WO2012162226A2 - Aluminum alloys - Google Patents

Aluminum alloys Download PDF

Info

Publication number
WO2012162226A2
WO2012162226A2 PCT/US2012/038796 US2012038796W WO2012162226A2 WO 2012162226 A2 WO2012162226 A2 WO 2012162226A2 US 2012038796 W US2012038796 W US 2012038796W WO 2012162226 A2 WO2012162226 A2 WO 2012162226A2
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
hours
heating
temperature
holding
Prior art date
Application number
PCT/US2012/038796
Other languages
French (fr)
Other versions
WO2012162226A3 (en
Inventor
Abhijeet Misra
James A. Wright
Original Assignee
Questek Innovations Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Questek Innovations Llc filed Critical Questek Innovations Llc
Priority to CA2836261A priority Critical patent/CA2836261A1/en
Priority to EP12789530.8A priority patent/EP2714954A4/en
Publication of WO2012162226A2 publication Critical patent/WO2012162226A2/en
Publication of WO2012162226A3 publication Critical patent/WO2012162226A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • N00014-09-M-0400 and N00014-1 l-C-0080 may have certain rights in the invention.
  • Aluminum alloys such as the 7XXX Al-Zn-based alloys, are commonly used in structural applications demanding high specific strength.
  • the commercial aluminum alloy 7050 is widely used for aerospace applications. When aged to near the peak of strength, commercial aluminum alloys are susceptible to stress-corrosion cracking (SCC). Thus, there has developed a need for aluminum alloys which show a high strength and yet are resistant to SCC.
  • the disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8%) zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2%) scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities.
  • the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.
  • the disclosure relates to a method for producing an alloy, the method comprising preparing a melt that includes, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities.
  • the melt can be cooled to room temperature.
  • the alloy is homogenized by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
  • the disclosure relates to a method for producing an alloy that comprises an aluminum matrix.
  • the SCC index of the alloy is less than or equal to 1.6.
  • Fig. 1 is a graph plotting short-transverse SCC threshold stress and typical longitudinal yield strength of some embodiments of alloys in comparison to conventional aluminum alloys.
  • Fig. 2 is a graph plotting maximum applied stress as a function of life (cycles to failure) of one of the embodiments of Fig. 1 in comparison to a conventional aluminum alloy.
  • stress-corrosion-cracking resistance include definitions that are generally known in the art such as those found in ASM MATERIALS ENGINEERING DICTIONARY (J.R. Davis ed., ASM
  • Homogenizing refers to a process in which high-temperature soaking is used at a suitable temperature for a suitable dwell time to reduce chemical or metallurgical segregation, which occurs as a natural result of solidification in some alloys. In some embodiments, the high-temperature soaking is conducted for a dwell time of about 8 hours to about 48 hours.
  • Extrusion or “extruding” as used herein refers to a conversion of a metal ingot or billet into lengths of uniform cross section by forcing the metal to flow plastically through a die orifice.
  • Aging temperature refers to an elevated temperature at which an alloy is kept for heat treatment. Such heat treatment may suitably induce a precipitation reaction. In some embodiments, the heat treatment may be conducted at two distinct temperatures for two distinct times.
  • Yield strength refers to the stress level at which plastic deformation begins. [0016] Any recited range described herein is to be understood to encompass and include all values within that range, without the necessity for an explicit recitation.
  • aspects of the disclosure relate to aluminum alloys which show acceptably high strength and yet are resistant to SCC. Without being necessarily limited by any mechanism or mode of operation, it may be that segregation of zinc to grain boundaries in aluminum alloys can make the alloy susceptible to SCC. According to one aspect, the disclosed alloys can minimize the elemental segregation of zinc to the grain boundaries, and thereby reduce the susceptibility of the alloy to SCC. It is contemplated that segregation of zinc to the grain boundaries in Al-Zn-based alloys can be prevented by using the zinc to instead form the MgZn 2 phase. The MgZn 2 phase forms both within the grain and at the grain boundary, as either discrete or linked particles.
  • SCC index 2xwpZn + wpMg - wpCu [1] where wpZn, wpMg, and wpCu are the weight percentages of Zn, Mg, and Cu, respectively, in solution in the matrix of the alloy.
  • the SCC index is calculated at the aging temperature, and is based on the equilibrium composition of the aluminum matrix at the aging temperature, after accounting for the phase fraction of precipitates present at the aging temperature.
  • the matrix composition can be computed with any suitable thermodynamic database and calculation packages such as Thermo-Calc ® software version N offered by Thermo-Calc Software (McMurray, PA).
  • an alloy can be produced by adding zinc, copper, and magnesium to an aluminum matrix, in amounts calculated using the SCC index, such that the SCC index is maintained at or below about 1.6 (e.g., about 1.6, about 1.5, about 1.4, about 1.3, about 1.2, about 1.1, about 1.0, about 0.9, about 0.8, about 0.7, about 0.6, about 0.5, about 0.4, about 0.3, about 0.2, about 0.1, or less).
  • the alloy may contain other components and/or additives, including other components and/or additives as specified herein, and may be further processed using a variety of processing techniques known in the art, and also including the processing techniques described herein, such as press-forging, homogenizing, aging, and the like.
  • the alloy can be first homogenized after solidification from the melt by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
  • the homogenized alloy can then, in another embodiment, be hot-worked, e.g., extruded to a change in cross section, then solution heat-treated at 460°C-480°C for 1-4 hours, then aged at a first temperature of 100°C-120°C for 6-12 hours, then heated to a second temperature of 160°C-180°C and held at the second temperature for 8-30 hours, and quenched with water.
  • heat treatments can assist in forming the r
  • different homogenization, forging, aging, and/or other forming or heat treatment techniques may be used.
  • the alloy may be optionally subjected to a stress-relief treatment between the solution
  • the stress-relief treatment can include stretching the alloy, compressing the alloy, or combinations thereof.
  • the disclosed alloys incorporate dispersoid forming elements in amounts sufficient to inhibit recrystallization.
  • Such dispersoid formers may include scandium and zirconium.
  • the dispersoid formers may form dispersed Ll 2 phase particles in the alloy, wherein the Ll 2 phase constitutes about 0.1% by volume of the alloy.
  • the alloys are hardened by the r
  • -MgZn 2 phase may constitute about 3% to about 8% by volume of the alloy.
  • -MgZn 2 phase may form within grains and/or at grain boundaries, and may form as discrete particles and/or linked particles. Linked particles are often more likely to form at grain boundaries, adversely affecting the SCC resistance. Accordingly, in one embodiment, the alloy contains r
  • Various heat treatments that are known in the art or otherwise disclosed herein can be used to guide the formation of r
  • the composition of an alloy includes, by weight, about 5.8% to about 6.8%> zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0%> to about 0.2%> scandium, 0%> to about 0.2%> zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities.
  • the alloy may include the elements in the nominal composition, as well as additional elements; in another embodiment, the alloy may consist essentially of the elements in the nominal composition; and in a further embodiment, the alloy may consist only of the elements in the nominal composition.
  • Incidental elements and impurities in the disclosed alloys may include, but are not limited to, silicon, iron, chromium, nickel, vanadium, titanium, or mixtures thereof, and may be present in the alloys disclosed herein in amounts totaling no more than 1%, no more than 0.9%, no more than 0.8%, no more than 0.7%, no more than 0.6%, no more than 0.5%, no more than 0.4%, no more than 0.3%, no more than 0.2%, no more than 0.1%, no more than 0.05%, no more than 0.01%, or no more than 0.001%. Additionally, in one embodiment, the alloy has a predominately face-centered cubic crystal structure, with additional phases and precipitates, such as those disclosed herein.
  • the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.
  • ASTM G47 covers the test method of sampling, type of specimen, specimen preparation, test environment, and method of exposure for determining the susceptibility to SCC of aluminum alloys.
  • ASTM E8 covers the testing apparatus, test specimens, and testing procedure for tensile testing.
  • a melt for alloy A was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.10 Sc, 0.05 Zr, and balance Al, in wt%.
  • the alloy includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value.
  • the melt weighed about 450 grams.
  • the alloy was homogenized by heating it from room temperature to 460°C at 1°C per minute and holding it at 460°C for 8 hours.
  • the homogenized alloy was press-forged down to 50% reduction in height, to about 5 cm in short-transverse thickness. Specimens were excised in the short-transverse direction to measure the fracture toughness, K Ic , and the SCC resistance, Kiscc-
  • a melt for alloy B was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.5 Zn, 1.5 Mg, 1.6 Cu, 0.50 Ag, 0.10 Sc, 0.05 Zr, and balance Al, in wt%. The melt weighed about 450 grams. Alloy B is a counterexample. Although alloy B includes Zn and Cu in amounts similar to alloy A, the lower Mg content raises the SCC index, undesirably lowering Kiscc- A comparison of the properties of alloy B and 7050 is shown in Table 1. Table 1 also indicates the SCC Index of the alloy, calculated using equation [1] above. The alloy 7050 was subjected to a heat treatment identical to alloy B, which was also identical to the heat treatment and processing described above with respect to alloy A (EXAMPLE 1). The tensile strength was also measured, and the results are listed in Table 2.
  • a melt for alloy C was prepared by heating a charge of starting materials, the charge having the nominal composition of 5.8 Zn, 3.0 Mg, 2.2 Cu, 0.05 Sc, 0.05 Zr, and balance Al, in wt%.
  • the alloy C includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value.
  • the melt weighed about 450 grams.
  • the alloy was homogenized by heating it from room temperature to 460°C at 1°C per minute and holding it at 460°C for 8 hours. The homogenized alloy was press-forged down to 50% reduction in height, to about 4 cm in short-transverse thickness.
  • the alloys according to the disclosed aspects and embodiments produce physical properties that are comparable or superior to those of alloy 7050, and in particular, the alloys A and C have a lower SCC Index compared to alloy 7050, which indicates a superior resistance to SCC.
  • the hardness is superior to that of alloy 7050, and the SCC resistance is also superior to alloy 7050.
  • the fracture toughness (K Ic ) yield stress, ultimate tensile stress, and ductility are all comparable to those of alloy 7050.
  • alloy C the hardness, yield stress, ultimate tensile stress, and SCC resistance are superior to those of alloy 7050, and the ductility is comparable.
  • the fracture toughness (Ki c ) of alloy C was found to be slightly lower than that of alloy 7050. It is noted that the Kiscc of alloys A and C are very close to the theoretical limit (i.e. the Ki c value).
  • a melt was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.12 Zr, and balance Al, in wt%, which is the same as alloy A.
  • the as-cast alloy A-l was generally shaped like a cylinder, measuring about 18 cm in diameter and 56 cm in height, and weighing about 50 kg. After being cooled to room temperature, the as-cast alloy A-l was homogenized by heating it in a furnace from room temperature to 400° C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
  • the homogenized alloy A-l was extruded to a cylindrical billet, reducing the diameter to about 8 cm in diameter. This represents an extrusion ratio of about 51 ⁇ 2: 1.
  • Specimens were excised and subjected first to a solution heat-treatment ("SHT"), and then to an aging heat-treatment.
  • SHT solution heat-treatment
  • the solution heat-treatment was conducted by subjecting the specimens to a temperature of 460°C or 465°C for 2 hours.
  • the SCC resistance was measured according to a rising step load (RSL) method developed by Lou Raymond & Associates in Newport Beach, CA, generally as follows. Machined notched samples in the fully heat-treated condition were used for the testing. Initial fracture toughness (K lc ) testing was performed in air at a rapid loading rate to first determine the maximum breaking load. The test specimen geometry was changed to increase the amount of constraint. An effective stress intensity K p was calculated, since the specimen had a machined notch instead of a fatigue pre-crack as required by ASTM E399. Previous testing of 7075-T6 aluminum alloy in a similar way found that the value for K p was approximately 1.5 times the value for K lc .
  • RSL rising step load
  • the RSL method was employed to measure the Kiscc of the samples.
  • the aluminum specimens were anodically charged by coupling them to PH17-4 adapters in a 3.5% salt-water environment.
  • Alloy A-l showed a K lc value of 38.8 ksi-in 1 ⁇ 2 and a Kiscc value greater than 38 ksi-in 1 ⁇ 2 .
  • a melt for alloy D was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.12 Zr, and balance Al, in wt%.
  • the alloy D preferably includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value, and is substantially free of scandium.
  • the as-cast alloy D was generally shaped like a cylinder, measuring about 18 cm in diameter and 56 cm in height, and weighing about 50 kg.
  • the as-cast alloy D was homogenized by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
  • the homogenized alloy D was extruded to a cylindrical billet, reducing the diameter to about 8 cm in diameter. This represents an extrusion ratio of about 51 ⁇ 2: 1.
  • Specimens were excised and subjected first to a solution heat-treatment, and then to an aging heat-treatment.
  • the solution heat-treatment was conducted by subjecting the specimens to a temperature of 460°C, 465°C, or 470°C for 2 hours.
  • Alloy D has about 20% higher YS than 7050-T74 in the longitudinal direction and about 13% to about 15% higher YS than 7050-T74 in the transverse and 45° direction, with comparable elongations and %RA.
  • the strength values of alloy D represent a significant improvement over 7050-T74.
  • the SCC threshold stress of alloy D was measured by a 30-day accelerated stress corrosion testing according to ASTM G47. Short-transverse samples of alloy D were solution heat-treated at 460°C for 2 hours, and heat-treated according to the T7x heat treatment. Fig. 1 shows the SCC threshold stress and typical longitudinal yield strength of alloy D in comparison to conventional aluminum alloys. The samples of alloy D passed a stress level of about 380 MPa, which is above the highest SCC temper designation currently in use, namely, T73. Thus, the combination of strength and SCC resistance of alloy D is substantially improved over that of conventional aluminum alloys.
  • the SCC resistance was measured according to the RSL method. Machined notched samples in the fully heat-treated condition were used for the testing. Ki c testing was performed in air at a rapid loading rate to first determine the maximum breaking load. The test specimen geometry was changed to increase the amount of constraint. An effective stress intensity K p was calculated. Having measured the maximum breaking load, the RSL method was employed to measure the Kiscc of the samples. During the SCC test, the aluminum specimens were anodically charged by coupling them to PHI 7-4 adapters in a 3.5% salt-water environment.
  • Alloy D specimens that were solution heat-treated at 460°C for 2 hours and heat-treated according to the T7x heat treatment showed a Ki c value of 47.8 ksi-in 1 ⁇ 2 and a Kiscc value of 20.0 ksi-in 1 ⁇ 2 .
  • alloy D specimens solution heat-treated at 470°C for 2 hours and heat-treated according to the T7x heat treatment showed a K lc value of 55.4 ksi-in 1 ⁇ 2 and a Kiscc value of 15.0 ksi-in 1/2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Conductive Materials (AREA)
  • Forging (AREA)

Abstract

The disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.

Description

ALUMINUM ALLOYS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Provisional Patent
Application No. 61/488,713, filed May 21, 2011, the content of which is incorporated herein by reference in its entirety.
FEDERALLY-SPONSORED RESEARCH AND DEVELOPMENT
[0002] Activities relating to the development of the subject matter of this invention were funded at least in part by U.S. Government, Office of Naval Research Contract Nos.
N00014-09-M-0400 and N00014-1 l-C-0080, and thus the U.S. may have certain rights in the invention.
BACKGROUND
[0003] Aluminum alloys, such as the 7XXX Al-Zn-based alloys, are commonly used in structural applications demanding high specific strength. For example, the commercial aluminum alloy 7050 is widely used for aerospace applications. When aged to near the peak of strength, commercial aluminum alloys are susceptible to stress-corrosion cracking (SCC). Thus, there has developed a need for aluminum alloys which show a high strength and yet are resistant to SCC.
SUMMARY
[0004] In an aspect the disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8%) zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2%) scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen. [0005] In another aspect the disclosure relates to a method for producing an alloy, the method comprising preparing a melt that includes, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments of the method, the melt can be cooled to room temperature. In further embodiments of the method, the alloy is homogenized by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
[0006] In another aspect the disclosure relates to a method for producing an alloy that comprises an aluminum matrix. The method comprises adding to the aluminum matrix amounts of zinc, magnesium, and copper according to an SCC index of the equation: (SCC index) = 2><wpZn + wpMg - wpCu where wpZn, wpMg, and wpCu are the weight percentages of Zn, Mg, and Cu, respectively, in the matrix of the alloy. In embodiments, the SCC index of the alloy is less than or equal to 1.6.
[0007] Other aspects and embodiments will become apparent in light of the following description and accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Fig. 1 is a graph plotting short-transverse SCC threshold stress and typical longitudinal yield strength of some embodiments of alloys in comparison to conventional aluminum alloys.
[0009] Fig. 2 is a graph plotting maximum applied stress as a function of life (cycles to failure) of one of the embodiments of Fig. 1 in comparison to a conventional aluminum alloy. DETAILED DESCRIPTION
[0010] Aspects relate to an alloy as described herein. Surprisingly the inventors have produced aluminum alloys that exhibit improved physical properties relative to existing aluminum alloys, and have developed methods for making the same. It should be understood that the claims are not limited in application to the details of construction and the arrangements of the components set forth in the following description. Other aspects and embodiments will be apparent in light of the following detailed description.
[0011] As used herein, terms such as Ll2 phase, fracture toughness (Klc), and
stress-corrosion-cracking resistance (Kiscc) include definitions that are generally known in the art such as those found in ASM MATERIALS ENGINEERING DICTIONARY (J.R. Davis ed., ASM
International 1992).
[0012] "Homogenizing" as used herein refers to a process in which high-temperature soaking is used at a suitable temperature for a suitable dwell time to reduce chemical or metallurgical segregation, which occurs as a natural result of solidification in some alloys. In some embodiments, the high-temperature soaking is conducted for a dwell time of about 8 hours to about 48 hours.
[0013] "Extrusion" or "extruding" as used herein refers to a conversion of a metal ingot or billet into lengths of uniform cross section by forcing the metal to flow plastically through a die orifice.
[0014] "Aging temperature" as used herein refers to an elevated temperature at which an alloy is kept for heat treatment. Such heat treatment may suitably induce a precipitation reaction. In some embodiments, the heat treatment may be conducted at two distinct temperatures for two distinct times.
[0015] "Yield strength" as used herein refers to the stress level at which plastic deformation begins. [0016] Any recited range described herein is to be understood to encompass and include all values within that range, without the necessity for an explicit recitation.
[0017] Aspects of the disclosure relate to aluminum alloys which show acceptably high strength and yet are resistant to SCC. Without being necessarily limited by any mechanism or mode of operation, it may be that segregation of zinc to grain boundaries in aluminum alloys can make the alloy susceptible to SCC. According to one aspect, the disclosed alloys can minimize the elemental segregation of zinc to the grain boundaries, and thereby reduce the susceptibility of the alloy to SCC. It is contemplated that segregation of zinc to the grain boundaries in Al-Zn-based alloys can be prevented by using the zinc to instead form the MgZn2 phase. The MgZn2 phase forms both within the grain and at the grain boundary, as either discrete or linked particles.
[0018] In the course of this work, an "SCC index" was developed, and it was determined that compositions that minimize the SCC index are generally effective in minimizing the segregation of zinc to the grain boundaries. This index is as follows:
(SCC index) = 2xwpZn + wpMg - wpCu [1] where wpZn, wpMg, and wpCu are the weight percentages of Zn, Mg, and Cu, respectively, in solution in the matrix of the alloy. The SCC index is calculated at the aging temperature, and is based on the equilibrium composition of the aluminum matrix at the aging temperature, after accounting for the phase fraction of precipitates present at the aging temperature. The matrix composition can be computed with any suitable thermodynamic database and calculation packages such as Thermo-Calc® software version N offered by Thermo-Calc Software (McMurray, PA).
[0019] According to one aspect, an alloy can be produced by adding zinc, copper, and magnesium to an aluminum matrix, in amounts calculated using the SCC index, such that the SCC index is maintained at or below about 1.6 (e.g., about 1.6, about 1.5, about 1.4, about 1.3, about 1.2, about 1.1, about 1.0, about 0.9, about 0.8, about 0.7, about 0.6, about 0.5, about 0.4, about 0.3, about 0.2, about 0.1, or less). The alloy may contain other components and/or additives, including other components and/or additives as specified herein, and may be further processed using a variety of processing techniques known in the art, and also including the processing techniques described herein, such as press-forging, homogenizing, aging, and the like.
[0020] In one embodiment, the alloy can be first homogenized after solidification from the melt by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours. The homogenized alloy can then, in another embodiment, be hot-worked, e.g., extruded to a change in cross section, then solution heat-treated at 460°C-480°C for 1-4 hours, then aged at a first temperature of 100°C-120°C for 6-12 hours, then heated to a second temperature of 160°C-180°C and held at the second temperature for 8-30 hours, and quenched with water. These heat treatments can assist in forming the r|-MgZn2 phase as discrete particles rather than linked particles, as explained further herein. In other embodiments, different homogenization, forging, aging, and/or other forming or heat treatment techniques may be used. In further embodiments, the alloy may be optionally subjected to a stress-relief treatment between the solution
heat-treatment and the aging heat-treatment. The stress-relief treatment can include stretching the alloy, compressing the alloy, or combinations thereof.
[0021] According to a further aspect, the disclosed alloys incorporate dispersoid forming elements in amounts sufficient to inhibit recrystallization. Such dispersoid formers may include scandium and zirconium. To this end, the dispersoid formers may form dispersed Ll2 phase particles in the alloy, wherein the Ll2 phase constitutes about 0.1% by volume of the alloy.
[0022] According to a still further aspect, the alloys are hardened by the r|-MgZn2 phase.
The r|-MgZn2 phase may constitute about 3% to about 8% by volume of the alloy. The r|-MgZn2 phase may form within grains and/or at grain boundaries, and may form as discrete particles and/or linked particles. Linked particles are often more likely to form at grain boundaries, adversely affecting the SCC resistance. Accordingly, in one embodiment, the alloy contains r|-MgZn2 that is formed primarily as discrete particles. Various heat treatments that are known in the art or otherwise disclosed herein can be used to guide the formation of r|-MgZn2 as discrete particles, rather than linked particles. [0023] According to one embodiment, the composition of an alloy includes, by weight, about 5.8% to about 6.8%> zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0%> to about 0.2%> scandium, 0%> to about 0.2%> zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In one embodiment, the alloy may include the elements in the nominal composition, as well as additional elements; in another embodiment, the alloy may consist essentially of the elements in the nominal composition; and in a further embodiment, the alloy may consist only of the elements in the nominal composition. Incidental elements and impurities in the disclosed alloys may include, but are not limited to, silicon, iron, chromium, nickel, vanadium, titanium, or mixtures thereof, and may be present in the alloys disclosed herein in amounts totaling no more than 1%, no more than 0.9%, no more than 0.8%, no more than 0.7%, no more than 0.6%, no more than 0.5%, no more than 0.4%, no more than 0.3%, no more than 0.2%, no more than 0.1%, no more than 0.05%, no more than 0.01%, or no more than 0.001%. Additionally, in one embodiment, the alloy has a predominately face-centered cubic crystal structure, with additional phases and precipitates, such as those disclosed herein.
[0024] In one embodiment, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen. ASTM G47 covers the test method of sampling, type of specimen, specimen preparation, test environment, and method of exposure for determining the susceptibility to SCC of aluminum alloys. ASTM E8 covers the testing apparatus, test specimens, and testing procedure for tensile testing.
[0025] Some samples exemplary of embodiments of the alloy disclosed herein were prepared and tested for physical properties. Additionally, a counter-example (alloy B) was also prepared and tested for comparison. These examples are described in greater detail below as illustrative non-limiting embodiments. EXAMPLE 1 : alloy A
[0026] A melt for alloy A was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.10 Sc, 0.05 Zr, and balance Al, in wt%. The alloy includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value. The melt weighed about 450 grams. After being cooled to room temperature, the alloy was homogenized by heating it from room temperature to 460°C at 1°C per minute and holding it at 460°C for 8 hours. The homogenized alloy was press-forged down to 50% reduction in height, to about 5 cm in short-transverse thickness. Specimens were excised in the short-transverse direction to measure the fracture toughness, KIc, and the SCC resistance, Kiscc-
[0027] The excised specimens were aged at 107°C for 6 hours, then heated to 177°C and held at 177°C for 8 hours, and quenched with water. This aging heat-treatment is also called the "T7x" heat treatment hereinafter. During the SCC test, the specimens were coupled to the stainless steel 17-4PH in a 3.5% NaCl solution. Because the specimens were notched by machining instead of conventional pre-cracking, the measured KIc and KIScc values were appropriately discounted. In a head-to-head comparison, alloy A was found to have hardness better than that of 7050, and an SCC resistance about 2.4 times greater than that of 7050, as shown in the following Table 1. Table 1 also indicates the SCC Index of the alloy, calculated using the equation above. The alloy 7050 was subjected to a heat treatment identical to alloy A and was tested using the same procedures. The tensile strength was also measured, and the results are listed in Table 2.
EXAMPLE 2: alloy B
[0028] A melt for alloy B was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.5 Zn, 1.5 Mg, 1.6 Cu, 0.50 Ag, 0.10 Sc, 0.05 Zr, and balance Al, in wt%. The melt weighed about 450 grams. Alloy B is a counterexample. Although alloy B includes Zn and Cu in amounts similar to alloy A, the lower Mg content raises the SCC index, undesirably lowering Kiscc- A comparison of the properties of alloy B and 7050 is shown in Table 1. Table 1 also indicates the SCC Index of the alloy, calculated using equation [1] above. The alloy 7050 was subjected to a heat treatment identical to alloy B, which was also identical to the heat treatment and processing described above with respect to alloy A (EXAMPLE 1). The tensile strength was also measured, and the results are listed in Table 2.
EXAMPLE 3: alloy C
[0029] A melt for alloy C was prepared by heating a charge of starting materials, the charge having the nominal composition of 5.8 Zn, 3.0 Mg, 2.2 Cu, 0.05 Sc, 0.05 Zr, and balance Al, in wt%. The alloy C includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value. The melt weighed about 450 grams. After being cooled to room temperature, the alloy was homogenized by heating it from room temperature to 460°C at 1°C per minute and holding it at 460°C for 8 hours. The homogenized alloy was press-forged down to 50% reduction in height, to about 4 cm in short-transverse thickness. Specimens were excised in the short-transverse direction to measure the Kic and Kiscc- The excised specimens were aged at 107°C for 6 hours, then heated to 177°C and held at 177°C for 8 hours, and quenched with water. During the SCC test, the aluminum specimens were coupled to the stainless steel PHI 7-4 in a 3.5% NaCl solution. In a head-to-head comparison, alloy C was found to have hardness better than that of 7050, and also an SCC resistance better than that of 7050, as shown in Table 1. Table 1 also indicates the SCC Index of the alloy, calculated using equation [1] above. The alloy 7050 was subjected to a heat treatment identical to alloy C. The tensile strength was also measured, and the results are listed in Table 2.
Table 1
Figure imgf000009_0001
Table 2
Figure imgf000010_0001
[0030] As seen from Tables 1 and 2, the alloys according to the disclosed aspects and embodiments (e.g., alloys A and C) produce physical properties that are comparable or superior to those of alloy 7050, and in particular, the alloys A and C have a lower SCC Index compared to alloy 7050, which indicates a superior resistance to SCC. For alloy A, the hardness is superior to that of alloy 7050, and the SCC resistance is also superior to alloy 7050. Additionally, the fracture toughness (KIc), yield stress, ultimate tensile stress, and ductility are all comparable to those of alloy 7050. For alloy C, the hardness, yield stress, ultimate tensile stress, and SCC resistance are superior to those of alloy 7050, and the ductility is comparable. The fracture toughness (Kic) of alloy C was found to be slightly lower than that of alloy 7050. It is noted that the Kiscc of alloys A and C are very close to the theoretical limit (i.e. the Kic value).
EXAMPLE 4: alloy A- 1
[0031] A melt was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.12 Zr, and balance Al, in wt%, which is the same as alloy A. The as-cast alloy A-l was generally shaped like a cylinder, measuring about 18 cm in diameter and 56 cm in height, and weighing about 50 kg. After being cooled to room temperature, the as-cast alloy A-l was homogenized by heating it in a furnace from room temperature to 400° C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours. The homogenized alloy A-l was extruded to a cylindrical billet, reducing the diameter to about 8 cm in diameter. This represents an extrusion ratio of about 5½: 1. Specimens were excised and subjected first to a solution heat-treatment ("SHT"), and then to an aging heat-treatment. The solution heat-treatment was conducted by subjecting the specimens to a temperature of 460°C or 465°C for 2 hours. The aging
heat-treatment was conducted by subjecting the specimens to 107°C for 6 hours, then heating to 177°C, holding at 177°C for 8 hours, and quenching with water. Tensile strength was measured at room temperature according to ASTM E8 with a longitudinal test specimen. The results are listed in Table 3 in comparison to a conventional aluminum alloy, namely, QT-7050-T74. The yield strength ("YS") of alloy A-1 is about 10% higher than that of QT-7050-T74 in the longitudinal and transverse directions, with comparable elongations and reduction-of-area percentages ("%RA").
Table 3
Figure imgf000011_0001
[0032] The SCC resistance was measured according to a rising step load (RSL) method developed by Lou Raymond & Associates in Newport Beach, CA, generally as follows. Machined notched samples in the fully heat-treated condition were used for the testing. Initial fracture toughness (Klc) testing was performed in air at a rapid loading rate to first determine the maximum breaking load. The test specimen geometry was changed to increase the amount of constraint. An effective stress intensity Kp was calculated, since the specimen had a machined notch instead of a fatigue pre-crack as required by ASTM E399. Previous testing of 7075-T6 aluminum alloy in a similar way found that the value for Kp was approximately 1.5 times the value for Klc. Having measured the maximum breaking load, the RSL method was employed to measure the Kiscc of the samples. During the SCC test, the aluminum specimens were anodically charged by coupling them to PH17-4 adapters in a 3.5% salt-water environment. Alloy A-l showed a Klc value of 38.8 ksi-in½ and a Kiscc value greater than 38 ksi-in½.
EXAMPLE 5: alloy D
[0033] A melt for alloy D was prepared by heating a charge of starting materials, the charge having the nominal composition of 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.12 Zr, and balance Al, in wt%. The alloy D preferably includes a variance in the constituents in the range of plus or minus ten percent of the nominal (mean) value, and is substantially free of scandium. The as-cast alloy D was generally shaped like a cylinder, measuring about 18 cm in diameter and 56 cm in height, and weighing about 50 kg. After being cooled to room temperature, the as-cast alloy D was homogenized by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours. The homogenized alloy D was extruded to a cylindrical billet, reducing the diameter to about 8 cm in diameter. This represents an extrusion ratio of about 5½: 1. Specimens were excised and subjected first to a solution heat-treatment, and then to an aging heat-treatment. The solution heat-treatment was conducted by subjecting the specimens to a temperature of 460°C, 465°C, or 470°C for 2 hours. The aging heat-treatment was conducted according to the T7x heat treatment. Tensile strength was measured at room temperature according to ASTM E8 with a longitudinal test specimen. The results are listed in Table 4 in comparison to the conventional QT-7050-T74. Alloy D has about 20% higher YS than 7050-T74 in the longitudinal direction and about 13% to about 15% higher YS than 7050-T74 in the transverse and 45° direction, with comparable elongations and %RA. The strength values of alloy D represent a significant improvement over 7050-T74. Table 4
Figure imgf000013_0001
[0034] The SCC threshold stress of alloy D was measured by a 30-day accelerated stress corrosion testing according to ASTM G47. Short-transverse samples of alloy D were solution heat-treated at 460°C for 2 hours, and heat-treated according to the T7x heat treatment. Fig. 1 shows the SCC threshold stress and typical longitudinal yield strength of alloy D in comparison to conventional aluminum alloys. The samples of alloy D passed a stress level of about 380 MPa, which is above the highest SCC temper designation currently in use, namely, T73. Thus, the combination of strength and SCC resistance of alloy D is substantially improved over that of conventional aluminum alloys.
[0035] The SCC resistance was measured according to the RSL method. Machined notched samples in the fully heat-treated condition were used for the testing. Kic testing was performed in air at a rapid loading rate to first determine the maximum breaking load. The test specimen geometry was changed to increase the amount of constraint. An effective stress intensity Kp was calculated. Having measured the maximum breaking load, the RSL method was employed to measure the Kiscc of the samples. During the SCC test, the aluminum specimens were anodically charged by coupling them to PHI 7-4 adapters in a 3.5% salt-water environment. Alloy D specimens that were solution heat-treated at 460°C for 2 hours and heat-treated according to the T7x heat treatment showed a Kic value of 47.8 ksi-in½ and a Kiscc value of 20.0 ksi-in½. On the other hand, alloy D specimens solution heat-treated at 470°C for 2 hours and heat-treated according to the T7x heat treatment showed a Klc value of 55.4 ksi-in½ and a Kiscc value of 15.0 ksi-in1/2.
[0036] Smooth bar fatigue testing was carried out according to ASTM E466 at four different maximum stress levels: 250 MPa, 280 MPa, 340 MPa, and 400 MPa. An R-ratio, i.e., the ratio of the minimum peak stress to the maximum peak stress, of 0.1 and frequency of 20 Hz was used for the test. Transverse alloy D specimens were solution heat-treated at 470°C and heat-treated according to the T7x heat treatment, and compared to 7050-T74 samples. Fig. 2 shows the maximum applied stress as a function of life (cycles to failure) of alloy D in comparison to 7050-T74. Alloy D shows fatigue behavior comparable to 7050-T74. Notably, at a low stress range, e.g., maximum stress below about 35 ksi (about 250 MPa), the difference in life between alloy D and 7050-T74 is expected to be minimal.
[0037] It is understood that the disclosure may embody other specific forms without departing from the spirit or central characteristics thereof. The disclosure of aspects and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the claims are not to be limited to the details given herein. Accordingly, while specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention and the scope of protection is only limited by the scope of the accompanying claims. Unless noted otherwise, all percentages listed herein are weight percentages.

Claims

CLAIMS What is claimed is:
1. An alloy comprising, by weight, about 5.8% to about 6.8%> zinc, about 2.5% to about 3.0%) magnesium, about 1.5% to about 2.3% copper, 0%> to about 0.2%> scandium, 0%> to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities, wherein the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.
2. The alloy of claim 1, wherein the alloy comprises dispersed Ll2 phase particles including at least one of scandium and zirconium, constituting about 0.1% by volume of the alloy.
3. The alloy of claim 1, wherein the alloy comprises an r|-MgZn2 phase that constitutes about 3% to about 8% by volume of the alloy.
4. The alloy of claim 1, wherein the alloy comprises 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.10 Sc, 0.05 Zr, and balance Al, in wt%, with the composition including a variation of ten percent of the nominal values.
5. The alloy of claim 1, wherein the alloy comprises 5.8 Zn, 3.0 Mg, 2.2 Cu, 0.05 Sc, 0.05 Zr, and balance Al, in wt%, with the composition including a variation of ten percent of the nominal values.
6. The alloy of claim 1, wherein the alloy comprises 6.3 Zn, 2.7 Mg, 1.6 Cu, 0.12 Zr, and balance Al, in wt%, with the composition including a variation of ten percent of the nominal values.
7. A method for producing an alloy comprising:
preparing a melt that includes, by weight, about 5.8% to about 6.8%> zinc, about 2.5% to about 3.0%) magnesium, about 1.5% to about 2.3% copper, 0%> to about 0.2%> scandium, 0%> to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities;
cooling the melt to room temperature; and
homogenizing the alloy by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
8. The method of claim 7, further comprising:
hot-working the alloy to a change in cross section.
9. The method of claims 7 or 8, further comprising:
solution heat-treating the alloy at 460°C-480°C for 1-4 hours.
10. The method of any of claims 7-9, further comprising:
aging the alloy at a first temperature of 100°C-120°C for 6-12 hours, then heating the alloy to a second temperature of 160°C-180°C and holding the alloy at the second temperature for 8-30 hours, and quenching the alloy with water.
11. An alloy produced according to the method of any of claims 7-10.
12. A manufactured article comprising an alloy according to any of claims 1-6 and claim 11.
13. A method for producing an aluminum alloy comprising:
providing an alloy comprising an aluminum matrix;
adding to the aluminum matrix amounts of zinc, magnesium, and copper according to an SCC index of the equation:
(SCC index) = 2xwpZn + wpMg - wpCu
where wpZn, wpMg, and wpCu are the weight percentages of Zn, Mg, and Cu, respectively, in the matrix of the alloy, and wherein the SCC index of the alloy is less than or equal to 1.6.
14. The method of claim 13, wherein the alloy comprises about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0%> to about 0.2%> scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities.
15. The method of any of claims 13-14, further comprising:
homogenizing the alloy by heating it from room temperature to 400°C at 1°C per minute, holding it at 400°C for 12 hours, heating it from 400°C at 1°C per minute, and holding it at 460°C-480°C for 24-48 hours.
16. The method of any of claims 13-15, further comprising:
hot-working the alloy to a change in cross section.
17. The method of any of claims 13-16, further comprising:
solution heat-treating the alloy at 460°C-480°C for 1-4 hours.
18. The method of any of claims 13-17, further comprising:
aging the alloy at a first temperature of 100°C-120°C for 6-12 hours, then heating the alloy to a second temperature of 160°C-180°C and holding the alloy at the second temperature for 8-30 hours, and quenching the alloy with water.
PCT/US2012/038796 2011-05-21 2012-05-21 Aluminum alloys WO2012162226A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2836261A CA2836261A1 (en) 2011-05-21 2012-05-21 Aluminum alloys
EP12789530.8A EP2714954A4 (en) 2011-05-21 2012-05-21 Aluminum alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161488713P 2011-05-21 2011-05-21
US61/488,713 2011-05-21

Publications (2)

Publication Number Publication Date
WO2012162226A2 true WO2012162226A2 (en) 2012-11-29
WO2012162226A3 WO2012162226A3 (en) 2014-05-08

Family

ID=47174045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/038796 WO2012162226A2 (en) 2011-05-21 2012-05-21 Aluminum alloys

Country Status (4)

Country Link
US (1) US20120291926A1 (en)
EP (1) EP2714954A4 (en)
CA (1) CA2836261A1 (en)
WO (1) WO2012162226A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281915B2 (en) 2011-01-05 2019-05-07 Sphero, Inc. Multi-purposed self-propelled device
US9090214B2 (en) 2011-01-05 2015-07-28 Orbotix, Inc. Magnetically coupled accessory for a self-propelled device
US9218316B2 (en) 2011-01-05 2015-12-22 Sphero, Inc. Remotely controlling a self-propelled device in a virtualized environment
US8751063B2 (en) 2011-01-05 2014-06-10 Orbotix, Inc. Orienting a user interface of a controller for operating a self-propelled device
US9429940B2 (en) 2011-01-05 2016-08-30 Sphero, Inc. Self propelled device with magnetic coupling
US9280717B2 (en) 2012-05-14 2016-03-08 Sphero, Inc. Operating a computing device by detecting rounded objects in an image
US9292758B2 (en) 2012-05-14 2016-03-22 Sphero, Inc. Augmentation of elements in data content
US9827487B2 (en) 2012-05-14 2017-11-28 Sphero, Inc. Interactive augmented reality using a self-propelled device
US10056791B2 (en) 2012-07-13 2018-08-21 Sphero, Inc. Self-optimizing power transfer
US9829882B2 (en) 2013-12-20 2017-11-28 Sphero, Inc. Self-propelled device with center of mass drive system
BR112021004434B1 (en) * 2018-11-12 2024-01-02 Novelis Koblenz Gmbh 7XXX SERIES ALUMINUM ALLOY PRODUCT

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198676A (en) * 1964-09-24 1965-08-03 Aluminum Co Of America Thermal treatment of aluminum base alloy article
JPH0641669A (en) * 1992-03-24 1994-02-15 Mikihiro Sugano High strength aluminum alloy excellent in stress corrosion cracking resistance
US6340978B1 (en) * 1997-01-31 2002-01-22 Making Everlasting Memories, Ltd. Method and apparatus for recording and presenting life stories
IL156386A0 (en) * 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
US20050006010A1 (en) * 2002-06-24 2005-01-13 Rinze Benedictus Method for producing a high strength Al-Zn-Mg-Cu alloy
US20080299000A1 (en) * 2002-09-21 2008-12-04 Universal Alloy Corporation Aluminum-zinc-copper-magnesium-silver alloy wrought product
US7214281B2 (en) * 2002-09-21 2007-05-08 Universal Alloy Corporation Aluminum-zinc-magnesium-copper alloy extrusion
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
US8157932B2 (en) * 2005-05-25 2012-04-17 Alcoa Inc. Al-Zn-Mg-Cu-Sc high strength alloy for aerospace and automotive castings
US20070297936A1 (en) * 2006-06-23 2007-12-27 Zaki Ahmad Aluminum alloy
US8608876B2 (en) * 2006-07-07 2013-12-17 Aleris Aluminum Koblenz Gmbh AA7000-series aluminum alloy products and a method of manufacturing thereof
US20080066833A1 (en) * 2006-09-19 2008-03-20 Lin Jen C HIGH STRENGTH, HIGH STRESS CORROSION CRACKING RESISTANT AND CASTABLE Al-Zn-Mg-Cu-Zr ALLOY FOR SHAPE CAST PRODUCTS
JP5343333B2 (en) * 2007-07-06 2013-11-13 日本軽金属株式会社 Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"ASM MATERIALS ENGINEERING DICTIONARY", 1992, ASM INTERNATIONAL
See also references of EP2714954A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Also Published As

Publication number Publication date
EP2714954A4 (en) 2015-08-19
US20120291926A1 (en) 2012-11-22
CA2836261A1 (en) 2012-11-29
WO2012162226A3 (en) 2014-05-08
EP2714954A2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
EP2714954A2 (en) Aluminum alloys
EP2049696B1 (en) High strength, heat treatable al-zn-mg aluminum alloy
EP3009525A1 (en) Aluminium alloy forging and method for producing the same
KR102437942B1 (en) 6xxx aluminum alloys
JP6118728B2 (en) Thick product and manufacturing method made of 7XXX alloy
WO2004001080A1 (en) METHOD FOR PRODUCING A HIGH STRENGTH Al-Zn-Mg-Cu ALLOY
KR102464714B1 (en) Improved 7xx aluminum casting alloys, and methods for making the same
KR20120115497A (en) Production of high strength titanium alloys
WO2006086534A2 (en) Al-zn-cu-mg aluminum base alloys and methods of manufacture and use
KR102565183B1 (en) 7xxx-series aluminum alloy products
US20150376742A1 (en) Aluminum alloy sheet for structural material
WO2012112942A2 (en) 2xxx series aluminum lithium alloys
WO2020263864A1 (en) Improved thick wrought 7xxx aluminum alloys, and methods for making the same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
CA3110188A1 (en) High strength fastener stock of wrought titanium alloy and method of manufacturing the same
EP3072989B1 (en) Method of manufacturing a magnesium-lithium alloy
KR20230019884A (en) Use of products made from aluminum copper magnesium alloys with good performance at high temperatures
JP5525444B2 (en) Magnesium-based alloy and method for producing the same
EP3577246A1 (en) Low density aluminum-copper-lithium alloy extrusions
EP4247991A1 (en) Method of manufacturing 2xxx-series aluminum alloy products
JP7140892B1 (en) Aluminum alloy extruded material and manufacturing method thereof
EP3831969A1 (en) High strength press quenchable 7xxx alloy
EP1577409B1 (en) Titanium-based alloy
WO2021133792A1 (en) High-strength 6xxx extrusion alloys
JP2022506542A (en) 2XXX Aluminum Lithium Alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789530

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2836261

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012789530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012789530

Country of ref document: EP