WO2012165886A2 - 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법 - Google Patents

화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법 Download PDF

Info

Publication number
WO2012165886A2
WO2012165886A2 PCT/KR2012/004318 KR2012004318W WO2012165886A2 WO 2012165886 A2 WO2012165886 A2 WO 2012165886A2 KR 2012004318 W KR2012004318 W KR 2012004318W WO 2012165886 A2 WO2012165886 A2 WO 2012165886A2
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
related information
prediction unit
picture
motion
Prior art date
Application number
PCT/KR2012/004318
Other languages
English (en)
French (fr)
Other versions
WO2012165886A3 (ko
Inventor
이충구
이용재
김휘
Original Assignee
(주)휴맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴맥스 filed Critical (주)휴맥스
Priority to US14/115,568 priority Critical patent/US20140185948A1/en
Publication of WO2012165886A2 publication Critical patent/WO2012165886A2/ko
Publication of WO2012165886A3 publication Critical patent/WO2012165886A3/ko
Priority to US14/518,740 priority patent/US20150036750A1/en
Priority to US14/518,695 priority patent/US20150036741A1/en
Priority to US14/518,767 priority patent/US20150036751A1/en
Priority to US14/518,799 priority patent/US20150036752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding

Definitions

  • the present invention relates to a method for storing motion prediction related information in an inter prediction method.
  • the present invention also relates to a method of calculating motion prediction related information in an inter prediction method.
  • an image compression method uses inter prediction and intra prediction techniques that remove redundancy of pictures in order to increase compression efficiency.
  • the image coding method using intra picture prediction has a pixel correlation between blocks from pixel values in an already coded block (for example, top, left, top left and top right blocks based on the current block) located around a block to be currently encoded. We estimate the pixel value by using and transmit the prediction error.
  • an already coded block for example, top, left, top left and top right blocks based on the current block
  • an optimal prediction mode is selected from various prediction directions (for example, horizontal, vertical, diagonal, average, etc.) according to characteristics of an image to be encoded.
  • An image encoding method using inter-screen prediction is a method of compressing an image by removing temporal redundancy between pictures, and a typical motion compensation prediction encoding method.
  • motion prediction related information such as motion vector information and reference picture information of a reference picture for motion prediction is stored without considering the size of the prediction unit.
  • a first object of the present invention is to provide a method for storing motion prediction related information in an inter prediction method considering the size of a prediction unit.
  • a second object of the present invention is to provide a motion vector prediction method and a motion vector decoding method that can reduce the amount of motion vector prediction using a motion vector in a previous screen in performing inter-screen prediction on a current block.
  • a method of storing motion prediction related information comprising: calculating prediction unit size information of a picture and predicting unit size of the calculated picture; And adaptively storing motion prediction related information of the picture based on the information.
  • the calculating of the prediction unit size information of the picture may calculate information about the least significant prediction unit size of the picture, which is the size of the prediction unit most existing in the picture.
  • the method for storing motion prediction related information may include motion prediction related information adaptively stored according to the size of the least prediction unit of the picture, and motion prediction related information of a first temporal candidate motion prediction unit and a second temporal candidate motion prediction unit.
  • the method may further include generating a prediction block of the current prediction unit by using a.
  • the calculating of the prediction unit size information of the picture may calculate information about the prediction unit size having a median value among the sizes of the prediction units existing in the picture.
  • the method for storing motion prediction related information includes a first temporal candidate motion prediction unit and a first temporal candidate motion prediction unit according to the prediction unit size having a median value among the sizes of the prediction units of the picture.
  • the method may further include generating a prediction block of the current prediction unit by using the motion prediction related information of the temporal candidate motion prediction unit. Adaptively storing the motion prediction related information of the picture based on the calculated prediction unit size information of the picture, if the prediction unit size of the picture is smaller than or equal to 16x16 size, the motion prediction related information of the picture is determined.
  • the prediction unit having a size smaller than or equal to the median value among the units stores motion related information based on the prediction unit size of the median size, and calculates a prediction unit having a median value among the prediction unit sizes of the picture.
  • the prediction unit having a size larger than the median value among the prediction units of the picture may further include storing motion related information based on the size of the individual prediction unit.
  • the method for calculating motion prediction related information includes: searching for a first temporal motion prediction candidate block and performing the first temporal motion prediction candidate block; And calculating the first temporal motion prediction related information, searching for the second temporal motion prediction candidate block, and calculating the second temporal motion prediction related information from the second temporal motion prediction candidate block.
  • the method of calculating motion prediction related information calculates temporal motion prediction related information for generating a prediction block of a current prediction unit based on the first temporal motion prediction related information and the second temporal motion prediction related information. It may further comprise a step.
  • the first temporal motion prediction related information may be motion prediction related information of the same position block of the center prediction block of the current prediction unit.
  • the second temporal motion prediction related information may be motion prediction related information of a co-located block of a prediction unit including a pixel located one space to the left from the top left pixel of the current prediction unit.
  • Computing the temporal motion prediction related information for generating the prediction block of the current prediction unit based on the first temporal motion prediction related information and the second temporal motion prediction related information refer to the first temporal motion prediction related information.
  • Reference picture information of the picture information and the second temporal motion prediction related information are used as reference picture information of a current prediction unit, and the first motion vector information and the second temporal motion prediction included in the first temporal motion prediction related information.
  • a value calculated by averaging second motion vector information included in the related information may be calculated as temporal motion prediction related information for generating a prediction block of the current prediction unit.
  • the memory space is adaptively stored by adaptively storing motion prediction-related information such as motion vector information and reference picture information of the prediction unit based on the size distribution of the prediction unit of the picture. Can be used efficiently and the computational complexity can be reduced when performing inter-screen prediction.
  • the motion prediction-related information calculation method in the above-described inter prediction method in calculating motion-related information of a current prediction unit, co-located blocks located in several places other than motion prediction-related information calculated in one same location block
  • the coding efficiency can be improved by reducing the error between the prediction block and the original block.
  • FIG. 1 is a conceptual diagram illustrating a spatial prediction method of an inter prediction method according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram illustrating a temporal prediction method among inter prediction methods according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a temporal prediction method among inter prediction methods according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for adaptively storing a size of a motion vector according to a size of a prediction unit according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram illustrating a spatial prediction method among inter prediction methods according to an embodiment of the present invention.
  • FIG. 6 is a conceptual diagram illustrating a method of calculating first temporal motion prediction related information in an inter prediction method according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a method of calculating second temporal motion prediction related information in an inter prediction method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a conceptual diagram illustrating a spatial prediction method of an inter prediction method according to an embodiment of the present invention.
  • the first candidate block group includes a prediction unit 110 including a pixel 103 located one space below a pixel located at the bottom left of the prediction unit, and a top prediction block size positioned at the top of the pixel 103 by a minimum prediction unit size. It may include the prediction unit 120 including the pixel.
  • the second candidate block group includes a prediction unit 130 including a pixel 133 at the upper right of the prediction unit, and a pixel 143 shifted by the minimum prediction unit size to the left of the pixel 133 at the upper right of the prediction unit.
  • a prediction unit that satisfies a predetermined condition among the prediction units included in the first candidate block group and the second candidate block group includes a spatial motion prediction candidate block that can provide motion related information to generate the prediction block of the current prediction unit. Can be.
  • Prediction units included in the first candidate block group and the second candidate block group are present at the corresponding positions to be spatial candidate motion prediction units that can provide motion prediction related information. While the spatial candidate motion prediction unit is a block that performs inter prediction, the reference frame of the spatial candidate motion prediction unit must be the same as the reference frame of the current prediction unit.
  • the condition that the spatial candidate motion prediction unit must be a block for performing inter-screen prediction (hereinafter, referred to as a first condition) and the condition that the reference frame of the spatial candidate motion prediction unit must be the same as the reference frame of the current prediction unit (hereinafter, The motion prediction block of the current prediction unit may be generated based on the spatial candidate motion prediction unit satisfying the two conditions.
  • the reference frame index and the motion vector of the spatial candidate motion prediction unit satisfying the condition may be generated using motion related information such as the motion related information of the current prediction unit.
  • the reference frame index of the spatial candidate motion prediction unit satisfying the condition The same information as the motion related information of the current prediction unit may be used as the motion related information of the current prediction unit.
  • the magnitude of the motion vector of the current prediction unit is calculated by calculating the motion vector value of the current prediction unit based on the difference between the motion vector of the spatial candidate motion prediction unit and the motion vector of the current prediction unit and the distance information between the reference picture.
  • a prediction block of the prediction unit may be generated.
  • FIG. 2 is a conceptual diagram illustrating a temporal prediction method among inter prediction methods according to an embodiment of the present invention.
  • a motion vector and reference picture information for predicting a current prediction unit may be obtained from a prediction unit existing in a picture before or after the current prediction unit to generate a prediction block of the current prediction unit.
  • the first temporal candidate motion prediction unit 210 searches for the pixel 205 at the same position as the pixel located in the reference picture, which is located one space down one space to the right from the lowest rightmost pixel of the current prediction unit. It may include a prediction unit.
  • first temporal candidate motion prediction unit is difficult to calculate a motion vector in the first temporal candidate motion prediction unit as in the case of performing intra prediction
  • another temporal candidate motion prediction unit may be used to predict the current prediction unit.
  • FIG. 3 is a conceptual diagram illustrating a temporal prediction method among inter prediction methods according to an embodiment of the present invention.
  • the second temporal candidate motion prediction unit is moved right and down by one half of the horizontal and vertical size of the current prediction unit from the uppermost right pixel of the current prediction unit, and then spaced one column to the left and the top.
  • the prediction unit of the reference picture may be calculated based on the pixel 305 (hereinafter, referred to as a center pixel) existing at the moved position.
  • the second temporal candidate motion prediction unit 310 may be a prediction unit 320 including the pixel 310 at the same position as the center pixel in the reference picture.
  • the second temporal candidate motion prediction unit is used to predict the current prediction unit. If it can be used as a candidate motion prediction unit, and if neither the first temporal candidate motion prediction unit nor the second temporal candidate motion prediction unit is available, the temporal candidate motion prediction method will not be used as a method for motion prediction of the current prediction unit. Can be.
  • the sizes of the first temporal candidate motion prediction unit and the second temporal candidate motion prediction unit may vary.
  • Prediction units present in the reference picture are 4x4 and 4x8. Since there may be sizes 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32, the size of the first temporal candidate motion prediction unit or the second temporal candidate motion prediction unit is 4x4, 4x8. It may have various sizes such as 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32.
  • the method for storing motion prediction related information performs inter-prediction on the current prediction unit by varying the size of the basic prediction unit that stores the motion vector based on the prediction unit information of the picture. Stores the motion vector value for
  • the image decoder may store motion prediction related information for each prediction unit in a memory based on the prediction unit information of the picture.
  • the information related to the prediction unit of the picture is transmitted to the image decoder as additional information in the image encoder, or after generating the predictive picture in the image decoder without additional information in the image encoder to calculate the prediction unit information of the picture. Can be.
  • the motion prediction-related information storage method when the size of the majority of the prediction units included in the current picture is smaller than the 16x16 size, the motion prediction-related information is based on the prediction unit of the 16x16 size. Save it. If the size of the majority of prediction units included in the current picture is larger than the size of 16x16, for example, the size of 16x32, 32x16, 32x32, the motion vector of the prediction unit may be stored based on the size of the majority of the prediction units. That is, when the size of the majority of prediction units in the reference picture is 32x32, the motion vector of the prediction unit may be stored based on the size of 32x32.
  • the motion prediction related information of the picture is 16x16 size unit. If the prediction unit size of the picture is larger than the size of 16x16, the motion prediction related information of the picture may be stored as the least prediction unit size of the picture, which is the size of the prediction unit most existing in the picture.
  • another method of adaptively storing motion related information based on the information of the prediction unit existing in the picture may be used. For example, if a prediction unit exists in a picture only from 4x4 size to 16x16 size, the prediction unit is smaller than or equal to 8x8 based on a median value, for example, a prediction unit of 8x8 size. In the case of a unit, a prediction unit of 8x8 size may be stored, and in case of a prediction unit larger than 8x8, motion related information may be stored based on the original prediction unit.
  • a prediction unit having a median value is calculated among the prediction unit sizes of the picture, and the median value of the prediction unit of the picture is calculated.
  • a prediction unit having a smaller or the same size stores motion-related information based on the prediction unit size of the median size, calculates a prediction unit having a median value among the prediction unit sizes of the picture, and is larger than the median value of the prediction unit of the picture.
  • the prediction unit with size may store motion related information based on the size of the individual prediction unit.
  • FIG. 4 is a flowchart illustrating a method for adaptively storing a size of a motion vector according to a size of a prediction unit according to an embodiment of the present invention.
  • FIG. 4 discloses storing motion prediction related information on the basis of the most frequent prediction unit, storing motion prediction related information on the basis of a median value is also included in the scope of the present invention as described above.
  • the image decoder determines and stores prediction unit size information of a picture, but the prediction unit size information of the picture transferred as additional information may be directly used by the image decoder.
  • the distribution of the prediction unit size of the picture is determined (step S400).
  • the prediction unit included in the picture may include an intra prediction unit that performs intra prediction or an inter prediction unit that performs inter prediction.
  • the method for storing motion prediction related information includes 4x4 and 4x8.
  • 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, and 32x32 inter-screen prediction units whether a prediction unit of any size is the most used prediction unit (hereinafter, referred to as the least-predicted unit in the present invention) You can judge.
  • step S410 It is determined whether the least-predicted unit is larger than the size of 16x16.
  • the motion prediction related information is stored in 16x16 units (step S420).
  • the mode of prediction is 4x4, 4x8.
  • the least-predicted unit is less than or equal to 16x16 size, such as 8x4, 8x8, 8x16, 16x8, 16x16
  • motion prediction related information such as motion vector and reference picture information is stored in a 16x16 size unit.
  • 4x4, 4x8 When the motion prediction unit is smaller than 16x16, such as 8x4, 8x8, 8x16, or 16x8, the value of one of the prediction units included in the 16x16 size is stored, or the motion is predicted between the prediction units included in the 16x16 size.
  • the vector and the reference picture may be newly calculated to store motion prediction related information for each 16x16 prediction unit.
  • the motion prediction related information is stored as the least-predicted unit (step S430).
  • motion prediction related information may be stored in a 32x32 size unit.
  • the motion vector value of the prediction unit may be used as the motion vector value of the current prediction unit.
  • the motion related information of the prediction unit included in the 32x32 size smaller than the 32x32 size may be calculated as one motion related information.
  • a 32x32 size prediction unit including a plurality of 16x16 size prediction units may utilize motion prediction related information of one of the plurality of 16x16 size prediction units as motion prediction related information in 32x32 size units or a plurality of 16x16 sized prediction units.
  • the interpolated value of the motion related information of the size prediction unit may be used as the motion prediction related information in 32x32 size units.
  • FIG. 5 is a conceptual diagram illustrating a spatial prediction method among inter prediction methods according to an embodiment of the present invention.
  • the movement of the prediction units 510, 520, 530, 540, and 550 located around the current prediction unit 500 to generate a prediction block of the current prediction unit 500 is related. Information is available.
  • Four blocks around the current block may be used as the spatial motion prediction candidate block.
  • the first spatial motion prediction candidate block 510 may be a prediction unit including a pixel 515 shifted left by one from the leftmost pixel 505 of the current prediction unit.
  • the second spatial motion prediction candidate block 520 may be a prediction unit including the pixel 525 moved one space from the top left pixel 505 of the current prediction unit to the top.
  • the third spatial motion prediction candidate block 530 may be a prediction unit including a pixel 535 located at the top left pixel 505 of the current prediction unit by the horizontal size of the current prediction unit.
  • the fourth spatial motion prediction candidate block 540 may be a prediction unit including a pixel 545 located at the top left pixel 505 of the current prediction unit by the vertical size of the current prediction unit.
  • the third spatial motion prediction candidate block 530 when the motion prediction related information of the third spatial motion prediction candidate block 530, for example, the motion vector and the reference picture information, is the same as the motion prediction related information of the current prediction unit, the third spatial motion prediction The motion prediction related information of the candidate block 530 may be used as the motion prediction related information of the current prediction unit.
  • the current prediction unit 500 when a motion prediction candidate block having the same motion prediction related information as the current prediction unit 500 among the first to fourth spatial motion prediction candidate blocks 510, 520, 530, and 540 exists, the current prediction unit 500
  • the motion prediction information of the motion prediction candidate block having the same motion related information may be used as the motion prediction related information of the current prediction unit 500.
  • FIG. 6 is a conceptual diagram illustrating a method of calculating first temporal motion prediction related information in an inter prediction method according to an embodiment of the present invention.
  • Motion vector and reference picture for predicting the current prediction unit from the prediction unit present in the picture before or after the current prediction unit 600, 610, 620 to generate the prediction block of the current prediction unit 600, 610, 620 You can get information.
  • the motion prediction related information of a block of a previous or subsequent picture located at a location may be used as a prediction unit for performing a temporal motion prediction method of the current prediction unit.
  • the position of a block included in the current prediction unit for obtaining motion prediction related information in the same position block may vary according to the size of the current prediction unit.
  • the prediction unit 600 on the left side of FIG. 6 uses a prediction unit having a size of 32x32
  • the prediction unit 600 is a 4x4 size block (605, hereinafter referred to as a center prediction block) located at the center of the current prediction unit for calculating the same position block. It is shown.
  • the middle and right prediction units 610 and 620 of FIG. 6 are 4x4 size blocks 615 and 625, which are located at the center of the current prediction unit when the sizes of the prediction units are 32x16 and 16x16, respectively. This).
  • motion-related information of the same position block (the block existing at the same position as the current center prediction block in a picture before or after the current picture) of the current center prediction block 605 is determined by the current prediction unit. It can be used as motion prediction related information for generating a predictive block.
  • motion prediction related information of the current prediction unit may be calculated in the same location block of the central prediction blocks 615 and 625 of the current prediction unit.
  • the temporal motion related information calculated from the central prediction blocks 605, 615, and 625 is defined as first temporal motion prediction related information.
  • the motion prediction related information of the same position block of the block located on the upper left side of the current prediction unit as well as the central prediction block as described above may be used to calculate the motion prediction related information of the current prediction unit. Can be.
  • FIG. 7 is a conceptual diagram illustrating a method of calculating second temporal motion prediction related information in an inter prediction method according to an embodiment of the present invention.
  • a prediction unit including a pixel 700 existing at a position moved one space to the top and left of a pixel located at the top left of the current prediction unit and a pixel 707 located at the same position on a reference picture.
  • the motion prediction related information of the same location block 710 may be used to perform motion prediction of the current prediction unit.
  • an embodiment of the present invention includes a pixel 700 existing at a position moved one space to the top and left of the pixel located at the top left of the current prediction unit and a pixel 707 located at the same position on the reference picture.
  • the temporal motion related information calculated from the same position block 710 of the prediction unit is defined as second temporal motion prediction related information.
  • one motion prediction related information for calculating the current prediction unit may be calculated and used to generate a prediction block of the current prediction unit.
  • the motion vector included in the first temporal motion prediction related information and the second temporal motion prediction related information is performed for the motion prediction of the current prediction unit. It can be used as motion prediction related information.
  • the reference picture is used as reference picture information for performing motion prediction of the current prediction unit.
  • the motion prediction for performing the motion prediction of the current prediction unit using the motion vector of the first temporal motion prediction-related information and the motion vector of the second temporal motion prediction-related information or a new motion vector value calculated based on a formula. Can be used as related information. That is, the method of calculating a motion vector according to an embodiment of the present invention discloses a method of calculating a motion vector of a current prediction unit by a method of averaging for convenience of explanation, but is calculated using a formula other than the method of averaging. The motion vector may be used as a motion vector for predicting the current prediction unit.
  • the reference picture information of the first temporal motion prediction-related information is different from the reference picture information of the second temporal motion prediction-related information
  • the reference picture information is related to the reference picture information and the second temporal motion prediction of the first temporal motion prediction-related information.
  • a prediction block of the current prediction unit may be generated using the motion vector and the reference picture information of one of the information. If only one of the first temporal motion prediction related information and the second temporal motion prediction related information is available, the available temporal motion prediction related information may be used as the temporal motion prediction related information of the current prediction unit.
  • the temporal motion prediction candidate block information available among the first temporal motion prediction candidate block or the second temporal motion prediction candidate block is provided by the image encoder or obtained by the image decoder itself, and then the first temporal motion prediction candidate block is obtained.
  • the prediction block for the current prediction unit may be generated based on at least one of the first temporal motion prediction related information or the second temporal motion prediction related information of the second temporal motion prediction candidate block.
  • the prediction is performed by using not only the motion related information of the centrally located block but also the motion prediction related information of the motion prediction unit of the prediction unit located in the upper left corner.
  • the coding efficiency can be improved by reducing the error between the block and the original block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 산출 방법이 개시된다. 저장 방법은 픽쳐의 예측 단위 크기 정보를 산출하는 단계와 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계를 포함할 수 있다. 산출 방법은 제1 시간적 움직임 예측 후보 블록을 탐색하고 상기 제1 시간적 움직임 예측 후보 블록에서 제1 시간적 움직임 예측 관련 정보를 산출하는 단계와 제2 시간적 움직임 예측 후보 블록을 탐색하고 상기 제2 시간적 움직임 예측 후보 블록에서 제2 시간적 움직임 예측 관련 정보를 산출하는 단계를 포함할 수 있다. 따라서, 움직임 예측 관련 정보를 저장하기 위한 메모리 공간을 효율적으로 활용할 수 있고, 예측 블록과 원본 블록의 오차를 줄여 부호화 효율을 향상시킬 수 있다.

Description

화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법
본 발명은 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법에 관한 것으로 화면 간 예측 방법에 관한 것이다. 또한, 본 발명은 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법에 관한 것으로 화면 간 예측 방법에 관한 것이다.
일반적으로 영상 압축 방법에서는 압축 효율을 높이기 위해 픽처들의 중복도를 제거하는 화면간 예측(inter prediction) 및 화면내 예측(intra prediction) 기술을 이용한다.
화면내 예측을 이용한 영상 부호화 방법은 현재 부호화할 블록 주위에 위치한 이미 부호화된 블록(예를 들면, 현재 블록을 기준으로 상단, 좌측, 좌측 상단 및 우측 상단 블록)내의 화소값으로부터 블록간의 화소 상관도를 이용하여 화소값을 예측하고, 그 예측오차를 전송한다.
또한, 화면내 예측 부호화에서는 부호화하려는 영상의 특성에 맞게 여러가지의 예측 방향(예를 들면, 가로, 세로, 대각선, 평균값 등) 중에서 최적의 예측 모드를 선택한다.
화면간 예측을 이용한 영상 부호화 방법은 픽처들 사이의 시간적인 중복성을 제거하여 영상을 압축하는 방법으로, 대표적으로 움직임 보상 예측 부호화 방법이 있다.
기존의 화면 간 움직임 예측 방법에서는 움직임 예측을 위한 참조 픽쳐의 움직임 벡터 정보, 참조 픽쳐 정보 등과 같은 움직임 예측 관련 정보를 저장함에 있어 예측 단위의 크기를 고려하지 않고 저장하였다.
따라서, 본 발명의 제1 목적은 예측 단위의 크기를 고려한 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법을 제공하는 것이다.
또한, 본 발명의 제2 목적은 현재 블록에 대한 화면 간 예측을 수행함에 있어서 이전 화면에서 움직임 벡터를 이용하여 모션 벡터 예측의 연산량을 감소시킬 수 있는 모션 벡터 예측 방법 및 모션 벡터 복호화 방법을 제공하는 것이다.
또한, 본 발명의 제3 목적은 모션 벡터 예측의 정확도를 향상시킴으로써 부호화 효율을 향상시킬 수 있는 모션 벡터 예측 방법 및 모션 벡터 복호화 방법을 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 본 발명의 제1 목적을 달성하기 위한 본 발명의 일 측면에 따른 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법은 픽쳐의 예측 단위 크기 정보를 산출하는 단계와 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계를 포함할 수 있다. 상기 픽쳐의 예측 단위 크기 정보를 산출하는 단계는 픽쳐에 가장 많이 존재하는 예측 단위의 크기인 픽쳐의 최빈 예측 단위 크기에 관한 정보를 산출할 수 있다. 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법은 상기 픽쳐의 최빈 예측 단위 크기에 따라 적응적으로 저장된 움직임 예측 관련 정보를 제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위의 움직임 예측 관련 정보로 사용하여 현재 예측 단위의 예측 블록을 생성하는 단계를 더 포함할 수 있다. 상기 픽쳐의 예측 단위 크기 정보를 산출하는 단계는 픽쳐에 존재하는 예측 단위의 크기 중 중앙값(Median Value)를 가진 예측 단위 크기에 관한 정보를 산출할 수 있다. 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법은 상기 픽쳐의 예측 단위의 크기 중 중앙값(Median Value)를 가진 예측 단위 크기에 따라 적응적으로 저장된 움직임 예측 관련 정보를 제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위의 움직임 예측 관련 정보로 사용하여 현재 예측 단위의 예측 블록을 생성하는 단계를 더 포함할 수 있다. 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계는 상기 픽쳐의 예측 단위 크기가 16x16 사이즈보다 작거나 같은 경우, 상기 픽쳐의 움직임 예측 관련 정보를 16x16 사이즈 단위로 저장하는 단계와 상기 픽쳐의 예측 단위 크기가 16x16 사이즈보다 큰 경우, 상기 픽쳐의 움직임 예측 관련 정보를 상기 픽쳐에 가장 많이 존재하는 예측 단위의 크기인 픽쳐의 최빈 예측 단위 크기로 저장하는 단계를 더 포함할 수 있다. 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계는 상기 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 상기 픽쳐의 예측 단위 중 상기 중앙값보다 작거나 같은 크기를 가진 예측 단위는 중앙값 크기의 예측 단위 크기를 기준으로 움직임 관련 정보를 저장하는 단계와 상기 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 상기 픽쳐의 예측 단위 중 상기 중앙값보다 큰 크기를 가진 예측 단위는 개별 예측 단위 크기를 기준으로 움직임 관련 정보를 저장하는 단계를 더 포함할 수 있다.
상술한 본 발명의 제2 목적을 달성하기 위한 본 발명의 일 측면에 따른 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법은, 제1 시간적 움직임 예측 후보 블록을 탐색하고 상기 제1 시간적 움직임 예측 후보 블록에서 제1 시간적 움직임 예측 관련 정보를 산출하는 단계와 제2 시간적 움직임 예측 후보 블록을 탐색하고 상기 제2 시간적 움직임 예측 후보 블록에서 제2 시간적 움직임 예측 관련 정보를 산출하는 단계를 포함할 수 있다. 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법은 상기 제1 시간적 움직임 예측 관련 정보 및 상기 제2 시간적 움직임 예측 관련 정보를 기초로 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보를 산출하는 단계를 더 포함할 수 있다. 상기 제1 시간적 움직임 예측 관련 정보는 현재 예측 단위의 중앙 예측 블록의 동일 위치 블록의 움직임 예측 관련 정보일 수 있다. 상기 제2 시간적 움직임 예측 관련 정보는 현재 예측 단위의 최상단 가장 좌측 픽셀로부터 상단으로 한칸 좌측으로 한칸 이동한 곳에 위치한 픽셀을 포함하는 예측 단위의 동일 위치 블록의 움직임 예측 관련 정보일 수 있다. 상기 제1 시간적 움직임 예측 관련 정보 및 상기 제2 시간적 움직임 예측 관련 정보를 기초로 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보를 산출하는 단계는 상기 제1 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보와 상기 제2 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보를 현재 예측 단위의 참조 픽쳐 정보로 사용하고, 상기 제1 시간적 움직임 예측 관련 정보에 포함된 제1 움직임 벡터 정보와 상기 제2 시간적 움직임 예측 관련 정보에 포함된 제2 움직임 벡터 정보를 평균하여 산출한 값을 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보로 산출할 수 있다.
상술한 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법에 따르면, 픽쳐의 예측 단위의 크기 분포를 기초로 예측 단위의 움직임 벡터 정보 및 참조 픽쳐 정보와 같은 움직임 예측 관련 정보를 적응적으로 저장함으로써 메모리 공간을 효율적으로 사용하고 화면 간 예측을 수행시 연산 복잡도를 줄일 수 있다.
또한, 상술한 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법에 따르면, 현재 예측 단위의 움직임 관련 정보를 산출함에 있어서, 하나의 동일 위치 블록에서 산출한 움직임 예측 관련 정보가 아닌 여러 곳에 위치한 동일 위치 블록의 움직임 예측 관련 정보를 활용하는 방법을 통해, 예측 블록과 원본 블록의 오차를 줄여 부호화 효율을 향상시킬 수 있다.
도 1은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 공간적 예측 방법을 나타낸 개념도이다.
도 2는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 시간적 예측 방법을 나타낸 개념도이다.
도 3는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 시간적 예측 방법을 나타낸 개념도이다.
도 4는 본 발명의 일실시예에 따른 예측 단위 크기에 따른 움직임 벡터의 크기를 적응적으로 저장하는 방법을 나타낸 순서도이다.
도 5는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 공간적 예측 방법을 나타낸 개념도이다.
도 6은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 제1 시간적 움직임 예측 관련 정보를 산출하는 방법을 나타낸 개념도이다.
도 7은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 제2 시간적 움직임 예측 관련 정보를 산출하는 방법을 나타낸 개념도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 공간적 예측 방법을 나타낸 개념도이다.
도 1을 참조하면, 현재 예측 단위(100, Prediction Unit, PU)의 예측 블록을 생성하기 위해 현재 예측 단위(100)의 주변에 위치한 예측 단위(110, 120, 130, 140, 150)의 움직임 관련 정보를 사용할 수 있다.
제1 후보 블록 그룹은 예측 단위의 하단 좌측에 위치한 픽셀에서 한칸 아래에 위치에 존재하는 픽셀(103)을 포함하는 예측 단위(110)와 픽셀(103)의 상단으로 최소 예측 단위 크기만큼 상단에 위치한 픽셀을 포함한 예측 단위(120)를 포함할 수 있다.
제2 후보 블록 그룹은 예측 단위의 우측 상단에 있는 픽셀(133)을 포함하는 예측 단위(130), 예측 단위의 우측 상단에 있는 픽셀(133)의 좌측으로 최소 예측 단위 크기만큼 이동한 픽셀(143)을 포함하는 예측 단위(140), 예측 단위의 상단 좌측에 위치한 픽셀(153)을 포함하는 예측 단위(150)를 포함할 수 있다.
제1 후보 블록 그룹 및 제2 후보 블록 그룹에 포함된 예측 단위 중 소정의 조건을 만족하는 예측 단위는 현재 예측 단위의 예측 블록을 생성하기 위해 움직임 관련 정보를 제공할 수 있는 공간적 움직임 예측 후보 블록이 될 수 있다.
제1 후보 블록 그룹 및 제2 후보 블록 그룹에 포함된 예측 단위(이하, 공간적 후보 움직임 예측 단위라고 함)가 움직임 예측 관련 정보를 제공할 수 있는 공간적 후보 움직임 예측 단위가 되기 위해서는 해당 위치에 존재하는 공간적 후보 움직임 예측 단위가 화면 간 예측을 수행하는 블록이면서 공간적 후보 움직임 예측 단위의 참조 프레임이 현재 예측 단위의 참조 프레임과 동일해야 한다.
공간적 후보 움직임 예측 단위가 화면 간 예측을 수행하는 블록이어야 한다는 조건(이하, 제1 조건이라 함)과 공간적 후보 움직임 예측 단위의 참조 프레임이 현재 예측 단위의 참조 프레임과 동일해야 한다는 조건(이하, 제2 조건이라 함)을 만족하는 공간적 후보 움직임 예측 단위를 기초로 현재 예측 단위의 움직임 예측 블록을 생성할 수 있다.
만일 제1 조건 및 제2 조건을 만족하는 공간적 후보 움직임 예측 단위의 움직임 벡터 크기와 현재 예측 단위의 움직임 벡터의 크기가 동일한 경우, 상기 조건을 만족하는 공간적 후보 움직임 예측 단위의 참조 프레임 인덱스, 움직임 벡터 등과 같은 움직임 관련 정보를 현재 예측 단위의 움직임 관련 정보로 사용하여 예측 블록을 생성할 수 있다.
만일 제1 및 제2 조건을 만족하는 공간적 후보 움직임 예측 단위의 움직임 벡터의 크기와 현재 예측 단위의 움직임 벡터의 크기가 동일하지 않은 경우, 상기 조건을 만족하는 공간적 후보 움직임 예측 단위의 참조 프레임 인덱스 등과 현재 예측 단위의 움직임 관련 정보와 동일한 정보는 현재 예측 단위의 움직임 관련 정보로 사용할 수 있다.
현재 예측 단위의 움직임 벡터의 크기는 공간적 후보 움직임 예측 단위의 움직임 벡터와 현재 예측 단위의 움직임 벡터 사이의 차이값 정보 및 참조 픽쳐 사이의 거리 정보를 기초로 현재 예측 단위의 움직임 벡터값을 산출하여 현재 예측 단위의 예측 블록을 생성할 수 있다.
도 2는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 시간적 예측 방법을 나타낸 개념도이다.
도 2를 참조하면, 현재 예측 단위의 예측 블록을 생성하기 위해 현재 예측 단위의 이전 또는 이후 픽쳐에 존재하는 예측 단위로부터 현재 예측 단위를 예측 하기 위한 움직임 벡터 및 참조 픽쳐 정보를 얻을 수 있다.
제1 시간적 후보 움직임 예측 단위(210)는 참조픽쳐에서 현재 예측 단위의 최하단 최우측 픽셀으로부터 우측으로 한칸 아래로 한칸 내려간 부분에 위치한 픽셀과 동일한 위치에 있는 픽셀(205)을 찾고 픽셀(205)를 포함하는 예측 단위일 수 있다.
만일 제1 시간적 후보 움직임 예측 단위가 인트라 예측을 수행한 경우와 같이 제1 시간적 후보 움직임 예측 단위에서 움직임 벡터를 산출하기 어렵다면, 다른 시간적 후보 움직임 예측 단위를 현재 예측 단위를 예측하기 위해 사용할 수 있다.
도 3는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 시간적 예측 방법을 나타낸 개념도이다.
도 3을 참조하면, 제2 시간적 후보 움직임 예측 단위는 현재 예측 단위의 최상단 최우측 픽셀로부터 현재 예측 단위의 가로 및 세로 크기의 반만큼의 위치만큼 우측 및 아래로 이동한 후 좌측 및 상단으로 한칸씩 옮겨간 위치에 존재하는 픽셀(305)(이하, 이러한 픽셀을 중심 픽셀이라고 함)을 기초로 참조 픽쳐의 예측 단위를 산출할 수 있다. 제2 시간적 후보 움직임 예측 단위(310)는 참조 픽쳐에서 중심 픽셀과 동일한 위치의 픽셀(310)을 포함하고 있는 예측 단위(320)가 될 수 있다.
예를 들어, 제1 시간적 후보 움직임 예측 단위가 인트라 예측을 사용하는 예측 단위여서 제1 시간적 후보 움직임 예측 단위의 사용이 불가한 경우, 제2 시간적 후보 움직임 예측 단위를 현재 예측 단위를 예측하기 위한 시간적 후보 움직임 예측 단위로 사용할 수 있고, 제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위 모두 사용이 불가한 경우, 시간적 후보 움직임 예측 방법을 현재 예측 단위의 움직임 예측을 위한 방법으로 사용하지 않을 수 있다.
제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위의 크기는 달라질 수 있다.
참조 픽쳐에 존재하는 예측 단위는 4x4, 4x8. 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, 32x32 사이즈가 있을 수 있기 때문에 제1 시간적 후보 움직임 예측 단위 또는 제2 시간적 후보 움직임 예측 단위의 크기는 4x4, 4x8. 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, 32x32 사이즈와 같이 다양한 크기를 가질 수 있다.
본 발명의 일실시예에 따른 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법에서는 픽쳐의 예측 단위 정보를 기초로 움직임 벡터를 저장하는 기본 예측 단위 크기를 다르게 하여 현재 예측 단위에 화면 간 예측을 수행하기 위한 움직임 벡터 값을 저장한다.
영상 복호화기에서는 픽쳐의 예측 단위 정보를 기초로 메모리에 예측 단위별 움직임 예측 관련 정보를 저장할 수 있다.
이러한 픽쳐의 예측 단위에 관련된 정보는 영상 부호화기에서 부가적인 정보로 영상 복호화기에 전달되거나, 영상 부호화기에서 부가적인 정보로 전달되지 않고 영상 복호화기에서 예측 픽쳐를 생성 후 새롭게 픽쳐의 예측 단위 정보를 산출할 수 있다.
본 발명의 일실시예에 따른 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법에서는 현재 픽쳐에 포함되는 예측 단위의 대다수의 크기가 16x16 사이즈보다 작을 경우에는 16x16 사이즈의 예측 단위를 기준으로 움직임 예측 관련 정보를 저장한다. 만약 현재 픽쳐에 포함되는 예측 단위의 대다수의 크기가 16x16 사이즈보다 클 경우, 예를 들어, 16x32, 32x16, 32x32 사이즈일 경우, 대다수의 예측 단위 크기를 기준으로 예측 단위의 움직임 벡터를 저장할 수 있다. 즉, 참조 픽쳐에서 대다수의 예측 단위의 크기가 32x32인 경우, 32x32 사이즈를 기준으로 예측 단위의 움직임 벡터를 저장할 수 있다.
즉, 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하기 위해 픽쳐의 예측 단위 크기가 16x16 사이즈보다 작거나 같은 경우, 픽쳐의 움직임 예측 관련 정보를 16x16 사이즈 단위로 저장하고, 픽쳐의 예측 단위 크기가 16x16 사이즈보다 큰 경우, 픽쳐의 움직임 예측 관련 정보를 픽쳐에 가장 많이 존재하는 예측 단위의 크기인 픽쳐의 최빈 예측 단위 크기로 저장할 수 있다.
픽쳐의 대다수를 차지하고 있는 예측 단위 사이즈에 따라 적응적으로 움직임 벡터를 저장시킴으로써 움직임 벡터를 저장하는데 필요한 메모리 공간을 효율적으로 활용할 수 있다.
본 발명의 일실시예에 따르면 픽쳐에 존재하는 예측 단위의 정보를 기초로 움직임 관련 정보를 적응적으로 저장하는 다른 방법도 사용될 수 있다. 예를 들어, 픽쳐에 존재하는 예측 단위가 4x4 사이즈에서 16x16 사이즈 까지만 존재할 경우, 존재하는 예측 단위의 크기 중 중앙값(Median Value), 예를 들어 8x8 크기의 예측 단위를 기준으로 8x8 보다 작거나 같은 예측 단위의 경우 8x8 크기의 예측 단위를 기준으로 저장하고 8x8 보다 큰 예측 단위의 경우, 원래의 예측 단위를 기준으로 움직임 관련 정보를 저장할 수 있다.
즉, 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하기 위해 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 픽쳐의 예측 단위 중 중앙값보다 작거나 같은 크기를 가진 예측 단위는 중앙값 크기의 예측 단위 크기를 기준으로 움직임 관련 정보를 저장하고 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 픽쳐의 예측 단위 중 중앙값보다 큰 크기를 가진 예측 단위는 개별 예측 단위 크기를 기준으로 움직임 관련 정보를 저장할 수 있다.
도 4는 본 발명의 일실시예에 따른 예측 단위 크기에 따른 움직임 벡터의 크기를 적응적으로 저장하는 방법을 나타낸 순서도이다.
도 4에서는 최빈 예측 단위를 기준으로 움직임 예측 관련 정보를 저장하는 것을 개시하지만, 전술한 바와 같이 중앙값을 기준으로 움직임 예측 관련 정보를 저장하는 것도 본 발명의 권리 범위에 포함된다. 또한, 이하에서는 영상 복호화기에서 픽쳐의 예측 단위 크기 정보를 판단하여 저장하는 것을 가정하지만 영상 복호화기에서 부가 정보로써 전달된 픽쳐의 예측 단위 크기 정보를 바로 사용할 수 있다.
도 4를 참조하면, 픽쳐의 예측 단위 크기의 분포를 판단한다(단계 S400).
픽쳐에 포함된 예측 단위는 화면 내 예측을 수행한 인트라 예측 단위 또는 화면 간 예측을 수행한 인터 예측 단위가 존재할 수 있다. 본 발명의 일실시예에 따른 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법에서는 픽쳐의 4x4, 4x8. 8x4, 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, 32x32 사이즈의 화면 간 예측 단위들 중에서 어떠한 크기의 예측 단위가 가장 많이 사용된 예측 단위(이하, 본 발명에서는 최빈 예측 단위라고 함)인지 여부를 판단할 수 있다.
최빈 예측 단위가 16x16 사이즈보다 큰지 여부를 판단한다(단계 S410).
최빈 예측 단위가 16x16 사이즈보다 작거나 같은 경우와 최빈 예측 단위가 16x16 사이즈보다 큰 경우를 구분해서 현재 픽쳐에 포함된 예측 단위의 움직임 관련 정보(움직임 벡터, 참조 픽쳐 등)가 예측 단위 별로 다르게 저장됨으로써 메모리를 효과적으로 활용할 수 있고 화면 간 예측의 복잡도를 낮출 수 있다.
최빈 예측 단위가 16x16 사이즈보다 작거나 같은 경우, 움직임 예측 관련 정보를 16x16 단위로 저장한다(단계 S420).
최빈 예측 단위는 4x4, 4x8. 8x4, 8x8, 8x16, 16x8, 16x16와 같이 최빈 예측 단위가 16x16 사이즈보다 작거나 같은 경우 움직임 벡터 및 참조 픽쳐 정보와 같은 움직임 예측 관련 정보를 16x16 사이즈 단위로 저장한다.
4x4, 4x8. 8x4, 8x8, 8x16, 16x8과 같이 움직임 예측 단위가 16x16보다 작은 경우, 해당 16x16 크기에 포함되는 예측 단위 중 하나의 값을 저장하거나, 해당 16x16 크기에 포함되는 예측 단위 사이에서 소정의 수식을 이용해 움직임 벡터 및 참조 픽쳐를 새롭게 산출하여 16x16 크기의 예측 단위 별로 움직임 예측 관련 정보를 저장할 수 있다.
최빈 예측 단위가 16x16 사이즈보다 큰 경우, 움직임 예측 관련 정보를 최빈 예측 단위로 저장한다(단계 S430).
예를 들어, 현재 픽쳐에서 가장 많이 발생한 예측 단위의 크기가 32x32 사이즈인 경우, 32x32 사이즈 단위로 움직임 예측 관련 정보를 저장할 수 있다.
예측 단위가 32x32 사이즈인 경우, 해당 예측 단위의 움직임 벡터값을 현재 예측 단위의 움직임 벡터값으로 사용할 수 있다.
32x32 사이즈보다 작은 32x32 사이즈에 포함되는 예측 단위의 움직임 관련 정보는 하나의 움직임 관련 정보로 산출될 수 있다. 예를 들어, 복수개의 16x16 크기의 예측 단위를 포함하는 32x32 사이즈의 예측 단위는 복수개의 16x16 크기의 예측 단위 중 하나의 움직임 예측 관련 정보를 32x32 사이즈 단위로 움직임 예측 관련 정보로 활용하거나, 복수개의 16x16 크기의 예측 단위의 움직임 관련 정보를 보간한 값을 32x32 사이즈 단위로 움직임 예측 관련 정보로 활용할 수 있다.
도 5는 본 발명의 일실시예에 따른 화면 간 예측 방법 중 공간적 예측 방법을 나타낸 개념도이다.
도 5를 참조하면, 현재 예측 단위(500, Prediction Unit, PU)의 예측 블록을 생성하기 위해 현재 예측 단위(500)의 주변에 위치한 예측 단위(510, 520, 530, 540, 550)의 움직임 관련 정보를 사용할 수 있다.
공간적 움직임 예측 후보 블록으로서 현재 블록 주변의 4개의 블록이 사용될 수 있다.
제1 공간적 움직임 예측 후보 블록(510)은 현재 예측 단위의 최상단 가장 좌측 픽셀(505)에서 좌측으로 한칸 이동한 픽셀(515)을 포함하는 예측 단위가 될 수 있다.
제2 공간적 움직임 예측 후보 블록(520)은 현재 예측 단위의 최상단 가장 좌측 픽셀(505)에서 상단으로 한칸 이동한 픽셀(525)을 포함하는 예측 단위가 될 수 있다.
제3 공간적 움직임 예측 후보 블록(530)은 현재 예측 단위의 최상단 가장 좌측 픽셀(505)에서 현재 예측 단위의 가로 크기만큼 이동한 곳에 위치한 픽셀(535)을 포함한 예측 단위가 될 수 있다.
제4 공간적 움직임 예측 후보 블록(540)은 현재 예측 단위의 최상단 가장 좌측 픽셀(505)에서 현재 예측 단위의 세로 크기만큼 이동한 곳에 위치한 픽셀(545)을 포함한 예측 단위가 될 수 있다.
만약 예를 들어, 제3 공간적 움직임 예측 후보 블록(530)의 움직임 예측 관련 정보, 예를 들어, 움직임 벡터, 참조 픽쳐 정보가 현재 예측 단위의 움직임 예측 관련 정보와 동일할 경우, 제3 공간적 움직임 예측 후보 블록(530)의 움직임 예측 관련 정보를 현재 예측 단위의 움직임 예측 관련 정보로 사용할 수 있다.
즉, 제1 내지 제4 공간적 움직임 예측 후보 블록(510, 520, 530, 540) 중 현재 예측 단위(500)와 움직임 예측 관련 정보가 동일한 움직임 예측 후보 블록이 존재할 경우, 현재 예측 단위(500)와 움직임 관련 정보가 동일한 움직임 예측 후보 블록의 움직임 예측 정보를 현재 예측 단위(500)의 움직임 예측 관련 정보로 사용할 수 있다.
도 6은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 제1 시간적 움직임 예측 관련 정보를 산출하는 방법을 나타낸 개념도이다.
현재 예측 단위(600, 610, 620)의 예측 블록을 생성하기 위해 현재 예측 단위(600, 610, 620)의 이전 또는 이후 픽쳐에 존재하는 예측 단위로부터 현재 예측 단위를 예측하기 위한 움직임 벡터 및 참조 픽쳐 정보를 얻을 수 있다.
현재 예측 단위(600, 610, 620)의 이전 또는 이후 픽쳐에 존재하는 예측 단위로부터 현재 예측 단위를 예측하기 위한 움직임 벡터 및 참조 픽쳐 정보를 얻기 위해서는 현재 예측 단위의 중심에 위치한 특정 사이즈의 블록과 동일한 위치에 위치한 이전 또는 이후 픽쳐의 블록(이후, 동일 위치 블록(Co-located Block)이라함)의 움직임 예측 관련 정보를 현재 예측 단위의 시간적 움직임 예측 방법을 수행하기 위한 예측 단위로 사용할 수 있다.
도 6을 참조하면, 현재 예측 단위의 크기에 따라 동일 위치 블록에서 움직임 예측 관련 정보를 얻기 위한 현재 예측 단위에 포함된 블록의 위치가 달라질 수 있다.
도 6의 좌측의 예측 단위(600)는 32x32 사이즈로 예측 단위를 사용하는 경우, 동일 위치 블록을 산출하기 위한 현재 예측 단위의 중앙에 위치한 4x4 크기의 블록(605, 이하 중앙 예측 블록이라 함)을 나타낸 것이다.
도 6의 중간 및 오른쪽의 예측 단위(610, 620)은 각각, 예측 단위의 크기를 32x16, 16x16 사이즈를 사용할 경우에 현재 예측 단위의 중앙에 위치한 4x4 크기의 블록(615, 625, 이하 중앙 예측 블록이라함)을 나타낸 것이다.
현재 예측 단위를 32x32 크기로 가정하면, 현재 중앙 예측 블록(605)의 동일 위치 블록(현재 픽쳐의 이전 또는 이후 픽쳐에서 현재 중앙 예측 블록과 동일한 위치에 존재하는 블록)의 움직임 관련 정보를 현재 예측 단위의 예측 블록을 생성하기 위한 움직임 예측 관련 정보로 사용할 수 있다.
예측 단위가 32x32 사이즈 외의 다른 경우에서 현재 예측 단위의 중앙 예측 블록(615, 625)의 동일 위치 블록에서 현재 예측 단위의 움직임 예측 관련 정보를 산출할 수 있다. 이하, 본 발명의 일실시예에서는 중앙 예측 블록(605, 615, 625)으로부터 산출된 시간적 움직임 관련 정보를 제1 시간적 움직임 예측 관련 정보라고 정의한다.
본 발명의 일실시예에 따르면, 전술한 바와 같은 중앙 예측 블록뿐만 아니라 현재 예측 단위의 상단 좌측에 위치한 블록의 동일 위치 블록의 움직임 예측 관련 정보도 현재 예측 단위의 움직임 예측 관련 정보를 산출하기 위해 사용될 수 있다.
도 7은 본 발명의 일실시예에 따른 화면 간 예측 방법 중 제2 시간적 움직임 예측 관련 정보를 산출하는 방법을 나타낸 개념도이다.
도 7을 참조하면 현재 예측 단위의 최상단 가장 좌측에 위치한 픽셀의 상단 및 좌측으로 한 칸 움직인 위치에 존재하는 픽셀(700)과 참조 픽쳐 상에서 동일한 위치에 있는 픽셀(707)을 포함하는 예측 단위의 동일 위치 블록(710)의 움직임 예측 관련 정보를 현재 예측 단위의 움직임 예측을 수행하기 위해 사용할 수 있다.
이하, 본 발명의 일실시예에서는 현재 예측 단위의 최상단 가장 좌측에 위치한 픽셀의 상단 및 좌측으로 한 칸 움직인 위치에 존재하는 픽셀(700)과 참조 픽쳐 상에서 동일한 위치에 있는 픽셀(707)을 포함하는 예측 단위의 동일 위치 블록(710)으로부터 산출된 시간적 움직임 관련 정보를 제2 시간적 움직임 예측 관련 정보라고 정의한다.
전술한 제1 시간적 움직임 예측 관련 정보와 제2 시간적 움직임 예측 관련 정보를 기초로 현재 예측 단위를 산출하기 위한 하나의 움직임 예측 관련 정보를 산출하여 현재 예측 단위의 예측 블록을 생성하기 위해 사용할 수 있다.
제1 시간적 움직임 예측 관련 정보와 제2 시간적 움직임 예측 관련 정보가 모두 가용할 경우, 제1 시간적 움직임 예측 관련 정보와 제2 시간적 움직임 예측 관련 정보에 포함된 움직임 벡터를 현재 예측 단위의 움직임 예측을 수행하기 위한 움직임 예측 관련 정보로 사용할 수 있다.
예를 들어, 제1 시간적 움직임 예측 관련 정보의 움직임 벡터와 제2 시간적 움직임 예측 관련 정보의 참조 픽쳐가 동일한 경우, 해당 참조 픽쳐를 현재 예측 단위의 움직임 예측을 수행하기 위한 참조 픽쳐 정보로 사용하고, 제1 시간적 움직임 예측 관련 정보의 움직임 벡터와 제2 시간적 움직임 예측 관련 정보의 움직임 벡터를 평균한 값 또는 어떠한 수식을 기초로 산출된 새로운 움직임 벡터값을 현재 예측 단위의 움직임 예측을 수행하기 위한 움직임 예측 관련 정보로 사용할 수 있다. 즉, 본 발명의 일실시예에 따른 움직임 벡터 산출방법은 설명의 편의상 평균을 내는 방법으로 현재 예측 단위의 움직임 벡터를 산출하는 방법을 개시하였으나, 평균을 내는 방법이 아닌 다른 수식을 사용하여 산출된 움직임 벡터를 현재 예측 단위를 예측하기 위한 움직임 벡터로 사용할 수 있다.
참조 픽쳐 정보는 제1 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보와 제2 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보가 서로 다른 경우, 제1 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보와 제2 시간적 움직임 예측 관련 정보 중 하나의 움직임 벡터 및 참조 픽쳐 정보를 사용하여 현재 예측 단위의 예측 블록을 생성할 수 있다. 또한 만약, 제1 시간적 움직임 예측 관련 정보와 제2 시간적 움직임 예측 관련 정보 둘 중 하나만 가용한 경우, 가용한 시간적 움직임 예측 관련 정보를 현재 예측 단위의 시간적 움직임 예측 관련 정보로 사용할 수 있다.
즉, 영상 복호화기에서는 제1 시간적 움직임 예측 후보 블록 또는 제2 시간적 움직임 예측 후보 블록 중 가용한 시간적 움직임 예측 후보 블록 정보를 영상 부호화기에서 제공받거나 영상 복호화기 자체에서 얻은 후 제1 시간적 움직임 예측 후보 블록 또는 제2 시간적 움직임 예측 후보 블록의 제1 시간적 움직임 예측 관련 정보 또는 제2 시간적 움직임 예측 관련 정보 중 적어도 하나를 기초로 현재 예측 단위에 대한 예측 블록을 생성할 수 있다.
전술한 방법을 통해서, 현재 예측 단위의 움직임 관련 정보를 산출함에 있어서, 중앙에 위치한 블록의 움직임 관련 정보뿐만 아니라 좌상단에 위치한 예측 단위의 움직임 예측 단위의 움직임 예측 관련 정보를 활용하는 방법을 통해, 예측 블록과 원본 블록의 오차를 줄여 부호화 효율을 높힐 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 픽쳐의 예측 단위 크기 정보를 산출하는 단계; 및
    상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계를 포함하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  2. 제1항에 있어서, 상기 픽쳐의 예측 단위 크기 정보를 산출하는 단계는,
    픽쳐에 가장 많이 존재하는 예측 단위의 크기인 픽쳐의 최빈 예측 단위 크기에 관한 정보를 산출하는 것을 특징으로 하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  3. 제2항에 있어서,
    상기 픽쳐의 최빈 예측 단위 크기에 따라 적응적으로 저장된 움직임 예측 관련 정보를 제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위의 움직임 예측 관련 정보로 사용하여 현재 예측 단위의 예측 블록을 생성하는 단계를 더 포함하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  4. 제1항에 있어서, 상기 픽쳐의 예측 단위 크기 정보를 산출하는 단계는,
    픽쳐에 존재하는 예측 단위의 크기 중 중앙값(Median Value)를 가진 예측 단위 크기에 관한 정보를 산출하는 것을 특징으로 하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  5. 제4항에 있어서,
    상기 픽쳐의 예측 단위의 크기 중 중앙값(Median Value)를 가진 예측 단위 크기에 따라 적응적으로 저장된 움직임 예측 관련 정보를 제1 시간적 후보 움직임 예측 단위 및 제2 시간적 후보 움직임 예측 단위의 움직임 예측 관련 정보로 사용하여 현재 예측 단위의 예측 블록을 생성하는 단계를 더 포함하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  6. 제1항에 있어서, 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계는,
    상기 픽쳐의 예측 단위 크기가 16x16 사이즈보다 작거나 같은 경우, 상기 픽쳐의 움직임 예측 관련 정보를 16x16 사이즈 단위로 저장하는 단계; 및
    상기 픽쳐의 예측 단위 크기가 16x16 사이즈보다 큰 경우, 상기 픽쳐의 움직임 예측 관련 정보를 상기 픽쳐에 가장 많이 존재하는 예측 단위의 크기인 픽쳐의 최빈 예측 단위 크기로 저장하는 단계를 더 포함하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  7. 제1항에 있어서, 상기 산출된 픽쳐의 예측 단위 크기 정보에 기초하여 상기 픽쳐의 움직임 예측 관련 정보를 적응적으로 저장하는 단계는,
    상기 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 상기 픽쳐의 예측 단위 중 상기 중앙값보다 작거나 같은 크기를 가진 예측 단위는 중앙값 크기의 예측 단위 크기를 기준으로 움직임 관련 정보를 저장하는 단계; 및
    상기 픽쳐의 예측 단위 크기 중 중앙값(Median Value)를 가진 예측 단위를 산출하고 상기 픽쳐의 예측 단위 중 상기 중앙값보다 큰 크기를 가진 예측 단위는 개별 예측 단위 크기를 기준으로 움직임 관련 정보를 저장하는 단계를 더 포함하는 화면 간 예측에서 움직임 예측 관련 정보 산출 방법.
  8. 제1 시간적 움직임 예측 후보 블록을 탐색하고 상기 제1 시간적 움직임 예측 후보 블록에서 제1 시간적 움직임 예측 관련 정보를 산출하는 단계; 및
    제2 시간적 움직임 예측 후보 블록을 탐색하고 상기 제2 시간적 움직임 예측 후보 블록에서 제2 시간적 움직임 예측 관련 정보를 산출하는 단계를 포함하는 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법.
  9. 제 8항에 있어서,
    상기 제1 시간적 움직임 예측 관련 정보 및 상기 제2 시간적 움직임 예측 관련 정보를 기초로 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보를 산출하는 단계를 더 포함하는 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법.
  10. 제 8항에 있어서, 상기 제1 시간적 움직임 예측 관련 정보는,
    현재 예측 단위의 중앙 예측 블록의 동일 위치 블록의 움직임 예측 관련 정보인 것을 특징으로 하는 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법.
  11. 제 8항에 있어서, 상기 제2 시간적 움직임 예측 관련 정보는,
    현재 예측 단위의 최상단 가장 좌측 픽셀로부터 상단으로 한칸 좌측으로 한칸 이동한 곳에 위치한 픽셀을 포함하는 예측 단위의 동일 위치 블록의 움직임 예측 관련 정보인 것을 특징으로 하는 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법.
  12. 제 8항에 있어서, 상기 제1 시간적 움직임 예측 관련 정보 및 상기 제2 시간적 움직임 예측 관련 정보를 기초로 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보를 산출하는 단계는,
    상기 제1 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보와 상기 제2 시간적 움직임 예측 관련 정보의 참조 픽쳐 정보를 현재 예측 단위의 참조 픽쳐 정보로 사용하고, 상기 제1 시간적 움직임 예측 관련 정보에 포함된 제1 움직임 벡터 정보와 상기 제2 시간적 움직임 예측 관련 정보에 포함된 제2 움직임 벡터 정보를 평균하여 산출한 값을 현재 예측 단위의 예측 블록을 생성하기 위한 시간적 움직임 예측 관련 정보로 산출하는 것을 특징으로 하는 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법.
PCT/KR2012/004318 2011-05-31 2012-05-31 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법 WO2012165886A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/115,568 US20140185948A1 (en) 2011-05-31 2012-05-31 Method for storing motion prediction-related information in inter prediction method, and method for obtaining motion prediction-related information in inter prediction method
US14/518,740 US20150036750A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,695 US20150036741A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,767 US20150036751A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,799 US20150036752A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0052418 2011-05-31
KR20110052418 2011-05-31
KR20110052419 2011-05-31
KR10-2011-0052419 2011-05-31

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US14/115,568 A-371-Of-International US20140185948A1 (en) 2011-05-31 2012-05-31 Method for storing motion prediction-related information in inter prediction method, and method for obtaining motion prediction-related information in inter prediction method
US14/518,799 Continuation US20150036752A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,695 Continuation US20150036741A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,740 Continuation US20150036750A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method
US14/518,767 Continuation US20150036751A1 (en) 2011-05-31 2014-10-20 Method for storing movement prediction-related information in an interscreen prediction method, and method for calculating the movement prediction-related information in the inter-screen prediction method

Publications (2)

Publication Number Publication Date
WO2012165886A2 true WO2012165886A2 (ko) 2012-12-06
WO2012165886A3 WO2012165886A3 (ko) 2013-03-28

Family

ID=47260095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004318 WO2012165886A2 (ko) 2011-05-31 2012-05-31 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법

Country Status (2)

Country Link
US (5) US20140185948A1 (ko)
WO (1) WO2012165886A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165886A2 (ko) * 2011-05-31 2012-12-06 (주)휴맥스 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법
CN111226440A (zh) * 2019-01-02 2020-06-02 深圳市大疆创新科技有限公司 视频处理方法和装置
WO2020192726A1 (en) * 2019-03-27 2020-10-01 Beijing Bytedance Network Technology Co., Ltd. History-based motion vector prediction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036943A (ko) * 2002-07-15 2004-05-03 미쓰비시덴키 가부시키가이샤 화상 부호화 장치, 화상 부호화 방법, 화상 복호 장치,화상 복호 방법, 및 통신 장치
KR20110018188A (ko) * 2009-08-17 2011-02-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR20110036521A (ko) * 2009-10-01 2011-04-07 에스케이 텔레콤주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080123977A1 (en) * 2005-07-22 2008-05-29 Mitsubishi Electric Corporation Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program
US8503527B2 (en) * 2008-10-03 2013-08-06 Qualcomm Incorporated Video coding with large macroblocks
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法
US9571851B2 (en) * 2009-09-25 2017-02-14 Sk Telecom Co., Ltd. Inter prediction method and apparatus using adjacent pixels, and image encoding/decoding method and apparatus using same
WO2012165886A2 (ko) * 2011-05-31 2012-12-06 (주)휴맥스 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036943A (ko) * 2002-07-15 2004-05-03 미쓰비시덴키 가부시키가이샤 화상 부호화 장치, 화상 부호화 방법, 화상 복호 장치,화상 복호 방법, 및 통신 장치
KR20110018188A (ko) * 2009-08-17 2011-02-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
KR20110036521A (ko) * 2009-10-01 2011-04-07 에스케이 텔레콤주식회사 가변 크기의 매크로블록을 이용한 영상 부호화/복호화 방법 및 장치

Also Published As

Publication number Publication date
US20150036751A1 (en) 2015-02-05
US20150036741A1 (en) 2015-02-05
US20150036750A1 (en) 2015-02-05
WO2012165886A3 (ko) 2013-03-28
US20150036752A1 (en) 2015-02-05
US20140185948A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
WO2012144829A2 (en) Method and apparatus for encoding and decoding motion vector of multi-view video
WO2016188251A1 (zh) 视频解码数据存储方法及运动向量数据的计算方法
WO2011126348A2 (en) Method and apparatus for processing video data
WO2013062191A1 (ko) 인트라 예측 모드에서의 영상 부호화 방법 및 장치
WO2011087271A2 (ko) 비디오 신호의 처리 방법 및 장치
WO2011019247A2 (en) Method and apparatus for encoding/decoding motion vector
WO2012008790A2 (en) Method and apparatus for encoding and decoding image through intra prediction
WO2011139099A2 (ko) 비디오 신호의 처리 방법 및 장치
EP2676445A2 (en) Method and apparatus for encoding and decoding multi-view video
WO2009110753A2 (en) Method and apparatus for image intra prediction
WO2011074896A2 (ko) 적응적 영상 부호화 장치 및 방법
WO2011062392A2 (ko) 후보 예측 움직임 벡터 집합 선택을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
WO2013062196A1 (ko) 영상 복호화 장치
WO2011096662A2 (ko) 율-왜곡 최적화를 위한 영상 부호화/복호화 방법 및 이를 수행하는 장치
WO2010087589A2 (ko) 경계 인트라 코딩을 이용한 비디오 신호 처리 방법 및 장치
WO2010140759A1 (en) Apparatus and method for processing video data
WO2013105791A1 (ko) 움직임 벡터 정규화에 기초한 영상의 부호화 방법 및 장치, 영상의 복호화 방법 및 장치
WO2012115435A2 (en) Method and apparatus for encoding and decoding multi view video
WO2018079873A1 (ko) 임의의 블록 분할을 사용하는 비디오 코딩 방법 및 장치
WO2012165886A2 (ko) 화면 간 예측 방법에서 움직임 예측 관련 정보 저장 방법 및 화면 간 예측 방법에서 움직임 예측 관련 정보 산출 방법
WO2019132567A1 (ko) 서브-블록 단위 화면 내 예측을 사용하는 비디오 코딩 방법 및 장치
WO2017191891A1 (en) Method and electronic device for coding a segment of an inter frame
WO2012053796A2 (ko) 차분 움직임벡터 부호화/복호화 장치 및 방법, 및 그것을 이용한 영상 부호화/복호화 장치 및 방법
WO2018070555A1 (ko) 다양한 블록 분할 구조를 결합하여 사용하는 비디오 코딩 방법 및 장치
WO2013002620A2 (ko) 스킵 모드를 이용한 모션 정보 부호화 방법 및 장치, 그 복호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792758

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14115568

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12792758

Country of ref document: EP

Kind code of ref document: A2