WO2012159352A1 - 光源模块以及背光模块 - Google Patents

光源模块以及背光模块 Download PDF

Info

Publication number
WO2012159352A1
WO2012159352A1 PCT/CN2011/077767 CN2011077767W WO2012159352A1 WO 2012159352 A1 WO2012159352 A1 WO 2012159352A1 CN 2011077767 W CN2011077767 W CN 2011077767W WO 2012159352 A1 WO2012159352 A1 WO 2012159352A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
curved surface
prism
secondary lens
light
Prior art date
Application number
PCT/CN2011/077767
Other languages
English (en)
French (fr)
Inventor
张光耀
方扩军
曹谦
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/376,586 priority Critical patent/US20120300493A1/en
Publication of WO2012159352A1 publication Critical patent/WO2012159352A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the invention relates to a light source module and a backlight module, in particular to a light source module capable of reducing light dissipation and improving light source use efficiency, and a backlight module using the same.
  • liquid crystal displays have been officially replaced by cathode ray tubes, and have become mainstream display types.
  • Various electronic devices currently on the market such as mobile phones, personal digital assistants, digital cameras, computer screens or laptop screens, almost all use a liquid crystal display screen as their display screen.
  • the liquid crystal display includes a backlight module and a liquid crystal display panel.
  • the backlight module is used to provide a light source of the entire liquid crystal display, so that the liquid crystal display panel can display the required image by using the light source.
  • the light source in the backlight module has also been gradually used by the smaller light-emitting diode (light). Emitter diode, LED).
  • LED emitter diode
  • the backlight module can be divided into a direct type and a side light type according to the position of the light source.
  • the edge-lit backlight module has a light-emitting diode die disposed on a side of the liquid crystal display panel.
  • the direct-lit backlight module directly disposes the LED die directly behind the liquid crystal display panel as a light source, so that the backlight can be uniformly transmitted to the entire liquid crystal display panel, thereby making the picture details more delicate and realistic.
  • the direct-lit backlight module itself requires a large number of LED dies, how to maintain brightness uniformity while reducing the number of LEDs (luminance) Uniform) has become a major issue in design.
  • a backlight module must meet a certain LED light pattern to achieve a predetermined brightness uniformity (radiation pattern / Intensity distribution).
  • the number of LEDs and the light mixing distance is basically inversely proportional, that is, to reduce the light mixing distance, the number of LEDs must be increased to meet the specified brightness uniformity requirement.
  • the intensity of a conventional LED is a lambertian distribution, and most of the flux region ⁇ is approximately within ⁇ 60°, where the angle ⁇ is defined as the angle between the ray and the normal to the LED exit surface.
  • FIG. 1 is a perspective view of a prior art light source assembly 200
  • FIG. 2 is a bottom view of the light source assembly 200 of FIG. 3 is a cross-sectional view of the e-e' tangent shown in the light source assembly 200 of FIG.
  • the light source assembly 200 includes an LED 210, a secondary lens 220, and a reflective sheet 230.
  • a feasible solution is to provide a secondary lens 220 to change the spatial distribution of the LED light intensity.
  • the secondary lens 220 can be used to distribute the light energy to a larger spatial angular range, such as expanding the ⁇ angle to ⁇ 75°, so that it is possible to maintain a better number while reducing the number of LEDs. Brightness uniformity.
  • the secondary lens 220 has a bottom surface a, an incident curved surface b, and an outgoing curved surface c.
  • the light is emitted from the LED 210 provided on the bottom surface a of the secondary lens 220, enters the secondary lens 220 by the incident curved surface b, and is emitted to the outside through the exit curved surface c. Due to the two refractions of the incident surface b and the exit curved surface c through the secondary lens 220, the exit angle of the light is different from the exit angle of the light originally generated by the LED 210. Therefore, such an arrangement can make the luminous flux region of the LED 210 more Big.
  • the light 1 enters the secondary lens 220 from the LED through the incident surface b, is reflected by the exit curved surface c of the secondary lens 220, and is incident on the bottom surface a at a small angle ⁇ to be emitted.
  • the ratio is small, not shown
  • the light from the bottom surface a toward the reflection sheet 230 or the light reflected from the incident surface b to the reflection sheet 230 may be due to the scattering of the reflection sheet 230.
  • the effect is that the light reflected to the reflective sheet 230 will spread out. Therefore, the light reflected by the reflection sheet 230 is largely dissipated and is not effectively utilized.
  • An object of the present invention is to provide a light source module and a backlight module, which can reduce light dissipation and improve light source use efficiency, thereby solving the problems of the prior art.
  • a backlight module includes a light guide plate, a light source and a secondary lens.
  • the secondary lens is disposed on the light source.
  • the secondary lens includes a bottom surface, an incident surface and an exit. a curved surface, the incident curved surface is concavely formed into a cavity, the light emitting surface height is at least parallel to the bottom surface, and the bottom surface includes a plurality of prism microstructures, and the light generated by the light source is first incident on the incident curved surface to enter the surface
  • the secondary lens is further emitted from the secondary lens to the outside by the exiting curved surface; wherein the light reflected from the exiting curved surface is returned to the secondary lens by reflection from the bottom surface of the prism.
  • the bottom surface is provided with a planar area, and the planar area is located at a boundary between the incident curved surface and the bottom surface, and the planar area is not provided with the prism microstructure.
  • each prism microstructure has an elongated shape, and an angle between an extending direction of each prism microstructure and an extending direction of the long side of the circuit board is between 87 degrees and 93 degrees.
  • the apex angle of each prism microstructure ranges between 88 degrees and 92 degrees.
  • each prism microstructure has an isosceles triangle in cross section.
  • the refractive index of the material of each prism microstructure is approximately 1.45 ⁇ 1.7.
  • the light emitting surface of the light source is higher or at least parallel to the bottom surface.
  • the invention discloses a light source module, comprising at least one light source, a circuit board carrying the light source, and at least one secondary lens, wherein the secondary lens comprises an incident curved surface, an outgoing curved surface and a bottom surface, wherein the incident curved surface is concave Forming a cavity, the light source is disposed in the cavity, the light source emitting surface height is at least parallel to the bottom surface, the bottom surface includes a plurality of prism microstructures, and the light generated by the light source is incident on the incident curved surface, entering The secondary lens, wherein the light reaching the bottom surface is reflected by the prism microstructure, and is emitted from the exit curved surface.
  • the invention discloses a light source module, comprising at least one light source, a circuit board carrying the light source, at least one prism component and at least one secondary lens, wherein the secondary lens comprises an incident curved surface, an outgoing curved surface and a bottom surface, The incident curved surface is concavely formed into a cavity, the light source is disposed in the cavity, the light emitting surface height is at least parallel to the bottom surface, the prism assembly comprises a plurality of prism microstructures, and the prism assembly is attached to the bottom surface The light generated by the light source is incident on the incident curved surface and enters the secondary lens, wherein the light reaching the bottom surface is reflected by the prism microstructure and is emitted from the exit curved surface.
  • the backlight module of the present invention uses a secondary lens having a prism bottom surface, so that the light reflected by the exit curved surface of the secondary lens can be reflected back from the prism bottom surface into the secondary lens. As a result, the light that would otherwise be dissipated can be reused by the bottom surface of the prism. Therefore, the backlight module of the present invention improves the efficiency of use of the light source.
  • the backlight module of the present invention uses a secondary lens having a prism bottom surface, so that the light reflected by the exit curved surface of the secondary lens can be reflected back from the prism bottom surface into the secondary lens. As a result, the light that would otherwise be dissipated can be reused by the bottom surface of the prism. Therefore, the backlight module of the present invention improves the efficiency of use of the light source.
  • FIG. 1 is a perspective view of a prior art light source assembly.
  • FIG. 2 is a top plan view of the light source assembly of FIG. 1.
  • Figure 3 is a cross-sectional view of the e-e' tangent shown in the light source assembly of Figure 2.
  • FIG. 4 is a schematic view of a backlight module of the present invention.
  • Figure 5 is a plan view of the light source module of Figure 4.
  • Figure 6 is a perspective view of a first embodiment of a light source assembly in a backlight module of the present invention.
  • Figure 7 is a bottom plan view of the light source assembly of Figure 6.
  • Figure 8 is a cross-sectional view taken along line z-z' of Figure 7.
  • Figure 9 is a cross-sectional view showing a second embodiment of a light source assembly in the backlight module of the present invention.
  • Figure 10 is a bottom plan view of a third embodiment of a light source assembly in a backlight module of the present invention.
  • Figure 11 is a cross-sectional view taken along the line x-x' shown in Figure 10.
  • Figure 12 is a cross-sectional view taken along the line y-y' shown in Figure 10.
  • FIG. 4 is a schematic diagram of a backlight module 400 of the present invention.
  • the backlight module 400 includes a light guide plate 40 and a light source module 70.
  • the light source module 70 is disposed at the bottom of the backlight module 400 and includes a circuit board 30, a plurality of light source assemblies 600 disposed on the circuit board 30, and a reflective sheet 50 disposed on the circuit board 30.
  • Various optical components such as a light guide plate 40, a diffusion sheet, a polarizer, and the like, are disposed above the light source assembly 600 in an overlapping manner.
  • the backlight module 400 is a direct type backlight module. Therefore, the light source module 70 is disposed under the light guide plate 40 such that light emitted from the light source assembly 600 can be incident from the light incident bottom surface 401 of the light guide plate 40.
  • FIG. 5 is a plan view of the light source module 70 of FIG. 4
  • FIG. 6 is a perspective view of a first embodiment of the light source assembly of the backlight module of the present invention
  • FIG. 7 is a light source assembly 600 of FIG. The bottom view.
  • Figure 8 is a cross-sectional view of the z-z' tangential line of the light source assembly 600 of Figure 7.
  • the light source assembly 600 includes a light source 610 and a secondary lens 620.
  • the light source 610 can be a light emitting diode (Light Emitting Diode, LED) or Organic Light Emitting Diode, OLED).
  • the secondary lens 620 includes a bottom surface 621, an incident curved surface 622, and an exit curved surface 623.
  • An opening 626 is formed at a position where the incident curved surface 622 is projected on the bottom surface 621.
  • the incident curved surface 622 is concavely formed into a cavity 624.
  • the light emitted by the light source 610 is incident on the inside of the secondary lens 620 through the incident curved surface 622, and is emitted from the secondary lens 620 from the exit curved surface 623.
  • the equivalent luminous flux region of the light source 610 is made by the refraction of the incident curved surface 622 and the exit curved surface 623. Bigger.
  • the range of the exit curved surface 623 is a curved surface including the secondary lens 620.
  • a plurality of elongated prism microstructures are formed on the bottom surface 621 of the secondary lens 620, and each of the prism microstructures has an isosceles triangle in cross section.
  • the bottom surface of the prism can be formed together when the secondary lens 620 is fabricated.
  • the angle between the extending direction A of the elongated prism microstructure of the bottom surface 621 and the extending direction B of the long side 301 of the circuit board 30 is approximately 87 to 93 degrees.
  • the included angle is 90 degrees.
  • FIG. 9 is a cross-sectional view showing a second embodiment of the light source assembly in the backlight module.
  • the light source assembly 800 is slightly different in structure from the light source assembly 600, and the light source assembly 800 includes a prism assembly 850 and a secondary lens 820.
  • the bottom surface 821 of the secondary lens 820 is a flat surface, and the prism assembly 850 includes a plurality of prism microstructures. Thereafter, the prism assembly 850 is bonded under the bottom surface 821 of the secondary lens 820, and such corresponding changes are within the scope of the present invention.
  • the secondary lens 620 of the present invention is greatly different from the secondary lens 220 of the prior art, and the bottom surface thereof includes a plurality of prism microstructures, and as for the prism bottom surface 621 The function will be stated in the subsequent disclosure.
  • the incident ray 1 After the light ray 1 emitted from the light source 610 is incident on the secondary lens 620 by the incident curved surface 622, the incident ray 1 is refracted by the refracting of the exit curved surface 623, and is emitted to the outside to become the refracted ray 1'.
  • the angle ⁇ ' between the refracted ray 1' and the normal is larger than the angle ⁇ between the original incident ray 1 and the normal, and therefore, the arrangement of the secondary lens 620 can increase the area of the luminous flux.
  • the incident ray 1 when the incident ray 1 is incident on the exit curved surface 623, part of the light is reflected by the exit curved surface 623, and becomes the reflected ray 3 in FIG.
  • the reflected light 3 is returned to the secondary lens 620 by two total reflections of the prism bottom surface 621, and is again incident on the exit curved surface 623 (as shown by the light 4), and by exiting the curved surface. 623 is emitted to the outside (light 4'). Since the prism microstructure will totally reflect the reflected light 3, the dissipation of the reflected light 3 will be alleviated, thereby improving the efficiency of the use of the light source 610.
  • a very small portion of the light refracted by the prism bottom surface 621 and the light reflected from the incident curved surface 622 are reflected by the reflective film 50 (see FIG. 4) under the light source assembly 600, and are also refracted by the prism bottom surface 621 to be emitted.
  • the prism bottom surface 621 adopts some preferable designs, for example, the cross section of the prism microstructure is taken, etc.
  • the shape of the waist triangle is such that light can be surely reflected back into the secondary lens 620.
  • the apex angle of the prism microstructure and the material of the prism microstructure must also be adjusted so that the incident angle of the reflected light 3 is large enough and the refractive index of the material is also large enough.
  • the apex angle ⁇ of the prism microstructure is set between 88 and 92 degrees, and the refractive index of the material of the prism microstructure is in the range of 1.45-1.7, the pitch p of the apex of the two prism microstructures or the top of the prism microstructure
  • the angle ⁇ can be a constant value, or along the vertical direction of the prism microstructure B (that is, perpendicular to the extending direction A of the elongated prism microstructure shown in FIG. 5) changes in a certain tendency.
  • the prism microstructure can be made of polymethylmethacrylate (PMMA) or polycarbonate (Poly). Carbonate, PC), or Silicon (Silicon) to ensure total reflection.
  • the foregoing design is not a limitation of the present invention, and the manufacturer can change the combination of the material used and the apex angle, and it is only necessary to ensure the occurrence of total reflection, and such a corresponding change is also within the scope of the present invention.
  • FIG. 10 is a bottom view of a third embodiment of a light source assembly in a backlight module of the present invention
  • FIG. 11 is a cross-sectional view taken along line x-x' of FIG. Figure 12 is the y-y' shown in Figure 10.
  • the light source assembly 700 includes a light source 710 and a secondary lens 720. Since the light source 710 and the secondary lens 720 have the same functions as the light source 610 and the secondary lens 620 in the first embodiment, the detailed description of the functions thereof will not be repeated.
  • the bottom surface 721 of the secondary lens 720 of the light source assembly 700 has a planar area 725, and the planar area 725 is located at the boundary of the incident curved surface 722 and the bottom surface 721, and the outer shape of the flat area 725 is square. Or circular, and the planar region 725 is not provided with the prism microstructure.
  • the position where the incident curved surface 722 is projected on the planar area 725 forms an opening 726, and the position of the incident curved surface 722 projected on the bottom surface 721 is located in the middle of the planar area 725.
  • this opening 726 is to prevent the prismatic microstructure from blocking light generated by the source 710 or to prevent light from escaping from the slits of the prism microstructure.
  • the x-x' cross section can be seen, and no prism microstructure is provided at the boundary between the incident curved surface 722 and the bottom surface 721.
  • the secondary lens 720 is not provided with a prism microstructure on the bottom surface.
  • the prism bottom surface 721 has a planar region 725 and an opening 726
  • the present invention does not limit the size and shape of the planar region 725 and the opening 726.
  • the operator can also design other shapes and other sizes of openings, only the size and shape of the plane area 725 and the opening 726 are appropriate, so that the prism microstructure does not affect the incidence of light generated by the light source, such a corresponding Changes are within the scope of the invention.
  • the backlight module 400 can also use the light source assembly 700 as a backlight.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

提供了一种光源模块(400),其包括至少一光源(610)和至少一二次透镜(620),所述二次透镜(620)包括一入射曲面(622)、一出射曲面(623)和一底面(621),该入射曲面(622)内凹形成一空腔(624),所述光源(610)设置于该空腔(624)内,该底面(621)包括多个棱镜微结构,所述光源(610)产生的光线入射至所述入射曲面(622),进入所述二次透镜(620),其中到达所述底面(621)的光线经过该棱镜微结构后,从所述出射曲面(622)射出。所述光源模块(400)可以藉由棱镜微结构将出射曲面(623)的反射光线再反射回所述二次透镜(620)之中。因此,所述光源模块(400)可以减少光线的散逸总量,使所述光源(610)所发出的光线得到更加的利用。

Description

光源模块以及背光模块 技术领域
本发明涉及一种光源模块以及背光模块,尤指一种可减少光线散逸,提高光源使用效率的光源模块以及应用该光源模块的背光模块。
背景技术
近年来,由于液晶显示器轻薄短小的特性,已经使液晶显示器正式取代阴极射线管,而成为主流的显示器种类。目前市场上各种电子装置,如移动电话、个人数字助理、数字相机、计算机屏幕或笔记本电脑屏幕,几乎都采用液晶显示屏幕作为其显示屏幕。
液晶显示器包括背光模块以及液晶显示面板。背光模块用来提供整个液晶显示器的光源,以使液晶显示面板能藉由此光源,显示所须的图像。此外,由于液晶显示器的轻薄化需求,背光模块内的光源亦已由之前较占空间的灯管,而逐渐地采用体积较小的发光二极管(light emitting diode, LED)。这样的改变使得背光模块的厚度与重量大幅下降,使整体液晶显示器的体积和厚度也随之减少。
背光模块依据光源的位置可以分为直下式与侧光式。侧光式背光模块是将发光二极管晶粒配置在液晶显示面板的侧边。而直下式背光模块是直接将发光二极管晶粒均匀地配置在液晶显示面板的后方当作发光源,使背光可以均匀传达到整个液晶显示面板,进而使得画面细节更细腻逼真。然而,由于直下式背光模块本身需要使用大量的LED晶粒,因此,如何在减少LED数量的前提下仍然维持亮度均匀度(luminance uniform),成为设计上的一大课题。如业界所习知,背光模块要达到预定的亮度均匀度必须满足一定LED光型(radiation pattern / intensity distribution)。而LED数目与混光距离(light mixing distance)基本成反比关系,亦即减小混光距离,则须增加LED个数来满足既定的亮度均匀度要求。
传统LED的光强为朗伯(lambertian)分布,其大部分光通量(flux)区域θ大致在±60°范围之内,其中θ角的定义为光线与LED出光面的法线之间夹角。
在此请参阅图1~图3,图1为现有技术中光源组件200的透视图,图2是图1光源组件200的仰视图。图3是图2光源组件200所示之e-e’切线的截面图。一般来说,光源组件200包含有LED210、二次透镜220以及反射片230。为克服所述LED数目与混光距离之间的制约关系,一个可行的解决办法便是设置二次透镜220,以改变LED光强空间分布。换言之,二次透镜220可用来将光能量分布到更大的空间角度范围,譬如将θ角扩大至±75°,如此一来,便有可能在减少LED数目的前提下,仍然维持较佳的亮度均匀度。
在此请继续参阅图3。二次透镜220具有底面a、入射曲面b与出射曲面c。光线由设置于二次透镜220底面a的LED210发出,藉由入射曲面b而进入二次透镜220中,再藉由出射曲面c射出至外部。由于经过二次透镜220入射曲面b与出射曲面c的两次折射,光线的出射角度与原先由LED210所产生光线的出射角度已有所不同,因此,这样的设置便可使LED210的光通量区域更大。
然而,如光线1所示,光线1从LED经入射面b进入二次透镜220内部,经过二次透镜220的出射曲面c反射,以小角度α入射到底面a从而出射。为了增加光线的利用效率,不论自底面a射向反射片230的光线或是从入射曲面b反射至反射片230的光线(比例较小,图中未示出),会因为反射片230的散射作用使得反射至反射片230上光线会散开。所以反射片230反射的光大部分散逸掉了,而并未得到有效利用。
因此,业界需要开发出一种更能有效减少光线散逸,进而提升光源使用效率的背光模块,以解决前述的问题。
技术问题
本发明的目的是提供一种光源模块以及背光模块,其可减少光线散逸,提高光源使用效率,进而解决现有技术的问题。
技术解决方案
本发明揭露一种背光模块,其包含一导光板、一光源和一个二次透镜,所述二次透镜设置于所述光源之上,所述二次透镜包含有一底面,一入射曲面以及一出射曲面,该入射曲面内凹形成一空腔,所述光源发光面高度至少平行该底面,所述底面包括多个棱镜微结构,所述光源所产生的光线先入射至所述入射曲面而进入所述二次透镜,再藉由所述出射曲面自所述二次透镜出射至外部;其中从所述出射曲面反射之光线会藉由棱镜底面的反射,再度回到所述二次透镜之中。
根据本发明的一实施例,所述底面设有一平面区,所述平面区位于所述入射曲面与所述底面的交界处,所述平面区未设有所述棱镜微结构。
根据本发明的一实施例,每一棱镜微结构呈长条状,每一棱镜微结构的延伸方向与所述电路板的长边的延伸方向的夹角介于87度~93度。
根据本发明的一实施例,每一棱镜微结构的顶角范围为88度到92度之间。
根据本发明的一实施例,每一棱镜微结构的横截面为一等腰三角形。每一棱镜微结构的材料折射率范围大致为1.45~1.7。
根据本发明的一实施例,所述光源发光面是高于或至少平行该底面。
本发明揭露一种光源模块,包含至少一光源,一承载该光源的电路板,及至少一二次透镜,所述二次透镜包含有一入射曲面、一出射曲面及一底面,该入射曲面内凹形成一空腔,所述光源设置于该空腔内,所述光源发光面高度至少平行该底面,所述底面包括多个棱镜微结构,所述光源所产生的光线入射至所述入射曲面,进入所述二次透镜,其中到达所述底面的光线经该棱镜微结构反射后,从所述出射曲面射出。
本发明揭露一种光源模块,包含至少一光源,一承载该光源的电路板,至少一棱镜组件及至少一二次透镜,所述二次透镜包含有一入射曲面、一出射曲面及一底面,该入射曲面内凹形成一空腔,所述光源设置于该空腔内,所述光源发光面高度至少平行该底面,所述棱镜组件包含数个棱镜微结构,所述棱镜组件贴附于所述底面,所述光源所产生的光线入射至所述入射曲面,进入所述二次透镜,其中到达所述底面的光线经所述棱镜微结构反射后,从所述出射曲面射出。
相较于现有技术,本发明的背光模块使用具有一棱镜底面的二次透镜,因此,被二次透镜的出射曲面所反射的光线,便可由棱镜底面重新反射回二次透镜之中,如此一来,原本会被散逸的光线,便可藉由棱镜底面重新利用,因此,本发明的背光模块提高了光源的使用效率。
有益效果
相较于现有技术,本发明的背光模块使用具有一棱镜底面的二次透镜,因此,被二次透镜的出射曲面所反射的光线,便可由棱镜底面重新反射回二次透镜之中,如此一来,原本会被散逸的光线,便可藉由棱镜底面重新利用,因此,本发明的背光模块提高了光源的使用效率。
附图说明
图1是现有技术中光源组件的透视图。
图2是图1光源组件的俯视图。
图3是图2光源组件所示之e-e’切线的截面图。
图4是本发明背光模块的示意图。
图5是图4中光源模块的俯视图。
图6是本发明背光模块中光源组件的第一实施例的透视图。
图7是图6光源组件的仰视图。
图8是图7所示之z-z’切线的截面图。
图9是本发明背光模块中光源组件的第二实施例的截面图。
图10是本发明背光模块中光源组件的第三实施例的仰视图。
图11是图10所示之x-x’切线的截面图。
图12是图10所示之y-y’切线的截面图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施之特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」、「水平」、「垂直」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
请参照图4,图4是本发明背光模块400的示意图。背光模块400包含导光板40及光源模块70。光源模块70设置在背光模块400的底部,其包含一电路板30、数个放置于电路板30上的光源组件600以及一放置于电路板30上的反射片50。各种光学组件,例如导光板40、散射片、偏光片等重叠设置在光源组件600的上方。背光模块400是直下式背光模块,所以光源模块70是设置在导光板40的下方,使得光源组件600发出的光线可从导光板40的入光底面401射入。
在此请参阅图5~图8,图5是图4中光源模块70的俯视图,图6是本发明背光模块中光源组件的第一实施例的透视图,图7是图6中光源组件600的仰视图。图8是图7所示光源组件600之z-z’切线的截面图。光源组件600包含有光源610以及二次透镜620。光源610可以是发光二极管(Light Emitting Diode,LED)或是有机发光二极管(Organic Light Emitting Diode,OLED)。二次透镜620包含底面621、入射曲面622以及出射曲面623。入射曲面622投射于底面621的位置形成一开口626。入射曲面622内凹形成一空腔624。如图8所示,光源610设置于空腔624内,其发光面611的位置需高于底面621,使得发光面611与底面621具有一距离h,或者发光面611至少平行底面621,也就是h=0。光源610发出的光线透过入射曲面622入射至二次透镜620内部,并从出射曲面623自二次透镜620射出,藉由入射曲面622以及出射曲面623的折射,使光源610的等效光通量区域更大。出射曲面623的范围是包含二次透镜620弧面。
在此请注意,本发明光源组件600之中,在二次透镜620底面621形成数个长条状的棱镜微结构,每一个棱镜微结构的横截面为等腰三角形。棱镜底面可以于制作二次透镜620时一并制成。除此之外,如图5所示,底面621的长条状棱镜微结构的延伸方向A与电路板30的长边301的延伸方向B的夹角,大致介于87度~93度。优选地,该夹角是90度。
请参阅图9,图9是背光模块中光源组件的第二实施例的截面图。光源组件800与光源组件600的结构稍有不同,光源组件800包含一棱镜组件850和二次透镜820。二次透镜820的底面821是一平面,棱镜组件850包含数个棱镜微结构。之后再将棱镜组件850黏合于二次透镜820的底面821下方,如此的相对应变化,皆属本发明的范畴。
由图6~图8可以清楚地看出,本发明二次透镜620与现有技术中的二次透镜220有很大的不同,其底面包括数个棱镜微结构,至于所述棱镜底面621的功能,将于其后的揭露中陈述。
请继续参阅图8。光源610发出的光线1由入射曲面622入射至二次透镜620之后,藉由出射曲面623的折射,入射光线1被折射而出射至外部,成为折射光线1’。折射光线1’与法线之间的夹角θ’比原先之入射光线1与法线之间的夹角θ更大,因此,二次透镜620的设置可以增加光通量的区域。
另一方面,入射光线1射向出射曲面623时,会有部分光线会被出射曲面623所反射,而成为图8中的反射光线3。为了避免反射光线3散逸,反射光线3藉由棱镜底面621的两次全反射,会重新回到二次透镜620中,再次射至出射曲面623(如光线4所示),并藉由出射曲面623出射至外部(光线4’)。由于棱镜微结构会将反射光线3加以全反射,因此反射光线3散逸的情况便会减轻,进而提升了光源610的使用效率。
极少部分由棱镜底面621折射而出的光线以及从入射曲面622反射的光线,经过位于光源组件600下方的反射片50(见图4)反射之后,也会由棱镜底面621折射而射向出射曲面623。
在此请注意,为了使二次透镜620的棱镜微结构符合全反射的性质,于本实施例中,棱镜底面621采取了一些较佳化的设计,举例来说,棱镜微结构的截面采取等腰三角形的形状,以使光线能够确实地反射回二次透镜620中。此外,由于需要产生全反射,因此棱镜微结构的顶角以及棱镜微结构的材质也必须经过调整,以使反射光线3的入射角度够大并且材料折射率也够大。较佳地,棱镜微结构的顶角β设定在88~92度之间,且棱镜微结构的材质的折射率范围在1.45-1.7,两棱镜微结构顶点的间距p或棱镜微结构的顶角β可以恒定值,或沿棱镜微结构垂直方向B (也就是垂直于图5所示的长条状棱镜微结构的延伸方向A)呈一定趋势变化。棱镜微结构的材料可以采用聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)、聚碳酸酯(Poly Carbonate,PC)、或硅(Silicon),以确保全反射的产生。然而,前述的设计并非本发明的限制,业者可以改变所使用的材质以及顶角的搭配,只须能确保全反射的发生即可,如此的相对应变化,亦属本发明的范畴。
在此请参阅图10~图12,图10为本发明背光模块中光源组件的第三实施例的仰视图,图11为图10所示之x-x’切线的截面图。图12为图10所示之y-y’ 切线的截面图。光源组件700包含光源710以及二次透镜720。因为光源710与二次透镜720与第一实施例中的光源610以及二次透镜620有相同的功能,故其功能的详细介绍便不另赘述。不同于第一实施例的光源组件600,光源组件700的二次透镜720的底面721具有一平面区725,平面区725是位于入射曲面722与底面721的交界处,平面区725的外形是方形或圆形,且平面区725未设有所述棱镜微结构。入射曲面722投射于平面区725的位置形成一开口726,且入射曲面722投射于底面721的位置位于平面区725的中间。此开口726的目的是避免棱镜微结构阻挡光源710所产生的光线,或是避免光线从棱镜微结构的缝隙中溢出。如图11所示,可以见到x-x’横截面上,在入射曲面722与底面721的交界处并没有设置棱镜微结构。而由图12中亦可见到相同的状况,在入射曲面722与底面721的交界处,二次透镜720在底面并没有设置棱镜微结构。
在此请注意,虽然于第二实施例中,棱镜底面721具有平面区725和开口726,然而,本发明并未限制平面区725和开口726的大小与形状。换句话说,业者亦可以设计出其他形状与其他大小的开口,只须平面区725和开口726的大小与形状适当,使棱镜微结构不会影响到光源所产生光线的入射,如此的相对应变化,便属本发明的范畴。
在另一实施例中,背光模块400也可以采用光源组件700作为背光源。
综上所述,虽然本发明已以较佳实施例揭露如上,但该较佳实施例并非用以限制本发明,该领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。
本发明的实施方式
工业实用性
序列表自由内容

Claims (15)

  1. 一种背光模块,其包含一导光板、至少一光源、一承载所述至少一光源的电路板和至少一个二次透镜,所述二次透镜设置于所述光源之上,所述二次透镜包含有一底面,一入射曲面以及一出射曲面,该入射曲面内凹形成一空腔,所述光源设置于该空腔内,该底面包括多个棱镜微结构,其特征在于,所述光源所产生的光线先入射至所述入射曲面而进入所述二次透镜,再藉由所述出射曲面自所述二次透镜出射至外部;其中从所述出射曲面反射之光线会藉由棱镜底面的反射,再度回到所述二次透镜之中。
  2. 如权利要求1所述的背光模块,其特征在于:每一棱镜微结构的顶角范围为88度到92度之间。
  3. 如权利要求1所述的背光模块,其特征在于:每一棱镜微结构的横截面为一等腰三角形。
  4. 如权利要求1所述的背光模块,其特征在于:每一棱镜微结构的材料折射率范围大致为1.45~1.7。
  5. 如权利要求1所述的背光模块,其特征在于:每一棱镜微结构呈长条状,每一棱镜微结构的延伸方向与所述电路板的长边的延伸方向的夹角介于87度~93度。
  6. 如权利要求1所述的背光模块,其特征在于:所述底面设有一平面区,所述平面区位于所述入射曲面与所述底面的交界处所述平面区未设有所述棱镜微结构。
  7. 如权利要求6所述的背光模块,其特征在于:所述平面区***形状为一矩形或者圆形。
  8. 如权利要求1所述的背光模块,其特征在于:所述光源的发光面高度是高于或至少平行该底面。
  9. 一种光源模块,包含至少一光源,一承载该光源的电路板,及至少一二次透镜,所述二次透镜包含有一入射曲面、一出射曲面及一底面,该入射曲面内凹形成一空腔,所述光源设置于该空腔内,所述光源发光面高度至少平行该底面,其特征在于,所述光源组件另包含一棱镜组件,所述棱镜组件包含数个棱镜微结构,所述棱镜组件贴附于所述底面,所述光源所产生的光线入射至所述入射曲面,进入所述二次透镜,其中到达所述底面的光线经所述棱镜微结构反射后,从所述出射曲面射出。
  10. 一种光源模块,包含至少一光源,一承载该光源的电路板,及至少一二次透镜,所述二次透镜包含有一入射曲面、一出射曲面及一底面,该入射曲面内凹形成一空腔,所述光源设置于该空腔内,所述光源发光面高度至少平行该底面,其特征在于,该底面包括多个棱镜微结构,所述光源所产生的光线入射至所述入射曲面,进入所述二次透镜,其中到达所述底面的光线经该棱镜微结构反射后,从所述出射曲面射出。
  11. 如权利要求10所述的光源模块,其特征在于:每一棱镜微结构的顶角范围为88度到92度之间。
  12. 如权利要求10所述的光源模块,其特征在于:每一棱镜微结构的横截面为一等腰三角形。
  13. 如权利要求10所述的光源模块,其特征在于:每一棱镜微结构的材料折射率范围大致为1.45~1.7。
  14. 如权利要求10所述的光源模块,其特征在于:每一棱镜微结构呈长条状,每一棱镜微结构的延伸方向与所述电路板的长边的延伸方向的夹角介于87度~93度。
  15. 如权利要求10所述的光源模块,其特征在于:所述底面设有一平面区,所述平面区位于所述入射曲面与所述底面的交界处所述平面区未设有所述棱镜微结构
PCT/CN2011/077767 2011-05-26 2011-07-28 光源模块以及背光模块 WO2012159352A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/376,586 US20120300493A1 (en) 2011-05-26 2011-07-28 Light Source Module and a Backlight Module Using the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011101389526A CN102287679A (zh) 2011-05-26 2011-05-26 光源模块以及背光模块
CN201110138952.6 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012159352A1 true WO2012159352A1 (zh) 2012-11-29

Family

ID=45334331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077767 WO2012159352A1 (zh) 2011-05-26 2011-07-28 光源模块以及背光模块

Country Status (3)

Country Link
US (1) US20120300493A1 (zh)
CN (1) CN102287679A (zh)
WO (1) WO2012159352A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065942B (zh) 2012-06-26 2017-09-26 扬升照明股份有限公司 光源模块
DE102012213917A1 (de) * 2012-08-06 2014-02-20 Robert Bosch Gmbh Bauelemente-Ummantelung für ein Elektronikmodul
CN103062705B (zh) * 2012-12-19 2015-04-08 冠捷显示科技(厦门)有限公司 大角度扩散的光学透镜
CN103162192B (zh) * 2013-03-18 2016-03-02 晶科电子(广州)有限公司 一种直下式背光模组
US9175832B2 (en) * 2013-09-16 2015-11-03 Light Engine Limited Faceted LED street lamp lens
TW201512596A (zh) * 2013-09-18 2015-04-01 鴻海精密工業股份有限公司 透鏡及使用該透鏡之光源模組
CN103591549A (zh) * 2013-11-22 2014-02-19 成都派斯光学有限公司 一种led灯具光学模组
CN203533422U (zh) * 2013-11-22 2014-04-09 成都派斯光学有限公司 Led蜡烛灯透镜
CN103591548A (zh) * 2013-11-22 2014-02-19 成都派斯光学有限公司 Led蜡烛灯透镜
US9568768B2 (en) * 2014-06-28 2017-02-14 Radiant Choice Limited Wavelength mixing optical component
CN104089223B (zh) * 2014-07-10 2017-01-18 京东方科技集团股份有限公司 一种背光光学***及显示装置
CN106195916B (zh) * 2015-05-04 2019-11-01 全亿大科技(佛山)有限公司 透镜
CN106704985B (zh) * 2015-07-17 2023-07-14 核工业西南物理研究院 棱面半球壳led灯具光学面罩
KR20200096711A (ko) * 2016-04-01 2020-08-12 이노텍, 코프 후방조사를 제공하는 조명 조립체
CN105759328B (zh) 2016-05-17 2019-07-30 京东方科技集团股份有限公司 一种光线发散机构、背光模组及显示装置
CN106090826B (zh) * 2016-06-07 2019-09-20 广州创维平面显示科技有限公司 光学透镜和发光装置
CN107544176B (zh) * 2016-06-27 2020-10-09 群创光电股份有限公司 显示装置
JP6869667B2 (ja) * 2016-08-31 2021-05-12 三菱電機株式会社 面光源装置および液晶表示装置
CN108401448A (zh) * 2017-05-15 2018-08-14 苏州奥浦迪克光电技术有限公司 背光模组透镜及其构成的背光模组
CN108613051B (zh) * 2018-05-02 2020-03-17 北京小米移动软件有限公司 发光模组及其制造方法、显示装置
CN112781011B (zh) * 2019-04-02 2022-05-10 福建华佳彩有限公司 一种出射光线均匀的二次透镜结构
CN110646983A (zh) * 2019-10-09 2020-01-03 深圳市隆利科技股份有限公司 面光源的背光装置及显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904650A (zh) * 2005-07-26 2007-01-31 三星电子株式会社 光学透镜、光学组件、背光部件、显示装置及其方法
CN101101349A (zh) * 2006-07-07 2008-01-09 群康科技(深圳)有限公司 导光板及使用该导光板的背光模组
US20090296405A1 (en) * 2008-05-29 2009-12-03 Samsung Electro-Mechanics Co., Ltd. Spread lens and lighting device assembly using the same
WO2010058625A1 (ja) * 2008-11-20 2010-05-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
CN101788118A (zh) * 2009-01-26 2010-07-28 索尼公司 发光装置和图像显示装置
CN201568890U (zh) * 2009-11-12 2010-09-01 上海彩煌光电科技有限公司 自由曲面的led光源的透镜
CN101929651A (zh) * 2009-05-25 2010-12-29 Lg伊诺特有限公司 间隙构件、透镜以及具有间隙构件和透镜的照明装置
CN102074645A (zh) * 2009-11-19 2011-05-25 Lg伊诺特有限公司 透镜及具有该透镜的发光设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049324A (ja) * 2000-07-31 2002-02-15 Nippon Seiki Co Ltd バックライト装置
CN201050739Y (zh) * 2007-06-20 2008-04-23 张秀琴 导光板及液晶显示装置
JP4479805B2 (ja) * 2008-02-15 2010-06-09 ソニー株式会社 レンズ、光源ユニット、バックライト装置及び表示装置
KR101345566B1 (ko) * 2008-07-28 2014-01-07 삼성전자주식회사 양면 조명용 led 렌즈와 led 모듈 및 이를 이용한led 양면 조명장치
TW201027184A (en) * 2009-01-05 2010-07-16 Chi Mei Optoelectronics Corp Backlight module and liquid crystal display device using the same and light emitting diode package
KR101007134B1 (ko) * 2009-06-05 2011-01-10 엘지이노텍 주식회사 조명 장치
KR101028201B1 (ko) * 2009-05-25 2011-04-11 엘지이노텍 주식회사 렌즈 및 이를 구비한 조명 유닛
CN101639181A (zh) * 2009-08-07 2010-02-03 广东昭信光电科技有限公司 直下式背光***
CN101639197A (zh) * 2009-08-24 2010-02-03 深圳市九拓光电有限公司 一种发光二极管透镜、照明装置和背光装置
CN101713516B (zh) * 2009-11-19 2014-04-16 上海澳星照明电器制造有限公司 Led灯用二次光学透镜以及透镜模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904650A (zh) * 2005-07-26 2007-01-31 三星电子株式会社 光学透镜、光学组件、背光部件、显示装置及其方法
CN101101349A (zh) * 2006-07-07 2008-01-09 群康科技(深圳)有限公司 导光板及使用该导光板的背光模组
US20090296405A1 (en) * 2008-05-29 2009-12-03 Samsung Electro-Mechanics Co., Ltd. Spread lens and lighting device assembly using the same
WO2010058625A1 (ja) * 2008-11-20 2010-05-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
CN101788118A (zh) * 2009-01-26 2010-07-28 索尼公司 发光装置和图像显示装置
CN101929651A (zh) * 2009-05-25 2010-12-29 Lg伊诺特有限公司 间隙构件、透镜以及具有间隙构件和透镜的照明装置
CN201568890U (zh) * 2009-11-12 2010-09-01 上海彩煌光电科技有限公司 自由曲面的led光源的透镜
CN102074645A (zh) * 2009-11-19 2011-05-25 Lg伊诺特有限公司 透镜及具有该透镜的发光设备

Also Published As

Publication number Publication date
US20120300493A1 (en) 2012-11-29
CN102287679A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2012159352A1 (zh) 光源模块以及背光模块
US8284346B2 (en) Backlight unit and liquid crystal display device including the same
WO2014015547A1 (zh) 背光模块及显示装置
JP2007188031A (ja) 光拡散の増加及び輝度を高める光拡散プレート
KR102266737B1 (ko) 렌즈, 렌즈를 포함하는 발광 장치, 및 발광 장치를 포함하는 백 라이트 유닛
WO2014012277A1 (zh) 背光模块及显示装置
WO2012012988A1 (zh) 导光板及背光模组
WO2017118064A1 (zh) 导光板、背光模组及显示装置
WO2020238178A1 (zh) 一种背光模块、显示屏及移动终端
TWI657277B (zh) 顯示裝置
WO2023155527A1 (zh) 背光模组及显示装置
TWM569435U (zh) Direct light guiding structure
KR20140064189A (ko) 광 확산렌즈
KR20090086759A (ko) 정면 휘도가 개선된 길이방향 웨이브 패턴의 프리즘 산을갖는 프리즘 시트, 이를 채용한 백라이트 유니트, 및 상기백라이트 유니트를 구비한 액정표시장치
WO2012145978A1 (zh) 背光模组及液晶显示装置
WO2020237956A1 (zh) 直下式背光模组和液晶显示装置
TW202219603A (zh) 背光單元
WO2016058332A1 (zh) 背光模组及显示装置
KR100960556B1 (ko) 광학시트 및 이를 이용한 액정표시장치
TW202221394A (zh) 導光板、背光模組及顯示裝置
WO2020107897A1 (zh) 一种背光模组及其显示装置
US10317727B2 (en) Blacklight module and display device
US10976594B2 (en) Light guide plate, light source assembly, display panel and display device
WO2019144476A1 (zh) 一种直下式反射片结构及背光模组
TW201925880A (zh) 直下式發光裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13376586

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866076

Country of ref document: EP

Kind code of ref document: A1