WO2012173223A1 - Multilayer bearing manufacturing method and multilayer bearing - Google Patents

Multilayer bearing manufacturing method and multilayer bearing Download PDF

Info

Publication number
WO2012173223A1
WO2012173223A1 PCT/JP2012/065333 JP2012065333W WO2012173223A1 WO 2012173223 A1 WO2012173223 A1 WO 2012173223A1 JP 2012065333 W JP2012065333 W JP 2012065333W WO 2012173223 A1 WO2012173223 A1 WO 2012173223A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
bearing
manufacturing
metal
Prior art date
Application number
PCT/JP2012/065333
Other languages
French (fr)
Japanese (ja)
Inventor
石井 卓哉
芳郎 沖
林 達也
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2012173223A1 publication Critical patent/WO2012173223A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/208Methods of manufacture, e.g. shaping, applying coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/0055Shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14008Inserting articles into the mould
    • B29C45/14016Intermittently feeding endless articles, e.g. transfer films, to the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings
    • B29L2031/045Bushes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/02Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/02Plastics; Synthetic resins, e.g. rubbers comprising fillers, fibres
    • F16C2208/04Glass fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/30Fluoropolymers
    • F16C2208/32Polytetrafluorethylene [PTFE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/58Several materials as provided for in F16C2208/30 - F16C2208/54 mentioned as option
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/66Acetals, e.g. polyoxymethylene [POM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/76Polyolefins, e.g. polyproylene [PP]
    • F16C2208/78Polyethylene [PE], e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/44Shaping by deformation without removing material by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/46Shaping by deformation without removing material by forging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/80Shaping by separating parts, e.g. by severing, cracking
    • F16C2220/84Shaping by separating parts, e.g. by severing, cracking by perforating; by punching; by stamping-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/44Coating surfaces by casting molten material on the substrate

Definitions

  • the present invention relates to a method for manufacturing a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate. More specifically, the present invention relates to a method for manufacturing a multilayer bearing by continuous injection molding using a metal hoop material.
  • Multi-layer bearings in which polyether ether ketone (hereinafter referred to as PEEK) resin, polyamide resin, liquid crystal polymer, etc. are coated instead of PTFE resin are known.
  • PEEK polyether ether ketone
  • a bronze intermediate layer is sintered on a metal base metal, a lining material layer is applied to a sintered product, and heat and pressure are applied to the lining, intermediate layer and base metal, and the lining is 60 to 90% by weight.
  • a plain bearing is proposed which is a substance having a composition comprising a mixture of PEEK resin, 15 to 3.7% by weight of PTFE resin, 5 to 1.3% by weight of graphite and 20 to 5% by weight of bronze ( Patent Document 1).
  • a wet multilayer sliding member comprising a backing metal layer, a porous sintered layer provided on the backing metal layer, and a surface layer substantially made of PEEK resin impregnated / coated on the porous sintered layer
  • a surface layer substantially made of PEEK resin impregnated / coated on the porous sintered layer has been proposed (see Patent Document 2).
  • PPS polyphenylene sulfide
  • the present invention has been made in order to cope with such problems, and a multi-layer bearing having excellent properties such as creep resistance, low friction and wear resistance under high surface pressure, high quality, and
  • An object of the present invention is to provide a method of manufacturing a multi-layer bearing that can be manufactured at low cost with high productivity.
  • the method for producing a multi-layer bearing according to the present invention is a method for producing a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate, the metal hoop material being continuous in a strip shape, A pressing step for continuously forming a plurality of plate-like parts to be a plate, and the metal hoop material is continuously supplied to an injection molding machine, and a synthetic resin is formed on at least one surface of the plate-like part with a base resin.
  • An injection molding step of injection molding a resin layer using a resin composition as a material, and a separation step of separating the metal plate on which the resin layer is formed from the metal hoop material to form a multi-layer bearing It is characterized by that.
  • a step of forming a sintered layer on the resin layer molding surface of the metal hoop material is included before the pressing step.
  • the plate-like portion obtained in the pressing step has at least two uncut portions with the metal hoop material, and in the separation step, the uncut portion is cut to replace the metal plate with the metal hoop material. It is characterized by separating from.
  • the method includes a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape.
  • a step of bending the metal plate on which the resin layer is formed is provided.
  • the resin layer has a thickness of 0.1 to 0.7 mm.
  • a groove is formed on the surface of the resin layer.
  • the above-mentioned synthetic resin is at least one selected from thermoplastic polyimide resin, polyetherketone resin, PEEK resin, PPS resin, polyamideimide resin, polyamide resin, polyethylene resin, and polyacetal resin.
  • the resin composition includes a PTFE resin.
  • the resin composition includes at least one fibrous reinforcing material selected from glass fibers and carbon fibers.
  • the average fiber length of the fibrous reinforcing material is 20 to 200 ⁇ m.
  • the multi-layer bearing of the present invention is a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate, and is manufactured by the manufacturing method of the present invention.
  • the multilayer bearing is a thrust multilayer bearing, a radial multilayer bearing, or a radial and thrust multilayer bearing.
  • the manufacturing method of the multi-layer bearing of the present invention includes a pressing step in which a plurality of plate-like portions to be metal plates are continuously formed on a continuous metal hoop material, and a metal hoop material is continuously supplied to an injection molding machine. Then, an injection molding process in which a resin layer is injection-molded using a synthetic resin-based resin composition as a material on at least one surface of the plate-like portion, and a metal plate on which the resin layer is formed is formed into a metal hoop. Since it is provided with a separation step that separates from the material to form a multi-layer bearing, the handling of the manufactured product is good and the productivity is excellent.
  • the multi-layer bearing can be manufactured with high quality and high productivity at low cost.
  • the adhesion between the injection molded resin layer and the metal plate (sintered layer) is increased, and the safety factor is increased. High-quality products can be manufactured.
  • the plate-like part obtained by the pressing step has an uncut portion with at least two metal hoop materials, and in the separation step, the uncut portion is cut to separate the metal plate from the metal hoop material.
  • the twist of the metal plate in the process can be prevented.
  • the metal hoop material can be easily fixed with the mold when continuously supplied to the injection molding machine.
  • a multi-layer bearing that is versatile and suitable for use can be manufactured by providing a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape or a step of bending the metal plate. .
  • a radial multi-layer bearing (winding bush) can be easily manufactured together with the above manufacturing process.
  • the thickness of the resin layer By making the thickness of the resin layer thin (0.1 to 0.7 mm), heat generated by frictional heat easily escapes from the friction surface to the metal plate, making it difficult to store heat. Further, the load resistance is high, and the amount of change is small even under high surface pressure. As a result, the real contact area on the friction surface is also reduced, the frictional force and frictional heat generation are reduced, and there are also the advantages of reducing wear and suppressing an increase in the friction surface temperature.
  • the resulting multilayer bearing is under fluid lubrication of oil, water, chemicals, etc.
  • the frictional shear force is reduced, resulting in low friction and low wear. Further, since these are formed at the time of molding, post-processing (machining) of the resin layer is unnecessary, and a multi-layer bearing can be manufactured at low cost.
  • the synthetic resin is at least one selected from thermoplastic polyimide resin, polyetherketone resin, PEEK resin, PPS resin, polyamideimide resin, polyamide resin, polyethylene resin, and polyacetal resin.
  • a multi-layer bearing having high load resistance, low high surface pressure creep, and excellent wear resistance is manufactured. it can.
  • the injection moldability is stable even if the resin layer has a thin thickness of 0.1 to 0.7 mm.
  • a multi-layer bearing, a thrust multi-layer bearing, a radial multi-layer bearing, and a radial / thrust multi-layer bearing with stable quality can be supplied at low cost.
  • FIG. 1 is a schematic view of the manufacturing process.
  • the manufacturing method of the multilayer bearing of this invention has (1) First, as a press process, it has the process of forming continuously the plate-shaped part 2a used as the metal plate 2 in the metal hoop material 1 continuous in strip
  • a plurality of plate-like portions 2a to be metal plates 2 are continuously formed on a metal hoop material 1 that is continuous in a band shape.
  • the material of the metal hoop material 1 is not particularly limited as long as it is a metal plate-like material having high thermal conductivity such as steel, such as SPCC and SPCE, stainless steel, aluminum, and copper.
  • a steel plate is preferred because it is inexpensive and provides adhesion to the resin layer.
  • the metal hoop material 1 is preferably formed with a sintered layer on the resin layer molding surface before the pressing step. This is because the adhesion between the metal plate 2 and the resin layer 4 can be remarkably improved by the anchor effect of the sintered layer. Thereby, the obtained multi-layer bearing becomes a three-layer structure of a metal plate, a sintered layer, and a resin layer (see FIG. 3 and the like).
  • This sintered layer is formed by, for example, uniformly spraying a sintered metal powder on the surface of the metal hoop material 1 and heating and pressing it.
  • the material of the sintered layer may be any of iron, copper iron, stainless steel, and copper.
  • the metal plate and the sintered layer have similar or the same material because the adhesion between the metal plate and the sintered layer is improved.
  • the material of a sintered layer is copper type
  • lead-containing materials such as lead bronze.
  • the thickness of the metal hoop material 1 is the thickness of the metal plate 2 (plate-like portion 2a).
  • the thickness of the metal hoop material 1 will not be specifically limited if the use in the said manufacturing process is possible. In order to enable the obtained multilayer bearing to be stably used under high surface pressure, it is preferable that the thickness is thicker than the resin layer 4. Specifically, the thickness is preferably 0.5 to 5 mm, and more preferably 0.7 to 2.5 mm.
  • the press machine and method in the pressing step are not particularly limited as long as a required shape (plate-like portion 2a) is punched out and punched, and a plurality of plate-like portions 2a to be the metal plate 2 can be continuously formed. . Further, the shape of the plate-like portion 2a is made to match the required multi-layer bearing. In order to pour resin at the time of injection molding and physically hold and fix the resin layer 4 to the metal plate 2, the following shapes can be added. For example, a plurality of holes are made in the plate-like portion 2a (metal plate 2), and a cutout is provided on the side surface to wrap around the resin.
  • the plate-like portion 2a is preferably provided with the metal hoop material 1 and at least two uncut portions 2b.
  • the metal hoop material 1 is continuously supplied to the injection molding machine and can be easily fixed in the mold during injection molding.
  • the uncut portions 2c may be provided between the continuous plate portions 2a to connect the plate portions 2a to each other.
  • the uncut portions 2b and 2c are provided at a total of four or more.
  • the position of the uncut portion is not particularly limited and may be any problem in use. However, in the case where a cylindrical bearing is rounded, if an uncut part is provided at the joint, interference occurs after the rounding process.
  • FIG. 2 The schematic of an injection molding process is shown in FIG.
  • the metal hoop material 1 is continuously supplied to the mold 3a of the injection molding machine 3, and a resin composition having a synthetic resin as a base resin is used as a material on at least one surface of the plate-like portion 2a.
  • the resin layer 4 is injection molded.
  • this injection molding process hoop molding
  • a series of steps including insertion of the metal hoop material 1 into the mold 3a, mold closing, resin injection into the cavity, mold opening, and feeding of the metal hoop material 1 (molding part removal). The operation is performed continuously and stepwise.
  • the resin layer 4 may be provided partially in consideration of the post-process and the bearing function.
  • the injection molding method vertical type, horizontal type
  • the injection molding surface is always one surface of the metal hoop material, and therefore the front / back determination of the metal hoop material is only required for the first time.
  • the supply to the mold is continuously performed, it is not necessary to insert individual metal plates.
  • a molten resin is poured onto the surface of a metal hoop material (metal plate) at a high speed. Therefore, even when PEEK resin or PPS resin is used as a base resin, the resin is porous by shearing force. It is easy to enter the sintered layer.
  • the thickness of the resin layer is controlled by the mold 3a, the thickness can be easily controlled as compared with the case where the resin layer is formed by impregnation coating or hot plate pressing.
  • the thickness of the resin layer 4 is preferably 0.1 to 0.7 mm. Functionally, if the thickness of the resin layer exceeds 0.7 mm, it is difficult for heat due to friction to escape from the friction surface to the bearing base material, and the friction surface temperature may increase. In addition, the amount of deformation due to the load increases, and the true contact area on the friction surface also increases. As a result, the frictional force and frictional heat generation are increased, and the seizure property may be reduced. On the other hand, if the thickness of the resin layer is less than 0.1 mm, the lifetime during long-term use may be shortened. In consideration of injection moldability, the thickness of the resin layer is preferably 0.2 to 0.7 mm.
  • the thickness of the resin layer is less than 0.2 mm, it is limited to the manufacture of small parts, and if it exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced.
  • the thickness of the resin layer is preferably 0.2 to 0.5 mm.
  • fluid dynamic pressure grooves (see FIG. 1), grooves such as lubrication grooves, concave or convex dimples, and the like can be formed on the surface of the resin layer 4. Since the required surface shape and pattern are formed by transferring the mold during injection molding, product design with a high degree of freedom is possible. By setting on the mold side, the depth and width of the groove and the like can be easily changed depending on the position. Forming a fluid dynamic pressure groove having a depth of 5 to 20 ⁇ m by machining is not practical and difficult in practice.
  • the shape of the fluid dynamic pressure groove, lubrication groove, concave or convex dimple is not particularly limited. Under the lubrication of oil, water, chemicals, etc., by providing a fluid dynamic pressure groove, dynamic pressure can be generated and the friction coefficient can be lowered.
  • the lubrication groove, the concave or convex dimples can be fluid lubricated on the sliding surface, reduce the frictional shear force, and reduce the friction and wear. Fluid dynamic pressure grooves, lubrication grooves, and concave or convex dimples also have the effect of reducing the friction coefficient due to surface pressure dependency by increasing the surface pressure and increasing the surface pressure even under non-lubricated conditions (dry). .
  • the metal plate 2 on which the resin layer 4 is formed is separated from the metal hoop material 1 by a press machine or the like.
  • the uncut portions 2b, 2c, etc. are cut during the separation.
  • gate processing for injection molding may be performed at the same time.
  • the multilayer bearing 6 is obtained.
  • the surface of the resin layer 4 becomes a sliding surface, and is excellent in sliding characteristics under high surface pressure.
  • FIG. 3 is a perspective view of a thrust multi-layer bearing.
  • the multilayer bearing 7 is a three-layer structure in which a sintered layer 5 is formed on the surface of a metal plate 2 and a resin layer 4 is injection-molded thereon. 2d in the figure is a cut mark of an uncut portion cut in the separation step.
  • a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape or a half-cracked shape and a step of bending can be provided.
  • FIG. 4 shows another example of the multilayer bearing manufactured by the manufacturing method of the present invention.
  • FIG. 4 is a perspective view of a radial multi-layer bearing that supports a radial load.
  • the multi-layer bearing 8 can be manufactured by separating the metal plate 2 on which the resin layer 4 is formed from the metal hoop material and then rounding the metal plate 2 into a cylindrical shape. 2d in the figure is a cut mark of an uncut portion cut in the separation step. During the rounding process, stress is applied to the inner resin layer 4 together with the metal plate 2. In order to disperse the stress, it is preferable to form a large number of independent resin layers 4 on the surface of the metal plate 2 instead of the continuous (unbroken) resin layer 4 in the injection molding process.
  • Examples of the shape of the independent resin layer 4 include a method in which the inner surface of the wound bush is divided into at least 4 parts, preferably 8 parts in the circumferential direction, in addition to circles and squares.
  • an axial groove can be formed at a predetermined interval in the circumferential direction instead of an independent resin layer.
  • the resin layer may be on the outer diameter side as necessary.
  • the circumferential length of the radial multi-layer bearing is the length of the metal plate 2 in the winding direction.
  • the inner diameter of the radial multi-layer bearing is not particularly limited, but when the resin layer thickness is 0.1 to 0.7 mm, the inner diameter is preferably 1 mm to 100 mm, and more preferably 3 mm to 30 mm. If the resin layer is too thick relative to the inner diameter of the radial multi-layer bearing, the rounding process may be difficult, and it is necessary to employ the above-mentioned means for stress distribution.
  • FIG. 5 shows another example of the multi-layer bearing manufactured by the manufacturing method of the present invention.
  • FIG. 5 is a perspective view of a radial and thrust multi-layer bearing that supports a radial load and an axial load.
  • the multi-layer bearing 9 can be manufactured by separating the metal plate 2 on which the resin layer 4 is formed from the metal hoop material 1, bending one side of the metal plate 2 at a right angle, and further rounding into a cylindrical shape.
  • . 2d in the figure is a cut mark of an uncut portion cut in the separation step.
  • the multi-layer bearing 9 is a flanged winding bush whose bent portion is a flange 8a.
  • a metal plate 2 on which the resin layer 4 is formed can be manufactured by simply bending after separating it from the metal hoop material.
  • the stress concentrates on the bent portion, so that there is a risk that the resin layer will peel off. Therefore, when bending at least 30 degrees or more, it is preferable not to injection-mold the resin layer in the bent portion in the injection molding process. If the performance is not impaired, the non-sliding portion of the metal plate may be subjected to galvanization, chromate treatment, nickel plating or the like for the purpose of rust prevention.
  • the resin composition used as the material for the resin layer in the injection molding process will be described below.
  • the synthetic resin used as the base resin of the resin composition is not particularly limited as long as it can satisfy the required characteristics of the multilayer bearing and can be injection-molded.
  • Examples of the synthetic resin that can be used in the present invention include thermoplastic polyimide resins, polyether ketone resins, PEEK resins, PPS resins, polyamideimide resins, polyamide resins, polyethylene resins, and polyacetal resins. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed.
  • a heat-resistant synthetic resin having a heat distortion temperature (ASTMAD648) of 180 ° C. or higher.
  • a heat resistant synthetic resin include PEEK resin, PPS resin, thermoplastic polyimide resin, and polyamideimide resin.
  • PES resin and PEEK resin are a kind of so-called super engineering plastics, and are synthetic resins that have been used in a high temperature atmosphere in recent years.
  • the PPS resin is a crystalline thermoplastic resin having a polymer structure represented by the following formula (1) in which the benzene ring is connected to the para position by a sulfur bond.
  • the PPS resin having the structure of the following formula (1) has a melting point of about 280 ° C. and a glass transition point of 93 ° C., extremely high rigidity, excellent heat resistance, dimensional stability, wear resistance, sliding characteristics, etc.
  • a crosslinked type a semi-crosslinked type, a linear type, and a branched type.
  • the PPS resin can be used without being limited to these molecular structures and molecular weights.
  • PPS resins that can be used in the present invention include Tosoh # 160, B-063, DIC T4AG, LR-2G, and the like.
  • the PEEK resin is a crystalline thermoplastic resin having a polymer structure represented by the following formula (2) in which the benzene ring is connected to the para position by a carbonyl group and an ether bond.
  • the PEEK resin having the structure of the following formula (2) has a melting point of about 340 ° C. and a glass transition point of 143 ° C., and has excellent heat resistance, creep resistance, load resistance, wear resistance, sliding properties, etc. In addition, it has excellent moldability.
  • PEEK resins examples include PEEK manufactured by Victrex (90P, 150P, 380P, 450P, etc.), KetaSpire manufactured by Solvay Advanced Polymers (KT-820P, KT-880P, etc.), Daicel Degussa VESTAKEEEP made by the company (1000G, 2000G, 3000G, 4000G, etc.) etc. are mentioned.
  • PE resin has a wide range of molecular weight PE ranging from low molecular weight to ultra high molecular weight.
  • ultra-high molecular weight PE cannot be injection molded, it cannot be used in the present invention.
  • the higher the molecular weight of PE the higher the material properties and wear resistance. Therefore, high molecular weight PE that can be injection-molded is preferred.
  • Examples of commercially available PE resins that can be used in the present invention include Lübmer L5000 and L4000 manufactured by Mitsui Chemicals.
  • Polyamide resins that can be used in the present invention include polyamide 6 (PA6) resin, polyamide 6-6 (PA66) resin, polyamide 6-10 (PA610) resin, polyamide 6-12 (PA612) resin, and polyamide 4-6 (PA46). ) Resin, polyamide 9-T (PA9T) resin, modified PA9T resin, polyamide 6-T (PA6T) resin, modified PA6T resin, polymetaxylene adipamide (polyamide MXD-6) resin, and the like.
  • PA9T polyamide 9-T
  • PA9T modified PA9T resin
  • PA6T polyamide 6-T
  • PA6T polymetaxylene adipamide
  • a number represents the number of carbon atoms between amide bonds
  • T represents a terephthalic acid residue.
  • polyacetal resins there are three types of polyacetal resins that can be used in the present invention: homopolymers, copolymers, and block copolymers.
  • thermoplastic polyimide resin which can be used by this invention, the Aurum by Mitsui Chemicals is mentioned, for example.
  • the PTFE resin used in the present invention may employ any of molding powder by suspension polymerization method, fine powder by emulsion polymerization method, and recycled PTFE.
  • recycled PTFE that is difficult to be fiberized by shearing at the time of molding and that does not easily increase the melt viscosity.
  • Regenerated PTFE is a powder that has been irradiated with a heat-treated powder (heated history added), ⁇ -rays or electron beams.
  • a powder obtained by heat-treating molding powder or fine powder a powder obtained by further irradiating this powder with ⁇ -rays or an electron beam, a powder obtained by pulverizing a molding powder or a molded product of fine powder, and then a ⁇ -ray or electron beam.
  • a powder obtained by heat-treating molding powder or fine powder a powder obtained by further irradiating this powder with ⁇ -rays or an electron beam
  • a powder obtained by pulverizing a molding powder or a molded product of fine powder a powder obtained by pulverizing a molding powder or a molded product of fine powder.
  • PTFE resin Commercial products of PTFE resin include: Kitamura Co., Ltd .: KTL-610, KTL-350, KTL-8N, KTL-400H, Mitsui DuPont Fluoro Chemical Co., Ltd .: Teflon (registered trademark) 7-J, Asahi Glass Co., Ltd .: Fullon G163, L169J, L170J, L173J, Daikin Industries, Ltd .: Polyflon M-15, Lubron L-5, Hoechst: Hostaflon TF9205, TF9207, and the like.
  • PTFE modified with a side chain group having a perfluoroalkyl ether group, a fluoroalkyl group, or other fluoroalkyl may be used.
  • Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-8F, Asahi Glass Co., Ltd .: Fullon L169J, L170J, L173J etc. are mentioned.
  • the blending ratio of the PTFE resin is preferably 3 to 30% by volume, more preferably 5 to 20% by volume with respect to the entire resin composition. If the blending amount of the filler exceeds 30% by volume, the creep resistance of the resin layer may be lowered. On the other hand, when the blending amount of the filler is less than 3% by volume, the effect of improving the low friction property of the resin layer is hardly exhibited.
  • At least one fibrous reinforcing material selected from glass fiber and carbon fiber is blended in order to improve the elastic modulus, load resistance, creep resistance, and wear resistance of the obtained multilayer bearing. Is preferred.
  • the glass fiber and carbon fiber used in the present invention may be used alone or in combination of two or more.
  • the surface of the fibrous reinforcing material is epoxy resin, polyamide resin, polycarbonate resin, polyacetal Surface treatment may be performed using a treatment agent containing a resin or the like, a silane coupling agent (silane treatment), or the like.
  • Glass fibers for use in the present invention are those derived from inorganic glass SiO 2, B 2 O 3, Al 2 O 3, CaO, Na 2 O, K 2 O, MgO, etc. Fe 2 O 3 as a component
  • alkali-free glass (E glass), alkali-containing glass (C glass, A glass) and the like can be used.
  • E glass is about 52 to 56% by weight of SiO 2 , about 8 to 13% by weight of B 2 O 3 , about 12 to 16% by weight of Al 2 O 3 , about 15 to 25% by weight of CaO, Na 2 O or K 2 O contains more than 0 and about 1 wt% or less, and MgO contains more than 0 and about 6 wt% or less.
  • the tensile strength is about 300 ⁇ 400kgf / mm 2, about 350 kgf / mm 2 on average, elastic modulus, include those of about 7400 ⁇ 7700kgf / mm 2, tensile strength, modulus of elasticity, Overall, it is excellent in terms of mass productivity and price.
  • Examples of commercially available glass fibers that can be used in the present invention include milled fibers manufactured by Asahi Fiber Glass Co., Ltd. (MF06JB1-20, 20JJH1-20, 06MW2-20, 20MH2-20, etc.), and milled fibers manufactured by Central Glass Co., Ltd. (EFH75- 01, EFH100-31, EFH150-01, EFH150-31, EFDE50-01, etc.).
  • the carbon fibers used in the present invention may be either pitch-based or PAN-based ones classified from raw materials, but PAN-based carbon fibers having a high elastic modulus are preferred.
  • the calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the sliding partner metal is hardly damaged by wear.
  • the average fiber diameter of the carbon fibers is 20 ⁇ m or less, preferably 5 to 15 ⁇ m. Thick carbon fibers that exceed the above range generate extreme pressure, so the effect of improving load resistance is poor, and when the sliding contact material is an aluminum alloy or non-quenched steel material, wear damage of the counterpart material is increased, which is preferable. Absent.
  • Kureha Kurekamildo M101S, M101F, M101T, M107S, M1007S, M201S, M207S
  • Donakabo Mildo S241, S244, SG241 and SG244
  • examples of the PAN system include Tenax HTA-CMF0160-0H and CMF0070-0H manufactured by Toho Tenax Co., Ltd.
  • Glass fiber and carbon fiber may be chopped fiber or milled fiber, but milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability.
  • the average fiber length of the fibrous reinforcing material is preferably 20 to 200 ⁇ m. If it is less than 20 ⁇ m, a sufficient reinforcing effect cannot be obtained, and the creep resistance and wear resistance may be inferior. When the thickness exceeds 200 ⁇ m, the ratio of the fiber length to the thickness of the resin layer becomes large, so that the thin-wall moldability may be deteriorated.
  • the fiber length exceeds 200 ⁇ m, the thin-wall moldability is hindered.
  • an average fiber length of 20 to 100 ⁇ m is preferable.
  • the blending ratio of the fibrous reinforcing material is preferably 5 to 30% by volume with respect to the entire resin composition. Even if the blending amount of the fibrous reinforcing material exceeds 30% by volume, the elastic modulus, load resistance, wear resistance and the like of the resin layer are difficult to increase, and the adhesion strength with the base may be reduced. On the other hand, when the blending amount of the fibrous reinforcing material is less than 5% by volume, the effect of improving the elastic modulus, load resistance, and wear resistance of the resin layer is hardly exhibited.
  • friction property improvers such as graphite, boron nitride, molybdenum disulfide and tungsten disulfide
  • colorants such as carbon powder, iron oxide and titanium oxide
  • heat conduction such as graphite and metal oxide powder.
  • the means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. In the injection molding process, injection molding is performed using the molding pellets.
  • the multi-layer bearing of the present invention comprises, for example, a resin layer having a thickness of 0.1 to 0.7 mm and a metal plate. Since the resin layer is a frictional sliding surface, it is excellent in frictional wear characteristics and the like, and since the metal plate is a bearing base material, it is excellent in heat dissipation and load resistance of frictional heat generation. Therefore, for example, it can be used as a sliding bearing for household / car air conditioner compressors, transmissions for automobiles and construction machines, hydraulic equipment and the like.
  • the multi-layer bearing manufactured by the manufacturing method of the present invention is not particularly limited in shape, and can support one or both of a radial load and an axial load. Specifically, a thrust laminated bearing, a radial laminated bearing, and a radial and thrust laminated bearing as described above can be used.
  • the multi-layer bearing manufacturing method of the present invention is easy to insert a metal plate into a mold, has good handling in the process, and is excellent in productivity.
  • the multi-layer bearing manufactured by this manufacturing method is excellent in creep resistance, low friction and wear resistance under high surface pressure. Therefore, it can be suitably used as a substitute for rolling bearings and thrust needle bearings used in household / car air conditioner compressors, transmissions such as automobiles and construction machines, hydraulic equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a multilayer bearing manufacturing method capable of manufacturing a multilayer bearing having excellent characteristics such as creep resistance, low frictional properties, and abrasion resistance under high contact pressure inexpensively with high quality and high productivity. The method is provided with: a pressing step of continuously forming a plurality of plate-shaped parts (2a) that become metal plates (2) on a belt-shaped continuous metal hoop member (1); an injection molding step of continuously supplying the metal hoop member (1) to an injection molding machine and injection-molding a resin layer (4) using, as a material, a resin composite having a synthetic resin as a base resin on at least one surface of the plate-shaped part (2a); and a separation step of separating the metal plate (2) on which the resin layer (4) is formed from the metal hoop member (1) to obtain a multilayer bearing (6). The method is further provided with a step of rolling up the metal plate into a cylindrical shape after the separation step.

Description

複層軸受の製造方法および複層軸受Multilayer bearing manufacturing method and multilayer bearing
 本発明は、金属板の表面に摺動面となる樹脂層が射出形成されてなる複層軸受の製造方法に関する。さらに詳しくは、金属フープ材を用いた連続的な射出成形により複層軸受を製造する方法に関する。 The present invention relates to a method for manufacturing a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate. More specifically, the present invention relates to a method for manufacturing a multilayer bearing by continuous injection molding using a metal hoop material.
 金属製転がり軸受のすべり代替提案は、樹脂材だけではなく、焼結材でも諸提案がされてきた。樹脂材だけでは、耐荷重性、耐熱性が充分ではなく、焼結材ではオイル枯渇時の焼き付き問題があった。その対策として、鋼板の表面に銅系焼結層を設け、その焼結層に樹脂材を含浸した複層軸受が提案された。複層軸受のすべり面は、各種の充填剤を配合したポリテトラフルオロエチレン(以下、PTFEと記す)樹脂組成物を被覆したものが知られている。しかし、PTFE樹脂は耐クリープ性に劣り、耐荷重性が充分ではない。 ¡Slide alternative proposals for metal rolling bearings have been made not only for resin materials but also for sintered materials. The resin material alone is not sufficient in load resistance and heat resistance, and the sintered material has a problem of seizing when oil is exhausted. As a countermeasure, a multilayer bearing in which a copper-based sintered layer is provided on the surface of a steel plate and the sintered layer is impregnated with a resin material has been proposed. As for the sliding surface of a multi-layer bearing, what coated the polytetrafluoroethylene (henceforth PTFE) resin composition which mix | blended various fillers is known. However, PTFE resin is inferior in creep resistance and has insufficient load resistance.
 PTFE樹脂に換えてポリエーテルエーテルケトン(以下、PEEKと記す)樹脂、ポリアミド樹脂、液晶ポリマーなどを被覆した複層軸受が知られている。例えば、金属台金に青銅の中間層を焼結し、ライニング材層を焼結物にあて、ライニング、中間層および台金に熱と圧力を加えることでなり、ライニングは60~90重量%のPEEK樹脂と15~3.7重量%のPTFE樹脂、5~1.3重量%のグラファイトおよび20~5重量%の青銅との混合物よりなる組成を有する物質である平軸受が提案されている(特許文献1参照)。また、裏金層と、この裏金層上に設けた多孔質焼結層と、この多孔質焼結層上に含浸・被覆した実質的にPEEK樹脂からなる表面層とからなる湿式複層摺動部材が提案されている(特許文献2参照)。その他、裏金付多孔質焼結層にカーボンファイバ10~45重量%と、PTFE樹脂0.1~8.5重量%、および残部が実質的にPEEK樹脂またはポリフェニレンサルファイド(以下、PPSと記す)樹脂とからなる湿式スラスト軸受用摺動部材が提案されている(特許文献3参照)。 Multi-layer bearings in which polyether ether ketone (hereinafter referred to as PEEK) resin, polyamide resin, liquid crystal polymer, etc. are coated instead of PTFE resin are known. For example, a bronze intermediate layer is sintered on a metal base metal, a lining material layer is applied to a sintered product, and heat and pressure are applied to the lining, intermediate layer and base metal, and the lining is 60 to 90% by weight. A plain bearing is proposed which is a substance having a composition comprising a mixture of PEEK resin, 15 to 3.7% by weight of PTFE resin, 5 to 1.3% by weight of graphite and 20 to 5% by weight of bronze ( Patent Document 1). Also, a wet multilayer sliding member comprising a backing metal layer, a porous sintered layer provided on the backing metal layer, and a surface layer substantially made of PEEK resin impregnated / coated on the porous sintered layer Has been proposed (see Patent Document 2). In addition, 10 to 45% by weight of carbon fiber, 0.1 to 8.5% by weight of PTFE resin in the porous sintered layer with backing metal, and the balance is substantially PEEK resin or polyphenylene sulfide (hereinafter referred to as PPS) resin. There has been proposed a sliding member for a wet thrust bearing comprising: (see Patent Document 3).
特公平1-56285号公報Japanese Examined Patent Publication No. 1-56285 特開平8-210357号公報JP-A-8-210357 特開平9-157532号公報JP-A-9-157532
 しかしながら、特許文献1~特許文献3に開示された複層軸受は、PEEK樹脂からなる組成物を、多孔質焼結層上に含浸被覆、もしくは熱板プレスなどで熱融着している。PEEK樹脂、PPS樹脂は、常温ではPTFE樹脂と比較して硬いため、PTFE樹脂と同様の常温含浸は困難である。また、その後、加熱焼成しても多孔質焼結層に充分含浸せず、金属下地との密着不足、軸受として使用時の樹脂層脱落が起こるおそれがある。 However, in the multilayer bearings disclosed in Patent Documents 1 to 3, a composition made of PEEK resin is heat-sealed on the porous sintered layer by impregnation coating or hot plate press. Since PEEK resin and PPS resin are harder than PTFE resin at normal temperature, it is difficult to impregnate at normal temperature like PTFE resin. Further, even if heated and fired, the porous sintered layer is not sufficiently impregnated, and there is a possibility that the adhesion with the metal substrate is insufficient and the resin layer is dropped during use as a bearing.
 射出成形もしくは押し出し成形にて得られた樹脂フィルム(PEEK樹脂、PPS樹脂など)を、多孔質焼結層上に熱板プレス、加熱雰囲気下でのロール加圧などで熱融着する方法もある。しかし、熱板プレス、加熱下でのロール加圧は、強い溶融せん断力を加えることは困難である。また、融点以上で樹脂は溶融しているため圧力が加わり難い。さらに、外部環境の影響を受け、温度のばらつきにより、多孔質焼結層に樹脂が入り難い場合がある。このような原因で、融着ばらつきが発生しやすい。特に、加熱下でのロール加圧は、線圧のため、融着ばらつきが発生し、摩擦せん断力に対する密着強さが不足する。また、樹脂層の厚みのコントロールは困難であり、厚みムラが起こるため、機械加工により厚み仕上げが必要となる。なお、熱板プレスは、バッチ生産となるため生産性は極めて劣る。 There is also a method in which a resin film (PEEK resin, PPS resin, etc.) obtained by injection molding or extrusion molding is heat-sealed on a porous sintered layer by hot plate pressing, roll pressing in a heated atmosphere, or the like. . However, it is difficult to apply a strong melt shearing force by hot plate pressing and roll pressing under heating. Further, since the resin is melted at a melting point or higher, it is difficult to apply pressure. Furthermore, the resin may be difficult to enter the porous sintered layer due to temperature variations under the influence of the external environment. For these reasons, variations in fusion are likely to occur. In particular, roll pressurization under heating is caused by variations in fusion due to linear pressure, and adhesion strength against frictional shear force is insufficient. In addition, it is difficult to control the thickness of the resin layer, and thickness unevenness occurs. Therefore, a thickness finish is required by machining. In addition, since a hot plate press becomes batch production, productivity is very inferior.
 また、金属鋼板に樹脂層を単純にインサート成形で形成する場合、(1)インサート成形のために、射出成形面を傷付けないように、金属鋼板を整列させ、(2)インサートロボットを使用し、金属鋼板を個々に金型にインサートして樹脂を射出成形し、(3)樹脂層を傷つけないように金型から取り出す等の工程が必要となる。金属鋼板を個々に取り扱う場合、ハンドリングが悪い。成形前後とも、金属鋼板同士が衝突し、樹脂成形面を傷付けないような取り扱いが必要で、手間がかかる。また、平面の金属鋼板の場合、インサートロボットでは金型へのインサートが難しく、専用設備が必要となる、もしくは手作業になる場合もある。金属鋼板に裏表がある場合、射出成形面を判定し、金型にインサートする必要がある。そのため、必ずしも生産性が良いものではない。また、品質面から見ても、裏表の間違いが懸念される工程となってしまう。 Moreover, when forming a resin layer on a metal steel plate simply by insert molding, (1) for insert molding, align the metal steel plates so as not to damage the injection molding surface, and (2) use an insert robot, Metal steel plates are individually inserted into the mold, and resin is injection-molded. (3) A step of taking out the mold from the mold so as not to damage the resin layer is required. When handling metal steel plates individually, handling is poor. Before and after molding, metal steel plates collide with each other, and it is necessary to handle them so as not to damage the resin molding surface. Further, in the case of a flat metal steel plate, it is difficult to insert into a mold with an insert robot, and special equipment may be required or manual work may be required. When the metal steel plate has both sides, it is necessary to determine the injection molding surface and insert it into the mold. Therefore, productivity is not always good. In addition, from the viewpoint of quality, it is a process in which mistakes in both sides are concerned.
 本発明はこのような問題に対処するためになされたものであり、高面圧下での耐クリープ性、低摩擦性、耐摩耗性などの特性に優れる複層軸受を、高品質で、かつ、高い生産性で安価に製造可能な複層軸受の製造方法の提供を目的とする。 The present invention has been made in order to cope with such problems, and a multi-layer bearing having excellent properties such as creep resistance, low friction and wear resistance under high surface pressure, high quality, and An object of the present invention is to provide a method of manufacturing a multi-layer bearing that can be manufactured at low cost with high productivity.
 本発明の複層軸受の製造方法は、金属板の表面に摺動面となる樹脂層が射出形成されてなる複層軸受の製造方法であって、帯状に連続した金属フープ材に、上記金属板となる板状部分を連続して複数形成するプレス工程と、上記金属フープ材を連続的に射出成形機に供給して、上記板状部分の少なくとも一方の表面に、合成樹脂をベース樹脂とする樹脂組成物を材料として用いて樹脂層を射出成形する射出成形工程と、上記樹脂層が形成された金属板を上記金属フープ材から分離して複層軸受とする分離工程とを備えてなることを特徴とする。 The method for producing a multi-layer bearing according to the present invention is a method for producing a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate, the metal hoop material being continuous in a strip shape, A pressing step for continuously forming a plurality of plate-like parts to be a plate, and the metal hoop material is continuously supplied to an injection molding machine, and a synthetic resin is formed on at least one surface of the plate-like part with a base resin. An injection molding step of injection molding a resin layer using a resin composition as a material, and a separation step of separating the metal plate on which the resin layer is formed from the metal hoop material to form a multi-layer bearing It is characterized by that.
 上記プレス工程前に、上記金属フープ材の樹脂層成形表面に、焼結層を形成する工程を有することを特徴とする。 Included before the pressing step is a step of forming a sintered layer on the resin layer molding surface of the metal hoop material.
 上記プレス工程で得られる上記板状部分は、少なくとも2箇所の上記金属フープ材との未切断部を有し、上記分離工程において、上記未切断部を切断して上記金属板を上記金属フープ材から分離することを特徴とする。 The plate-like portion obtained in the pressing step has at least two uncut portions with the metal hoop material, and in the separation step, the uncut portion is cut to replace the metal plate with the metal hoop material. It is characterized by separating from.
 上記分離工程の後、上記樹脂層が形成された金属板を円筒状に丸め加工する工程を備えてなることを特徴とする。また、上記分離工程の後、上記樹脂層が形成された金属板を曲げ加工する工程を備えてなることを特徴とする。 After the separation step, the method includes a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape. In addition, after the separation step, a step of bending the metal plate on which the resin layer is formed is provided.
 上記樹脂層の厚みが、0.1~0.7mmであることを特徴とする。 The resin layer has a thickness of 0.1 to 0.7 mm.
 上記射出成形工程において、上記樹脂層の表面に溝を形成することを特徴とする。 In the injection molding step, a groove is formed on the surface of the resin layer.
 上記合成樹脂が、熱可塑性ポリイミド樹脂、ポリエーテルケトン樹脂、PEEK樹脂、PPS樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリアセタール樹脂から選ばれる少なくとも1つであることを特徴とする。また、上記樹脂組成物が、PTFE樹脂を含むことを特徴とする。 The above-mentioned synthetic resin is at least one selected from thermoplastic polyimide resin, polyetherketone resin, PEEK resin, PPS resin, polyamideimide resin, polyamide resin, polyethylene resin, and polyacetal resin. The resin composition includes a PTFE resin.
 上記樹脂組成物が、ガラス繊維および炭素繊維から選ばれる少なくとも1つの繊維状補強材を含むことを特徴とする。特に、上記繊維状補強材の平均繊維長が、20~200μmであることを特徴とする。 The resin composition includes at least one fibrous reinforcing material selected from glass fibers and carbon fibers. In particular, the average fiber length of the fibrous reinforcing material is 20 to 200 μm.
 本発明の複層軸受は、金属板の表面に摺動面となる樹脂層が射出形成されてなる複層軸受であって、上記本発明の製造方法により製造されることを特徴とする。特に、上記複層軸受は、スラスト複層軸受、ラジアル複層軸受、またはラジアル兼スラスト複層軸受であることを特徴とする。 The multi-layer bearing of the present invention is a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate, and is manufactured by the manufacturing method of the present invention. In particular, the multilayer bearing is a thrust multilayer bearing, a radial multilayer bearing, or a radial and thrust multilayer bearing.
 本発明の複層軸受の製造方法は、帯状に連続した金属フープ材に、金属板となる板状部分を連続して複数形成するプレス工程と、金属フープ材を連続的に射出成形機に供給して、板状部分の少なくとも一方の表面に、合成樹脂をベース樹脂とする樹脂組成物を材料として用いて樹脂層を射出成形する射出成形工程と、樹脂層が形成された金属板を金属フープ材から分離して複層軸受とする分離工程とを備えてなるので、製造品のハンドリングが良く、生産性に優れている。具体的には、射出成形機における金型への金属板のインサートが容易(裏表判定は初回のみで可、個々の金属板インサートが不要)であり、樹脂成形面の傷付け防止が容易である。これらの結果、複層軸受を高品質で、かつ、高い生産性で安価に製造できる。 The manufacturing method of the multi-layer bearing of the present invention includes a pressing step in which a plurality of plate-like portions to be metal plates are continuously formed on a continuous metal hoop material, and a metal hoop material is continuously supplied to an injection molding machine. Then, an injection molding process in which a resin layer is injection-molded using a synthetic resin-based resin composition as a material on at least one surface of the plate-like portion, and a metal plate on which the resin layer is formed is formed into a metal hoop. Since it is provided with a separation step that separates from the material to form a multi-layer bearing, the handling of the manufactured product is good and the productivity is excellent. Specifically, it is easy to insert a metal plate into a mold in an injection molding machine (backside determination is possible only at the first time, and individual metal plate inserts are unnecessary), and it is easy to prevent damage to the resin molding surface. As a result, the multi-layer bearing can be manufactured with high quality and high productivity at low cost.
 上記プレス工程前に、金属フープ材の樹脂層成形表面に、焼結層を形成する工程を有することで、射出成形した樹脂層と金属板(焼結層)との密着性が高まり、安全率の高い製品を製造できる。 By having a step of forming a sintered layer on the resin layer molding surface of the metal hoop material before the pressing step, the adhesion between the injection molded resin layer and the metal plate (sintered layer) is increased, and the safety factor is increased. High-quality products can be manufactured.
 上記プレス工程で得られる板状部分が、少なくとも2箇所の金属フープ材との未切断部を有し、分離工程において、この未切断部を切断して金属板を金属フープ材から分離することで、工程内での金属板のねじれ等を防止できる。さらには、金属フープ材を連続的に射出成形機に供給した際の金型での固定が容易となる。 The plate-like part obtained by the pressing step has an uncut portion with at least two metal hoop materials, and in the separation step, the uncut portion is cut to separate the metal plate from the metal hoop material. The twist of the metal plate in the process can be prevented. Furthermore, the metal hoop material can be easily fixed with the mold when continuously supplied to the injection molding machine.
 上記分離工程の後、樹脂層が形成された金属板を、円筒状に丸め加工する工程や、曲げ加工する工程を備えることで、多様性があり、使用箇所に適した複層軸受を製造できる。特に、円筒状に丸め加工することで、上記製造工程と併せて、ラジアル複層軸受(巻きブッシュ)を容易に製造できる。 After the separation step, a multi-layer bearing that is versatile and suitable for use can be manufactured by providing a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape or a step of bending the metal plate. . In particular, by rounding into a cylindrical shape, a radial multi-layer bearing (winding bush) can be easily manufactured together with the above manufacturing process.
 上記樹脂層の厚みを薄肉(0.1~0.7mm)にすることで、摩擦発熱による熱が、摩擦面から金属板に逃げやすく、蓄熱しにくい。また、耐荷重性が高く、高面圧下でも変化量が小さくなる。これにより、摩擦面における真実接触面積も小さくなり、摩擦力、摩擦発熱が低減され、摩耗の軽減、摩擦面温度の上昇を抑える利点もある。 By making the thickness of the resin layer thin (0.1 to 0.7 mm), heat generated by frictional heat easily escapes from the friction surface to the metal plate, making it difficult to store heat. Further, the load resistance is high, and the amount of change is small even under high surface pressure. As a result, the real contact area on the friction surface is also reduced, the frictional force and frictional heat generation are reduced, and there are also the advantages of reducing wear and suppressing an increase in the friction surface temperature.
 上記射出成形工程において、上記樹脂層の表面に、流体動圧溝、潤滑溝、ディンプルなどの溝を形成することで、得られる複層軸受は、油、水、薬液などの流体潤滑下において、摩擦せん断力が軽減され、低摩擦、低摩耗となる。また、成形時にこれらが形成されるので、樹脂層の後加工(機械加工)が不要となり、安価に複層軸受を製造できる。 In the injection molding step, by forming grooves such as fluid dynamic pressure grooves, lubrication grooves, dimples, etc. on the surface of the resin layer, the resulting multilayer bearing is under fluid lubrication of oil, water, chemicals, etc. The frictional shear force is reduced, resulting in low friction and low wear. Further, since these are formed at the time of molding, post-processing (machining) of the resin layer is unnecessary, and a multi-layer bearing can be manufactured at low cost.
 上記合成樹脂が、熱可塑性ポリイミド樹脂、ポリエーテルケトン樹脂、PEEK樹脂、PPS樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリアセタール樹脂から選ばれる少なくとも1つとすることで、上記射出成形工程において、樹脂層の射出形成が容易となる。また、上記樹脂組成物にPTFE樹脂を配合することで、低摩擦性が向上する。 In the injection molding step, the synthetic resin is at least one selected from thermoplastic polyimide resin, polyetherketone resin, PEEK resin, PPS resin, polyamideimide resin, polyamide resin, polyethylene resin, and polyacetal resin. The injection molding of the layer becomes easy. Moreover, a low friction property improves by mix | blending PTFE resin with the said resin composition.
 上記樹脂組成物にガラス繊維および炭素繊維から選ばれる少なくとも1つの繊維状補強材を配合することで、耐荷重性が高く、高面圧クリープが小さく、耐摩耗性に優れた複層軸受を製造できる。特に、繊維状補強材の平均繊維長を20~200μmとすることで、樹脂層の厚みが0.1~0.7mmの薄肉であっても、射出成形性が安定する。 By producing at least one fibrous reinforcing material selected from glass fiber and carbon fiber in the resin composition, a multi-layer bearing having high load resistance, low high surface pressure creep, and excellent wear resistance is manufactured. it can. In particular, by setting the average fiber length of the fibrous reinforcing material to 20 to 200 μm, the injection moldability is stable even if the resin layer has a thin thickness of 0.1 to 0.7 mm.
 上記製造方法により、品質が安定した複層軸受、スラスト複層軸受、ラジアル複層軸受、ラジアル兼スラスト複層軸受を安価に供給することができる。 By the above manufacturing method, a multi-layer bearing, a thrust multi-layer bearing, a radial multi-layer bearing, and a radial / thrust multi-layer bearing with stable quality can be supplied at low cost.
本発明の複層軸受の製造方法における製造工程を示す概略図である。It is the schematic which shows the manufacturing process in the manufacturing method of the multilayer bearing of this invention. 射出成形工程を示す概略図である。It is the schematic which shows an injection molding process. 本発明の複層軸受の一例(スラスト複層軸受)の斜視図である。It is a perspective view of an example (thrust multi-layer bearing) of a multi-layer bearing of the present invention. 本発明の複層軸受の他の例(ラジアル複層軸受)の斜視図である。It is a perspective view of the other example (radial multilayer bearing) of the multilayer bearing of the present invention. 本発明の複層軸受の他の例(ラジアル兼スラスト複層軸受)の斜視図である。It is a perspective view of other examples (radial and thrust multi-layer bearing) of the multi-layer bearing of the present invention.
 本発明の複層軸受の製造方法を図1に基づいて説明する。図1は、当該製造工程の概略図である。本発明の複層軸受の製造方法は、(1)まず、プレス工程として、帯状に連続した金属フープ材1に、金属板2となる板状部分2aを連続して複数形成する工程を有する。これにより、金属板2となる略長方形状の板状部分2aを有する金属フープ材1(フープコイル)が得られる。(2)次に、射出成形工程として、この金属フープ材1を連続的に射出成形機に供給して、板状部分2aの少なくとも一方表面に、樹脂層4を射出成形で形成する工程を有する(図では同時に動圧溝を形成している)。(3)最後に、分離工程として、樹脂層4が形成された金属板2を金属フープ材1から分離して複層軸受6を得る工程を有する。以下、各工程について詳細に説明する。 The manufacturing method of the multilayer bearing of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of the manufacturing process. The manufacturing method of the multilayer bearing of this invention has (1) First, as a press process, it has the process of forming continuously the plate-shaped part 2a used as the metal plate 2 in the metal hoop material 1 continuous in strip | belt shape. Thereby, the metal hoop material 1 (hoop coil) which has the substantially rectangular plate-shaped part 2a used as the metal plate 2 is obtained. (2) Next, as an injection molding step, the metal hoop material 1 is continuously supplied to an injection molding machine, and a resin layer 4 is formed on at least one surface of the plate-like portion 2a by injection molding. (In the figure, a dynamic pressure groove is formed at the same time). (3) Finally, the separation step includes a step of obtaining the multilayer bearing 6 by separating the metal plate 2 on which the resin layer 4 is formed from the metal hoop material 1. Hereinafter, each step will be described in detail.
(1)プレス工程
 帯状に連続した金属フープ材1に、金属板2となる板状部分2aを連続して複数形成している。金属フープ材1の材質は、特に限定するものではなく、SPCC、SPCEなどの鉄系製、ステンレス製、アルミニウム製、銅製などの熱伝導性が高い金属製の板状材であればよい。安価であり、樹脂層との密着性を得るためには、鋼板が好ましい。
(1) Pressing Step A plurality of plate-like portions 2a to be metal plates 2 are continuously formed on a metal hoop material 1 that is continuous in a band shape. The material of the metal hoop material 1 is not particularly limited as long as it is a metal plate-like material having high thermal conductivity such as steel, such as SPCC and SPCE, stainless steel, aluminum, and copper. A steel plate is preferred because it is inexpensive and provides adhesion to the resin layer.
 金属フープ材1は、プレス工程の前に、その樹脂層成形表面に、焼結層を形成することが好ましい。焼結層のアンカー効果により、金属板2と樹脂層4との密着性を著しく向上させることができるからである。これにより、得られる複層軸受は、金属板、焼結層、樹脂層の三層構造体となる(図3等参照)。この焼結層は、例えば、金属フープ材1の表面に、焼結金属粉末を一様に散布し、これを加熱・加圧することで形成される。焼結層の材質は、鉄系、銅鉄系、ステンレス系、銅系いずれであってもよい。金属板と焼結層の材質を類似もしくは同種とする方が、金属板と焼結層の密着性が向上するため、好ましい。また、焼結層の材質が、銅系、銅鉄系焼結である場合、金属板に予め銅めっきを施し、密着性を向上させることができる。なお、環境保全を目的から、鉛青銅などの鉛を含むものは用いないことが好ましい。 The metal hoop material 1 is preferably formed with a sintered layer on the resin layer molding surface before the pressing step. This is because the adhesion between the metal plate 2 and the resin layer 4 can be remarkably improved by the anchor effect of the sintered layer. Thereby, the obtained multi-layer bearing becomes a three-layer structure of a metal plate, a sintered layer, and a resin layer (see FIG. 3 and the like). This sintered layer is formed by, for example, uniformly spraying a sintered metal powder on the surface of the metal hoop material 1 and heating and pressing it. The material of the sintered layer may be any of iron, copper iron, stainless steel, and copper. It is preferable that the metal plate and the sintered layer have similar or the same material because the adhesion between the metal plate and the sintered layer is improved. Moreover, when the material of a sintered layer is copper type | system | group and copper iron type | system | group sintering, copper plating can be given previously to a metal plate and adhesiveness can be improved. For the purpose of environmental protection, it is preferable not to use lead-containing materials such as lead bronze.
 金属フープ材1の厚みが、金属板2(板状部分2a)の厚みとなる。金属フープ材1の厚みは、上記製造工程での使用が可能であれば、特に限定されない。得られる複層軸受を高面圧下で安定して使用可能にするためには、樹脂層4よりも厚いことが好ましい。具体的には、0.5~5mmとすることが好ましく、0.7~2.5mmがより好ましい。 The thickness of the metal hoop material 1 is the thickness of the metal plate 2 (plate-like portion 2a). The thickness of the metal hoop material 1 will not be specifically limited if the use in the said manufacturing process is possible. In order to enable the obtained multilayer bearing to be stably used under high surface pressure, it is preferable that the thickness is thicker than the resin layer 4. Specifically, the thickness is preferably 0.5 to 5 mm, and more preferably 0.7 to 2.5 mm.
 プレス工程におけるプレス機および方法は特に限定されず、所要の形状(板状部分2a)が打ち抜け、打ち抜きにより、金属板2となる板状部分2aを連続して複数形成できるものであればよい。また、板状部分2aの形状は所要される複層軸受に合わせた形状とする。射出成形時において樹脂を流し込み、物理的に樹脂層4を金属板2に保持・固定するために、以下のような形状追加が可能である。例えば、板状部分2a(金属板2)に複数個の穴を開ける、側面に樹脂を回り込ます為の切り欠けを設けるなどである。 The press machine and method in the pressing step are not particularly limited as long as a required shape (plate-like portion 2a) is punched out and punched, and a plurality of plate-like portions 2a to be the metal plate 2 can be continuously formed. . Further, the shape of the plate-like portion 2a is made to match the required multi-layer bearing. In order to pour resin at the time of injection molding and physically hold and fix the resin layer 4 to the metal plate 2, the following shapes can be added. For example, a plurality of holes are made in the plate-like portion 2a (metal plate 2), and a cutout is provided on the side surface to wrap around the resin.
 プレス工程において、板状部分2aは金属フープ材1と少なくとも2箇所の未切断部2bを設けることが好ましい。金属フープ材1に対して板状部分2aを2箇所で保持することで、金属フープ材1における板状部分2aの位置精度を保ち、ねじれ等を防止できる。さらには、射出成形工程において、金属フープ材1を連続的に射出成形機に供給し、射出成形する際の金型内での固定が容易となる。また、同様にねじれ等を防止する目的で、連続する板状部分2aの間に未切断部2cを設けて、板状部分2a同士を連結してもよい。ねじれ等を防止し、位置精度の保持性の信頼性を高めるためには、この未切断部2b、2cは合計で4箇所以上設けることが好ましい。未切断部の位置は特に限定はなく、使用上問題なければよい。ただし、丸め加工し円筒状軸受とする場合は、合せ目に未切断部を設けると、丸め加工後に干渉するため、未切断部は合せ目にない方が好ましい。 In the pressing step, the plate-like portion 2a is preferably provided with the metal hoop material 1 and at least two uncut portions 2b. By holding the plate-like portion 2a at two locations with respect to the metal hoop material 1, the positional accuracy of the plate-like portion 2a in the metal hoop material 1 can be maintained, and twisting and the like can be prevented. Furthermore, in the injection molding process, the metal hoop material 1 is continuously supplied to the injection molding machine and can be easily fixed in the mold during injection molding. Similarly, for the purpose of preventing twisting or the like, the uncut portions 2c may be provided between the continuous plate portions 2a to connect the plate portions 2a to each other. In order to prevent twisting and the like and to improve the reliability of the positional accuracy retention, it is preferable to provide the uncut portions 2b and 2c at a total of four or more. The position of the uncut portion is not particularly limited and may be any problem in use. However, in the case where a cylindrical bearing is rounded, if an uncut part is provided at the joint, interference occurs after the rounding process.
(2)射出成形工程
 射出成形工程の概略図を図2に示す。この工程では、金属フープ材1を連続的に射出成形機3の金型3aに供給し、板状部分2aの少なくとも一方の表面に、合成樹脂をベース樹脂とする樹脂組成物を材料として用いて樹脂層4を射出成形している。この射出成形工程(フープ成形)では、金属フープ材1の金型3aへの挿入、金型閉じ、キャビティへの樹脂注入、金型開き、金属フープ材1の送り(成形部分取り出し)、の一連の動作が連続的・段階的に行なわれる。なお、板状部分2aの該表面のすべてに樹脂層4を設ける必要はなく、後工程や軸受機能を考慮して、部分的に設けてもよい。この工程において、樹脂層を成形可能であれば、射出成形の方式(縦型、横型)、ゲート方式、ゲート位置は特に限定されない。また、必要に応じ、金属フープ材1を金型3aへ供給前に予備加熱してもよい。
(2) Injection molding process The schematic of an injection molding process is shown in FIG. In this step, the metal hoop material 1 is continuously supplied to the mold 3a of the injection molding machine 3, and a resin composition having a synthetic resin as a base resin is used as a material on at least one surface of the plate-like portion 2a. The resin layer 4 is injection molded. In this injection molding process (hoop molding), a series of steps including insertion of the metal hoop material 1 into the mold 3a, mold closing, resin injection into the cavity, mold opening, and feeding of the metal hoop material 1 (molding part removal). The operation is performed continuously and stepwise. It is not necessary to provide the resin layer 4 on the entire surface of the plate-like portion 2a, and the resin layer 4 may be provided partially in consideration of the post-process and the bearing function. In this step, as long as the resin layer can be molded, the injection molding method (vertical type, horizontal type), gate method, and gate position are not particularly limited. Moreover, you may preheat the metal hoop material 1 before supply to the metal mold | die 3a as needed.
 板状部分の一方の表面に樹脂層を形成する場合、射出成形面としては、常に金属フープ材の一方の表面となるので、金属フープ材の裏表判定は初回のみでよい。また、連続的に金型への供給を行なうため、個々の金属板のインサートが不要となる。また、射出成形を利用することで、金属フープ材(金属板)の表面に溶融した樹脂を高速で流し込むため、PEEK樹脂、PPS樹脂をベース樹脂として用いる場合でも、該樹脂がせん断力により多孔質の焼結層に入りやすい。また、樹脂層の厚みは、金型3aで制御するため、含浸被覆や熱板プレスで形成する場合と比較して、厚みのコントロールが容易である。 When the resin layer is formed on one surface of the plate-like portion, the injection molding surface is always one surface of the metal hoop material, and therefore the front / back determination of the metal hoop material is only required for the first time. In addition, since the supply to the mold is continuously performed, it is not necessary to insert individual metal plates. In addition, by using injection molding, a molten resin is poured onto the surface of a metal hoop material (metal plate) at a high speed. Therefore, even when PEEK resin or PPS resin is used as a base resin, the resin is porous by shearing force. It is easy to enter the sintered layer. Further, since the thickness of the resin layer is controlled by the mold 3a, the thickness can be easily controlled as compared with the case where the resin layer is formed by impregnation coating or hot plate pressing.
 樹脂層4の厚みは0.1~0.7mmが好ましい。機能的には、樹脂層の厚みが0.7mmをこえると、摩擦による熱が摩擦面から軸受基材側に逃げ難く、摩擦面温度が高くなるおそれがある。また、荷重による変形量が大きくなるとともに、摩擦面における真実接触面積も大きくなる。これにより、摩擦力、摩擦発熱が高くなり、焼付き性が低下するおそれがある。一方、樹脂層の厚みが0.1mm未満では、長期使用時の寿命が短くなるおそれがある。射出成形性を考慮すると、樹脂層の厚みは0.2~0.7mmが好ましい。樹脂層の厚みが0.2mm未満では、小部品の製造に限定され、0.7mmをこえるとヒケが発生し寸法精度が低下するおそれがある。また、摩擦発熱の軸受基材への放熱を考慮すると、樹脂層の厚みは0.2~0.5mmが好ましい。 The thickness of the resin layer 4 is preferably 0.1 to 0.7 mm. Functionally, if the thickness of the resin layer exceeds 0.7 mm, it is difficult for heat due to friction to escape from the friction surface to the bearing base material, and the friction surface temperature may increase. In addition, the amount of deformation due to the load increases, and the true contact area on the friction surface also increases. As a result, the frictional force and frictional heat generation are increased, and the seizure property may be reduced. On the other hand, if the thickness of the resin layer is less than 0.1 mm, the lifetime during long-term use may be shortened. In consideration of injection moldability, the thickness of the resin layer is preferably 0.2 to 0.7 mm. If the thickness of the resin layer is less than 0.2 mm, it is limited to the manufacture of small parts, and if it exceeds 0.7 mm, sink marks may occur and dimensional accuracy may be reduced. In consideration of heat dissipation of the frictional heat to the bearing base material, the thickness of the resin layer is preferably 0.2 to 0.5 mm.
 射出成形工程において、樹脂層4の表面に流体動圧溝(図1参照)、潤滑溝などの溝、凹または凸のディンプルなどを形成することができる。射出成形時の金型転写にて、所要の表面形状、模様を形成するため、自由度が高い製品設計が可能となる。金型側の設定により、位置によって溝などの深さ、幅を容易に変えることができる。なお、機械加工にて深さ5~20μmの流体動圧溝を形成するのは、生産性が悪く、現実的には困難である。 In the injection molding process, fluid dynamic pressure grooves (see FIG. 1), grooves such as lubrication grooves, concave or convex dimples, and the like can be formed on the surface of the resin layer 4. Since the required surface shape and pattern are formed by transferring the mold during injection molding, product design with a high degree of freedom is possible. By setting on the mold side, the depth and width of the groove and the like can be easily changed depending on the position. Forming a fluid dynamic pressure groove having a depth of 5 to 20 μm by machining is not practical and difficult in practice.
 流体動圧溝、潤滑溝、凹または凸のディンプルの形状は特に限定されない。油、水、薬液などの潤滑下においては、流体動圧溝を設けることで、動圧を発生させ、摩擦係数を下げることができる。また、潤滑溝、凹または凸のディンプルは、摺動面における潤滑状態を流体潤滑とし、摩擦せん断力を軽減し、低摩擦、低摩耗にすることができる。流体動圧溝、潤滑溝、凹または凸のディンプルは、無潤滑下(ドライ)においても、面圧を上げ、高面圧にすることで、面圧依存性により摩擦係数を低減する効果もある。 The shape of the fluid dynamic pressure groove, lubrication groove, concave or convex dimple is not particularly limited. Under the lubrication of oil, water, chemicals, etc., by providing a fluid dynamic pressure groove, dynamic pressure can be generated and the friction coefficient can be lowered. In addition, the lubrication groove, the concave or convex dimples can be fluid lubricated on the sliding surface, reduce the frictional shear force, and reduce the friction and wear. Fluid dynamic pressure grooves, lubrication grooves, and concave or convex dimples also have the effect of reducing the friction coefficient due to surface pressure dependency by increasing the surface pressure and increasing the surface pressure even under non-lubricated conditions (dry). .
(3)分離工程
 この工程では、金属フープ材1から樹脂層4が形成された金属板2を、プレス機等により分離している。分離時に未切断部2b、2c等が切断されている。分離時において、同時に射出成形のゲート処理を行なってもよい。この分離工程を経て複層軸受6が得られる。この複層軸受6は、樹脂層4の表面が摺動面となり、高面圧下での摺動特性に優れる。
(3) Separation process In this process, the metal plate 2 on which the resin layer 4 is formed is separated from the metal hoop material 1 by a press machine or the like. The uncut portions 2b, 2c, etc. are cut during the separation. At the time of separation, gate processing for injection molding may be performed at the same time. Through this separation step, the multilayer bearing 6 is obtained. In the multi-layer bearing 6, the surface of the resin layer 4 becomes a sliding surface, and is excellent in sliding characteristics under high surface pressure.
 本発明の製造方法により製造した複層軸受の一例を図3に示す。図3はスラスト複層軸受の斜視図である。この複層軸受7は、金属板2の表面に焼結層5が形成され、その上に樹脂層4が射出成形された三層構造体である。図中の2dが、分離工程で切断された未切断部の切断痕である。 An example of a multi-layer bearing manufactured by the manufacturing method of the present invention is shown in FIG. FIG. 3 is a perspective view of a thrust multi-layer bearing. The multilayer bearing 7 is a three-layer structure in which a sintered layer 5 is formed on the surface of a metal plate 2 and a resin layer 4 is injection-molded thereon. 2d in the figure is a cut mark of an uncut portion cut in the separation step.
 本発明の製造方法では、分離工程の後、さらに、樹脂層が形成された金属板を、円筒状または半割れ形状に丸め加工する工程や、曲げ加工する工程を備えることができる。これらの工程を備えることで、多様性があり、使用箇所に適した複層軸受を製造できる。 In the manufacturing method of the present invention, after the separation step, a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape or a half-cracked shape and a step of bending can be provided. By providing these steps, a multi-layer bearing suitable for the place of use can be manufactured.
 本発明の製造方法により製造した複層軸受の他の例を図4に示す。図4はラジアル荷重を支持するラジアル複層軸受の斜視図である。この複層軸受8は、樹脂層4が形成された金属板2を金属フープ材から分離した後、金属板2を円筒状に丸め加工することで製造できる。図中の2dが、分離工程で切断された未切断部の切断痕である。丸め加工時には、金属板2と共に内径の樹脂層4にも応力が加わる。応力を分散するためには、射出成形工程において、連続(切れ目のない)の樹脂層4ではなく、金属板2の表面にて独立した樹脂層4を多数形成することが好ましい。独立した樹脂層4の形状としては、丸、四角など以外に、巻きブッシュ内径面を周方向に少なくとも4分割、好ましくは8分割する方法などが例示できる。その他、独立した樹脂層でなく、周方向に所定間隔で軸方向の溝を形成することもできる。なお、丸め加工において、必要に応じて樹脂層を外径側としてもよい。 FIG. 4 shows another example of the multilayer bearing manufactured by the manufacturing method of the present invention. FIG. 4 is a perspective view of a radial multi-layer bearing that supports a radial load. The multi-layer bearing 8 can be manufactured by separating the metal plate 2 on which the resin layer 4 is formed from the metal hoop material and then rounding the metal plate 2 into a cylindrical shape. 2d in the figure is a cut mark of an uncut portion cut in the separation step. During the rounding process, stress is applied to the inner resin layer 4 together with the metal plate 2. In order to disperse the stress, it is preferable to form a large number of independent resin layers 4 on the surface of the metal plate 2 instead of the continuous (unbroken) resin layer 4 in the injection molding process. Examples of the shape of the independent resin layer 4 include a method in which the inner surface of the wound bush is divided into at least 4 parts, preferably 8 parts in the circumferential direction, in addition to circles and squares. In addition, an axial groove can be formed at a predetermined interval in the circumferential direction instead of an independent resin layer. In the rounding process, the resin layer may be on the outer diameter side as necessary.
 ラジアル複層軸受の円周の長さは、金属板2の巻き方向長さである。ラジアル複層軸受の軸受内径は、特に限定されないが、樹脂層厚みを0.1~0.7mmとする場合、内径φ1mm~φ100mmが好ましく、より好ましくはφ3mm~φ30mmである。ラジアル複層軸受の内径に対して、樹脂層の厚みが厚すぎると、丸め加工が困難となるおそれがあり、上述の応力分散のための手段を採用する必要がある。 The circumferential length of the radial multi-layer bearing is the length of the metal plate 2 in the winding direction. The inner diameter of the radial multi-layer bearing is not particularly limited, but when the resin layer thickness is 0.1 to 0.7 mm, the inner diameter is preferably 1 mm to 100 mm, and more preferably 3 mm to 30 mm. If the resin layer is too thick relative to the inner diameter of the radial multi-layer bearing, the rounding process may be difficult, and it is necessary to employ the above-mentioned means for stress distribution.
 本発明の製造方法により製造した複層軸受の他の例を図5に示す。図5はラジアル荷重とアキシヤル荷重を支持するラジアル兼スラスト複層軸受の斜視図である。この複層軸受9は、樹脂層4が形成された金属板2を金属フープ材1から分離した後、金属板2の一辺を直角に曲げ加工し、さらに円筒状に丸め加工することで製造できる。図中の2dが、分離工程で切断された未切断部の切断痕である。複層軸受9は、曲げ加工部分がフランジ8aであるフランジ付巻きブッシュである。 FIG. 5 shows another example of the multi-layer bearing manufactured by the manufacturing method of the present invention. FIG. 5 is a perspective view of a radial and thrust multi-layer bearing that supports a radial load and an axial load. The multi-layer bearing 9 can be manufactured by separating the metal plate 2 on which the resin layer 4 is formed from the metal hoop material 1, bending one side of the metal plate 2 at a right angle, and further rounding into a cylindrical shape. . 2d in the figure is a cut mark of an uncut portion cut in the separation step. The multi-layer bearing 9 is a flanged winding bush whose bent portion is a flange 8a.
 また、他の複層軸受として、樹脂層4が形成された金属板2を金属フープ材から分離した後、単純に曲げ加工したもの等も製造できる。図5等の複層軸受のように曲げ加工をする場合、曲げ部に応力集中するため、樹脂層が剥離する危険性がある。そのため、少なくとも30度以上の曲げ加工する場合は、曲げ加工部分には、射出成形工程において樹脂層を射出成形しないことが好ましい。また、性能を阻害しなければ、金属板の非摺動部に防錆を目的とした亜鉛めっき、クロメート処理、ニッケルめっき等を施してもよい。 Further, as other multi-layer bearings, a metal plate 2 on which the resin layer 4 is formed can be manufactured by simply bending after separating it from the metal hoop material. When bending is performed as in the multi-layer bearing shown in FIG. 5 and the like, the stress concentrates on the bent portion, so that there is a risk that the resin layer will peel off. Therefore, when bending at least 30 degrees or more, it is preferable not to injection-mold the resin layer in the bent portion in the injection molding process. If the performance is not impaired, the non-sliding portion of the metal plate may be subjected to galvanization, chromate treatment, nickel plating or the like for the purpose of rust prevention.
 本発明の製造方法では、射出成形工程において、溝等の形成や、厚み調整を行なうため、樹脂層の後加工(機械加工)を不要とでき、複層軸受を安価に製造できる。 In the manufacturing method of the present invention, since the grooves and the like are adjusted and the thickness is adjusted in the injection molding process, post-processing (machining) of the resin layer can be omitted, and a multi-layer bearing can be manufactured at low cost.
 射出成形工程において樹脂層の材料として用いる樹脂組成物について以下に説明する。上記樹脂組成物のベース樹脂となる合成樹脂としては、複層軸受の要求特性を満たすことができ、射出成形可能なものであればよい。本発明で使用できる合成樹脂としては、熱可塑性ポリイミド樹脂、ポリエーテルケトン樹脂、PEEK樹脂、PPS樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレン樹脂、ポリアセタール樹脂などが挙げられる。これらの各合成樹脂は単独で使用してもよく、2種類以上混合したポリマーアロイであってもよい。 The resin composition used as the material for the resin layer in the injection molding process will be described below. The synthetic resin used as the base resin of the resin composition is not particularly limited as long as it can satisfy the required characteristics of the multilayer bearing and can be injection-molded. Examples of the synthetic resin that can be used in the present invention include thermoplastic polyimide resins, polyether ketone resins, PEEK resins, PPS resins, polyamideimide resins, polyamide resins, polyethylene resins, and polyacetal resins. Each of these synthetic resins may be used alone or may be a polymer alloy in which two or more kinds are mixed.
 本発明の複層軸受を金属製スラストニードル軸受の代替とするためには、例えば、熱変形温度(ASTM D648)が180℃以上の耐熱性合成樹脂を用いることが好ましい。このような耐熱性合成樹脂としては、PEEK樹脂、PPS樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂などが挙げられる。これらの耐熱性合成樹脂の中でも、成形体の耐クリープ性、耐荷重性、耐摩耗性などに優れることから、PPS樹脂またはPEEK樹脂を用いることが特に好ましい。PPS樹脂およびPEEK樹脂は、いわゆるスーパーエンジニアリングプラスチックスの一種であり、近年高温雰囲気で使用される比率が高くなっている合成樹脂である。 In order to replace the multilayer bearing of the present invention with a metal thrust needle bearing, for example, it is preferable to use a heat-resistant synthetic resin having a heat distortion temperature (ASTMAD648) of 180 ° C. or higher. Examples of such a heat resistant synthetic resin include PEEK resin, PPS resin, thermoplastic polyimide resin, and polyamideimide resin. Among these heat resistant synthetic resins, it is particularly preferable to use a PPS resin or a PEEK resin because the molded article is excellent in creep resistance, load resistance, wear resistance, and the like. PPS resin and PEEK resin are a kind of so-called super engineering plastics, and are synthetic resins that have been used in a high temperature atmosphere in recent years.
 PPS樹脂は、ベンゼン環がパラの位置で、硫黄結合によって連結された下記式(1)に示すポリマー構造を持つ結晶性の熱可塑性樹脂である。下記式(1)の構造を持つPPS樹脂は、融点が約280℃、ガラス転移点が93℃であり、極めて高い剛性と、優れた耐熱性、寸法安定性、耐摩耗性、摺動特性などを有する。PPS樹脂は、その分子構造により、架橋型、半架橋型、直鎖型、分岐型等などのタイプがあるが、本発明ではこれらの分子構造や分子量に限定されることなく使用できる。射出成形後に円筒状または半割れ形状に丸め加工、もしくは曲げ加工する場合は、靭性のある直鎖型の方が好ましい。本発明で使用できるPPS樹脂の市販品としては、東ソー社製#160、B-063、DIC社製T4AG、LR-2Gなどが挙げられる。 The PPS resin is a crystalline thermoplastic resin having a polymer structure represented by the following formula (1) in which the benzene ring is connected to the para position by a sulfur bond. The PPS resin having the structure of the following formula (1) has a melting point of about 280 ° C. and a glass transition point of 93 ° C., extremely high rigidity, excellent heat resistance, dimensional stability, wear resistance, sliding characteristics, etc. Have Depending on the molecular structure of the PPS resin, there are types such as a crosslinked type, a semi-crosslinked type, a linear type, and a branched type. In the present invention, the PPS resin can be used without being limited to these molecular structures and molecular weights. When rounding or bending into a cylindrical or half-cracked shape after injection molding, a tough linear type is preferred. Commercially available PPS resins that can be used in the present invention include Tosoh # 160, B-063, DIC T4AG, LR-2G, and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 PEEK樹脂は、ベンゼン環がパラの位置で、カルボニル基とエーテル結合によって連結された下記式(2)に示すポリマー構造を持つ結晶性の熱可塑性樹脂である。下記式(2)の構造を持つPEEK樹脂は、融点が約340℃、ガラス転移点が143℃であり、優れた耐熱性、耐クリープ性、耐荷重性、耐摩耗性、摺動特性などに加え、優れた成形性を有する。本発明で使用できるPEEK樹脂の市販品としては、例えば、ビクトレックス社製PEEK(90P、150P、380P、450Pなど)、ソルベイアドバンストポリマーズ社製キータスパイア(KT-820P、KT-880Pなど)、ダイセルデグザ社製VESTAKEEP(1000G、2000G、3000G、4000Gなど)などが挙げられる。 The PEEK resin is a crystalline thermoplastic resin having a polymer structure represented by the following formula (2) in which the benzene ring is connected to the para position by a carbonyl group and an ether bond. The PEEK resin having the structure of the following formula (2) has a melting point of about 340 ° C. and a glass transition point of 143 ° C., and has excellent heat resistance, creep resistance, load resistance, wear resistance, sliding properties, etc. In addition, it has excellent moldability. Examples of commercially available PEEK resins that can be used in the present invention include PEEK manufactured by Victrex (90P, 150P, 380P, 450P, etc.), KetaSpire manufactured by Solvay Advanced Polymers (KT-820P, KT-880P, etc.), Daicel Degussa VESTAKEEEP made by the company (1000G, 2000G, 3000G, 4000G, etc.) etc. are mentioned.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ポリエチレン(以下、PEと記す)樹脂は、低分子量から超高分子量まで幅広い分子量のPEが上市されている。しかし、超高分子量PEは射出成形できないため、本発明では使用することはできない。PEは分子量が高いほど、材料物性、耐摩耗性が高いため、射出成形できる高分子量のPEが好ましい。本発明で使用できるPE樹脂の市販品としては、例えば、三井化学社製リュブマーL5000,L4000などが挙げられる。 Polyethylene (hereinafter referred to as PE) resin has a wide range of molecular weight PE ranging from low molecular weight to ultra high molecular weight. However, since ultra-high molecular weight PE cannot be injection molded, it cannot be used in the present invention. The higher the molecular weight of PE, the higher the material properties and wear resistance. Therefore, high molecular weight PE that can be injection-molded is preferred. Examples of commercially available PE resins that can be used in the present invention include Lübmer L5000 and L4000 manufactured by Mitsui Chemicals.
 本発明で使用できるポリアミド樹脂としては、ポリアミド6(PA6)樹脂、ポリアミド6-6(PA66)樹脂、ポリアミド6-10(PA610)樹脂、ポリアミド6-12(PA612)樹脂、ポリアミド4-6(PA46)樹脂、ポリアミド9-T(PA9T)樹脂、変性PA9T樹脂、ポリアミド6-T(PA6T)樹脂、変性PA6T樹脂、ポリメタキシレンアジパミド(ポリアミドMXD-6)樹脂などが挙げられる。なお、各ポリアミド樹脂において、数字はアミド結合間の炭素数を表し、Tはテレフタル酸残基を表す。 Polyamide resins that can be used in the present invention include polyamide 6 (PA6) resin, polyamide 6-6 (PA66) resin, polyamide 6-10 (PA610) resin, polyamide 6-12 (PA612) resin, and polyamide 4-6 (PA46). ) Resin, polyamide 9-T (PA9T) resin, modified PA9T resin, polyamide 6-T (PA6T) resin, modified PA6T resin, polymetaxylene adipamide (polyamide MXD-6) resin, and the like. In each polyamide resin, a number represents the number of carbon atoms between amide bonds, and T represents a terephthalic acid residue.
 本発明で使用できるポリアセタール樹脂には、ホモポリマー、コポリマー、ブロックコポリマーの3種類がある。また、本発明で使用できる熱可塑性ポリイミド樹脂の市販品としては、例えば、三井化学社製オーラムが挙げられる。 There are three types of polyacetal resins that can be used in the present invention: homopolymers, copolymers, and block copolymers. Moreover, as a commercial item of the thermoplastic polyimide resin which can be used by this invention, the Aurum by Mitsui Chemicals is mentioned, for example.
 上記樹脂組成物において、得られる複層軸受における低摩擦性の向上のため、PTFE樹脂を配合することが好ましい。 In the above resin composition, it is preferable to blend PTFE resin in order to improve the low friction property in the obtained multilayer bearing.
 本発明に用いるPTFE樹脂には、懸濁重合法によるモールディングパウダー、乳化重合法によるファインパウダー、再生PTFEのいずれを採用してもよい。樹脂組成物の流動性を安定させるためには、成形時のせん断により繊維化し難く、溶融粘度を増加させ難い再生PTFEを採用することが好ましい。再生PTFEとは、熱処理(熱履歴が加わったもの)粉末、γ線または電子線などを照射した粉末のことである。例えば、モールディングパウダーまたはファインパウダーを熱処理した粉末、また、この粉末をさらにγ線または電子線を照射した粉末、モールディングパウダーまたはファインパウダーの成形体を粉砕した粉末、また、その後γ線または電子線を照射した粉末、モールディングパウダーまたはファインパウダーをγ線または電子線を照射した粉末などのタイプがある。 The PTFE resin used in the present invention may employ any of molding powder by suspension polymerization method, fine powder by emulsion polymerization method, and recycled PTFE. In order to stabilize the fluidity of the resin composition, it is preferable to employ recycled PTFE that is difficult to be fiberized by shearing at the time of molding and that does not easily increase the melt viscosity. Regenerated PTFE is a powder that has been irradiated with a heat-treated powder (heated history added), γ-rays or electron beams. For example, a powder obtained by heat-treating molding powder or fine powder, a powder obtained by further irradiating this powder with γ-rays or an electron beam, a powder obtained by pulverizing a molding powder or a molded product of fine powder, and then a γ-ray or electron beam. There are types such as irradiated powder, molding powder or fine powder irradiated with gamma rays or electron beams.
 PTFE樹脂の市販品としては、喜多村社製:KTL-610、KTL-350、KTL-8N、KTL-400H、三井・デュポンフロロケミカル社製:テフロン(登録商標)7-J、旭硝子社製:フルオンG163、L169J、L170J、L173J、ダイキン工業社製:ポリフロンM-15、ルブロンL-5、ヘキスト社製:ホスタフロンTF9205、TF9207などが挙げられる。また、パーフルオロアルキルエーテル基、フルオルアルキル基、またはその他のフルオロアルキルを有する側鎖基で変性されたPTFEであってもよい。上記の中でγ線または電子線などを照射したPTFEとしては、喜多村社製:KTL-610、KTL-450、KTL-350、KTL-8N、KTL-8F、旭硝子社製:フルオンL169J、L170J、L173Jなどが挙げられる。 Commercial products of PTFE resin include: Kitamura Co., Ltd .: KTL-610, KTL-350, KTL-8N, KTL-400H, Mitsui DuPont Fluoro Chemical Co., Ltd .: Teflon (registered trademark) 7-J, Asahi Glass Co., Ltd .: Fullon G163, L169J, L170J, L173J, Daikin Industries, Ltd .: Polyflon M-15, Lubron L-5, Hoechst: Hostaflon TF9205, TF9207, and the like. Further, PTFE modified with a side chain group having a perfluoroalkyl ether group, a fluoroalkyl group, or other fluoroalkyl may be used. Among the PTFE irradiated with γ rays or electron beams among the above, Kitamura Co., Ltd .: KTL-610, KTL-450, KTL-350, KTL-8N, KTL-8F, Asahi Glass Co., Ltd .: Fullon L169J, L170J, L173J etc. are mentioned.
 PTFE樹脂の配合割合は、樹脂組成物全体に対して3~30体積%が好ましく、5~20体積%がより好ましい。この充填材の配合量が30体積%をこえると、樹脂層の耐クリープ性が低下するおそれがある。一方、この充填材の配合量が3体積%未満であると、樹脂層の低摩擦性を向上させる効果が発現しにくい。 The blending ratio of the PTFE resin is preferably 3 to 30% by volume, more preferably 5 to 20% by volume with respect to the entire resin composition. If the blending amount of the filler exceeds 30% by volume, the creep resistance of the resin layer may be lowered. On the other hand, when the blending amount of the filler is less than 3% by volume, the effect of improving the low friction property of the resin layer is hardly exhibited.
 上記樹脂組成物において、得られる複層軸受における弾性率、耐荷重性、耐クリープ性、耐摩耗性の向上のため、ガラス繊維および炭素繊維から選ばれる少なくとも1つの繊維状補強材を配合することが好ましい。 In the above resin composition, at least one fibrous reinforcing material selected from glass fiber and carbon fiber is blended in order to improve the elastic modulus, load resistance, creep resistance, and wear resistance of the obtained multilayer bearing. Is preferred.
 本発明に用いるガラス繊維、炭素繊維は、単独で使用しても複数種類を併用してもよい。また、繊維状補強材と、ベース樹脂となる合成樹脂との密着性を高めて補強効果を向上させるため、繊維状補強材の表面に、エポキシ系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリアセタール系樹脂などを含有した処理剤や、シラン系カップリング剤(シラン処理)などを用いて表面処理を施してもよい。 The glass fiber and carbon fiber used in the present invention may be used alone or in combination of two or more. In addition, in order to improve the reinforcing effect by improving the adhesion between the fibrous reinforcing material and the synthetic resin as the base resin, the surface of the fibrous reinforcing material is epoxy resin, polyamide resin, polycarbonate resin, polyacetal Surface treatment may be performed using a treatment agent containing a resin or the like, a silane coupling agent (silane treatment), or the like.
 本発明に用いるガラス繊維は、SiO、B、Al、CaO、NaO、KO、MgO、Feなどを成分とする無機ガラスから得られるものであり、一般に無アルカリガラス(Eガラス)、含アルカリガラス(Cガラス、Aガラス)などを使用できる。Eガラスは、例えば、SiOが約52~56重量%、Bが約8~13重量%、Alが約12~16重量%、CaOが約15~25重量%、NaOあるいはKOが0をこえ約1重量%以下、MgOが0をこえ約6重量%以下を含有している。また、その引張強さは、約300~400kgf/mm、平均して約350kgf/mmであり、弾性率は、約7400~7700kgf/mmのものなどがあり、引張強度、弾性率、量産性、価格等の点で平均して総合的に優れている。 Glass fibers for use in the present invention are those derived from inorganic glass SiO 2, B 2 O 3, Al 2 O 3, CaO, Na 2 O, K 2 O, MgO, etc. Fe 2 O 3 as a component Generally, alkali-free glass (E glass), alkali-containing glass (C glass, A glass) and the like can be used. For example, E glass is about 52 to 56% by weight of SiO 2 , about 8 to 13% by weight of B 2 O 3 , about 12 to 16% by weight of Al 2 O 3 , about 15 to 25% by weight of CaO, Na 2 O or K 2 O contains more than 0 and about 1 wt% or less, and MgO contains more than 0 and about 6 wt% or less. Further, the tensile strength is about 300 ~ 400kgf / mm 2, about 350 kgf / mm 2 on average, elastic modulus, include those of about 7400 ~ 7700kgf / mm 2, tensile strength, modulus of elasticity, Overall, it is excellent in terms of mass productivity and price.
 本発明で使用できるガラス繊維の市販品としては、例えば、旭ファイバーグラス社製ミルドファイバー(MF06JB1-20、20JJH1-20、06MW2-20、20MH2-20他)、セントラルガラス社製ミルドファイバー(EFH75-01、EFH100-31、EFH150-01、EFH150-31、EFDE50-01他)などが挙げられる。 Examples of commercially available glass fibers that can be used in the present invention include milled fibers manufactured by Asahi Fiber Glass Co., Ltd. (MF06JB1-20, 20JJH1-20, 06MW2-20, 20MH2-20, etc.), and milled fibers manufactured by Central Glass Co., Ltd. (EFH75- 01, EFH100-31, EFH150-01, EFH150-31, EFDE50-01, etc.).
 本発明に用いる炭素繊維は、原材料から分類されるピッチ系またはPAN系のいずれのものであってもよいが、高弾性率を有するPAN系炭素繊維の方が好ましい。その焼成温度は特に限定するものではないが、2000℃またはそれ以上の高温で焼成されて黒鉛(グラファイト)化されたものよりも、1000~1500℃程度で焼成された炭化品のものが、高PV下でも摺動相手金属を摩耗損傷しにくいので好ましい。炭素繊維の平均繊維径は20μm以下、好ましくは5~15μmである。上記範囲をこえる太い炭素繊維では、極圧が発生するため、耐荷重性の向上効果が乏しく、摺接相手材がアルミニウム合金、焼入れなしの鋼材の場合、相手材の摩耗損傷が大きくなるため好ましくない。 The carbon fibers used in the present invention may be either pitch-based or PAN-based ones classified from raw materials, but PAN-based carbon fibers having a high elastic modulus are preferred. The calcining temperature is not particularly limited, but a carbonized material calcined at about 1000 to 1500 ° C. is higher than that calcined at a high temperature of 2000 ° C. or higher to be converted into graphite. Even under PV, it is preferable because the sliding partner metal is hardly damaged by wear. The average fiber diameter of the carbon fibers is 20 μm or less, preferably 5 to 15 μm. Thick carbon fibers that exceed the above range generate extreme pressure, so the effect of improving load resistance is poor, and when the sliding contact material is an aluminum alloy or non-quenched steel material, wear damage of the counterpart material is increased, which is preferable. Absent.
 本発明で使用できる炭素繊維の市販品としては、ピッチ系として、クレハ社製クレカミルド(M101S、M101F、M101T、M107S、M1007S、M201S、M207S)、大阪ガスケミカル社製ドナカーボ・ミルド(S241、S244、SG241、SG244)が挙げられ、PAN系として、東邦テナックス社製テナックスHTA-CMF0160-0H、CMF0070-0Hなどが挙げられる。 As a commercial product of carbon fiber that can be used in the present invention, Kureha Kurekamildo (M101S, M101F, M101T, M107S, M1007S, M201S, M207S), Osaka Gas Chemical Co., Ltd. Donakabo Mildo (S241, S244, SG241 and SG244), and examples of the PAN system include Tenax HTA-CMF0160-0H and CMF0070-0H manufactured by Toho Tenax Co., Ltd.
 ガラス繊維、炭素繊維は、チョップドファイバー、ミルドファイバーのいずれであってもよいが、安定した薄肉成形性を得るためには、繊維長が1mm未満のミルドファイバーの方が好ましい。また、繊維状補強材(ガラス繊維、炭素繊維)の平均繊維長は20~200μmが好ましい。20μm未満では充分な補強効果が得られず、耐クリープ性、耐摩耗性に劣るおそれがある。200μmをこえる場合は樹脂層の厚みに対する繊維長の比率が大きくなるため、薄肉成形性に劣るおそれがある。特に、樹脂層の厚みを0.1~0.7mmとして射出成形する場合は、繊維長が200μmをこえると薄肉成形性を阻害する。より薄肉成形の安定性を高めるには、平均繊維長20~100μmが好ましい。 Glass fiber and carbon fiber may be chopped fiber or milled fiber, but milled fiber having a fiber length of less than 1 mm is preferable in order to obtain stable thin-wall formability. The average fiber length of the fibrous reinforcing material (glass fiber, carbon fiber) is preferably 20 to 200 μm. If it is less than 20 μm, a sufficient reinforcing effect cannot be obtained, and the creep resistance and wear resistance may be inferior. When the thickness exceeds 200 μm, the ratio of the fiber length to the thickness of the resin layer becomes large, so that the thin-wall moldability may be deteriorated. In particular, when injection molding is performed with the thickness of the resin layer being 0.1 to 0.7 mm, if the fiber length exceeds 200 μm, the thin-wall moldability is hindered. In order to further improve the stability of thin-wall molding, an average fiber length of 20 to 100 μm is preferable.
 繊維状補強材の配合割合は、樹脂組成物全体に対して5~30体積%であることが好ましい。繊維状補強材の配合量が30体積%をこえても、樹脂層の弾性率、耐荷重性、耐摩耗性などが上がりにくく、下地との密着強さが低下するおそれがある。一方、繊維状補強材の配合量が5体積%未満であると、樹脂層の弾性率、耐荷重性、耐摩耗性を向上させる効果が発現しにくい。 The blending ratio of the fibrous reinforcing material is preferably 5 to 30% by volume with respect to the entire resin composition. Even if the blending amount of the fibrous reinforcing material exceeds 30% by volume, the elastic modulus, load resistance, wear resistance and the like of the resin layer are difficult to increase, and the adhesion strength with the base may be reduced. On the other hand, when the blending amount of the fibrous reinforcing material is less than 5% by volume, the effect of improving the elastic modulus, load resistance, and wear resistance of the resin layer is hardly exhibited.
 なお、この発明の効果を阻害しない程度に、樹脂組成物に対して周知の樹脂用添加剤を配合してもよい。この添加剤としては、例えば、黒鉛、窒化ホウ素、二硫化モリブデン、二硫化タングステンなどの摩擦特性向上剤、炭素粉末、酸化鉄、酸化チタンなどの着色剤、黒鉛、金属酸化物粉末などの熱伝導性向上剤が挙げられる。 In addition, you may mix | blend a well-known resin additive with respect to a resin composition to such an extent that the effect of this invention is not inhibited. Examples of this additive include friction property improvers such as graphite, boron nitride, molybdenum disulfide and tungsten disulfide, colorants such as carbon powder, iron oxide and titanium oxide, and heat conduction such as graphite and metal oxide powder. A property improver.
 以上の諸原材料を混合し、混練する手段は、特に限定するものではなく、粉末原料のみをヘンシェルミキサー、ボールミキサー、リボンブレンダー、レディゲミキサー、ウルトラヘンシェルミキサーなどにて乾式混合し、さらに二軸押出し機などの溶融押出し機にて溶融混練し、成形用ペレット(顆粒)を得ることができる。また、充填材の投入は、二軸押出し機などで溶融混練する際にサイドフィードを採用してもよい。射出成形工程において該成形用ペレットを用いて射出成形する。 The means for mixing and kneading the above raw materials is not particularly limited, and only the powder raw material is dry-mixed with a Henschel mixer, ball mixer, ribbon blender, ladyge mixer, ultra Henschel mixer, etc. Melting and kneading can be performed with a melt extruder such as an extruder to obtain molding pellets (granules). In addition, a side feed may be used for charging the filler when melt kneading with a twin screw extruder or the like. In the injection molding process, injection molding is performed using the molding pellets.
 本発明の複層軸受は、例えば、肉厚が0.1~0.7mmの樹脂層と金属板とからなる。樹脂層を摩擦摺動面としているため、摩擦摩耗特性などに優れ、金属板を軸受基材としているため、摩擦発熱の放熱、耐荷重性に優れる。そのため、例えば家庭用・カーエアコン用コンプレッサ、自動車や建設機械などのトランスミッション、油圧機器などの滑り軸受として使用できる。本発明の製造方法により製造した複層軸受は、特に形状を制限するものではなく、ラジアル荷重、アキシヤル荷重のいずれか一方、または両方の荷重を支持することができる。具体的には、上述したようなスラスト積層軸受、ラジアル積層軸受、ラジアル兼スラスト積層軸受が挙げられる。 The multi-layer bearing of the present invention comprises, for example, a resin layer having a thickness of 0.1 to 0.7 mm and a metal plate. Since the resin layer is a frictional sliding surface, it is excellent in frictional wear characteristics and the like, and since the metal plate is a bearing base material, it is excellent in heat dissipation and load resistance of frictional heat generation. Therefore, for example, it can be used as a sliding bearing for household / car air conditioner compressors, transmissions for automobiles and construction machines, hydraulic equipment and the like. The multi-layer bearing manufactured by the manufacturing method of the present invention is not particularly limited in shape, and can support one or both of a radial load and an axial load. Specifically, a thrust laminated bearing, a radial laminated bearing, and a radial and thrust laminated bearing as described above can be used.
 本発明の複層軸受の製造方法は、金型への金属板のインサートが容易で、工程内でのハンドリングが良く、生産性に優れている。また、この製法にて製造した複層軸受は、高面圧下での耐クリープ性、低摩擦性、耐摩耗性に優れている。そのため、家庭用・カーエアコン用コンプレッサ、自動車や建設機械などのトランスミッション、油圧機器等に使用されている転がり軸受、スラストニードル軸受の代替品として好適に利用することができる。 The multi-layer bearing manufacturing method of the present invention is easy to insert a metal plate into a mold, has good handling in the process, and is excellent in productivity. In addition, the multi-layer bearing manufactured by this manufacturing method is excellent in creep resistance, low friction and wear resistance under high surface pressure. Therefore, it can be suitably used as a substitute for rolling bearings and thrust needle bearings used in household / car air conditioner compressors, transmissions such as automobiles and construction machines, hydraulic equipment, and the like.
  1  金属フープ材
  2  金属板
  3  射出成形機
  4  樹脂層
  5  焼結層
  6  複層軸受(動圧溝有り)
  7  複層軸受(スラスト複層軸受)
  8  複層軸受(ラジアル複層軸受)
  9  複層軸受(ラジアル兼スラスト複層軸受)
DESCRIPTION OF SYMBOLS 1 Metal hoop material 2 Metal plate 3 Injection molding machine 4 Resin layer 5 Sintered layer 6 Multi-layer bearing (with dynamic pressure groove)
7 Multi-layer bearing (Thrust multi-layer bearing)
8 Multi-layer bearing (Radial double-layer bearing)
9 Multi-layer bearings (radial and thrust multi-layer bearings)

Claims (13)

  1.  金属板の表面に摺動面となる樹脂層が射出形成されてなる複層軸受の製造方法であって、
     帯状に連続した金属フープ材に、前記金属板となる板状部分を連続して複数形成するプレス工程と、
     前記金属フープ材を連続的に射出成形機に供給して、前記板状部分の少なくとも一方の表面に、合成樹脂をベース樹脂とする樹脂組成物を材料として用いて樹脂層を射出成形する射出成形工程と、
     前記樹脂層が形成された金属板を前記金属フープ材から分離して複層軸受とする分離工程とを備えてなることを特徴とする複層軸受の製造方法。
    A method of manufacturing a multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate,
    A pressing step of continuously forming a plurality of plate-like portions to be the metal plate on a metal hoop material continuous in a strip shape;
    Injection molding in which the metal hoop material is continuously supplied to an injection molding machine and a resin layer is injection-molded on at least one surface of the plate-like portion using a resin composition containing a synthetic resin as a base resin. Process,
    And a separation step of separating the metal plate on which the resin layer is formed from the metal hoop material to form a multilayer bearing.
  2.  前記プレス工程前に、前記金属フープ材の樹脂層成形表面に、焼結層を形成する工程を有することを特徴とする請求項1記載の複層軸受の製造方法。 The method for producing a multi-layer bearing according to claim 1, further comprising a step of forming a sintered layer on the resin layer molding surface of the metal hoop material before the pressing step.
  3.  前記プレス工程で得られる前記板状部分は、少なくとも2箇所の前記金属フープ材との未切断部を有し、前記分離工程において、前記未切断部を切断して前記金属板を前記金属フープ材から分離することを特徴とする請求項1記載の複層軸受の製造方法。 The plate-like portion obtained in the pressing step has at least two uncut portions with the metal hoop material, and in the separation step, the uncut portion is cut to remove the metal plate from the metal hoop material. 2. The method for manufacturing a multi-layer bearing according to claim 1, wherein the multi-layer bearing is separated.
  4.  前記分離工程の後、前記樹脂層が形成された金属板を円筒状に丸め加工する工程を備えてなることを特徴とする請求項1記載の複層軸受の製造方法。 The method for manufacturing a multi-layer bearing according to claim 1, further comprising a step of rounding the metal plate on which the resin layer is formed into a cylindrical shape after the separation step.
  5.  前記分離工程の後、前記樹脂層が形成された金属板を曲げ加工する工程を備えてなることを特徴とする請求項1記載の複層軸受の製造方法。 The method for manufacturing a multi-layer bearing according to claim 1, further comprising a step of bending the metal plate on which the resin layer is formed after the separating step.
  6.  前記樹脂層の厚みが、0.1~0.7mmであることを特徴とする請求項1記載の複層軸受の製造方法。 The method for manufacturing a multi-layer bearing according to claim 1, wherein the resin layer has a thickness of 0.1 to 0.7 mm.
  7.  前記射出成形工程において、前記樹脂層の表面に溝を形成することを特徴とする請求項1記載の複層軸受の製造方法。 The method for manufacturing a multi-layer bearing according to claim 1, wherein grooves are formed on the surface of the resin layer in the injection molding step.
  8.  前記合成樹脂が、熱可塑性ポリイミド樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレン樹脂、およびポリアセタール樹脂から選ばれる少なくとも1つであることを特徴とする請求項1記載の複層軸受の製造方法。 The synthetic resin is at least one selected from thermoplastic polyimide resin, polyether ketone resin, polyether ether ketone resin, polyphenylene sulfide resin, polyamide imide resin, polyamide resin, polyethylene resin, and polyacetal resin. The method of manufacturing a multilayer bearing according to claim 1.
  9.  前記樹脂組成物が、ポリテトラフルオロエチレン樹脂を含むことを特徴とする請求項1記載の複層軸受の製造方法。 The method for manufacturing a multilayer bearing according to claim 1, wherein the resin composition contains a polytetrafluoroethylene resin.
  10.  前記樹脂組成物が、ガラス繊維および炭素繊維から選ばれる少なくとも1つの繊維状補強材を含むことを特徴とする請求項1記載の複層軸受の製造方法。 The method for producing a multilayer bearing according to claim 1, wherein the resin composition includes at least one fibrous reinforcing material selected from glass fibers and carbon fibers.
  11.  前記繊維状補強材の平均繊維長が、20~200μmであることを特徴とする請求項10記載の複層軸受の製造方法。 11. The method for manufacturing a multilayer bearing according to claim 10, wherein an average fiber length of the fibrous reinforcing material is 20 to 200 μm.
  12.  金属板の表面に摺動面となる樹脂層が射出形成されてなる複層軸受であって、請求項1記載の製造方法により製造されることを特徴とする複層軸受。 A multi-layer bearing in which a resin layer serving as a sliding surface is injection-formed on the surface of a metal plate, wherein the multi-layer bearing is manufactured by the manufacturing method according to claim 1.
  13.  前記複層軸受は、スラスト複層軸受、ラジアル複層軸受、またはラジアル兼スラスト複層軸受であることを特徴とする請求項12記載の複層軸受。 13. The multilayer bearing according to claim 12, wherein the multilayer bearing is a thrust multilayer bearing, a radial multilayer bearing, or a radial and thrust multilayer bearing.
PCT/JP2012/065333 2011-06-15 2012-06-15 Multilayer bearing manufacturing method and multilayer bearing WO2012173223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-132848 2011-06-15
JP2011132848A JP5715504B2 (en) 2011-06-15 2011-06-15 Multilayer bearing manufacturing method and multilayer bearing

Publications (1)

Publication Number Publication Date
WO2012173223A1 true WO2012173223A1 (en) 2012-12-20

Family

ID=47357201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065333 WO2012173223A1 (en) 2011-06-15 2012-06-15 Multilayer bearing manufacturing method and multilayer bearing

Country Status (2)

Country Link
JP (1) JP5715504B2 (en)
WO (1) WO2012173223A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2823947A1 (en) * 2013-07-12 2015-01-14 JTEKT Corporation Method of manufacturing electrical insulating resin material and rolling bearing
US10060430B2 (en) 2013-12-13 2018-08-28 Ntn Corporation Internal gear pump
EP2833009B1 (en) * 2012-03-27 2020-06-17 NTN Corporation Composite plain bearing, cradle guide, and sliding nut

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000910B2 (en) * 2013-07-10 2016-10-05 三井化学株式会社 Metal / resin composite structure
JP6337539B2 (en) * 2014-03-18 2018-06-06 アイシン精機株式会社 Intake control valve and intake device
JP6517054B2 (en) * 2015-03-20 2019-05-22 Ntn株式会社 Thrust washer
JP6517055B2 (en) * 2015-03-20 2019-05-22 Ntn株式会社 Thrust washer
WO2016152741A1 (en) * 2015-03-20 2016-09-29 Ntn株式会社 Thrust washer
JP2016223539A (en) * 2015-05-29 2016-12-28 大豊工業株式会社 Bearing for internal combustion engine, and manufacturing method of bearing for internal combustion engine
JP6492156B2 (en) * 2017-12-28 2019-03-27 Ntn株式会社 Internal gear pump
KR102269884B1 (en) * 2018-02-01 2021-06-29 한동원 Insert Molding Manufacturing Method For Improving Camera Performance
JP6639592B2 (en) * 2018-09-05 2020-02-05 Ntn株式会社 Water pump
KR20220093201A (en) * 2019-11-08 2022-07-05 생-고뱅 퍼포먼스 플라스틱스 코포레이션 Split bearings, assemblies and methods of making and using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109912A (en) * 1984-11-05 1986-05-28 Oiles Ind Co Ltd Manufacture of double-layer plain bearing
JPH0571538A (en) * 1991-09-12 1993-03-23 Ndc Co Ltd Split bearing
JP2006194397A (en) * 2005-01-17 2006-07-27 Oiles Ind Co Ltd Multiple layer sliding member
JP2007051771A (en) * 2005-08-19 2007-03-01 Taida Electronic Ind Co Ltd Method of manufacturing dynamic pressure bearing
JP2009500582A (en) * 2005-07-14 2009-01-08 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Bearing and method for manufacturing the bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109912A (en) * 1984-11-05 1986-05-28 Oiles Ind Co Ltd Manufacture of double-layer plain bearing
JPH0571538A (en) * 1991-09-12 1993-03-23 Ndc Co Ltd Split bearing
JP2006194397A (en) * 2005-01-17 2006-07-27 Oiles Ind Co Ltd Multiple layer sliding member
JP2009500582A (en) * 2005-07-14 2009-01-08 フエデラル―モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Bearing and method for manufacturing the bearing
JP2007051771A (en) * 2005-08-19 2007-03-01 Taida Electronic Ind Co Ltd Method of manufacturing dynamic pressure bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833009B1 (en) * 2012-03-27 2020-06-17 NTN Corporation Composite plain bearing, cradle guide, and sliding nut
EP2823947A1 (en) * 2013-07-12 2015-01-14 JTEKT Corporation Method of manufacturing electrical insulating resin material and rolling bearing
US10060430B2 (en) 2013-12-13 2018-08-28 Ntn Corporation Internal gear pump

Also Published As

Publication number Publication date
JP5715504B2 (en) 2015-05-07
JP2013002517A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5715504B2 (en) Multilayer bearing manufacturing method and multilayer bearing
US8967870B2 (en) Composite slide bearing
EP2833009B1 (en) Composite plain bearing, cradle guide, and sliding nut
JP4515824B2 (en) High precision plain bearing
EP2759728A1 (en) Sliding bearing and image formation device
US20160341251A1 (en) Sliding bearing
JP4003035B2 (en) Rolling bearing
JP2014001847A (en) Slide nut and slide screw device
JP2012251616A (en) Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
WO2018062357A1 (en) Slide member
US20190226525A1 (en) Sliding member
JP2015148285A (en) slide bearing
JP2875773B2 (en) Oil seal ring made of synthetic resin
JP5806363B2 (en) Manufacturing method of compound plain bearing
JP2016180440A (en) Radial sliding bearing
US10598167B2 (en) Semispherical shoe for swash plate compressor and swash plate compressor
JP6317057B2 (en) Plain bearing
JP2018059085A (en) Sliding member and method of producing the same
JP2013145029A (en) Sliding key and continuously variable transmission
CN117628067A (en) Method for manufacturing composite bearing, rotating mechanism, and working machine
JP6146969B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
JP2014152802A (en) Slide nut and slide screw device
JP6313682B2 (en) Swash plate compressor hemispherical shoe and swash plate compressor
JP6199196B2 (en) Plain bearing
JP2013040628A (en) Sliding nut and sliding screw device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799963

Country of ref document: EP

Kind code of ref document: A1