WO2012169753A2 - 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 - Google Patents

상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 Download PDF

Info

Publication number
WO2012169753A2
WO2012169753A2 PCT/KR2012/004389 KR2012004389W WO2012169753A2 WO 2012169753 A2 WO2012169753 A2 WO 2012169753A2 KR 2012004389 W KR2012004389 W KR 2012004389W WO 2012169753 A2 WO2012169753 A2 WO 2012169753A2
Authority
WO
WIPO (PCT)
Prior art keywords
slot
pucch
cce
pdcch
subframe
Prior art date
Application number
PCT/KR2012/004389
Other languages
English (en)
French (fr)
Other versions
WO2012169753A3 (ko
Inventor
김학성
김기준
서한별
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US14/124,644 priority Critical patent/US9351289B2/en
Publication of WO2012169753A2 publication Critical patent/WO2012169753A2/ko
Publication of WO2012169753A3 publication Critical patent/WO2012169753A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for transmitting an uplink signal and a method and apparatus for receiving an uplink signal.
  • M2M smartphone-to-machine communication
  • smart phones and tablet PCs which require high data transmission rates
  • M2M smartphone-to-machine communication
  • the amount of data required to be processed in a cellular network is growing very quickly.
  • carrier aggregation technology, cognitive radio technology, etc. to efficiently use more frequency bands, and increase the data capacity transmitted within a limited frequency Multi-antenna technology, multi-base station cooperation technology, and the like are developing.
  • the communication environment is evolving in the direction of increasing density of nodes that users can access from the periphery.
  • a communication system with a high density of nodes can provide higher performance communication services to users by cooperation between nodes.
  • the present invention provides a method and apparatus for efficiently transmitting / receiving an uplink signal.
  • in the user equipment transmits the uplink control information in a wireless communication system, receiving a physical downlink control channel (PDCCH) from the base station; Transmitting a physical uplink control channel (PUCCH) carrying ACK / NACK (ACKnowledge / Negative ACK) information corresponding to the PDCCH, wherein the index of the first control channel element (CCE) included in the PDCCH is the first CCE set In case of belonging to the transmission of the PUCCH in the first slot of the subframe, and if the index of the first CCE belongs to the second CCE set, transmitting the PUCCH in the second slot of the subframe, uplink control information transmission A method is provided.
  • PUCCH physical downlink control channel
  • a radio frequency (RF) unit configured to transmit or receive a radio signal in a user equipment transmitting uplink control information in a wireless communication system; And controlling the RF unit to receive a physical downlink control channel (PDCCH) from a base station, and transmitting a physical uplink control channel (PUCCH) carrying ACK / NACK (ACKnowledge / Negative ACK) information corresponding to the PDCCH to the base station.
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • a processor for controlling the RF unit wherein the processor transmits the PUCCH in a first slot of a subframe when an index of a first control channel element (CCE) included in the PDCCH belongs to a first CCE set, When the index of the first CCE belongs to the second CCE set, the user equipment is provided to control the RF unit to transmit the PUCCH in the second slot of the subframe.
  • CCE control channel element
  • a base station when a base station receives uplink control information, it transmits a physical downlink control channel (PDCCH) to a user equipment; Receive a PUCCH carrying ACK / NACK (ACKnowledge / Negative ACK) information corresponding to the PDCCH from the user equipment, and if the index of the first control channel element (CCE) included in the PDCCH belongs to the first CCE set Uplink control information receiving the PUCCH in the first slot of a frame and receiving the PUCCH in the second slot of the subframe when the index of the first CCE belongs to a second CCE set A receiving method is provided.
  • PDCCH physical downlink control channel
  • NACK ACKnowledge / Negative ACK
  • a base station receives uplink control information, the radio frequency unit configured to transmit or receive a radio signal; And controlling the RF unit to transmit a physical downlink control channel (PDCCH) to a user equipment and receiving the PUCCH carrying ACK / NACK (ACKnowledge / Negative ACK) information corresponding to the PDCCH from the user equipment.
  • PUCCH physical downlink control channel
  • a processor for controlling wherein the processor receives the physical uplink control channel (PUCCH) in a first slot of a subframe when an index of a first control channel element (CCE) included in the PDCCH belongs to a first CCE set And control the RF unit to control the RF unit to receive the PUCCH in the second slot of the subframe if the index of the first CCE belongs to a second CCE set.
  • PUCCH physical uplink control channel
  • CCE control channel element
  • any one of the first CCE set and the second CCE set is CCE indices 0 to M-1 of the total N CCE indices, where N is an integer greater than 2, wherein M is Positive integer), and the other may include CCE indexes M to N-1 of the N CCE indexes.
  • information indicating M from the base station may be transmitted to the user equipment.
  • any one of the first CCE set and the second CCE set includes only even indexes among total N CCE indices, where N is an integer greater than 2, and the other is an odd index. It can only include them.
  • the efficiency of uplink resource usage is increased.
  • the number of uplink transmissions multiplexed to a predetermined time-frequency resource is reduced, so that interference occurring between uplink transmissions in the predetermined time-frequency resource is reduced.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • 5 through 8 illustrate UCI transmission according to a PUCCH format.
  • FIG. 9 illustrates slot-based PUSCH / PUCCH / SRS transmission using a slot utilization indication according to an embodiment of the present invention.
  • FIG. 10 illustrates an example in which a BS uses a slot utilization indication according to the present invention.
  • FIG. 11 illustrates uplink transmission when slot-mode is configured in a system using subframe bundling.
  • FIG. 12 illustrates an example of determining a PUCCH resource for ACK / NACK in a 3GPP LTE- (A) system.
  • 13 and 14 illustrate an embodiment of the present invention for mapping a CCE index with the PUCCH format 1 / 1a / 1b.
  • FIG. 15 illustrates another embodiment of the present invention for mapping a CCE index with the PUCCH format 1 / 1a / 1b.
  • 16 illustrates another embodiment of the present invention for mapping a CCE index with the PUCCH format 1 / 1a / 1b.
  • 17 and 18 illustrate another embodiment of the present invention for mapping the CCE index with the PUCCH format 1 / 1a / 1b.
  • 19 illustrates an embodiment of the present invention for PUCCH resources for PUCCH formats 2 / 2a / 2b.
  • 21 illustrates embodiments of the present invention for transmitting a reference signal for channel estimation of an uplink control region.
  • 22 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the techniques, devices, and systems described below may be applied to various wireless multiple access systems.
  • 3GPP LTE 3GPP LTE
  • the technical features of the present invention are not limited thereto.
  • the following detailed description is described based on the mobile communication system corresponding to the 3GPP LTE (-A) system, any other mobile communication except for the matters specific to 3GPP LTE (-A) Applicable to the system as well.
  • a user equipment may be fixed or mobile, and various devices which communicate with the BS to transmit and receive user data and / or various control information belong to the same.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a base station generally refers to a fixed station for communicating with a UE and / or another BS, and communicates various data and control information by communicating with the UE and another BS. do.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • PS Processing Server
  • Physical Downlink Control CHannel PDCCH
  • Physical Control Format Indicator CHannel PCFICH
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • PUSCH Physical Uplink Shared CHannel
  • UCI uplink control information
  • the expression that the user equipment transmits the PUCCH / PUSCH is used in the same sense as transmitting the uplink control information / uplink data / random access signal on the PUSCH / PUCCH, respectively.
  • the expression that the BS transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • a cell-specific reference signal (CRS) / demodulation reference signal (DMRS) / channel state information reference signal (CSI-RS) time-frequency resource (or RE) is allocated to the CRS / DMRS / CSI-RS, respectively.
  • a time-frequency resource (or RE) carrying an available RE or CRS / DMRS / CSI-RS is allocated to the CRS / DMRS / CSI-RS, respectively.
  • a subcarrier including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS subcarrier
  • an OFDM symbol including a CRS / DMRS / CSI-RS RE is called a CRS / DMRS / CSI-RS symbol.
  • the SRS time-frequency resource (or RE) is transmitted from the UE to the BS so that the BS uses the sounding reference signal (Sounding Reference Signal, SRS) to measure the uplink channel state formed between the UE and the BS.
  • SRS Sounding Reference Signal
  • the reference signal refers to a signal of a predefined, special waveform that the UE and the BS know each other, and are also called pilots.
  • FIG. 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • FIG. 1 (a) illustrates a radio frame structure that can be used for FDD in 3GPP LTE (-A)
  • FIG. 1 (b) illustrates a radio frame structure that can be used for TDD in 3GPP LTE (-A). It is illustrated.
  • a radio frame used in 3GPP LTE has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes. Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink (DL) transmission and uplink (UL) transmission are divided by frequency, a radio frame is a downlink subframe or a UL subframe for a predetermined frequency band operating at a predetermined carrier frequency. Includes only one of them. Since the DL transmission and the UL transmission in the TDD mode are separated by time, a radio frame includes both a downlink subframe and an UL subframe for a predetermined frequency band operating at a predetermined carrier frequency.
  • DL downlink
  • UL uplink
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D denotes a downlink subframe
  • U denotes an UL subframe
  • S denotes a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for DL transmission
  • UpPTS is a time interval reserved for UL transmission.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE (-A) system. There is one resource grid per antenna port.
  • -A 3GPP LTE
  • the slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on the DL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • An OFDM symbol may be called an OFDM symbol, an SC-FDM symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may be variously changed according to the channel bandwidth and the length of the CP. For example, one slot includes seven OFDM symbols in the case of a normal CP, but one slot includes six OFDM symbols in the case of an extended CP.
  • FIG. 2 illustrates a subframe in which one slot consists of 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG. 2, each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard bands, and DC components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency (carrier freqeuncy, f 0 ) in the OFDM signal generation process or the frequency upconversion process.
  • the carrier frequency is also called the center frequency.
  • One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g., seven
  • N RB sc e.g., twelve
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • PRB physical resource block
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • VRB is a kind of logical resource allocation unit introduced for resource allocation.
  • VRB has the same size as PRB.
  • the mapping method of the VRB to the PRB the VRB is divided into a localized type VRB and a distributed type VRB. Localized type VRBs are mapped directly to PRBs, so that a VRB number (also called a VRB index) corresponds directly to a PRB number.
  • n PRB n VRB .
  • the distributed type VRB is mapped to the PRB through interleaving. Therefore, VRBs of distributed type having the same VRB number may be mapped to different numbers of PRBs in the first slot. Two PRBs, one located in two slots of a subframe and having the same VRB number, are called VRB pairs.
  • FIG 3 illustrates a downlink subframe structure used in a 3GPP LTE (-A) system.
  • the DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHance (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared CHance
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries an HARQ ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
  • DCI downlink control information
  • DCI includes resource allocation information and other control information for the UE or UE group.
  • the DCI includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel. channel, paging information on PCH), system information on DL-SCH, resource allocation information of higher-layer control messages such as random access response transmitted on PDSCH, Tx power control command set for individual UEs in UE group, Tx power Control command, activation instruction information of Voice over IP (VoIP), and the like.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • a plurality of PDCCHs may be transmitted in the PDCCH region of the DL subframe.
  • the UE may monitor the plurality of PDCCHs.
  • the BS determines the DCI format according to the DCI to be transmitted to the UE, and adds a cyclic redundancy check (CRC) to the DCI.
  • CRC cyclic redundancy check
  • the CRC is masked (or scrambled) with an identifier (eg, a radio network temporary identifier (RNTI)) depending on the owner or purpose of use of the PDCCH.
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • a paging identifier eg, paging-RNTI (P-RNTI)
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • Four QPSK symbols are mapped to each REG.
  • the resource element RE occupied by the reference signal RS is not included in the REG.
  • the REG concept is also used for other DL control channels (ie, PDFICH and PHICH).
  • the DCI format and the number of DCI bits are determined according to the number of CCEs.
  • CCEs are numbered consecutively, and to simplify the decoding process, a PDCCH having a format consisting of n CCEs can only be started in a CCE having a number corresponding to a multiple of n.
  • the number of CCEs used for transmission of a specific PDCCH, that is, the CCE aggregation level is determined by the BS according to the channel state. For example, one CCE may be sufficient for a PDCCH for a UE having a good DL channel (eg, adjacent to a BS). However, in case of a PDCCH for a UE having a poor channel (eg, near the cell boundary), eight CCEs may be required to obtain sufficient robustness.
  • Figure 4 shows an example of an uplink subframe structure used in the 3GPP LTE (-A) system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • the control region and data region in the UL subframe may also be called a PUCCH region and a PUSCH region, respectively.
  • a sounding reference signal (SRS) may be allocated to the data area.
  • the SRS is transmitted in the OFDM symbol located at the end of the UL subframe in the time domain and in the data transmission band of the UL subframe, that is, in the data domain, in the frequency domain.
  • SRSs of several UEs transmitted / received in the last OFDM symbol of the same subframe may be distinguished according to frequency location / sequence.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • the UCI carried by one PUCCH is different in size and use according to the PUCCH format, and may vary in size according to a coding rate.
  • the following PUCCH format may be defined.
  • the PUCCH format 1 series and the PUCCH format 3 series are mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly used to carry channel state information such as CQI / PMI / RI.
  • 5 through 8 illustrate UCI transmission according to a PUCCH format.
  • a DL / UL subframe with a standard CP consists of two slots, each slot containing seven OFDM symbols, and a DL / UL subframe with an extended CP, each slot It consists of two slots containing these six OFDM symbols. Since the number of OFDM symbols per subframe varies according to the CP length, the structure in which the PUCCH is transmitted in the UL subframe also varies according to the CP length. Accordingly, depending on the PUCCH format and the CP length, a method of transmitting a UCI in a UL subframe may vary.
  • FIG. 5 illustrates an example of transmitting ACK / NACK information using a PUCCH format 1a / 1b in a UL slot having a standard CP
  • FIG. 6 illustrates ACK / NACK using PUCCH format 1a / 1b in a UL slot having an extended CP.
  • An example of transmitting NACK information is shown.
  • the ACK / NACK signal has a different cyclic shift (CS) (frequency domain code) and orthogonal cover code (orthogonal cover code) of a Computer-Generated Constant Amplitude Zero Auto Correlation (CG-CAZAC) sequence. It is transmitted through different resources consisting of OC or OCC (Time Domain Spreading Code). Orthogonal cover codes are also called orthogonal sequences. OC includes, for example, Walsh / DFT orthogonal code.
  • a total of 18 PUCCHs may be multiplexed in the same physical resource block (PRB) based on a single antenna port.
  • the orthogonal sequence w 0 , w 1 , w 2 , w 3 can be applied in any time domain (after FFT modulation) or in any frequency domain (before FFT modulation).
  • PUCCH resources for ACK / NACK transmission in 3GPP LTE (-A) system is the location of time-frequency resources (e.g., PRB), the cyclic shift of the sequence for frequency spread and (quasi) orthogonal code for time spread Expressed as a combination, each PUCCH resource is indicated using a PUCCH resource index (also called a PUCCH index).
  • PUCCH resource index also called a PUCCH index.
  • the slot level structure of the PUCCH format 1 series for SR (Scheduling Request) transmission is the same as that of the PUCCH formats 1a and 1b, and only its modulation method is different.
  • FIG. 7 illustrates an example of transmitting channel state information (CSI) using a PUCCH format 2 / 2a / 2b in an UL slot having a standard CP
  • FIG. 8 illustrates a PUCCH format in an UL slot having an extended CP.
  • An example of transmitting channel state information using 2 / 2a / 2b is shown.
  • one UL subframe includes 10 OFDM symbols except for a symbol carrying a UL reference signal (RS).
  • the channel state information is coded into 10 transmission symbols (also called complex modulation symbols) through block coding.
  • the 10 transmission symbols are respectively mapped to the 10 OFDM symbols and transmitted to the BS.
  • PUCCH format 1 / 1a / 1b and PUCCH format 2 / 2a / 2b can carry UCI up to a certain number of bits.
  • PUCCH format 1 / 1a / 1b and PUCCH format 2 / 2a / 2b can carry UCI up to a certain number of bits.
  • PUCCH format 3 is introduced, which is called PUCCH format 3.
  • PUCCH format 3 may be implemented by applying, for example, UCI bundling, channel selection for selecting any one of a plurality of PUCCH resources, dual lead-muller coding, and the like to PUCCH formats 1 / 1a / 1b / 2 / 2a / 2b. Can be.
  • a new remote radio head is being discussed.
  • a method of transmitting UL / DL grants for other CCs in a serving CC having a good channel situation is discussed.
  • this is called cross-carrier scheduling.
  • the RRH technique, the cross-carrier scheduling technique, and the like are introduced, the amount of PDCCH to be transmitted by the BS is gradually increased.
  • the PDCCH transmission serves as a bottleneck of system performance. Therefore, in order to prevent PDCCH transmission from limiting system performance, there is a discussion to perform PDCCH transmission using a PDSCH region of a DL subframe.
  • PDCCH according to the existing 3GPP LTE standard may be allocated to the PDCCH region of the DL subframe. Meanwhile, the PDCCH may be additionally allocated using some resources of the PDSCH region.
  • the PDCCH can be used not only for CRS-based transmit diversity or spatial multiplexing transmission but also to operate based on the UE-specific reference signal DMRS. Can be.
  • the PDCCH transmitted in the latter OFDM symbols (PDSCH region) of the DL subframe is E-PDCCH (Enhanced PDCCH) or A- This is called an advanced PDCCH (PDCCH).
  • PDSCH / PUSCH scheduled by E-PDCCH is also called E-PDSCH / E-PUSCH.
  • PDCCH and E-PDCCH may be managed by different CCE indexes. In this case, even though the PDCCH and the E-PDCCH are transmitted on the CCE having the same CCE index, the CCE of the PDCCH and the CCE of the E-PDCCH mean different CCEs.
  • the PUSCH transmission according to the UL grant carried by the PDCCH and / or the PUCCH transmission carrying uplink control information associated with the PDSCH are performed over two slots of a subframe.
  • transmitting PUCCH / PUSCH over two slots of a subframe is called subframe based scheduling / transmission.
  • uplink enhancement technology is developed / introduced, the UL transmission energy required to properly receive the UL transmission in the BS is decreasing.
  • the present invention intends to propose methods for performing UL transmission in a slot unit rather than a subframe unit using a PDCCH or an E-PDCCH. That is, the present invention is an embodiment of a method and apparatus for performing uplink transmission / reception on a slot-by-slot basis under a special situation such as when the uplink channel state is good even if downlink transmission / reception is performed on a subframe basis. Suggest them.
  • PUCCH and / or PUSCH may be transmitted in any one of slots.
  • embodiments of the present invention will be described as PUCCH / PUSCH transmission performed in one slot of a subframe, called slot-based scheduling / transmission.
  • a system in which UL transmission / reception is performed based on a subframe using a PDCCH and a system in which UL transmission / reception according to PDCCH or E-PDCCH is performed is called an enhancement system.
  • a UE implemented according to an enhancement system that is, an enhancement UE may be configured to perform both subframe based UL transmission and slot based UL transmission.
  • a UE implemented to receive only PDCCH and capable of performing only subframe based UL transmission may be compared to a legacy UE when comparing an E-PDCCH to an improved UE implemented to receive and / or perform slot based UL transmission. Becomes In some cases, it may be scheduled by PDCCH for legacy UEs and by E-PDCCH for enhanced UEs.
  • the relay means an equipment and / or a branch that expands the service area of the BS or is installed in a shaded area to smoothly service the BS.
  • the relay may be called in other terms such as a relay node (RN) and a relay station (RS). From the UE's point of view, the relay is part of the radio access network and behaves like a BS with some exceptions.
  • a BS that sends a signal to or receives a signal from a relay is called a donor BS.
  • the relay is wirelessly connected to the donor BS.
  • the relay behaves like a UE, with some exceptions (e.g., downlink control information is transmitted over the R-PDCCH in the PDSCH region, not in the PDCCH region).
  • the relay includes both the physical layer entity used for communication with the UE and the physical layer entity used for communication with the donor BS.
  • BS-to-RN transmission hereinafter BS-to-RN transmission, occurs in the DL subframe
  • relay to BS hereinafter, RN-to-BS transmission, occurs in the UL subframe.
  • a relay or UE may communicate with a network to which the one or more BSs belong through one or more BSs.
  • the CCE also describes embodiments of the present invention collectively as CCE regardless of which PDCCH among the PDCCH, E-PDCCH, and R-PDCCH.
  • FIG. 9 illustrates slot-based PUSCH / PUCCH / SRS transmission using a slot utilization indication according to an embodiment of the present invention.
  • the slot-based transmission scheme may be configured in advance in order to allow the UE to perform UL transmission on a slot-based basis.
  • the BS configures a slot-based transmission mode in advance and signals the UE before performing slot-based scheduling. For example, the BS configures a subframe-based transmission mode (hereinafter referred to as subframe mode) if the UL channel state of the UE does not reach a specific threshold, and the slot-based transmission mode (hereinafter referred to as subframe mode) if the UE's UL channel state is above a certain threshold.
  • subframe mode a subframe-based transmission mode if the UL channel state of the UE does not reach a specific threshold
  • the slot-based transmission mode hereinafter referred to as subframe mode
  • the slot mode can be configured.
  • the UE may perform UL transmission on a slot basis. If the BS configures the slot mode, the UE may be forced to perform UL transmission in the slot unit unconditionally, but it is determined whether the UE performs the UL transmission in the slot unit or the UL transmission in the subframe according to the channel condition. It is also possible to be configured to judge. However, when the UE is configured to determine the transmission per slot and the transmission per subframe, it is preferable that the criterion is designed so that the BS knows in advance.
  • the BS may indicate various ways of indicating the slot mode to the UE. For example, the BS may configure the slot mode in the UE by RRC (Radio Resource Control) signaling. At this time, the BS should inform whether the slot that the UE should use for UL transmission is the first slot or the second slot. The BS can inform semi-static which slot to use when configuring the slot mode by RRC signaling.
  • RRC Radio Resource Control
  • the BS may inform the UE dynamically by using a specific bit (eg, 1-bit in the PDCCH DCI format) to which slot to transmit at every scheduling time point.
  • the DCI format or higher layer signaling may carry, for example, slot utilization indication information defined as follows.
  • a specific bit is set to '0', it indicates an even slot (even number slot) or the first slot of an UL subframe, and if a specific bit is set to '1', an odd slot (Odd number slot) or to indicate a second slot of the UL subframe may be predetermined to the UE and BS.
  • 2-bit may be used for the slot utilization indication.
  • the BS may transmit slot utilization indication information to the UE according to the following table.
  • the BS may inform the UE of one of two slots in a subframe using 00 or 01, and may inform the UE that both slots are used for UL transmission using 10.
  • the BS may transmit slot utilization indication information to the UE according to the following table.
  • the 2-bit can indicate.
  • the information bits 11 mapped to the remaining states may be defined to indicate transmission in one slot but indicate that UL transmission is alternately performed in the first slot and the second slot. In this case, a transmission problem associated with a specific slot can be solved.
  • the SRS is always transmitted in the second slot of the subframe. As such, when the SRS is always transmitted only in the second slot, the SRS transmission may be complicated when the UE is indicated to be the first slot transmission.
  • the UE stops UL transmission from the first symbol of the second slot to the immediately preceding symbol of the last symbol after performing the UL transmission in the first slot, and thus needs to transmit the SRS in the last symbol. If the UE receives the slot utilization indication information indicating that the UE alternately uses two slots for UL transmission and assumes that the SRS transmission is configured in the UE, the UE transmits the SRS when the SRS transmission timing corresponds to the first slot. If the SRS transmission timing corresponds to the second slot, the SRS is transmitted in the last OFDM symbol of the second slot.
  • the alternate transmission may mean a method of alternately using the first slot and the second slot from the HARQ process point of view associated with a hybrid automatic retransmission reQuest (HARQ) operation of the UE.
  • this may mean a method of performing UL transmission in association with a subframe number or a slot index.
  • the first slot may be used for UL transmission
  • the second slot may be used for UL transmission.
  • the SRS may be transmitted periodically and / or aperiodically. Given the periodic transmission of the SRS, it may be advantageous to determine the slot used for subframe-related UL transmission.
  • mapping relationship between the information bits and the slot utilization indications of Tables 3 to 5 is merely an example and may be configured differently.
  • the aforementioned slot utilization instruction has been described as an example in which the BS is used to inform the UE of a slot to be used by the UE, assuming that the UE is configured with a slot-mode. However, even if the slot-mode is not configured, a separate indication bit is added to the PDCCH DCI format so that the added indication bit is ACK / NACK for the PDSCH corresponding to the DL grant that the PDCCH carries, that is, the PDCCH carries. It may also serve as a slot utilization instruction indicating which slot should be transmitted in. When the slot utilization indication is applied to the PUCCH transmission, a corresponding indication bit may be added to the UL grant. That is, the slot in which the UL transmission is to be performed may be indicated in either the UL grant or the DL grant.
  • the BS explicitly sends a slot utilization indication to the UE.
  • the slots used in the slot-mode are naturally classified by special criteria such as DCI format, CoMP transmission point, etc., which slot should be used for uplink transmission even if the UE does not explicitly receive a slot utilization indication.
  • the slot utilization indication may not be sent to the UE.
  • the slot utilization indication may be implicitly set by the linkage between the CCE and the ACK / NACK. Details of this will be described later in the ⁇ PUCCH resource reservation> section.
  • FIG. 10 illustrates an example in which a BS uses a slot utilization indication according to the present invention.
  • Embodiments related to the slot utilization indication described above can be used to coordinate UEs scheduled in a particular slot, in addition to simply encouraging the UE to use a particular slot.
  • the BS may configure or instruct some of them (UE group 1) to perform UL transmission in the first slot, and others (UE group). 2) may be configured or instructed to perform UL transmission in the second slot.
  • UE group 1 some of them
  • UE group 2 may be configured or instructed to perform UL transmission in the second slot.
  • embodiments of the aforementioned slot utilization indication may be used to prevent the UE from being centrally scheduled in a particular slot. That is, according to the present invention, as the BS can allocate UEs to two slots and assign them, the flexibility of scheduling may be increased.
  • FIG. 11 illustrates uplink transmission when slot-mode is configured in a system using subframe bundling.
  • Subframe bundling refers to a technique of transmitting a transport channel carrying a same number of data different from only a redundancy version (RV) over a predetermined number of subframes in the time domain in order to extend coverage of the transport channel.
  • RV redundancy version
  • the UE transmits a PUSCH over a predetermined number (eg, four) of consecutive uplink subframes. If the UE is far from the BS or the radio link is not good, if the UE transmits the PUSCH only once, the transmission power of the UE is limited, so that the BS cannot properly receive the PUSCH. May occur.
  • the BS may configure the UE to operate in the subframe bundling mode.
  • the UE configured for slot-mode automatically operates in slot bundling instead of subframe bundling. That is, referring to FIG. 11, when the slot-based operation mode, that is, the slot-mode is configured, slot bundling is enabled instead of subframe bundling.
  • a UE that has already been configured with subframe bundling may operate in slot bundling mode instead of subframe bundling upon receiving the slot utilization indication information, and a UE configured with slot-mode before subframe bundling is configured to operate from sub BS to subframe bundling.
  • the configuration of slot-mode for the UE may be configured by higher layer (eg, RRC layer) signal.
  • a bit is added to the PDCCH DCI format and / or the E-PDCCH DCI format, and some of the states indicated by the added bits are used for the indication of the subframe-mode and others for the indication of the slot-mode.
  • the BS having configured the slot mode in the UE may inform the UE which slot to transmit the PUSCH according to the slot utilization indication bit.
  • the slot utilization indication bit may not only be information on the slot utilization indication but also may be used as information indicating to interpret the subframe bundling as slot bundling. Referring to FIG. 11, when slot bundling is activated, the UE may transmit the PUSCH over a predetermined number of consecutive slots starting from the first slot including the slot in which the PUSCH transmission is scheduled.
  • the UE when the BS instructs the UE to operate in the subframe bundling mode, the UE automatically interprets the subframe bundling as slot bundling and thus indicates that the BS should operate in the slot bundling mode. It is not necessary to signal information to the UE separately. Accordingly, downlink signaling overhead is reduced.
  • the uplink data is scheduled by the PDCCH or the E-PDCCH or the R-PDCCH and transmitted / received in the data region of the subframe.
  • the UE is allocated a PUCCH resource for transmission of UCI from BS by higher layer signaling, dynamic control signaling, or implicit.
  • a PRB pair is used for PUCCH transmission in one subframe. Therefore, in the existing 3GPP LTE (A-) system, two PRBs forming a PRB pair are linked to virtually the same PUCCH resource.
  • PUCCH format 1 In the PUCCH format 1 series (hereinafter referred to as PUCCH format 1) in the existing 3GPP LTE (-A) system, PUCCH resources (hereinafter, referred to as ACK / NACK PUCCH resources) for ACK / NACK transmission are not pre-assigned to each UE.
  • a plurality of UEs in a cell divides and uses a plurality of PUCCH resources at every PUCCH transmission time point.
  • the PUCCH resource used by the UE for ACK / NACK transmission is dynamically determined based on the PDCCH associated with the corresponding ACK / NACK transmission.
  • a PDCCH includes a PDCCH with a corresponding PDSCH or a PDCCH for SPS release without a corresponding PDSCH. Regardless of whether the corresponding PDCCH is a normal PDCCH with a PDSCH or a PDCCH for SPS release, the entire area in which the PDCCH is transmitted in each DL subframe consists of a plurality of CCEs and is transmitted to the UE.
  • the PDCCH consists of one or more CCEs.
  • the UE transmits an ACK / NACK for the PDSCH and / or the PDCCH through a PUCCH resource linked to a specific CCE (eg, the first CCE) among the CCEs configuring the PDCCH received by the UE. That is, the UE applies OC and CS corresponding to the allocated PUCCH resource to the ACK / NACK information and transmits in each PRB of the corresponding PRB pair.
  • the transmission timing of the ACK / NACK is an UL subframe corresponding to a predetermined number (k) of subframes starting from the DL subframe in which the PDCCH is received.
  • ACK / NACK PUCCH may be transmitted in the fourth subframe after receiving the PDCCH, and for TDD, based on k defined according to the TDD DL-UL configuration and the subframe number. ACK / NACK PUCCH may be transmitted in the determined subframe.
  • FIG. 12 illustrates an example of determining a PUCCH resource for ACK / NACK in a 3GPP LTE- (A) system.
  • FIG. 12 illustrates a case in which up to M CCEs exist in a DL and up to M PUCCH resources are reserved in a UL.
  • each PUCCH resource index corresponds to a PUCCH resource for ACK / NACK.
  • the UE configures the PDCCH.
  • the ACK / NACK is transmitted to the BS through the PUCCH resource corresponding to the fourth CCE.
  • the PUCCH resource index for transmission by two antenna ports p 0 and p 1 in 3GPP LTE (-A) system is determined as follows.
  • N (1) PUCCH represents a signaling value received from a higher layer.
  • n CCE corresponds to the smallest value among the CCE indexes used for PDCCH transmission. For example, when the CCE aggregation level is 2 or more, the first CCE index among the indices of the plurality of CCEs aggregated for PDCCH transmission is used to determine the PUCCH resource.
  • the first slot is associated with the CCE index of the DL PDCCH associated with the first slot transmission to obtain PUCCH format 1 / 1a / 1b resources, ie ACK / NACK PUCCH resources, and the first slot for the second slot.
  • the offset may be one fixed value but a collection of offset values having multiple values may be set.
  • ACK / NACK PUCCH resources available by RRC signaling may be reserved in advance for the second slot. In this case, since the PUCCH resource of the second slot cannot be changed dynamically, it is preferable to use it for this purpose.
  • Another method of resource reservation is a method in which all ACK / NACK PUCCH resources are determined depending on RRC signaling regardless of slot location. That is, PUCCH resources configured by RRC signaling may be continuously used for ACK / NACK PUCCH transmission.
  • this method has the disadvantage of inevitably wasting resources due to continuous reservation. This is because the PUCCH resource reserved by RRC signaling will not be used for PUCCH transmission of another UE even when it is not ACK / NACK transmission timing.
  • PUCCH resource reservation for PUCCH format 1 / 1a / 1b will be described. In the description below, it is assumed that one PUCCH resource for an enhancement UE is configured in one PRB, and one PUCCH resource for a legacy UE is configured over one PRB pair.
  • Table 6 and Figures 13 and 14 illustrate an embodiment of the present invention for mapping the CCE index with the PUCCH format 1 / 1a / 1b.
  • each DL grant CCE index ie, index of CCE belonging to a PDCCH carrying a DL grant
  • PUCCH resources may be mapped in a one-to-one relationship regardless of which slot is used for PUCCH transmission. Since which slot the PUCCH is transmitted is designated by RRC signaling or DCI, it does not affect the determination of the CCE index associated with the PUCCH.
  • Table 6 a case in which the scheduler specifies slot #n and slot # n + 1 alternately through slot utilization indication information is illustrated.
  • the slot used for PUCCH transmission must be specified as shown in Table 6 below. no.
  • the slot utilization instruction indicating which slot of slot #n and slot # n + 1 is to be used for UL transmission may be freely set by a scheduler (eg, BS).
  • the PUCCH resource indexes are used for the first slot and some are used for the second slot.
  • the PUCCH resource index is determined according to the DL grant CCE index.
  • the PUCCH resources allocated to one of the legacy UE and the enhanced UE are equal to the legacy UE and the enhanced over a PRB pair including the same PRB. It cannot be assigned to the other one of the UEs.
  • an enhanced UE operating in a slot unit transmits a PUCCH in a predetermined slot using a PUCCH resource having a PUCCH resource index of 7.
  • the PUCCH resource index 7 is not used in a slot that is not used for PUCCH transmission of the enhanced UE among two slots of one subframe.
  • the BS does not allocate the PUCCH resources allocated to the enhancement UE in one subframe to the legacy UE, thereby enabling the enhancement UE and the legacy UE to transmit their PUCCH using the same PUCCH resources in the remaining slots of the two slots. You can prevent it. Accordingly, even if the PDCCH for the legacy UE or the PDCCH for the enhanced UE is located at any CCE index, the subframe-based PUCCH of the legacy UE and the slot-based PUCCH of the enhanced UE can be multiplexed to the same PRB without any problem.
  • the slotted PUCCH is transmitted in one slot of two slots in a subframe corresponding to the PUCCH transmission timing, and the PUCCH resource of PUCCH resource index 7 in the remaining slots is not used for the slotted PUCCH transmission.
  • the advanced UE transmits a PUCCH using a PUCCH resource having a specific PUCCH resource index in one slot of a subframe
  • the PUCCH resource having the same index in another slot of the subframe is transmitted to another enhanced UE.
  • the disadvantage is that it is not used unless it is assigned.
  • the scheduler can freely allocate the PDCCH / PDSCH to the UE, the flexibility of scheduling can be guaranteed.
  • Table 7 and Table 8 and FIG. 15 illustrate another embodiment of the present invention for mapping the CCE index with the PUCCH format 1 / 1a / 1b.
  • PUCCH resource index (for advanced UEs in the first slot) PUCCH resource index (for advanced UEs in the second slot) 0 0 One One 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 0 19 One 20 2 21 3 22 4 23 5 24 6 25 7 26 8 27 9 28 10 29 11 30 12 31 13 32 14 33 15 34 16 35 17
  • Table 7 illustrates the linkage of the CCE index to the PUCCH resource index for enhancement UEs
  • Table 8 illustrates the linkage of the CCE index to the PUCCH resource index for legacy UEs.
  • CCE indexes linked to the first slot and CCE indexes linked to the second slot may be operated separately. For example, assuming a total of 36 CCEs and 36 PUCCH resources corresponding thereto, the scheduler uses the first 18 PUCCH resources of the 36 PUCCH resources in the first slot and the remaining 18 PUCCH resources. Are available in the second slot. Referring to Table 7, if the PUCCH resource index allocated by implicit signaling to the enhanced UE is 16 (a value between 0 and 17), this is used to perform slot-based PUCCH transmission using PUCCH resource index 16 in the first slot. It can be defined as meaning to perform.
  • the allocated PUCCH resource index is 25 (a value between 18 and 35), it may be defined as meaning that slot-based PUCCH transmission is performed using PUCCH resource index 7 in the second slot.
  • the BS may transmit a PDCCH to the CCE by mapping the PDCCH so that only the first 18 PUCCH resources are used.
  • CCE indices 0 through 17 in Table 7 for enhanced UEs are linked to PUCCH resources 0 through 17 in the first slot and CCE indices 18 through 35 in Table 8 for legacy UEs are PUCCH resources 0 through 17 in the first and second slots. Linked to 17.
  • the BS or scheduler arranges the PDCCH for the enhanced UE and the PDCCH for the legacy UE in CCE indexes 0 to 17, the BS may not easily allocate PDCCHs for different UEs to the same CCE.
  • CCE indexes 18-35 of Table 7 for the advanced UE are linked to PUCCH resources 0-17 of the second slot, while CCE indexes 0-17 of Table 8 for the legacy UE are also linked to PUCCH resources 0-17. .
  • the likelihood that the advanced UE and the legacy UE are allocated the same PUCCH resource is increased.
  • the CCE index 28 which is the CCE index of the second slot corresponding to the CCE index 10 of the first slot, should not be allocated to another UE. This is because when ACK / NACK signals of different UEs are transmitted using the same PUCCH resource on one PRB, it is difficult to separate the ACK / NACK signals transmitted by each UE. From the legacy UE perspective, CCE index 10 of the first slot and CCE index 28 of the second slot are indexes linked to the same PUCCH resource.
  • the CCE indexes 18 to 35 may be referred to as CCE indexes for the enhanced UE virtually created by adding 18 to the CCE indexes 0 to 17 used in the first slot only when used for slot-mode transmission of the enhanced UE. Accordingly, since the PUCCH resource index linked to the CCE indexes 18 to 35 may overlap with the PUCCH resource index of the legacy UE in the second slot, the BS may avoid collision between the PUCCH resource used by the legacy UE and the PUCCH resource used by the enhanced UE. Scheduling is a good idea.
  • the resource can be efficiently used by not assigning the legacy UE to the CCE outside the range of the designated CCE index (for example, CCE indexes 0 to 17).
  • the BS indicates an indication of the boundary of the CCE index used in the first slot and the second slot. Send the information to the UE.
  • the BS may determine the boundary of the CCE index in consideration of the number and load of legacy UEs and enhancement UEs to be provided with the service, an uplink channel state, and transmit information indicating the determined boundary to the UE. .
  • the BS can distinguish between the CCE index for the legacy UE and the CCE index for the enhanced UE in consideration of the uplink load of the corresponding cell, the distribution of the legacy UE and the enhanced UE, and the uplink channel state. If the uplink channel state of the cell is bad or the enhancement UE is not in the cell, the BS may set all CCE indexes for the legacy UE. Conversely, if all the UEs located in the cell are enhanced UEs and their uplink channel conditions are good, the BS can also set all CCE indexes for the enhanced UE.
  • Table 9 and Table 10 and FIG. 16 illustrate another embodiment of the present invention for mapping the CCE index with the PUCCH format 1 / 1a / 1b.
  • Table 9 illustrates the linkage of the CCE index to the PUCCH resource index for enhancement UEs
  • Table 10 illustrates the linkage of the CCE index to the PUCCH resource index for legacy UEs.
  • the PUCCH resource corresponding to the second CCE index of the two aggregated CCEs will not be frequently used.
  • the CCE index used in the first slot and the CCE index used in the second slot may be divided and operated based on the CCE aggregation level used mainly. Assuming that the mainly used CCE aggregation level is 2 and referring to Table 9, for example, PUCCH resources associated with even CCE indexes among CCE indexes are used in the first slot, while odd number is used in the second slot. PUCCH resources associated with CCE indexes may be used for the enhanced UE.
  • the BS may assign priority to even-numbered PUCCH resources among even-numbered PUCCH resources and odd-numbered PUCCH resources and allocate them to the legacy UE.
  • a large CCE aggregation level is a detour meaning that the downlink channel state is bad, and thus, the uplink channel state is likely to be bad.
  • TDD in which UL transmission and DL transmission are classified according to time and both UL transmission and DL transmission are performed in the same frequency band, the frequency characteristics of the uplink channel and the downlink channel are similar, so if the uplink channel state is not good Link channel conditions are also likely to be poor.
  • the enhanced UE receives a PDCCH at a large CCE aggregation level (for example, 4 or 8).
  • PUCCH transmission in pairs may be configured to transmit PUCCH in subframe-mode. Since the BS determines the CCE aggregation level and transmits the PDCCH to the UE at the corresponding CCE aggregation level, the BS can know whether to transmit the PUCCH in the slot-mode or the PUCCH in the subframe-mode.
  • the BS is linked to the PUCCH resource index 0 in the second slot.
  • CCE index 17 is constrained not to assign to an enhanced UE.
  • the mapping between the CCE index and the PUCCH resource index is configured so that the PUCCH resource index used in the first slot is not used at all in the second slot, the PDCCH of the legacy UE and the PDCCH of the enhanced UE are different from each other. Once deployed, the CCE index assigned to the legacy UE does not affect PUCCH transmissions by other UEs in the second slot.
  • the present embodiment and embodiment B have a common point in that the CCE indexes used in the first slot and the CCE indexes used in the second slot are distinguished. Even if no separate slot utilization indication information is received, the UE configured according to the present embodiment or embodiment B transmits a PUCCH in the first slot when detecting the CCE index belonging to the collection of CCE indexes for the first slot, and the second. Upon detecting the CCE index belonging to the collection of CCE indexes for the slot, the PUCCH is transmitted in the second slot.
  • the BS can know which PUCCH resource the UE will use to transmit the corresponding PUCCH in which slot, thus validating the PUCCH transmitted by the UE. Can be detected (or received).
  • a new PDCCH (eg, R-PDCCH, E-PDCCH, etc.) transmitted in the PDSCH region is introduced, rather than the existing PDCCH transmitted in the PDCCH region, a separate ACK / NACK PUCCH resource for the new PDCCH is secured. Should be.
  • a new PDCCH eg, R-PDCCH, E-PDCCH, etc.
  • Table 11 and FIGS. 17 and 18 illustrate another embodiment of the present invention for mapping the CCE index with the PUCCH format 1 / 1a / 1b.
  • a PUCCH resource having an offset value N applied to a CCE index may be used for PUCCH transmission on a slot basis.
  • the first slot may be used for PUCCH transmission associated with the PDCCH
  • the second slot may be used for PUCCH transmission associated with the newly designed PDCCH (eg, R-PDCCH, E-PDCCH).
  • the first slot is used for PUCCH transmission associated with the newly designed PDCCH
  • the second slot is used for PUCCH transmission associated with the existing PDCCH.
  • resources PUCH1 resources in FIG. 18
  • independent PUCCH formats 1 / 1a / 1b are allocated to individual UEs.
  • 19 illustrates an embodiment of the present invention for PUCCH resources for PUCCH formats 2 / 2a / 2b.
  • PUCCH format 2 series is used for CSI transmission and one CSI transmission is divided into two and mapped to two slots, respectively. That is, since one CSI transmission is split in two PRBs and transmitted to the BS, the BS can restore the CSI only using information transmitted in one slot. Therefore, it is difficult to transmit the CSI in units of slots. Of course, simply one of the two slots is naturally punctured so that the CSI PUCCH is transmitted. However, a more preferable method is that CSI coding is newly defined according to the number of slot units. That is, it is preferable that independent coding is applied to each slot by changing the current subframe unit Reed Muller (RM) coding to slot unit RM coding.
  • RM Reed Muller
  • a modification is also required in the CSI transmission scheme. For example, a method in which the CSI is divided and transmitted in the corresponding slot over several subframes may be considered.
  • Resources of PUCCH format 2 for slot-mode may be reserved using higher layer signaling (eg, RRC signaling). If resource reservation according to the existing 3GPP LTE (-A) is applied to the first slot as it is, CSI PUCCH resources should be newly reserved in the second slot.
  • the CSI PUCCH resource in the second slot may be determined by applying a designated offset value to the CSI PUCCH resource reserved in the first slot. Alternatively, independent resource reservation may be performed for each slot by RRC signaling.
  • the resources of PUCCH format 3 are reserved in advance by higher layer signaling. This reserved PUCCH resource is designed on the assumption that it is to be applied over several subframes unlike PUCCH format 1 in which resources are changed in units of subframes.
  • the BS informs the UE in advance of a predetermined number (for example, a total of four) of PUCCH resources (one set) and informs which PUCCH resource to select from the ACK / NACK Resource Indication (ARI).
  • the ARI is sent to the UE on the PDCCH.
  • the PUCCH resource indicated by this ARI is a valid value in one subframe.
  • the most basic method of designing a slot-by-slot PUCCH format 3 is to configure the PUCCH to transmit 12 QPSK symbols in the first slot and 12 QPSK symbols in the second slot by dividing the subframe in half with a slot boundary.
  • PUCCH format 3 on a slot basis can be designed.
  • This is called slotted PUCCH format 3 (hereinafter referred to as S-PUCCH3).
  • S-PUCCH3 slotted PUCCH format 3
  • ACK / NACK based on PUCCH format 3 in each slot is limited to be transmitted up to 24 bits at one PUCCH transmission timing.
  • One way to secure the required PUCCH Format 3 resources in each slot is with the predefined PUCCH resource set or independently signal slot information to be used for the PUCCH Format 3 resources to the UE, and then the BS uses one ARI to use one PUCCH resource.
  • the BS informs the UE whether to transmit the PUCCH format 3 only in the first slot or the second slot or over two slots, and then through the ARI, among the PUCCH resources belonging to the previously designated PUCCH resource set. One can be informed to the UE.
  • Each UE transmits S-PUCCH3 in the first and / or second slots, and transmits the S-PUCCH3 using one PUCCH resource designated by the ARI among a predetermined number of PUCCH resources allocated to the UE.
  • PUCCH resource designated by the ARI among a predetermined number of PUCCH resources allocated to the UE.
  • FIG. 20 illustrates an example in which a PUCCH resource set for PUCCH format 3 is indicated by higher layer signaling and a correct PUCCH resource is indicated through PDCCH.
  • a PUCCH resource set for PUCCH format 3 is indicated by higher layer signaling and a correct PUCCH resource is indicated through PDCCH.
  • one integrated signaling in conjunction with the aforementioned slot utilization indication is used simultaneously for slot allocation and resource allocation.
  • slot-based RB hopping may not be applied to PUCCH transmission.
  • the PUCCH resource index indicates a PUCCH resource expressed by a combination of a cyclic shift (CS) and an orthogonal cover sequence (OC).
  • the PUCCH resource index may vary according to a sequence hopping pattern for every OFDM symbol or for every slot.
  • the PUCCH resource index has been described without considering hopping. If hopping is considered, the PUCCH resource index k will correspond to the PUCCH resource index k applied to the first OFDM symbol of the corresponding subframe or the first OFDM symbol of the corresponding slot.
  • UEs capable of multiple input multiple output (MIMO) transmission in uplink may improve the PUCCH transmission performance in units of slots by applying appropriate precoding to the corresponding PUCCH.
  • the PUCCH is transmitted over two slots in one subframe, whereas the PUCCH transmitted according to the embodiments of the present invention is transmitted in only one slot of two slots in one subframe.
  • the frequency diversity gain is reduced compared to subframe based.
  • UE having a plurality of antenna ports can compensate for such a performance loss by precoding.
  • the diversity gain obtained by the transmission scheme operating in the closed loop form may be better than the diversity gain obtained by the transmission technique operating in the open loop form. Can be.
  • the precoding applied to the PUCCH is not arbitrarily determined by the UE, but is indicated to the UE by the BS.
  • the BS does not indicate an appropriate precoding matrix for every subframe of the general PDSCH, but indicates a precoding matrix to be applied for a long term in time.
  • This long term based precoding matrix may be sent to the UE by an RRC configuration signal or may be sent to the UE by a specialized PDCCH (hereinafter referred to as S-PDCCH).
  • This S-PDCCH has a feature that can carry precoding information that can be used by one or more UEs. For example, if four UEs need to update the precoding applied to the PUCCH, the BS can transmit only one S-PDCCH.
  • All four UEs associated with the S-PDCCH carrying updated precoding information may obtain precoding information from the S-PDCCH that should be applied to the PDCCH by decoding the same S-PDCCH.
  • the S-PDCCH may be given a common identifier, that is, an RNTI for a specific UE group.
  • the specific UE group may detect the S-PDCCH associated with the group to which they belong using the RNTI used for the S-PDCCH.
  • 21 illustrates embodiments of the present invention for transmitting a reference signal for channel estimation of an uplink control region.
  • the present invention further defines an embodiment of defining a control-SRS (hereinafter, C-SRS) and transmitting the C-SRS in the PUCCH region.
  • C-SRS control-SRS
  • the C-SRS is transmitted only in a PUCCH region, a PUCCH transmission RB, or a region corresponding to a predetermined RB, rather than transmitting in a wide band.
  • the C-SRS may be transmitted in the PUCCH region for each slot in one subframe.
  • a C-SRS is used in one PUCCH region of two PUCCH regions located one at each end of a bandwidth of a corresponding carrier based on a DC subcarrier in a frequency domain. And may be transmitted in the opposite PUCCH region at the next transmission opportunity.
  • C-SRS is transmitted in each slot as in the embodiment of FIG.
  • C-SRS may not be transmitted for each slot as in the embodiment of FIG. 21 (b). It may be.
  • the UE may transmit the C-SRS in the PUCCH region of the subframe corresponding to the transmission period of the C-SRS configured from the BS, or may transmit the C-SRS in the PDSCH region of the subframe in response to a request from the BS.
  • the BS performs a fallback operation from the slot-mode to the normal mode. Good to do. That is, in a situation where it is determined that the uplink transmission of a slot unit is difficult to be maintained due to a worsening channel condition or an RRC reconfiguration situation, the BS changes a slot-mode to an uplink transmission mode of a conventional subframe unit, that is, a subframe-mode. Reconfigure the UE to fall back.
  • the UE of the present invention is an embodiment of the present invention described in ⁇ slot utilization indication>, ⁇ UE grouping>, ⁇ subframe bundling>, ⁇ PUCCH resource reservation>, ⁇ precoding vector indication>, and ⁇ fallback operation>.
  • the UL transmission is performed by applying any one of these independently or together with one or more embodiments of the embodiments, and the BS of the present invention performs ⁇ slot utilization indication>, ⁇ UE grouping>, ⁇ subframe UL transmission by applying any of the embodiments of the present invention described in Bundling>, ⁇ PUCCH Resource Reservation>, ⁇ Precoding Vector Indication>, and ⁇ Fallback Operation> separately or by applying one or more of these embodiments together. It may be configured to receive.
  • 22 is a block diagram showing the components of the transmitter 10 and the receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the apparatus 12 is operatively connected to components such as the memory 12 and 22, the RF unit 13 and 23, and the memory 12 and 22, which store various kinds of information related to communication, and controls the components so that the apparatus is controlled.
  • a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13.
  • the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also referred to as a codeword and is equivalent to a transport block, which is a data block provided by a medium access control (MAC) layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r reception antennas (N r is a positive integer), and the RF unit 23 performs frequency down conversion on each of the signals received through the reception antennas (frequency down). -convert) Restore to baseband signal.
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted in correspondence with the corresponding antenna defines the antenna as viewed from the perspective of the receiver 20, and whether the channel is a single radio channel from one physical antenna or includes the antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE or the relay operates as the transmitter 10 in the uplink, and operates as the receiver 20 in the downlink.
  • the BS operates as the receiving device 20 in the uplink and the transmitting device 10 in the downlink.
  • the processor of the BS configures the slot-mode according to at least one of the embodiments of the present invention described above, and the RF unit of the BS (hereinafter referred to as BS RF unit) to signal the configured slot-mode to the UE. ) Can be controlled.
  • the BS processor may control the BS RF unit and transmit information indicating that the UE is to operate in the subframe bundling mode to the UE.
  • the BS processor may control the BS RF unit to transmit slot utilization indication information indicating a slot to be used for uplink transmission of a first slot and a second slot of a subframe to the UE configured with a slot-mode. Can be.
  • the BS processor may allocate the PDCCH to one or more CCEs according to any one of embodiments related to ⁇ PUCCH Resource Reservation> and send the BS RF unit to send the PDCCH to the UE on the collection of one or more CCEs. Can be controlled.
  • the RF unit (hereinafter referred to as UE RF unit) of the UE receives slot-mode configuration information indicating configuration of the slot-mode from the BS, and the processor of the UE (hereinafter referred to as UE processor) is based on the slot-mode configuration information.
  • the UE processor activates slot bundling instead of subframe bundling so that the PUSCH and / or PUCCH, over a predetermined number of consecutive slots.
  • the UE RF unit may be controlled to transmit the SRS.
  • the UE RF unit may receive slot utilization indication information from a BS, and the UE processor transmits a PUSCH and / or a PUCCH or SRS in one of two slots of a subframe based on the slot utilization indication information.
  • the RF unit can be controlled.
  • the UE processor determines a PUCCH resource according to any one of embodiments related to ⁇ PUCCH resource reservation> based on the first CCE included in the PDCCH, and transmits the PUCCH in one slot using the determined PUCCH resource.
  • the UE RF unit can be controlled.
  • K PUCCHs can be transmitted in N / 2 PRB pairs, thereby reducing resource efficiency. This can be high.
  • a predetermined number (for example, one) of PRBs may be transmitted by transmitting UL signals on a per UE (s) slot basis. It is possible to reduce the number of PUCCHs multiplexed on. If the number of PUCCHs multiplexed on a predetermined number of PRBs is reduced, the interference between orthogonal sequences used to multiplex the PUCCHs on the predetermined number of PRBs is reduced in half.
  • Embodiments of the present invention may be used in a base station, relay or user equipment, and other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 2개의 슬롯으로 구성된 서브프레임에서 상기 2개의 슬롯 중 어느 하나에서 상향링크 전송/수신을 수행하는 방법 및 장치를 제공한다. 기지국은 2개의 슬롯 중 상향링크 전송이 수행되는 슬롯을 지시하는 정보를 사용자기기에게 전송할 수 있으며, 상기 사용자기기는 상기 정보에 의해 지시된 슬롯에서 상향링크 전송을 수행한다. 상기 사용자기기가 ACK/NACK 정보를 전송하는 경우, 상기 사용자기기는 상기 사용자기기의 PDCCH에 포함된 CCE가 첫 번째 슬롯에 연관된 CCE이면 첫 번째 슬롯에서 상기 ACK/NACK 정보를 전송하고, 상기 CCE가 두 번째 슬롯에 연관된 CCE이면 두 번째 슬롯에서 상기 ACK/NACK 정보를 전송할 수 있다.

Description

상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 상향링크 신호를 전송하는 방법 및 장치와 상향링크 신호를 수신하는 방법 및 장치에 관한 것이다.
기기간(Machine-to-Machine, M2M) 통신과, 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 또한, 사용자가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자에게 제공할 수 있다.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 사용자기기들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 사용자기기들로부터 수신해야 하는 상향링크 데이터와 상향링크 제어정보의 양이 증가하고 있다. 기지국이 사용자기기(들)과의 통신에 이용가능한 무선 자원의 양은 유한하므로, 기지국이 유한한 무선 자원을 이용하여 상향링크 데이터 및/또는 상향링크 제어정보를 사용자기기(들)를 효율적으로 수신하기 위한 새로운 방안이 요구된다.
따라서, 본 발명은 상향링크 신호를 효율적으로 전송/수신하는 방법 및 장치를 제공한다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 기지국으로부터 PDCCH(physical downlink control channel)를 수신하고; 상기 기지국으로 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH(physical uplink control channel)를 전송하되, 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH를 전송하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 전송하는, 상향링크 제어정보 전송방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서, 무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및 기지국으로부터 PDCCH(physical downlink control channel)를 수신하도록 상기 RF 유닛을 제어하고, 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH(physical uplink control channel)를 상기 기지국으로 전송하도록 상기 RF 유닛을 제어하는 프로세서를 포함하되, 상기 프로세서는 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH를 전송하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 전송하도록 상기 RF 유닛을 제어하는, 사용자기기가 제공된다.
본 발명의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 상향링크 제어정보를 수신함에 있어서, 사용자기기에 PDCCH(physical downlink control channel)를 전송하고; 상기 사용자기기로부터 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH를 수신하되, 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH(physical uplink control channel)를 수신하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 수신하는, 상향링크 제어정보 수신방법이 제공된다.
본 발명의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 상향링크 제어정보를 수신함에 있어서, 무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및 사용자기기에 PDCCH(physical downlink control channel)를 전송하도록 상기 RF 유닛을 제어하고, 상기 사용자기기로부터 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH를 수신하도록 상기 RF 유닛을 제어하는 프로세서를 포함하되, 상기 프로세서는 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH(physical uplink control channel)를 수신하도록 상기 RF 유닛을 제어하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 수신하도록 상기 RF 유닛을 제어하는, 기지국이 제공된다.
본 발명의 각 양상에 있어서, 상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 CCE 인덱스 0부터 M-1(여기서, M은 양의 정수)을 포함하고, 다른 하나는 상기 N개의 CCE 인덱스들 중 CCE 인덱스 M부터 N-1을 포함할 수 있다.
본 발명의 각 양상에 있어서, 상기 기지국으로부터 M을 나타내는 정보가 상기 사용자기기에게 전송될 수 있다.
본 발명의 각 양상에 있어서, 상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 짝수 인덱스들만을 포함하고, 나머지 하나는 홀수 인덱스들만을 포함할 수 있다.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
[유리한 효과]
본 발명에 의하면, 상향링크 자원 사용의 효율성이 높아진다.
또한, 본 발명에 의하면, 소정 시간-주파수 자원에 다중화되는 상향링크 전송의 개수가 줄어들어, 상기 소정 시간-주파수 자원에서 상향링크 전송들 사이에 발생하는 간섭이 줄어들게 된다.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 5부터 도 8은 PUCCH 포맷에 따른 UCI 전송을 예시한 것이다.
도 9는 본 발명의 일 실시예 따른 슬롯 활용 지시를 이용한 슬롯-기반 PUSCH/PUCCH/SRS 전송을 예시한 것이다.
도 10은 본 발명에 따른 BS가 슬롯 활용 지시를 활용하는 예를 나타낸 것이다.
도 11은 서브프레임 번들링을 사용하는 시스템에서 슬롯-모드가 구성된 경우의 상향링크 전송을 예시한 것이다.
도 12는 3GPP LTE-(A) 시스템에서 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸 것이다.
도 13 및 도 14는 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 일 실시예를 예시한 것이다.
도 15는 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 다른 실시예를 예시한 것이다.
도 16은 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 또 다른 실시예를 예시한 것이다.
도 17 및 도 18은 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 또 다른 실시예를 예시한 것이다.
도 19는 PUCCH 포맷 2/2a/2b를 위한 PUCCH 자원에 관한 본 발명의 일 실시예를 예시한 것이다.
도 20은 PUCCH 포맷 3를 위한 PUCCH 자원에 관한 본 발명의 일 실시예를 예시한 것이다.
도 21은 상향링크 제어영역의 채널 추정을 위한 참조신호를 전송하는 본 발명의 실시예들을 예시한 것이다.
도 22는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
또한, 이하에서 설명되는 기법(technique) 및 장치, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 설명의 편의를 위하여, 이하에서는 본 발명이 3GPP LTE(-A)에 적용되는 경우를 가정하여 설명한다. 그러나, 본 발명의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE(-A) 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE(-A)에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명에 있어서, 사용자기기(UE: User Equipment)는 고정되거나 이동성을 가질 수 있으며, BS와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 UE 및/또는 다른 BS와 통신하는 고정된 지점(fixed station)을 말하며, UE 및 타 BS과 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 모음(set) 혹은 자원요소의 모음을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)은 각각 UCI(Uplink Control Information)/상향링크 데이터를 나르는 시간-주파수 자원의 모음 혹은 자원요소의 모음을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH 자원이라고 칭한다. 따라서, 본 발명에서 사용자기기가 PUCCH/PUSCH를 전송한다는 표현은, 각각, PUSCH/PUCCH 상에서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, 본 발명에서 BS가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
또한, 본 발명에서 CRS(Cell-specific Reference Signal)/DMRS(Demodulation Reference Signal)/CSI-RS(Channel State Information Reference Signal) 시간-주파수 자원(혹은 RE)은 각각 CRS/DMRS/CSI-RS에 할당 혹은 이용가능한 RE 혹은 CRS/DMRS/CSI-RS를 나르는 시간-주파수 자원(혹은 RE)를 의미한다. 또한, CRS/DMRS/CSI-RS RE를 포함하는 부반송파를 CRS/DMRS/CSI-RS 부반송파라 칭하며, CRS/DMRS/CSI-RS RE를 포함하는 OFDM 심볼을 CRS/DMRS/CSI-RS 심볼이라 칭하다. 또한, 본 발명에서 SRS 시간-주파수 자원(혹은 RE)은 UE에서 BS로 전송되어 BS가 상기 UE와 상기 BS 사이에 형성된 상향링크 채널 상태의 측정에 이용하는 사운딩 참조신호(Sounding Reference Signal, SRS)를 나르는 시간-주파수 자원(혹은 RE)를 의미한다. 참조신호(reference signal, RS)라 함은 UE와 BS가 서로 알고 있는 기정의된, 특별한 파형의 신호를 의미하며, 파일럿이라고도 한다.
도 1은 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE(-A)에서 FDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이고, 도 1(b)는 3GPP LTE(-A)에서 TDD에 사용될 수 있는 무선 프레임 구조를 예시한 것이다.
도 1을 참조하면, 3GPP LTE(-A)에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(TTI: transmission time interval)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다.
무선 프레임은 듀플렉스(duplex) 모드에 따라 다르게 구성될 수 있다. 예를 들어, FDD 모드에서, 하향링크(DL) 전송 및 상향링크(UL) 전송은 주파수에 의해 구분되므로, 무선 프레임은 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 하향링크 서브프레임 또는 UL 서브프레임 중 하나만을 포함한다. TDD 모드에서 DL 전송 및 UL 전송은 시간에 의해 구분되므로, 소정 반송파 주파수에서 동작하는 소정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 UL 서브프레임을 모두 포함한다.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 구성을 예시한 것이다.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 UL 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 DL 전송용으로 유보되는 시간 구간이며, UpPTS는 UL 전송용으로 유보되는 시간 구간이다.
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE(-A) 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.
슬롯은 시간 도메인에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 다수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RB*NRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 UL 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 DL 전송 대역폭에 각각 의존한다. NDL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 표준(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RB*NRB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 DC 성분을 위한 널 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier freqeuncy, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다.
일 RB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 NDL/UL symb*NRB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RB*NRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다.
일 서브프레임에서 NRB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스라고도 함)를 갖는다. VRB는 자원할당을 위해 도입된 일종의 논리적 자원할당 단위이다. VRB는 PRB와 동일한 크기를 갖는다. VRB를 PRB로 맵핑하는 방식에 따라, VRB는 로컬라이즈(localized) 타입의 VRB와 분산(distributed) 타입의 VRB로 구분된다. 로컬라이즈 타입의 VRB들은 PRB들에 바로 맵핑되어, VRB 번호(VRB 인덱스라고도 함)가 PRB 번호에 바로 대응된다. 즉, nPRB=nVRB가 된다. 로컬라이즈 타입의 VRB들에는 0부터 NDL VRB-1 순으로 번호가 부여되며, NDL VRB=NDL RB이다. 따라서, 로컬라이즈 맵핑 방식에 의하면, 동일한 VRB 번호를 갖는 VRB가 첫 번째 슬롯과 두 번째 슬롯에서, 동일 PRB 번호의 PRB에 맵핑된다. 반면, 분산 타입의 VRB는 인터리빙을 거쳐 PRB에 맵핑된다. 따라서, 동일한 VRB 번호를 갖는 분산 타입의 VRB는 첫 번째 슬롯에서 서로 다른 번호의 PRB에 맵핑될 수 있다. 서브프레임의 두 슬롯에 1개씩 위치하며 동일한 VRB 번호를 갖는 2개의 PRB를 VRB 쌍이라 칭한다.
도 3은 3GPP LTE(-A) 시스템에서 사용되는 하향링크 서브프레임 구조를 예시한 것이다.
DL 서브프레임은 시간 도메인에서 제어영역과 데이터영역으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원영역을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHancel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송의 응답으로 HARQ ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 포함한다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다.
복수의 PDCCH가 DL 서브프레임의 PDCCH 영역 내에서 전송될 수 있다. UE는 복수의 PDCCH를 모니터링 할 수 있다. BS는 UE에게 전송될 DCI에 따라 DCI 포맷을 결정하고, DCI에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹(또는 스크램블)된다. 예를 들어, PDCCH가 특정 UE을 위한 것일 경우, 해당 UE의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system information block, SIB))를 위한 것일 경우, SI-RNTI(system information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다. CRC 마스킹(또는 스크램블)은 예를 들어 비트 레벨에서 CRC와 RNTI를 XOR 연산하는 것을 포함한다.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 4개의 QPSK 심볼이 각각의 REG에 맵핑된다. 참조신호(RS)에 의해 점유된 자원요소(RE)는 REG에 포함되지 않는다. 따라서, 주어진 OFDM 심볼 내에서 REG의 개수는 RS의 존재 여부에 따라 달라진다. REG 개념은 다른 DL 제어채널(즉, PDFICH 및 PHICH)에도 사용된다. DCI 포맷 및 DCI 비트의 개수는 CCE의 개수에 따라 결정된다.
CCE들은 번호가 매겨져 연속적으로 사용되고, 복호 프로세스를 간단히 하기 위해, n개 CCE들로 구성된 포맷을 가지는 PDCCH는 n의 배수에 해당하는 번호를 가지는 CCE에서만 시작될 수 있다. 특정 PDCCH의 전송에 사용되는 CCE의 개수, 다시 말해, CCE 집성 레벨은 채널 상태에 따라 BS에 의해 결정된다. 예를 들어, 좋은 DL 채널을 가지는 UE(예, BS에 인접함)를 위한 PDCCH의 경우 하나의 CCE로도 충분할 수 있다. 그러나, 열악한 채널을 가지는 UE(예, 셀 경계에 근처에 존재)를 위한 PDCCH의 경우 충분한 로버스트(robustness)를 얻기 위해서는 8개의 CCE가 요구될 수 있다.
도 4는 3GPP LTE(-A) 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다. UL 서브프레임 내 제어영역과 데이터영역은 PUCCH 영역과 PUSCH 영역으로 각각 불리기도 한다. 상기 데이터영역에는 사운딩 참조신호(sounding reference signal, SRS)가 할당될 수도 있다. SRS는 시간 도메인에서는 UL 서브프레임의 가장 마지막에 위치하는 OFDM 심볼, 주파수 도메인에서는 상기 UL 서브프레임의 데이터 전송 대역, 즉, 데이터영역 상에서 전송된다. 동일한 서브프레임의 마지막 OFDM 심볼에서 전송/수신되는 여러 UE들의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다.
UE가 UL 전송에 SC-FDMA 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, 3GPP LTE 릴리즈(release) 8 혹은 릴리즈 9 시스템에서는, 일 반송파 상에서는 PUCCH와 PUSCH를 동시에 전송할 수 없다. 3GPP LTE 릴리즈 10 시스템에서는, PUCCH와 PUSCH의 동시 전송 지원 여부가 상위 계층에서 지시될 수 있다.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다.
일 PUCCH가 나르는 UCI는 PUCCH 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. 예를 들어, 다음과 같은 PUCCH 포맷이 정의될 수 있다.
표 2
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
표 2를 참조하면, PUCCH 포맷 1 계열과 PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보를 나르는 데 사용된다.
도 5부터 도 8은 PUCCH 포맷에 따른 UCI 전송을 예시한 것이다.
3GPP LTE(-A) 시스템에서 표준 CP를 갖는 DL/UL 서브프레임은, 각 슬롯이 7개의 OFDM 심볼을 포함하는, 2개의 슬롯으로 구성되며, 확장 CP를 갖는 DL/UL 서브프레임은, 각 슬롯이 6개의 OFDM 심볼을 포함하는, 2개의 슬롯으로 구성된다. CP 길이에 따라 서브프레임 별 OFDM 심볼의 개수가 달라지므로, CP 길이에 따라 UL 서브프레임에서 PUCCH가 전송되는 구조도 달라지게 된다. 따라서, PUCCH 포맷과 CP 길이에 따라, UE가 UL 서브프레임에서 UCI를 전송하는 방법이 달라지게 된다.
도 5는 표준 CP를 갖는 UL 슬롯에서 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK 정보를 전송하는 예를 나타낸 것이고, 도 6은 확장 CP를 갖는 UL 슬롯에서 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK 정보를 전송하는 예를 나타낸 것이다.
도 5 및 도 6을 참조하면, PUCCH 포맷 1a와 1b를 사용하여 전송되는 제어정보는, 동일한 내용의 제어정보가 서브프레임 내에서 슬롯 단위로 반복된다. 각 UE에서 ACK/NACK 신호는 CG-CAZAC(Computer-Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 순환 쉬프트(cyclic shift: CS)(주파수 도메인 코드)와 직교 커버 코드(orthogonal cover or orthogonal cover code: OC or OCC)(시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. 직교 커버 코드는 직교 시퀀스라고도 한다. OC는 예를 들어 왈쉬(Walsh)/DFT 직교 코드를 포함한다. CS의 개수가 6개이고 OC의 개수가 3개이면, 단일 안테나 포트를 기준으로 총 18개의 PUCCH가 동일한 PRB(Physical Resource Block) 안에서 다중화될 수 있다. 직교 시퀀스 w0,w1,w2,w3는 (FFT 변조 후에) 임의의 시간 도메인에서 또는 (FFT 변조 전에) 임의의 주파수 도메인에서 적용될 수 있다. 3GPP LTE(-A) 시스템에서 ACK/NACK 전송을 위한 PUCCH 자원은 시간-주파수 자원(예를 들어, PRB)의 위치, 주파수 확산을 위한 시퀀스의 순환 쉬프트 및 시간 확산을 위한 (준)직교 코드의 조합으로 표현되며, 각 PUCCH 자원은 PUCCH 자원 인덱스(PUCCH 인덱스라고도 함)를 이용하여 지시된다. SR(Scheduling Request) 전송을 위한 PUCCH 포맷 1 계열의 슬롯 레벨 구조는 PUCCH 포맷 1a 및 1b와 동일하며 그 변조방법만이 다르다.
도 7은 표준 CP를 갖는 UL 슬롯에서 PUCCH 포맷 2/2a/2b를 이용하여 채널상태정보(channel state information, CSI)를 전송하는 예를 나타낸 것이고, 도 8은 확장 CP를 갖는 UL 슬롯에서 PUCCH 포맷 2/2a/2b를 이용하여 채널상태정보를 전송하는 예를 나타낸 것이다.
도 7 및 도 8을 참조하면, 표준 CP의 경우, 하나의 UL 서브프레임은 UL 참조신호(reference signal, RS)를 나르는 심볼을 제외하면 10개의 OFDM 심볼로 구성된다. 채널상태정보는 블록코딩을 통해 10개의 전송심볼(복소변조심볼이라고도 함)로 코딩된다. 상기 10개의 전송 심볼은 각각 상기 10개의 OFDM 심볼로 맵핑되어 BS로 전송된다.
PUCCH 포맷 1/1a/1b 및 PUCCH 포맷 2/2a/2b는 일정 비트 수까지만 UCI를 나를 수 있다. 그러나, 반송파 집성 및 안테나 개수의 증가, TDD 시스템, 릴레이 시스템, 다중 노드 시스템의 도입에 따라 UCI의 양이 늘어나게 됨에 따라 PUCCH 포맷 1/1a/1b/2/2a/2b보다 많은 양의 UCI를 나를 수 있는 PUCCH 포맷이 도입되었으며, 이를 PUCCH 포맷 3라고 한다. PUCCH 포맷 3는, 예를 들어, UCI 번들링, 복수의 PUCCH 자원들 중 어느 하나를 선택하는 채널 선택, 듀얼 리드뮬러 코딩 등을 PUCCH 포맷 1/1a/1b/2/2a/2b에 적용하여 구현될 수 있다.
시스템의 성능 향상을 위해 새로이 RRH (remote radio head)의 도입이 논의되고 있다. 또한, 반송파 집성 상황 하에서는 일 UE에 복수의 서빙 CC가 구성(configure)될 수 있으므로, 채널상황이 좋은 서빙 CC에서 다른 CC를 위한 UL/DL 그랜트를 전송하는 방안이 논의되고 있다. 이와 같이, 스케줄링 정보인 UL/DL 그랜트를 나르는 CC와 UL/DL 그랜트에 대응하는 UL/DL 전송이 수행되는 CC가 다른 경우, 이를 크로스-반송파 스케줄링이라 한다. RRH 기술, 크로스-반송파 스케줄링 기술 등이 도입되면, BS가 전송해야 할 PDCCH의 양이 점점 늘어나게 된다. 그러나, PDCCH가 전송될 수 있는 제어영역의 크기는 종전과 동일하므로, PDCCH 전송이 시스템 성능의 보틀넥(bottleneck)으로 작용하게 된다. 따라서, PDCCH 전송이 시스템 성능을 제약하는 것을 방지하기 위하여, DL 서브프레임의 PDSCH 영역을 이용하여 PDCCH 전송을 수행하려는 논의가 있다. DL 서브프레임의 PDCCH 영역에는 기존 3GPP LTE 표준에 따른 PDCCH가 할당될 수 있다. 한편, PDSCH 영역의 일부 자원을 이용하여 PDCCH가 추가 할당될 수 있다. PDCCH가 PDSCH 영역에서 전송될 경우, 이러한 PDCCH는 CRS 기반의 전송 다이버시티(transmit diversity) 또는 공간 다중화(spatial multiplexing) 전송에 이용될 수 있을 뿐만 아니라, UE-특정 참조신호인 DMRS 기반으로도 동작할 수 있다. 이하, DL 서브프레임의 선두 OFDM 심볼(들)에서 전송되는 기존의 PDCCH와의 구분을 위하여, DL 서브프레임의 후반 OFDM 심볼들(PDSCH 영역)에서 전송되는 PDCCH를 E-PDCCH(enhanced PDCCH) 혹은 A-PDCCH(advanced PDCCH)라 칭한다. E-PDCCH에 의해 스케줄링된 PDSCH/PUSCH는 E-PDSCH/E-PUSCH라고 불리기도 한다. PDCCH와 E-PDCCH는 서로 다른 CCE 인덱스에 의해 관리될 수 있다. 이 경우, PDCCH와 E-PDCCH가 동일한 CCE 인덱스를 갖는 CCE 상에서 전송된다고 하더라도, PDCCH의 CCE와 E-PDCCH의 CCE는 서로 다른 CCE를 의미하게 된다.
한편, 기존 통신 시스템에서는 UL 서브프레임의 2개 슬롯에 걸쳐서 UL 전송이 이루어져야 BS에서 UL 신호를 적절히 수신할 수 있었다. 따라서, 기존 통신 시스템에서는 PDCCH가 나르는 UL 그랜트에 따른 PUSCH 전송 및/또는 PDSCH에 연관된 상향링크 제어정보를 나르는 PUCCH 전송이 서브프레임의 두 슬롯에 걸쳐 수행되었다. 이하, 서브프레임의 2개 슬롯에 걸쳐서 PUCCH/PUSCH를 전송하는 것을 서브프레임 기반 스케줄링/전송이라 칭한다. 상향링크 강화(enhancement) 기술이 개발/도입되면서 BS에서 UL 전송을 적절히 수신하기 위해 요구되는 UL 전송 에너지가 줄어들고 있다. 이에 따라, 기존 시스템에서와 달리, 상향링크 강화 기술을 적용하면 UL 서브프레임의 2개 슬롯 중 하나에서만 UL 전송이 수행되더라도, 기존 시스템에서 2개 슬롯에 걸쳐 UL 전송이 수행되는 경우와 동일한 성능을 달성하는 것이 사실상 가능해졌다. 이러한 실정을 반영하여, 본 발명은 PDCCH 또는 E-PDCCH를 이용하여 UL 전송을 서브프레임 단위가 아닌 슬롯 단위로 수행하기 위한 방법들을 제안하고자 한다. 즉, 본 발명은 하향링크 전송/수신은 서브프레임 단위로 수행되더라도, 상향링크 채널 상태가 좋은 경우 등과 같은 특별한 상황 하에서는, 상향링크 전송/수신을 슬롯 단위로 수행하기 위한 방법 및 장치에 관한 실시예들을 제안한다. 이하, 슬롯 중 어느 하나에서 PUCCH 및/또는 PUSCH가 전송될 수 있다. 이하, 서브프레임의 일 슬롯 내에서 수행되는 PUCCH/PUSCH 전송을 슬롯 기반 스케줄링/전송이라 칭하여 본 발명의 실시예들을 설명한다. 참고로, PDCCH를 이용하여 서브프레임 기반으로 UL 전송/수신이 수행되는 시스템이라 칭하고, PDCCH 혹은 E-PDCCH에 따른 UL 전송/수신이 수행되는 시스템을 개선 시스템이라 칭한다. 본 발명의 실시예들에 있어서, 개선 시스템에 따라 구현된 UE, 다시 말해, 개선 UE는 서브프레임 기반 UL 전송 및 슬롯 기반 UL 전송을 모두 수행할 수 있도록 구성(configure)될 수 있다. PDCCH만을 수신할 수 있도록 구현되고 서브프레임 기반 UL 전송만을 수행할 수 있도록 구현된 UE는, E-PDCCH를 수신 및/또는 슬롯 기반 UL 전송을 수행할 수 있도록 구현된 개선 UE와 비교하면, 레거시 UE가 된다. 경우에 따라서는, 레거시 UE의 경우에는 PDCCH에 의해 스케줄링되고, 개선 UE의 경우에는 E-PDCCH에 의해 스케줄링될 수 있다.
이하에서 본 발명의 실시예들은 PDCCH/E-PDCCH를 이용하여 BS와 UE사이의 통신에 적용되는 경우를 예로 하여 주로 설명되나, 본 발명의 실시예들은 일반적인 UE뿐만 아니라 릴레이(Relay)에도 적용될 수 있음을 밝혀둔다. 릴레이라 함은 BS의 서비스 영역을 확장하거나, 음영 지역에 설치되어 BS의 서비스를 원활하게 기기 및/또는 지점을 의미한다. 릴레이는 RN(Relay Node), RS(Relay Station) 등 다른 용어로 불릴 수 있다. UE의 관점에서 릴레이는 무선 엑세스 네트워크의 일부이며, 몇몇 예외를 제외하고, BS처럼 동작한다. 릴레이에 신호를 전송하거나 상기 릴레이로부터 신호를 수신하는 BS를 도너(donor) BS라고 한다. 릴레이는 도너 BS에 무선으로 연결된다. BS의 관점에서 릴레이는, 몇몇 예외(예를 들어, 하향링크 제어정보가 PDCCH 영역이 아닌, PDSCH 영역에서 R-PDCCH를 통해 전송됨)를 제외하고, UE처럼 동작한다. 따라서, 릴레이는 UE와의 통신에 사용되는 물리 계층 엔터티와 도너 BS와의 통신에 사용되는 물리 계층 엔터티를 모두 포함한다. BS에서 릴레이로의 전송, 이하, BS-to-RN 전송은 DL 서브프레임에서 일어나며, 릴레이에서 BS로의 전송, 이하, RN-to-BS 전송은 UL 서브프레임에서 일어난다. 한편, BS-to-RN 전송 및 RN-to-BS 전송은 DL 주파수 대역에서 일어나며, RN-to-BS 전송 및 UE-to-RN 전송은 UL 주파수 대역에서 일어난다. 본 발명에서, 릴레이 또는 UE는 하나 이상의 BS를 통해 상기 하나 이상의 BS가 속한 네트워크(network)와 통신할 수 있다.
이하에서는 설명의 편의를 위하여, PDCCH, E-PDCCH 및 R-PDCCH를 모두 PDCCH라 통칭하여 본 발명의 실시예들을 설명한다. 이에 따라, CCE 역시 해당 CCE가 PDCCH, E-PDCCH 및 R-PDCCH 중 어떤 PDCCH에 속하는 것인지와는 관계없이 CCE로 통칭하여 본 발명의 실시예들을 설명한다.
<슬롯 활용(usage) 지시>
도 9는 본 발명의 일 실시예 따른 슬롯 활용 지시를 이용한 슬롯-기반 PUSCH/PUCCH/SRS 전송을 예시한 것이다.
슬롯-기반 전송 방식은 기존의 서브프레임-기반 전송 방식과 다르므로, UE가 슬롯-기반으로 UL 전송을 수행하도록 하기 위해서는 슬롯-기반 전송 방식이 사전에 구성(configure)되는 것이 좋다. BS는 슬롯-기반 스케줄링을 하기 전에 미리 슬롯-기반 전송 모드를 구성하여 UE에게 시그널링한다. 예를 들어, BS는 UE의 UL 채널 상태가 특정 임계치에 미치지 못하면 서브프레임-기반 전송 모드(이하, 서브프레임 모드)를 구성하고, UE의 UL 채널 상태가 특정 임계치 이상이면 슬롯-기반 전송 모드(이하, 슬롯 모드)를 구성할 수 있다. 슬롯 모드가 구성되면, UE는 슬롯 단위로 UL 전송을 수행할 수 있다. BS가 슬롯 모드를 구성하면 UE는 무조건 슬롯 단위로 UL 전송을 수행하도록 강제될 수도 있으나, UE가 채널 상황에 맞춰 슬롯 단위의 UL 전송을 수행할 것인지 아니면 서브프레임 단위의 UL 전송을 수행할 것인지를 판단할 수 있도록 구성되는 것도 가능하다. 다만, UE가 슬롯 단위 전송과 서브프레임 단위 전송을 판단할 수 있도록 구성되는 경우, 판단기준은 BS가 사전에 미리 알 수 있도록 설계되는 것이 바람직하다.
BS는 UE에 슬롯 모드를 지시하는 방법은 다양하게 구성될 수 있다. 예를 들어, BS는 RRC(Radio Resource Control) 시그널링에 의해서 슬롯 모드를 UE에 구성할 수 있다. 이때, BS는 UE가 UL 전송에 사용해야 하는 슬롯이 첫 번째 슬롯인지 아니면 두 번째 슬롯인지를 알려주어야 한다. BS는 RRC 시그널링에 의해 슬롯 모드를 구성할 때 어느 슬롯을 사용해야 하는지를 반-정적(semi-static)으로 알려줄 수 있다.
BS는 매 스케줄링 시점마다 어느 슬롯에 전송해야 하는지를 특정 비트(예를 들어, PDCCH DCI 포맷 내 1-비트)를 이용하여 동적(dynamic)으로 UE에게 알려 줄 수도 있다. DCI 포맷 혹은 상위 계층 시그널링은, 예를 들어, 다음과 같이 정의된 슬롯 활용 지시 정보를 나를 수 있다.
표 3
Bit field Indication
0 1st slot transmission
1 2nd slot transmission
표 3을 참조하면, 예를 들어, 특정 비트가 '0'으로 설정되면 짝수 번째 슬롯(짝수 번호 슬롯) 혹은 UL 서브프레임의 첫 번째 슬롯을 가리키고, 특정 비트가 '1'로 설정되면 홀수 번째 슬롯(홀수 번호 슬롯) 혹은 UL 서브프레임의 두 번째 슬롯을 가리키는 것으로 UE와 BS에 미리 정해질 수 있다.
다른 예로, 슬롯 활용 지시에 2-비트가 사용될 수도 있다. 예를 들어, BS는 다음 표에 따라 슬롯 활용 지시 정보를 UE에게 전송될 수 있다.
표 4
Bit field Indication
00 1st slot transmission
01 2nd slot transmission
10 Both slot transmission
11 reserved
표 4를 참조하면, BS는 00 혹은 01을 이용하여 서브프레임 내 2개의 슬롯 중 어느 하나를 UE에게 알릴 수 있고, 10을 이용하여 2개의 슬롯이 모두 UL 전송에 사용됨을 UE에게 알릴 수도 있다.
또 다른 예로, 예를 들어, BS는 다음 표에 따라 슬롯 활용 지시 정보를 UE에게 전송될 수도 있다.
표 5
Bit field Indication
00 1st slot transmission
01 2nd slot transmission
10 Both slot transmission
11 One slot transmission (toggled)
표 5를 참조하면, 2-비트가 표시할 수 있는 4개 상태 중 첫 번째 슬롯, 두 번째 슬롯 및 2개 슬롯 모두에 맵핑된 상태들에 맵핑된 정보 비트들(00, 01 및 10)을 제외한 나머지 상태에 맵핑된 정보 비트(11)는 1개 슬롯에서의 전송을 지시하되, UL 전송이 첫 번째 슬롯과 두 번째 슬롯에서 번갈아 가면서 수행됨을 가리키도록 정의될 수 있다. 이 경우, 특정 슬롯과 연관된 전송 문제가 해결될 수 있다. 도 4에서 설명한 바와 같이, 서브프레임-기반 UL 전송에서 SRS는 항상 서브프레임의 두 번째 슬롯에서 전송된다. 이와 같이, SRS가 항상 두 번째 슬롯에서만 전송되는 경우, UE가 첫 번째 슬롯 전송임을 지시 받으면 SRS 전송이 복잡해질 수 있다. UE는 첫 번째 슬롯에서 UL 전송을 수행한 후 두 번째 슬롯의 첫 번째 심볼부터 마지막 심볼의 바로 직전 심볼까지 UL 전송을 멈추었다고 상기 마지막 심볼에서 SRS을 전송해야 하기 때문이다. 만약, UE가 2개 슬롯을 번갈아 UL 전송에 사용할 것을 지시하는 슬롯 활용 지시 정보를 수신하고 상기 UE에 SRS 전송이 구성되었다고 가정하면, 상기 UE는 SRS 전송 타이밍이 첫 번째 슬롯에 해당하면 SRS를 전송하지 않고, SRS 전송 타이밍이 두 번째 슬롯에 해당하면 해당 두 번째 슬롯의 마지막 OFDM 심볼에서 SRS를 전송한다. 여기서, 번갈아 전송한다고 함은 해당 UE의 HARQ(Hybrid Automatic Retransmission reQuest) 동작과 연관된 HARQ 프로세스 입장에서 첫 번째 슬롯과 두 번째 슬롯을 교대로 사용하는 방법을 의미할 수도 있다. 혹은, 서브프레임 번호 혹은 슬롯 인덱스와 연계시켜서 UL 전송을 수행하는 방법을 의미할 수도 있다. 예를 들어. 짝수 번호를 갖는 서브프레임에서는 첫 번째 슬롯이 UL 전송에 사용되고 홀수 번호를 갖는 서브프레임에서는 두 번째 슬롯이 UL 전송에 사용될 수 있다. SRS는 주기적 및/또는 비주기적으로 전송될 수 있는데, SRS의 주기적 전송을 고려한다면, 서브프레임 연관된 UL 전송에 사용되는 슬롯이 정해지는 것이 유리할 것이다.
표 3 내지 표 5의 정보 비트와 슬롯 활용 지시 사이의 맵핑 관계는 예시일 뿐이며, 다르게 구성될 수도 있다.
전술한 슬롯 활용 지시는, UE에 슬롯-모드가 구성됨을 전제로 하여, BS가 UE에게 상기 UE가 사용할 슬롯을 알리는 데 이용되는 경우를 예로 하여 설명되었다. 그러나, 슬롯-모드가 구성되지 않더라도, PDCCH DCI 포맷에 별도의 지시 비트가 추가되어 상기 추가된 지시 비트가, PDCCH가 스케줄링하는, 즉, 상기 PDCCH가 나르는 DL 그랜트에 대응한 PDSCH에 대한 ACK/NACK이 어느 슬롯에서 전송되어야 하는지를 알려주는 슬롯 활용 지시로서의 역할을 수행할 수도 있다. 슬롯 활용 지시를 PUCCH 전송에 적용할 경우에는 UL 그랜트에 해당 지시 비트가 추가될 수 있다. 즉, UL 전송이 수행될 슬롯이 UL 그랜트와 DL 그랜트 중 어느 것에서나 지시될 수 있다.
이제까지, BS가 슬롯 활용 지시를 명시적으로 UE에게 전송하는 경우가 설명되었다. 그러나, 슬롯-모드에서 사용되는 슬롯이 DCI 포맷, CoMP의 전송 포인트 등과 같은 특별한 기준에 의하여 자연스럽게 구분되는 경우에는, UE가 슬롯 활용 지시를 명시적으로 수신하지 않더라도 상향링크 전송에 어느 슬롯을 사용해야 하는지를 암묵적으로 알 수 있으므로, 슬롯 활용 지시가 UE에 전송되지 않을 수도 있다.
슬롯 활용 지시는 명시적으로 시그널링되는 대신에, CCE와 ACK/NACK 사이의 링키지에 의해 암묵적으로 설정될 수도 있는데, 이에 관한 자세한 사항은 <PUCCH 자원 예약(PUCCH resource reservation)> 부분에서 후술된다.
<UE 그룹화>
도 10은 본 발명에 따른 BS가 슬롯 활용 지시를 활용하는 예를 나타낸 것이다.
전술한 슬롯 활용 지시에 관한 실시예들은 단순히 UE에게 특정 슬롯을 사용하도록 종용하는 의미 이외에도, BS가 특정 슬롯에 스케줄링되는 UE들을 조정하는 데 사용될 수 있다.
도 10을 참조하면, 10개의 UE들이 슬롯-모드를 사용한다고 가정하면, BS는 이들 중 일부(UE 그룹 1)는 첫 번째 슬롯에서 UL 전송을 수행하도록 구성하거나 지시할 수 있으며, 나머지(UE 그룹 2)는 두 번째 슬롯에서 UL 전송을 수행하도록 구성하거나 지시할 수 있다. 이와 같이, 전술한 슬롯 활용 지시에 관한 실시예들은 특정 슬롯에 UE가 집중되어 스케줄링되는 것을 방지하는 데 사용될 수 있다. 즉, 본 발명에 의하면 BS가 2개의 슬롯들에 UE들을 나누어 할당(assign)할 수 있게 됨에 따라, 스케줄링의 유연성(flexibility)이 증가될 수 있다.
<서브프레임 번들링>
도 11은 서브프레임 번들링을 사용하는 시스템에서 슬롯-모드가 구성된 경우의 상향링크 전송을 예시한 것이다.
서브프레임 번들링이라 함은, 전송 채널의 커버리지를 확장하기 위하여, 중복버전(redundancy version, RV)만을 달리하는 동일한 데이터를 나르는 전송 채널을 시간 도메인 상에서 연속된 소정 개수의 서브프레임에 걸쳐서 전송하는 기법을 말한다. 서브프레임 번들링이 구성되면, UE는 소정 개수(예를 들어, 4개)의 연속한 상향링크 서브프레임에 걸쳐서 PUSCH를 전송한다. UE가 BS로부터 멀리 떨어져 있거나 무선 링크(radio link)의 상황이 좋지 않은 경우, 이러한 UE가 PUSCH를 한 번만 전송하면, UE의 전송전력은 제약되어 있으므로, BS가 상기 PUSCH를 적절히 수신하지 못하는 상황이 발생할 수 있다. 이 경우, BS는 서브프레임 번들링 모드로 동작하도록 UE를 구성할 수 있다.
본 발명의 일 실시예에서, 슬롯-모드가 구성된 UE는 자동적으로 서브프레임 번들링 대신 슬롯 번들링으로 동작한다. 즉, 도 11을 참조하면, 슬롯-기반 동작 모드, 즉, 슬롯-모드가 구성되면 서브프레임 번들링 대신 슬롯 번들링이 활성화(enable)된다. 이미 서브프레임 번들링이 구성된 UE는 슬롯 활용 지시 정보를 수신하면 서브프레임 번들링 대신 슬롯 번들링 모드로 동작할 수 있으며, 서브프레임 번들링이 구성되기 전에 슬롯-모드가 구성된 UE는 BS로부터 서브프레임 번들링으로 동작할 것을 나타내는 정보를 수신하면 서브프레임 번들링 대신 슬롯 번들링 모드로 동작할 수 있다.
UE에 대한 슬롯-모드의 구성은 상위 계층(예를 들어, RRC 계층) 시그널에 의해 구성될 수도 있다. 혹은, PDCCH DCI 포맷 및/또는 E-PDCCH DCI 포맷에 비트가 추가되고, 상기 추가된 비트에 의해 지시되는 상태들 중 일부는 서브프레임-모드의 지시에 사용되고 다른 일부 상태는 슬롯-모드의 지시에 사용될 수 있다. 예를 들어, 00 혹은 11는 서브프레임-모드를 가리키는 것으로, 01 혹은 10은 슬롯-모드를 가리키는 것으로 정의될 수 있다.
UE에 슬롯-모드를 구성한 BS는 슬롯 활용 지시 비트에 따라서 PUSCH를 어느 슬롯으로 전송할 것인지를 상기 UE에게 알려줄 수 있다. 이때, 상기 슬롯 활용 지시 비트는 슬롯 활용 지시에 관한 정보일 뿐만 아니라 서브프레임 번들링을 슬롯 번들링으로 해석할 것을 지시하는 정보로서 활용될 수 있다. 도 11을 참조하면, 슬롯 번들링이 활성화된 경우, UE는 PUSCH 전송이 스케줄링된 슬롯을 포함하는 첫 번째 슬롯부터 시작하여 소정 개수의 연속한 슬롯들에 걸쳐서 PUSCH를 전송할 수 있다.
본 실시예에 의하면, BS가 일단 서브프레임 번들링 모드로 동작할 것을 UE에게 지시한 경우, UE는 자동적으로 서브프레임 번들링을 슬롯 번들링으로 해석하여 동작하므로, 상기 BS는 슬롯 번들링으로 동작하여야 함을 나타내는 정보를 별도로 상기 UE에게 시그널링하지 않아도 된다. 이에 따라, 하향링크 시그널링 오버헤드가 감소된다.
<PUCCH 자원 예약(PUCCH resource reservation)>
상향링크 데이터는 PDCCH 혹은 E-PDCCH 혹은 R-PDCCH에 의해 스케줄링되어 서브프레임의 데이터영역에서 전송/수신된다. 이에 반해, PUCCH의 경우, UE는 상위(higher) 계층 시그널링 혹은 동적(dynamic) 제어 시그널링 혹은 암묵적(implicit) 방식에 의해 BS로부터 UCI의 전송을 위한 PUCCH 자원을 할당 받는다. 서브프레임-모드의 상향링크 전송의 경우, 일 서브프레임 내 PUCCH 전송에 PRB 쌍이 이용된다. 따라서, 기존 3GPP LTE(A-) 시스템에서는 PRB 쌍을 이루는 2개 PRB는 사실상 같은 PUCCH 자원에 링크된다. 기존 PUCCH 자원은 일 PUCCH 자원이 일 서브프레임 내 2개 슬롯에 걸쳐 구성되게 되므로, 일 PRB 쌍 중 첫 번째 슬롯에 위치한 PRB와 두 번째 슬롯에 위치한 PRB가 서로 다른 UE 혹은 UE 그룹에 할당될 수 없다. 이에 반해, 슬롯-기반의 PUCCH 전송의 경우에는 일 슬롯에서만 PUCCH가 전송될 수 있으므로, 서브프레임-기반의 PUCCH 전송에 사용되는 PUCCH 자원과는 다른 방식으로, 슬롯-기반의 PUCCH 전송을 위한 PUCCH 자원이 정의 및 결정될 필요가 있다. 이하, PUCCH 포맷 1 계열 및 2계열, 3계열 각각에 대하여 슬롯-기반의 PUCCH 전송을 수행하는 방법에 관한 본 발명의 실시예들을 설명한다.
■ PUCCH 포맷 1 계열
기존의 3GPP LTE(-A) 시스템에서 PUCCH 포맷 1 계열(이하, PUCCH 포맷 1)의 경우, ACK/NACK 전송용 PUCCH 자원(이하, ACK/NACK PUCCH 자원)은 각 UE에 미리 할당되어 있는 것이 아니라, 셀 내의 복수의 UE들이 복수의 PUCCH 자원들을 매 PUCCH 전송 시점마다 나눠서 사용한다. 구체적으로, UE가 ACK/NACK 전송을 위해 사용하는 PUCCH 자원은 해당 ACK/NACK 전송과 연관된 PDCCH를 기반으로 동적으로 결정된다. 기존의 3GPP LTE(-A) 시스템에서는, ACK/NACK PUCCH 자원이 CCE 인덱스에 링킹되어 있어서 서브프레임 단위로 PDCCH CCE 인덱스에 따라서 동적으로 ACK/NACK PUCCH 자원이 결정된다. 3GPP LTE(-A) 시스템에서 PDCCH에는 해당 PDSCH가 있는 PDCCH(PDCCH with a corresponding PDSCH) 혹은 해당 PDSCH가 없는 SPS 해제를 위한 PDCCH가 있다. 해당 PDCCH가 PDSCH가 있는 보통의 PDCCH인지 아니면 SPS 해제를 위한 PDCCH인지와 상관없이, 각각의 DL 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCE(Control Channel Element)로 구성되고, UE에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. UE는 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE(예를 들어, 첫 번째 CCE)에 링크된 PUCCH 자원을 통해 PDSCH 및/또는 PDCCH에 대한 ACK/NACK을 전송한다. 즉, UE는 할당 받은 PUCCH 자원에 대응하는 OC 및 CS를 ACK/NACK 정보에 적용하여 해당 PRB 쌍의 각 PRB에서 전송한다. ACK/NACK의 전송 타이밍은 PDCCH가 수신된 DL 서브프레임부터 시작하여 소정 개수(k)의 서브프레임 이후에 해당하는 UL 서브프레임이다. FDD의 경우, 예를 들어, PDCCH를 수신한 이후의 4번째 서브프레임에서 ACK/NACK PUCCH가 전송될 수 있으며, TDD의 경우는 TDD DL-UL 구성 및 서브프레임 번호에 따라 정의된 k를 기반으로 결정되는 서브프레임에서 ACK/NACK PUCCH가 전송될 수 있다.
도 12는 3GPP LTE-(A) 시스템에서 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸 것이다. 특히, 도 12는 DL에 최대 M개의 CCE가 존재하고, UL에 최대 M개의 PUCCH 자원이 예약되는 경우를 예시한 것이다.
도 12는 참조하면, 각각의 PUCCH 자원 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 12에서와 같이, 4~6번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 스케줄링 정보가 UE에 전송되고, 4번 CCE가 PUCCH 자원 인덱스 4에 링킹된다고 가정할 경우, 상기 UE는 상기 PDCCH를 구성하는 4번 CCE에 대응하는 4번 PUCCH 자원을 통해 ACK/NACK을 BS에 전송한다. 구체적으로, 3GPP LTE(-A) 시스템에서 2개 안테나 포트(p0 및 p1)에 의한 전송을 위한 PUCCH 자원 인덱스는 다음과 같이 정해진다.
수학식 1
Figure PCTKR2012004389-appb-M000001
수학식 2
Figure PCTKR2012004389-appb-M000002
여기서, n(1,p=p0) PUCCH는 안테나 포트 p0가 사용할 PUCCH 자원의 인덱스(즉, 번호)를 나타내고, n(1,p=p1) PUCCH는 안테나 포트 p1이 사용할 PUCCH 자원 인덱스를 나타내며, N(1) PUCCH는 상위 계층으로부터 전달받는 시그널링 값을 나타낸다. nCCE는 PDCCH 전송에 사용된 CCE 인덱스들 중에서 가장 작은 값에 해당한다. 예를 들어, CCE 집성 레벨이 2이상인 경우에는 PDCCH 전송을 위해 집성된 복수의 CCE들의 인덱스들 중 첫 번째 CCE 인덱스가 PUCCH 자원의 결정에 사용된다.
기존의 3GPP LTE(-A) 시스템에서 같이 ACK/NACK PUCCH 자원이 결정될 경우, 해당 서브프레임의 2개 슬롯에서 하나의 ACK/NACK PUCCH 자원만 예약되기 때문에 본 발명이 제안하는 슬롯 단위의 PUCCH 전송이 지원되지 못하는 문제가 있다. 따라서, 슬롯 단위의 PUCCH 전송을 위해서는 슬롯 단위로 PUCCH 자원이 예약되어야 할 필요가 있다.
가장 간단한 방법으로는 첫 번째 슬롯에 대해서는 첫 번째 슬롯 전송과 연관된 DL PDCCH의 CCE 인덱스에 연관시켜서 PUCCH 포맷 1/1a/1b 자원, 즉, ACK/NACK PUCCH 자원을 확보하고 두 번째 슬롯에 대해서는 첫 번째 슬롯의 PUCCH 자원 인덱스에 사전에 정해진 오프셋 값을 더해서 ACK/NACK PUCCH 자원을 결정하는 방법이 있다. 이 경우, 오프셋은 하나의 고정된 값일 수도 있지만 다수의 값을 가지는 오프셋 값들의 모음이 설정될 수도 있다. 또는 두 번째 슬롯에 대해서는 RRC 시그널링에 의해 사용가능한 ACK/NACK PUCCH 자원들이 사전에 예약될 수도 있다. 이 경우, 두 번째 슬롯의 PUCCH 자원은 동적으로 변경될 수 없기 때문에 이에 맞는 용도로 사용하는 것이 바람직하다.
자원 예약의 다른 방법으로는 슬롯 위치에 상관없이 모든 ACK/NACK PUCCH 자원이 RRC 시그널링에 의존하여 결정되도록 하는 방법이다. 즉, RRC 시그널링에 의해서 설정된 PUCCH 자원이 ACK/NACK PUCCH 전송을 위해 지속적으로 사용될 수 있다. 하지만, 이 방법에 의하면, 지속적인 예약으로 인한 자원낭비가 불가피하다는 단점이 있다. ACK/NACK 전송 타이밍이 아닌 경우에도, RRC 시그널링에 의해 예약된 PUCCH 자원은 다른 UE의 PUCCH 전송을 위해 사용되지 않을 것이기 때문이다. 이하, PUCCH 포맷 1/1a/1b를 위한 PUCCH 자원 예약에 관한 본 발명의 실시예들을 설명한다. 이하의 설명에서, 개선 UE를 위한 일 PUCCH 자원은 일 PRB 내에서 구성되고, 레거시 UE를 위한 일 PUCCH 자원은 일 PRB 쌍에 걸쳐서 구성된다고 가정된다.
A) 자원낭비가 있지만 레거시 시스템과 다중화가 가능하면서 스케줄링 제약이 없는 실시예
표 6과 도 13 및 도 14는 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 일 실시예를 예시한 것이다.
표 6
CCE Index ACK/NACK PUCCH resource index
0 0 (slot #n)
1 1 (slot #n+1)
2 2 (slot #n)
3 3 (slot #n+1)
4 4 (slot #n)
... ...
N-1 N-1 (slot #n+1)
표 6과 도 13 및 도 14를 참조하면, PUCCH가 UL 서브프레임의 두 슬롯 중 하나에서 전송되는 것만을 고려한다면, 각 DL 그랜트 CCE 인덱스(즉, DL 그랜트를 나르는 PDCCH에 속한 CCE의 인덱스)와 PUCCH 자원은 PUCCH 전송에 사용되는 슬롯이 어느 것 인지와는 무관하게 일대일 관계로 맵핑될 수 있다. PUCCH가 어느 슬롯에서 전송될지는 RRC 시그널링 혹은 DCI에 의해서 지정되기 때문에, 상기 PUCCH와 연관된 CCE 인덱스의 결정에는 영향을 미치지 않는다. 참고로, 표 6에서는 스케줄러가, 슬롯 활용 지시 정보를 통해, 슬롯 #n과 슬롯 #n+1을 번갈아 가며 지정한 경우가 예시되었으나, PUCCH 전송에 사용되는 슬롯이 반드시 표 6과 같이 지정되어야 하는 것은 아니다. 슬롯 #n과 슬롯 #n+1 중 어떤 슬롯을 UL 전송에 사용할 것인지를 지시하는 슬롯 활용 지시는 스케줄러(예를 들어, BS)에 의해 자유롭게 설정될 수 있다.
표 6 및 도 14에서, PUCCH 자원 인덱스들 중에 일부는 첫 번째 슬롯에 사용되고 일부는 두 번째 슬롯에 사용된다. 표 6을 참조하면, CCE 인덱스와 PUCCH 자원 인덱스가 일대일로 맵핑되므로, DL 그랜트 CCE 인덱스에 따라서 PUCCH 자원 인덱스가 결정된다. 다만, 레거시 UE의 PUCCH 전송과 개선 UE의 PUCCH 전송에 동일한 PRB가 사용될 경우, 레거시 UE와 개선 UE 중 어느 하나에 할당된 PUCCH 자원은 상기 동일 PRB를 포함하는 PRB 쌍에 걸쳐 상기 레거시 UE와 상기 개선 UE 중 나머지 하나에 할당될 수 없다. 예를 들어, PUCCH 자원 결정에 사용되는 CCE 인덱스가 7이고 이로부터 계산된 ACK/NACK PUCCH 자원 인덱스가 7(이 경우, CCE 인덱스와 PUCCH 자원 인덱스 사이의 오프셋 값은 0이 됨)이라고 가정하자. 도 14를 참조하면, 슬롯 단위로 동작하는 개선 UE는 PUCCH 자원 인덱스가 7인 PUCCH 자원을 이용해서 사전에 지정된 슬롯에서 PUCCH를 전송한다. 이때, 상기 PUCCH 자원 인덱스 7은 일 서브프레임의 2개 슬롯 중 상기 개선 UE의 PUCCH 전송에 사용되지 않는 슬롯에서 사용되지 않는다. 즉, BS는 일 서브프레임에서 개선 UE에 할당된 PUCCH 자원은 레거시 UE에게 할당하지 않음으로써, 2개 슬롯 중 나머지 슬롯에서 개선 UE와 레거시 UE가 동일한 PUCCH 자원을 이용하여 각자의 PUCCH를 전송하는 것을 방지할 수 있다. 이에 따라, 레거시 UE를 위한 PDCCH나 개선 UE를 위한 PDCCH가 어느 CCE 인덱스에 위치하더라도, 레거시 UE의 서브프레임 기반 PUCCH와 개선 UE의 슬롯 기반 PUCCH가 동일한 PRB에 아무런 문제 없이 다중화될 수 있다. 본 예시에서, 슬롯 단위 PUCCH는 PUCCH 전송 타이밍에 해당하는 서브프레임 내 2개 슬롯 중 하나의 슬롯에서 전송되며, 나머지 슬롯 내 PUCCH 자원 인덱스 7인 PUCCH 자원은 상기 슬롯 단위 PUCCH 전송에 사용되지 않는다. 따라서, 본 실시예에 의하면, 개선 UE가 서브프레임의 일 슬롯 내 특정 PUCCH 자원 인덱스를 갖는 PUCCH 자원을 이용하여 PUCCH를 전송하면 상기 서브프레임의 다른 슬롯에서 동일한 인덱스를 갖는 PUCCH 자원은 다른 개선 UE에게 할당되지 않는 한 사용되지 않는다는 단점이 있다. 다만, 본 실시예에 의하면, 스케줄러가 자유롭게 PDCCH/PDSCH를 UE에게 할당할 수 있으므로, 스케줄링의 유연성(flexibility)이 보장될 수 있다는 장점이 있다.
B) 약간의 스케줄링 제약(PDCCH 배치의 제약)을 가하여 자원 효용성을 증대시키는 실시예
표 7 및 표 8과, 도 15는 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 다른 실시예를 예시한 것이다.
표 7
CCE Index PUCCH resource index(for advanced UEs in the first slot) PUCCH resource index(for advanced UEs in the second slot)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 0
19 1
20 2
21 3
22 4
23 5
24 6
25 7
26 8
27 9
28 10
29 11
30 12
31 13
32 14
33 15
34 16
35 17
표 8
CCE Index PUCCH resource index(for legacy UEs in the first slot) PUCCH resource index(for legacy UEs in the second slot)
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
표 7은 개선 UE들을 위한 CCE 인덱스의 PUCCH 자원 인덱스로의 링키지를 예시한 것이고, 표 8은 레거시 UE들을 위한 CCE 인덱스의 PUCCH 자원 인덱스로의 링키지를 예시한 것이다.
첫 번째 슬롯에 링크되는 CCE 인덱스들과 두 번째 슬롯에 링크되는 CCE 인덱스들이 구분되어 운영될 수 있다. 예를 들어, 총 36개의 CCE들이 존재하고 이에 대응되는 36개 PUCCH 자원들이 존재한다고 가정하면, 스케줄러는 36개 PUCCH 자원들 중 처음 18개 PUCCH 자원들은 첫 번째 슬롯에서 사용하고, 나머지 18개 PUCCH 자원들은 두 번째 슬롯에서 사용할 수 있다. 표 7을 참조하면, 개선 UE에 암묵적 시그널링에 의해 할당된 PUCCH 자원 인덱스가 16번(0~17번 사이 값)이면, 이는 첫 번째 슬롯에서 PUCCH 자원 인덱스 16번을 이용하여 슬롯-기반 PUCCH 전송을 수행하라는 의미인 것으로 정의될 수 있다. 반면에 할당된 PUCCH 자원 인덱스가 25번(18~35 사이 값)이면 두 번째 슬롯에서 PUCCH 자원 인덱스 7번을 이용해서 슬롯-기반 PUCCH 전송을 수행하라는 의미인 것으로 정의될 수 있다. 레거시 UE의 경우, BS는 선두 18개 PUCCH 자원들만이 사용되도록 PDCCH를 CCE에 맵핑하여 상기 레거시 UE에게 전송할 수 있다.
개선 UE를 위한 표 7의 CCE 인덱스 0~17은 첫 번째 슬롯의 PUCCH 자원 0~17에 링크되고 레거시 UE를 위한 표 8의 CCE 인덱스 18~35는 첫 번째 슬롯 및 두 번째 슬롯의 PUCCH 자원 0~17에 링크된다. BS(혹은 스케줄러)가 CCE 인덱스 0~17에 개선 UE를 위한 PDCCH와 레거시 UE를 위한 PDCCH를 배치할 경우, 상기 BS는 용이하게 동일한 CCE에 서로 다른 UE를 위한 PDCCH를 할당하지 않을 수 있다. 이에 반해, 개선 UE를 위한 표 7의 CCE 인덱스 18~35는 두 번째 슬롯의 PUCCH 자원 0~17에 링크되는데, 레거시 UE를 위한 표 8의 CCE 인덱스 0~17 역시 PUCCH 자원 0~17에 링크된다. 두 번째 슬롯에서는 서로 다른 CCE 인덱스가 동일한 PUCCH 자원에 링크되므로, 개선 UE와 레거시 UE가 동일한 PUCCH 자원을 할당 받을 가능성이 높아진다. BS가 각 레거시 UE에 대해서는 항상 0~17의 CCE 인덱스들 중 하나를 할당한다고 가정하면, 예를 들어, BS가 10번 CCE를 포함하는 하나 이상의 CCE들의 모음 상에서 PDCCH를 레거시 UE에 전송한 경우, 첫 번째 슬롯의 CCE 인덱스 10과 대응되는 두 번째 슬롯의 CCE 인덱스인 CCE 인덱스 28은 다른 UE에게 할당하지 않는 것이 좋다. 일 PRB 상에서 동일 PUCCH 자원을 이용하여 서로 다른 UE의 ACK/NACK 신호들이 전송되면, 각각의 UE가 전송한 ACK/NACK 신호가 분리되기 어렵기 때문이다. 레거시 UE 입장에서 보면, 첫 번째 슬롯의 CCE 인덱스 10과 두 번째 슬롯의 CCE 인덱스 28은 같은 PUCCH 자원에 링크되는 인덱스이다. 사실 CCE 인덱스 18~35는 개선 UE의 슬롯-모드 전송을 위해서 사용되는 경우에 한해서 첫 번째 슬롯에서 사용되는 CCE 인덱스 0~17에 18을 더하여 가상으로 만들어진 개선 UE용 CCE 인덱스라고 할 수 있다. 따라서, CCE 인덱스 18~35에 링크되는 PUCCH 자원 인덱스는 두 번째 슬롯에서 레거시 UE의 PUCCH 자원 인덱스와 오버랩될 수 있으므로, BS는 레거시 UE 사용하는 PUCCH 자원과 개선 UE가 사용할 PUCCH 자원의 충돌을 피하도록 스케줄링을 하는 것이 좋다.
본 실시예에 의하면, BS가 지정된 CCE 인덱스의 범위(예를 들어, CCE 인덱스 0~17)을 벗어난 CCE에는 레거시 UE를 할당하지 않도록 함으로써 자원을 효율적으로 이용할 수 있다.
또한, 본 실시예에 의하면, 슬롯 활용 지시가 별도로 필요 없다는 장점이 있다. 다만, 첫 번째 슬롯에서 사용되는 PUCCH 자원 인덱스들과 두 번째 슬롯에서 사용되는 PUCCH 자원 인덱스들이 미리 정의되어 있지 않는 한, BS는 첫 번째 슬롯과 두 번째 슬롯에서 사용되는 CCE 인덱스의 경계를 알려주는 지시 정보를 UE에게 전송한다. BS는 서비스가 제공되어야 하는 레거시 UE들과 개선 UE들의 개수 및 부하(load), 상향링크 채널 상태 등을 고려하여, CCE 인덱스의 경계를 결정하고, 상기 결정된 경계를 나타내는 정보를 UE에게 전송할 수 있다. 이 경우, BS가 해당 셀의 상향링크 부하 및 레거시 UE와 개선 UE의 분포, 상향링크 채널 상태를 고려하여 레거시 UE용 CCE 인덱스와 개선 UE용 CCE 인덱스를 구분할 수 있다는 장점이 있다. 해당 셀의 상향링크 채널 상태가 나쁘거나 개선 UE가 해당 셀에 없는 경우, BS는 모든 CCE 인덱스를 레거시 UE용으로 설정할 수 있다. 반대로, 해당 셀에 위치한 모든 UE가 개선 UE이고 이들의 상향링크 채널 상태가 좋은 경우, BS는 모든 CCE 인덱스를 개선 UE용으로 설정하는 것도 가능하다.
C) CCE 집성 레벨의 분포 특성을 이용한 좀 더 효율적인 자원할당을 위하여 첫 번째 슬롯에서 사용되는 PUCCH 자원 인덱스와 두 번째 슬롯에서 사용되는 PUCCH 자원 인덱스를 짝수와 홀수로 구분하는 실시예
표 9 및 표 10과, 도 16은 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 또 다른 실시예를 예시한 것이다.
표 9
CCE Index PUCCH resource index(for advanced UEs in the first slot) PUCCH resource index(for advanced UEs in the second slot)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 27
28 28
29 29
30 30
31 31
32 32
33 33
34 34
35 35
표 10
CCE Index PUCCH resource index(for legacy UEs in the first slot) PUCCH resource index(for legacy UEs in the second slot)
First priority allocation Second priority allocation First priority allocation Second priority allocation
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19
20 20 20
21 21 21
22 22 22
23 23 23
24 24 24
25 25 25
26 26 26
27 27 27
28 28 28
29 29 29
30 30 30
31 31 31
32 32 32
33 33 33
34 34 34
35 35 35
표 9는 개선 UE들을 위한 CCE 인덱스의 PUCCH 자원 인덱스로의 링키지를 예시한 것이고, 표 10은 레거시 UE들을 위한 CCE 인덱스의 PUCCH 자원 인덱스로의 링키지를 예시한 것이다.
PDCCH 전송에 주로 사용되는 CCE 집성 레벨이 있는 경우, 예를 들어, 대부분의 CCE 집성 레벨이 2인 경우, 집성된 2개 CCE들 중 두 번째 CCE 인덱스에 해당하는 PUCCH 자원은 자주 사용되지 않을 것이다. 이 경우, 첫 번째 슬롯에서 사용되는 CCE 인덱스와 두 번째 슬롯에서 사용되는 CCE 인덱스가 주로 사용되는 CCE 집성 레벨을 기반으로 구분되어 운영될 수 있다. 주로 사용되는 CCE 집성 레벨이 2라고 가정하고, 표 9를 참조하면, 예를 들어, 첫 번째 슬롯에서는 CCE 인덱스들 중 짝수 번째 CCE 인덱스들과 연결된 PUCCH 자원들이 사용되는 반면, 두 번째 슬롯에서는 홀수 번째 CCE 인덱스들과 연결된 PUCCH 자원들이 개선 UE를 위해 사용될 수 있다.
짝수 번째 PUCCH 자원들과 홀수 번째 PUCCH 자원들 중 홀수 번째 PUCCH 자원들을 레거시 UE에게 할당할 경우, 두 번째 슬롯의 PRB 내에서 개선 UE의 PUCCH 자원과 레거시 UE의 PUCCH 자원이 섞일 수 있어, PUCCH 자원들이 용이하게 관리되기 어렵다는 문제점이 있다. 따라서, 표 10을 참조하면, BS는 짝수 번째 PUCCH 자원들과 홀수 번째 PUCCH 자원들 중 짝수 번째 PUCCH 자원에 우선권을 두어 레거시 UE에게 할당할 수 있다.
참고로, 큰 CCE 집성 레벨의 경우, CCE 집성 레벨이 크다는 것은 하향링크 채널 상태가 나쁘다는 우회적인 의미이므로, 상향링크 채널 상태도 나쁠 가능성이 크다. UL 전송과 DL 전송을 시간에 따라 구분하고 동일 주파수 대역에서 UL 전송과 DL 전송이 모두 수행되는 TDD의 경우, 상향링크 채널과 하향링크 채널의 주파수 특성이 유사하여, 상향링크 채널 상태가 좋지 않으면 하향링크 채널 상태도 좋지 않을 가능성이 높다. 이러한 점을 고려하여, 본 실시예에서 개선 UE는 큰 CCE 집성 레벨(예를 들어, 4 또는 8)로 PDCCH를 수신한 UE는 PRB 단위의 PUCCH 전송, 즉, 슬롯-모드의 PUCCH 전송 대신에 PRB 쌍 단위의 PUCCH 전송, 즉, 서브프레임-모드의 PUCCH 전송하도록 구성될 수도 있다. BS는 CCE 집성 레벨을 결정하여 해당 CCE 집성 레벨로 UE에 PDCCH를 전송하므로, 상기 UE가 슬롯-모드로 PUCCH를 전송할 것인지 서브프레임-모드로 PUCCH를 전송할 것인지 알 수 있다.
앞서 설명한 실시예 B에서는 레거시 UE의 PDCCH가 CCE 인덱스 0에 위치하면, PUCCH 자원 인덱스 0가 PUCCH PRB 쌍의 2개 PRB 모두에서 사용되므로, BS는 두 번째 슬롯에서 PUCCH 자원 인덱스 0에 링크되는 CCE 인덱스(표 7의 경우, CCE 인덱스 17)는 개선 UE에 할당하지 않아야 하는 제약을 받는다. 본 실시예에서는 첫 번째 슬롯에서 사용된 PUCCH 자원 인덱스는 두 번째 슬롯에서는 아예 사용되지 않도록 CCE 인덱스와 PUCCH 자원 인덱스 사이의 맵핑이 구성되므로, 레거시 UE의 PDCCH와 개선 UE의 PDCCH가 서로 다른 CCE 인덱스에 배치되기만 하면, 레거시 UE에 할당된 CCE 인덱스가 두 번째 슬롯에서 다른 UE에 의한 PUCCH 전송에 영향을 미치지 않는다.
다만, 본 실시예와 실시예 B는 첫 번째 슬롯에서 사용되는 CCE 인덱스들과 두 번째 슬롯에서 사용되는 CCE 인덱스들이 구분된다는 점에서 공통점을 갖는다. 별도의 슬롯 활용 지시 정보를 수신하지 않더라도, 본 실시예 혹은 실시예 B에 따라 구성된 UE는 첫 번째 슬롯을 위한 CCE 인덱스들의 모음에 속하는 CCE 인덱스를 검출하면 첫 번째 슬롯에서 PUCCH를 전송하고, 두 번째 슬롯을 위한 CCE 인덱스들의 모음에 속하는 CCE 인덱스를 검출하면 두 번째 슬롯에서 PUCCH를 전송한다. UE와 BS가 모두 어떤 CCE 인덱스가 어떤 슬롯을 위한 것인지 알고 있으므로, BS는 UE가 어떤 슬롯에서 어떤 PUCCH 자원을 이용하여 해당 PUCCH를 전송할 것인지를 알 수 있으며, 따라서, 상기 UE가 전송한 PUCCH를 유효하게 검출(혹은 수신)할 수 있다.
D) RRC에 의해 구성(configure)되는 PUCCH 자원을 사용하는 실시예
PDCCH 영역에서 전송되던 기존의 PDCCH가 아닌, PDSCH 영역에서 전송되는 새로운 PDCCH(예를 들어, R-PDCCH, E-PDCCH 등)가 도입되는 경우, 새로운 PDCCH를 위한 별도의 ACK/NACK PUCCH 자원이 확보되어야 한다.
표 11과, 도 17 및 도 18은 CCE 인덱스를 PUCCH 포맷 1/1a/1b와 맵핑하는 본 발명의 또 다른 실시예를 예시한 것이다.
표 11
CCE Index PUCCH resource index(for the first slot) PUCCH resource index(for the second slot)
0 0 N+0
1 1 N+1
2 2 N+2
3 3 N+3
4 4 N+4
... ... ...
N-1 N-1 2N-1
N: offset value by RRC signal
표 11을 참조하면, 예를 들어, CCE 인덱스에 오프셋 값 N을 적용한 PUCCH 자원이 슬롯 단위의 PUCCH 전송에 사용될 수 있다. 이 경우, 첫 번째 슬롯은 PDCCH와 연관된 PUCCH 전송에 사용되고, 두 번째 슬롯은 새로이 설계된 PDCCH(예를 들어, R-PDCCH, E-PDCCH)와 연관된 PUCCH 전송에 사용될 수 있다. 이와 반대로, 첫 번째 슬롯이 새로이 설계된 PDCCH와 연관된 PUCCH 전송에 사용되고, 두 번째 슬롯이 기존 PDCCH와 연관된 PUCCH 전송에 사용되는 것도 가능하다. 혹은, 표 11과는 별도로, 독립적인 PUCCH 포맷 1/1a/1b를 위한 자원(도 18의 PUCCH1 자원)이 개별 UE에게 할당되는 것도 가능하다.
전술한 실시예들 A 내지 D에서는 CCE 인덱스들이 PUCCH 자원 인덱스들에 오름차순으로 순차적으로 대응되는 것으로 맵핑 관계가 기술되었으나, 이는 설명의 편의를 위한 것으로 CCE 인덱스들이 반드시 순차적으로 PUCCH 자원 인덱스들에 맵핑되어야 하는 것은 아님은 자명하다.
■ PUCCH 포맷 2 계열
도 19는 PUCCH 포맷 2/2a/2b를 위한 PUCCH 자원에 관한 본 발명의 일 실시예를 예시한 것이다.
PUCCH 포맷 2 계열은 CSI전송에 사용되며 일 CSI 전송이 2개로 쪼개져 2개 슬롯에 각각 맵핑된다. 즉, 일 CSI 전송이 2개 PRB에서 쪼개져 BS에게 전송되므로, BS는 1개 슬롯에서 전송된 정보만으로는 CSI를 복원할 수 있다. 따라서, CSI를 슬롯 단위로 전송하는 데 어려움이 따른다. 물론, 간단하게는 두 슬롯 중의 한 쪽이 자연스럽게 펑처링되어 CSI PUCCH가 전송되는 방법이 가능하다. 그러나, 좀 더 바람직한 방법은 슬롯단위 심벌 수에 맞게 CSI 코딩이 새롭게 정의되는 것이다. 즉, 현재 서브프레임 단위 리드뮬러(RM) 코딩을 슬롯 단위 RM 코딩으로 변경하여 각 슬롯에서 독립적인 코딩이 적용되는 것이 좋다. 이 경우, 일 PUCCH 상에서 전송될 수 있는 CSI 전송 비트 수가 기존 시스템에 비해 줄어들게 되는 제약이 따를 수 있기 때문에, CSI 전송 방식에도 수정이 요구된다. 예를 들어, CSI가 여러 서브프레임에 걸쳐 해당 슬롯에서 나뉘어 전송되는 방법이 고려될 수 있다. 슬롯-모드를 위한 PUCCH 포맷 2의 자원은 상위 계층 시그널링(예를 들어, RRC 시그널링)을 이용하여 예약될 수 있다. 만약, 기존 3GPP LTE(-A)에 따른 자원 예약이 첫 번째 슬롯에서 그대로 적용한다면, 두 번째 슬롯에서는 새롭게 CSI PUCCH 자원이 예약되어야 할 것이다. 또는, 앞서 언급한 바와 같이, 첫 번째 슬롯에 예약된 CSI PUCCH 자원에, 지정된 오프셋 값을 적용하여, 두 번째 슬롯에서의 CSI PUCCH 자원이 결정되는 것도 가능하다. 또는, RRC 시그널링에 의해, 각 슬롯 별로 독립적인 자원 예약이 수행되는 것도 가능하다.
■ PUCCH 포맷 3 계열
도 20은 PUCCH 포맷 3를 위한 PUCCH 자원에 관한 본 발명의 일 실시예를 예시한 것이다.
PUCCH 포맷 3의 자원은 상위 계층 시그널링에 의해서 사전에 예약된다. 이 예약된 PUCCH 자원은 서브프레임 단위로 자원이 변경되는 PUCCH 포맷 1과는 달리 여러 서브프레임에 걸쳐 적용될 것을 가정하고 설계된 것이다. BS는 소정 개수(예를 들어, 총 4개)의 PUCCH 자원(one set)을 사전에 UE에게 알려주고 그 중에 어느 PUCCH 자원을 택할 것인가를 ARI(ACK/NACK Resource Indication)을 통해서 알려준다. ARI는 PDCCH 상에서 UE에게 전송된다. 이러한 ARI에 의해 지시된 PUCCH 자원은 한 서브프레임에서 유효한 값이다.
슬롯 단위 PUCCH 포맷 3를 설계하는 가장 기본적인 방법은 PUCCH 포맷 3의 경우, 서브프레임을 슬롯을 경계로 반으로 나누어서 첫 번째 슬롯에서 12 QPSK 심볼을, 두 번째 슬롯에서 12 QPSK 심볼을 전송하도록 PUCCH를 구성함으로써 슬롯 단위의 PUCCH 포맷 3가 설계될 수 있다. 이를 슬롯화된 PUCCH 포맷 3(Slotted PUCCH format 3)(이하, S-PUCCH3)라고 한다. 슬롯화된 PUCCH 포맷 3에 의하면, 각 슬롯에서 PUCCH 포맷 3에 기반한 ACK/NACK이, 1회 PUCCH 전송 타이밍에, 최대 24bit까지만 전송되도록 제한된다. 각 슬롯에서 요구되는 PUCCH 포맷 3 자원을 확보하는 한가지 방법은 사전에 지정된 PUCCH 자원 세트와 함께 혹은 독립적으로 PUCCH 포맷 3 자원이 사용될 슬롯 정보를 UE에게 시그널링하고, 이후 BS는 ARI를 이용하여 일 PUCCH 자원을 UE에게 지시할 수 있다. 예를 들어, BS는 첫 번째 슬롯 혹은 두 번째 슬롯에서만 PUCCH 포맷 3를 전송해야 하는지 아니면 두 슬롯에 걸쳐서 전송해야 하는지를 UE에게 알리고, 이후 ARI를 통해 상기 사전에 지정된 PUCCH 자원 세트에 속한 PUCCH 자원들 중 하나를 UE에게 알릴 수 있다. 각 UE는 첫 번째 및/또는 두 번째 슬롯에서 S-PUCCH3 전송을 하되, 자신에게 할당된 소정 개수의 PUCCH 자원들 중에 ARI에 의해 지정된 일 PUCCH 자원을 이용하여 상기 S-PUCCH3를 전송한다. 본 실시예에 의하면, 슬롯-모드 전송의 특징으로 인하여, 동일한 PUCCH 포맷 3 자원이 서로 다른 UE에게 할당되더라도, 상기 서로 다른 UE가 서로 다른 슬롯에서 PUCCH를 전송하면 아무런 문제가 발생하지 않는다는 장점이 있다.
도 20은 PUCCH 포맷 3를 위한 PUCCH 자원 세트가 상위 계층 시그널링에 의해 지시되고, 정확한 PUCCH 자원이 PDCCH를 통해 지시되는 경우를 예시한 것이다. 이와 달리, 전술한 슬롯 활용 지시와 연계한 하나의 통합된 시그널링이 슬롯 할당 및 자원 할당에 동시에 사용되는 것도 가능하다.
PUCCH 자원 예약에 관한 전술한 본 발명의 실시예들에서, 자원 운영의 편리성을 위해서, 슬롯 단위의 RB 호핑은 PUCCH 전송에 적용되지 않을 수 있다.
참고로, 전술한 바와 같이, PUCCH 자원 인덱스는 CS(cyclic shift)와 OC(orthogonal cover sequence)의 조합으로 표현된 PUCCH 자원을 지시한다. 사실상, PUCCH 자원 인덱스는 매 OFDM 심볼마다 혹은 슬롯마다의 시퀀스 호핑 패턴에 따라서 달라질 수 있으나, 설명의 편의를 위하여, 호핑을 고려하지 않고 설명하였음을 밝혀둔다. 만약, 호핑이 고려된다면 PUCCH 자원 인덱스 k는 해당 서브프레임의 첫 번째 OFDM 심볼 또는 해당 슬롯의 첫 번째 OFDM 심볼에 적용된 PUCCH 자원 인덱스 k에 해당하게 될 것이다.
<프리코딩 벡터 지시>
본 발명의 일 실시예에서, 상향링크에서 MIMO(multiple input multiple output) 전송을 할 수 있는 UE들은 해당 PUCCH에 적절한 프리코딩을 적용함으로써, 슬롯 단위의 PUCCH 전송 성능을 향상시킬 수 있다. 기존 시스템에서는 PUCCH가 일 서브프레임에서 2개의 슬롯에 걸쳐 전송됨에 반하여, 본 발명의 실시예들에 따라 전송되는 PUCCH는 일 서브프레임의 2개 슬롯 중 한 슬롯에서만 전송되므로, PUCCH 전송에 사용되는 무선 자원이 반으로 줄면서 서브프레임 기반일 때보다 주파수 다이버시티 이득이 줄어들게 된다. 복수 개의 안테나 포트를 구비한 UE라면 이러한 성능 손실을 프리코딩으로 보상할 수 있다. 특히, 움직임이 거의 없는 저-이동성(low-mobility) UE들의 경우, 개루프 형태로 동작하는 전송 기법에 의해 얻어지는 다이버시티 이득보다 폐루프 형태로 동작하는 전송 기법에 의해 얻어지는 다이버시티 이득이 더 좋을 수 있다.
PUCCH에 적용되는 프리코딩은 UE가 임의로 정하는 것이 아니라, BS에 의해 상기 UE로 지시된다. 이때, BS는 일반적인 PDSCH의 매 서브프레임마다 적절한 프리코딩 행렬을 지시하는 것이 아니라, 시간적으로 장기간(long term)으로 적용될 프리코딩 행렬을 지시한다. 이러한, 장기간 기반의 프리코딩 행렬은 RRC 구성 신호에 의해 UE에 전송될 수도 있고 혹은 특수화된(specialized) PDCCH(이하, S-PDCCH)에 의해 UE에게 전송될 수도 있다. 이러한 S-PDCCH는 1개 또는 다수 개의 UE가 사용할 수 있는 프리코딩 정보를 함께 나를 수 있는 특징을 가진다. 예를 들어, 4개의 UE가 PUCCH에 적용하는 프리코딩을 갱신해야 한다면, BS는 S-PDCCH 하나만을 전송할 수 있다. 갱신된 프리코딩 정보를 나르는 상기 S-PDCCH와 관련된 4개의 UE는 모두 동일한 S-PDCCH를 복호하여 자신의 PDCCH에 적용해야 하는 프리코딩 정보를 상기 S-PDCCH로부터 획득할 수 있다. 다수의 UE들이 S-PDCCH를 공유할 수 있도록 하기 위하여, S-PDCCH에는 특정 UE 그룹에 대한 공통의 식별자, 즉, RNTI가 부여될 수 있다. 상기 특정 UE 그룹은 S-PDCCH에 사용되는 RNTI를 이용하여 자신들이 속한 그룹에 연관된 S-PDCCH를 검출할 수 있다.
도 21은 상향링크 제어영역의 채널 추정을 위한 참조신호를 전송하는 본 발명의 실시예들을 예시한 것이다.
BS가 적절한 PUCCH용 프리코딩을 추정(estimation)하기 위해서는, 상기 BS가 PUCCH 전송용 시간-주파수 자원영역에 대한 채널 상태 정보(channel state information, CSI)를 유추할 수 있는 메커니즘이 필요하다. BS에 의한 상향링크 채널 상태 측정을 위해 UE가 일반적으로 UE에게 전송하는 SRS는, BS가 MIMO를 위한 CSI 추정을 수행하는 데는 도움을 준다. 그러나, SRS는 (SRS의 구성 상태에 따라) PUCCH가 전송되는 UL 서브프레임의 제어영역에서는 전송되지 않을 수 있다. 이 경우, SRS는 PUCCH를 위한 CSI 추정을 위한 참조신호로서는 충분한 역할을 수행하지 못할 가능성이 크다. 이러한 문제적을 극복하기 위하여, 본 발명은 추가적으로 제어-SRS(이하, C-SRS)를 정의하고, 상기 C-SRS를 PUCCH 영역에서 전송하는 실시예를 제안한다.
도 21을 참조하면, 일반적인 SRS와 달리 C-SRS는 광대역으로 전송하는 것이 아니라 PUCCH 영역, PUCCH 전송 RB, 또는 사전에 지정된 RB에 해당하는 영역에서만 전송되는 것을 특징으로 한다. C-SRS는 도 21(a)에 도시된 바와 같이 한 서브프레임에서 각 슬롯 별로 PUCCH 영역에서 전송될 수 있다. 혹은, 도 21(b)에 도시된 바와 같이, C-SRS가 한 서브프레임에서는 주파수 도메인에서 DC 부반송파를 기준으로 해당 반송파의 대역폭 양 끝단에 1개씩 위치하는 2개 PUCCH 영역들 중 일 PUCCH 영역에서 전송되고 다음 전송 기회에서는 반대편 PUCCH 영역에서 전송될 수도 있다. 슬롯 단위의 PUSCH/PUCCH 전송을 감안하면, 도 21(a)의 실시예와 같이 각 슬롯에서 C-SRS가 전송되는 것이 바람직하다. 다만, 저-이동성을 갖는 UE의 경우, 채널 상태의 시변성이 낮을 것이므로, UL RS 오버헤드의 증가 정도를 낮추기 위하여, 도 21(b)의 실시예와 같이 슬롯마다 C-SRS가 전송되지 않을 수도 있다. UE는 BS로부터 구성 받은 C-SRS의 전송주기에 해당하는 서브프레임의 PUCCH 영역에서 C-SRS를 전송하거나, BS로부터의 요청에 대응하여 서브프레임의 PDSCH 영역에서 C-SRS를 전송할 수 있다.
<폴백 동작>
전술한 실시예들 중 어느 하나에 따라 전송/수신된 신호가 시스템 요구 조건을 만족하지 못하여 시스템에 문제가 발생하면, BS는 슬롯-모드에서 기존의 정상 모드(normal mode)로 돌아가는 폴백 동작을 수행하는 것이 좋다. 즉, 채널상황이 나빠져서 더 이상 슬롯 단위의 상향링크 전송이 유지되기 어렵다고 판단되는 상황 혹은 RRC 재구성 상황에서 BS는 슬롯-모드를 기존의 서브프레임 단위의 상향링크 전송 모드, 즉, 서브프레임-모드로 폴백하도록 UE를 재구성한다.
본 발명의 UE는 <슬롯 활용(usage) 지시>, <UE 그룹화>, <서브프레임 번들링>, <PUCCH 자원 예약>, <프리코딩 벡터 지시> 및 <폴백 동작>에서 설명된 본 발명의 실시예들 중 어느 하나를 따로 독립적으로 혹은 이들 실시예들 중 하나 이상의 실시예를 함께 적용하여 UL 전송을 수행하고, 본 발명의 BS는 <슬롯 활용(usage) 지시>, <UE 그룹화>, <서브프레임 번들링>, <PUCCH 자원 예약>, <프리코딩 벡터 지시> 및 <폴백 동작>에서 설명된 본 발명의 실시예들 중 어느 하나를 따로 혹은 이들 실시예들 중 하나 이상의 실시예를 함께 적용하여 UL 전송을 수신하도록 구성될 수 있다.
도 22는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되고, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC(medium access control) 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)는 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 계층의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개(Nr은 양의 정수)의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 다수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명의 실시예들에 있어서, UE 또는 릴레이는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, BS는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다.
BS의 프로세서(이하, BS 프로세서)는 전술한 본 발명의 실시예들 중 적어도 하나에 따라 슬롯-모드를 구성하고, 구성된 슬롯-모드를 UE에 시그널링하도록 상기 BS의 RF 유닛(이하, BS RF 유닛)을 제어할 수 있다. 또한, 상기 BS 프로세서는 UE가 서브프레임 번들링 모드로 동작할 것을 지시하는 정보를 상기 BS RF 유닛을 제어하여 상기 UE에게 전송할 수 있다. 또한, 상기 BS 프로세서는 슬롯-모드가 구성된 UE에게 서브프레임의 첫 번째 슬롯과 두 번째 슬롯 중 상향링크 전송에 사용될 슬롯을 지시하는 슬롯 활용 지시 정보를 상기 UE에게 전송하도록 상기 BS RF 유닛을 제어할 수 있다. 슬롯 활용 지시 정보가 없더라도 암묵적으로 상향링크 전송에 사용될 슬롯이 특정되는 경우, 명시적 슬롯 활용 지시 정보가 UE에 전송되지 않을 수 있다. 상기 BS 프로세서는 <PUCCH 자원 예약>에 관한 실시예들 중 어느 하나에 따라 PDCCH를 하나 이상의 CCE에 할당할 수 있으며, 상기 하나 이상의 CCE의 모음 상에서 상기 PDCCH를 상기 UE에게 전송하도록 상기 BS RF 유닛을 제어할 수 있다.
UE의 RF 유닛(이하, UE RF 유닛)는 BS로부터 슬롯-모드의 구성을 지시하는 슬롯-모드 구성 정보를 수신하고, 상기 UE의 프로세서(이하, UE 프로세서)는 상기 슬롯-모드 구성 정보를 기반으로 슬롯-모드로 동작하도록 UE RF 유닛, 메모리 등을 제어할 수 있다. 상기 UE RF 유닛이 서브프레임 번들링 명령을 수신하고, 상기 UE가 슬롯-모드로 구성된 경우, 상기 UE 프로세서는 서브프레임 번들링 대신 슬롯 번들링을 활성화하여 소정 개수의 연속한 슬롯에 걸쳐서 PUSCH 및/또는 PUCCH, SRS를 전송하도록 UE RF 유닛을 제어할 수 있다. 상기 UE RF 유닛은 BS로부터 슬롯 활용 지시 정보를 수신할 수 있으며, 상기 UE 프로세서는 상기 슬롯 활용 지시 정보를 기반으로 서브프레임의 2개 슬롯 중 일 슬롯에서 PUSCH 및/또는 PUCCH, SRS를 전송하도록 UE RF 유닛을 제어할 수 있다. 상기 UE 프로세서는 PDCCH에 포함된 첫 번째 CCE를 기반으로 <PUCCH 자원 예약>에 관한 실시예들 중 어느 하나에 따라 PUCCH 자원을 결정하고, 상기 결정된 PUCCH 자원을 이용하여 일 슬롯 내에서 PUCCH를 전송하도록 UE RF 유닛을 제어할 수 있다.
전술한 본 발명의 실시예들에 따르면, K개의 PUCCH가 N개 PRB 쌍에 전송되어야 하는 기존의 방식과 달리, K개의 PUCCH가 N/2개 PRB 쌍에서 전송될 수 있게 됨에 따라, 자원의 효율성이 높아질 수 있다. 또는, 자원의 효율성을 기존의 방식과 마찬가지로 유지하면서(즉, N개 PRB 쌍을 사용하면서), UE(들) 슬롯 단위로 UL 신호를 전송함으로써, 소정 개수(예를 들어, 1개)의 PRB에 다중화되는 PUCCH의 개수를 줄일 수 있다. 소정 개수의 PRB 상에 다중화되는 PUCCH들의 개수가 줄어들면, 상기 PUCCH들을 상기 소정 개수의 PRB 상에 다중화하기 위해 사용되는 직교 시퀀스들 사이의 간섭이 반으로 줄어드는 효과가 있다.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국, 릴레이 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (10)

  1. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    기지국으로부터 PDCCH(physical downlink control channel)를 수신하고;
    상기 기지국으로 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH(physical uplink control channel)를 전송하되,
    상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH를 전송하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 전송하는,
    상향링크 제어정보 전송방법.
  2. 제1항에 있어서,
    상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 CCE 인덱스 0부터 M-1(여기서, M은 양의 정수)을 포함하고, 다른 하나는 상기 N개의 CCE 인덱스들 중 CCE 인덱스 M부터 N-1을 포함하는,
    상향링크 제어정보 전송방법.
  3. 제2항에 있어서,
    상기 기지국으로부터 M을 나타내는 정보를 수신하는,
    상향링크 제어정보 전송방법.
  4. 제1항에 있어서,
    상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 짝수 인덱스들만을 포함하고, 나머지 하나는 홀수 인덱스들만을 포함하는,
    상향링크 제어정보 전송방법.
  5. 무선 통신 시스템에서 사용자기기가 상향링크 제어정보를 전송함에 있어서,
    무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및
    기지국으로부터 PDCCH(physical downlink control channel)를 수신하도록 상기 RF 유닛을 제어하고, 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH(physical uplink control channel)를 상기 기지국으로 전송하도록 상기 RF 유닛을 제어하는 프로세서를 포함하되,
    상기 프로세서는 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH를 전송하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 전송하도록 상기 RF 유닛을 제어하는,
    사용자기기.
  6. 제5항에 있어서,
    상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 CCE 인덱스 0부터 M-1(여기서, M은 양의 정수)을 포함하고, 다른 하나는 상기 N개의 CCE 인덱스들 중 CCE 인덱스 M부터 N-1을 포함하는,
    사용자기기.
  7. 제6항에 있어서,
    상기 프로세서는 상기 기지국으로부터 M을 나타내는 정보를 수신하도록 상기 RF 유닛을 제어하는,
    사용자기기.
  8. 제5항에 있어서,
    상기 제1CCE 집합과 상기 제2CCE 집합 중 어느 하나는 전체 N개(여기서, N은 2보다 큰 정수)의 CCE 인덱스들 중 짝수 인덱스들만을 포함하고, 나머지 하나는 홀수 인덱스들만을 포함하는,
    사용자기기.
  9. 무선 통신 시스템에서 기지국이 상향링크 제어정보를 수신함에 있어서,
    사용자기기에 PDCCH(physical downlink control channel)를 전송하고;
    상기 사용자기기로부터 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH를 수신하되,
    상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH(physical uplink control channel)를 수신하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 수신하는,
    상향링크 제어정보 수신방법.
  10. 무선 통신 시스템에서 기지국이 상향링크 제어정보를 수신함에 있어서,
    무선 신호를 전송 혹은 수신하도록 구성된 무선 주파수(radio frequency, RF) 유닛; 및
    사용자기기에 PDCCH(physical downlink control channel)를 전송하도록 상기 RF 유닛을 제어하고, 상기 사용자기기로부터 상기 PDCCH에 대응한 ACK/NACK(ACKnowledge/Negative ACK) 정보를 나르는 PUCCH를 수신하도록 상기 RF 유닛을 제어하는 프로세서를 포함하되,
    상기 프로세서는 상기 PDCCH에 포함된 첫 번째 CCE(control channel element)의 인덱스가 제1CCE 집합에 속하는 경우에는 서브프레임의 첫 번째 슬롯에서 상기 PUCCH(physical uplink control channel)를 수신하도록 상기 RF 유닛을 제어하고, 상기 첫 번째 CCE의 인덱스가 제2CCE 집합에 속하는 경우에는 상기 서브프레임의 두 번째 슬롯에서 상기 PUCCH를 수신하도록 상기 RF 유닛을 제어하는,
    기지국.
PCT/KR2012/004389 2011-06-06 2012-06-04 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국 WO2012169753A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/124,644 US9351289B2 (en) 2011-06-06 2012-06-04 Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161493954P 2011-06-06 2011-06-06
US61/493,954 2011-06-06

Publications (2)

Publication Number Publication Date
WO2012169753A2 true WO2012169753A2 (ko) 2012-12-13
WO2012169753A3 WO2012169753A3 (ko) 2013-03-07

Family

ID=47296569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004389 WO2012169753A2 (ko) 2011-06-06 2012-06-04 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국

Country Status (2)

Country Link
US (1) US9351289B2 (ko)
WO (1) WO2012169753A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615850A (zh) * 2015-06-03 2018-01-19 华为技术有限公司 传输数据的方法及装置及用户设备
CN110050505A (zh) * 2016-12-08 2019-07-23 高通股份有限公司 针对共享频谱新无线电的协调式分隙介质接入
KR20190140463A (ko) * 2017-05-05 2019-12-19 텔레폰악티에볼라겟엘엠에릭슨(펍) 애크날리지먼트 자원의 지속적인 인디케이션
US10666401B2 (en) 2013-04-05 2020-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Method, UE and basestation for reporting/receiving HARQ ACK/NACK for PDSCH in dynamic TDD configurations

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5895388B2 (ja) * 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN106658732B (zh) * 2011-08-15 2020-04-14 华为技术有限公司 控制信道资源的分配方法及装置
EP2745604B1 (en) * 2011-08-19 2022-04-27 SCA IPLA Holdings Inc. Mobile communications system, infrastructure equipment, mobile communications terminal and method to communicate user data within an uplink random access channel
US9473982B2 (en) * 2012-10-21 2016-10-18 Mariana Goldhamer Utilization of the uplink FDD channel
US10624075B2 (en) * 2013-03-16 2020-04-14 Qualcomm Incorporated Apparatus and method for scheduling delayed ACKs/NACKs in LTE cellular systems
WO2014205790A1 (zh) * 2013-06-28 2014-12-31 华为技术有限公司 一种发送控制信息、接收控制信息的方法和装置
US20150043434A1 (en) * 2013-08-08 2015-02-12 Sharp Laboratories Of America, Inc. Systems and methods for subframe bundling
KR20150054055A (ko) * 2013-11-08 2015-05-20 한국전자통신연구원 셀룰러 통신 시스템에서의 자원 할당 방법 및 장치
US11357022B2 (en) * 2014-05-19 2022-06-07 Qualcomm Incorporated Apparatus and method for interference mitigation utilizing thin control
US11019620B2 (en) 2014-05-19 2021-05-25 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching and its application to multiplexing of different transmission time intervals
EP3843316A1 (en) * 2014-06-24 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) Method and apparatuses for operating a wireless communication network
US20170366380A1 (en) * 2014-12-08 2017-12-21 Lg Electronics Inc. Method and user equipment for transmitting pucch when more than five cells are used according to carrier aggregation
CN107683576B (zh) * 2015-04-09 2021-09-17 瑞典爱立信有限公司 对于上行链路控制信息的自适应传送方法
US10129859B2 (en) * 2015-10-15 2018-11-13 Qualcomm Incorporated Uplink control channel for low latency communications
KR102443053B1 (ko) * 2015-10-30 2022-09-14 삼성전자주식회사 무선 통신 시스템에서 데이터 송수신 방법 및 장치
EP3306848B1 (en) * 2015-11-20 2024-02-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmitting method, terminal and base station
RU2729208C2 (ru) * 2016-03-31 2020-08-05 Сони Корпорейшн Терминал, базовая станция и способ связи
WO2018004631A1 (en) * 2016-06-30 2018-01-04 Intel IP Corporation Method for crc ambiguity avoidance in 5g dci decoding
CN107592189B (zh) * 2016-07-06 2020-07-14 华为技术有限公司 一种传输方法、用户设备及基站
CN107787012B (zh) * 2016-08-31 2021-10-29 ***通信有限公司研究院 干扰处理方法及基站
EP3520291B1 (en) 2016-09-30 2020-09-09 Telefonaktiebolaget LM Ericsson (publ) Scheduled uci transmission scheme
US10708938B2 (en) 2016-10-31 2020-07-07 Samsung Electronics Co., Ltd. Transmission of UL control channels with dynamic structures
MX2019005083A (es) * 2016-11-01 2019-08-12 Ntt Docomo Inc Terminal de usuario y metodo de radiocomunicaciones.
MX2019005196A (es) * 2016-11-03 2019-06-20 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de transmision de informacion de control de enlace ascendente, dispositivo terminal y dispositivo de red.
JP7252396B2 (ja) * 2016-11-03 2023-04-04 オッポ広東移動通信有限公司 アップリンク制御情報を伝送するための方法、端末装置及びネットワーク装置
CN108282882B (zh) * 2017-01-06 2021-06-22 华为技术有限公司 信息传输方法、终端设备及接入网设备
AU2018214495B2 (en) * 2017-02-01 2022-02-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method, network device and terminal
CN110402606B (zh) 2017-03-22 2023-09-05 索尼公司 终端设备、基站设备、通信方法和存储介质
ES2932849T3 (es) 2017-06-15 2023-01-27 Ntt Docomo Inc Terminal de usuario y método de comunicación inalámbrica
US11140575B2 (en) * 2017-08-11 2021-10-05 Qualcomm Incorporated Modifying CSI transmissions over uplink shared resources
US10849123B2 (en) * 2017-11-17 2020-11-24 Qualcomm Incorporated Techniques and apparatuses for slot-based and non-slot-based scheduling in 5G
CN110166208B (zh) * 2018-02-14 2022-04-01 大唐移动通信设备有限公司 一种物理上行链路控制信道的传输方法、装置及存储介质
CN114337975A (zh) * 2018-04-01 2022-04-12 财团法人资讯工业策进会 用于行动通信***的基站及用户装置
WO2019191999A1 (zh) * 2018-04-04 2019-10-10 华为技术有限公司 一种资源确定方法、指示方法及装置
US11382083B2 (en) * 2018-07-23 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (V2X) communication
US20200092068A1 (en) * 2018-09-19 2020-03-19 Qualcomm Incorporated Acknowledgement codebook design for multiple transmission reception points
CN111614450B (zh) * 2019-04-26 2021-10-01 维沃移动通信有限公司 终端天线面板信息的指示方法、网络侧设备和终端
US12047659B2 (en) * 2019-07-19 2024-07-23 Mo-Dv, Inc. Special network device
EP4333353A3 (en) * 2019-08-07 2024-06-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and system for srs transmission
WO2021087688A1 (zh) * 2019-11-04 2021-05-14 北京小米移动软件有限公司 数据传输方法、装置及存储介质
US11838083B2 (en) * 2020-07-15 2023-12-05 Qualcomm Incorporated Sequence based uplink control channel coexistence

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630240B2 (en) * 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
KR101715938B1 (ko) * 2009-03-03 2017-03-14 엘지전자 주식회사 다중 안테나 시스템에서 harq ack/nack 신호 전송 방법 및 장치
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
CN101873706A (zh) * 2009-04-24 2010-10-27 北京三星通信技术研究有限公司 在多载波***中反馈确认/未确认消息的方法
US8514883B2 (en) * 2009-04-24 2013-08-20 Interdigital Patent Holdings, Inc. Method and apparatus for sending hybrid automatic repeat request feedback for component carrier aggregation
DK2484039T3 (en) * 2009-10-01 2018-10-22 Interdigital Patent Holdings Inc Uplink control data transfer
KR101796411B1 (ko) * 2010-02-10 2017-11-10 선 페이턴트 트러스트 기지국 장치, 통신 방법 및 집적 회로
US8819501B2 (en) * 2010-03-29 2014-08-26 Lg Electronics Inc. Effective method and device for transmitting control information for supporting uplink multi-antenna transmission
US8982804B2 (en) * 2010-04-08 2015-03-17 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink control information in wireless communication system
KR101873733B1 (ko) * 2010-05-06 2018-07-03 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101513817B1 (ko) * 2010-09-09 2015-04-20 엘지전자 주식회사 복수의 수신 확인 정보 전송 방법 및 장치
US9363805B2 (en) * 2011-04-03 2016-06-07 Lg Electronics Inc. Method and apparatus for transmitting/receiving downlink control channel in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: 'CCE to bundled ACK/NACK index mapping in TDD' 3GPP TSG RAN WG1#53, RL-081816, [Online] 05 May 2008, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/ tsg ran/WG1 RL1/TSGRl 53/Docs/Rl-081816.zip> [retrieved on 2012-12-10] *
MOTOROLA: 'CCE Scrambling for Reliable PDCCH Location Detection' 3GPP TSG RANI #51BIS, RL-080568 (RL-080094), [Online] 14 January 2008, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/ tsg ran/WG1_RL1/TSGRl Slb/Docs/Rl-080568.zip> [retrieved on 2012-12-10] *
NEC GROUP: 'Detail on mapping between ACK/NACK index and CCE index' 3GPP TSG RAN WG1 MEETING #52, RL-081020, [Online] 10 December 2012, Retrieved from the Internet: <URL:http://www.3gpp.org/ftp/ tsg ran/WG1 RL1/TSGRl 52/Docs/Rl-081020.zip> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666401B2 (en) 2013-04-05 2020-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Method, UE and basestation for reporting/receiving HARQ ACK/NACK for PDSCH in dynamic TDD configurations
US12003339B2 (en) 2013-04-05 2024-06-04 Telefonaktiebolaget Lm Ericsson (Publ) Method, UE and basestation for reporting/receiving HARQ ACK/NACK for PDSCH in dynamic TDD configurations
CN107615850A (zh) * 2015-06-03 2018-01-19 华为技术有限公司 传输数据的方法及装置及用户设备
CN110050505A (zh) * 2016-12-08 2019-07-23 高通股份有限公司 针对共享频谱新无线电的协调式分隙介质接入
CN110050505B (zh) * 2016-12-08 2023-07-04 高通股份有限公司 针对共享频谱新无线电的协调式分隙介质接入
KR20190140463A (ko) * 2017-05-05 2019-12-19 텔레폰악티에볼라겟엘엠에릭슨(펍) 애크날리지먼트 자원의 지속적인 인디케이션
KR102272640B1 (ko) * 2017-05-05 2021-07-02 텔레폰악티에볼라겟엘엠에릭슨(펍) 애크날리지먼트 자원의 지속적인 인디케이션
US11265115B2 (en) 2017-05-05 2022-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Persistent indication of acknowledgement resources
US11394499B2 (en) 2017-05-05 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Persistent indication of acknowledgement resources
US11711173B2 (en) 2017-05-05 2023-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Persistent indication of acknowledgement resources

Also Published As

Publication number Publication date
US20140098780A1 (en) 2014-04-10
US9351289B2 (en) 2016-05-24
WO2012169753A3 (ko) 2013-03-07

Similar Documents

Publication Publication Date Title
WO2012169753A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
WO2018208087A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2012177073A2 (ko) 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
WO2017078326A1 (ko) 무선 통신 시스템에서 상향링크 제어 채널 전송 방법 및 이를 위한 장치
WO2013122384A1 (ko) 장치 대 장치 통신 방법 및 이를 수행하기 위한 장치
WO2018182383A1 (ko) 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
WO2017135745A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치
WO2017200307A1 (ko) 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 이를 위한 장치
WO2018030766A1 (ko) 무선 신호를 송수신 하는 방법 및 이를 위한 장치
WO2017010798A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2018143621A1 (ko) 무선 통신 시스템에서 복수의 전송 시간 간격, 복수의 서브캐리어 간격 또는 복수의 프로세싱 시간을 지원하기 위한 방법 및 이를 위한 장치
WO2017196065A1 (ko) 무선 통신 시스템에서 상향링크 전송 전력의 제어 방법 및 이를 위한 장치
WO2018088857A1 (ko) 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2012150823A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2012150822A2 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2017150942A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2013105832A1 (ko) 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국
WO2016093618A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019156466A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하는 방법 및 이를 위한 장치
WO2013032202A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2013141594A1 (ko) Ack/nack 신호 전송 또는 수신 방법
WO2012144801A2 (ko) 무선통신시스템에서 신호 전송 방법 및 장치
WO2013125871A1 (ko) 사용자기기의 통신 방법 및 사용자기기와, 기지국의 통신 방법 및 기지국
WO2013009089A2 (en) Method for transmitting or receiving pdcch and user equipment or base station for the method
WO2016048027A2 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796538

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14124644

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12796538

Country of ref document: EP

Kind code of ref document: A2