WO2012169663A1 - Vehicle equipped with hydraulic starting apparatus - Google Patents

Vehicle equipped with hydraulic starting apparatus Download PDF

Info

Publication number
WO2012169663A1
WO2012169663A1 PCT/JP2012/070731 JP2012070731W WO2012169663A1 WO 2012169663 A1 WO2012169663 A1 WO 2012169663A1 JP 2012070731 W JP2012070731 W JP 2012070731W WO 2012169663 A1 WO2012169663 A1 WO 2012169663A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
hydraulic
oil
vehicle
Prior art date
Application number
PCT/JP2012/070731
Other languages
French (fr)
Japanese (ja)
Inventor
大山 和男
Original Assignee
株式会社Joho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joho filed Critical 株式会社Joho
Publication of WO2012169663A1 publication Critical patent/WO2012169663A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N7/00Starting apparatus having fluid-driven auxiliary engines or apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/20Control related aspects of engine starting characterised by the control method
    • F02N2300/2002Control related aspects of engine starting characterised by the control method using different starting modes, methods, or actuators depending on circumstances, e.g. engine temperature or component wear

Definitions

  • the present invention relates to an internal combustion engine having a built-in starting hydraulic motor and a vehicle using the same.
  • An electric starter that rotates an electric motor by a driver's starting operation and transmits the driving force in the order of a one-way clutch, a gear mechanism that jumps into the ring gear on the outer periphery of the flywheel, and a crankshaft, and starts an internal combustion engine is widely used.
  • Patent Document 5 FIG. 1 An electric starter that starts the internal combustion engine by transmitting the driving force of the electric motor in the order of the constantly meshing power transmission mechanism, the one-way clutch on the crankshaft, and the crankshaft.
  • Patent Document 7 An internal combustion engine that drives a lubricating oil pump arranged on a separate shaft from the crankshaft with a chain from the crankshaft is known (Patent Document 7).
  • Patent Document 8 There are many known variable valve timing mechanisms that have multiple cams and change the cam to be used depending on the operating conditions.
  • Driving electric motor As a drive system for one parallel type hybrid vehicle, the driving electric motor is directly attached to the crankshaft, and the crankshaft is rotated by the driving electric motor when starting to start after starting the internal combustion engine. Is common. On the other hand, it is assumed that one traveling electric motor can travel only with the traveling electric motor while stopping the rotation of the crankshaft, and the internal combustion engine is restarted by the traveling electric motor using a clutch during traveling. There are known what is performed (Patent Document 9 FIG. 1) and one in which an internal combustion engine is started by a starting device different from an electric motor for traveling during traveling. (Patent Document 10).
  • a hydraulic starter using a hydraulic motor having a large driving force even if it is small is short in the time required for starting the internal combustion engine and has a high commercial value. It is a starting device.
  • the starter for the idle stop device is useful in that the time delay with respect to the start operation of the driver is shortened, and the start can be made without any sense of incongruity.
  • the hydraulic starter uses a hydraulic pressure of 300 atm
  • a hydraulic motor with a small capacity of 8 cc per rotation is rotated at 3000 rpm
  • an output exceeding 10 Kw can be obtained even if the mechanical efficiency is 90%.
  • energy required for starting assuming that the rotational inertia mass of the engine is 0.35 Kg ⁇ m 2 and calculating energy necessary for increasing the rotation from the stopped state to 600 rpm, it is about 0.7 kJ. Even with the power of the motor alone, it is possible to accelerate to an idle speed of 600 rpm in 0.14 seconds from the start of the operation of the hydraulic pressure supply valve, assuming that the angular acceleration is constant.
  • the output of the internal combustion engine is added to this, it can be accelerated further, and there is no sense of incongruity even when starting from a state where the internal combustion engine is stopped. Even if the efficiency is 80%, less than 30 cc of oil is required to start once, and the required accumulator discharge amount is about 150 cc even if the engine can be started five times.
  • the components are small and inexpensive for the output, and the accumulator that stores energy does not need to be replaced like a battery.
  • the hydraulic starter has not been put into practical use despite such advantages.
  • the inventor considered the reason as follows.
  • the development of automobiles has become more specialized, and the development of internal combustion engines and the development of starters are generally performed separately.
  • the hydraulic starter handles high-pressure oil pressure, it becomes a special technology for automobile development.
  • the development of the hydraulic starter is likely to be carried out in the form of being assembled later as an auxiliary machine with respect to the existing internal combustion engine. Such a tendency is recognized when looking at patent applications of the same applicant in chronological order.
  • the hydraulic starter handles high-pressure oil pressure
  • the hydraulic components constituting it are installed separately on the vehicle body side and the internal combustion engine side, the piping between them is easily bent and deteriorated by the vibration of the internal combustion engine. If the pipes are damaged, there is a risk that high-pressure oil will spout into the engine room of the vehicle. Therefore, unlike the battery of the electric starter, it is easy to think that it is necessary to attach all the components that handle the hydraulic pressure, including the pressure accumulating part, directly to the internal combustion engine and integrate them so that there is no oil leakage. For this reason, the developer tries to put the hydraulic starter into a form to be attached later as an integrated auxiliary machine.
  • Patent Documents 1, 2, and 3 provide examples in which a hydraulic motor is also used as a high-pressure pump.
  • a clutch that can be controlled from the outside is required. If this clutch is a hydraulic clutch, an oil pump that generates a clutch pressure of about 10 atm, which is not described, and a solenoid valve that is used to control a wet multi-plate clutch are required. If it is an electromagnetic clutch, an electromagnetic part will be needed and will become heavier and bigger. After all, the size as an auxiliary machine cannot be reduced.
  • the hydraulic motor for starting the internal combustion engine increases the starting torque, a low friction type is selected, so that oil leakage is large.
  • the width of the toothed belt is required to be 100 mm or more, which directly increases the width of the drive system and affects the vehicle body.
  • the present invention cannot be applied to a front-wheel drive vehicle in which an internal combustion engine is placed on the side where there is no margin in the drive system.
  • Patent Document 6 As another structure that does not generate a gear biting sound, as in the embodiment of Patent Document 6, a structure that transmits a driving force in the order of a starting motor, a constantly meshing power transmission mechanism, a one-way clutch, and a crankshaft. is there. However, since the one-way clutch needs to be placed on the crankshaft, the width of the speed reduction mechanism and the width of the one-way clutch are increased in the axial direction.
  • the electric motor and battery need to be 10 times larger than the conventional electric starter, and the cost and weight are greatly increased.
  • a hybrid vehicle can be equipped with a starting device using an electric motor with such an output.
  • Hybrid vehicles include a series-type hybrid vehicle having two electric motors, an electric motor for starting an internal combustion engine and a traveling electric motor, and a parallel type hybrid having one electric motor.
  • the parallel type hybrid is advantageous in terms of cost because it requires only a relatively small electric motor for traveling, but it also has a disadvantage in terms of fuel consumption in that the rotation of the internal combustion engine cannot be stopped while traveling.
  • FIG. 1 of Patent Document 9 there is an example in which a clutch capable of torque control is provided between the crankshaft and the output shaft of the traveling electric motor. is there.
  • the present invention has been developed by integrating the technologies of different fields of the internal combustion engine and the hydraulic starter, taking into account the functions of the components, and the hydraulic parts constituting the hydraulic starter are organically arranged inside the internal combustion engine. By incorporating it in the outer wall, the hydraulic starter can be applied to the vehicle without expanding the drive system in the axial direction.
  • the first solving means is an internal combustion engine that drives a drive shaft of a lubricating oil pump different from the crankshaft via a power transmission mechanism from the crankshaft,
  • the hydraulic motor of the hydraulic starter of the internal combustion engine and its drive mechanism are attached to the oil chamber of the lubricating oil of the internal combustion engine,
  • the drive mechanism transmits power from the output shaft of the hydraulic motor to the drive shaft of the lubricant pump in the order of the speed reduction mechanism and the one-way clutch, and further gargles from the drive shaft via the power transmission mechanism of the lubricant pump.
  • An internal combustion engine that drives a crankshaft that drives a crankshaft.
  • the second solving means includes the internal combustion engine of the first solving means, An accumulator for supplying high-pressure oil to the hydraulic motor is provided fixed to the internal combustion engine, A hydraulic supply valve that controls supply of high-pressure oil from the accumulator to the hydraulic motor, a high-pressure pump that supplies oil to the accumulator, and a check valve that prevents backflow of discharged oil from the high-pressure pump.
  • An internal combustion engine characterized by being provided in an oil chamber of the lubricating oil or a place communicating with the oil chamber.
  • the third solving means is the internal combustion engine of the first or second solving means,
  • a high-pressure pump of a hydraulic starter is mounted in the oil chamber of the internal combustion engine with its rotary shaft in the vertical direction, and an electric motor that drives the high-pressure pump is mounted at a position higher than the high-pressure pump and on the outer wall of the internal combustion engine from the outside.
  • This is an internal combustion engine characterized by that.
  • the fourth solving means is the internal combustion engine of the first or second solving means, An internal combustion engine characterized in that a high-pressure pump of a hydraulic starter and an electric motor that drives the high-pressure pump are integrally mounted in an oil chamber of the internal combustion engine.
  • the fifth solving means includes one of these internal combustion engines and a transmission for transmitting the output of the internal combustion engine to the drive wheels,
  • the vehicle is characterized in that the components of the hydraulic starter attached to the internal combustion engine are used as a part of the restart device of the idle stop device.
  • the sixth solving means is a vehicle according to the fifth solving means characterized by increasing the friction of the internal combustion engine when the internal combustion engine is stopped.
  • the seventh solving means includes one of the internal combustion engines according to the first to fourth solving means, a traveling electric motor, a transmission for transmitting the output of the traveling electric motor to driving wheels, and the traveling A clutch is provided between the output shaft of the electric motor and the crankshaft of the internal combustion engine, A hybrid drive unit for a vehicle, wherein a component of a hydraulic starter attached to the internal combustion engine is used as a part of a restart device of an idle stop device.
  • the eighth solution means is a vehicle hybrid drive unit of the seventh solution means in which the crankshaft of the internal combustion engine is disposed transversely to the vehicle body, The electric motor for traveling is fixed to the upper portion with respect to the transmission, the electric motor for traveling drives the input shaft of the transmission via a speed reduction mechanism,
  • a hybrid drive unit for a vehicle comprising a torsional damper in series with the clutch between a crankshaft of the internal combustion engine and an output shaft of the traveling electric motor.
  • the ninth solving means is a hybrid vehicle including the vehicle hybrid drive unit of the seventh or eighth solving means.
  • each member of the hydraulic starter can be dispersed and disposed in the internal combustion engine, and the hydraulic starter can be mounted on the actual vehicle without interfering with other auxiliary machines.
  • the vehicle of the present invention can be provided with an idle stop device having a body size that is the same as that of an existing vehicle and having a short restart time. Furthermore, by providing the idle stop device, a one-motor hybrid vehicle that can stop the rotation of the internal combustion engine during traveling with a vehicle body size that is the same as that of an existing vehicle, including a high-powered vehicle, can be obtained.
  • the first solution is that by disposing the hydraulic motor and the drive mechanism, which are the main components of the hydraulic starter, in the lubricating oil chamber of the internal combustion engine, the number of hydraulic components that need to be disposed around the internal combustion engine is reduced. This makes it possible to coexist with auxiliary equipment such as ACG and air conditioner compressors. Since the lubricating oil of the internal combustion engine is inevitably used as the oil used for the hydraulic starter, it is not necessary to provide double space for oil storage, and management of the oil amount of the hydraulic starter and the internal combustion engine is separate. There is an advantage of not having to do it.
  • the oil level does not touch a rotating part such as a crankshaft even if the oil level changes slightly in order to cope with the consumption of lubricating oil by the internal combustion engine and the shaking of the vehicle body.
  • the oil is put in. Therefore, the space of the oil chamber is relatively wide, and the space for the hydraulic motor and the power transmission mechanism can be easily secured. Even if the amount of stored oil in the accumulator is about 200 cc and the volume of the high-pressure pump and its power transmission mechanism is increased, the volume of the internal combustion engine is small as compared with the volume of the entire oil chamber.
  • the power transmission mechanism closer to the crankshaft than the one-way clutch needs to rotate in accordance with the rotational fluctuation of the crankshaft of the internal combustion engine after starting. Therefore, acceleration and deceleration are repeated, and the driving direction is switched to generate noise such as a hitting sound.
  • the load caused by the oil pump always delivering oil can stabilize the driving direction in the direction of driving the lubricating oil pump from the crankshaft and prevent the power transmission mechanism from generating noise.
  • the shaft diameter of the lubricant pump can be reduced, so that the efficiency of the pump is improved and the one-way clutch can reduce its friction.
  • the one-way clutch is a sprag type, there is an advantage that a structure that rotates the outer ring with the rotation of the crankshaft can be obtained with a simple double structure. Since the power transmission mechanism can increase the speed from the crankshaft and rotate the pump, the pump capacity can be reduced, and the allowable torque of the one-way clutch can be reduced.
  • the drive mechanism of the hydraulic starter must decelerate from the hydraulic motor to the crankshaft in order to increase the torque, but by using the speed increase ratio up to this lubricating oil pump as the speed reduction ratio, the output of the hydraulic motor There is an advantage that only a small reduction ratio of the speed reduction mechanism from the shaft to the pump drive shaft is required.
  • the hydraulic starter with auxiliary machines such as ACG and an air conditioner compressor.
  • Lubricating oil is supplied to each part of the internal combustion engine, and the lubricating oil returns to the oil chamber by its own weight.
  • these hydraulic components are distributed and arranged so as not to interfere with the auxiliary equipment.
  • the oil discharged from each part can be returned to the oil chamber of the internal combustion engine.
  • the cylinder block of the internal combustion engine moves greatly with respect to the vehicle body due to the reaction of rotational fluctuation caused by the inertial force of the drive shaft and the explosion in the piston.
  • a hydraulic component such as an accumulator
  • the hydraulic component provided in the internal combustion engine must be connected by a flexible tube for high pressure oil.
  • this flexible tube is deformed, the tube and its joint are damaged, and the risk of oil leakage increases.
  • the second solution is advantageous in that these hydraulic components are fixed to the internal combustion engine, so that an expensive flexible tube is not required and the risk of oil leakage can be reduced.
  • the third solution solves the following problems.
  • the high-pressure pumps are arranged independently, if the installation position of the high-pressure pump is higher than the oil level, the mixing of air becomes a problem.
  • the high pressure pump should be inside the oil pan that constitutes the oil chamber.
  • the oil pan is fixed to the main body of the internal combustion engine through an elastic seal, the positional accuracy is poor, and even if a high-pressure pump drive electric motor is attached from the outside, the axial position does not exactly match the internal high-pressure pump.
  • the high-pressure pump can be disposed near the oil level on the oil chamber side, and the electric motor for driving the pump can be accurately attached to the high-pressure pump via the cylinder block of the internal combustion engine. Moreover, the pump drive electric motor can be exchanged from the outside, so that maintainability is good.
  • the fourth solution is that the electric motor needs to withstand the maximum temperature of the lubricating oil and is expensive, and the oil pan needs to be removed when replacing the electric motor, resulting in poor maintainability.
  • the exhaust catalyst may come near both wall surfaces of the cylinder block, and the installation space for the electric motor for driving the pump may not be available on the wall surface. . Even in such a case, there is an advantage that a hydraulic starter can be provided.
  • any of these internal combustion engines can be used without changing the vehicle body dimensions with respect to an existing vehicle. There is an advantage that an idle stop device with a short start-up time can be provided.
  • the vehicle according to the sixth solution improves the merchantability when the rotation of the internal combustion engine is stopped by the idle stop device.
  • the throttle valve is opened slightly to increase the compression work, and the compressed gas is extracted from the cylinder by switching to a cam that opens the intake valve slightly at the beginning of the expansion stroke, and the increased compression work is left as it is.
  • This is the internal combustion engine friction.
  • auxiliary equipment such as ACG and compressors for air conditioners.
  • the hybrid vehicle drive unit according to the seventh solution is advantageous in that the one-motor parallel type hybrid, which is advantageous in terms of cost, can be changed to a hybrid with better fuel efficiency that can stop the engine while the vehicle is running and stop the engine. There is.
  • the hybrid vehicle according to this solution can be called a triple hybrid because it uses three energy sources of an internal combustion engine, hydraulic pressure, and electricity.
  • the hybrid power supply does not have a sufficient charge, it may be necessary to start the internal combustion engine and generate power when the vehicle is stopped. In preparation for such a case, it is desirable to provide a starting clutch in the transmission. However, since it is not used at normal times, it does not have to be able to withstand continuous use, and it is sufficient to have an improved shift clutch.
  • a method is also conceivable in which the clutch between the traveling electric motor and the transmission can be controlled in torque capacity, and the ACG can be made large to charge the hybrid power source.
  • a torsional damper is required between the internal combustion engine and the transmission.
  • the damper will move greatly due to torque fluctuations of the internal combustion engine at the time of starting, and from the deceleration mechanism and damper Makes noise.
  • the expansion in the axial direction by replacing the torque converter of the conventional transmission with the electric motor for traveling becomes the expansion in the axial direction of the entire drive unit when hybridized. Only. Therefore, there exists an advantage which can provide the drive unit for hybrid vehicles with respect to the vehicle which has arrange
  • the eighth solution is advantageous in that it can provide a hybrid vehicle drive unit in which the length in the width direction is slightly shortened while maintaining the longitudinal length of the vehicle drive unit in which the internal combustion engine is disposed horizontally. is there.
  • the longitudinal dimension of the electric motor for traveling is less than the dimension of the transmission, and the thickness of the speed reduction mechanism such as the chain mechanism driven by the clutch and the electric motor for traveling should be less than the thickness of the torque converter of the conventional transmission. Because it is easy. Since the output of the traveling electric motor can be decelerated and used, the rotational range can be set to a higher rotational speed than the rotational range of the internal combustion engine, and a smaller electric motor can be selected.
  • a drive unit for a hybrid vehicle in which a high-power internal combustion engine such as a V-type 6-cylinder is disposed horizontally requires a large electric motor for traveling, and cannot be normally mounted on the same vehicle.
  • the drive unit according to the solution means can be mounted.
  • the internal combustion engine starts during traveling with the traveling electric motor, and the speed reduction mechanism is used when the driving force is changed. Torque change can be alleviated and noise generation from the speed reduction mechanism can be suppressed. It is to be noted that the fact that the damper can be inserted between the electric motor for traveling and the internal combustion engine is an effect obtained by the present solving means taking the seventh solving means.
  • Ninth solution means that the traveling electric motor and the battery are small and the cost is low because the traveling electric motor is not involved in starting the internal combustion engine. Since the internal combustion engine is disengaged by the clutch at the time of restarting the traveling internal combustion engine, vibration at the time of restart is not transmitted to the drive wheels. Since the efficiency of the motor is high, the vehicle can travel while the rotation of the internal combustion engine is stopped, and there is no energy loss when the internal combustion engine is restarted, the vehicle is low in cost and high in fuel efficiency compared to a conventional hybrid vehicle. In particular, there is an advantage that a front-wheel drive vehicle in which the most mass-produced internal combustion engine is disposed laterally can be a hybrid vehicle with good fuel efficiency that can be stopped by the engine.
  • the hybrid drive unit of the eighth solution does not expand in the axial direction, and the longitudinal length can be the same as that of a conventional drive unit, so that the fuel consumption can be reduced at low cost without changing the body dimensions of the vehicle on which the internal combustion engine is placed sideways. It becomes possible to make a 1 motor type hybrid vehicle with good. By placing the electric motor for traveling on the top of the transmission, the longitudinal length of the drive unit does not change. This is an advantage that it is not necessary to enlarge the entire length of the vehicle in order to secure a vehicle body deformation margin that absorbs the impact at the time of collision.
  • FIG. 1 is an operation system diagram of a hydraulic starter using an internal combustion engine according to an embodiment of the present invention.
  • Example 1 FIG. 2 is a front view of the internal combustion engine as viewed from the direction of the rotation axis.
  • Example 1 FIG. 3 is a side view of the internal combustion engine as viewed from the intake port side.
  • Example 1 4 is a sectional view taken along line XX in FIG.
  • Example 1 FIG. 5 is an enlarged local sectional view of the hydraulic motor portion of FIG.
  • Example 1 FIG. 6 is an enlarged view of a portion excluding the unit cover of FIG.
  • Example 1 7 is a cross-sectional view taken along the line YY of FIG.
  • Example 1 is an enlarged ZZ cross-sectional view of FIG.
  • FIG. 9 is a schematic diagram of an electric system of a drive unit of a vehicle with an idle stop device using the hydraulic starter of FIG.
  • Example 1 FIG. 10 is an operation system diagram of a hydraulic starter using an internal combustion engine according to another embodiment of the present invention.
  • FIG. 11 is a side view of the internal combustion engine as viewed from the intake port side.
  • FIG. 12 is a WW sectional view of FIG.
  • FIG. 13 is an operation system diagram of an electric system of a drive unit of a vehicle with an idle stop device using the hydraulic starter of FIG. (Example 2)
  • FIG. 14 is a side view of an internal combustion engine according to another embodiment of the present invention as viewed from the intake port side.
  • Example 3 FIG.
  • FIG. 15 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle equipped with the hydraulic starter of FIG. (Example 4)
  • FIG. 16 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle of another embodiment equipped with the same hydraulic starter.
  • FIG. 17 is a side view of a vehicle according to an embodiment equipped with an internal combustion engine according to the present invention. (Example 6)
  • FIG. 1 is a system diagram in a case where components of a hydraulic starter attached to an internal combustion engine are used as a restart device of an idle stop device according to one embodiment of the present invention.
  • a solid line indicates an oil path
  • a dotted line indicates a gas path
  • a thin line indicates an electric signal line.
  • the high-pressure pump 50 is placed downstream of the lubricating oil pump 40 of the internal combustion engine, and the oil strainer 44 and the oil filter 47 are shared. Different points are used. By adopting such a configuration, a constant lubricating pressure is applied to the suction port of the high-pressure pump 50.
  • a pressure sensor 67 is adopted instead of the pressure switch.
  • the pressure sensor 67 includes a pressure switch that switches a voltage at a constant pressure, and includes a sensor and a switch that detect a gas volume or an oil amount inside the accumulator that indirectly senses the pressure.
  • the pressure sensor 67 detects the gas pressure of the accumulator 65, and a signal is sent to the ECU 34.
  • the relay 35 of the pump drive motor is energized and mounted on the internal combustion engine 1. The pump drive motor 51 thus rotated is rotated.
  • the start of the internal combustion engine is controlled by the ECU 34. Please refer to FIG. 9 and FIG. 15 together.
  • the ECU 34 senses the state of the battery in the case of a hybrid vehicle if it is a normal vehicle, and further senses the state of the battery, and energizes the electromagnetic valve 70 attached to the internal combustion engine to hydraulically supply high-pressure oil from the accumulator 65. Supply to motor 80.
  • the hydraulic motor 80 supplied with the high-pressure oil rotates, the rotation is decelerated by the speed reduction mechanism 87, and the lubricating oil pump shaft 41 is rotated via the one-way clutch 89. From there, the speed is further reduced through a chain 26 which is a power transmission mechanism of the lubricating oil pump, the crankshaft 20 is driven, and the internal combustion engine 1 is started.
  • FIG. 2 is a front view of the four-cycle four-cylinder internal combustion engine 1 equipped with the starting hydraulic motor according to the present embodiment as seen from the direction of the rotation axis.
  • the oil pan 11 and the oil surface 13 are indicated by a two-dot chain line.
  • the ACG 91, the air conditioner compressor 92, and the belt 93 for driving them are also indicated by a two-dot chain line.
  • the crankshaft 20 is supported by being sandwiched between the cylinder block 15 and the crankcase 17.
  • the lubricating oil pump 40 is attached to the crankcase 17 from below.
  • the crankshaft 20 includes a drive sprocket 25 that drives the lubricating oil pump shaft 41 at an increased speed via a driven sprocket 27 and a chain 26.
  • the lubricating oil pump 40 sucks oil from the oil strainer 44 and supplies the oil to the vertical oil passage 45.
  • the vertical oil passage 45 is connected to the horizontal oil passage 46 in the crankcase 17, and feeds lubricating oil to the oil filter 47 at the tip of the horizontal oil passage 46.
  • the oil that has passed through the oil filter 47 returns again into the crankcase 17 and is sent to the main gallery 48.
  • FIG. 3 is a side view of the intake side of the internal combustion engine of FIG.
  • the oil filter and intake pipe are omitted.
  • a main gallery 48 indicated by a dotted line substantially crosses the internal combustion engine 1 and lubricates each part of the internal combustion engine 1 through the main gallery 48.
  • a high-pressure pump and a solenoid valve are integrally formed in a unit 53 described later, and a pump driving motor 51 and a solenoid 78 are attached to a unit cover 77.
  • the hydraulic motor 80 is attached to and integrated with the lubricating oil pump 40 via a joint case 82. As described above, the hydraulic motor 80 and the lubricating oil pump 40 can be assembled to the crankcase 17 from below as an integral part, and are placed in the oil chamber 10. After the assembly, the oil pan 11 can be attached from the bottom as in the conventional internal combustion engine.
  • FIG. 4 is a sectional view taken along line XX in FIG.
  • the accumulator 65 is not in cross section and is omitted from the cylinder head.
  • An oil supply oil passage 59 from the main gallery 48 to the high pressure pump is supplied with oil.
  • the accumulator 65 is fixed to the outer wall of the cylinder block 15 of the internal combustion engine so as to be removable from the outside.
  • the high pressure oil in the accumulator 65 is supplied to the unit cover 77 through the high pressure oil pipe 66 and is supplied to the hydraulic pressure supply valve 71 side through the high pressure oil passage 61.
  • the high-pressure oil sent to the hydraulic supply valve 71 is sent to the main valve 73 of the hydraulic supply valve 71 through the high-pressure oil passage 61 of the hydraulic supply valve 71 and supplied to the ball-shaped primary valve 72 through the hole inside the main valve 73. ing.
  • the solenoid 78 When the solenoid 78 is energized, the rod protrudes from the solenoid 78 and moves the primary valve 72 to the left from the position shown in the figure. Then, the pressure on the back surface of the main valve 73 decreases, the main valve 73 moves to the right, the valve opens, and high-pressure oil passes through the motor drive oil pipe 75 constituted by a pipe and is sent to the hydraulic motor 80.
  • FIG. 5 is an enlarged local sectional view of the hydraulic motor 80 portion of FIG.
  • the hydraulic motor 80 is a fixed swash plate type having five pistons 84 in its motor housing 85, and a swash plate bearing 83 presses the piston pushed rightward by hydraulic pressure.
  • the total stroke volume of the piston is 8 cc, the hydraulic motor 80 rotates up to 3000 rpm, and the output at that time exceeds 10 KW.
  • the hydraulic motor shaft 81 of the hydraulic motor 80 and the lubricating oil pump shaft 41 of the lubricating oil pump 40 are arranged on the same axis, and the speed reduction mechanism is constituted by a planetary gear 88.
  • the joint case 82 is integrally formed with a planetary gear ring gear 88R.
  • the sun gear 88S provided integrally therewith rotates
  • the carrier 88C rotates at a reduced speed in the same direction
  • the inner ring 90 of the one-way clutch 89 integrated therewith rotates.
  • a sprag type clutch 89 is used as the one-way clutch 89.
  • the sprag When the outer ring is stopped, the sprag is tilted in a direction in which the sprag is engaged by a spring force and pressed against both the inner ring and the outer ring.
  • the hydraulic motor rotates and the inner ring 90 rotates, the sprags mesh with each other, and the inner ring 90 rotates integrally with the outer ring 41b.
  • the outer ring 41b is formed integrally with the lubricating oil pump shaft 41, and the lubricating oil pump shaft 41 further drives the crankshaft 20 from the dribbling rocket 27 via the chain 26 to start the internal combustion engine.
  • the hydraulic motor shaft 81 rotates at 3000 rpm
  • the crankshaft 20 rotates at 600 rpm.
  • the hydraulic motor 80 stops. However, the disengagement of the sprags of the one-way clutch 89 causes the one-way clutch 89 to rotate relative to the inner ring 90 and the outer ring 41b.
  • the shaft 20 can continue to rotate.
  • the sprag of the one-way clutch 89 of this embodiment rotates together with the outer ring 41b, tilts in a direction that disengages due to centrifugal force, cancels the spring force, and the friction between the sprag and the inner ring 90 occurs. decrease.
  • FIG. 6 is a partially enlarged view showing a state in which the unit cover 77 portion of FIG. 3 is enlarged and the pump driving motor 51, the solenoid 78, and the unit cover 77 are omitted.
  • a housing of the high pressure pump 50 and a housing of the hydraulic pressure supply valve 71 are integrally formed.
  • the internal combustion engine is supplied with lubricating oil to each part, and the lubricating oil returns to the oil pan by its own weight.
  • the hydraulic components such as the check valves 62 and 63, the hydraulic supply valve 71 and the high pressure pump 50 are It is in a space communicating with the oil chamber 10 through the return hole 9. Therefore, even if oil is discharged from these parts, the oil returns to the oil pan by its own weight.
  • FIG. 7 shows a YY partial cross-sectional view of the high-pressure pump portion of FIG.
  • the speed reduction mechanism 52 in the unit cover 77 is shown in section, and the pump driving motor 51 is shown in non-section.
  • An alternate long and short dash line indicates the shape of the front side of the unit 53.
  • the unit 53 is attached to the cylinder block 15 together with the unit cover 77 in a state where the unit 53 is fastened to the unit cover 77 with a bolt from the left.
  • the inside of the reduction gear 52 is not lubricated, and there is a mysterious gear reduction mechanism having a reduction ratio of about 80 to 1.
  • the right ring gear 52R1 is fixed to a unit cover 77 constituting the housing of the speed reducer 52, and the left ring gear 52R2 is integrated with the high pressure pump shaft 54.
  • the pump driving motor 51 rotates the sun gear 52S at 8000 rpm
  • the free carrier 52C rotates at about 2700 rpm
  • the high-pressure pump shaft 54 rotates at about 100 rpm.
  • FIG. 8 shows an enlarged ZZ cross-sectional view of the unit 53 of FIG.
  • the high-pressure pump 50 is a plunger type pump. As shown in FIG. 7, two cams 54 a and 54 b are integrally provided on the high-pressure pump shaft 54 to move different plungers 55. Each plunger 55 is pushed by a spring 58 and swings to the left and right following the movement of the cam 54a with the rocker arm 57 interposed therebetween.
  • the oil passage connected to the plunger 55 is provided with a suction side check valve 62 and a discharge side check valve 63 that prevent backflow of oil, and when the plunger 55 swings, the supply oil passage 59 changes to the high pressure oil passage 61. Feed oil.
  • each plunger 55 is provided with a hydraulic seal 56.
  • the two cams 54a and 54b are set so that the inclination on the climbing side is moderate, and by changing the phase by 180 °, the oil discharge of each plunger is continued and the driving torque of the high-pressure pump shaft 54 becomes smooth. Yes. Since the stroke volume of each plunger 55 is about 1 cc, the high-pressure pump 50 can be filled with 30 cc of oil for one engine start in 15 rotations, that is, about 9 seconds.
  • FIG. 9 is an operation system diagram of an electric system of a vehicle drive unit equipped with the internal combustion engine of this embodiment and having an idle stop function.
  • the driving force is transmitted from the transmission 2 to the left and right drive wheels 4 via the left and right axles 3.
  • the ECU 34 enters a stop operation of the internal combustion engine 1.
  • the supply of fuel to the internal combustion engine 1 is stopped, the throttle valve is slightly opened reversely, and the cam is switched to open the intake valve at the beginning of the expansion stroke.
  • the switching unit 29 changes the load of the ACG 91 from the battery 31 to an electric resistance, lowers the terminal voltage, increases the load torque of the ACG 91, and applies the load of the air conditioner compressor regardless of necessity. By these operations, the friction of the internal combustion engine is increased and the internal combustion engine is quickly stopped.
  • the operation of the hydraulic starter is the same as in FIG.
  • the ECU 34 energizes the electromagnetic valve 70 and restarts the internal combustion engine 1.
  • the vehicle is started using the clutch 36 or the torque converter provided with the starting function in the transmission 2 by the driving force of the internal combustion engine 1.
  • a conventional electric starter 39 is also provided.
  • the electric starter relay 33 is operated by the key switch 32, the electric starter 39 is energized, and the internal combustion engine 1 is once started. Thereafter, if the ECU 34 determines from the warm-up state of the internal combustion engine 1 and the like and determines that idling is not necessary, the internal combustion engine is stopped.
  • FIG. 10 is a control system diagram in the case where the components of the hydraulic starting device attached to the internal combustion engine of another embodiment are used as the restarting device of the idle stop device.
  • a system for stopping the internal combustion engine 1 earlier is the same as that of the first embodiment of FIG.
  • the high-pressure pump 50 is not located downstream of the lubrication pump but has a dedicated oil filter 60 and directly sucks oil in the oil chamber.
  • the relay 35 when there is no oil in the accumulator, the relay 35 is first energized, the pump driving motor is turned on, and the accumulator is filled with a certain amount or more of oil by a high-pressure pump to start the internal combustion engine 1. I can do it.
  • the conventional electric starter can be omitted.
  • the battery 31 does not require a large current like an electric starter, and only needs to be able to fill the hydraulic pressure for starting once in about 9 seconds. Therefore, the battery 31 may have a lower maximum output than a battery equipped with an electric starter, and is compact. There is an advantage that a longer life and longer life can be achieved.
  • FIG. 11 is a side view of the internal combustion engine showing how the high-pressure pump 50, the speed reducer 52, and the pump driving motor 51 are attached.
  • FIG. 12 is a WW sectional view of FIG. Above the cylinder head is omitted.
  • the high-pressure pump 50 is combined with the speed reducer 52 and attached to the crankcase 17 in the vicinity of the oil level 13 from below. After the high-pressure pump 50 is attached, the oil pan 11 can be attached from the bottom in the same manner as a normal internal combustion engine. By attaching the rotary shaft of the high-pressure pump vertically, the pump driving motor 51 can be attached and detached from the outside of the internal combustion engine with the oil pan 11 assembled.
  • FIG. 13 is an operation system diagram of an electric system of a vehicle drive unit equipped with the internal combustion engine of this embodiment and having an idle stop function.
  • the ECU 34 determines that it is not necessary to start the internal combustion engine 1 according to the state of the vehicle at that time, for example, the state of the accelerator 30 or the warm-up state of the internal combustion engine. Does not start. If it is determined that it is necessary to start the internal combustion engine 1 according to the state of the vehicle, the electromagnetic valve 70 is energized, high pressure oil is supplied to the hydraulic motor, and the internal combustion engine 1 is started.
  • FIG. 14 is a side view of an internal combustion engine according to another embodiment, showing a state in which the high pressure pump 50 and the pump driving motor 51 are attached.
  • the high pressure pump 50, the speed reducer 52, and the pump driving motor 51 are combined with each other from the bottom with respect to the crankcase 17.
  • the oil pan 11 can be attached from below after the high-pressure pump 50 is attached. This arrangement is advantageous when there is no space on the wall of the internal combustion engine, such as in the case of a V-type 6 cylinder.
  • the reason why the conventional electric starter can be omitted and the vehicle system having an idle stop function using the internal combustion engine are the same as those in FIG.
  • FIG. 15 is an operation system diagram of the electric system of the drive unit of the hybrid vehicle equipped with the hydraulic starter of FIG.
  • the reason why the conventional electric starter 39 can be omitted and the operation of the idle stop device are the same as those in the second embodiment.
  • the ECU 34 energizes the electromagnetic valve 70 to start the internal combustion engine 1 when it is determined necessary according to the state of the vehicle at that time, but does not start when it is determined that it is not necessary. Is the same as in the second embodiment, but in this embodiment, the state of charge of the hybrid battery is also a determining factor.
  • the input shaft of the transmission 2 can be rotated only by the traveling electric motor 38, and the vehicle can start and travel.
  • the damper 95 is integrated with the flywheel of the internal combustion engine as in the prior art.
  • a one-way clutch 37 is provided inside the rotor of the traveling electric motor 38, and lubricating oil is supplied from the transmission 2. When the internal combustion engine 1 starts and the rotation catches up with the electric motor 38, the electric motor 38 reduces the torque corresponding to the driving force of the internal combustion engine and alleviates the combined shock of the one-way clutch 37.
  • the crankshaft according to this embodiment has a rotational inertia mass that is about half that of a crankshaft of a normal internal combustion engine.
  • the hydraulic motor is 3000 rpm
  • the reduction ratio from the hydraulic motor is lowered so that the crankshaft is 1000 rpm. Yes.
  • the necessary electric starter 39 is omitted from the drawing.
  • the electric starter relay is actuated by a key switch at the time of activation, the electric starter is energized to once activate the internal combustion engine 1, and the ECU 34 makes a judgment based on the warm-up state of the internal combustion engine 1, etc., and stops the internal combustion engine.
  • FIG. 16 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle according to another embodiment.
  • the internal combustion engine is the same in both the internal combustion engine of the second embodiment and the internal combustion engine of the third embodiment.
  • the chain mechanism 98 and the one-way clutch 37 are supplied with lubricating oil from the transmission 2.
  • the driving electric motor 38 is fixed to the upper part of the transmission 2, and the system is other than driving the input shaft of the transmission 2 from the output shaft of the driving electric motor 38 via the chain mechanism 98 as a speed reduction mechanism.
  • the configuration and function are the same as in the fourth embodiment.
  • the necessary electric starter 39 is omitted from the drawing.
  • the electric starter relay is actuated by a key switch at the time of activation, the electric starter is energized to once activate the internal combustion engine 1, and the ECU 34 makes a judgment based on the warm-up state of the internal combustion engine 1, etc., and stops the internal combustion engine.
  • FIG. 17 is a side view of a vehicle according to an embodiment equipped with an internal combustion engine according to the present invention. This figure is a side view of a vehicle using any of the drive units of FIGS. 9, 13, 15, and 16. FIG. In the case of a vehicle using the drive unit of FIG. 16, the traveling electric motor 38 is present at the position indicated by the two-dot chain line.
  • an internal combustion engine including components constituting the hydraulic starter while suppressing expansion in the rotation axis direction.
  • a vehicle having an idle stop device having the same size as a conventional vehicle and a short start time can be obtained.
  • a one-motor hybrid vehicle having the same size as a conventional vehicle and capable of stopping the rotation of the internal combustion engine when traveling can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Hitherto, hydraulic starting apparatuses have not been employed in vehicles due to the installation problems that arise as a result of the component parts thereof being too large to fit to an internal combustion engine as an integrated auxiliary. The drive mechanism of this hydraulic starting apparatus transmits motive power from the output shaft of a hydraulic motor to a reduction mechanism via a one-way clutch and the drive shaft of a lubricating-oil pump in that order, and drives the crank shaft of an internal combustion engine from the drive shaft using the power transmission mechanism of the lubricating-oil pump. Accordingly, expansion in the shaft direction of the internal combustion engine is eliminated and noise from the drive mechanism is prevented. Furthermore, installation problems are solved by arranging the hydraulic component parts of the hydraulic starting apparatus in a distributed manner in the oil chamber of the internal combustion engine or a location communicating therewith. Using this internal combustion engine, it is possible to provide vehicles equipped with an idle reduction device with a short starting time and single-motor hybrid vehicles capable of stopping the revolution of the internal combustion during travel, and the like, which are the same size as conventional vehicles.

Description

油圧始動装置を備えた車両Vehicle with hydraulic starter
 本発明は、始動用油圧モーターを内蔵した内燃機関と、それを用いた車両に関する。 The present invention relates to an internal combustion engine having a built-in starting hydraulic motor and a vehicle using the same.
 油圧モーターを用いた油圧始動装置は種々のものが知られており、内燃機関の動力により直接ポンプを回し高圧オイルをアキュムレータに蓄えるものと(特許文献1図2、特許文献2、特許文献3)、電動モーターによりポンプを回し高圧オイルをアキュムレータに蓄えるものが知られている(特許文献1図2、特許文献4図1、特許文献5図1)。車両の燃費の改善の目的で、車両が一定の速度以下になると搭載した内燃機関の回転を自動的に止め、運転者の発進操作を受けて電動モーターにより内燃機関を再始動するアイドル停止装置は実用化されており、油圧始動装置も主にこのアイドル停止装置用の始動装置として開発されている。 Various types of hydraulic starters using a hydraulic motor are known, and a pump is directly rotated by the power of an internal combustion engine to store high pressure oil in an accumulator (Patent Document 1, FIG. 2, Patent Document 2, Patent Document 3). Further, there are known ones that rotate a pump by an electric motor and store high-pressure oil in an accumulator (Patent Document 1 FIG. 2, Patent Document 4 FIG. 1, Patent Document 5 FIG. 1). For the purpose of improving the fuel efficiency of a vehicle, an idle stop device that automatically stops the mounted internal combustion engine when the vehicle is below a certain speed and restarts the internal combustion engine with an electric motor in response to the driver's start operation It has been put into practical use, and a hydraulic starter has been developed mainly as a starter for the idle stop device.
 運転者の始動操作により電動モーターを回し、その駆動力を、一方向クラッチ、フライホイールの外周のリングギヤに飛び込むギヤ機構、クランク軸の順で伝え、内燃機関を始動する電動スターターは広く使用されている(特許文献5図1参照)。同様に電動モーターの駆動力を、常時噛合いの動力伝達機構、クランク軸上の一方向クラッチ、クランク軸の順で伝え、内燃機関を始動する電動スターターも知られている(特許文献6)。 An electric starter that rotates an electric motor by a driver's starting operation and transmits the driving force in the order of a one-way clutch, a gear mechanism that jumps into the ring gear on the outer periphery of the flywheel, and a crankshaft, and starts an internal combustion engine is widely used. (See Patent Document 5 FIG. 1). Similarly, there is also known an electric starter that starts the internal combustion engine by transmitting the driving force of the electric motor in the order of the constantly meshing power transmission mechanism, the one-way clutch on the crankshaft, and the crankshaft (Patent Document 6).
 クランク軸に対して別軸に配置された潤滑油ポンプを、クランク軸からチェーンで駆動する内燃機関は知られている(特許文献7)。 An internal combustion engine that drives a lubricating oil pump arranged on a separate shaft from the crankshaft with a chain from the crankshaft is known (Patent Document 7).
 複数のカムを備え、運転状況により使用するカムを変える可変バルブタイミング機構は、多くの物が知られている。(特許文献8)。 There are many known variable valve timing mechanisms that have multiple cams and change the cam to be used depending on the operating conditions. (Patent Document 8).
 走行用電動モーター1つのパラレル型ハイブリッド車両の駆動系としては、クランク軸に走行用電動モーターを直接取り付け、発進時に走行用電動モーターでクランク軸を回転させ、内燃機関を起動してから発進するものが一般的である。それに対して、走行用電動モーター1つで、クランク軸の回転を止めたまま走行用電動モーターのみで走行ができるものとして、走行中にクラッチを用いて走行用電動モーターにより内燃機関の再始動を行うもの(特許文献9図1)と、走行中に走行用電動モーターとは別の始動装置により内燃機関を起動するようにしたものが知られている。(特許文献10)。 Driving electric motor As a drive system for one parallel type hybrid vehicle, the driving electric motor is directly attached to the crankshaft, and the crankshaft is rotated by the driving electric motor when starting to start after starting the internal combustion engine. Is common. On the other hand, it is assumed that one traveling electric motor can travel only with the traveling electric motor while stopping the rotation of the crankshaft, and the internal combustion engine is restarted by the traveling electric motor using a clutch during traveling. There are known what is performed (Patent Document 9 FIG. 1) and one in which an internal combustion engine is started by a starting device different from an electric motor for traveling during traveling. (Patent Document 10).
特開昭59-25076号公報JP 59-25076 A 特開2006-249990号公報JP 2006-249990 A 特開2007-224737号公報JP 2007-224737 A 特許第4064016号Patent No. 4064016 特開2003-148409号公報JP 2003-148409 A 特開平10-220244号公報JP-A-10-220244 特開平9-32526号公報JP-A-9-32526 特開平5-71320号公報Japanese Patent Laid-Open No. 5-71320 特開2010-155590号公報JP 2010-155590 A 特開2010-234923号公報JP 2010-234923 A
 内燃機関の始動装置として、電動モーターを用いた始動装置に比べ、小さくても駆動力の大きい油圧モーターを用いた油圧始動装置は、内燃機関の始動までに必要な時間が短く、商品性の高い始動装置である。特に、アイドル停止装置用の始動装置として、運転者の発進操作に対する時間遅れが短くなり、違和感の無い発進が可能となる点で有用である。 Compared to a starter using an electric motor as a starter for an internal combustion engine, a hydraulic starter using a hydraulic motor having a large driving force even if it is small is short in the time required for starting the internal combustion engine and has a high commercial value. It is a starting device. In particular, the starter for the idle stop device is useful in that the time delay with respect to the start operation of the driver is shortened, and the start can be made without any sense of incongruity.
 具体的に数値を上げると、油圧始動装置は、300気圧の油圧を用いれば、1回転8ccの容量の小さい油圧モーターを3000rpmで回せば機械効率90%としても10Kwを超える出力が得られる。始動に必要なエネルギーとして、仮にエンジンの回転慣性質量を0.35Kg・m2として停止状態から600rpmまで回転を高めるのに必要なエネルギーを計算すると0.7kJ程度である。上記モーターの力だけでも、角加速度を一定と考えて、油圧供給弁の作動開始から0.14秒でアイドル回転数600rpmまで加速できる。これに内燃機関の出力が加わるので更に早く加速でき、内燃機関が停止している状態からの発進でも違和感が無い。効率80%としても1回始動するのに30cc弱のオイルで済み、始動を5回行えるようにしても、必要なアキュムレータの吐出量は150cc程度である。 More specifically, if the hydraulic starter uses a hydraulic pressure of 300 atm, if a hydraulic motor with a small capacity of 8 cc per rotation is rotated at 3000 rpm, an output exceeding 10 Kw can be obtained even if the mechanical efficiency is 90%. As energy required for starting, assuming that the rotational inertia mass of the engine is 0.35 Kg · m 2 and calculating energy necessary for increasing the rotation from the stopped state to 600 rpm, it is about 0.7 kJ. Even with the power of the motor alone, it is possible to accelerate to an idle speed of 600 rpm in 0.14 seconds from the start of the operation of the hydraulic pressure supply valve, assuming that the angular acceleration is constant. Since the output of the internal combustion engine is added to this, it can be accelerated further, and there is no sense of incongruity even when starting from a state where the internal combustion engine is stopped. Even if the efficiency is 80%, less than 30 cc of oil is required to start once, and the required accumulator discharge amount is about 150 cc even if the engine can be started five times.
 また、始動装置としては出力の割に構成要素が小さく廉価になり、エネルギーを蓄えるアキュムレータはバッテリーの様に交換する必要がない利点がある。ところが、このような利点があるのに油圧始動装置は実用化されていない。その理由を発明者は以下の様に考えた。近年の自動車開発は分業化が進み、内燃機関の開発と始動装置の開発は別個に行われるのが一般的である。特に油圧始動装置は高圧の油圧を扱うため、自動車開発として特殊な技術となる。そのため、油圧始動装置の開発は、既存の内燃機関に対して補機として後から組み付ける形で開発を行うこととされ易い。同一出願人の特許出願を年代順に見ると、そのような傾向が認められる。 Also, as a starting device, the components are small and inexpensive for the output, and the accumulator that stores energy does not need to be replaced like a battery. However, the hydraulic starter has not been put into practical use despite such advantages. The inventor considered the reason as follows. In recent years, the development of automobiles has become more specialized, and the development of internal combustion engines and the development of starters are generally performed separately. In particular, since the hydraulic starter handles high-pressure oil pressure, it becomes a special technology for automobile development. For this reason, the development of the hydraulic starter is likely to be carried out in the form of being assembled later as an auxiliary machine with respect to the existing internal combustion engine. Such a tendency is recognized when looking at patent applications of the same applicant in chronological order.
 油圧始動装置は高圧の油圧を扱うので、それを構成する油圧部品を車体側と内燃機関側に分けて設置すると、その間の配管が内燃機関の振動で屈曲され劣化しやすい。配管が損傷すれば高圧のオイルが車両のエンジンルーム内に噴き出す危険がある。そのため、電動始動装置のバッテリーと異なり、蓄圧部も含め、油圧を扱う構成部品を全て内燃機関に直接取り付け、オイル漏れの無いように一体にまとめておく必要があると考え易い。このようなことから、開発者は、油圧始動装置を一体の補機として後から取り付ける形にまとめようとする。しかし、油圧始動装置を蓄圧部材も含めて1つの部品としてまとめようとすると、補機としてはその大きさが巨大になり、内燃機関に直接取り付ける必要のあるACGやエアコン用のコンプレッサーなどの他の補機との関係で搭載性に問題が生じる。油量を管理する必要があり、ユーザーの点検項目が増加する点も問題となる。 Since the hydraulic starter handles high-pressure oil pressure, if the hydraulic components constituting it are installed separately on the vehicle body side and the internal combustion engine side, the piping between them is easily bent and deteriorated by the vibration of the internal combustion engine. If the pipes are damaged, there is a risk that high-pressure oil will spout into the engine room of the vehicle. Therefore, unlike the battery of the electric starter, it is easy to think that it is necessary to attach all the components that handle the hydraulic pressure, including the pressure accumulating part, directly to the internal combustion engine and integrate them so that there is no oil leakage. For this reason, the developer tries to put the hydraulic starter into a form to be attached later as an integrated auxiliary machine. However, if the hydraulic starter is assembled as a single part including the pressure accumulating member, the size of the auxiliary machine becomes enormous, and other components such as ACG and air conditioner compressors that need to be directly attached to the internal combustion engine are required. There is a problem with the mountability in relation to the auxiliary equipment. It is necessary to manage the amount of oil, and there is a problem that the number of inspection items for the user increases.
 特許文献1、2及び3には、それぞれ油圧モーターを高圧ポンプとしても使用している実施例が提示されている。この場合、外部から制御可能なクラッチが必要となる。このクラッチが油圧クラッチであれば、記載には無いクラッチ圧10気圧程度を発生するオイルポンプや、湿式多板クラッチの制御に用いるソレノイドバルブ等が必要になる。電磁クラッチであれば電磁部が必要で、更に重く大きなものとなる。結局、補機としての大きさは小さくできない。また、内燃機関の始動用の油圧モーターは起動トルクを高めるため、低フリクションのタイプを選択することになるのでオイル漏れが大きい。これを高圧ポンプとして使用する場合、大きく減速して低い回転で使用すると理論吐出量よりオイル漏れ量の方が大きくなり、アキュムレータにオイルを送り込むことが不可能になる。逆に、特許文献3図4の実施例などの様に減速しないものは、ポンプ作動時の吸収トルクが大きいので、内燃機関の出力を全て吸収してしまい、作動時のショックを許容できるものにはならない。 Patent Documents 1, 2, and 3 provide examples in which a hydraulic motor is also used as a high-pressure pump. In this case, a clutch that can be controlled from the outside is required. If this clutch is a hydraulic clutch, an oil pump that generates a clutch pressure of about 10 atm, which is not described, and a solenoid valve that is used to control a wet multi-plate clutch are required. If it is an electromagnetic clutch, an electromagnetic part will be needed and will become heavier and bigger. After all, the size as an auxiliary machine cannot be reduced. In addition, since the hydraulic motor for starting the internal combustion engine increases the starting torque, a low friction type is selected, so that oil leakage is large. When this is used as a high-pressure pump, if it is greatly decelerated and used at a low rotation, the oil leakage amount becomes larger than the theoretical discharge amount, and it becomes impossible to feed oil into the accumulator. On the other hand, those that do not decelerate like the embodiment of Patent Document 3 and FIG. 4 have a large absorption torque at the time of pump operation, so that they absorb all the output of the internal combustion engine and can tolerate a shock at the time of operation. Must not.
 また、特許文献5図1の実施例の様に、従来の始動装置のように始動時にフライホイールにあるリングギヤに駆動ギヤを飛び込ませる構造は、噛み込み音が発生し、運転者に不快感を与える。特に高級車のアイドル停止装置用の再始動装置としては商品性の点で難がある。また、潤滑油の無い所でギヤの歯面を叩くので、出力の大きい油圧始動装置用としては耐久性の点でも問題がある。 Further, as in the embodiment of Patent Document 5 in FIG. 1, the structure in which the drive gear is jumped into the ring gear in the flywheel at the time of start-up as in the conventional starter device generates a biting sound and makes the driver uncomfortable. give. In particular, there is a problem in terms of merchantability as a restart device for an idle stop device of a luxury car. Further, since the gear tooth surface is hit in a place where there is no lubricating oil, there is a problem in terms of durability for a hydraulic output device having a large output.
 このギヤの噛み込み音を発生させない構造としては、1つには特許文献1図2、特許文献3図1、特許文献4図1の実施例のようにベルト機構を使う方法がある。ところが、アイドル停止装置の始動装置として発進操作から違和感の無い発進を行うには、アクセルオンから0.2秒以下で再始動する必要があり、そのためのトルクはクランク軸で150Nm程度のトルクが必要である。このようなトルクを伝達するには歯付ベルトとしてもその幅は100mm以上必要となり、これがそのまま駆動系の幅の拡大となって車体にまで影響を与えることになる。特に駆動系の幅に余裕のない、内燃機関を横に置く前輪駆動車両では適用することができない。 As a structure that does not generate the biting sound of the gear, there is a method using a belt mechanism as in the embodiment of Patent Document 1 FIG. 2, Patent Document 3 FIG. 1, and Patent Document 4 FIG. However, in order to start without any discomfort from the start operation as a starter of the idle stop device, it is necessary to restart within 0.2 seconds from the accelerator on, and the torque for that needs to be about 150 Nm on the crankshaft. It is. In order to transmit such torque, the width of the toothed belt is required to be 100 mm or more, which directly increases the width of the drive system and affects the vehicle body. In particular, the present invention cannot be applied to a front-wheel drive vehicle in which an internal combustion engine is placed on the side where there is no margin in the drive system.
 ギヤの噛み込み音を発生させないもう一つの構造としては、特許文献6の実施例の様に、始動モーターから常時噛合いの動力伝達機構、一方向クラッチ、クランク軸の順に駆動力を伝える構造がある。しかし、一方向クラッチをクランク軸に置く必要があるため、減速機構の幅と一方向クラッチの幅を合わせた分、軸方向に拡大する。 As another structure that does not generate a gear biting sound, as in the embodiment of Patent Document 6, a structure that transmits a driving force in the order of a starting motor, a constantly meshing power transmission mechanism, a one-way clutch, and a crankshaft. is there. However, since the one-way clutch needs to be placed on the crankshaft, the width of the speed reduction mechanism and the width of the one-way clutch are increased in the axial direction.
 アイドル停止装置用の始動装置として違和感が無い始動を電動モーターで行うためには、電動モーターやバッテリーは従来の電動スターターの10倍以上の大きさが必要となり、コストも重量も大幅に増える。結局、このような出力の電動モーターによる始動装置を備えられるのは、ハイブリット車両のみであった。 In order to start with an electric motor that does not feel uncomfortable as a starting device for an idle stop device, the electric motor and battery need to be 10 times larger than the conventional electric starter, and the cost and weight are greatly increased. After all, only a hybrid vehicle can be equipped with a starting device using an electric motor with such an output.
 通常の内燃機関は、停止する際にある程度の時間低い回転数で回り続ける。この時、内燃機関のマウントはそのような低回転の振動に対応しきれずシリンダーブロックが大きく動き、振動や音を運転者に伝えてしまう。ハイブリッド車両の場合、内燃機関を停止させる際、走行用電動モーターの負荷を調整し、シリンダーブロックが大きく動く前に停止させることが出来る場合がある。しかし、油圧始動装置の場合は装置により内燃機関に負荷をかけることが困難で、アイドル停止装置として使う場合の内燃機関の停止時の商品性の確保が難しい。 ¡Normal internal combustion engines continue to rotate at a low rotational speed for a certain period of time when stopping. At this time, the mount of the internal combustion engine cannot cope with such low-speed vibration, and the cylinder block moves greatly to transmit vibration and sound to the driver. In the case of a hybrid vehicle, when the internal combustion engine is stopped, it may be possible to adjust the load of the traveling electric motor and stop the cylinder block before the cylinder block moves greatly. However, in the case of a hydraulic starter, it is difficult to apply a load to the internal combustion engine by the device, and it is difficult to ensure the merchantability when the internal combustion engine is stopped when used as an idle stop device.
 ハイブリッド車両には、内燃機関を始動する電動モーターと走行用電動モーターの2つの電動モーターを備えたシリーズ型ハイブリッドをベースとした車両と、1つの電動モーターを備えたパラレル型ハイブリッドがある。パラレル型ハイブリッドは比較的小さい走行用電動モーター1つで済むのでコスト的には有利だが、走行しているときに内燃機関の回転を止めることができないという、燃費に不利な面もある。この点を改善し、内燃機関を走行中に停止できるようにしたものとして、クランク軸と走行用電動モーターの出力軸の間をトルク制御可能なクラッチを設けた、特許文献9図1の例がある。しかし、この場合、走行中、走行用電動モーターが回っているときにアクセルを踏み込まれれば再始動することになるので、クラッチで吸収される回転差分の損失が生じるし、バッテリーや走行用電動モーターをその分大きくしなければならない。また、内燃機関の再始動時の振動が駆動輪に伝達されるのを避けるため、走行用電動モーターと変速機の間にもトルク制御可能なクラッチが必要となる。そのため、駆動系が軸方向に大きく拡大し、市場の大部分を占めている駆動系を横に配置した車両には適用することが出来ない。 Hybrid vehicles include a series-type hybrid vehicle having two electric motors, an electric motor for starting an internal combustion engine and a traveling electric motor, and a parallel type hybrid having one electric motor. The parallel type hybrid is advantageous in terms of cost because it requires only a relatively small electric motor for traveling, but it also has a disadvantage in terms of fuel consumption in that the rotation of the internal combustion engine cannot be stopped while traveling. As an example of improving this point and making it possible to stop the internal combustion engine while traveling, there is an example in FIG. 1 of Patent Document 9 in which a clutch capable of torque control is provided between the crankshaft and the output shaft of the traveling electric motor. is there. However, in this case, if the accelerator is depressed while the traveling electric motor is running, the engine will restart, so loss of rotational difference absorbed by the clutch occurs, and the battery or electric motor for traveling Must be increased accordingly. In addition, a clutch capable of torque control is also required between the traveling electric motor and the transmission in order to avoid transmission of vibration at the time of restart of the internal combustion engine to the drive wheels. Therefore, the drive system is greatly expanded in the axial direction, and cannot be applied to a vehicle in which the drive system that occupies most of the market is disposed horizontally.
 本発明は、各部品の機能を考慮に入れた上で、内燃機関と油圧始動装置という異なる分野の技術を一体として開発し、油圧始動装置を構成する油圧部品を有機的に内燃機関の内部や外壁に組み込むことで、駆動系を軸方向に拡大することなく、油圧始動装置を車両に適用することを可能にしたものである。 The present invention has been developed by integrating the technologies of different fields of the internal combustion engine and the hydraulic starter, taking into account the functions of the components, and the hydraulic parts constituting the hydraulic starter are organically arranged inside the internal combustion engine. By incorporating it in the outer wall, the hydraulic starter can be applied to the vehicle without expanding the drive system in the axial direction.
 第1の解決手段は、クランク軸から動力伝達機構を介して当該クランク軸とは別の潤滑油ポンプの駆動軸を駆動する内燃機関であって、
 当該内燃機関の油圧始動装置の油圧モーターとその駆動機構が当該内燃機関の潤滑油の油室内に取り付けられ、
 当該駆動機構は当該油圧モーターの出力軸から減速機構、一方向クラッチの順に動力を前記潤滑油ポンプの駆動軸に伝え、更に当該駆動軸から潤滑油ポンプの前記動力伝達機構を介してとうがい前記クランク軸を駆動することを特徴とした内燃機関である。
The first solving means is an internal combustion engine that drives a drive shaft of a lubricating oil pump different from the crankshaft via a power transmission mechanism from the crankshaft,
The hydraulic motor of the hydraulic starter of the internal combustion engine and its drive mechanism are attached to the oil chamber of the lubricating oil of the internal combustion engine,
The drive mechanism transmits power from the output shaft of the hydraulic motor to the drive shaft of the lubricant pump in the order of the speed reduction mechanism and the one-way clutch, and further gargles from the drive shaft via the power transmission mechanism of the lubricant pump. An internal combustion engine that drives a crankshaft.
 第2の解決手段は、第1の解決手段の内燃機関の内、
 前記油圧モーターへ高圧オイルを供給するアキュムレータを当該内燃機関に固定した形で備え、
 当該アキュムレータから前記油圧モーターへの高圧オイルの供給を制御する油圧供給弁と、当該アキュムレータにオイルを供給する高圧ポンプと、当該高圧ポンプからの吐出オイルの逆流を防止するチェックパルブを、当該内燃機関の潤滑油の油室内若しくはこれに連通する場所に備えたことを特徴とした内燃機関である。
The second solving means includes the internal combustion engine of the first solving means,
An accumulator for supplying high-pressure oil to the hydraulic motor is provided fixed to the internal combustion engine,
A hydraulic supply valve that controls supply of high-pressure oil from the accumulator to the hydraulic motor, a high-pressure pump that supplies oil to the accumulator, and a check valve that prevents backflow of discharged oil from the high-pressure pump. An internal combustion engine characterized by being provided in an oil chamber of the lubricating oil or a place communicating with the oil chamber.
 第3の解決手段は、第1又は第2の解決手段の内燃機関の内、
 当該内燃機関の油室内に油圧始動装置の高圧ポンプをその回転軸を縦にして取り付け、当該高圧ポンプを駆動する電動モーターを当該高圧ポンプより高い位置でかつ内燃機関の外壁部に外側から取り付けたことを特徴とした内燃機関である。
The third solving means is the internal combustion engine of the first or second solving means,
A high-pressure pump of a hydraulic starter is mounted in the oil chamber of the internal combustion engine with its rotary shaft in the vertical direction, and an electric motor that drives the high-pressure pump is mounted at a position higher than the high-pressure pump and on the outer wall of the internal combustion engine from the outside. This is an internal combustion engine characterized by that.
 第4の解決手段は、第1又は第2の解決手段の内燃機関の内、
 油圧始動装置の高圧ポンプと当該高圧ポンプを駆動する電動モーターを一体にして当該内燃機関の油室内に取り付けたことを特徴とした内燃機関である。
The fourth solving means is the internal combustion engine of the first or second solving means,
An internal combustion engine characterized in that a high-pressure pump of a hydraulic starter and an electric motor that drives the high-pressure pump are integrally mounted in an oil chamber of the internal combustion engine.
 第5の解決手段は、これらの内燃機関の内の1つと、当該内燃機関の出力を駆動輪に伝達する変速機を備え、
 当該内燃機関に取り付けられた油圧始動装置の構成部品を、アイドル停止装置の再始動装置の一部として用いることを特徴とした車両である。
The fifth solving means includes one of these internal combustion engines and a transmission for transmitting the output of the internal combustion engine to the drive wheels,
The vehicle is characterized in that the components of the hydraulic starter attached to the internal combustion engine are used as a part of the restart device of the idle stop device.
 第6の解決手段は、内燃機関を停止させる時、内燃機関のフリクションを高めることを特徴とした第5の解決手段の車両である。 The sixth solving means is a vehicle according to the fifth solving means characterized by increasing the friction of the internal combustion engine when the internal combustion engine is stopped.
 第7の解決手段は、第1から第4の解決手段による内燃機関の内の1つと、走行用電動モーターと、当該走行用電動モーターの出力を駆動輪に伝達する変速機と、当該走行用電動モーターの出力軸と前記内燃機関のクランク軸の間にクラッチを備え、
 当該内燃機関に取り付けられた油圧始動装置の構成部品をアイドル停止装置の再始動装置の一部として用いることを特徴とした、車両用ハイブリッド駆動ユニットである。
The seventh solving means includes one of the internal combustion engines according to the first to fourth solving means, a traveling electric motor, a transmission for transmitting the output of the traveling electric motor to driving wheels, and the traveling A clutch is provided between the output shaft of the electric motor and the crankshaft of the internal combustion engine,
A hybrid drive unit for a vehicle, wherein a component of a hydraulic starter attached to the internal combustion engine is used as a part of a restart device of an idle stop device.
 第8の解決手段は、内燃機関のクランク軸を車体に対して横向きに配置した第7の解決手段の車両用ハイブリッド駆動ユニットであって、
 前記走行用電動モーターは前記変速機に対してその上部に固定され、当該走行用電動モーターは減速機構を介して当該変速機の入力軸を駆動し、
 前記内燃機関のクランク軸と当該走行用電動モーターの出力軸の間に前記クラッチと直列に捩じりダンパーを備えることを特徴とした、車両用ハイブリッド駆動ユニットである。
The eighth solution means is a vehicle hybrid drive unit of the seventh solution means in which the crankshaft of the internal combustion engine is disposed transversely to the vehicle body,
The electric motor for traveling is fixed to the upper portion with respect to the transmission, the electric motor for traveling drives the input shaft of the transmission via a speed reduction mechanism,
A hybrid drive unit for a vehicle, comprising a torsional damper in series with the clutch between a crankshaft of the internal combustion engine and an output shaft of the traveling electric motor.
[規則91に基づく訂正 01.10.2012] 
 第9の解決手段は、第7又は第8の解決手段の車両用ハイブリッド駆動ユニットを備えたハイブリッド車両である。
[Correction based on Rule 91 01.10.2012]
The ninth solving means is a hybrid vehicle including the vehicle hybrid drive unit of the seventh or eighth solving means.
 本発明によれば、油圧始動装置の各部材を分散して内燃機関に配置することができ、他の補機と干渉しない形で、油圧始動装置を実車に搭載できるようになる。本発明の車両は、既存車両と変わらない車体寸法で、再始動の時間の短いアイドル停止装置を備えることができる。更に、当該アイドル停止装置を備えることで、既存車両と変わらない車体寸法で、走行中に内燃機関の回転を停止可能な1モーター方式のハイブリッド車両が、大出力の物も含めて得られる。 According to the present invention, each member of the hydraulic starter can be dispersed and disposed in the internal combustion engine, and the hydraulic starter can be mounted on the actual vehicle without interfering with other auxiliary machines. The vehicle of the present invention can be provided with an idle stop device having a body size that is the same as that of an existing vehicle and having a short restart time. Furthermore, by providing the idle stop device, a one-motor hybrid vehicle that can stop the rotation of the internal combustion engine during traveling with a vehicle body size that is the same as that of an existing vehicle, including a high-powered vehicle, can be obtained.
 第1の解決手段は、油圧始動装置の主要部品である油圧モーターと駆動機構を内燃機関の潤滑油の油室内に配置することにより、内燃機関の周辺に配置する必要のある油圧構成部材が減ることで、ACGやエアコン用コンプレッサーなどの補機と共存させることが可能となる。必然的に油圧始動装置の使用オイルとして内燃機関の潤滑オイルを用いることになるので、油貯蔵の為の空間を二重に備える必要がなくなり、油圧始動装置と内燃機関の油量の管理を別に行わずに済む利点が生じる。 The first solution is that by disposing the hydraulic motor and the drive mechanism, which are the main components of the hydraulic starter, in the lubricating oil chamber of the internal combustion engine, the number of hydraulic components that need to be disposed around the internal combustion engine is reduced. This makes it possible to coexist with auxiliary equipment such as ACG and air conditioner compressors. Since the lubricating oil of the internal combustion engine is inevitably used as the oil used for the hydraulic starter, it is not necessary to provide double space for oil storage, and management of the oil amount of the hydraulic starter and the internal combustion engine is separate. There is an advantage of not having to do it.
 一般に車両用の内燃機関の油室内には内燃機関による潤滑オイルの消耗と車体の揺れに対応するため、油面高さが多少変化してもクランク軸などの回転部に油面が触れないようにオイルが入れられている。そのため油室の空間は比較的広く、油圧モーターと動力伝達機構の空間を容易に確保できる。アキュムレータへの貯蔵油量200cc程度と、高圧ポンプとその動力伝達機構の体積分の容積を増やしたとしても、油室全体の容積に比べると少なく、内燃機関の寸法変化は少ない。 In general, in an oil chamber of an internal combustion engine for a vehicle, the oil level does not touch a rotating part such as a crankshaft even if the oil level changes slightly in order to cope with the consumption of lubricating oil by the internal combustion engine and the shaking of the vehicle body. The oil is put in. Therefore, the space of the oil chamber is relatively wide, and the space for the hydraulic motor and the power transmission mechanism can be easily secured. Even if the amount of stored oil in the accumulator is about 200 cc and the volume of the high-pressure pump and its power transmission mechanism is increased, the volume of the internal combustion engine is small as compared with the volume of the entire oil chamber.
 当該動力伝達機構であるチェーンやギヤなどを従来の潤滑油ポンプの厚み以下にすることは容易なので、潤滑油ポンプをクランク軸に直接取り付けた内燃機関に比べて軸方向の拡大が無い。 Since it is easy to make the power transmission mechanism such as a chain or gear less than the thickness of the conventional lubricating oil pump, there is no axial expansion compared to an internal combustion engine in which the lubricating oil pump is directly attached to the crankshaft.
 駆動機構の途中に潤滑油ポンプが無ければ、一方向クラッチよりクランク軸側の動力伝達機構は、始動後には内燃機関のクランク軸の回転変動に合わせて回転する必要がある。そのため、加速と減速が繰り返されることになり、駆動方向が切り替わり打音などの騒音を発する。ところが、潤滑油ポンプが常に油を送り出す仕事をしていることによる負荷が、駆動方向をクランク軸から潤滑油ポンプを駆動する方向に安定させ、動力伝達機構の騒音の発生を防止することができる利点がある。 If there is no lubricating oil pump in the middle of the drive mechanism, the power transmission mechanism closer to the crankshaft than the one-way clutch needs to rotate in accordance with the rotational fluctuation of the crankshaft of the internal combustion engine after starting. Therefore, acceleration and deceleration are repeated, and the driving direction is switched to generate noise such as a hitting sound. However, the load caused by the oil pump always delivering oil can stabilize the driving direction in the direction of driving the lubricating oil pump from the crankshaft and prevent the power transmission mechanism from generating noise. There are advantages.
 潤滑油ポンプの駆動軸をクランク軸と別軸にすることで、潤滑油ポンプの軸径を小さくできるので、当該ポンプの効率は向上し、一方向クラッチはそのフリクションを低減できる。また、一方向クラッチがスプラグ式の場合、外輪をクランク軸の回転に伴って回転させる構造を単純な二重構造で得られる利点もある。動力伝達機構により、クランク軸から増速してポンプを回すことができるのでポンプ容量を小さいものにでき、一方向クラッチの許容トルクを小さい物にできる。油圧始動装置の駆動機構はトルクを増大するために油圧モーターからクランク軸まで減速しなければならないが、この潤滑油ポンプまでの増速比を逆に減速比として利用することで、油圧モーターの出力軸からポンプ駆動軸までの減速機構の減速比が小さいもので済む利点がある。 ∙ By making the drive shaft of the lubricant pump separate from the crankshaft, the shaft diameter of the lubricant pump can be reduced, so that the efficiency of the pump is improved and the one-way clutch can reduce its friction. Further, when the one-way clutch is a sprag type, there is an advantage that a structure that rotates the outer ring with the rotation of the crankshaft can be obtained with a simple double structure. Since the power transmission mechanism can increase the speed from the crankshaft and rotate the pump, the pump capacity can be reduced, and the allowable torque of the one-way clutch can be reduced. The drive mechanism of the hydraulic starter must decelerate from the hydraulic motor to the crankshaft in order to increase the torque, but by using the speed increase ratio up to this lubricating oil pump as the speed reduction ratio, the output of the hydraulic motor There is an advantage that only a small reduction ratio of the speed reduction mechanism from the shaft to the pump drive shaft is required.
 第2の解決手段によれば、油圧始動装置をACGやエアコン用コンプレッサーなどの補機と共存させることがより容易になる。内燃機関各部には潤滑油が供給されており、その潤滑油は自重で油室に戻るようになっている。このことを利用して、油圧構成部品を内燃機関の潤滑油の油室内若しくはこれに連通する場所に配置することで、これらの油圧構成部品を補機と干渉しないように分散して配置しても、各部品から出るオイルを内燃機関の油室に戻すことができる。 According to the second solution, it is easier to coexist the hydraulic starter with auxiliary machines such as ACG and an air conditioner compressor. Lubricating oil is supplied to each part of the internal combustion engine, and the lubricating oil returns to the oil chamber by its own weight. By utilizing this fact, by disposing the hydraulic components in the oil chamber of the lubricating oil of the internal combustion engine or in a place communicating therewith, these hydraulic components are distributed and arranged so as not to interfere with the auxiliary equipment. In addition, the oil discharged from each part can be returned to the oil chamber of the internal combustion engine.
 内燃機関のシリンダーブロックは、駆動軸の慣性力やピストン内の爆発などによる回転変動の反作用で、車体に対して大きく動く。アキュムレータなどの油圧構成部品を車体側に取り付けると、内燃機関に備えられた油圧部品との間を高圧オイル用のフレキシブルチューブで繋がなければならない。このフレキシブルチューブが変形することで、当該チューブやそのジョイント部が破損し、オイル漏れのリスクが高まる。第2の解決手段は、これらの油圧構成部品を内燃機関に固定したことで、高価なフレキシブルチューブを不要とし、オイル漏れのリスクを減らすことが出来る利点がある。 The cylinder block of the internal combustion engine moves greatly with respect to the vehicle body due to the reaction of rotational fluctuation caused by the inertial force of the drive shaft and the explosion in the piston. When a hydraulic component such as an accumulator is attached to the vehicle body side, the hydraulic component provided in the internal combustion engine must be connected by a flexible tube for high pressure oil. When this flexible tube is deformed, the tube and its joint are damaged, and the risk of oil leakage increases. The second solution is advantageous in that these hydraulic components are fixed to the internal combustion engine, so that an expensive flexible tube is not required and the risk of oil leakage can be reduced.
 第3の解決手段は、以下の問題を解決する。高圧ポンプを独立して配置する場合、油面に対して高圧ポンプの設置位置が高い位置にあると、エアの混入が問題となる。エアの混入を避ける為に低い位置に持ってくるには、高圧ポンプは油室を構成するオイルパン内部に存在すべきである。ところがオイルパンは弾性シールを介して内燃機関本体に固定されているので位置精度が悪く、外から高圧ポンプ駆動電動モーターを取り付けても、中の高圧ポンプと軸位置が正確には一致しない。しかし、本解決手段によれば、高圧ポンプを油室内側の油面近くに配置でき、かつ内燃機関のシリンダーブロックを介して、ポンプ駆動用電動モーターを高圧ポンプに対して精度良く取り付けることが出来る。しかも、ポンプ駆動用電動モーターを外部から交換できるので整備性が良い。 The third solution solves the following problems. In the case where the high-pressure pumps are arranged independently, if the installation position of the high-pressure pump is higher than the oil level, the mixing of air becomes a problem. To bring it to a low position to avoid air contamination, the high pressure pump should be inside the oil pan that constitutes the oil chamber. However, since the oil pan is fixed to the main body of the internal combustion engine through an elastic seal, the positional accuracy is poor, and even if a high-pressure pump drive electric motor is attached from the outside, the axial position does not exactly match the internal high-pressure pump. However, according to this solution, the high-pressure pump can be disposed near the oil level on the oil chamber side, and the electric motor for driving the pump can be accurately attached to the high-pressure pump via the cylinder block of the internal combustion engine. . Moreover, the pump drive electric motor can be exchanged from the outside, so that maintainability is good.
 第4の解決手段は、電動モーターは潤滑油の最高温度に耐えるものが必要になり高価なものとなるし、電動モーターを交換する場合にオイルパンを外す必要があり、整備性が悪いという欠点はある。しかし、V型6気筒の内燃機関の様に両側に排気管があるとシリンダーブロックの両壁面部の近くに排気触媒が来て、壁面にポンプ駆動用電動モーターの設置スペースが取れない場合がある。このような場合でも、油圧始動装置を備えることが可能となる利点がある。 The fourth solution is that the electric motor needs to withstand the maximum temperature of the lubricating oil and is expensive, and the oil pan needs to be removed when replacing the electric motor, resulting in poor maintainability. There is. However, if there are exhaust pipes on both sides like a V-6 internal combustion engine, the exhaust catalyst may come near both wall surfaces of the cylinder block, and the installation space for the electric motor for driving the pump may not be available on the wall surface. . Even in such a case, there is an advantage that a hydraulic starter can be provided.
 第5の解決手段は、上記内燃機関はいずれも回転軸方向の拡大が無いので、これらの内燃機関のいずれを用いても、既存車両に対して車体寸法を変えることなく、油圧始動装置を用いた始動時間の短いアイドル停止装置を装備することが可能となる利点がある。 According to a fifth solution, since none of the internal combustion engines expands in the rotation axis direction, any of these internal combustion engines can be used without changing the vehicle body dimensions with respect to an existing vehicle. There is an advantage that an idle stop device with a short start-up time can be provided.
 第6の解決手段による車両は、アイドル停止装置により内燃機関の回転を停止する際の商品性を高める。内燃機関のフリクションを高める手段としては、例えばスロットルバルブを少し開き圧縮仕事を増やし、膨張行程の初期に吸気バルブを少し開くカムに切り替えることにより圧縮ガスをシリンダー内から抜き、増やした圧縮仕事をそのまま内燃機関のフリクションとする。ACGやエアコン用コンプレッサーなどの補機の負荷を高める等がある。フリクションを高めることで内燃機関のシリンダーブロックが大きく動く前に停止することが出来、運転者に違和感の無い内燃機関の停止が可能となる。 The vehicle according to the sixth solution improves the merchantability when the rotation of the internal combustion engine is stopped by the idle stop device. As a means to increase the friction of the internal combustion engine, for example, the throttle valve is opened slightly to increase the compression work, and the compressed gas is extracted from the cylinder by switching to a cam that opens the intake valve slightly at the beginning of the expansion stroke, and the increased compression work is left as it is. This is the internal combustion engine friction. Increasing the load on auxiliary equipment such as ACG and compressors for air conditioners. By increasing the friction, the cylinder block of the internal combustion engine can be stopped before it moves greatly, and the internal combustion engine can be stopped without causing the driver to feel uncomfortable.
 第7の解決手段によるハイブリッド車両用駆動ユニットは、コスト的に有利な1モーター方式のパラレル型ハイブリッドを、走行中に内燃機関の回転を止める機関停止走行ができる、更に燃費の良いハイブリッドに変える利点がある。本解決手段によるハイブリッド車は、内燃機関と油圧と電気の3つのエネルギー源を利用するのでトリプルハイブリッドと呼ぶこともできる。 The hybrid vehicle drive unit according to the seventh solution is advantageous in that the one-motor parallel type hybrid, which is advantageous in terms of cost, can be changed to a hybrid with better fuel efficiency that can stop the engine while the vehicle is running and stop the engine. There is. The hybrid vehicle according to this solution can be called a triple hybrid because it uses three energy sources of an internal combustion engine, hydraulic pressure, and electricity.
 本駆動ユニットの場合、走行用電動モーターのみで発進できるので、走行用電動モーターと変速機の間のクラッチは発進の為に必須なものではない。内燃機関の起動時に、その駆動力が駆動輪に伝達され始める時にショックの発生が予測されるが、そのとき走行用電動モーターのトルクを内燃機関からの駆動力分減らす制御を行えば、このショックを低減できる。そのため内燃機関と走行用電動モーターの間のクラッチは容量制御のできない一方向クラッチを使用することも可能である。この場合にはクラッチがコンパクトにできるので、走行用電動モーターのローターの内側に収めることも可能となる。 In the case of this drive unit, since it can start only with the electric motor for traveling, the clutch between the electric motor for traveling and the transmission is not indispensable for starting. When the internal combustion engine starts up, a shock is predicted to occur when the driving force starts to be transmitted to the drive wheels. At that time, if control is performed to reduce the torque of the electric motor for traveling by the driving force from the internal combustion engine, Can be reduced. For this reason, it is possible to use a one-way clutch whose capacity cannot be controlled as the clutch between the internal combustion engine and the traveling electric motor. In this case, since the clutch can be made compact, it can be housed inside the rotor of the traveling electric motor.
 ただし、ハイブリッド用電源に充分な充電量が無い場合、車両停止時に内燃機関を起動し、発電しなければならない場合が生じる。そのような場合に備え、変速機に発進クラッチを備えることが望ましい。しかし、通常時に使用するものではないので、連続使用に耐えるものである必要はなく、変速クラッチを改良した程度のもので済む。その他、走行用電動モーターと変速機の間のクラッチをトルク容量制御可能なものとし、ACGを大型にしてハイブリッド用電源に充電可能とする方法も考えられる。 However, if the hybrid power supply does not have a sufficient charge, it may be necessary to start the internal combustion engine and generate power when the vehicle is stopped. In preparation for such a case, it is desirable to provide a starting clutch in the transmission. However, since it is not used at normal times, it does not have to be able to withstand continuous use, and it is sufficient to have an improved shift clutch. In addition, a method is also conceivable in which the clutch between the traveling electric motor and the transmission can be controlled in torque capacity, and the ACG can be made large to charge the hybrid power source.
 車両が内燃機関で走行する場合、内燃機関を低回転、低トルクで使用すると、気筒間の発生トルクの差により、サージングと呼ばれる低周波のトルク変動が生じる。これを駆動輪に伝えない為には内燃機関と変速機の間に捩じりダンパーが必要である。走行用電動モーターで内燃機関を始動する場合、走行用電動モーターと内燃機関の間にこのようなダンパーが有ると、始動時の内燃機関のトルク変動により、ダンパーが大きく動き、減速機構やダンパーから騒音を発する。従って、走行用電動モーターを始動と発電の両方に用いる場合には、このようなダンパーを走行用電動モーターと変速機の間に独立して備える必要があり、駆動ユニットの軸方向の長さが拡大する。しかし、始動装置を別に持つ本解決手段では、走行用電動モーターは始動時にはクラッチにより内燃機関と切り離されているので、走行用電動モーターと内燃機関の間にダンパーが有っても始動時のトルク変動により騒音を発することはない。従って本解決手段によれば、ダンパーは従来と同様にフライホイールと一体にできるので、ダンパーの存在が駆動ユニットの軸方向の長さに影響しない利点がある。また、このダンパーの捩じれ角を感知することにより、内燃機関単独の発生トルクを推定することも可能となる。 When a vehicle runs on an internal combustion engine, if the internal combustion engine is used at a low speed and a low torque, a low-frequency torque variation called surging occurs due to a difference in torque generated between the cylinders. In order not to transmit this to the drive wheels, a torsional damper is required between the internal combustion engine and the transmission. When starting an internal combustion engine with an electric motor for traveling, if such a damper exists between the electric motor for traveling and the internal combustion engine, the damper will move greatly due to torque fluctuations of the internal combustion engine at the time of starting, and from the deceleration mechanism and damper Makes noise. Therefore, when the electric motor for traveling is used for both starting and power generation, it is necessary to provide such a damper independently between the electric motor for traveling and the transmission, and the axial length of the drive unit is limited. Expanding. However, in the present solution having a separate starting device, since the traveling electric motor is separated from the internal combustion engine by a clutch at the time of starting, even if there is a damper between the traveling electric motor and the internal combustion engine, the torque at the time of starting No noise is generated by fluctuation. Therefore, according to this solution, since the damper can be integrated with the flywheel as in the conventional case, there is an advantage that the presence of the damper does not affect the axial length of the drive unit. It is also possible to estimate the generated torque of the internal combustion engine alone by detecting the twist angle of the damper.
 以上の様に、本課題解決手段によれば、従来の変速機のトルコンを走行用電動モーターに置き換えることによる軸方向の拡大が、ハイブリッド化した場合の駆動ユニット全体としての軸方向の拡大となるに過ぎない。そのため、内燃機関を横に配置した車両に対して、ハイブリッド車両用駆動ユニットを提供できる利点がある。中でも生産量の多い内燃機関を横に配置した前輪駆動車両に適用可能なことは利点として大きい。 As described above, according to the problem solving means, the expansion in the axial direction by replacing the torque converter of the conventional transmission with the electric motor for traveling becomes the expansion in the axial direction of the entire drive unit when hybridized. Only. Therefore, there exists an advantage which can provide the drive unit for hybrid vehicles with respect to the vehicle which has arrange | positioned the internal combustion engine sideways. Above all, it is a great advantage that it can be applied to a front-wheel drive vehicle in which an internal combustion engine with a large amount of production is arranged horizontally.
 第8の解決手段は、内燃機関を横に配置した車両の駆動ユニットの車体の前後方向の長さを維持したまま、幅方向の長さをやや短縮したハイブリッド車両用駆動ユニットを提供できる利点がある。走行用電動モーターの前後方向の寸法は変速機の寸法以下であり、クラッチと走行用電動モーターから駆動されるチェーン機構などの減速機構の厚みを、従来の変速機のトルコンの厚み以下に納めることは容易だからである。走行用電動モーターの出力を減速して使用できるので、回転レンジを内燃機関の回転レンジより高い回転数に設定でき、より小型の電動モーターを選択できる。特にV型6気筒などの大出力の内燃機関を横置きに配置するハイブリッド車両用駆動ユニットは、走行用電動モーターも大きな物が必要で、通常同じ車両への搭載が不可能である。しかし、当該解決手段による駆動ユニットであれば搭載が可能なものとなる。 The eighth solution is advantageous in that it can provide a hybrid vehicle drive unit in which the length in the width direction is slightly shortened while maintaining the longitudinal length of the vehicle drive unit in which the internal combustion engine is disposed horizontally. is there. The longitudinal dimension of the electric motor for traveling is less than the dimension of the transmission, and the thickness of the speed reduction mechanism such as the chain mechanism driven by the clutch and the electric motor for traveling should be less than the thickness of the torque converter of the conventional transmission. Because it is easy. Since the output of the traveling electric motor can be decelerated and used, the rotational range can be set to a higher rotational speed than the rotational range of the internal combustion engine, and a smaller electric motor can be selected. In particular, a drive unit for a hybrid vehicle in which a high-power internal combustion engine such as a V-type 6-cylinder is disposed horizontally requires a large electric motor for traveling, and cannot be normally mounted on the same vehicle. However, the drive unit according to the solution means can be mounted.
 また、クランク軸と走行用電動モーターの出力軸の間に捩じりダンパーを備えることで、走行用電動モーターで走行中に内燃機関が始動し、駆動力の持ち替えを行う時の減速機構にかかるトルク変化を和らげ、減速機構からの騒音の発生を抑えることが出来る。なお、当該ダンパーを走行用電動モーターと内燃機関の間に入れることができるのは、本解決手段が第7の解決手段をとることから得られる効果である。 In addition, by providing a torsional damper between the crankshaft and the output shaft of the traveling electric motor, the internal combustion engine starts during traveling with the traveling electric motor, and the speed reduction mechanism is used when the driving force is changed. Torque change can be alleviated and noise generation from the speed reduction mechanism can be suppressed. It is to be noted that the fact that the damper can be inserted between the electric motor for traveling and the internal combustion engine is an effect obtained by the present solving means taking the seventh solving means.
 第9の解決手段は、走行用電動モーターが内燃機関の始動に関わらない分、走行用電動モーターやバッテリーが小さくて済み、低コストになる。走行中の内燃機関の再始動時には内燃機関がクラッチで切り離されているので、駆動輪に再始動時の振動が伝わることが無い。モーターの効率が高く、内燃機関の回転を止めての走行が可能で、内燃機関の再始動時のエネルギーロスもないので、従来のハイブリッド車両に比べ低コストでありながら燃費の良い車両となる。特に、最も量産されている内燃機関を横に配置する前輪駆動車両を、機関停止走行が可能な燃費の良いハイブリッド車両にできる利点がある。 Ninth solution means that the traveling electric motor and the battery are small and the cost is low because the traveling electric motor is not involved in starting the internal combustion engine. Since the internal combustion engine is disengaged by the clutch at the time of restarting the traveling internal combustion engine, vibration at the time of restart is not transmitted to the drive wheels. Since the efficiency of the motor is high, the vehicle can travel while the rotation of the internal combustion engine is stopped, and there is no energy loss when the internal combustion engine is restarted, the vehicle is low in cost and high in fuel efficiency compared to a conventional hybrid vehicle. In particular, there is an advantage that a front-wheel drive vehicle in which the most mass-produced internal combustion engine is disposed laterally can be a hybrid vehicle with good fuel efficiency that can be stopped by the engine.
 特に第8の解決手段のハイブリッド駆動ユニットは軸方向の拡大が無く、前後長も従来の駆動ユニットと同じにできるので、内燃機関を横に置く車両の車体寸法を変えることなく、低コストで燃費が良い1モーター型ハイブリッド車両にすることが可能となる。走行用電動モーターを前記変速機の上部に置くことで駆動ユニットの前後長が変わらないで済む。このことは、衝突時の衝撃を吸収する車体変形代の確保の為に、車両の全長の拡大が不要となる利点となる。特に、従来は不可能であった2リットルを超える大出力の内燃機関を横置きに搭載した前輪駆動車両において、機関停止走行が可能な1モーターハイブリッド化を可能とする利点が大きい。 In particular, the hybrid drive unit of the eighth solution does not expand in the axial direction, and the longitudinal length can be the same as that of a conventional drive unit, so that the fuel consumption can be reduced at low cost without changing the body dimensions of the vehicle on which the internal combustion engine is placed sideways. It becomes possible to make a 1 motor type hybrid vehicle with good. By placing the electric motor for traveling on the top of the transmission, the longitudinal length of the drive unit does not change. This is an advantage that it is not necessary to enlarge the entire length of the vehicle in order to secure a vehicle body deformation margin that absorbs the impact at the time of collision. In particular, in a front-wheel drive vehicle in which a high-power internal combustion engine exceeding 2 liters, which has been impossible in the past, is mounted horizontally, there is a great advantage that it is possible to make a one-motor hybrid capable of engine stop travel.
図1は本発明による1実施例の内燃機関を用いた油圧始動装置の作動系統図である。(実施例1)FIG. 1 is an operation system diagram of a hydraulic starter using an internal combustion engine according to an embodiment of the present invention. Example 1 図2は同内燃機関を回転軸方向から見た正面図である。(実施例1)FIG. 2 is a front view of the internal combustion engine as viewed from the direction of the rotation axis. Example 1 図3は同内燃機関を吸気ポート側から見た側面図である。(実施例1)FIG. 3 is a side view of the internal combustion engine as viewed from the intake port side. Example 1 図4は図3のX‐X断面図である。(実施例1)4 is a sectional view taken along line XX in FIG. Example 1 図5は図3の油圧モーター部分の局部断面拡大図である。(実施例1)FIG. 5 is an enlarged local sectional view of the hydraulic motor portion of FIG. Example 1 図6は図3のユニットカバーを除いた部分の拡大図である。(実施例1)FIG. 6 is an enlarged view of a portion excluding the unit cover of FIG. Example 1 図7は図6のY‐Y断面図である。(実施例1)7 is a cross-sectional view taken along the line YY of FIG. Example 1 図8は図7のZ‐Z断面拡大図である。(実施例1)FIG. 8 is an enlarged ZZ cross-sectional view of FIG. Example 1 図9は図1の油圧始動装置を使ったアイドル停止装置付車両の駆動ユニットの電気システムの概略図である。(実施例1)FIG. 9 is a schematic diagram of an electric system of a drive unit of a vehicle with an idle stop device using the hydraulic starter of FIG. Example 1 図10は本発明による他の実施例の内燃機関を用いた油圧始動装置の作動系統図である。(実施例2)FIG. 10 is an operation system diagram of a hydraulic starter using an internal combustion engine according to another embodiment of the present invention. (Example 2) 図11は同内燃機関を吸気ポート側から見た側面図である。(実施例2)FIG. 11 is a side view of the internal combustion engine as viewed from the intake port side. (Example 2) 図12は図11のW-W断面図である。(実施例2)FIG. 12 is a WW sectional view of FIG. (Example 2) 図13は図10の油圧始動装置を使ったアイドル停止装置付車両の駆動ユニットの電気システムの作動系統図である。(実施例2)FIG. 13 is an operation system diagram of an electric system of a drive unit of a vehicle with an idle stop device using the hydraulic starter of FIG. (Example 2) 図14は本発明による他の実施例の内燃機関を吸気ポート側から見た側面図である。(実施例3)FIG. 14 is a side view of an internal combustion engine according to another embodiment of the present invention as viewed from the intake port side. Example 3 図15は図10の油圧始動装置を搭載したハイブリッド車両の駆動ユニットの電気システムの作動系統図である。(実施例4)FIG. 15 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle equipped with the hydraulic starter of FIG. (Example 4) 図16は同じ油圧始動装置を搭載した他の実施例のハイブリッド車両の駆動ユニットの電気システムの作動系統図である。(実施例5)FIG. 16 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle of another embodiment equipped with the same hydraulic starter. (Example 5) 図17は本発明による内燃機関を搭載した1実施例の車両の側面図である。(実施例6)FIG. 17 is a side view of a vehicle according to an embodiment equipped with an internal combustion engine according to the present invention. (Example 6)
 図1は本発明による1実施例の、内燃機関に取り付けられた油圧始動装置の構成部品をアイドル停止装置の再始動装置として用いる場合の系統図である。実線は油路を、点線はガス路、細線は電気信号線を示している。駆動系及び設置場所以外に特許文献4図1の例と異なる点は、高圧ポンプ50が内燃機関の潤滑油ポンプ40の下流に置かれており、そのオイルストレーナー44とオイルフィルター47を共用して用いている点が異なる。このような構成とすることで高圧ポンプ50の吸入口には一定の潤滑圧が掛るので、高圧ポンプを油面から高い所に取り付けてもエアの混入を起こさず、キャビテーションを起こさずに効率よくオイルを吸入することができる。また、潤滑油ポンプ40とオイルストレーナーやオイルフィルターを共用化でき、かつ油路を単純化できる利点がある。 FIG. 1 is a system diagram in a case where components of a hydraulic starter attached to an internal combustion engine are used as a restart device of an idle stop device according to one embodiment of the present invention. A solid line indicates an oil path, a dotted line indicates a gas path, and a thin line indicates an electric signal line. Aside from the drive system and installation location, the difference from the example of FIG. 1 of Patent Document 4 is that the high-pressure pump 50 is placed downstream of the lubricating oil pump 40 of the internal combustion engine, and the oil strainer 44 and the oil filter 47 are shared. Different points are used. By adopting such a configuration, a constant lubricating pressure is applied to the suction port of the high-pressure pump 50. Therefore, even if the high-pressure pump is mounted at a high position from the oil level, air is not mixed in, and cavitation is not caused efficiently. Oil can be inhaled. In addition, there is an advantage that the lubricating oil pump 40, the oil strainer and the oil filter can be shared, and the oil passage can be simplified.
 また、圧力スイッチに変えて圧力センサー67を採用している。ここでの圧力センサー67には、一定の圧力で電圧が切り替わる圧力スイッチが含まれ、間接的に圧力を感知するアキュムレータ内部のガス容積若しくはオイル量を検出するセンサーやスイッチを含む概念である。本実施例では、圧力センサー67がアキュムレータ65のガス圧を検出し、信号がECU34に送られ、ECU34は圧力が下がったと判断すればポンプ駆動用電動機のリレー35に通電し、内燃機関1に搭載されたポンプ駆動用電動機51を回転させる。他の入力信号、例えば走行状態や気温、アキュムレータ温度の信号をECU34に送ることにより、これらの値の変化に対して高圧ポンプ50の作動を調整することが可能である。圧力や油量が一定以下に下がったらリレー35に通電するだけの単純なロジックで良ければ、ECU34を介さずとも当該ポンプ駆動用電動機の作動は可能である。 Also, a pressure sensor 67 is adopted instead of the pressure switch. Here, the pressure sensor 67 includes a pressure switch that switches a voltage at a constant pressure, and includes a sensor and a switch that detect a gas volume or an oil amount inside the accumulator that indirectly senses the pressure. In this embodiment, the pressure sensor 67 detects the gas pressure of the accumulator 65, and a signal is sent to the ECU 34. When the ECU 34 determines that the pressure has dropped, the relay 35 of the pump drive motor is energized and mounted on the internal combustion engine 1. The pump drive motor 51 thus rotated is rotated. It is possible to adjust the operation of the high-pressure pump 50 with respect to changes in these values by sending other input signals, such as signals of the running state, temperature, and accumulator temperature, to the ECU 34. If a simple logic that only energizes the relay 35 when the pressure or the oil amount falls below a certain level is sufficient, the pump drive motor can be operated without the ECU 34.
 内燃機関の始動はECU34により制御されている。図9、図15を合わせて参照されたい。ECU34は、通常の車両であればアクセル開度や車速により、ハイブリット車であれば更にバッテリーの状態も感知して、内燃機関に取り付けられた電磁弁70に通電し、アキュムレータ65から高圧オイルを油圧モーター80に供給する。高圧オイルの供給を受けた油圧モーター80が回転すると、その回転は減速機構87により減速され、一方向クラッチ89を介して潤滑油ポンプ軸41を回転させる。そこから潤滑油ポンプの動力伝達機構であるチェーン26を介して更に減速してクランク軸20を駆動し、内燃機関1を起動する。 The start of the internal combustion engine is controlled by the ECU 34. Please refer to FIG. 9 and FIG. 15 together. The ECU 34 senses the state of the battery in the case of a hybrid vehicle if it is a normal vehicle, and further senses the state of the battery, and energizes the electromagnetic valve 70 attached to the internal combustion engine to hydraulically supply high-pressure oil from the accumulator 65. Supply to motor 80. When the hydraulic motor 80 supplied with the high-pressure oil rotates, the rotation is decelerated by the speed reduction mechanism 87, and the lubricating oil pump shaft 41 is rotated via the one-way clutch 89. From there, the speed is further reduced through a chain 26 which is a power transmission mechanism of the lubricating oil pump, the crankshaft 20 is driven, and the internal combustion engine 1 is started.
 図2は本実施例の始動用油圧モーターを備えた4サイクル4気筒の内燃機関1のオイルパン11を外した状態を回転軸方向から見た正面図である。オイルパン11と油面13を二点鎖線で示した。以下の図でも同様である。ACG91とエアコン用コンプレッサー92とこれらを駆動するベルト93も2点鎖線で示してある。クランク軸20はシリンダーブロック15とクランクケース17で挟まれた形で支えられている。潤滑油ポンプ40はクランクケース17に下から取り付けられている。クランク軸20にはドライブスプロケット25があり、潤滑油ポンプ軸41をドリブンスプロケット27とチェーン26を介して増速駆動している。 FIG. 2 is a front view of the four-cycle four-cylinder internal combustion engine 1 equipped with the starting hydraulic motor according to the present embodiment as seen from the direction of the rotation axis. The oil pan 11 and the oil surface 13 are indicated by a two-dot chain line. The same applies to the following figures. The ACG 91, the air conditioner compressor 92, and the belt 93 for driving them are also indicated by a two-dot chain line. The crankshaft 20 is supported by being sandwiched between the cylinder block 15 and the crankcase 17. The lubricating oil pump 40 is attached to the crankcase 17 from below. The crankshaft 20 includes a drive sprocket 25 that drives the lubricating oil pump shaft 41 at an increased speed via a driven sprocket 27 and a chain 26.
 潤滑油ポンプ40は、オイルストレーナー44からオイルを吸い込み、縦油路45にオイルを供給している。当該縦油路45は、クランクケース17内で横油路46に接続し、横油路46の先にあるオイルフィルター47に潤滑油を送り込む。オイルフィルター47を通過したオイルは再度クランクケース17内に戻り、メインギャラリー48に送られる。 The lubricating oil pump 40 sucks oil from the oil strainer 44 and supplies the oil to the vertical oil passage 45. The vertical oil passage 45 is connected to the horizontal oil passage 46 in the crankcase 17, and feeds lubricating oil to the oil filter 47 at the tip of the horizontal oil passage 46. The oil that has passed through the oil filter 47 returns again into the crankcase 17 and is sent to the main gallery 48.
 図3は図2の内燃機関の吸気側の側面図である。オイルフィルターと吸気管は省略してある。点線で示したメインギャラリー48は内燃機関1をほぼ横断しており、ここを経由して当該内燃機関1の各部の潤滑を行う。本実施例では高圧ポンプと電磁弁が後述するユニット53に一体に構成され、ユニットカバー77にポンプ駆動用電動機51とソレノイド78が取り付けられている。油圧モーター80は、潤滑油ポンプ40にジョイントケース82を介してポルトで取り付けられ一体となっている。このように油圧モーター80と潤滑油ポンプ40は一体の部品としてクランクケース17に下から組み付けることができ、油室10内に置かれる。組み付け後、従来の内燃機関と同様にオイルパン11を下から取り付けることができる。 FIG. 3 is a side view of the intake side of the internal combustion engine of FIG. The oil filter and intake pipe are omitted. A main gallery 48 indicated by a dotted line substantially crosses the internal combustion engine 1 and lubricates each part of the internal combustion engine 1 through the main gallery 48. In the present embodiment, a high-pressure pump and a solenoid valve are integrally formed in a unit 53 described later, and a pump driving motor 51 and a solenoid 78 are attached to a unit cover 77. The hydraulic motor 80 is attached to and integrated with the lubricating oil pump 40 via a joint case 82. As described above, the hydraulic motor 80 and the lubricating oil pump 40 can be assembled to the crankcase 17 from below as an integral part, and are placed in the oil chamber 10. After the assembly, the oil pan 11 can be attached from the bottom as in the conventional internal combustion engine.
 直列3気筒、4気筒の内燃機関の場合、このように吸気側にアキュムレータ65、ソレノイド78、ポンプ駆動用電動機51を配置するのが適当である。排気側に配置すると、排気触媒のケースが来るので、これらの構成部品のいずれかと干渉することになる。V型6気筒の場合は、内燃機関の前後に排気管が来るので、排気触媒を避ける為にアキュムレータ65とソレノイド78はもっと変速機側に寄せて置き、ポンプ駆動用電動機51は別バンクのシリンダーの変速機側か、油室内などの他の場所に移す必要がある。 In the case of an in-line 3-cylinder, 4-cylinder internal combustion engine, it is appropriate to arrange the accumulator 65, the solenoid 78, and the pump drive motor 51 on the intake side as described above. When placed on the exhaust side, the exhaust catalyst case comes and will interfere with any of these components. In the case of the V type 6 cylinder, the exhaust pipes come before and after the internal combustion engine, so that the accumulator 65 and the solenoid 78 are placed closer to the transmission side to avoid the exhaust catalyst, and the pump drive motor 51 is a cylinder in another bank. It must be moved to the other side of the transmission or in the oil chamber.
 図4は図3のX‐X断面図である。ただし、アキュムレータ65は断面にしておらず、シリンダーヘッドから上は省略されている。メインギャラリー48から高圧ポンプへのオイル供給油路59はオイルの供給を受けている。アキュムレータ65は内燃機関のシリンダーブロック15の外壁に外部から取り外し可能な形で固定されている。アキュムレータ65内部の高圧油は、高圧油管66を通じてユニットカバー77に供給され、高圧油路61を通じて油圧供給弁71側に供給されている。油圧供給弁71に送られた高圧オイルは、油圧供給弁71の高圧油路61を通して油圧供給弁71の主バルブ73に送られ、主バルブ73内部の穴を通してボール状のプライマリーバルブ72に供給されている。ソレノイド78に通電すると、ソレノイド78からロッドが突き出し、プライマリーバルブ72を図の位置から左に移動させる。すると主バルブ73の背面の圧力が下がり、主バルブ73が右に移動し、当該バルブが開き、高圧オイルがパイプで構成されたモーター駆動油管75を通り、油圧モーター80に送られる。 FIG. 4 is a sectional view taken along line XX in FIG. However, the accumulator 65 is not in cross section and is omitted from the cylinder head. An oil supply oil passage 59 from the main gallery 48 to the high pressure pump is supplied with oil. The accumulator 65 is fixed to the outer wall of the cylinder block 15 of the internal combustion engine so as to be removable from the outside. The high pressure oil in the accumulator 65 is supplied to the unit cover 77 through the high pressure oil pipe 66 and is supplied to the hydraulic pressure supply valve 71 side through the high pressure oil passage 61. The high-pressure oil sent to the hydraulic supply valve 71 is sent to the main valve 73 of the hydraulic supply valve 71 through the high-pressure oil passage 61 of the hydraulic supply valve 71 and supplied to the ball-shaped primary valve 72 through the hole inside the main valve 73. ing. When the solenoid 78 is energized, the rod protrudes from the solenoid 78 and moves the primary valve 72 to the left from the position shown in the figure. Then, the pressure on the back surface of the main valve 73 decreases, the main valve 73 moves to the right, the valve opens, and high-pressure oil passes through the motor drive oil pipe 75 constituted by a pipe and is sent to the hydraulic motor 80.
 図5は図3の油圧モーター80部分の局部断面拡大図である。油圧モーター80はそのモーターハウジング85にピストン84を5つ有する固定斜板式で、斜板ベアリング83が油圧で右に押し出されるピストンを押さえている。ピストンの合計の行程容積は8ccで、油圧モーター80は3000rpmまで回り、そのときの出力は10KWを超える。 FIG. 5 is an enlarged local sectional view of the hydraulic motor 80 portion of FIG. The hydraulic motor 80 is a fixed swash plate type having five pistons 84 in its motor housing 85, and a swash plate bearing 83 presses the piston pushed rightward by hydraulic pressure. The total stroke volume of the piston is 8 cc, the hydraulic motor 80 rotates up to 3000 rpm, and the output at that time exceeds 10 KW.
 以下、図4と合わせて見てもらいたい。油圧モーター80の油圧モーター軸81と潤滑油ポンプ40の潤滑油ポンプ軸41は同軸上に配置され、減速機構はプラネタリーギヤ88で構成されている。ジョイントケース82にはプラネタリーギヤのリングギヤ88Rが一体に形成されている。油圧モーター軸81が回転すると、これと一体に設けられたサンギヤ88Sが回転し、キャリア88Cが同一方向に減速回転し、これと一体の一方向クラッチ89の内輪90が回転する。本実施例では、一方向クラッチ89はスプラグ式のものが使われており、外輪が停止している状態ではスプリング力によりスプラグが噛み合う方向に倒され、内輪と外輪の両方に押し付けられている。油圧モーターが回り内輪90が回ると、このスプラグが噛み合い、内輪90は外輪41bと一体となり回転する。外輪41bは潤滑油ポンプ軸41と一体に形成されており、潤滑油ポンプ軸41が更にドリブンスブロケット27からチェーン26を介してクランク軸20を駆動し、内燃機関を始動する。本実施例では、油圧モーター軸81が3000rpmで回転したとき、クランク軸20は600rpmで回転する。 I would like you to see below together with Figure 4. The hydraulic motor shaft 81 of the hydraulic motor 80 and the lubricating oil pump shaft 41 of the lubricating oil pump 40 are arranged on the same axis, and the speed reduction mechanism is constituted by a planetary gear 88. The joint case 82 is integrally formed with a planetary gear ring gear 88R. When the hydraulic motor shaft 81 rotates, the sun gear 88S provided integrally therewith rotates, the carrier 88C rotates at a reduced speed in the same direction, and the inner ring 90 of the one-way clutch 89 integrated therewith rotates. In this embodiment, a sprag type clutch 89 is used as the one-way clutch 89. When the outer ring is stopped, the sprag is tilted in a direction in which the sprag is engaged by a spring force and pressed against both the inner ring and the outer ring. When the hydraulic motor rotates and the inner ring 90 rotates, the sprags mesh with each other, and the inner ring 90 rotates integrally with the outer ring 41b. The outer ring 41b is formed integrally with the lubricating oil pump shaft 41, and the lubricating oil pump shaft 41 further drives the crankshaft 20 from the dribbling rocket 27 via the chain 26 to start the internal combustion engine. In the present embodiment, when the hydraulic motor shaft 81 rotates at 3000 rpm, the crankshaft 20 rotates at 600 rpm.
 内燃機関の始動後、油圧モーター80は停止するが、一方向クラッチ89のスプラグの噛み合いが外れることにより、一方向クラッチ89は内輪90と外輪41bの相対回転を許し、潤滑油ポンプ軸41とクランク軸20は回転を続けることが出来る。本実施例の一方向クラッチ89のスプラグは外輪41bが回転すると、この外輪41bと共に回転し、遠心力により噛みあいが外れる方向に傾き、前記スプリング力を打消し、スプラグと内輪90とのフリクションが減る。 After the internal combustion engine is started, the hydraulic motor 80 stops. However, the disengagement of the sprags of the one-way clutch 89 causes the one-way clutch 89 to rotate relative to the inner ring 90 and the outer ring 41b. The shaft 20 can continue to rotate. When the outer ring 41b rotates, the sprag of the one-way clutch 89 of this embodiment rotates together with the outer ring 41b, tilts in a direction that disengages due to centrifugal force, cancels the spring force, and the friction between the sprag and the inner ring 90 occurs. decrease.
 図6は図3のユニットカバー77部分を拡大し、ポンプ駆動用電動機51、ソレノイド78及びユニットカバー77を省略した状態を示す部分拡大図である。ユニット53には、高圧ポンプ50のハウジングと、油圧供給弁71のハウジングが一体で構成されている。 FIG. 6 is a partially enlarged view showing a state in which the unit cover 77 portion of FIG. 3 is enlarged and the pump driving motor 51, the solenoid 78, and the unit cover 77 are omitted. In the unit 53, a housing of the high pressure pump 50 and a housing of the hydraulic pressure supply valve 71 are integrally formed.
 内燃機関は各部に潤滑油が供給され、潤滑油は自重でオイルパンに戻るようになっている。図4、図7も合わせて参照されたいが、本実施例の内燃機関では、油圧始動装置の構成部品の内、チェックパルブ62,63、油圧供給弁71及び高圧ポンプ50などの油圧構成部材は油室10に対し戻り穴9で連通した空間にある。そのため、これらの部品からオイルが排出されても、オイルは自重でオイルパンに戻る。 The internal combustion engine is supplied with lubricating oil to each part, and the lubricating oil returns to the oil pan by its own weight. 4 and 7 together, in the internal combustion engine of the present embodiment, among the components of the hydraulic starter, the hydraulic components such as the check valves 62 and 63, the hydraulic supply valve 71 and the high pressure pump 50 are It is in a space communicating with the oil chamber 10 through the return hole 9. Therefore, even if oil is discharged from these parts, the oil returns to the oil pan by its own weight.
 図7に図6の高圧ポンプ部のY-Y部分断面図を示す。ユニットカバー77内の減速機構52が断面で示され、ポンプ駆動用電動機51が非断面で描かれている。一点鎖線はユニット53の手前側の形状を示している。ユニットカバー77にユニット53を左からボルトで締めつけた状態で、ユニットカバー77ごとシリンダーブロック15に取り付ける。減速機52の内部は潤滑されておらず、約80対1の減速比を持つ不思議歯車減速機構がある。右側のリングギヤ52R1は減速機52のハウジングを構成しているユニットカバー77に固定され、左側のリングギヤ52R2は高圧ポンプ軸54と一体となっている。ポンプ駆動用電動機51がサンギヤ52Sを8000rpmで回すと、フリーになっているキャリア52Cは2700rpm程度で回り、高圧ポンプ軸54はおおよそ100rpmで回転する。 FIG. 7 shows a YY partial cross-sectional view of the high-pressure pump portion of FIG. The speed reduction mechanism 52 in the unit cover 77 is shown in section, and the pump driving motor 51 is shown in non-section. An alternate long and short dash line indicates the shape of the front side of the unit 53. The unit 53 is attached to the cylinder block 15 together with the unit cover 77 in a state where the unit 53 is fastened to the unit cover 77 with a bolt from the left. The inside of the reduction gear 52 is not lubricated, and there is a mysterious gear reduction mechanism having a reduction ratio of about 80 to 1. The right ring gear 52R1 is fixed to a unit cover 77 constituting the housing of the speed reducer 52, and the left ring gear 52R2 is integrated with the high pressure pump shaft 54. When the pump driving motor 51 rotates the sun gear 52S at 8000 rpm, the free carrier 52C rotates at about 2700 rpm, and the high-pressure pump shaft 54 rotates at about 100 rpm.
 図8は図7のユニット53のZ-Z断面拡大図を示す。高圧ポンプ50はプランジャー型ポンプになっている。図7に有るように2つカム54aと54bが高圧ポンプ軸54上に一体に設けられ、それぞれ別のプランジャー55を動かしている。各プランジャー55はスプリング58で押され、ロッカーアーム57を挟んでカム54aの動きに倣い左右に搖動する。プランジャー55に繋がる油路にはオイルの逆流を阻止する吸入側チェックバルブ62と吐出側チェックバルブ63が設けられており、プランジャー55が搖動することで供給油路59から高圧油路61にオイルを送り込む。オイル漏れを減らすため、各プランジャー55には油圧シール56が設けられている。2つのカム54a,54bは登り側の傾斜が緩やかに設定されており、180°位相を変える事で各プランジャーのオイル吐出が連続し、高圧ポンプ軸54の駆動トルクが平滑になるようにしている。各プランジャー55の行程容積は約1ccなので、高圧ポンプ50は機関始動1回分の30ccのオイルを15回転、すなわち9秒程度で充填することができる。 FIG. 8 shows an enlarged ZZ cross-sectional view of the unit 53 of FIG. The high-pressure pump 50 is a plunger type pump. As shown in FIG. 7, two cams 54 a and 54 b are integrally provided on the high-pressure pump shaft 54 to move different plungers 55. Each plunger 55 is pushed by a spring 58 and swings to the left and right following the movement of the cam 54a with the rocker arm 57 interposed therebetween. The oil passage connected to the plunger 55 is provided with a suction side check valve 62 and a discharge side check valve 63 that prevent backflow of oil, and when the plunger 55 swings, the supply oil passage 59 changes to the high pressure oil passage 61. Feed oil. In order to reduce oil leakage, each plunger 55 is provided with a hydraulic seal 56. The two cams 54a and 54b are set so that the inclination on the climbing side is moderate, and by changing the phase by 180 °, the oil discharge of each plunger is continued and the driving torque of the high-pressure pump shaft 54 becomes smooth. Yes. Since the stroke volume of each plunger 55 is about 1 cc, the high-pressure pump 50 can be filled with 30 cc of oil for one engine start in 15 rotations, that is, about 9 seconds.
 図9は本実施例の内燃機関を搭載したアイドル停止機能を有する車両の駆動ユニットの電気システムの作動系統図である。駆動力は変速機2から左右の車軸3を介して左右の駆動輪4に伝達される。車両の速度が落ちると、ECU34は内燃機関1の停止動作に入る。内燃機関1への燃料の供給を止め、スロットルバルブを逆に少し開き、膨張行程の初期に吸気バルブを開くカムに切換える。切換ユニット29によりACG91の負荷をバッテリー31から電気抵抗に変え端子電圧を下げ、ACG91の負荷トルクを高め、要、不要にかかわらずエアコン用コンプレッサーの負荷を掛ける。これらの作動により内燃機関のフリクションを高め、内燃機関を速やかに停止させる。 FIG. 9 is an operation system diagram of an electric system of a vehicle drive unit equipped with the internal combustion engine of this embodiment and having an idle stop function. The driving force is transmitted from the transmission 2 to the left and right drive wheels 4 via the left and right axles 3. When the speed of the vehicle decreases, the ECU 34 enters a stop operation of the internal combustion engine 1. The supply of fuel to the internal combustion engine 1 is stopped, the throttle valve is slightly opened reversely, and the cam is switched to open the intake valve at the beginning of the expansion stroke. The switching unit 29 changes the load of the ACG 91 from the battery 31 to an electric resistance, lowers the terminal voltage, increases the load torque of the ACG 91, and applies the load of the air conditioner compressor regardless of necessity. By these operations, the friction of the internal combustion engine is increased and the internal combustion engine is quickly stopped.
 油圧始動装置の作動は図1と同様である。運転者がアクセル30を踏むと、ECU34は電磁弁70に通電し、内燃機関1を再起動する。それから、内燃機関1の駆動力により変速機2にある発進機能を備えたクラッチ36若しくはトルコンを用いて発進する。本実施例の場合、従来の電動スターター39も備えられており、起動時にはキースイッチ32で電動スターターリレー33を作動させ、電動スターター39に通電し、一旦内燃機関1を始動する。その後、内燃機関1の暖気状態等により、ECU34が判断し、アイドリングが不要と判断すれば、内燃機関を停止する。 The operation of the hydraulic starter is the same as in FIG. When the driver steps on the accelerator 30, the ECU 34 energizes the electromagnetic valve 70 and restarts the internal combustion engine 1. Then, the vehicle is started using the clutch 36 or the torque converter provided with the starting function in the transmission 2 by the driving force of the internal combustion engine 1. In the case of the present embodiment, a conventional electric starter 39 is also provided. At the time of activation, the electric starter relay 33 is operated by the key switch 32, the electric starter 39 is energized, and the internal combustion engine 1 is once started. Thereafter, if the ECU 34 determines from the warm-up state of the internal combustion engine 1 and the like and determines that idling is not necessary, the internal combustion engine is stopped.
 本実施例では、内燃機関が起動中の場合のみ、高圧ポンプに潤滑ポンプからオイルが供給される。従って、高圧ポンプを作動させられるのは内燃機関の起動中に限定される。内燃機関が起動していなければアキュムレータにオイルを充填できないことは、構造は異なるが特許文献2や特許文献3の油圧始動装置と同様である。これらの始動装置は、故障時等にアキュムレータ内部にオイルが無くなってしまった場合には、修理後も内燃機関を始動することができない。このような時に、外部から高圧オイルを供給しない限り内燃機関を始動することが出来ないのでは不都合があるので、従来の電動スターターも残しておく必要がある。従って、始動装置を2つ設置しなければならないという無駄が生じる。この点を改善したものが、以下の実施例である。 In this embodiment, oil is supplied from the lubrication pump to the high-pressure pump only when the internal combustion engine is running. Therefore, the high-pressure pump can be operated only during the startup of the internal combustion engine. The fact that the accumulator cannot be filled with oil unless the internal combustion engine is started is similar to the hydraulic starter disclosed in Patent Document 2 and Patent Document 3, although the structure is different. These starting devices cannot start the internal combustion engine even after the repair if the oil is lost in the accumulator at the time of failure or the like. In such a case, it is inconvenient if the internal combustion engine cannot be started unless high-pressure oil is supplied from the outside. Therefore, it is necessary to leave a conventional electric starter. Therefore, there is a waste of having to install two starters. The following examples improve this point.
 図10は別の実施例の内燃機関に取り付けられた油圧始動装置の構成部品をアイドル停止装置の再始動装置として用いる場合の制御系統図である。内燃機関1をより早く停止させるシステムは図9の実施例1と同様である。実施例1とは異なり高圧ポンプ50は潤滑ポンプの下流には無く、専用のオイルフィルター60を有し、直接油室のオイルを吸入する。本始動装置の場合、アキュムレータ内にオイルが無い場合には、まずリレー35に通電し、ポンプ駆動用電動機を回し、高圧ポンプによりアキュムレータにオイルを一定量以上充填することにより、内燃機関1を始動することが出来る。そのため、従来の電動スターターを省略可能な利点がある。電動スターターのように大電流を必要とせず、9秒程度で1回分の始動用の油圧を充填できればよいので、電動スターターを搭載したものと比べ、バッテリー31は最大出力が低くても良く、小型化や高寿命化を図ることができる利点がある。 FIG. 10 is a control system diagram in the case where the components of the hydraulic starting device attached to the internal combustion engine of another embodiment are used as the restarting device of the idle stop device. A system for stopping the internal combustion engine 1 earlier is the same as that of the first embodiment of FIG. Unlike the first embodiment, the high-pressure pump 50 is not located downstream of the lubrication pump but has a dedicated oil filter 60 and directly sucks oil in the oil chamber. In the case of this starting device, when there is no oil in the accumulator, the relay 35 is first energized, the pump driving motor is turned on, and the accumulator is filled with a certain amount or more of oil by a high-pressure pump to start the internal combustion engine 1. I can do it. Therefore, there is an advantage that the conventional electric starter can be omitted. The battery 31 does not require a large current like an electric starter, and only needs to be able to fill the hydraulic pressure for starting once in about 9 seconds. Therefore, the battery 31 may have a lower maximum output than a battery equipped with an electric starter, and is compact. There is an advantage that a longer life and longer life can be achieved.
 図11はその高圧ポンプ50、減速機52とポンプ駆動用電動機51の取り付け状態を示す内燃機関の側面図である。 FIG. 11 is a side view of the internal combustion engine showing how the high-pressure pump 50, the speed reducer 52, and the pump driving motor 51 are attached.
 図12は図11のW-W断面図である。シリンダーヘッドより上は省略されている。高圧ポンプ50は減速機52と組み合わされて、クランクケース17に対して下側から油面13の近傍に取り付けられている。高圧ポンプ50を取り付けた後に、通常の内燃機関と同様にオイルパン11を下から取り付けることが出来る。高圧ポンプの回転軸を縦に取り付けることで、オイルパン11を組み付けた状態で、内燃機関の外側からポンプ駆動用電動機51を着脱することができる。 FIG. 12 is a WW sectional view of FIG. Above the cylinder head is omitted. The high-pressure pump 50 is combined with the speed reducer 52 and attached to the crankcase 17 in the vicinity of the oil level 13 from below. After the high-pressure pump 50 is attached, the oil pan 11 can be attached from the bottom in the same manner as a normal internal combustion engine. By attaching the rotary shaft of the high-pressure pump vertically, the pump driving motor 51 can be attached and detached from the outside of the internal combustion engine with the oil pan 11 assembled.
 図13は本実施例の内燃機関を搭載したアイドル停止機能を有する車両の駆動ユニットの電気システムの作動系統図である。車両起動時にキースイッチ32を回した場合でも、ECU34はその時の車両の状態、例えばアクセル30の状態や内燃機関の暖気状態などにより、内燃機関1を始動する必要が無いと判断すれば内燃機関を始動しない。車両の状態により内燃機関1を始動する必要があると判断すると、電磁弁70に通電し、高圧オイルを油圧モーターに供給し、内燃機関1を始動する。 FIG. 13 is an operation system diagram of an electric system of a vehicle drive unit equipped with the internal combustion engine of this embodiment and having an idle stop function. Even when the key switch 32 is turned at the time of starting the vehicle, the ECU 34 determines that it is not necessary to start the internal combustion engine 1 according to the state of the vehicle at that time, for example, the state of the accelerator 30 or the warm-up state of the internal combustion engine. Does not start. If it is determined that it is necessary to start the internal combustion engine 1 according to the state of the vehicle, the electromagnetic valve 70 is energized, high pressure oil is supplied to the hydraulic motor, and the internal combustion engine 1 is started.
 図14は別の実施例の内燃機関の側面図で、高圧ポンプ50とポンプ駆動用電動機51の取り付け状態を示している。本実施例では、高圧ポンプ50と減速機52とポンプ駆動用電動機51が組み合わせた状態で、クランクケース17に対して下から組み付けている。実施例2の場合と同様に、高圧ポンプ50取り付け後にオイルパン11を下から取り付けることが出来る。V型6気筒の場合等、内燃機関の壁面にスペースが無い場合に有利な配置である。従来の電動スターターが省略可能な理由や、当該内燃機関を利用したアイドル停止機能を有する車両のシステムは、図13と同様である。 FIG. 14 is a side view of an internal combustion engine according to another embodiment, showing a state in which the high pressure pump 50 and the pump driving motor 51 are attached. In this embodiment, the high pressure pump 50, the speed reducer 52, and the pump driving motor 51 are combined with each other from the bottom with respect to the crankcase 17. As in the case of the second embodiment, the oil pan 11 can be attached from below after the high-pressure pump 50 is attached. This arrangement is advantageous when there is no space on the wall of the internal combustion engine, such as in the case of a V-type 6 cylinder. The reason why the conventional electric starter can be omitted and the vehicle system having an idle stop function using the internal combustion engine are the same as those in FIG.
 図15は第10図の油圧始動装置を搭載したハイブリッド車両の駆動ユニットの電気システムの作動系統図である。従来の電動スターター39が省略できる理由と、アイドル停止装置の作動は、実施例2と同様である。本図の内燃機関を実施例3の内燃機関に置き換えても同様である。 FIG. 15 is an operation system diagram of the electric system of the drive unit of the hybrid vehicle equipped with the hydraulic starter of FIG. The reason why the conventional electric starter 39 can be omitted and the operation of the idle stop device are the same as those in the second embodiment. The same applies when the internal combustion engine of the figure is replaced with the internal combustion engine of the third embodiment.
 車両起動時にキースイッチ32を回すと、ECU34はその時の車両の状態により、必要と判断した場合には電磁弁70に通電し内燃機関1を始動するが、必要が無いと判断すれば始動しないのは実施例2と同様であるが、本実施例ではハイブリッド用バッテリーの充電状態も判断要素になる。本実施例では、内燃機関1が停止していても、走行用電動モーター38のみで変速機2の入力軸を回すことが出来、発進、走行が可能である。ダンパー95は従来と同様に内燃機関のフライホイールと一体になっている。走行用電動モーター38のローター内部には一方向クラッチ37があり、変速機2から潤滑オイルが供給されている。内燃機関1が始動し、回転が電動モーター38に追いつくと、電動モーター38は内燃機関の駆動力分トルクを下げ、一方向クラッチ37の結合ショックを緩和する。 When the key switch 32 is turned at the time of starting the vehicle, the ECU 34 energizes the electromagnetic valve 70 to start the internal combustion engine 1 when it is determined necessary according to the state of the vehicle at that time, but does not start when it is determined that it is not necessary. Is the same as in the second embodiment, but in this embodiment, the state of charge of the hybrid battery is also a determining factor. In the present embodiment, even when the internal combustion engine 1 is stopped, the input shaft of the transmission 2 can be rotated only by the traveling electric motor 38, and the vehicle can start and travel. The damper 95 is integrated with the flywheel of the internal combustion engine as in the prior art. A one-way clutch 37 is provided inside the rotor of the traveling electric motor 38, and lubricating oil is supplied from the transmission 2. When the internal combustion engine 1 starts and the rotation catches up with the electric motor 38, the electric motor 38 reduces the torque corresponding to the driving force of the internal combustion engine and alleviates the combined shock of the one-way clutch 37.
 4サイクル内燃機関の場合、走行や発電に出力が要求されるときは、1200rpm以上回転していないとノッキングが発生する。ハイブリッド車両の場合、単に次の発進や加速の為にエンジンを回しておくアイドリングの必要が無く、必要があるとしても暖気運転の時くらいである。そのため、アイドル燃費向上の為にアイドル回転数を600rpmまで下げる必要性に乏しい。内燃機関の場合、アイドル回転数が高くて良ければクランク軸の回転慣性質量を減らせ、再始動する場合に同じ出力の始動装置でより短時間に回転数を高めることができ、より素早く要求される出力を得ることができる。本実施例によるクランク軸は、通常の内燃機関のクランク軸の半分程度の回転慣性質量にしてあり、油圧モーターが3000rpmの時、クランク軸が1000rpmになるように油圧モーターからの減速比を下げている。 In the case of a 4-cycle internal combustion engine, when output is required for running or power generation, knocking occurs if the engine does not rotate at 1200 rpm or more. In the case of a hybrid vehicle, there is no need for idling to turn the engine for the next start or acceleration, and it is only during warm-up operation if necessary. Therefore, there is little need to reduce the idle speed to 600 rpm in order to improve idle fuel consumption. In the case of an internal combustion engine, if the idling speed can be high, the rotational inertia mass of the crankshaft can be reduced, and when restarting, the speed can be increased in a shorter time with the same output starter, which is required more quickly. Output can be obtained. The crankshaft according to this embodiment has a rotational inertia mass that is about half that of a crankshaft of a normal internal combustion engine. When the hydraulic motor is 3000 rpm, the reduction ratio from the hydraulic motor is lowered so that the crankshaft is 1000 rpm. Yes.
 実施例1の内燃機関に置き換えた場合は、図上には必要な電動スターター39が省略されていると理解してもらいたい。この場合には、起動時にはキースイッチで電動スターターリレーを作動させ、電動スターターに通電し一旦内燃機関1を起動し、内燃機関1の暖気状態等により、ECU34が判断し、内燃機関を停止する。 When the internal combustion engine of the first embodiment is replaced, it should be understood that the necessary electric starter 39 is omitted from the drawing. In this case, the electric starter relay is actuated by a key switch at the time of activation, the electric starter is energized to once activate the internal combustion engine 1, and the ECU 34 makes a judgment based on the warm-up state of the internal combustion engine 1, etc., and stops the internal combustion engine.
 図16は別の実施例のハイブリッド車両の駆動ユニットの電気システムの作動系統図である。内燃機関は、実施例2の内燃機関でも、実施例3の内燃機関でも同様である。ここでチェーン機構98と一方向クラッチ37は変速機2から潤滑オイルの供給を受けている。走行用電動モーター38が変速機2に対してその上部に固定され、走行用電動モーター38の出力軸から減速機構としてのチェーン機構98を介して変速機2の入力軸を駆動すること以外、システム構成と機能は実施例4と同様である。 FIG. 16 is an operation system diagram of an electric system of a drive unit of a hybrid vehicle according to another embodiment. The internal combustion engine is the same in both the internal combustion engine of the second embodiment and the internal combustion engine of the third embodiment. Here, the chain mechanism 98 and the one-way clutch 37 are supplied with lubricating oil from the transmission 2. The driving electric motor 38 is fixed to the upper part of the transmission 2, and the system is other than driving the input shaft of the transmission 2 from the output shaft of the driving electric motor 38 via the chain mechanism 98 as a speed reduction mechanism. The configuration and function are the same as in the fourth embodiment.
 実施例1の内燃機関に置き換えた場合は、図上には必要な電動スターター39が省略されていると理解してもらいたい。この場合には、起動時にはキースイッチで電動スターターリレーを作動させ、電動スターターに通電し一旦内燃機関1を起動し、内燃機関1の暖気状態等により、ECU34が判断し、内燃機関を停止する。 When the internal combustion engine of the first embodiment is replaced, it should be understood that the necessary electric starter 39 is omitted from the drawing. In this case, the electric starter relay is actuated by a key switch at the time of activation, the electric starter is energized to once activate the internal combustion engine 1, and the ECU 34 makes a judgment based on the warm-up state of the internal combustion engine 1, etc., and stops the internal combustion engine.
 図17は本発明による内燃機関を搭載した1実施例の車両の側面図である。本図は図9、図13、図15、図16の駆動ユニットのいずれかを使用した車両の側面図になっている。図16の駆動ユニットを使用した車両の場合は、二点鎖線で示す位置に走行用電動モーター38が存在する。 FIG. 17 is a side view of a vehicle according to an embodiment equipped with an internal combustion engine according to the present invention. This figure is a side view of a vehicle using any of the drive units of FIGS. 9, 13, 15, and 16. FIG. In the case of a vehicle using the drive unit of FIG. 16, the traveling electric motor 38 is present at the position indicated by the two-dot chain line.
 本発明により、回転軸方向の拡大を抑えながら油圧始動装置の構成する部品を備えた内燃機関を得ることができる。当該内燃機関を利用することにより、従来の車両と同じ大きさで、始動時間が短いアイドル停止装置を備えた車両を得られる。同様に、当該内燃機関を利用して、従来の車両と同じ大きさで、走行時に内燃機関の回転を止めることのできる、燃費が優れた1モーター型のハイブリッド車両を得られる。  According to the present invention, it is possible to obtain an internal combustion engine including components constituting the hydraulic starter while suppressing expansion in the rotation axis direction. By using the internal combustion engine, a vehicle having an idle stop device having the same size as a conventional vehicle and a short start time can be obtained. Similarly, by using the internal combustion engine, a one-motor hybrid vehicle having the same size as a conventional vehicle and capable of stopping the rotation of the internal combustion engine when traveling can be obtained. *
  1 内燃機関
  2 変速機
  3 車軸
  4 駆動輪
  5 油路
  6 電気線
  8 車体
  9 戻り穴
 10 油室
 11 オイルパン
 12 潤滑油
 13 油面
 14 カムチェーン
 15 シリンダーブロック
 16 シリンダーヘッド
 17 クランクケース
 18 吸気管
 20 クランク軸
 25 ドライブスプロケット
 26 チェーン
 27 ドリブンスプロケット
 29 切換ユニット
 30 アクセル
 31 バッテリー
 32 キースイッチ
 33 電動スターターリレー
 34 ECU
 35 ポンプ駆動用電動機リレー
 36 クラッチ
 37 一方向クラッチ
 38 走行用電動モーター
 39 電動スターター
 40 潤滑油ポンプ
 41 潤滑油ポンプ軸
 44 オイルストレーナー
 45 縦油路
 46 横油路
 47 オイルフィルター
 48 メインギャラリー
 50 高圧ポンプ
 51 ポンプ駆動用電動機
 52 減速機
 53 ユニット
 54 高圧ポンプ軸
 54a、54b カム
 55 プランジャー
 56 油圧シール
 57 ロッカーアーム
 58 コイルスプリング
 59 オイル供給油路
 60 オイルフィルター
 61 高圧油路
 62,63 チェックバルブ
 65 アキュムレータ
 66 高圧油管
 67 圧力センサー
 70 電磁弁
 71 油圧供給弁
 72 プライマリーバルブ
 73 主バルブ
 75 モーター駆動油管
 77 ユニットカバー
 78 ソレノイド
 80 油圧モーター
 81 油圧モーター軸
 82 ジョイントケース
 83 斜板ベアリング
 84 ピストン
 85 モーターハウジング
 87 減速機構
 88 プラネタリーギヤ
 89 一方向クラッチ
 90 一方向クラッチ内輪
 91 ACG
 92 エアコン用コンプレッサー
 93 ベルト
 95 捩じりダンパー
 98 チェーン減速機構
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Transmission 3 Axle 4 Drive wheel 5 Oil path 6 Electric wire 8 Car body 9 Return hole 10 Oil chamber 11 Oil pan 12 Lubricating oil 13 Oil level 14 Cam chain 15 Cylinder block 16 Cylinder head 17 Crankcase 18 Intake pipe 20 Crankshaft 25 Drive sprocket 26 Chain 27 Driven sprocket 29 Switching unit 30 Accelerator 31 Battery 32 Key switch 33 Electric starter relay 34 ECU
35 Motor relay for pump drive 36 Clutch 37 One-way clutch 38 Electric motor for traveling 39 Electric starter 40 Lubricating oil pump 41 Lubricating oil pump shaft 44 Oil strainer 45 Vertical oil passage 46 Horizontal oil passage 47 Oil filter 48 Main gallery 50 High-pressure pump 51 Electric motor for driving pump 52 Reduction gear 53 Unit 54 High pressure pump shaft 54a, 54b Cam 55 Plunger 56 Hydraulic seal 57 Rocker arm 58 Coil spring 59 Oil supply oil path 60 Oil filter 61 High pressure oil path 62, 63 Check valve 65 Accumulator 66 High pressure Oil pipe 67 Pressure sensor 70 Solenoid valve 71 Hydraulic supply valve 72 Primary valve 73 Main valve 75 Motor drive oil pipe 77 Unit cover 78 Solenoid 80 Hydraulic motor -81 Hydraulic motor shaft 82 Joint case 83 Swash plate bearing 84 Piston 85 Motor housing 87 Reduction mechanism 88 Planetary gear 89 One-way clutch 90 One-way clutch inner ring 91 ACG
92 Compressor for air conditioner 93 Belt 95 Torsional damper 98 Chain reduction mechanism

Claims (9)

  1.  クランク軸から動力伝達機構を介して当該クランク軸とは別の潤滑油ポンプの駆動軸を駆動する内燃機関であって、
     当該内燃機関の油圧始動装置の油圧モーターとその駆動機構が当該内燃機関の潤滑油の油室内に取り付けられ、
     当該駆動機構は当該油圧モーターの出力軸から減速機構、一方向クラッチの順に動力を前記潤滑油ポンプの駆動軸に伝え、更に当該駆動軸から前記潤滑油ポンプの動力伝達機構を介して前記クランク軸を駆動することを特徴とした内燃機関。
    An internal combustion engine that drives a drive shaft of a lubricating oil pump different from the crankshaft via a power transmission mechanism from the crankshaft,
    The hydraulic motor of the hydraulic starter of the internal combustion engine and its drive mechanism are attached to the oil chamber of the lubricating oil of the internal combustion engine,
    The drive mechanism transmits the power from the output shaft of the hydraulic motor to the drive shaft of the lubricant pump in the order of the speed reduction mechanism and the one-way clutch, and further from the drive shaft to the crankshaft via the power transmission mechanism of the lubricant pump. An internal combustion engine characterized by driving the engine.
  2.  請求項1の内燃機関であって、
     前記油圧モーターへ高圧オイルを供給するアキュムレータを当該内燃機関に固定した形で備え、
     当該アキュムレータから前記油圧モーターへの高圧オイルの供給を制御する油圧供給弁と、当該アキュムレータにオイルを供給する高圧ポンプと、当該高圧ポンプからの吐出オイルの逆流を防止するチェックパルブを、当該内燃機関の潤滑油の油室内若しくはこれに連通する場所に備えたことを特徴とした内燃機関。
    The internal combustion engine of claim 1,
    An accumulator for supplying high-pressure oil to the hydraulic motor is provided fixed to the internal combustion engine,
    A hydraulic supply valve that controls supply of high-pressure oil from the accumulator to the hydraulic motor, a high-pressure pump that supplies oil to the accumulator, and a check valve that prevents backflow of discharged oil from the high-pressure pump. An internal combustion engine provided in an oil chamber of the lubricating oil or a place communicating with the oil chamber.
  3.  請求項1又は請求項2の内燃機関であって、
     当該内燃機関の油室内に油圧始動装置の高圧ポンプをその回転軸を縦にして取り付け、当該高圧ポンプを駆動する電動モーターを当該高圧ポンプより高い位置でかつ内燃機関の外壁部に外側から取り付けたことを特徴とした内燃機関。
    An internal combustion engine according to claim 1 or claim 2,
    A high-pressure pump of a hydraulic starter is mounted in the oil chamber of the internal combustion engine with its rotary shaft in the vertical direction, and an electric motor that drives the high-pressure pump is mounted at a position higher than the high-pressure pump and on the outer wall of the internal combustion engine from the outside. An internal combustion engine characterized by that.
  4.  請求項1又は請求項2の内燃機関であって、
     油圧始動装置の高圧ポンプと当該高圧ポンプを駆動する電動モーターを一体にして当該内燃機関の油室内に取り付けたことを特徴とした内燃機関。
    An internal combustion engine according to claim 1 or claim 2,
    An internal combustion engine characterized in that a high-pressure pump of a hydraulic starter and an electric motor that drives the high-pressure pump are integrally mounted in an oil chamber of the internal combustion engine.
  5.  請求項1乃至請求項4のいずれか1つの内燃機関と、当該内燃機関の出力を駆動輪に伝達する変速機を備え、
     当該内燃機関に取り付けられた油圧始動装置を構成する部品を、アイドル停止装置の再始動装置の一部として用いることを特徴とした車両。
    An internal combustion engine according to any one of claims 1 to 4, and a transmission for transmitting the output of the internal combustion engine to drive wheels,
    A vehicle comprising a component constituting a hydraulic starter attached to the internal combustion engine as a part of a restart device of an idle stop device.
  6.  内燃機関を停止させる時、内燃機関のフリクションを高めることを特徴とした請求項5の車両。 6. The vehicle according to claim 5, wherein the friction of the internal combustion engine is increased when the internal combustion engine is stopped.
  7.  請求項1乃至請求項4のいずれか1つの内燃機関と、走行用電動モーターと、当該走行用電動モーターの出力を駆動輪に伝達する変速機と、当該走行用電動モーターの出力軸と前記内燃機関のクランク軸の間にクラッチを備え、
     当該内燃機関に取り付けられた油圧始動装置の構成部品をアイドル停止装置の再始動装置の一部として用いることを特徴とした、車両用ハイブリッド駆動ユニット。
    5. The internal combustion engine according to claim 1, an electric motor for traveling, a transmission that transmits an output of the electric motor for traveling to a drive wheel, an output shaft of the electric motor for traveling, and the internal combustion engine With a clutch between the crankshaft of the engine,
    A hybrid drive unit for a vehicle, wherein a component of a hydraulic starter attached to the internal combustion engine is used as a part of a restart device of an idle stop device.
  8.  内燃機関のクランク軸を車体に対して横向きに配置した請求項7の車両用ハイブリッド駆動ユニットであって、
     前記走行用電動モーターは前記変速機に対してその上部に固定され、当該走行用電動モーターは減速機構を介して当該変速機の入力軸を駆動し、
     前記内燃機関のクランク軸と当該走行用電動モーターの出力軸の間に前記クラッチと直列に捩じりダンパーを備えることを特徴とした、車両用ハイブリッド駆動ユニット。
    The hybrid drive unit for a vehicle according to claim 7, wherein the crankshaft of the internal combustion engine is disposed transversely to the vehicle body,
    The electric motor for traveling is fixed to the upper portion with respect to the transmission, the electric motor for traveling drives the input shaft of the transmission via a speed reduction mechanism,
    A hybrid drive unit for a vehicle, comprising a torsional damper in series with the clutch between a crankshaft of the internal combustion engine and an output shaft of the electric motor for traveling.
  9. [規則91に基づく訂正 01.10.2012] 
     請求項7又は請求項8の車両用ハイブリッド駆動ユニットを備えたハイブリッド車両。
    [Correction based on Rule 91 01.10.2012]
    A hybrid vehicle comprising the vehicle hybrid drive unit according to claim 7.
PCT/JP2012/070731 2011-11-02 2012-08-15 Vehicle equipped with hydraulic starting apparatus WO2012169663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011240814 2011-11-02
JP2011-240814 2011-11-02

Publications (1)

Publication Number Publication Date
WO2012169663A1 true WO2012169663A1 (en) 2012-12-13

Family

ID=47296208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070731 WO2012169663A1 (en) 2011-11-02 2012-08-15 Vehicle equipped with hydraulic starting apparatus

Country Status (1)

Country Link
WO (1) WO2012169663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598103B1 (en) 2013-12-20 2017-03-21 Hydro-Gear Limited Partnership Steerable transaxle
US9726269B1 (en) 2009-07-24 2017-08-08 Hydro-Gear Limited Partnership Transmission and engine configuration

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869921A (en) * 1971-12-28 1973-09-22
JPH03262726A (en) * 1990-03-12 1991-11-22 Nissan Motor Co Ltd Power plant structure
JP2002339840A (en) * 2001-05-15 2002-11-27 Honda Motor Co Ltd Vehicular hydraulic engine starter
JP2004129469A (en) * 2002-10-07 2004-04-22 Fuji Heavy Ind Ltd Power transmission system for hybrid vehicle
JP2004324448A (en) * 2003-04-22 2004-11-18 Toyota Motor Corp Engine starter for vehicle
JP2007224737A (en) * 2006-02-21 2007-09-06 Toyota Central Res & Dev Lab Inc Engine starter
JP2007315338A (en) * 2006-05-29 2007-12-06 Toyota Central Res & Dev Lab Inc Engine starting device
JP2008105622A (en) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc Driving device of hybrid vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869921A (en) * 1971-12-28 1973-09-22
JPH03262726A (en) * 1990-03-12 1991-11-22 Nissan Motor Co Ltd Power plant structure
JP2002339840A (en) * 2001-05-15 2002-11-27 Honda Motor Co Ltd Vehicular hydraulic engine starter
JP2004129469A (en) * 2002-10-07 2004-04-22 Fuji Heavy Ind Ltd Power transmission system for hybrid vehicle
JP2004324448A (en) * 2003-04-22 2004-11-18 Toyota Motor Corp Engine starter for vehicle
JP2007224737A (en) * 2006-02-21 2007-09-06 Toyota Central Res & Dev Lab Inc Engine starter
JP2007315338A (en) * 2006-05-29 2007-12-06 Toyota Central Res & Dev Lab Inc Engine starting device
JP2008105622A (en) * 2006-10-27 2008-05-08 Toyota Central R&D Labs Inc Driving device of hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726269B1 (en) 2009-07-24 2017-08-08 Hydro-Gear Limited Partnership Transmission and engine configuration
US10364874B1 (en) 2009-07-24 2019-07-30 Hydro-Gear Limited Partnership Transmission and engine configuration
US9598103B1 (en) 2013-12-20 2017-03-21 Hydro-Gear Limited Partnership Steerable transaxle
US10337608B1 (en) 2013-12-20 2019-07-02 Hydro-Gear Limited Partnership Steerable transaxle

Similar Documents

Publication Publication Date Title
EP2831388B1 (en) Electric energy generation using variable speed hybrid electric supercharger assembly
JP4167656B2 (en) Control method for hydrogen fuel type internal combustion engine, hydrogen fuel type hybrid powertrain, and operation method of hydrogen fuel type hybrid vehicle
US7574859B2 (en) Monocylindrical hybrid two-cycle engine, compressor and pump, and method of operation
KR100898346B1 (en) Control device for internal combustion engine and automobile with the control device
US10730387B2 (en) Drive device for a hybrid-powered motor vehicle
JP5910211B2 (en) Starter for vehicle-mounted engine
JP2002307956A (en) Driving device for vehicle
US20050217618A1 (en) Power plant including an internal combustion engine with a variable compression ratio system
EP1321646B1 (en) Internal combustion engine
US20110113782A1 (en) Power transmitting apparatus and power transmitting apparatus assembly method
US7191855B2 (en) Rotary engine with improved hybrid features
US7373870B2 (en) Universal hybrid engine, compressor and pump, and method of operation
US7178497B2 (en) Inertial torque reaction management with selectively engageable counter rotating component
EP2455583A2 (en) Multi-crankshaft, variable-displacement engine
US5398508A (en) Three displacement engine and transmission systems for motor vehicles
EP1321645B1 (en) Internal combustion engine
US7757800B2 (en) Monocylindrical hybrid powertrain and method of operation
WO2012169663A1 (en) Vehicle equipped with hydraulic starting apparatus
JP5255618B2 (en) Starting method for internal combustion engine
US20110121571A1 (en) Torque transmitting mechanism of an internal combustion engine, a vehicle and a method of transmitting torque
EP2093415A2 (en) Torque transmission apparatus for transmitting driving torque from starter motor to internal combustion engine
JP3644337B2 (en) Auxiliary structure for internal combustion engine
JP2000230430A (en) Planetary gear mechanism of internal combustion engine
JPH0771216A (en) Lubricating device for engine
JPH07255104A (en) Hybrid electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP