co2 by pressure swing adsorption on a porous carbonaceous solid
WO2005049766A1 (en) Method for producing a high-octane gasoline from a c5/c6 fraction by means of a membrane separation unit
WO2012175823A1 (en) Novel hybrid organic/inorganic im-22 solid, and use thereof in the separation of multi-branched paraffins from linear and single-branched paraffins
EP1088879A1 (en) Process for the production of gasolines with improved octane number
FR2795407A1 (en) Production of xylene isomer by phases of adsorption and isomerization of 8 carbon aromatic cut involves using isomerization catalyst containing EUO type zeolite
EP1640435A1 (en) Process of isomerisation of a C7 cut with coproduction of an aromatic cut comprising mainly toluene
CN113461513B (en) Porous cobalt formate material, preparation method and application thereof, and separation method of alkane isomer mixture
FR2751641A1 (en) ISOALKANE / N-ALKANE SEPARATION PROCESS BY GAS PHASE ADSORPTION USING PRESSURE MODULATION AND FOUR ADSORBERS
FR2968656A1 (en) Separating multi-branched paraffins in hydrocarbon feedstock containing linear-, mono- and multi-branched paraffins, comprises contacting feedstock with adsorbent zeolite framework of sodalite type of zeolitic imidazolate framework
WO2013011210A1 (en) Method for separating paraxylenes using an adsorbent from the family of zifs of sod structure.
EP1652570A1 (en) Separation process by selective adsorption with a solid containing a zeolite having a IM-12-analogous crystalline structure
EP2895448B1 (en) Method for producing kerosene from butanols
WO2022126082A9 (en) Advanced adsorptive separation processes for molecular class separation
FR2787117A1 (en) Conversion of hydrocarbons comprises distillation associated with reaction zone for selective reduction of benzene and light olefins
WO2011064468A1 (en) Method for producing hydrogen from regenerable non-stoichiometric metallic sulfides
FR2655980A1 (en) Process for the gas phase separation of n-alkanes from a hydrocarbon charge
FR3112289A1 (en) PURIFICATION OF AROMATIC LIQUIDS
VEDRINE CATALYSE H VERROU
MXPA98009877A (en) Sleeves and crank roll bushings for laser coating for galvaniz baths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12729669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12729669

Country of ref document: EP

Kind code of ref document: A1