WO2012165729A1 - 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법 - Google Patents

금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법 Download PDF

Info

Publication number
WO2012165729A1
WO2012165729A1 PCT/KR2011/008297 KR2011008297W WO2012165729A1 WO 2012165729 A1 WO2012165729 A1 WO 2012165729A1 KR 2011008297 W KR2011008297 W KR 2011008297W WO 2012165729 A1 WO2012165729 A1 WO 2012165729A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
steel wire
less
wire rod
tensile strength
Prior art date
Application number
PCT/KR2011/008297
Other languages
English (en)
French (fr)
Inventor
안순태
Original Assignee
삼화강봉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화강봉 주식회사 filed Critical 삼화강봉 주식회사
Priority to EP11864128.1A priority Critical patent/EP2722113B1/en
Priority to JP2013518287A priority patent/JP5647344B2/ja
Priority to US13/704,995 priority patent/US9206489B2/en
Priority to CN2011800241642A priority patent/CN102971095A/zh
Publication of WO2012165729A1 publication Critical patent/WO2012165729A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C9/00Cooling, heating or lubricating drawing material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a high-strength cold forging steel wire used as a material for automobile engines, chassis and steering parts (bolts and shafts), and more particularly Cold forging wires and their manufacture, which are not only forging cold but also for significantly improved mold life, despite the extremely high tensile strength of more than 1,200 MPa. It is about a method.
  • spheroidized annealing material Conventional cold forging steel wires are known as spheroidized annealing material and non-coarse steel.
  • the spheroidized annealing material is to be forged in the cold by increasing the ductility of the material by spheroidizing the carbide precipitated during the heat treatment process, by spheroidizing the precipitated carbide by heating for about 13 hours to 17 hours at a temperature of about 700 °C
  • the tensile strength is very low, about 500 to 600 MPa, so that forging is easy.
  • the troublesome process and increase of manufacturing cost must be accompanied by additional heat treatment in order to increase tensile strength.
  • non-coated steel that can reduce cost by omitting the tempering and tempering heat treatment is actively progressing.
  • most non-alloyed steel is composed of mixed structure of ferrite and perlite, and many alloying elements are added, so there is no problem in forging of relatively simple and low workability parts with tensile strength less than 800MPa, but more than 900MPa
  • a shaped part for example, a hexagon flange bolt or the like, the cementite layer layered in the pearlite is prematurely broken, so that the cold forging is impossible.
  • the present invention was devised in view of the problems pointed out in the conventional cold forging steel and the recent demand for high strength development, the tensile strength of the material is 1,200 ⁇ 1,600MPa as the ultra high strength for cold forging steel wire, but the construction and It is an object of the present invention to provide a high strength cold forging steel wire and a method of manufacturing the same, which do not generate cracks even when cold forging is used for automobile parts, and the mold life is remarkably improved.
  • the inventors of the present invention find the same fact while performing various trials and repeated experiments for the development of a new steel wire which is capable of cold forging with a tensile strength of 1,200 MPa or more and improves the life of the forging die. Reached.
  • the quenchable mechanical structural carbon steel is rapidly heated above the Ac3 transformation point and maintained in the heating state, then rapidly cooled by water or oil, and then tempered at the transformation point of 500 ° C. to A1 to provide tensile strength.
  • the wire is manufactured in the range of 1,100 to 1,400 MPa, and cold drawn to a section reduction rate of 25 to 40%, the tensile strength is very high as 1,200 to 1,600 MPa, but forging is possible without cracking in the cold. It has also been found that the service life can be significantly improved.
  • the chemical composition of the wire used in the method of the present invention 0.15 ⁇ 0.40wt% C, 1.5wt% or less Si, 0.30 ⁇ 2.0wt% Mn, P 0.03wt% or less, S 0.03wt% or less and other unavoidable impurities And balance based on the component system composed of Fe, and in some cases 0.05 to 2.0wt% Cr, 0.05 to 1.5wt% Mo, 0.01 to 0.10wt% Ti, 0.0003 to 0.0050wt% B and 0.01 to At least one component of 0.05 wt% Al may be added, and the reason for limiting each component range is as follows.
  • C is the most important element added to increase the strength at the time of hardening.
  • hardening effect by hardening heat treatment cannot be expected at less than 0.15 wt%, and when it exceeds 0.40 wt%, toughness is caused by precipitation of a large amount of carbide. This decreases and the deformation resistance is increased to cause cracks and a decrease in tool life during cold pressing.
  • Si is an element injected for deoxidation in steel, and its strength is improved by solid solution strengthening, but when its content exceeds 1.5wt%, toughness decreases, which increases deformation resistance during cold rolling, thereby reducing cracking and tool life.
  • Mn is a solid solution hardening element and is an element for compensating for the decrease in strength in low C and Si addition steels in order to avoid an increase in deformation resistance that may occur when C and Si are excessively added. Therefore, in order to expect the above effect, at least 0.30wt% of addition is required, but when added in excess, the toughness and deformation resistance are increased so that the amount of addition should not exceed 2.0wt%.
  • Cr is an element added to improve strength, quenching hardness and toughness, and the effect of improving the above characteristics is less than 0.05 wt%, and Cr is relatively expensive, and thus economical efficiency is lowered when it exceeds 2.0 wt%.
  • the lower limit is made 0.05 wt% and the upper limit is made 2.0 wt%.
  • Mo is almost the same as the effect of the addition of Cr, the effect is less than less than 0.05wt%, If the excess exceeds 1.5wt% deformation resistance for cold processing is increased so that the addition amount does not exceed 1.5wt%.
  • B is an element that improves hardenability, and the effect of addition is unclear at less than 0.0003 wt%, but rather lowered at more than 0.0050 wt%.
  • Ti also coexists with B to increase the quenching strength, but is effective for the grain refinement of austenite. However, when the amount is less than 0.01 wt%, the effect is insufficient. When the amount exceeds 0.10 wt%, the inclusions increase, which lowers various required physical properties.
  • Al combines with nitrogen to inhibit austenite grain growth.
  • a large amount is contained, a large amount of aluminum oxide-based inclusions are generated, thereby reducing ductility. Therefore, in order to achieve the object of the present invention, 0.01 to 0.05wt% range is preferable.
  • P and S are unavoidable impurity elements of steel, which segregate at the grain boundaries during tempering, lower the impact toughness, and lower the strain rate during cold working. Therefore, the content of P and S must be limited so as not to exceed 0.030 wt%.
  • Method for producing a high strength cold forging steel wire of the present invention Cold drawing wire rods containing 0.15 to 0.40wt% C, 1.5wt% or less Si, 0.30 to 2.0wt% Mn, P 0.03wt% or less, S 0.03wt% or less and inevitable impurities and residual Fe Rapid heating of the cold drawn wire rod in a series of high frequency induction heating apparatus above the Ac3 transformation point for 30 to 90 seconds and maintaining the heating state; quenching the heated wire rod with water or oil, 500 Tempering for 30 to 90 seconds, including heating and holding time up to a transition point of °C to A1, cooling the heated wire rod again to obtain a wire rod having a tensile strength in the range of 1,100 to 1,400 MPa, and wire rod 25 Cold drawing is performed at a cross-sectional reduction rate of ⁇ 40% to obtain a tensile strength of 1,200 to 1,600 MPa.
  • the reason why the tensile strength obtained after quenching / tempering is limited to the range of 1,100 to 1,400 MPa is When drawn and tempered steel wire is drawn at a reduction rate of 25 to 40%, it is to ensure the tensile strength of 1,200 to 1,600 MPa of the desired final product.
  • Characteristic technical features of the present invention is " Drawn / tempered steel wire at 25-40% reduction rate, which is the result obtained by the present inventors through numerous tests while changing the drawing conditions for the steel composition of the present invention, which is the reduction reduction rate of FIG. It is confirmed through the graph of the measurement result of strain resistance energy (J / m3) according to (%).
  • the tensile strength of 1,300 MPa or more was not commercialized because not only cold forging was possible, but also the mold life was remarkably low, but in the case of the steel wire obtained through the method of the present invention, the tensile strength was 1,600 MPa. As it is possible to stably cold forge and extend the life of the mold, it is expected to greatly reduce the greenhouse gas emissions as well as the innovative light weight as an automotive parts material.
  • Table 1 Chemical composition of the steel used in the embodiment of the present invention is shown in Table 1 below, the hot rolled wire rod diameter of 18mm was drawn from the cold to 16mm in diameter.
  • the cold drawn wire was rapidly heated and maintained for 30 seconds to 90 seconds above the Ac3 transformation point using a high frequency induction heating device connected in a series of processes, and then quenched with water or oil. Subsequently, tempering was performed for 30 seconds to 90 seconds at 500 ° C to A1 transformation point to prepare a wire having a tensile strength in the range of 1,100 to 1,400 MPa.
  • the wire was cold drawn again with a 25-40% cross-sectional reduction rate to produce a final example steel wire having a tensile strength of 1,200 to 1600 MPa.
  • the wire was subjected to the tensile strength test on the steel wire manufactured through such a process.
  • As the specimen 6.25 mm standard specimen of ASTM E8 was used.
  • For the compression test a specimen of 10mm diameter x 15mm height was used and a 100 ton dedicated compression tester was used. The strain resistance energy at this time was calculated by calculating the true stress-strain curve and the graph area up to strain 0.9. .
  • the bolt M10 with a flange was forged and the life time until the mold was broken was evaluated. At this time, the life expectancy of the mold was set at least 50,000 strokes in consideration of economical efficiency.
  • the steel wire with a tensile strength of 1,200 MPa or more is much less than 50,000 strokes.
  • Table 2 below shows the tensile life test, the compression test and the final life of the final product steel wires for the specimens of Examples and Examples obtained through the heat treatment process and cold drawing as described above for the specimens of the composition as shown in Table 1 above. The result is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 자동차 엔진, 샤시 및 조향장치의 부품(볼트 및 샤프트류) 등의 소재로 사용되는 고강도의 냉간단조용 선조질강선에 관한 것이다. 본 발명의 고강도 냉간단조용 강선의 제조방법은; 0.15 ~ 0.40wt% C, 1.5wt% 이하 Si, 0.30 ~ 2.0wt% Mn, P 0.03wt% 이하, S 0.03wt%이하가 함유되고 기타 불가피한 불순물과 잔부 Fe로 조성된 와이어 로드를 냉간 인발하는 단계, 냉간 인발된 와이어 로드를 일련의 고주파 유도가열장치 중에서 30∼90초 동안 Ac3 변태점 이상으로 급속가열하고 그 가열상태를 유지하는 단계, 가열 상태의 와이어 로드를 물이나 기름에 의해 급냉하는 단계, 500℃∼A1 변태점까지 가열 및 유지시간 포함하여 30∼90초 동안 템퍼링을 실시하는 단계, 가열 상태의 와이어 로드를 다시 수냉하여 인장강도가 1,100 ∼ 1,400MPa 범위인 와이어 로드를 얻는 단계 및 와이어 로드를 25∼40%의 단면감소율로 냉간 인발하여 인장강도가 1,200 ∼ 1,600MPa가 되도록 하는 단계로 이루어진다. 본 발명의 강선은 인장강도가 1,200MPa 이상으로 매우 높은 데도 불구하고 냉간에서 단조가 가능할 뿐만 아니라 금형수명의 현저한 향상을 가져온다.

Description

금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법
본 발명은 자동차 엔진, 샤시 및 조향장치의 부품(볼트 및 샤프트류) 등의 소재로 사용되는 고강도의 냉간단조용 선조질강선에 관한 것으로, 보다 자세하게는
Figure PCTKR2011008297-appb-I000001
칭 템퍼링을 실시한 강선을 적절한 정도의 단면감소율로 냉간에서 신선함으로써 인장강도가 1,200MPa 이상으로 매우 높은 데도 불구하고 냉간에서 단조가 가능할 뿐만 아니라 금형수명의 현저한 향상을 도모하는 냉간단조용 와이어 및 그 제조방법에 관한 것이다.
종래의 대표적인 냉간 단조용 강선으로는 구상화 소둔재와 비조질강이 알려져 있다. 상기 구상화 소둔재는 열처리 과정에서 석출되는 탄화물을 구상화시킴으로써 재료의 연성을 높여 냉간에서 단조가 가능하게 한 것으로서, 700℃ 정도의 온도에서 13시간 내지 17시간 정도에 걸쳐 장시간 가열하여 석출되는 탄화물을 구상화시킴으로써 인장강도가 500 ∼ 600MPa 정도로 매우 낮아 단조가 용이하게 된 것이다. 그러나 단조 후에는 인장강도를 높히기 위하여 반드시 추가적인 열처리가 수반되어야 하는 공정상의 번거로움과 제조비용의 증가가 문제점으로 지적되고 있다.
따라서 최근에는 단조 후
Figure PCTKR2011008297-appb-I000002
칭, 템퍼링 열처리를 생략하여 원가절감을 꾀할 수 있는 비조질강의 개발이 활발하게 진행되고 있다. 그런데 대부분의 비조질강은 페라이트와 퍼얼라이트의 혼합조직으로 이루어져 있고, 또한 많은 합금원소들이 첨가되어 있어서 인장강도 800MPa 이하의 비교적 단순하고 가공도가 낮은 부품의 단조에는 문제가 없었으나, 900MPa 이상급의 복잡한 형상의 부품, 예를 들면 육각 플랜지 볼트 등의 경우에는 퍼얼라이트에 층상으로 존재하는 시멘타이트가 조기에 파단이 일어나므로 냉간단조가 불가능한 것이 현실이다.한편, 본원인은 상기의 종래 냉간 단조용 강선에서 지적되고 있는 문제점을 감안하여 신개념의 고강도 냉간단조용 강선으로서 인장강도가 700 ∼ 1,300MPa로 매우 높음에도 불구하고 볼트 등의 부품으로 냉간단조 하더라도 균열이 발생하지 않는 강선을 개발하였는바, 이는 대한민국 특허 제046971호로 등록되어 있다. 그런데, 최근에는 지구환경보존과 자동차 메이커의 차량 경량화에 대한 지속적인 추구로 냉간단조가 가능한 인장강도 1,200 ∼ 1,600MPa급의 초고강도 강선의 개발요구가 심각하게 대두되고 있다. 그러나 상기 요구범위의 인장강도는 너무 높기 때문에 단조시 균열이 쉽게 발생하고, 냉간단조용 금형수명이 현저히 저하되어 사실상 더 이상의 고강도화는 현재의 기술수준으로는 불가능한 실정이다.
본 발명은 상기 종래의 냉간 단조용 강선에서 지적되고 있는 문제점과 최근의 고강도화 개발요구를 감안하여 창안된 것으로, 소재의 인장강도가 1,200∼ 1,600MPa으로 냉간단조용 강선으로는 초고강도이지만, 건축 및 자동차용 부품으로 냉간단조하여도 균열이 발생하지 않고, 금형수명이 현저히 개선된 고강도 냉간단조용 강선 및 그 제조방법을 제공하는데 발명의 목적이 있다.
본 발명의 상기 목적은, 칭, 템퍼링된 고강도 강선에 대하여 특정범위 내의 단면감소율로 냉간 인발을 실시하게 되면 변형저항에너지의 감소에 기인하여 균열의 발생이 초래됨이 없이 우수한 냉간 단조 특성을 나타낸다고 하는 기존에 알려진 바 없는 새로운 사실에 기초하여 달성된다.
본 발명의 발명자는 기본적으로 인장강도가 1,200MPa 이상으로서 냉간 단조가 가능하면서도 단조금형의 수명이 개선된 새로운 강선의 개발을 위하여 다양한 시도와 반복된 실험을 수행하던 중 상기와 같은 사실을 발견하기에 이르렀다.
여태까지 알려진 바에 의하면,
Figure PCTKR2011008297-appb-I000004
칭/템퍼링만 실시한 인장강도 1,300MPa 이상의 강선은 냉간에서 단조가 불가능하다는 것이 관련 업계나 연구자들에게 일반적인 사실로 여겨져 왔으나,
Figure PCTKR2011008297-appb-I000005
칭/템퍼링 이후 특정량의 인발을 실시하여 얻어진 강선을 냉간단조하는 경우에는 단조 전에 비해 인장강도가 높아짐에도 불구하고, 인발에 따른 금속조직의 변형방향과 반대방향으로 가공이 되므로 변형저항에너지가 현저히 감소하여 냉간 단조성 뿐만 아니라 금형의 수명도 현저히 향상되는 것으로 밝혀졌다.
이를 보다 자세하게 설명하면, 담금질 가능한 기계구조용 탄소강에 대하여 Ac3 변태점 이상으로 급속가열하고 그 가열상태를 유지한 후, 물이나 기름에 의해 급냉하고, 이어서 500℃∼A1 변태점에서 템퍼링을 실시하여 인장강도가 1,100 ∼ 1,400MPa 범위인 와이어를 제조한 다음, 25∼40%의 단면감소율로 냉간인발을 수행하게 되면 인장강도가 1,200 ∼ 1,600MPa로 매우 높지만 냉간에서 균열이 발생됨이 없이 단조가 가능할 뿐만 아니라 금형의 수명도 현저하게 개선할 수 있는 것으로 드러났다.
본 발명의 방법에서 사용되는 와이어의 화학적 조성은, 0.15 ~ 0.40wt% C, 1.5wt% 이하 Si, 0.30 ~ 2.0wt% Mn, P 0.03wt% 이하, S 0.03wt%이하가 함유되고 기타 불가피한 불순물과 잔부 Fe로 조성된 성분계를 기본으로 하며, 경우에 따라서는 상기 성분 조성에 0.05 ~ 2.0wt% Cr과 0.05 ~ 1.5wt% Mo과 0.01 ~ 0.10wt% Ti와 0.0003 ~ 0.0050wt% B 및 0.01 ~ 0.05wt%의 Al 중의 적어도 어느 한 성분 이상이 첨가될 수 있는바, 각 성분 범위를 한정한 이유는 다음과 같다.
C: 0.15 ~ 0.40wt%
C는 소입시 강도증가를 위하여 첨가되는 가장 중요한 원소로서, 통상적으로 알려진 바와 같이 0.15wt% 미만에서는 소입 열처리에 의한 경화효과를 기대할 수 없으며, 0.40wt%를 초과하게 되면 다량의 탄화물 석출로 인하여 인성이 저하되고 변형저항이 증대되어 냉간압조시 균열 및 공구수명의 저하를 초래하게 된다.
Si: 1.5wt% 이하
Si는 강중에 탈산을 위하여 투입되는 원소로서, 고용강화에 의하여 강도를 향상시키지만, 그 함량이 1.5wt%를 초과하면 인성이 저하되어 냉간압조시 변형저항을 증대시켜 균열발생 및 공구수명의 저하를 초래한다. 이는 Si가 석출 탄화물에 고용되어 탄소의 움직임을 방해함으로써 탄화물이 구형화되는 것을 방해하기 때문이다.
Mn: 0.30 ~ 2.0wt%
Mn은 고용강화 원소로서, C 및 Si가 과잉 첨가될 경우 발생할 수 있는 변형저항의 증대를 피하기 위하여, 낮은 C, Si 첨가강에서 강도의 저하를 보완하기 위한 원소이다. 따라서 상기의 효과를 기대하기 위해서는 최소 0.30wt%의 첨가가 필요하지만, 과잉 첨가되면 인성과 변형저항을 증대시키므로 그 첨가량은 2.0wt%를 초과하지 않도록 하여야 한다.
Cr: 0.05 ~ 2.0wt%
Cr은 강도와 담금질 경도 및 인성의 향상을 위하여 첨가되는 원소로서, 0.05wt% 미만에서는 상기 특성들의 향상 효과가 미약하며, Cr은 비교적 고가인 까닭에 2.0wt%를 초과하게 되면 경제성이 떨어지게 되는바, 하한치를 0.05wt%로하고 상한치를 2.0wt%로 한다.
Mo: 0.05 ~ 1.5wt%
Mo은 Cr의 첨가 효과와 거의 동일하며, 0.05wt% 미만에서는 효과가 미약하며, 1.5wt%를 초과하게 되면 냉간 가공을 위한 변형저항이 증대되되므로 그 첨가량은 1.5wt%를 초과하지 않도록 한다.
B: 0.0003 ~ 0.0050wt%
B는 담금질성을 향상시키는 원소로서, 0.0003wt% 미만에서는 첨가효과가 불분명하나, 0.0050wt%를 초과하면 오히려 담금질성을 저하시킨다.
Ti: 0.01 ~ 0.10wt%
Ti는 B와 공존하여 담금질 강도를 올리는 효과도 있지만, 오스테나이트의 결정립 미세화에 효과가 크다. 그러나 0.01wt% 미만에서는 그 효과가 미흡하고, 0.10wt%를 초과하면 개재물이 많게 되어 요구되는 각종 물성치를 저하시킨다.
Al: 0.01 ~ 0.05wt%
Al은 질소와 결합하여 오스테나이트 결정립성장 억제효과가 있다. 그러나 다량 함유되면 알루미늄산화물계 개재물이 많이 생성되어 연성을 저하시킨다. 따라서 본 발명의 목적을 달성하기 위해서는 0.01 ~ 0.05wt% 범위가 바람직하다.
P와 S는 강의 불가피한 불순물 원소로서 뜨임시 결정입계에 편석하여 충격 인성을 저하시키고, 냉간 가공시 변형율을 저하시키므로 가능한 한 그 함량이 각각 0.030wt%를 초과하지 않도록 제한할 필요가 있다.
상기 조성으로 이루어진 강재를 대상으로 하여 본 발명에 따른 고강도 냉간단조용 강선을 제조하는 방법에 대하여 설명하면 다음과 같다.
본 발명의 고강도 냉간단조용 강선의 제조방법은; 0.15 ~ 0.40wt% C, 1.5wt% 이하 Si, 0.30 ~ 2.0wt% Mn, P 0.03wt% 이하, S 0.03wt%이하가 함유되고 기타 불가피한 불순물과 잔부 Fe로 조성된 와이어 로드를 냉간 인발하는 단계, 냉간 인발된 와이어 로드를 일련의 고주파 유도가열장치 중에서 30∼90초 동안 Ac3 변태점 이상으로 급속가열하고 그 가열상태를 유지하는 단계, 가열 상태의 와이어 로드를 물이나 기름에 의해 급냉하는 단계, 500℃∼A1 변태점까지 가열 및 유지시간 포함하여30∼90초 동안 템퍼링을 실시하는 단계, 가열 상태의 와이어 로드를 다시 수냉하여 인장강도가 1,100 ∼ 1,400MPa 범위인 와이어 로드를 얻는 단계 및 와이어 로드를 25∼40%의 단면감소율로 냉간인발하여 인장강도가 1,200 ∼ 1,600MPa가 되도록 하는 단계로 이루어진다.
본 발명에서 상기의 조성으로 이루어진 강재를 대상으로 열처리를 함에 있어서,
Figure PCTKR2011008297-appb-I000006
칭/템퍼링을 선정한 이유는
Figure PCTKR2011008297-appb-I000007
칭 이후 템퍼링시 석출되는 탄화물이 매우 미세하며, 500℃∼A1 변태점까지의 높은 온도로 템퍼링하게 되면 석출된 탄화물이 구상화되어 냉간 단조시 균열발생률을 현저하게 저하시키기 때문이다.
그리고,
Figure PCTKR2011008297-appb-I000008
칭/템퍼링 이후에 얻어지는 인장강도를 1,100 ∼ 1,400MPa 범위로 한정한 이유는
Figure PCTKR2011008297-appb-I000009
칭/템퍼링된 강선을 25∼40%의 감면율로 인발하였을 때, 목적하는 최종 제품의 인장강도 1,200 ∼ 1,600MPa를 확보하기 위한 것이다.
본 발명의 특징적인 기술구성은 "
Figure PCTKR2011008297-appb-I000010
칭/템퍼링된 강선을 25∼40%의 감면율로 인발"에 있는 것으로서, 이는 본 발명자가 본 발명의 강재 조성에 대하여 인발조건을 변화하면서 수많은 시험을 통해서 얻어진 결과인 바, 이는 도1의 인발감면율(%)에 따른 변형저항에너지(J/㎥)의 측정결과 그래프를 통해서 확인되고 있다.
즉, 도1에서와 같이 인장강도 1,150MPa급으로
Figure PCTKR2011008297-appb-I000011
칭/템퍼링된 강선을 냉간에서 압조할 경우, 25∼40%의 감면율로 인발된 강선이 변형저항에너지가 가장 낮은 것으로 확인되고 있다. 이때 사용된 강선의 화학성분은 3강종으로서, 0.2%C-1.0%Cr, 0.2%C-1.1%Cr-0.2%Mo 및 0.30%C--1.0%Si이다.
종래에는
Figure PCTKR2011008297-appb-I000012
칭, 템퍼링만을 실시하여 제조한 강선의 경우, 인장강도 1,300MPa 이상은 냉간 단조가 불가능할 뿐만 아니라 금형수명도 현저히 낮아서 상업화되지 못하였으나, 본 발명의 방법을 통해서 얻어진 강선의 경우에는 인장강도 1,600MPa까지 안정적으로 냉간 단조가 가능하게 되어 금형수명의 연장과 더불어 자동차 부품소재로서의 혁신적 경량화는 물론 그에 따른 온실가스 배출량도 저감할 수 있게 되어 산업상 활용가능성이 매우 클 것으로 기대된다.
첨부된 도면은 인발감면율에 따른 변형저항에너지 측정결과 그래프이다.
이하, 본 발명의 구체적인 실시예에 대하여 설명한다.
본 발명의 실시예에 사용된 강재의 화학조성은 아래의 표1과 같으며, 열간압연된 직경 18mm의 와이어 로드를 냉간에서 직경 16mm로 인발하였다. 냉간인발된 와이어를 일련의 프로세스로 연결된 고주파 유도가열 장치를 사용하여, Ac3 변태점 이상으로 30초∼90초 동안 급속가열 및 유지한 후, 물 또는 기름으로 급냉하였다. 이어서, 500℃∼A1 변태점에서 30초∼90초 동안 템퍼링을 실시하여 인장강도가 1,100 ∼ 1,400MPa 범위인 와이어를 제조하였다. 상기 와이어를 25∼40%의 단면감소율로 재차 냉간 인발을 실시하여 인장강도가 1,200∼1,600MPa인 최종 실시예 강선을 제조하였다.한편, 이와 같은 공정을 거쳐 제조된 강선에 대한 인장강도 시험에 적용된 시편은 ASTM E8의 표준시편 6.25mm를 사용하였다. 압축시험은 직경 10mm x 높이 15mm의 시편을 제작하여 100톤의 전용 압축시험기를 사용하였으며, 이때의 변형저항에너지는 진응력-진변형율 곡선을 그리고 스트레인(strain) 0.9까지의 그래프 면적을 구하여 산정하였다. 그리고, 최종 제품 강선의 냉간 단조시 금형의 수명을 평가하기 위하여 플랜지를 구비한 볼트 M10을 단조하여 금형이 파손될 때까지의 수명을 측정하여 비교평가 하였다. 이때 목표하는 금형의 수명은 경제성을 고려하여 최소 5만타 이상으로 하였다. 통상적으로 인장강도 1,200MPa 이상급의 강선은 5만타에 훨씬 못미치는 수준이다.
[규칙 제26조에 의한 보정 14.03.2012] 
표 1
Figure WO-DOC-TABLE-1
아래의 표2는 상기 표1에서와 같은 조성의 시편에 대하여 상기한 바의 열처리 공정 및 냉간 인발을 거쳐 얻어진 실시예 및 실시예 시편에 대한 인장시험, 압축시험 및 최종 제품 강선에 대한 금형수명 평가 결과이다.
[규칙 제26조에 의한 보정 14.03.2012] 
표 2
Figure WO-DOC-TABLE-2
상기 표2에서,
○: 균열이 발생하지 않은 경우
×: 균열이 발생한 경우
*상기 표2에서 알 수 있듯이, 본 발명에 따라 와이어를 제조하는 경우,
Figure PCTKR2011008297-appb-I000013
칭/템퍼링 이후에 인발을 실시하면 인발 감면율이 증가할수록 인장강도는 증가하는데도 불구하고, 감면율 25∼40%의 범위에서는 오히려 압축시 변형저항에너지가 현저하게 감소하는 것을 확인할 수 있고, 이 경우 본 발명의 실시예 시편들은 모두 5만타 이상의 금형수명을 나타낸다는 사실도 확인되고 있다.

Claims (4)

  1. C 0.15 ~ 0.40wt%, Si 1.5wt% 이하, Mn 0.30 ~ 2.0wt%, P 0.03wt% 이하, S 0.03wt%이하가 함유되고 잔부가 Fe와 기타 불가피한 불순물로 이루어진 조성으로 서, 냉간 인발에 이은
    Figure PCTKR2011008297-appb-I000014
    칭 및 템퍼링을 거쳐 25∼40%의 단면 감소율로 인발되어 최종 인장강도가 1,200∼1,600MPa인 것을 특징으로 하는 금형수명이 개선된 고강도 냉간단조용 강선.
  2. 제1항에 있어서, 상기 강선은 Cr 0.05 ~ 2.0wt%, Mo 0.05 ~ 1.5wt%, Ti 0.01 ~ 0.10wt%, B 0.0003 ~ 0.0050wt%, Al 0.01 ~ 0.05wt% 중의 적어도 어느 한 성분 이상이 부가적으로 첨가되어 조성됨을 특징으로 하는 금형수명이 개선된 고강도 냉간단조용 강선.
  3. C 0.15 ~ 0.40wt%, Si 1.5wt% 이하, Mn 0.30 ~ 2.0wt%, P 0.03wt% 이하, S 0.03wt%이하가 함유되고 잔부가 Fe와 기타 불가피한 불순물로 이루어진 와이어 로드를 냉간 인발하는 단계;
    냉간 인발된 와이어 로드를 일련의 고주파 유도가열장치 중에서 30∼90초 동안 Ac3 변태점 이상으로 급속가열하고 그 가열상태를 유지하는 단계;
    가열 상태의 와이어 로드를 물이나 기름에 의해 급냉하는 단계;
    500℃∼A1 변태점까지 가열 및 유지시간 포함하여30∼90초 동안 템퍼링을 실시하는 단계;
    가열 상태의 와이어 로드를 다시 수냉하여 인장강도가 1,100 ∼ 1,400MPa 범위인 와이어 로드를 얻는 단계; 및
    와이어 로드를 25∼40%의 단면감소율로 냉간인발하여 인장강도가 1,200 ∼ 1,600MPa가 되도록 하는 단계로 이루어짐을 특징으로 하는 금형수명이 개선된 고강도 냉간단조용 강선의 제조방법.
  4. 제3항에 있어서, 상기 강선은 Cr 0.05 ~ 2.0wt%, Mo 0.05 ~ 1.5wt%, Ti 0.01 ~ 0.10wt%, B 0.0003 ~ 0.0050wt%, Al 0.01 ~ 0.05wt% 중의 적어도 어느 한 성분 이상이 부가적으로 첨가되어 조성됨을 특징으로 하는 금형수명이 개선된 고강도 냉간단조용 강선의 제조방법.
PCT/KR2011/008297 2011-06-02 2011-11-02 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법 WO2012165729A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11864128.1A EP2722113B1 (en) 2011-06-02 2011-11-02 High-strength steel wire having improved mold life for cold forming and method for manufacturing same
JP2013518287A JP5647344B2 (ja) 2011-06-02 2011-11-02 金型寿命が改善された高強度冷間鍛造用鋼線の製造方法
US13/704,995 US9206489B2 (en) 2011-06-02 2011-11-02 Steel wire with high strength for cold forging to improve service life of mold and method of manufacturing the same
CN2011800241642A CN102971095A (zh) 2011-06-02 2011-11-02 用于冷锻以提高模具使用寿命的高强度钢线及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0053483 2011-06-02
KR1020110053483A KR20120134534A (ko) 2011-06-02 2011-06-02 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2012165729A1 true WO2012165729A1 (ko) 2012-12-06

Family

ID=47259548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008297 WO2012165729A1 (ko) 2011-06-02 2011-11-02 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법

Country Status (6)

Country Link
US (1) US9206489B2 (ko)
EP (1) EP2722113B1 (ko)
JP (1) JP5647344B2 (ko)
KR (1) KR20120134534A (ko)
CN (1) CN102971095A (ko)
WO (1) WO2012165729A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178618A (zh) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 一种有利于螺钉质量的热处理方法
CN104178619A (zh) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 一种有利于螺钉抗冲击韧性能力的热处理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529180B1 (ko) * 2013-10-30 2015-06-16 현대제철 주식회사 강재 및 이를 이용한 강 제품 제조 방법
JP2016014169A (ja) * 2014-07-01 2016-01-28 株式会社神戸製鋼所 鋼線用線材および鋼線
KR101449511B1 (ko) * 2014-07-29 2014-10-13 한국기계연구원 가공 경화형 항복비 제어강 및 그 제조방법
CN104561489B (zh) * 2014-12-26 2016-10-12 西安交通大学 一种径向锻造应变诱发法制备钢铁半固态坯料的工艺
KR102256373B1 (ko) * 2019-12-20 2021-05-27 주식회사 포스코 고온연화저항성이 우수한 강재 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162111A (ja) * 2002-11-12 2004-06-10 Kobe Steel Ltd 冷間伸線性に優れた高強度鋼線材用鋼およびこれを用いて得られる高強度鋼線材並びにこれらの製造方法
KR100469671B1 (ko) 2002-07-11 2005-02-02 삼화강봉주식회사 냉간압조 특성이 우수한 소입소려 열처리강선
KR100568058B1 (ko) * 2003-07-21 2006-04-07 삼화강봉주식회사 냉간압조용 강선
JP2008080379A (ja) * 2006-09-28 2008-04-10 Sumitomo Metal Ind Ltd 冷間鍛造用鋼線の製造方法
JP2009527638A (ja) * 2005-12-27 2009-07-30 ポスコ 冷間加工性及び焼入れ性に優れた鋼線材、及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580746A (en) * 1966-10-04 1971-05-25 Trefileries & Cableries De Bou Process for the modification of the mechanical characteristics of carbon steel wire
JP3075314B2 (ja) * 1992-01-27 2000-08-14 株式会社神戸製鋼所 超高強度ばね用鋼線の製造方法
JPH09202921A (ja) * 1996-01-24 1997-08-05 Sumitomo Metal Ind Ltd 冷間鍛造用ワイヤーの製造方法
KR100464962B1 (ko) * 2001-09-14 2005-01-05 삼화강봉주식회사 냉간압조 특성이 우수한 조질 강선
KR100536660B1 (ko) * 2003-12-18 2005-12-14 삼화강봉주식회사 저온충격 특성이 우수한 냉간압조용 강선과 그 제조 방법
WO2006057470A1 (en) * 2004-11-29 2006-06-01 Samhwa Steel Co., Ltd Steel wire for cold forging
CN100464000C (zh) * 2007-06-12 2009-02-25 江阴康瑞不锈钢制品有限公司 奥氏体冷镦不锈钢及其钢丝的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469671B1 (ko) 2002-07-11 2005-02-02 삼화강봉주식회사 냉간압조 특성이 우수한 소입소려 열처리강선
JP2004162111A (ja) * 2002-11-12 2004-06-10 Kobe Steel Ltd 冷間伸線性に優れた高強度鋼線材用鋼およびこれを用いて得られる高強度鋼線材並びにこれらの製造方法
KR100568058B1 (ko) * 2003-07-21 2006-04-07 삼화강봉주식회사 냉간압조용 강선
JP2009527638A (ja) * 2005-12-27 2009-07-30 ポスコ 冷間加工性及び焼入れ性に優れた鋼線材、及びその製造方法
JP2008080379A (ja) * 2006-09-28 2008-04-10 Sumitomo Metal Ind Ltd 冷間鍛造用鋼線の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178618A (zh) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 一种有利于螺钉质量的热处理方法
CN104178619A (zh) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 一种有利于螺钉抗冲击韧性能力的热处理方法

Also Published As

Publication number Publication date
JP2013531737A (ja) 2013-08-08
CN102971095A (zh) 2013-03-13
EP2722113A1 (en) 2014-04-23
JP5647344B2 (ja) 2014-12-24
KR20120134534A (ko) 2012-12-12
US20130087256A1 (en) 2013-04-11
EP2722113B1 (en) 2018-07-18
US9206489B2 (en) 2015-12-08
EP2722113A4 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
US10577671B2 (en) High-hardness hot-rolled steel product, and a method of manufacturing the same
JP5378512B2 (ja) 浸炭部品およびその製造方法
US10000833B2 (en) Thick, tough, high tensile strength steel plate and production method therefor
US7754029B2 (en) Steel with excellent delayed fracture resistance and tensile strength of 1801 MPa class or more, and its shaped article
WO2012165729A1 (ko) 금형수명이 개선된 고강도 냉간단조용 강선 및 그 제조방법
KR102090196B1 (ko) 냉간 단조 조질품용 압연 봉선
EP2592168B1 (en) Abrasion resistant steel plate with excellent impact properties and method for producing said steel plate
KR20090125134A (ko) 가공성이 우수한 표면 경화 강관과 그 제조 방법
CN106048412B (zh) 一种相变强化冷加工高强度钢、钢管及钢管的制造方法
JP2000336457A (ja) 冷間鍛造用線材及びその製造方法
KR20150002848A (ko) 코일링성과 내수소취성이 우수한 고강도 스프링용 강선 및 그의 제조 방법
JP6819198B2 (ja) 冷間鍛造調質品用圧延棒線
CN111041376A (zh) 一种2000MPa级别超高强度TRIP钢的制备方法
JP5668547B2 (ja) 継目無鋼管の製造方法
CN114134431B (zh) 一种方坯连铸连轧2000Mpa级高强高韧高淬透性弹簧钢及其制造方法
KR100536660B1 (ko) 저온충격 특성이 우수한 냉간압조용 강선과 그 제조 방법
CN114293098A (zh) 一种适用于大规格锻件的高强韧贝氏体型非调质钢
EP4063531A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
JPH09202921A (ja) 冷間鍛造用ワイヤーの製造方法
JPH0526850B2 (ko)
JP7458685B2 (ja) 高強度の抗崩壊オイルケーシングおよびその製造方法
CN117385327A (zh) 一种高性能调质均质靶板及其制造方法
KR20010060771A (ko) 고강도 후강판의 제조방법 및 딥 드로잉에 의한 용기의제조방법
WO2024106398A1 (ja) 熱間鍛造非調質鋼およびその製造方法
CN113737102A (zh) 一种钢板及其生产方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024164.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013518287

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011864128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13704995

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE