WO2012163545A1 - Procédé de surveillance d'usinage et dispositif d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie - Google Patents

Procédé de surveillance d'usinage et dispositif d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie Download PDF

Info

Publication number
WO2012163545A1
WO2012163545A1 PCT/EP2012/002341 EP2012002341W WO2012163545A1 WO 2012163545 A1 WO2012163545 A1 WO 2012163545A1 EP 2012002341 W EP2012002341 W EP 2012002341W WO 2012163545 A1 WO2012163545 A1 WO 2012163545A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
machining
image data
processing
process parameters
Prior art date
Application number
PCT/EP2012/002341
Other languages
German (de)
English (en)
Inventor
Eckhard Lessmüller
Christian Truckenbrodt
Original Assignee
Lessmüller Lasertechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lessmüller Lasertechnik GmbH filed Critical Lessmüller Lasertechnik GmbH
Priority to EP12726585.8A priority Critical patent/EP2714322A1/fr
Publication of WO2012163545A1 publication Critical patent/WO2012163545A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/0344Observing the speed of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/044Seam tracking

Definitions

  • the invention relates to a method for monitoring the machining of at least one workpiece with a high-energy machining beam.
  • monitoring is understood to mean both only passive monitoring and active control of the processing.
  • the invention relates to an apparatus for processing a workpiece by means of a high-energy machining beam.
  • Fusion or cutting or cutting operations can be carried out precisely with focused on a surface of a workpiece to be machined high-energy processing beam, such as electron beam or laser beam, but also with an arc.
  • high-energy processing beam such as electron beam or laser beam
  • An online quality control and, more advantageously, an online control of the processing for a perfect work result are important.
  • a device for monitoring a laser processing operation which contains a radiation-sensitive receiver arrangement for detecting radiation from the point of impact of the laser beam on a workpiece surface comprising at least one radiation-sensitive receiver and at least one camera. Furthermore, the monitoring device contains at least one imaging device which images at least one region of the impact site to be observed on the receiver arrangement, and an evaluation circuit to which output signals of the at least one radiation-sensitive receiver and the at least one camera are simultaneously supplied and which processes the received output signals of the receiver arrangement in turn, provide output signals that characterize the course of the laser processing operation and enable its evaluation.
  • WO2010 / 057661 A1 describes a method for monitoring the machining of a workpiece with a laser beam, in which at least two current measured values are detected by means of at least one sensor which monitors the machining process, from which at least two current measured values at least two current characteristic values are determined. which collectively represent a current finder footprint in a feature space, a predetermined point set in the feature space, and the edit operation is classified by detecting the location of the current fingerprint relative to the predetermined point set.
  • An actuator determining a process parameter is controlled such that when the current fingerprint leaves the predetermined point set of the feature space, the at least one actor is activated such that the change in the associated process parameter corresponds to a gradient in the feature space extending from the fingerprint in the direction extends the predetermined amount of points in characteristic space.
  • process data acquisition systems for laser material processing are known in which video images of the point of impact of the laser beam on a workpiece are recorded simultaneously with process data, such as motion parameters of a working head relative to the workpiece and signal waveforms are monitored for target specifications.
  • the invention has for its object to provide a way how the machining of a workpiece can be improved by means of a high-energy machining beam.
  • an error signal is generated only in the simultaneous presence of an image error signal and a process error signal, the generation of which can trigger different further measures.
  • an error signal may be displayed only acoustically or optically, or its occurrence may be registered together with data recording the time sequence or local sequence of processing the workpiece, so that the processing can be reworked where an error signal occurs.
  • a process parameter can be changed such that the deviation of the associated actual process parameter from a desired process parameter decreases.
  • Target process parameters may be stored as permissible value ranges or may be derived from link relations according to claim 3, which, for example, link a calculated variable generated from image data with process parameters.
  • the target process parameters can be changed in the direction of reducing the deviation between the actual arithmetic variable and the nominal arithmetic operation using the linkage relationship.
  • the relationship can be determined by experiments in which the relationship between one or more process parameters and image data or generated from the image data arithmetic variables such as diameter, color, shape, three-dimensional contour of the image, etc. are determined.
  • linking relation or the linking relations according to claim 5 can be derived analytically.
  • a link relation can be stored in the form of a graphic, in tabular form or as an algorithm.
  • the method described can be used to teach a linkage relationship if the process parameter is assumed at the beginning of the processing of empirically or otherwise determined starting values. Furthermore, those process parameters can be determined whose change is particularly effective for a change of the arithmetic variable, so that these process variables are changed for a control of the processing.
  • setpoint values or permissible setpoint ranges can be changed if, for example, it turns out that a process parameter is at the edge of its permissible setpoint range in order to maintain a setpoint calculation variable. This adjustment maintains a high degree of control quality, since the process parameter whose setpoint range has been adjusted can be readjusted upwards and downwards if necessary after the adaptation.
  • the above aspects are also considered to be worthy of protection, irrespective of their integration into a system for monitoring a processing.
  • D f (L, v, vg, sg). This function can be continuously checked and optimized, starting from an assumed function at the beginning of processing, by changing the process parameters during processing.
  • the claim 7 is directed to examples of image data, as well as from the image data generating computational variables.
  • Claim 8 is directed to examples of process parameters.
  • Claim 9 is directed to the basic structure of an apparatus for processing a workpiece by means of a high-energy processing beam in which at least one of the inventive methods can proceed.
  • the device according to the invention is advantageously developed with the features of the subclaims 10 to 14.
  • the machining of a workpiece with a high-energy machining beam includes cutting, remelting and remelting, such as brazing or welding.
  • the term workpiece thus includes a single component, such as a sheet to be cut, and components to be connected by fusing, for example, two sheets.
  • the processing beam may be, for example, a laser beam, an electron beam or an arc.
  • FIG. 1 is a schematic view of a device according to the invention
  • FIG. 3 is a view of an exemplary screen display
  • FIG. 4 shows a flow chart of the sequence of a monitoring method.
  • a workpiece 12 to be machined is arranged on a base 10.
  • the machining of the workpiece is carried out by means of a high-energy machining beam, in the example shown a laser beam emerging from a processing head designated as a whole by 14.
  • the processing head includes a laser beam source 16 from which a collimated laser beam 18 exits and impinges on a semi-transmissive, preferably dichroic mirror 20 which reflects the laser beam onto a focusing lens 22 which focuses the laser beam to a location of the workpiece 12 to be machined.
  • the processing head 14 further includes, as an extension of the optical axis of the incident on the workpiece surface laser beam behind the mirror 20 arranged focusing lens 24, the radiation generated by the impact of the laser beam on the workpiece surface focus on an image converter field 26 of an electronic camera 28 so that there an image of the surface processed by the laser beam (processing point or point of impact) is formed.
  • the machining head 14 further includes an auxiliary material device 30, by means of which auxiliary material, for example a welding wire, can be supplied to the point of impact of the laser beam on the workpiece surface.
  • an illumination source 32 can be arranged on the machining head 14 with which the point of impact of the laser beam on the workpiece surface, which is the machining point, can be illuminated. In this way, a generated with light of a different frequency and intensity than the radiation of the laser beam image of the processing point can be recorded and evaluated electronically.
  • the image generated by the illumination source 32 may be captured by the camera 28 or another camera combined with the illumination source 32, in which latter case this image is taken at an imaging angle different from that of the one of FIG Camera 28 is generated image.
  • the further camera or the camera 28 may be a thermal imaging camera, so that temperature data can be obtained in addition to geometric image data.
  • the processing head 14 is movably attached to a console 34 of a robot, generally designated 36, which for convenience has a total of 38 designated actuators, by means of which the processing head 14 is preferably spatially freely translatable and rotationally movable.
  • the bracket 34 is rigidly connected to the base 10 via a frame 40.
  • an electronic control device 42 For converting and evaluating the images taken by the camera 28 and possibly another by illumination with the illumination source 32 and for evaluating actual signals indicating the position of the actuators 38 and an actuator for controlling the auxiliary material device 30, an electronic control device 42 is used with data memories, program memories, at least one processor and input and output units.
  • the electronic device 42 provides signals for controlling the actuators 38, an actuator of the auxiliary material device 30, the power of the laser beam source 16, parameters of the camera 28, for example, in the beam path pushed filters for spectral decomposition of the radiation generated by the processing site, etc.
  • Fig. 2 shows the functional structure of the signal processing in the described device, wherein some other not shown in Fig. 1 means are provided, with which the machining head 14 may be provided:
  • a compressed air regulator 50r is used to apply the impact of the laser beam on the factory back surface with compressed air, as required for example during soldering.
  • 52r designates a processing optical controller with which the focusing lens 22 for fine adjustment of the focus of the laser beam can preferably be adjusted in the axial direction of the laser beam and perpendicular thereto without the processing head 14 being moved as a whole.
  • 54r denotes a protective gas regulator, with which the amount of protective gas supplied to the processing point is adjustable, as required for example in welding.
  • compressed air regulator 50r wire feed regulator 30r, laser beam source controller 16r, robot controller 38r, processing optics controller 52r and inert gas controller 54r can set process parameters that determine properties of the machining of the workpiece surface.
  • the laser beam source controller 16 regulates the power of the laser beam source 16.
  • set values are assigned to the individual controlled process parameters which are calculated, determined in tests or otherwise predetermined and which are to be maintained during processing in order to ensure faultless processing quality.
  • the described controller and the camera 28 communicate via a fieldbus distributor 56 containing bus system with a data processing 58 and a system controller 60, which are included in the electronic device 42.
  • FIG. 3 shows an example of an image that is visible on an interactive screen 62 of the electronic device 42.
  • various process parameters such as laser beam power, speed with which the point of impact of the laser beam moves along the workpiece surface, inert gas throughput, feed rate of the auxiliary material wire, etc., and can be activated by clicking the respective box.
  • the respective actual process value detected by a respective sensor included in the associated controller and delivered to the data processor 58 is displayed; in the example shown in FIG. 3, the power of the laser beam source 16.
  • the desired value of the respectively selected process parameter over the time is shown, which is stored in the data processing 58.
  • the nominal value of the power of the laser beam source 16 may be between an upper limit and a lower limit. It should be noted that in the process parameter field 66 several process parameters can be displayed simultaneously by clicking on several boxes.
  • the digital image captured by the camera 28 is displayed, the time at which the image was taken with the continuous vertical line shown in the process parameter field 66 an arrowed image marker on the timeline can be moved back and forth.
  • the image recorded at time t 1 shows the point of incidence 70 of the laser beam at the time t 1 on the workpiece surface, which is followed by a still molten area 72 to the left, to which an area 98, which has already been cooled further, adjoins further to the left.
  • the point of impact 70 moves to the right over the workpiece surface.
  • a laser beam power lying within the permissible nominal value includes an impact point 70 with a predetermined diameter or geometric. Dimensions stored in the data processing 58. At time t1, therefore, both the image data (diameter of point of impact 70) and the laser power lie within the permissible setpoint range).
  • the laser power exceeds the predetermined limit.
  • the contour of the image at the time t2 is shown in dashed lines in the image field 68.
  • the diameter of the point of impingement 70 is here exceedingly larger than a prestored setpoint value.
  • both an image error signal (suprathreshold deviation) of the actual image data from the desired image data and a process error signal are generated, which in turn when the device is executed. tion can only lead to quality assurance to generate an acoustically or visually perceptible error signal and further measures or in online control can cause the power of the laser is readjusted to lie back within the allowable setpoint range.
  • Fig. 4 illustrates the described operations on a flowchart.
  • step 102 processing starts.
  • step 102 it is then checked whether the actual image data, which are constantly generated at the same time as the processing, coincide with stored target image data. If there is a suprathreshold deviation between the actual image data and the target image data, the program proceeds to step 104, in which it is checked whether actual process parameters or their values match target process parameters. If there is a suprathreshold or impermissible deviation between at least one actual process parameter and a desired process parameter, an error signal is generated in the case of execution of the device only for quality control in step 106, which according to step 108 can lead to termination of the processing.
  • step 104 When the plant for on-line treatment control is executed, the program proceeds from step 104 to step 108 by changing a process whose actual process parameter or actual process parameter values differ from the stored target process parameters or desired process parameter values, respectively in that the deviation falls below a threshold value or lies within a desired range. Thereafter, the program returns to step 102.
  • the program ends, for example, in that a predetermined point is reached on the workpiece surface or through the passage of time.
  • the procedure described with reference to FIG. 4 can be varied in many ways.
  • the error signal can be generated and stored together with further parameters of the processing, so that even if the processing is not interrupted upon the occurrence of an error signal, it can subsequently be determined at which points of the processing, for example a long weld, an error was present , so that these points of the weld can then be reworked separately.
  • the invention has been described with reference to FIG. 1 with a beam source 16 which generates a high-energy processing beam, for example a laser beam or electron beam.
  • the processing head 14 can also be designed in such a way that it can be used, for example.
  • e of the focusing lens 22 has an electrode connected to a high voltage source electrode, and the workpiece 12 forms a connected to the high voltage source counter electrode, so that the machining of the workpiece 12 takes place with an arc whose energy is controllable by voltage and current.
  • the processing head 14 may include a temperature sensor, which is detected as a process parameter, the temperature of the point of impact of the laser beam on the workpiece surface and is compared with a stored target temperature.
  • the functional relationships do not have to be limited to relationships only between the process parameters, but may additionally contain image data, for example the distance of the cooled near region 74 from the active site 70 (FIG. 3), which depends on the relative velocity of the active site relative to the workpiece surface, the beam power, the amount of the active site supplied protective gas, etc. may depend.
  • the desired image data can be networked with the desired process parameters and can be stored as a function of the respective process data.
  • the width and the curvature of, for example, the cooled seam area can be derived in the data processing 58 (FIG. 2), which are available as separate arithmetic variables or combined into a single arithmetic variable. If an actual arithmetic variable deviates from a previously stored desired arithmetic variable, then one or more process parameters are adjusted by the system controller 60 (FIG.
  • the process parameter may be the wire feed (controller 30r), which for example is enlarged when the seam swerving becomes too small.
  • One or more link relations may form a set of rules that is determined by trial or otherwise and is preset.
  • the linking relations can also be taught in, for example, or optimized by learning, by For example, the change of a process parameter was successful at a predetermined critical point in previous welds, so that this change is weighted more heavily than other changes in further similar required interventions.
  • the rules can react more quickly and better to changes in the arithmetic variable, preferably obtained from image data.
  • the set of rules or the linking relations can also be designed in such a way that slight changes in process parameters occur even in the absence of deviation of the actual arithmetic variable from the nominal arithmetic variable and the resulting change in the arithmetic variable is determined.
  • the setting of the process parameter is maintained or adjusted in one direction until an optimum of the arithmetic quantity is exceeded.
  • the setting of the process parameter is withdrawn so that the optimum of the arithmetic quantity is retained. In this way, the machining process can self-regulate to an optimum.
  • the width of the flat seam top of a fillet weld has a high value, which suggests a good connection and thus high seam strength.
  • the wire feed is slightly below a preset upper limit of the wire feed process parameter.
  • the upper limit of the process parameter wire feed can be increased by evaluating the relationship between wire feed and width of the seam top, so that the optimum lies in the range of the mean value of the permissible wire feed interval and better control is possible in the event of deviations. In this way, stored desired process parameters can be automatically adapted to the respective process optimum.
  • the invention makes it possible to detect all variables necessary for the assessment of the overall process of a machining and, for example, based on a set of linkage relations, a targeted control of the process parameters to achieve an optimal machining result. It is explicitly pointed out that all features disclosed in the description and / or the claims are considered separate and independent of each other for the purpose of original disclosure as well as for the purpose of limiting the claimed invention independently of the feature combinations in the embodiments and / or the claims should. It is explicitly stated that all range indications or indications of groups of units disclose every possible intermediate value or subgroup of units for the purpose of the original disclosure as well as for the purpose of restricting the claimed invention, in particular also as the limit of a range indication.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Procédé de surveillance d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie, ce procédé comportant les opérations suivantes : acquérir une image apte à l'analyse électronique, cette image comportant au moins le point d'incidence du rayonnement d'usinage sur la pièce, générer des données images réelles, comparer les données images réelles avec des données images théoriques, générer un signal d'erreur d'image en cas de différence entre les données images réelles et les données images théoriques, acquérir des paramètres de processus réels pilotant l'usinage à surveiller parallèlement à la génération des données images réelles, comparer les paramètres de processus réels avec des paramètres de processus théoriques, générer un signal d'erreur de processus en cas de différence entre les paramètres de processus réels et les paramètres de processus théoriques, générer un signal d'erreur en cas de présence simultanée d'un signal d'erreur d'image et d'un signal d'erreur de processus, et déclencher des mesures à prendre en présence d'un signal d'erreur.
PCT/EP2012/002341 2011-06-03 2012-06-01 Procédé de surveillance d'usinage et dispositif d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie WO2012163545A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12726585.8A EP2714322A1 (fr) 2011-06-03 2012-06-01 Procédé de surveillance d'usinage et dispositif d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011103282.0 2011-06-03
DE102011103282.0A DE102011103282B4 (de) 2011-06-03 2011-06-03 Verfahren zum Überwachen der Bearbeitung sowie Vorrichtung zum Bearbeiten eines Werkstücks mit einem hochenergetischen Bearbeitungsstrahl

Publications (1)

Publication Number Publication Date
WO2012163545A1 true WO2012163545A1 (fr) 2012-12-06

Family

ID=46245552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/002341 WO2012163545A1 (fr) 2011-06-03 2012-06-01 Procédé de surveillance d'usinage et dispositif d'usinage d'une pièce au moyen d'un faisceau d'usinage de haute énergie

Country Status (3)

Country Link
EP (1) EP2714322A1 (fr)
DE (1) DE102011103282B4 (fr)
WO (1) WO2012163545A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036140A1 (fr) * 2013-09-13 2015-03-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Dispositifs et procédés de surveillance, et en particulier de réglage, d'un processus de coupe
US9039485B2 (en) 2012-12-18 2015-05-26 Micromachining Ag Method for machining a series of workpieces by means of at least one machining jet
CN105277568A (zh) * 2014-05-26 2016-01-27 莱斯穆勒激光技术有限公司 用于检测要通过激光加工设备加工的工件的表面数据和/或边界面的测量设备
CN109314750A (zh) * 2017-05-27 2019-02-05 深圳配天智能技术研究院有限公司 对待检测目标进行打光的方法、***和存储装置
DE102019101222A1 (de) 2019-01-17 2020-07-23 Highyag Lasertechnologie Gmbh Verfahren zur Auswahl von Kamerabildabschnitten
US11440141B2 (en) 2013-09-13 2022-09-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Devices and methods for monitoring, in particular for regulating, a cutting process
US20230278135A1 (en) * 2018-12-07 2023-09-07 Seoul Laser Dieboard System Co., Ltd. Constant kerf dieboard cutting system using laser and vision

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013017795C5 (de) * 2013-10-25 2018-01-04 Lessmüller Lasertechnik GmbH Prozessüberwachungsverfahren und -vorrichtung
DE202014001449U1 (de) 2014-02-15 2014-03-12 Thomas Kimme Einrichtung zur kontrollierten Laserbearbeitung wenigstens eines Werkstücks
DE102014002183B4 (de) 2014-02-15 2019-08-14 Thomas Kimme Einrichtung zur kontrollierten Laserbearbeitung wenigstens eines Werkstücks
CN110091056A (zh) * 2019-05-29 2019-08-06 中国航空工业集团公司北京长城计量测试技术研究所 一种激光加工装置及方法
DE102020000630B4 (de) 2020-01-30 2021-12-02 Lessmüller Lasertechnik GmbH Verfahren und Vorrichtung zum Durchführen und Überwachen eines Bearbeitungsprozesses eines Werkstücks
DE102020109648A1 (de) * 2020-04-07 2021-10-07 Jochen Zierhut Verfahren zur optischen Qualitätskontrolle beim Laserauftragsschweißen
DE102020110087A1 (de) 2020-04-09 2021-10-14 Ii-Vi Delaware, Inc. Verfahren zur prozesskontrolle bei der lasermaterialbearbeitung
US11598209B2 (en) * 2020-09-11 2023-03-07 Arcbyt, Inc. Method for boring with plasma
DE102021208745A1 (de) 2021-08-11 2023-02-16 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Vorrichtung zur Pulverinjektionsüberwachung beim Laserstrahlauftragschweißen
EP4145233A1 (fr) 2021-09-03 2023-03-08 Bystronic Laser AG Détermination du contour pour une machine de découpage au laser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350942A1 (fr) * 1988-07-15 1990-01-17 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et dispositif d'usinage à l'aie du rayonnement laser
US6995334B1 (en) * 2003-08-25 2006-02-07 Southern Methodist University System and method for controlling the size of the molten pool in laser-based additive manufacturing
DE102005024085A1 (de) 2005-05-25 2006-11-30 Precitec Kg Vorrichtung zur Überwachung eines Laserbearbeitungsvorgangs und Laserbearbeitungskopf
US20080314878A1 (en) * 2007-06-22 2008-12-25 General Electric Company Apparatus and method for controlling a machining system
DE202007018689U1 (de) 2006-08-18 2009-03-05 Highyag Lasertechnologie Gmbh Vorrichtung zur Stabilisierung der Fokuslage bei Optiken für Hochleistungs-Laserstrahlung zur Lasermaterialbearbeitung
WO2010057661A1 (fr) 2008-11-21 2010-05-27 Precitec Kg Procédé et dispositif de surveillance d'un processus d'usinage au laser exécuté sur une pièce, ainsi que tête d'usinage au laser équipée d'un tel dispositif
US20100294747A1 (en) * 2009-05-20 2010-11-25 Eric Hinrichs X-ray microscopy for characterizing hole shape and dimensions in surgical needles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1099506B1 (fr) * 1999-11-12 2004-06-02 Werner Kluft Méthode et dispositif de mesure de paramètres d'un procédé d'usinage de matériaux

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350942A1 (fr) * 1988-07-15 1990-01-17 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Procédé et dispositif d'usinage à l'aie du rayonnement laser
US6995334B1 (en) * 2003-08-25 2006-02-07 Southern Methodist University System and method for controlling the size of the molten pool in laser-based additive manufacturing
DE102005024085A1 (de) 2005-05-25 2006-11-30 Precitec Kg Vorrichtung zur Überwachung eines Laserbearbeitungsvorgangs und Laserbearbeitungskopf
DE202007018689U1 (de) 2006-08-18 2009-03-05 Highyag Lasertechnologie Gmbh Vorrichtung zur Stabilisierung der Fokuslage bei Optiken für Hochleistungs-Laserstrahlung zur Lasermaterialbearbeitung
US20080314878A1 (en) * 2007-06-22 2008-12-25 General Electric Company Apparatus and method for controlling a machining system
WO2010057661A1 (fr) 2008-11-21 2010-05-27 Precitec Kg Procédé et dispositif de surveillance d'un processus d'usinage au laser exécuté sur une pièce, ainsi que tête d'usinage au laser équipée d'un tel dispositif
US20100294747A1 (en) * 2009-05-20 2010-11-25 Eric Hinrichs X-ray microscopy for characterizing hole shape and dimensions in surgical needles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039485B2 (en) 2012-12-18 2015-05-26 Micromachining Ag Method for machining a series of workpieces by means of at least one machining jet
CN105531071B (zh) * 2013-09-13 2017-10-13 通快机床两合公司 用于监视切割过程的装置和方法
CN105531071A (zh) * 2013-09-13 2016-04-27 通快机床两合公司 用于监视、尤其用于调节切割过程的装置和方法
EP3210714A1 (fr) * 2013-09-13 2017-08-30 TRUMPF Werkzeugmaschinen GmbH + Co. KG Dispositif et procédé de surveillance, en particulier de réglage d'un processus de coupe
EP3213857A1 (fr) * 2013-09-13 2017-09-06 TRUMPF Werkzeugmaschinen GmbH + Co. KG Dispositif et procédé de surveillance et en particulier de régulation d'un processus de coupe
WO2015036140A1 (fr) * 2013-09-13 2015-03-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Dispositifs et procédés de surveillance, et en particulier de réglage, d'un processus de coupe
US10427242B2 (en) 2013-09-13 2019-10-01 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Devices and methods for monitoring, in particular for regulating, a cutting process
US11440141B2 (en) 2013-09-13 2022-09-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Devices and methods for monitoring, in particular for regulating, a cutting process
CN105277568A (zh) * 2014-05-26 2016-01-27 莱斯穆勒激光技术有限公司 用于检测要通过激光加工设备加工的工件的表面数据和/或边界面的测量设备
CN109314750A (zh) * 2017-05-27 2019-02-05 深圳配天智能技术研究院有限公司 对待检测目标进行打光的方法、***和存储装置
CN109314750B (zh) * 2017-05-27 2022-04-15 深圳配天智能技术研究院有限公司 对待检测目标进行打光的方法、***和存储装置
US20230278135A1 (en) * 2018-12-07 2023-09-07 Seoul Laser Dieboard System Co., Ltd. Constant kerf dieboard cutting system using laser and vision
DE102019101222A1 (de) 2019-01-17 2020-07-23 Highyag Lasertechnologie Gmbh Verfahren zur Auswahl von Kamerabildabschnitten

Also Published As

Publication number Publication date
DE102011103282B4 (de) 2015-09-03
DE102011103282A1 (de) 2012-12-06
EP2714322A1 (fr) 2014-04-09

Similar Documents

Publication Publication Date Title
DE102011103282B4 (de) Verfahren zum Überwachen der Bearbeitung sowie Vorrichtung zum Bearbeiten eines Werkstücks mit einem hochenergetischen Bearbeitungsstrahl
EP2544849B1 (fr) Tête de travail au laser et procédé de travail au laser
DE102009042986B3 (de) Schweißkopf und Verfahren zum Fügen eines Werkstücks
EP2726244B1 (fr) Procédé de détection de défauts sur une soudure non-linéaire ou une fente de coupe non-linéaire au cours d'un processus d'usinage par laser ; dispositif d'usinage par laser correspondant
DE102013017795C5 (de) Prozessüberwachungsverfahren und -vorrichtung
DE102013209526B4 (de) Verfahren, Computerprogrammprodukt und Vorrichtung zum Erkennen eines Schnittabrisses
EP1640101A2 (fr) Méthode et appareil pour contrôler un procédé d'usinage automatique.
EP2894004B1 (fr) Dispositif de traitement laser avec une caméra et un mirroir mobile
DE102014000330B3 (de) Verfahren zur Überwachung und Regelung der Fokuslage eines Bearbeitungslaserstrahls beim Laserschneiden
EP3455028A1 (fr) Procédé et dispositif de surveillance, en particulier de réglage, d'un processus de coupe
DE102009017900B4 (de) Laserbearbeitungskopf zum Hartlöten oder Schweißen mit einer Drahtzuführvorrichtung mit integriertem Lichtschnittmodul
DE19724986A1 (de) Verfahren zum Verschweißen von Werkstücken und Vorrichtung zu dessen Durchführung
DE102018217940A1 (de) Verfahren und Bearbeitungsmaschine zum Bearbeiten eines Werkstücks
EP3528993A1 (fr) Choix de technologie basé sur des images pour soudure au laser
EP3349938B1 (fr) Procédé de guidage d'une tête d'usinage le long d'une trace à usiner
WO2022171621A1 (fr) Procédé d'optimisation d'un temps d'usinage d'un processus d'usinage laser, procédé de réalisation d'un processus d'usinage laser sur une pièce, et système d'usinage laser conçu pour réaliser ce processus
DE102020110087A1 (de) Verfahren zur prozesskontrolle bei der lasermaterialbearbeitung
EP1194260A2 (fr) Dispositif de determination de la position de domaines d'emission d'un processus thermique avec apport d'energie localement limite
EP1510282A1 (fr) Dispositif d'usinage à distance de pièces au moyen d'un faisceau laser d'usinage
DE102011122991B3 (de) Verfahren zum Überwachen der Bearbeitung sowie Vorrichtung zum Bearbeiten eines Werkstücks mit einem hochenergetischen Bearbeitungsstrahl
WO2019179603A1 (fr) Procédé et dispositif pour l'adaptation de la forme de faisceau et l'orientation de faisceau orientées sur le processus
DE102022129220B3 (de) Messvorrichtung und Verfahren zur Durchführung von Messungen an einem Werkstück sowie Bearbeitungssystem und Verfahren zur Schweißbearbeitung
EP4368330A1 (fr) Commande d'une machine de découpe au laser au moyen de signaux sonores d'air
DE102017113652A1 (de) SYSTEM ZUM LASERSCHWEIßEN UMFASSEND EINE SCHUBVORRICHTUNG, EINE BEARBEITUNGSOPTIK UND MINDESTENS EINE TAKTILE FÜHRVORRICHTUNG
DE102005049439A1 (de) Verfahren zur Kontrolle von Bearbeitungspositionen auf einem Werkstück

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726585

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012726585

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE