WO2012174860A1 - 一种低成本制造低硫高辛烷值汽油的装置及其方法 - Google Patents

一种低成本制造低硫高辛烷值汽油的装置及其方法 Download PDF

Info

Publication number
WO2012174860A1
WO2012174860A1 PCT/CN2012/000859 CN2012000859W WO2012174860A1 WO 2012174860 A1 WO2012174860 A1 WO 2012174860A1 CN 2012000859 W CN2012000859 W CN 2012000859W WO 2012174860 A1 WO2012174860 A1 WO 2012174860A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
reforming
gasoline
oil
cutting
Prior art date
Application number
PCT/CN2012/000859
Other languages
English (en)
French (fr)
Inventor
丁冉峰
Original Assignee
北京金伟晖工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金伟晖工程技术有限公司 filed Critical 北京金伟晖工程技术有限公司
Priority to EP12802629.1A priority Critical patent/EP2725087B1/en
Priority to EA201490093A priority patent/EA024334B1/ru
Priority to CA2840100A priority patent/CA2840100A1/en
Publication of WO2012174860A1 publication Critical patent/WO2012174860A1/zh
Priority to US14/109,901 priority patent/US9657245B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/305Octane number, e.g. motor octane number [MON], research octane number [RON]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the present invention relates to an apparatus for producing gasoline and a method thereof, and more particularly to an apparatus and method for producing low-sulfur, high-octane-value gasoline at low cost.
  • catalytic cracking processing capacity accounts for 33.5% of the processing capacity of crude oil in China, while the processing capacity of catalytic reforming only accounts for 5.66% of crude oil processing capacity. It accounts for 0.52% of crude oil processing capacity.
  • the main raw materials in China's gasoline pool are catalytic gasoline (73.8%) and naphtha.
  • the preparation of the existing low sulfur high-octane gasoline is obtained by blending the refined products of FCC gasoline and naphtha through different ratios.
  • the main refining routes of domestic catalytic gasoline (FCC gasoline) and naphtha are respectively - selective hydrogenation of diolefins from catalytic gasoline, and the obtained products enter the cutting tower for cutting to obtain light gasoline and heavy gasoline fractions;
  • the etherification unit is etherified (sulfur content is 50-100ppm), and the heavy gasoline is desulfurized by a selective hydrogenation unit (sulphur content is about 10 ppm); after the etherification and hydrodesulfurization products are mixed, the refined FCC gasoline blending component is obtained.
  • the sulfur content of the FCC gasoline refined product after blending is generally about 20 ppm.
  • the main refining route of naphtha is: after the cutting pretreatment, the naphtha is divided into light naphtha and heavy naphtha fraction, and the light naphtha is isomerized to obtain refined light naphtha components; cutting pretreatment
  • the obtained heavy naphtha component enters a continuous reforming unit to form part of dry gas, liquefied gas, hydrogen, and heavy naphtha reforming oil; the reformed oil is cut to separate the light aromatic component and the weight
  • the aromatic component the light aromatic component is subjected to benzene extraction to obtain a refined heavy naphtha component (1) to be gasoline-reconciled; the heavy aromatic component is again passed through a cutting tower to obtain a heavy aromatic component and a refined heavy naphtha component (2)
  • the obtained refined light naphtha component, the refined heavy naphtha component (1), and the refined heavy naphtha component (2) are blended to obtain a refined naphtha blending component.
  • FCC refined gasoline is difficult to obtain low sulfur content gasoline due to high sulfur content in light gasoline; oil obtained from naphtha can be blended with FCC refined gasoline, but due to the current catalytic gasoline in China's gasoline pool (ie FCC) Gasoline) accounts for 73.8%, naphtha only accounts for a small amount, and 50% of naphtha is used as raw material to produce ethylene and aromatics. Therefore, naphtha used to produce high-grade gasoline for cleaning vehicles is obviously insufficient.
  • One of the objects of the present invention is to provide an apparatus for producing low sulfur high octane gasoline at low cost.
  • the invention relates to a device for manufacturing low-sulfur high-octane-degraded gasoline with low cost, comprising: an extracting device, a first cutting tower, an etherification device, a hydrotreating desulfurization device, a reforming pretreatment device, a second cutting tower, An isomerization device, a reforming device, and a stabilizing device; a top portion of the extracting device is connected to a middle portion of the first cutting tower through a pipeline; a top portion of the first cutting tower is connected to an etherification device through a pipeline;
  • the etherification device is connected to a methanol supply device; the etherification device extracts a gasoline product through a pipeline; the bottom of the extraction device is connected to a hydrorefining desulfurization device through a pipeline, and the hydrorefining desulfurization device passes a pipeline is connected to the stabilizing device; a bottom of the first cutting tower is connected to the reforming pretreatment device by a pipeline, the reforming pre
  • Another object of the present invention is to provide a method of producing low sulfur, high sulphur value gasoline at low cost.
  • the FCC gasoline enters the extraction device through the pipeline for processing; the top of the extraction device extracts the raffinate oil through the pipeline, and the bottom extracts the extracted oil through the pipeline; the raffinate oil enters the middle of the first cutting tower through the pipeline; the first cutting tower
  • the top of the first cutting tower is produced by pumping the residual oil through the pipeline; the light pumping oil is connected to the etherification device through the pipeline, and the methanol enters the etherification device through the pipeline. , the light pumping residual oil and methanol are etherified in an etherification device to obtain etherified gasoline;
  • the extracted oil enters the hydrorefining desulfurization device through the pipeline to desulfurize, and the hydrogenated oil is produced;
  • the heavy pumping oil and the naphtha obtained at the bottom of the first cutting device enter the reforming pretreatment device through the pipeline for reforming Processing, the obtained product enters a second cutting tower through a pipeline for cutting treatment;
  • the top of the second cutting tower is used to produce light naphtha through a pipeline, and the bottom of the second cutting tower is subjected to a reforming raw material through a pipeline;
  • the naphtha enters the isomerization unit through the pipeline to perform isomerization treatment to obtain isomerization to form oil;
  • the reforming raw material enters the reforming unit through the pipeline for reforming;
  • the top of the reforming device is separately produced through the pipeline a hydrogen gas containing dry gas and a liquefied gas, wherein the bottom of the reforming unit is produced by reforming to produce oil;
  • a preferred technical solution is characterized in that: the distillation section of the top of the second cutting column has a distillation range of 30-115 V, and the distillation fraction of the bottom of the column is 120-195 °C.
  • FIG. 1 is a schematic flowchart of an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of the present invention.
  • the sulphur content is 33.3 - 198.1 °C
  • the sulfur content is 1500 ppm
  • the nitrogen content is 418 ppm
  • the aromatic content is 25% (v)
  • the terpene content is 36.1% (v)
  • the olefin content is 38.9%.
  • Xin Xin value of 90 flow rate of 119. 048 tons / hour of FCC gasoline raw material a into the extraction tower 1 (with the extraction patent in the patent patent 200910077505. 7 The same structure).
  • the extraction temperature is 130 ° C
  • the extraction pressure is 1. 3 MPa (G).
  • the raffinate oil extracted from the top of the extraction column 1 enters the first cutting column 2 at a rate of 77.381 tons / hour (the same structure as the distillation column in the invention patent 200910077505. 7), the first cutting tower 2
  • the top temperature is 96 ° C
  • the pressure is 0. 2Mpa (G)
  • the reflux ratio (for the product) is 2.
  • Om / m the bottom temperature is 186 ° C
  • the pressure is 0.
  • the etherified gasoline is produced through a pipeline with a production volume of 50. 429 tons / hour.
  • the etherification catalyst used in the etherification apparatus may be a conventional etherification catalyst, preferably a resin type catalyst, such as D005, D005-II type resin catalyst produced by Dandong Mingzhu Special Resin Co., Ltd., and Hebei Kerry Chemical Co., Ltd. Production of D006 etherified resin catalyst.
  • the main properties of the extracted oil extracted from the bottom of the extraction tower 1 are: aromatics content 69. 5% (v), Xin Xin value 99, density 820 kg / m 3 , process 30-201 ° C, sulfur content 4226 ppm
  • the extracted oil enters the hydrorefining desulfurization device 4 at a speed of 41.667 tons/hour (for the extracted oil hydrogenation device in the invention patent 200910077505. 7) for hydrorefining desulfurization, and the hydrorefining desulfurization device 4
  • the inlet temperature is 220 ° C
  • the inlet pressure is 3.0 Mpa (G)
  • the hydrogen to oil ratio is 300 : 1 (Nm 7 m 3 )
  • the space velocity is 3.
  • Oh - the hydrogenation catalyst used in the hydrorefining desulfurization apparatus can be conventional.
  • the hydrogenation catalyst, the catalyst used in this example is a hydrogenation catalyst GHT-22, and the physical and chemical properties of GHT-22 are shown in Table
  • the main properties of the hydrogenated oil produced by hydrorefining desulfurization Xin Xin value 98. 5, density 817 kg / m 3 , process 28-200 ° C, sulfur content 4 ppm, the hydrogenated oil is taken through the pipeline The yield is 41.667 tons / hour; the main performance of the heavy pumping oil produced at the bottom of the first cutting tower 2: aromatic content 3% (v), density 746 kg / m3 , process 110-19(TC, olefin content 40% (v), sulfur content 72ppm, nitrogen content 5ppm, the heavy pumping oil at a rate of 30. 952 tons / hour and a flow rate of 40.
  • the hydrogenation catalyst used in the reforming pretreatment apparatus 5 is a hydrogenation catalyst GHT-22, and its physical and chemical properties are shown in Table 1.
  • the second reforming column 6 has a temperature of 101 ° C, a pressure of 0. 2Mpa (G), a reflux ratio (for the product) of 1 0m/m, the bottom temperature is 188 ° C, the pressure is 0. 23Mpa (G); the top of the second cutting tower 6 is produced with a light naphtha fraction, the flow rate of the light naphtha fraction is 25 tons /hour, the main properties of the light naphtha fraction: Xin Xin value 65, density 690 kg / m 3 , process 30-115 V
  • the light naphtha fraction enters the isomerization unit 7 for isomerization treatment,
  • the isomerization oil is obtained, and the main properties of the isomerization oil are: Xin Xin value 81, density 680 kg / m 3 , process 20-118 'C; operating conditions of the isomerization device: pressure l.
  • the isomerization catalyst used is a conventional low-temperature precious metal catalyst, such as FI-15 platinum molecular sieve catalyst produced by the PetroChina Fushun Petroleum No. 3 catalyst plant.
  • the reforming material collected at the bottom of the second cutting tower 6 enters the reforming device 8, and its main properties are: density 731 kg/ m3 , process range 120-195 ° C, water content ⁇ 5 ppm ; the reforming device
  • the pressure of 8 is 1.
  • OMpa (G) the temperature is 480 ° C
  • the hydrogen to oil ratio is 1000: 1 (Nm7m 3 )
  • the space velocity is 2. 3h - S.
  • the catalyst used in the reforming device 8 is commercially available.
  • the bottom of the reforming device 8 is produced by reforming oil, and the recovery oil is produced in an amount of 41 tons/hour. Its main properties are: aromatics content 51%, Xinxin value 98, density 758 kg/ m3. , the process of 20-200 ° C, benzene content of 0.5% (v), the top of the reforming device 8 produces hydrogen gas containing dry gas f (production volume: 2.
  • the stabilizing device 9 for processing; the stabilizing gas in the stabilizing device 9 is 70 ° C, the pressure is 1. 5Mpa (G), the reflux ratio (pair) The product is 0. 2m / m, the bottom temperature is 200 ° C, the pressure is 1. 54Mpa (G).
  • the obtained stable gasoline produced 104.762 tons / hour, its main properties: aromatic content 46% (v), Xin Xin value 94.3, density 759 kg / m3 , process 31-196 ° C, sulfur The content of 2ppm, the benzene content is 0.3% (v); the yield of the obtained liquefied gas d is 2.905 tons / hour; the obtained stable gasoline is blended with the etherified gasoline to obtain the final product low sulfur high sulphur value gasoline.
  • the main properties of the obtained low-sulfur-high-octane-degraded gasoline e aromatics content 31. 5% (v), octal value of 93.1, density 741 kg / m3 , process 30-194 ° C, olefin content 9. 3 2% (v) ⁇ % (v), sulfur content of 3ppm, benzene content of 0.2% (v).
  • the extraction tower, the cutting tower and the hydrorefining desulfurization device used in the invention are respectively patent No. 200910077505.
  • CN201459048 a kind of production of raffinate oil, benzene And naphtha reforming unit with mixed aromatics, Bulletin No.: CN201459036; a naphtha reforming unit for producing raffinate oil and mixed aromatics, bulletin number: CN201459035; a reforming device for producing aromatics, announcement number : CN201459034 ; A reforming device for extracting and separating benzene from a side line of an evaporative dehydration device, Announcement No.
  • CN201722339 a reforming device for producing kerosene while producing aromatic hydrocarbons and separating benzene, Announcement No.: CN201517089; Reforming device for producing mixed aromatic hydrocarbons and simultaneously producing kerosene, Bulletin No.: CN201459050; - Reforming device for producing kerosene with high yield of aromatic hydrocarbons, Announcement No.: CN201512504; - Reforming device for producing benzene, mixed aromatics and kerosene, announcement No.: CN201459049; An improved naphtha-producing aromatics reforming unit, bulletin number: CN201459047; a sideline cutting tower Brain oil prolific aromatics reforming system, bulletin number: CN201459046; A reforming system for producing aromatics, announcement number: CN201459045; a naphtha-producing aromatics reforming system with a solvent recovery system, bulletin number: CN201459044; - Naphtha reforming
  • the stabilizing device described in the present invention is a conventional device including a tower, an air cooler, a water cooler, a reflux tank, a reflux pump, and a bottom pump.
  • the reforming pretreatment apparatus, the etherification apparatus, and the isomerization apparatus of the present invention are devices commonly used in the art.
  • the measurement method used in the present invention is:
  • Sulfur content SH/T0689-2000 Determination of total sulfur content of light hydrocarbons and engine fuels and other oils (violet fluorescence method);
  • Density GB/T1884- 2000 laboratory method for density determination of crude oil and liquid petroleum products (densitometer method);
  • Nitrogen content SH/T0704-2001 Determination of nitrogen content in petroleum and petroleum products (chemiluminescence method);
  • Benzene content SH/T 0713-2002 Determination of benzene and toluene in motor gasoline and aviation gasoline (gas chromatography);
  • Water content GB/T11133-2004 Determination of water content of liquid petroleum products (Karl Fischer method).
  • the invention enriches sulfur in the raw material FCC gasoline into the extracted oil by introducing an extracting device (system and method for preparing high-quality gasoline after recombination of refinery hydrocarbons, application number 200910077505.7), and reduces hydrorefining desulfurization
  • the scale of the device reduces the equipment investment and the scale of hydrogenation; the scale of the reformer is increased by processing the heavy pumping residual oil from the bottom of the first cutting tower into the reforming pretreatment unit; cutting through the second cutting tower
  • the temperature is adjusted to make the precursor of benzene easily formed in the reforming process to enter the isomerization device to generate isomerization to produce oil, which reduces the formation of benzene, and the distillation range meets the gasoline standard, saving the benzene extraction device and corresponding
  • the fractionation unit greatly reduces the investment and energy consumption, and at the same time increases the gasoline yield.
  • the reforming unit By introducing a reforming unit, the reforming unit reduces investment and increases liquid recovery.
  • the hydrorefining desulfurization unit, the isomerization unit and the reforming unit Separately connected stabilizers (systems) are combined into one stabilizing device, reducing the use of stabilizing devices, saving investment and energy consumption
  • the method and apparatus of the sulfur content of all gasoline product is reduced to 10ppm, while increasing the value oct embankment, reduced olefin content, in line with the Euro V standard.
  • the device and method have obvious advantages in investment, hydrogenation scale, product cleanliness and quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种低成本制造低硫高辛垸值汽油的装置,包括抽提装置(1)、第一切割塔(2)、醚化装置(3)、加氢精制脱硫装置(4)、重整预处理装置(5)、第二切割塔(6)、异构化装置(7)、重整装置(8)以及稳定装置(9)。抽提装置(1)能将原料中的硫富集于抽出油中,减少了加氢精制脱硫装置(4)的规模,将第一切割塔(2)采出的重抽余油引入重整装置(8),增加了重整装置(8)的规模;通过第二切割塔(6)切割温度的调整,节省了苯抽提及相应的分馏装置,投资和能耗大幅降低同时提高汽油收率。此外,还提供了低成本制造低硫高辛垸值汽油的方法。使用该装置和方法,汽油产品中的硫含量能降至10ppm,并减少了投资,节约了费用。

Description

一种低成本制造低硫高辛烷值汽油的装置及其方法 技术领域
本发明涉及一种制造汽油的装置及其方法,特别是一种低成本制造低硫高辛垸值 汽油的装置及其方法。
背景技术
目前国际上较为先进的汽油质量标准分为美、 欧、 日、 《世界燃油规范》 四大标 准体系。 虽然各类汽油标准之间具体限值有差别, 但是总的趋势是越来越严格。 欧盟 于 2009年强制执行了超低硫 (即 lOppm) 的欧 V标准、 日本于 2008年执行超低硫 标准、美国加州的汽油标准当中硫含量也已经低至 15ppm, 可以看出低硫汽油产品的 使用是大势所趋。
同时, 原油越来越劣质化和重质化。 美国 《世界炼油》预测, 世界原油平均 API 度将从 2000年的 32.5下降到 2010年 32.4、 2015年 32.3 , 含硫量比例将由 2000年的 1.14%增加到 2010年 1.19%、 2015年 1.25%。
目前我国炼油装置中适合重油深度加工的催化裂化装置的比例比较高,催化裂化 加工能力占我国原油加工能力的 33.5%, 而催化重整的加工能力仅占原油加工能力的 5.66%, 垸基化占原油加工能力的 0.52%。 由此导致的我国汽油池中主要原料为催化 汽油 (占 73.8%) 和石脑油。
现有的低硫高辛垸值汽油的制备是将 FCC汽油和石脑油的精制产品通过不同比 例调和而得到。
现有国内催化汽油 (FCC汽油) 和石脑油的主要精制路线分别为- 催化汽油选择性加氢脱双烯,所得产品进入切割塔进行切割,得到轻汽油和重汽 油馏分; 所得轻汽油经过醚化装置醚化 (硫含量在 50-100ppm) , 重汽油通过选择性 加氢装置进行脱硫 (硫含量 lOppm左右) ; 醚化和加氢脱硫产品混合后, 得到精制 的 FCC汽油调和组分,通过调和后的 FCC汽油精制产品的硫含量一般在 20ppm左右。
石脑油的主要精制路线为:石脑油经过切割预处理后分为轻石脑油和重石脑油馏分, 轻石脑油经过异构化后得到精制轻石脑油组分;切割预处理后得到的重石脑油组分,进入 连续重整装置, 生成部分干气、液化气、氢气以及重石脑油重整生成油; 该重整生成油经 过切割后,分离出轻芳烃组分以及重芳烃组分;轻芳烃组分经过苯抽提后得到精制重石脑 油组分 (1 ) 去汽油调和; 重芳烃组分再次经过切割塔, 获得重芳烃组分以及精制重石脑 油组分 (2); 所得到的精制轻石脑油组分、 精制重石脑油组分 (1 ) 以及精制重石脑油组 分 (2) 调和得到精制的石脑油调和组分。 FCC精制汽油由于轻汽油中的硫含量较高, 很难得到低硫含量的汽油; 石脑油得到 的油品可以与 FCC精制汽油调和使用, 但是由于目前我国的汽油池中催化汽油 (即 FCC 汽油) 占 73.8%, 石脑油只占少量部分, 而且石脑油中还有 50%作为原料来生产乙烯和芳 烃, 所以用来生产高标号清洁车用汽油的石脑油明显不足。
目前用上述方法生产高标号清洁车用汽油 (即低硫高辛垸值汽油) 的生产方法存在 以下问题: ①投资高, FCC 汽油精制当中的两个选择性加氢装置和石脑油精制中的连续 重整装置投资均比较高并且装置规模受到原料的限制以及资源的不合理利用,如重整生成 油是生产聚酯的主要原料,大量重整生成油用于高辛烷值汽油调和组分,使本来就十分紧 缺的聚酯原料更加紧缺; ②能耗高, FCC 汽油精制当中使用了两个选择性加氢装置能耗 较高, 同时石脑油精制中的连续重整装置和切割塔均为高耗能装置; ③不能成套、大规模 的生产高标准的清洁车用汽油;④所生产出的高标准车用汽油品质较低,只能生产低标号 汽油产品; ⑤污染物排放严重。
北京将于 2012年在全国率先使用国 V (相当于欧 V) 标准, 但是由于我国原油 主要以催化裂化汽油为主、 并且原油劣质化越来越严重, 现有生产国 V 汽油的技术 成本高、 能耗高, 并且不能连续大规模生产。 因此, 提供投资小、 能耗低、 高标号、 符合市场需求的高辛烷值、 低硫汽油的生产技术就成为该技术领域亟需解决的问题。 发明内容
本发明的目的之一是提供一种低成本制造低硫高辛烷值汽油的装置。
本发明的上述目的是通过以下技术方案达到的:
一种低成本制造低硫高辛垸值汽油的装置, 其特征在于: 包含抽提装置、 第一切割 塔、 醚化装置、 加氢精制脱硫装置、 重整预处理装置、 第二切割塔、 异构化装置、 重整装 置以及稳定装置;所述抽提装置的顶部通过管线与所述第一切割塔的中部相连接;所述第 一切割塔的顶部通过管线与醚化装置相连接;所述醚化装置与甲醇供应装置相连接;所述 醚化装置通过管线采出汽油产品;所述抽提装置的底部通过管线与加氢精制脱硫装置相连 接,所述加氢精制脱硫装置通过管线与稳定装置相连接;所述第一切割塔的底部通过管线 与重整预处理装置相连接,所述重整预处理装置与所述第二切割塔的中部相连接;所述第 二切割塔的顶部通过管线与异构化装置相连接,所述异构化装置通过管线与所述稳定装置 相连接;所述第二切割塔的底部通过管线与重整装置相连接,所述重整装置的底部通过管 线与所述稳定装置相连接,所述重整装置的顶部分别采出含有干气的氢气以及液化气;所 述稳定装置分别采出液化气和稳定汽油产品,所得稳定汽油与所述醚化装置采出的醚化汽 油调和, 得到低硫高辛垸值汽油产品。
本发明的另一目的是提供一种低成本制造低硫高辛垸值汽油的方法。 一种用上述装置低成本制造低硫高辛垸值汽油方法, 其步骤如下:
FCC汽油通过管线进入抽提装置进行处理; 抽提装置顶部通过管线采出抽余油, 底 部通过管线采出抽出油;抽余油通过管线进入第一切割塔的中部;所述第一切割塔的顶部 通过管线采出轻抽余油,所述第一切割塔的底部通过管线采出重抽余油;所述轻抽余油通 过管线与醚化装置相连接, 甲醇通过管线进入醚化装置,所述轻抽余油与甲醇在醚化装置 中进行醚化处理, 得到醚化汽油;
所述抽出油通过管线进入加氢精制脱硫装置脱硫, 采出加氢生成油; 所述第一切割 装置底部得到的重抽余油与石脑油通过管线进入重整预处理装置进行重整预处理,得到的 产品通过管线进入第二切割塔进行切割处理; 所述第二切割塔顶部通过管线采出轻石脑 油,所述第二切割塔底部通过管线采出重整原料;所述轻石脑油通过管线进入异构化装置 进行异构化处理, 得到异构化生成油; 所述重整原料通过管线进入重整装置进行重整; 所 述重整装置的顶部通过管线分别采出含有干气的氢气以及液化气,所述重整装置的底部通 过管线采出重整生成油;所述加氢生成油、异构化生成油以及重整生成油分别通过管线进 入稳定装置进行处理后, 分别采出液化气以及稳定汽油; 所述稳定汽油与醚化汽油调和, 得到低硫高辛烷值汽油。
一种优选技术方案, 其特征在于: 所述第二切割塔的塔顶采出馏份的馏程为 30-115 V , 塔底釆出馏份的熘程为 120_195°C。
下面通过附图和具体实施方式对本发明做进一步说明, 但并不意味着对本发明保护 范围的限制。
附图的简要说明
图 1为本发明实施例的流程示意图。
实现发明的最佳方式
实施例
如图 1所示, 为本发明实施例 1的流程示意图。 将镏程为 33.3— 198.1 °C, 含硫量为 1500ppm, 含氮量为 418ppm, 芳烃含量为 25% (v), 垸烃含量为 36. 1% (v), 烯烃含量为 38. 9%, 16°C密度为 736. 2千克/米3, 辛垸值为 90, 流量为 119. 048吨 /小时的 FCC汽油 原料 a进入抽提塔 1 (与发明专利 200910077505. 7中的抽提塔结构相同)。抽提塔 1的萃 取温度 130°C、萃取压力 1. 3MPa (G)。抽提塔 1的顶部采出的抽余油以 77. 381吨 /小时的 速度进入第一切割塔 2 (与发明专利 200910077505. 7中的蒸馏塔结构相同), 所述第一切 割塔 2的塔顶温度为 96°C、 压力为 0. 2Mpa (G)、 回流比 (对产品)为 2. Om/m, 塔底温度 为 186°C、 压力为 0. 23Mpa (G) ; 所述第一切割塔 2的塔顶采出的轻抽余油的主要性能- 芳烃含量 1% (ν)、 辛烷值 85、 密度 680千克 /米 3、 镏程 35-105°C、 烯烃含量 48% (v)、 硫 含量 5ppm、 氮含量 2PPm, 该轻抽余油以 46. 429吨 /小时的速度进入醚化装置 3, 与此同 时 4吨 /小时的甲醇 c也进入醚化装置 3, 二者进行醚化反应, 所述醚化装置的入口温度 为 55. 0°C、 压力为 2. 0MPa (G), 出口温度为 74. 7°C、 压力为 1. 8MPa (G), 所得醚化汽油 的主要性能为: 芳烃含量 0. 8% (v)、 辛垸值 90. 5、 密度 705千克 /米 3、 镏程 30-125°C、 烯烃含量 28% (v)、 色度 <0. 5, 该醚化汽油通过管线采出, 采出量为 50. 429 吨 /小时。 所述醚化装置中用的醚化催化剂可以是常规用的醚化催化剂,优选树脂型催化剂,如丹东 明珠特种树脂有限公司生产的 D005、D005-II型树脂催化剂以及河北凯瑞化工有限责任公 司生产的 D006醚化树脂催化剂。
所述抽提塔 1底部采出的抽出油的主要性能为: 芳烃含量 69. 5% (v)、 辛垸值 99、 密 度 820千克 /米 3、 镏程 30-201 °C、硫含量 4226ppm, 该抽出油以 41. 667吨 /小时的速度进 入加氢精制脱硫装置 4 (为发明专利 200910077505. 7中的抽出油加氢装置) 进行加氢精 制脱硫, 所述加氢精制脱硫装置 4的入口温度为 220°C、 入口压力为 3. 0Mpa (G), 氢油比 为 300 : 1 (Nm7m3), 空速 3. Oh— 所述加氢精制脱硫装置中用的加氢催化剂可以常规的加 氢催化剂, 本实施例中用的催化剂为加氢催催化剂 GHT-22, GHT-22的理化性质如下表 1 所示。
表 1
Figure imgf000005_0001
通过加氢精制脱硫后生成的加氢生成油的主要性能: 辛垸值 98. 5、 密度 817 千克 / 米 3、 镏程 28-200°C、 硫含量 4ppm, 该加氢生成油通过管线采出, 采出量为 41. 667吨 / 小时; 所述第一切割塔 2的底部采出的重抽余油的主要性能: 芳烃含量 3% (v)、 密度 746 千克 /米 3、 镏程 110-19(TC、 烯烃含量 40% (v)、 硫含量 72ppm、 氮含量 5ppm, 该重抽余油 以 30. 952吨 /小时的速度与流量为 40. 477吨 /小时的石脑油 b (其主要性能: 密度 715千 克 /米 3、 镏程 30-180°C、 硫含量 260ppm、 氮含量 lppm) 进入重整预处理装置 5中进行预 处理 (脱硫、 脱氮、 脱氯、 脱金属), 得到重整预处理中间体 (其主要性能: 密度 729千 克 /米 3、 镏程 30-190°C、 硫含量小于 lppm、 氮含量小于 lppm、 氯含量小于 lppm、 砷含量 小于 lppb、铅含量小于 lppb、铜含量小于 lppb ) ;所述重整预处理装置 5的压力为 2. 5Mpa (G), 温度为 260°C , 氢油比为 200: 1 (Nm7m3), 空速 4. 0^。 所述重整预处理装置 5中 所用加氢催化剂为加氢催化剂 GHT-22, 其理化性质如表 1所示。
所得重整预处理中间体进入第二切割塔 6进行切割处理, 所述第二切割塔 6的塔顶 温度为 101 °C、 压力为 0. 2Mpa (G)、 回流比(对产品) 为 1. 0m/m, 塔底温度为 188°C、 压 力为 0. 23Mpa (G) ; 所述第二切割塔 6的顶部采出轻石脑油馏分, 该轻石脑油馏分的流量 为 25吨 /小时, 该轻石脑油馏分的主要性能: 辛垸值 65、密度 690千克 /米 3、镏程 30-115 V 所述轻石脑油馏分进入异构化装置 7进行异构化处理, 得到异构化生成油, 该异构化 生成油的主要性能: 辛垸值 81、 密度 680千克 /米 3、 镏程 20-118'C ; 所述异构化装置的 操作条件: 压力 l. OMpa (G), 温度为 200°C, 氢油比为 300: 1 (Nm3/m3), 空速 l. Oh- '。 所 用异构化催化剂为常规的低温贵金属催化剂, 如中国石油抚顺石油三厂催化剂厂生产的 FI— 15铂分子筛催化剂。
所述第二切割塔 6 的底部采出的重整原料进入重整装置 8, 其主要性能: 密度 731 千克 /米 3、 镏程 120-195°C、 水含量 <5ppm; 所述重整装置 8的压力为 1. OMpa (G), 温度 为 480°C, 氢油比为 1000: 1 (Nm7m3), 空速 2. 3h— S 所述重整装置 8中所用催化剂为市 场上可购的半再生重整催化剂 Pt-Re/ A1203 (CB— 7 )。
所述重整装置 8的底部采出重整生成油, 该重整生成油的采出量为 41吨 /小时, 其 主要性能:芳烃含量 51%、辛垸值 98、密度 758千克 /米 3、镏程 20-200 °C、苯含量 0. 5% (v), 所述重整装置 8的顶部采出含有干气的氢气 f (采出量: 2. 2吨 /小时)和液化气 g (采出 量: 3. 229吨 /小时); 所述加氢精制脱硫装置得到的加氢生成油、 所述异构化装置得到的 异构化生成油以及所述重整装置得到的重整生成油进入稳定装置 9进行处理;采出稳定汽 油和液化气 d; 所述稳定装置 9中的稳定塔的塔顶温度为 70°C、 压力为 1. 5Mpa (G)、 回 流比 (对产品) 为 0. 2m/m, 塔底温度为 200°C、 压力为 1. 54Mpa (G)。 所得稳定汽油的采 出量为 104. 762吨 /小时, 其主要性能: 芳烃含量 46% (v)、 辛垸值 94. 3、 密度 759千克 / 米 3、 镏程 31-196°C、 硫含量 2ppm、 苯含量 0. 3% (v) ; 所得液化气 d 的采出量为 2. 905 吨 /小时; 所得稳定汽油与醚化汽油调和得到最终产品低硫高辛垸值汽油 e。
所得低硫高辛垸值汽油 e的主要性能: 芳烃含量 31. 5% (v)、 辛垸值 93. 1、 密度 741 千克 /米 3、 镏程 30-194°C、 烯烃含量 9. 3% (v)、 硫含量 3ppm、 苯含量 0. 2% (v)。
本发明所用抽提塔、 切割塔、 加氢精制脱硫装置分别为专利号为 200910077505. 7的 "组分炼油烃重组后加氢制备高质量汽油的装置及其方法"的中国发明专利中公开的抽提 塔、 蒸馏塔、 抽出油加氢装置。
本发明所用重整装置由以下专利公幵: 一种石脑油多产芳烃重整装置, 公告号:
CN201241102; 一种多产芳烃同时分离出苯的重整装置, 公告号: CN201665667; 一种蒸 发脱水装置带侧线采出的多产芳烃重整装置, 公告号 CN201459048; —种生产抽余油、 苯和混合芳烃的石脑油重整装置, 公告号: CN201459036; —种生产抽余油和混合芳烃的 石脑油重整装置, 公告号: CN201459035 ; —种多产芳烃的重整装置, 公告号: CN201459034 ; 一种蒸发脱水装置带侧线采出且分离出苯的重整装置, 公告号- CN201722339 ; 一种多产芳烃并分离出苯的同时生产煤油的重整装置, 公告号: CN201517089; 一种生产混合芳烃同时生产煤油的重整装置, 公告号: CN201459050; — 种多产芳烃同时生产煤油的重整装置, 公告号: CN201512504; —种生产苯、 混合芳烃和 煤油的重整装置,公告号: CN201459049; 一种改进的石脑油多产芳烃重整装置, 公告号: CN201459047;一种带有侧线切割塔的石脑油多产芳烃重整***,公告号: CN201459046; 一种多产芳烃的重整***, 公告号: CN201459045 ; —种带有溶剂回收***的石脑油多产 芳烃重整***, 公告号: CN201459044; —种石脑油的重整***, 公告号: CN201665668; 一种带有侧线切割***及回收***的石脑油多产芳烃重整***, 公告号: CN201459043 ; 一种石脑油多产芳烃的重整***, 公告号: CN201459042; —种石脑油多产高辛烷值汽油 及多产芳烃的重整***, 公告号: CN201459041 ; —种带有蒸发脱水***的重整***, 公 告号: CN201459038; —种重整***, 公告号: CN201459040; —种带有蒸发脱水***的 重整***, 公告号: CN201459039; —种采出煤油的多产高辛垸值汽油的重整***, 公告 号: CN201459037; —种多产高辛烷值汽油的重整***, 公告号: CN201459053 ; —种釆 出煤油的重整***, 公告号: CN201665669; —种带有蒸发脱水***多产高辛垸值汽油的 重整***,公告号: CN201459052;一种带有蒸发脱水***多产高辛烷值汽油的重整***, 公告号: CN201459051。
本发明中所述稳定装置为常规的装置, 包括塔、 空气冷却器、 水冷却器、 回流罐、 回流泵以及塔底泵等。
本发明所述重整预处理装置、 醚化装置以及异构化装置为本技术领域常用的装置。 本发明所用测定方法为:
1、 馏程: GB/T6536- 1997石油产品蒸馏测定法;
2、 硫含量: SH/T0689-2000轻质烃及发动机燃料和其他油品的总硫含量测定法 (紫 外荧光法) ;
3、 烯烃含量: GB/T11132- 2002液体石油产品烃类测定法 (荧光指示剂吸附法) ; 4、 芳烃含量: GB/T11132- 2002液体石油产品烃类测定法 (荧光指示剂吸附法) ;
5、 辛烷值: GB/T5487 汽油辛烷值测定法 (研究法) ;
6、 密度: GB/T1884- 2000原油和液体石油产品密度实验室测定法 (密度计法);
7、 氮含量: SH/T0704-2001 石油及石油产品中氮含量测定法 (化学发光法) ;
8、 烷烃含量: SH/T0714- 2002 石脑油中单体烃组成测定法 (毛细管气相色谱法) ;
9、 苯含量: SH/T 0713-2002 车用汽油和航空汽油中苯和甲苯含量测定法 (气相 色谱法) ;
10、 水含量: GB/T11133-2004 液体石油产品水含量测定法 (卡尔费休法) 。
工业应用性
本发明通过引入抽提装置(组分炼油烃重组后加氢制备高质量汽油的***及其方法, 申请号 200910077505.7 ) 将原料 FCC汽油中的硫富集于抽出油当中, 减少了加氢精制脱 硫装置的规模, 降低了设备投资以及加氢规模;通过将第一切割塔的底部采出的重抽余油 进入重整预处理装置处理, 增加了重整装置的规模; 通过第二切割塔切割温度的调整, 使 在重整过程中易于生成苯的前体进入异构化装置生成异构化生成油,减少了苯的生成,并 且馏程满足汽油标准, 节省了苯抽提装置及相应的分馏装置, 投资和能耗大幅降低, 同时 提高汽油收率; 通过引入重整装置, 使重整装置降低投资、 提高液收; 同时, 将加氢精制 脱硫装置、 异构化装置以及重整装置分别连接的稳定装置 (***) 合并为一个稳定装置, 减少了稳定装置的使用, 节省投资和能耗; 通过该装置和方法的选择, 使所有汽油产品中 的硫含量降低至 10ppm, 同时提高辛垸值, 降低烯烃含量, 符合欧 V标准。 该装置与方 法在投资, 加氢规模, 产品清洁度、 质量等方面具有明显优势。

Claims

权 利 要 求
1、 一种低成本制造低硫高辛垸值汽油的装置, 其特征在于: 包含抽提装置、 第一切 割塔、 醚化装置、 加氢精制脱硫装置、 重整预处理装置、 第二切割塔、 异构化装置、 重整 装置以及稳定装置;所述抽提装置的顶部通过管线与所述第一切割塔的中部相连接;所述 第一切割塔的顶部通过管线与醚化装置相连接;所述醚化装置与甲醇供应装置相连接;所 述醚化装置通过管线采出汽油产品;所述抽提装置的底部通过管线与加氢精制脱硫装置相 连接,所述加氢精制脱硫装置通过管线与稳定装置相连接;所述第一切割塔的底部通过管 线与重整预处理装置相连接,所述重整预处理装置与所述第二切割塔的中部相连接;所述 第二切割塔的顶部通过管线与异构化装置相连接,所述异构化装置通过管线与所述稳定装 置相连接;所述第二切割塔的底部通过管线与重整装置相连接,所述重整装置的底部通过 管线与所述稳定装置相连接, 所述重整装置的顶部分别采出含有干气的氢气以及液化气; 所述稳定装置分别采出液化气和稳定汽油,所得稳定汽油与所述醚化装置采出的醚化汽油 调和, 得到低硫高辛垸值汽油产品。
2、 一种用权利要求 1所述的装置制造低硫高辛烷值汽油的方法, 其步骤如下: FCC汽油通过管线进入抽提装置进行处理; 抽提装置顶部通过管线采出抽余油, 底 部通过管线采出抽出油;抽余油通过管线进入第一切割塔的中部;所述第一切割塔的顶部 通过管线采出轻抽余油,所述第一切割塔的底部通过管线采出重抽余油;所述轻抽余油通 过管线与醚化装置相连接, 甲醇通过管线进入醚化装置,所述轻抽余油与甲醇在醚化装置 中进行醚化处理, 得到醚化汽油;
所述抽出油通过管线进入加氢精制脱硫装置脱硫, 釆出加氢生成油; 所述第一切割 装置底部得到的重抽余油与石脑油通过管线进入重整预处理装置进行重整预处理,得到的 产品通过管线进入第二切割塔进行切割处理; 所述第二切割塔顶部通过管线采出轻石脑 油,所述第二切割塔底部通过管线采出重整原料;所述轻石脑油通过管线进入异构化装置 进行异构化处理, 得到异构化生成油; 所述重整原料通过管线进入重整装置进行重整; 所 述重整装置的顶部通过管线分别采出含有干气的氢气以及液化气,所述重整装置的底部通 过管线釆出重整生成油;所述加氢生成油、异构化生成油以及重整生成油分别通过管线进 入稳定装置进行处理后,分别采出液化气以及稳定汽油产品;所述稳定汽油与醚化汽油调 和, 得到低硫高辛垸值汽油。
3、 根据权利要求 2所述的低成本制造低硫高辛垸值汽油的方法, 其特征在于: 所述 第二切割塔的塔顶采出熘份的馏程为 30-115°C, 塔底釆出馏份的馏程为 120_195°C。
PCT/CN2012/000859 2011-06-22 2012-06-21 一种低成本制造低硫高辛烷值汽油的装置及其方法 WO2012174860A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12802629.1A EP2725087B1 (en) 2011-06-22 2012-06-21 Device and method for low-cost production of low-sulphur, high-octane gasoline
EA201490093A EA024334B1 (ru) 2011-06-22 2012-06-21 Способ и установка для экономичного получения малосернистого высокооктанового бензина
CA2840100A CA2840100A1 (en) 2011-06-22 2012-06-21 A device of producing low-sulfur high-octane-number gasoline with low cost and method thereof
US14/109,901 US9657245B2 (en) 2011-06-22 2013-12-17 Device of producing low-sulfur high-octane-number gasoline with low cost and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110169487 2011-06-22
CN201110169487.2 2011-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/109,901 Continuation US9657245B2 (en) 2011-06-22 2013-12-17 Device of producing low-sulfur high-octane-number gasoline with low cost and method thereof

Publications (1)

Publication Number Publication Date
WO2012174860A1 true WO2012174860A1 (zh) 2012-12-27

Family

ID=47366744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000859 WO2012174860A1 (zh) 2011-06-22 2012-06-21 一种低成本制造低硫高辛烷值汽油的装置及其方法

Country Status (6)

Country Link
US (1) US9657245B2 (zh)
EP (1) EP2725087B1 (zh)
CN (2) CN202717753U (zh)
CA (1) CA2840100A1 (zh)
EA (1) EA024334B1 (zh)
WO (1) WO2012174860A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202717753U (zh) * 2011-06-22 2013-02-06 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置
CN104178208B (zh) * 2013-05-22 2016-05-11 中石化洛阳工程有限公司 一种石脑油生产高辛烷值汽油的方法
CN103740406A (zh) * 2014-01-21 2014-04-23 湖北金鹤化工有限公司 一种生产低硫汽油的萃取-加氢组合工艺
CN110643380B (zh) * 2019-08-22 2020-10-13 中科合成油工程有限公司 一种将煤热解产物转化为汽油、柴油和氢气的方法
WO2022157795A1 (en) 2021-01-22 2022-07-28 Hindustan Petroleum Corporation Limited Process for the production of ethyl tertiary butyl ethers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540907B1 (en) * 2001-07-09 2003-04-01 Uop Llc Fractionation for full boiling range gasoline desulfurization
CN1470607A (zh) * 2003-07-04 2004-01-28 北京金伟晖工程技术有限公司 一种催化烃重组处理方法
CN1580199A (zh) * 2003-08-05 2005-02-16 中国科学院大连化学物理研究所 一种通过醚化和芳构化反应改质汽油的工艺
CN1621497A (zh) * 2003-11-24 2005-06-01 北京金伟晖工程技术有限公司 一种石脑油重组处理方法
CN101475833A (zh) * 2009-01-22 2009-07-08 北京金伟晖工程技术有限公司 组分炼油烃重组后加氢制备高质量汽油的***及其方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747933A (en) * 1987-03-27 1988-05-31 Uop Inc. Isomerization unit with integrated feed and product separation facilities
US5198097A (en) * 1991-11-21 1993-03-30 Uop Reformulated-gasoline production
FR2771419B1 (fr) * 1997-11-25 1999-12-31 Inst Francais Du Petrole Essences a haut indice d'octane et leur production par un procede associant hydro-isomerisation et separation
US7052598B2 (en) * 2001-03-12 2006-05-30 Institut Francais Du Petrole Process for the production of gasoline with a low sulfur content comprising a hydrogenation, a fractionation, a stage for transformation of sulfur-containing compounds and a desulfurization
ATE551413T1 (de) * 2003-07-04 2012-04-15 Beijing Grand Golden Bright Engineering & Technologies Co Ltd Verfahren zur rekombination von katalytischen kohlenwasserstoffen
US7341657B2 (en) * 2003-12-22 2008-03-11 China Petroleum & Chemical Corporation Process for reducing sulfur and olefin contents in gasoline
FR2888583B1 (fr) * 2005-07-18 2007-09-28 Inst Francais Du Petrole Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans
FR2889539B1 (fr) * 2005-08-08 2011-05-13 Inst Francais Du Petrole Procede de desulfuration des essences comportant une desulfuration par adsorption de la fraction legere et une hydrodesulfuration de la fraction lourde
JP5123635B2 (ja) * 2007-10-12 2013-01-23 Jx日鉱日石エネルギー株式会社 ガソリン基材の製造方法及びガソリン
WO2009067885A1 (fr) * 2007-11-09 2009-06-04 Ranfeng Ding Système et procédé de fabrication d'essence de qualité élevée par recombinaison catalytique d'hydrocarbures
EP2233550B1 (en) * 2007-11-09 2014-04-30 Ranfeng Ding A system and a process for recombining catalytic hydrocarbon to produce high quality gasoline
US8043495B2 (en) * 2008-01-25 2011-10-25 Catalytic Distillation Technologies Process to hydrodesulfurize FCC gasoline resulting in a low-mercaptan product
US8236172B2 (en) * 2008-01-25 2012-08-07 Catalytic Distillation Technologies Process to hydrodesulfurize FCC gasoline resulting in a low-mercaptan product
US8349754B2 (en) * 2008-03-26 2013-01-08 Council Of Scientific & Industrial Research Modified zeolite catalyst useful for the conversion of paraffins, olefins and aromatics in a mixed feedstock into isoparaffins and a process thereof
CN101597519B (zh) * 2008-06-04 2013-02-06 北京金伟晖工程技术有限公司 一种石脑油多产芳烃重整***及其方法
WO2010083642A1 (zh) * 2009-01-21 2010-07-29 北京金伟晖工程技术有限公司 催化烃重组后加氢制备高质量汽油的***和方法
US8486258B2 (en) * 2010-04-01 2013-07-16 Catalytic Distillation Technologies Gasoline hydrodesulfurization and membrane unit to reduce mercaptan type sulfur
US20120048778A1 (en) * 2010-08-25 2012-03-01 Catalytic Distillation Technologies Selective desulfurization of fcc gasoline
CN102465044B (zh) * 2010-11-15 2014-05-07 周向进 一种联合生产低辛烷值汽油和高辛烷值汽油的方法
CN202717753U (zh) * 2011-06-22 2013-02-06 北京金伟晖工程技术有限公司 一种低成本制造低硫高辛烷值汽油的装置
US20130165717A1 (en) * 2011-12-23 2013-06-27 Exxonmobil Research And Engineering Company Process for increased production of fcc gasoline
FR2993569B1 (fr) * 2012-07-17 2015-12-04 IFP Energies Nouvelles Procede de desulfuration d'une essence
FR2993570B1 (fr) * 2012-07-17 2015-12-04 IFP Energies Nouvelles Procede de production d'une essence legere basse teneur en soufre

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540907B1 (en) * 2001-07-09 2003-04-01 Uop Llc Fractionation for full boiling range gasoline desulfurization
CN1470607A (zh) * 2003-07-04 2004-01-28 北京金伟晖工程技术有限公司 一种催化烃重组处理方法
CN1580199A (zh) * 2003-08-05 2005-02-16 中国科学院大连化学物理研究所 一种通过醚化和芳构化反应改质汽油的工艺
CN1621497A (zh) * 2003-11-24 2005-06-01 北京金伟晖工程技术有限公司 一种石脑油重组处理方法
CN101475833A (zh) * 2009-01-22 2009-07-08 北京金伟晖工程技术有限公司 组分炼油烃重组后加氢制备高质量汽油的***及其方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725087A4 *

Also Published As

Publication number Publication date
EP2725087A4 (en) 2014-05-21
CN202717753U (zh) 2013-02-06
EP2725087A1 (en) 2014-04-30
CA2840100A1 (en) 2012-12-27
EA201490093A1 (ru) 2014-04-30
CN102839021A (zh) 2012-12-26
US20140101989A1 (en) 2014-04-17
EP2725087B1 (en) 2015-09-16
EA024334B1 (ru) 2016-09-30
US9657245B2 (en) 2017-05-23

Similar Documents

Publication Publication Date Title
CN106047404B (zh) 一种劣质催化裂化柴油增产高辛烷值汽油的组合工艺方法
WO2012174860A1 (zh) 一种低成本制造低硫高辛烷值汽油的装置及其方法
CN102382678B (zh) 一种焦化汽油生产芳烃的方法
CN104277879B (zh) 一种中低温煤焦油的两级浆态床加氢工艺
CN201158633Y (zh) 一种催化烃重组制备高质量汽油的***
CN103695032A (zh) 一种重质柴油的改质方法
WO2010083642A1 (zh) 催化烃重组后加氢制备高质量汽油的***和方法
CN103740406A (zh) 一种生产低硫汽油的萃取-加氢组合工艺
CN104277878B (zh) 一种高温煤焦油的两级浆态床加氢工艺
CN103756721B (zh) 一种生产低硫汽油的萃取-洗涤-加氢组合工艺
CN103614160B (zh) 一种重质润滑油基础油生产***及生产方法
CN102703118B (zh) 柴油的制备方法
CN104419438B (zh) 一种混有中低温煤焦油的煤直接液化工艺
CN109851468B (zh) 一种医药中间体十六氢芘的制备方法
CN115216341A (zh) 一种中低温煤焦油加工***及加工方法
CN102703117B (zh) 柴油的制备方法
WO2009067893A1 (fr) Système et procédé de recombinaison d&#39;hydrocarbure catalytique pour produire une essence de haute qualité
WO2009067885A1 (fr) Système et procédé de fabrication d&#39;essence de qualité élevée par recombinaison catalytique d&#39;hydrocarbures
CN111826197B (zh) 一种由石脑油生产汽油的方法
CN103087770A (zh) 一种催化汽油选择性加氢脱硫生产清洁汽油的方法
CN103773491A (zh) 提高重质柴油质量的方法
CN101921624B (zh) 一种抽出油加氢制备高质量柴油的方法
CN108130128B (zh) 一种煤基化学品的生产新工艺
CN108117887B (zh) 一种煤焦油加氢生产十六氢芘的工艺方法
CN109852420B (zh) 一种十六氢芘的制取与提纯工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012802629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2840100

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201490093

Country of ref document: EA