WO2012157570A1 - 無線伝送装置及び無線伝送方法 - Google Patents

無線伝送装置及び無線伝送方法 Download PDF

Info

Publication number
WO2012157570A1
WO2012157570A1 PCT/JP2012/062176 JP2012062176W WO2012157570A1 WO 2012157570 A1 WO2012157570 A1 WO 2012157570A1 JP 2012062176 W JP2012062176 W JP 2012062176W WO 2012157570 A1 WO2012157570 A1 WO 2012157570A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
packet
mode
wireless
holdover
Prior art date
Application number
PCT/JP2012/062176
Other languages
English (en)
French (fr)
Inventor
裕明 中島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/116,339 priority Critical patent/US20140198784A1/en
Priority to JP2013515128A priority patent/JP5505562B2/ja
Publication of WO2012157570A1 publication Critical patent/WO2012157570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays

Definitions

  • the present invention relates to a wireless transmission device and a wireless transmission method.
  • Non-Patent Document 1 In a wireless transmission device having a function of receiving a timing packet of IEEE 1588 Precision TimeProtocol (see Non-Patent Document 1) and reproducing a clock frequency and time, when a timing packet is discarded due to a signal error in the wireless and packet transmission paths, It is necessary to prevent the deterioration of the synchronization accuracy of the clock frequency and time by extending the correction period. For this reason, when an abnormality occurs in a device or a transmission line, and reception of a timing packet is impossible or an extension of the reception period occurs, the wireless transmission device switches the synchronization information from the timing reproduction mode to the holdover mode.
  • the clock frequency with the master station that is the source and the speed of the time shift are kept within a certain value.
  • the timing recovery mode is a mode in which a clock and a timing pulse are output using a period and a phase recovered based on a timing packet received at the present time.
  • the holdover mode is a mode in which a clock and a timing pulse are output using a period and a phase saved from a timing pulse that has been successfully received in the past. Switching from the timing reproduction mode to the holdover mode is performed based on the reception normality of the timing packet or a timeout.
  • IETFETNetwork Time Protocol NTP
  • PTP Precision Time Protocol
  • ITU-T G. 8282 / Y ITU-T G. 8282 / Y.
  • 1362 Synchronous Ethernet registered trademark
  • PWE3 Pseudo Wire Emulsion Edge to Edge
  • Time Division ⁇ Duplex Long Evolution requires time synchronization between radio transmission devices in addition to frequency, and requires high accuracy such as frequency in ppb and time phase accuracy in us For IEEE 1588-2008 PTP version. 2 or individual devices could only synchronize with Global Navigation Satelite Systems (GNSS).
  • GNSS Global Navigation Satelite Systems
  • the timing packet reception period is extended and the reproduction clock frequency and time are increased by discarding the packet due to a signal error that occurs intermittently due to equipment failure and worsening weather. Deterioration of accuracy is a problem.
  • EOAM Error-based OAM
  • ITU-T G. 8032 / Y. In 1344 Ethernet (registered trademark) Ring Protection Switching, Continuity Check is proposed as an example of a method for detecting an abnormality of a ring transmission path including a device failure at high speed.
  • FIG. 5 is a block diagram illustrating a configuration of a system including a wireless transmission device.
  • the wireless transmission device 40 c includes an EOAM unit 49.
  • the wireless transmission device 20 c that is a wireless opposite station of the wireless transmission device 40 c also includes the EOAM unit 21 similar to the EOAM unit 49.
  • the EOAM unit 49 transmits and receives an EOAM signal to and from the packet switch unit 42. That is, the EOAM unit 49 transmits / receives control packets in a short cycle via the packet switch unit 42 to / from the wireless transmission device 20c, which is a wireless opposite station, in all packet transmission paths including the wireless transmission path 30.
  • the EOAM unit 49 determines that the wireless transmission device 20c or the transmission path is abnormal when packet reception is interrupted for a certain period.
  • the EOAM signal is not limited to Continuity Check, but the description will be continued with Continuity Check as an example in order to simplify the explanation.
  • the EOAM unit 49 uses the continuity check packet transmitted from the EOAM unit 21 of the radio transmission device 20c, which is a radio opposite station, to determine “normal” if a correct control packet can be received within a specific period. On the other hand, if the correct control packet cannot be received within a specific period, the EOAM unit 49 determines “abnormal”, detects an abnormality in the device or the transmission path based on the packet, and determines the result as a radio interval normal determination signal. Is output to the holdover switching unit 46. By outputting the continuity check packet from the EOAM unit 21 of the radio transmission apparatus 20c in a short cycle, the radio transmission apparatus 40c can detect the discard of the continuity check control packet at a high speed.
  • the holdover switching unit 47 switches the operation from the timing regeneration mode to the holeover mode when the EOAM unit 49 detects an abnormality in the device or the transmission path.
  • the cycle of the control packet is ITU-T Y. 1731 or IEEE 802.1ag recommendation.
  • the EOAM unit has a problem that the price is high and the processing load for executing the EOAM control is also high.
  • the radio transmission path may cause a decrease in radio reception power and an increase in phase noise, resulting in errors in the signal, leading to the discard of radio frames and timing packets. is there. From this, regarding the normality of the received timing packet and the detection of an abnormal state due to timeout, in the wireless transmission device, switching to holdover is delayed, resulting in a large shift in clock frequency and time. There's a problem.
  • the present invention has been made in view of the above points, and without performing EOAM control, an abnormal state is detected in a short time after an abnormality has occurred in a device or a transmission line, and the clock frequency and time
  • An object of the present invention is to provide a wireless transmission device and a wireless transmission method capable of maintaining accuracy.
  • a wireless transmission apparatus is made to solve the above-described problem.
  • a wireless frame in which a LAN signal including a timing packet and an error detection code are multiplexed and converted into a high-frequency wireless output signal is provided.
  • the radio frame error rate is calculated by receiving and demodulating from the radio transmission path, separating the LAN signal from the demodulated radio frame, and detecting a radio frame signal error from the error detection code in the radio frame.
  • the radio frame error rate calculated by the radio receiver and the radio receiver exceeds a first threshold, the clock and timing pulse are generated based on the period and phase reproduced from the timing packet included in the LAN signal. From the timing playback mode to output, based on the period and phase saved during normal operation
  • the hole over mode for outputting a lock and timing pulses, a radio transmission apparatus characterized by comprising, a holdover switching unit for switching the operation mode.
  • the wireless transmission method is a wireless transmission method in a wireless transmission device, in which a wireless receiver multiplexes a LAN signal including a timing packet and an error detection code, and converts the multiplexed signal into a high-frequency wireless output signal.
  • a radio frame is received and demodulated from a radio transmission path, a LAN signal is separated from the demodulated radio frame, and a signal error of the radio frame is detected from an error detection code in the radio frame.
  • the holdover switching unit sets the period and phase reproduced from the timing packet included in the LAN signal. Normal operation from timing recovery mode that outputs clock and timing pulse based on The hole over mode for outputting the clock and timing pulses on the basis of the cycle was saved and phase, a radio transmission method characterized by comprising the steps of: switching the operating mode.
  • a radio frame is demodulated from a radio output signal received from a radio transmission path, a radio frame error rate is calculated from an error detection code in the demodulated radio frame, and the radio frame error is calculated.
  • the rate exceeds the first threshold, the timing reproduction mode is shifted to the hole over mode.
  • a first embodiment of the present invention will be described in detail with reference to the drawings.
  • IEEE 1588 PTP IEEE 1588 Precision Time Protocol
  • the wireless transmission device In addition to the normality determination, the wireless and packet transmission path normality determination is performed.
  • the wireless transmission device shifts to the holdover mode in a short time after the occurrence of an abnormality in the device or the transmission path, and can maintain the accuracy of the clock frequency and the time.
  • FIG. 1 is a block diagram illustrating a configuration of a system including a wireless transmission device.
  • the user network 10 includes a transmission device (not shown) used by a user and a master station (not shown) serving as a synchronization information source of IEEE 1588 PTP.
  • the LAN signal from the master station in the user network 10 includes both user data from the user network 10 and a timing packet used for synchronization of IEEE 1588 PTP.
  • the wireless transmission device 20a receives a LAN signal from the user network 10, multiplexes the LAN signal into a wireless frame, and further multiplexes an error detection code.
  • the wireless transmission device 20a performs analog modulation and frequency conversion on a wireless frame in which the LAN signal and the error detection code are multiplexed, and generates a high-frequency wireless output signal. Further, the wireless transmission device 20 a outputs the generated wireless output signal to the wireless transmission path 30.
  • the wireless transmission device 40a includes a wireless reception unit 41a, a packet switch unit 42, a timing processing unit 43, a time counter unit 44, a holdover unit 45, a holdover switching unit 46, a time counter oscillator 47, a hold An over-oscillator 48.
  • the radio reception unit 41a receives a radio output signal transmitted through the radio transmission path 30, performs frequency conversion and digital demodulation on the received radio output signal, and obtains a radio frame. Further, the wireless reception unit 41a separates the LAN signal from the obtained wireless frame, and outputs the separated LAN signal to the packet switch unit 42 as a separated LAN signal. In addition, the wireless reception unit 41a measures the received power of the received wireless output signal, and outputs the measured received power to the holdover switching unit 46 as a received power signal. The radio reception unit 41a calculates a radio frame error rate by detecting a radio frame signal error from an error detection code in the radio frame, and uses the calculated radio frame error rate as a radio frame error signal to hold over. Output to the switching unit 46.
  • the packet switch unit 42 is a layer 2 switch that specifies and outputs a transfer destination port from each field value in a packet defined by IEEE 802.3.
  • the packet switch unit 42 receives the separated LAN signal output from the wireless reception unit 41a, detects a timing packet used for clock frequency and time synchronization according to IEEE 1588 PTP in accordance with the recommendation of IEEE 1588 PTP, and detects the detected timing packet Is output to the timing processing unit 43 as a timing packet signal. Further, the packet switch unit 42 outputs to the user network 50 a LAN signal other than the timing packet addressed to its own station (wireless reception unit 41a). Further, the packet switch unit 42 detects a signal error (packet error) based on the redundant code included in the packet of the received separated LAN signal, calculates a packet error rate, and performs holdover switching as a packet error signal. To the unit 46.
  • the timing processing unit 43 receives the timing packet signal output from the packet switch unit 42.
  • the timing processing unit 43 acquires the clock frequency, time, and propagation delay of the master station that is a synchronization information source in IEEE 1588 PTP from the received timing packet signal.
  • the timing processing unit 43 outputs a correction signal for synchronizing the time counter 44 to the time of the master station to the time counter unit 44 as a counter correction signal.
  • the timing processing unit 43 performs normal determination of the timing packet according to a predetermined determination procedure, and outputs the result to the holdover switching unit 46 as a timing packet normal determination signal.
  • the time counter unit 44 operates the counter using the time counter operation clock signal output from the time counter oscillator 47, and corrects the counter value offset and the count cycle based on the counter correction signal output from the timing processing unit 43. To do. Thereby, the time counter unit 44 synchronizes the counter of the time counter unit 44 with the time counter of the master station. The time counter unit 44 outputs the clock and timing pulse generated from the counter of the time counter unit 44 synchronized with the time of the master station to the holdover unit 45 as a synchronization timing signal.
  • the holdover unit 45 receives the synchronization timing signal output from the time counter unit 44 and the holdover operation clock signal output from the holdover oscillator 48, and uses the holdover operation clock signal to generate a synchronization timing signal.
  • the period and phase information is stored.
  • the holdover unit 45 operates based on the holdover switching signal output from the holdover switching unit 46. Specifically, in the timing recovery mode, the holdover unit 45 generates a clock and a timing pulse based on the period and phase recovered from the synchronization timing signal, and the generated clock and timing pulse are output to the synchronization timing pulse output signal. To the user network 50. On the other hand, in the holdover mode, the holdover unit 45 generates a clock and timing pulse based on the period and phase stored in the normal state, and uses the generated clock and timing pulse as a synchronization timing pulse output signal as a user network. Output to 50.
  • the time counter oscillator 47 outputs a counter operation clock signal to the time counter unit 44.
  • the holdover oscillator 48 outputs a holdover operation clock signal to the holdover unit 45.
  • the holdover switching unit 46 receives the received power signal and the radio frame error signal output from the radio receiving unit 41a, the packet error signal output from the packet switch unit 42, and the imming packet normality determination output from the timing processing unit 43 Each of the signals is received.
  • the holdover switching unit 46 determines whether to use the timing reproduction mode or the holdover mode according to a predetermined determination procedure (described later with reference to FIG. 3).
  • the holdover switching unit 46 outputs a holdover switching signal indicating the determination result to the holdover unit 45.
  • the wireless receiver 41a of the wireless transmission device 40a receives a wireless output signal from the wireless transmission path 30, performs frequency conversion and digital demodulation, and obtains a wireless frame. Then, the wireless reception unit 41a separates the packet signal from the obtained wireless frame, and outputs the separated packet signal to the packet switch unit 42 as a separated LAN signal. Further, the wireless reception unit 41a measures the reception power of the wireless output signal and outputs the measured reception power to the holdover switching unit 46 as a reception power signal. Further, the radio reception unit 41a detects a radio frame signal error from the error detection code in the radio frame, detects it, and outputs the signal error as a radio frame error signal to the holdover switching unit 46.
  • the packet switch unit 42 receives the separated LAN signal output from the wireless reception unit 41a. Then, the packet switch unit 42 detects a timing packet used for clock frequency and time synchronization according to IEEE 1588 PTP, and outputs the detected timing packet to the timing processing unit 43 as a timing packet signal. Further, the packet switch unit 42 outputs to the user network 50 as a LAN output signal other than the timing packet addressed to its own station (wireless reception unit 41a). Further, the packet switch unit 42 detects a signal error based on the redundant code in the packet of the separated LAN signal, and outputs the detected signal error to the holdover switching unit 46 as a packet error signal.
  • the timing processing unit 43 receives the timing packet signal output from the packet switch unit 42.
  • the timing processing unit 43 obtains the clock frequency, time, and propagation delay from the received timing packet signal from the master station that is a synchronization information source in IEEE 1588 PTP, and receives the time (counter) of the time counter unit 44 and the master station.
  • a correction signal for synchronizing the two is output to the time counter unit 44 as a counter correction signal.
  • the timing processing unit 43 performs normal determination of the timing packet and the reception interval according to a predetermined determination procedure (described later with reference to FIG. 3), and sends the result as a timing packet normal determination signal to the holdover switching unit 46. Output.
  • FIG. 2 is a flowchart for explaining a normal determination procedure of the timing packet and the reception interval of the timing processing unit.
  • the timing processing unit 43 calculates the propagation delay of the packet from a specific field in the timing packet, and compares the obtained propagation delay with predetermined thresholds D and F (step S1).
  • the timing processing unit 43 extracts a time stamp indicating the time counter value of the master station from a specific field in the timing packet. Then, the timing processing unit 43 calculates the absolute value of the difference between the extracted time stamp and the time counter value of the local station (wireless receiving unit 41a), and compares the calculated absolute value of the difference with the threshold G (step S1). S2).
  • the timing processing unit 43 calculates the calculated timing packet arrival interval. Then, a predetermined threshold value H is compared (step S3). When the timing packet arrival interval is equal to or smaller than the threshold value H (step S3-YES), the timing processing unit 43 determines that the detection is normal (step S4).
  • step S5 determines that an abnormality has been detected.
  • step S2 if the absolute value of the difference between the extracted time stamp and the time counter value of the local station (wireless reception unit 41a) is not less than or equal to the threshold G (step S2-NO), the timing processing unit 43 detects the abnormality. (Step S5).
  • step S3 when the timing packet arrival interval is not equal to or less than the threshold value H (step S3-NO), the timing processing unit 43 determines that an abnormality has been detected (step S5).
  • the timing processing unit 43 executes the normal determination of the timing packet according to the determination procedure shown in FIG. 2 based on the received timing packet.
  • the time counter unit 44 operates the counter using the time counter operation clock signal output from the time counter oscillator 47. Furthermore, the time counter unit 44 synchronizes the counter with the time of the master station by correcting the offset of the counter value and the count cycle based on the counter correction signal output from the timing processing unit 43. The time counter unit 44 outputs the clock and timing pulse generated from the counter synchronized with the master station to the holdover unit 45 as a synchronization timing signal.
  • the holdover unit 45 stores the period and phase information of the synchronization timing signal output from the time counter unit 44 using the holdover operation clock signal output from the holdover oscillator 48. Further, the holdover unit 45, based on the holdover switching signal output from the holdover switching unit 46, in the timing reproduction mode, uses the clock and timing pulse as the synchronization timing pulse output signal as the synchronization timing pulse output signal. Output to the network 50. On the other hand, in the holdover mode, the holdover unit 45 generates a clock and timing pulse having a period and a phase that are stored in a normal state, and outputs them as a synchronous timing pulse output signal.
  • the holdover switching unit 46 receives the reception power signal and radio frame error signal output from the radio reception unit 41a, the packet error signal output from the packet switch unit 42, and the timing packet normality determination signal output from the timing processing unit 43. Receive each one. Further, the holdover switching unit 46 determines whether it is the timing regeneration mode or the holdover mode according to predetermined control, and outputs the determination result to the holdover unit 45 as a holdover switching signal.
  • FIG. 3 is a flowchart for explaining the holdover determination procedure of the holdover switching unit.
  • the holdover switching unit 46 detects wireless reception power from the reception power signal, and compares the detected reception power with a predetermined threshold A (first threshold) (step Sa1).
  • a predetermined threshold A first threshold
  • the holdover switching unit 46 calculates the error rate of the radio frame from the radio frame error signal, and calculates the error rate of the calculated radio frame. And a predetermined threshold value B (second threshold value) are compared (step Sa2).
  • the holdover switching unit 46 calculates the error rate of the packet signal from the packet error signal, and the calculated error rate and a predetermined error rate are determined.
  • the threshold value C (third threshold value) is compared (step Sa3).
  • step Sa3-YES If the error rate of the packet signal is greater than or equal to the threshold value C (step Sa3-YES), the holdover switching unit 46 determines whether or not the timing packet has been normally received based on the timing packet normality determination signal (step Sa4). When the timing packet is normally received (step Sa4-YES), the holdover switching unit 46 switches to the timing reproduction mode (step Sa5).
  • step Sa6 when the received power detected from the received power signal is not greater than or equal to the threshold A in step Sa1 (step Sa1-NO), the holdover switching unit 46 switches to the holdover mode (step Sa6).
  • step Sa2 when the error rate of the radio frame rate is not equal to or higher than the threshold value B (step Sa2-NO), the holdover switching unit 46 switches to the holdover mode (step Sa6).
  • step Sa3 if the error rate of the packet signal is not equal to or higher than the threshold value C (step Sa3-NO), the holdover switching unit 46 switches to the holdover mode (step Sa6). If the timing packet is not normally received in step Sa4 (step Sa4-NO), the holdover switching unit 46 switches to the holdover mode (step Sa6).
  • the holdover switching unit 46 when the received power is greater than or equal to the threshold A, the radio frame error rate is greater than or equal to the threshold B, the packet error rate is greater than or equal to the threshold C, and the timing packet normal reception conditions are all satisfied, the holdover switching unit 46 Then, the mode is switched to the timing reproduction mode, and the clock and timing pulse are output at the period and phase reproduced based on the timing packet. On the other hand, if any one of the conditions is not satisfied, the holdover switching unit 46 switches to the holdover mode, and outputs a clock and a timing pulse with a period and a phase that are stored in a normal state.
  • the wireless transmission device 40a receives the radio frame from the radio transmission path 30 and demodulates the radio frame that is multiplexed with the LAN signal including the timing packet and the error detection code and converted into the radio output signal of high frequency,
  • the radio signal is calculated by the radio receiving unit 41a and the radio receiving unit 41a that separates the LAN signal from the demodulated radio frame and detects a radio frame signal error from the error detection code in the radio frame to calculate the radio frame error rate.
  • the received radio frame error rate exceeds the threshold B, it is stored in a normal state from the timing recovery mode in which the clock and timing pulse are output based on the period and phase recovered from the timing packet included in the LAN signal.
  • a clock and timing pulse output based on the period and phase.
  • To-over mode it includes a hold-over switching unit 46 for switching the operation mode, the.
  • the radio frame is demodulated from the radio output signal, the radio frame error rate is calculated from the error detection code in the demodulated radio frame, and when this radio frame error rate exceeds the threshold B, the timing reproduction is performed. Switch from mode to holeover mode.
  • the wireless transmission device 40a can detect an abnormal state in a short time after the occurrence of an abnormality in the device or the transmission line without executing the EOAM control, and shift to the holdover mode. The accuracy of frequency and time can be maintained. Further, the wireless transmission device 40a need not include a compensation oscillator.
  • the wireless reception unit 41a measures the reception power of the wireless output signal received from the wireless transmission path 30, and the holdover switching unit 46, when the reception power measured by the wireless reception unit 41a falls below the threshold A, The operation mode is switched from the timing reproduction mode to the hole over mode.
  • the timing regeneration mode is switched to the hole over mode.
  • the wireless transmission device 40a can shift to the holdover mode in a short time after the occurrence of an abnormality in the device or the transmission line without executing EOAM control, and maintains the accuracy of the clock frequency and the time. be able to.
  • the wireless receiver 41a detects a timing packet used for clock frequency and time synchronization from a LAN signal separated from a wireless frame, and detects a signal error based on a redundant code in the packet of the LAN signal.
  • the packet switch unit 42 for calculating the packet error rate is provided, and the holdover switching unit 46 switches from the timing regeneration mode to the hole over mode when the packet error rate calculated by the packet switch unit 42 exceeds the threshold C. Switch.
  • the wireless transmission device 40a can shift to the holdover mode in a short time after the occurrence of an abnormality in the device or the transmission line without executing EOAM control, and maintains the accuracy of the clock frequency and the time. be able to.
  • the holdover switching unit 46 determines that the radio frame error rate is equal to or lower than the threshold value B, the received power is equal to or higher than the threshold value A, the packet error rate is equal to or lower than the threshold value C, and the timing packet normal reception conditions are all satisfied.
  • the operation mode is switched from the hole over mode to the timing reproduction mode.
  • the wireless transmission device 40a can accurately perform the transition between the hole over mode and the timing reproduction mode without executing the EOAM control, and can maintain the accuracy of the clock frequency and the time.
  • a second embodiment of the present invention will be described in detail with reference to the drawings.
  • the second embodiment is different from the second embodiment in that an adaptive modulation scheme is adopted in the wireless transmission device and in that the holdover transition condition is devised. Only the differences from the first embodiment will be described below.
  • FIG. 4 is a block diagram illustrating a configuration of a system including a wireless transmission device.
  • the wireless transmission device 20b and the wireless transmission device 40b are wireless transmission devices that employ an adaptive modulation scheme.
  • the adaptive modulation scheme is to perform the maximization of the feasible band according to the radio reception power, and to switch to a modulation scheme having a high tolerance against disturbance due to power and noise when the reception power is reduced due to bad weather or the like. It is a method. Note that a predetermined algorithm may be appropriately used for the adaptive modulation method itself.
  • the wireless transmission device 40b includes a wireless reception unit 41b.
  • the wireless reception unit 41b receives a wireless output signal from the wireless transmission device 20b, which is a wireless opposite station, via the wireless transmission path 30.
  • the radio reception unit 41b detects radio modulation scheme switching based on the modulation scheme information stored in the radio frame, and outputs it to the holdover switching unit 46 as an AMR (Adaptive Modulation Radio) switching signal.
  • the holdover switching unit 46 detects switching of the radio modulation scheme based on the AMR switching signal.
  • the holdover switching unit 46 switches the operation mode to the holdover mode for a certain time when the radio modulation scheme is switched. When this switching is stable for a certain time, the holdover switching unit 46 switches the operation mode to the timing reproduction mode.
  • the wireless transmission device 20b and the wireless transmission device 40b are wireless transmission devices employing an adaptive modulation scheme.
  • the holdover switching unit 46 of the wireless transmission device 40b switches the operation mode to the hole-over mode for a certain time when the modulation method is switched by the adaptive modulation, and further sets the operation mode when the modulation method is stable for a certain time. Switch to playback mode.
  • This configuration switches the operation mode to the hole-over mode for a certain time when the modulation method is switched by adaptive modulation, and switches the operation mode to the timing recovery mode when the modulation method is stable for a certain time.
  • the wireless transmission device 40b can shift to the holdover mode in a short time after an abnormality occurs in the device or the transmission line without executing EOAM control, and the clock frequency and time accuracy can be improved. Can keep.
  • the timing packet may be a timing packet used for clock frequency and time synchronization according to IEEE 1588 Precision Time Protocol.
  • the delay measurement is performed using the timing packet itself, so the delay update period
  • the modulation scheme can be switched in a short period of a radio frame unit, that is, in the adaptive modulation scheme in which the propagation delay changes, there is a possibility that the delay correction becomes insufficient and the error to the reproduction clock frequency and time increases. .
  • the wireless transmission device 40b detects the switching of the modulation method by the adaptive modulation method in addition to the detection of the wireless transmission path abnormality including the device failure and the packet communication abnormality, thereby causing the operation mode to be changed. Switch to holdover mode. Thereby, the wireless transmission device 40b can keep the error of the clock frequency and the time small.
  • the transmission function of the wireless transmission device 20a and the function blocks for passing signals from the user network 50 to the user network 10 are not shown. Even if the functional block is added and the wireless transmission device 20a includes a functional block for reproducing the clock frequency and time, the gist of the present invention does not depart.
  • a program for realizing the above-described wireless transmission device may be recorded on a computer-readable recording medium, and the program may be read into a computer system and executed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line.
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above.
  • a difference file difference file (difference program) may be sufficient.
  • timing packet is a timing packet used for clock frequency and time synchronization according to IEEE 1588, Precision, Time, and Protocol.
  • the wireless transmission method characterized in that the timing packet includes a step of using the timing packet for clock frequency and time synchronization according to IEEE 1588 Precise Time Protocol.
  • a wireless transmission device and a wireless transmission method capable of detecting an abnormal state in a short time after an abnormality has occurred in a device or a transmission line without executing EOAM control and maintaining the accuracy of a clock frequency and a time. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 無線伝送装置は、タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、無線出力信号に変換された無線フレームを無線伝送路から受信して復調し、無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出し、無線フレームエラーレートを算出する無線受信部と、無線フレームエラーレートが閾値を上回った場合にタイミングパケットから再生する周期及び位相でクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存した周期及び位相でクロック及びタイミングパルスを出力するホールドオーバーモードに切り替えるホールドオーバー切替部とを備える。

Description

無線伝送装置及び無線伝送方法
 本発明は、無線伝送装置及び無線伝送方法に関する。
 IEEE1588Precision TimeProtocol(非特許文献1参照)のタイミングパケットを受信して、クロック周波数と時刻を再生する機能を備えた無線伝送装置では、無線及びパケットの伝送路での信号誤りによるタイミングパケット破棄発生時に、補正周期の間延び、クロック周波数及び時刻の同期精度の悪化が生ずるのを防止する必要がある。このため、機器や伝送路に異常が発生して、タイミングパケットの受信が不可能又は受信周期の間延びが発生する場合、無線伝送装置は、タイミング再生モードからホールドオーバーモードに切り替えることで、同期情報源となるマスター局とのクロック周波数及び時刻ずれの速度を、一定値内に納めるようにしている。
 ここで、タイミング再生モードとは、現時点で受信したタイミングパケットに基づいて再生した周期及び位相を用いて、クロック及びタイミングパルスを出力するモードである。また、ホールドオーバーモードとは、過去に正常に受信できたタイミングパルスから保存しておいた周期及び位相を用いて、クロック及びタイミングパルスを出力するモードである。タイミング再生モードからホールドオーバーモードへの切り替えは、タイミングパケットの受信正常性又はタイムアウトに基づいて実行される。
IEEE 1588 Precision Time Protocol
 一般に、同期情報を持たないパケットのようなバースト信号を用いて、複数の装置のクロック周波数及び時刻を同期させる方法として、IETF Network Time Protocol(NTP)やIEEE 1588-2002 Precision Time Protocol(PTP) verison.1、ITU-T G.8282/Y.1362 Synchronous Ethernet(登録商標)、Pseudo Wire Emulation Edge to Edge(PWE3)といった標準規格がある。
 また、Time Division Duplex Long Term Evolution(TDD LTE)といった、周波数に加えて時刻同期を無線伝送装置間で必要とし、かつ、周波数はppb単位、時刻の位相精度はus単位といった高精度を要求する規格に対しては、IEEE 1588-2008 PTP version.2 又は、個々の装置で、Global Navigation Satellite Systems(GNSS)に同期させるしかなかった。
 さらに、パケットによる信号を、無線伝送路を介して伝送する場合、機器障害及び天候悪化によって断続的に発生する信号誤りによるパケット破棄により、タイミングパケットの受信周期の延伸、並びに、再生クロック周波数及び時刻の精度悪化が課題となっている。
 この課題を解決する方法として、ITU-T Y.1731と、IEEE 802.1agが規定するところのEOAM(Ethernet(登録商標) OAM)制御を実行する方法がある。この方法では、EOAM信号による常時監視(Continuity Check)を用いることにより、機器障害を含む伝送路異常を高速に検出することが可能となる。ITU-T G.8032/Y.1344 Ethernet(登録商標) Ring Protection Switchingにおいても、機器障害を含むリング伝送路の異常を高速に検出する方法の一例として、Continuity Checkが提案されている。
 図5は、無線伝送装置を備えたシステムの構成を示すブロック図である。図5において、無線伝送装置40cは、EOAM部49を備える。また、無線伝送装置40cの無線対向局である無線伝送装置20cも、EOAM部49と同様のEOAM部21を備える。EOAM部49は、パケットスイッチ部42との間で、EOAM信号の送受信を行う。すなわち、EOAM部49は、無線伝送路30を含む全てのパケット伝送路において、無線対向局である無線伝送装置20cとの間で、パケットスイッチ部42を介して制御パケットを短周期で送受信する。ここで、EOAM部49は、パケット受信が一定周期途切れた場合、無線伝送装置20c又は伝送路の異常と判定する。
 EOAM信号は、Continuity Checkに限らないが、説明を簡単化するためContinuity Checkを例に説明を続ける。EOAM部49は、無線対向局である無線伝送装置20cのEOAM部21から送信されたContinuitycheckパケットを用いて、正しい制御パケットを特定の周期内で受信できれば”正常”と判定する。一方、EOAM部49は、正しい制御パケットを特定の周期内で受信できなければ”異常”と判定し、そのパケットに基づいて機器又は伝送路の異常を検出し、その結果を無線区間正常判定信号として、ホールドオーバー切替部46に出力する。無線伝送装置20cのEOAM部21から、Continuity Checkパケットを短周期で出力することで、無線伝送装置40cは、Continuity Check制御パケットの破棄を、EOAM部49により高速に検出することができる。
 さらに、ホールドオーバー切替部47は、EOAM部49により機器又は伝送路の異常が検出された場合、タイミング再生モードからホールオーバーモードに動作を切り替える。なお、制御パケットの周期は、ITU-T Y.1731、又はIEEE 802.1agの勧告に準拠する。
 しかしながら、EOAM部は、価格が高く、EOAM制御を実行する処理負荷も高いという問題がある。また、無線伝送路は、天候(降雨、降雪、砂嵐等)次第では、無線受信電力の低下及び位相雑音が増加し、信号に誤りが発生し、無線フレーム及びタイミングパケットの破棄に至る可能性もある。このことから、受信したタイミングパケットの正常性、及びタイムアウトによる異常状態の検出について、無線伝送装置では、ホールドオーバーへの切り替えが遅れ、クロック周波数及び時刻のずれが、結果的に大きくなってしまうという問題がある。
 本発明は、前記の点に鑑みてなされたものであり、EOAM制御を実行することなく、機器又は伝送路に異常が発生してから短時間で異常状態を検出して、クロック周波数及び時刻の精度を保つことができる無線伝送装置及び無線伝送方法を提供することを目的とする。
 本発明に係わる無線伝送装置は、上記の課題を解決するためになされたものであり、タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、高周波の無線出力信号に変換された無線フレームを、無線伝送路から受信して復調し、復調した無線フレームからLAN信号を分離するとともに、前記無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出する無線受信部と、前記無線受信部により算出された無線フレームエラーレートが第1の閾値を上回った場合、前記LAN信号に含まれるタイミングパケットから再生された周期及び位相に基づいてクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを出力するホールオーバーモードに、動作モードを切り替えるホールドオーバー切替部と、を備えることを特徴とする無線伝送装置である。
 また、本発明係わる無線伝送方法は、無線伝送装置における無線伝送方法であって、無線受信部が、タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、高周波の無線出力信号に変換された無線フレームを、無線伝送路から受信して復調し、復調した無線フレームからLAN信号を分離するとともに、前記無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出するステップと、ホールドオーバー切替部が、前記無線受信部により算出された無線フレームエラーレートが第1の閾値を上回った場合、前記LAN信号に含まれるタイミングパケットから再生された周期及び位相に基づいてクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを出力するホールオーバーモードに、動作モードを切り替えるステップと、を有することを特徴とする無線伝送方法である。
 本発明の第一実施形態によれば、無線伝送路から受信した無線出力信号から無線フレームを復調し、復調した無線フレーム内の誤り検出符号から無線フレームエラーレートを算出して、この無線フレームエラーレートが第1の閾値を上回った場合に、タイミング再生モードからホールオーバーモードに移行する。これにより、無線伝送装置は、EOAM制御を実行することなく、機器又は伝送路に異常が発生してから短時間で異常状態を検出して、クロック周波数及び時刻の精度を保つことができる。
本発明の第一実施形態に係わる無線伝送装置を備えたシステムの構成を示すブロック図である。 本発明の第一実施形態における、タイミング処理部のタイミングパケット及び受信間隔の正常判定手順を説明するためのフローチャートである。 本発明の第一実施形態における、ホールドオーバー切替部のホールドオーバー判定手順を説明するためのフローチャートである。 本発明の第二実施形態における、無線伝送装置を備えたシステムの構成を示すブロック図である。 無線伝送装置を備えたシステムの構成を示すブロック図である。
 [第一実施形態]
 本発明の第一実施形態について図面を参照して詳細に説明する。
 本発明の第一実施形態では、IEEE 1588 Precision Time Protocol(以下、「IEEE 1588 PTP」という)のタイミングパケットを受信してクロック周波数及び時刻を再生する無線伝送装置において、無線伝送装置は、タイミングパケットの正常判定に加えて、無線及びパケットそれぞれの伝送路の正常判定を行う。これにより、無線伝送装置は、機器や伝送路の異常発生から短時間でホールドオーバーモードへ移行し、クロック周波数及び時刻の精度の保持を可能とする。
 図1は、無線伝送装置を備えたシステムの構成を示すブロック図である。ユーザーネットワーク10内には、ユーザーが使用する伝送装置(図示略)と、IEEE 1588 PTPの同期情報源となるマスター局(図示略)とが含まれている。ユーザーネットワーク10内のマスター局からのLAN信号には、ユーザーネットワーク10からのユーザーデータと、IEEE 1588 PTPの同期に使用するタイミングパケットとの両方が含まれている。無線伝送装置20aは、ユーザーネットワーク10からLAN信号を受信し、そのLAN信号を無線フレームに多重し、さらに、誤り検出符号を多重する。また、無線伝送装置20aは、LAN信号と誤り検出符号とを多重した無線フレームに、アナログ変調及び周波数変換を施し、高周波の無線出力信号を生成する。また、無線伝送装置20aは、生成した無線出力信号を無線伝送路30に出力する。
 無線伝送装置40aは、無線受信部41aと、パケットスイッチ部42と、タイミング処理部43と、時刻カウンター部44と、ホールドオーバー部45と、ホールドオーバー切替部46と、時刻カウンター発振器47と、ホールドオーバー発振器48とを備える。
 無線受信部41aは、無線伝送路30で伝送されてきた無線出力信号を受信し、受信した無線出力信号に周波数変換及びデジタル復調を施して、無線フレームを得る。また、無線受信部41aは、得られた無線フレームからLAN信号を分離し、分離したLAN信号を分離LAN信号として、パケットスイッチ部42に出力する。また、無線受信部41aは、受信した無線出力信号の受信電力を測定し、測定した受信電力を受信電力信号として、ホールドオーバー切替部46に出力する。また、無線受信部41aは、無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出し、算出した無線フレームエラーレートを無線フレームエラー信号として、ホールドオーバー切替部46に出力する。
 パケットスイッチ部42は、IEEE 802.3により規定されるパケット内の各フィールド値から転送先ポートを特定して出力する、レイヤー2スイッチである。パケットスイッチ部42は、無線受信部41aから出力された分離LAN信号を受信し、IEEE1588 PTPの勧告に従い、IEEE 1588 PTPによるクロック周波数及び時刻同期に使用するタイミングパケットを検出して、検出したタイミングパケットをタイミングパケット信号として、タイミング処理部43に出力する。また、パケットスイッチ部42は、自局(無線受信部41a)宛のタイミングパケット以外を、LAN信号としてユーザーネットワーク50に出力する。また、パケットスイッチ部42は、受信した分離LAN信号のパケットに含まれている冗長符号に基づいて信号誤り(パケットエラー)を検出し、パケットエラーレートを算出して、パケットエラー信号としてホールドオーバー切替部46に出力する。
 タイミング処理部43は、パケットスイッチ部42から出力されたタイミングパケット信号を受信する。タイミング処理部43は、IEEE 1588 PTPにおける同期情報源となるマスター局のクロック周波数、時刻及び伝搬遅延を、受信したタイミングパケット信号から取得する。また、タイミング処理部43は、マスター局の時刻に時刻カウンター44を同期させるための補正信号を、カウンター補正信号として時刻カウンター部44に出力する。また、タイミング処理部43は、所定の判定手順に従い、タイミングパケットの正常判定を行い、その結果をタイミングパケット正常判定信号として、ホールドオーバー切替部46に出力する。
 時刻カウンター部44は、時刻カウンター発振器47から出力される時刻カウンター動作クロック信号を用いてカウンターを動作させ、タイミング処理部43から出力されたカウンター補正信号に基づいてカウンター値のオフセット及びカウント周期を補正する。これにより、時刻カウンター部44は、マスター局の時刻カウンターに、時刻カウンター部44のカウンターを同期させる。また、時刻カウンター部44は、マスター局の時刻と同期した時刻カウンター部44のカウンターから生成したクロック及びタイミングパルスを、同期タイミング信号としてホールドオーバー部45に出力する。
 ホールドオーバー部45は、時刻カウンター部44から出力された同期タイミング信号と、ホールドオーバー発振器48から出力されたホールドオーバー動作クロック信号とをそれぞれ受信し、ホールドオーバー動作クロック信号を用いて、同期タイミング信号の周期及び位相情報を保存する。
 また、ホールドオーバー部45は、ホールドオーバー切替部46から出力されたホールドオーバー切替信号に基づいて動作する。具体的には、ホールドオーバー部45は、タイミング再生モードでは、同期タイミング信号から再生された周期及び位相に基づいてクロック及びタイミングパルスを生成し、生成したクロック及びタイミングパルスを、同期タイミングパルス出力信号としてユーザーネットワーク50に出力する。一方、ホールドオーバー部45は、ホールドオーバーモードでは、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを生成し、生成したクロック及びタイミングパルスを、同期タイミングパルス出力信号としてユーザーネットワーク50に出力する。
 時刻カウンター発振器47は、時刻カウンター部44にカウンター動作クロック信号を出力する。ホールドオーバー発振器48は、ホールドオーバー部45にホールドオーバー動作クロック信号を出力する。
 ホールドオーバー切替部46は、無線受信部41aから出力された受信電力信号及び無線フレームエラー信号と、パケットスイッチ部42から出力されたパケットエラー信号と、タイミング処理部43から出力されたイミングパケット正常判定信号とを、それぞれ受信する。
 ホールドオーバー切替部46は、タイミング再生モードとするか、又はホールドオーバーモードとするかを、所定の判定手順(図3を用いて後述する)に従い判定する。ホールドオーバー切替部46は、その判定結果を示すホールドオーバー切替信号を、ホールドオーバー部45に出力する。
 次に、本実施の形態の無線伝送装置40aの動作手順を説明する。
 動作手順の概要として、無線伝送装置40aの無線受信部41aは、無線伝送路30から無線出力信号を受信し、周波数変換、デジタル復調を施して無線フレームを得る。そして、無線受信部41aは、得られた無線フレームからパケット信号を分離し、分離したパケット信号を分離LAN信号として、パケットスイッチ部42に出力する。さらに、無線受信部41aは、無線出力信号の受信電力を測定し、測定した受信電力を受信電力信号として、ホールドオーバー切替部46に出力する。また、無線受信部41aは、無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出し、検出し信号誤りを無線フレームエラー信号として、ホールドオーバー切替部46に出力する。
 パケットスイッチ部42は、無線受信部41aから出力された分離LAN信号を受信する。そして、パケットスイッチ部42は、IEEE 1588 PTPによるクロック周波数及び時刻同期に使用するタイミングパケットを検出し、検出したタイミングパケットをタイミングパケット信号として、タイミング処理部43に出力する。また、パケットスイッチ部42は、自局(無線受信部41a)宛のタイミングパケット以外を、LAN出力信号としてユーザーネットワーク50に出力する。また、パケットスイッチ部42は、分離LAN信号のパケット内の冗長符号に基づいて信号誤りを検出し、検出した信号誤りをパケットエラー信号として、ホールドオーバー切替部46に出力する。
 タイミング処理部43は、パケットスイッチ部42から出力されたタイミングパケット信号を受信する。タイミング処理部43は、IEEE 1588 PTPにおける同期情報源となるマスター局からクロック周波数、時刻、及び伝搬遅延を、受信したタイミングパケット信号から取得し、時刻カウンター部44の時刻(カウンター)とマスター局とを同期させるための補正信号を、カウンター補正信号として時刻カウンター部44に出力する。また、タイミング処理部43は、所定の判定手順(図3を用いて後述する)に従い、タイミングパケット及び受信間隔の正常判定を行い、その結果をタイミングパケット正常判定信号として、ホールドオーバー切替部46に出力する。
 図2は、タイミング処理部のタイミングパケット及び受信間隔の正常判定手順を説明するためのフローチャートである。まず、タイミング処理部43は、タイミングパケット内の特定フィールドから当該パケットの伝搬遅延を算出し、得られた伝搬遅延と予め定められた閾値D、Fとを比較する(ステップS1)。
 タイミングパケットの伝搬遅延が閾値D以上かつ閾値F以下の場合(ステップS1-YES)、タイミング処理部43は、タイミングパケット内の特定フィールドからマスター局の時刻カウンター値を表すタイムスタンプを抽出する。そして、タイミング処理部43は、抽出したタイムスタンプと自局(無線受信部41a)の時刻カウンター値との差分の絶対値を算出し、算出した差分の絶対値と閾値Gとを比較する(ステップS2)。
 抽出したタイムスタンプと自局(無線受信部41a)の時刻カウンター値との差分の絶対値が閾値G以下である場合(ステップS2-YES)、タイミング処理部43は、算出したタイミングパケット到着間隔と、予め定められた閾値Hとを比較する(ステップS3)。タイミングパケット到着間隔が閾値H以下の場合(ステップS3-YES)、タイミング処理部43は、正常検出と判定する(ステップS4)。
 一方、ステップS1において、タイミングパケットの伝搬遅延が、閾値D以上でない又は閾値F以下でない場合(ステップS1-NO)、タイミング処理部43は、異常検出と判定する(ステップS5)。また、ステップS2において、抽出したタイムスタンプと自局(無線受信部41a)の時刻カウンター値との差分の絶対値が閾値G以下でない場合(ステップS2-NO)、タイミング処理部43は、異常検出と判定する(ステップS5)。また、ステップS3において、タイミングパケット到着間隔が閾値H以下でない場合(ステップS3-NO)、タイミング処理部43は、異常検出と判定する(ステップS5)。
 このようにして、タイミング処理部43は、受信したタイミングパケットを基に図2に示された判定手順に従い、タイミングパケットの正常判定を実行する。
 図1に戻り、構成の説明を続ける。時刻カウンター部44は、時刻カウンター発振器47から出力された時刻カウンター動作クロック信号を用いて、カウンターを動作させる。
さらに、時刻カウンター部44は、タイミング処理部43から出力されたカウンター補正信号に基づいて、カウンター値のオフセットやカウント周期を補正することで、マスター局の時刻にカウンターを同期させる。また、時刻カウンター部44は、マスター局と同期したカウンターから生成したクロックとタイミングパルスを、同期タイミング信号としてホールドオーバー部45に出力する。
 ホールドオーバー部45は、ホールドオーバー発振器48から出力されたホールドオーバー動作クロック信号を用いて、時刻カウンター部44から出力された同期タイミング信号の周期及び位相情報を保存する。また、ホールドオーバー部45は、ホールドオーバー切替部46から出力されたホールドオーバー切替信号に基づき、タイミング再生モードでは、同期タイミング信号の周期及び位相でクロック及びタイミングパルスを、同期タイミングパルス出力信号としてユーザーネットワーク50に出力する。一方、ホールドオーバー部45は、ホールドオーバーモードでは、正常時に保存しておいた周期及び位相のクロック及びタイミングパルスを生成して、それらを同期タイミングパルス出力信号として出力する。
 ホールドオーバー切替部46は、無線受信部41aから出力された受信電力信号及び無線フレームエラー信号、パケットスイッチ部42から出力されたパケットエラー信号、タイミング処理部43から出力されたタイミングパケット正常判定信号をそれぞれ受信する。また、ホールドオーバー切替部46は、所定の制御に従って、タイミング再生モードか、又はホールドオーバーモードかを判定し、その判定結果をホールドオーバー切替信号としてホールドオーバー部45に出力する。
 図3は、ホールドオーバー切替部のホールドオーバー判定手順を説明するためのフローチャートである。ホールドオーバー切替部46は、受信電力信号から無線の受信電力を検出し、検出した受信電力と、予め定められた閾値A(第1の閾値)とを比較する(ステッSa1)。
 受信電力信号から検出した受信電力が閾値A以上である場合(ステッSa1-YES)、ホールドオーバー切替部46は、無線フレームエラー信号から無線フレームのエラーレートを算出し、算出した無線フレームのエラーレートと、予め定められた閾値B(第2の閾値)とを比較する(ステップSa2)。
 無線フレームレートのエラーレートが閾値B以上である場合(ステップSa2-YES)、ホールドオーバー切替部46は、パケットエラー信号からパケット信号のエラーレートを算出し、算出したエラーレートと、予め定められた閾値C(第3の閾値)とを比較する(ステップSa3)。
 パケット信号のエラーレートが閾値C以上である場合(ステップSa3-YES)、ホールドオーバー切替部46は、タイミングパケット正常判定信号を基に、タイミングパケットを正常に受信したか否かを判定する(ステップSa4)。タイミングパケットを正常に受信した場合(ステップSa4-YES)、ホールドオーバー切替部46は、タイミング再生モードへ切り替える(ステップSa5)。
 一方、ステッSa1において、受信電力信号から検出した受信電力が閾値A以上でない場合(ステッSa1-NO)、ホールドオーバー切替部46は、ホールドオーバーモードへ切り替える(ステップSa6)。また、ステッSa2において、無線フレームレートのエラーレートが閾値B以上でない場合(ステップSa2-NO)、ホールドオーバー切替部46は、ホールドオーバーモードへ切り替える(ステップSa6)。
 また、ステッSa3において、パケット信号のエラーレートが閾値C以上でない場合(ステップSa3-NO)、ホールドオーバー切替部46は、ホールドオーバーモードへ切り替える(ステップSa6)。また、ステッSa4において、タイミングパケットを正常に受信していない場合(ステップSa4-NO)、ホールドオーバー切替部46は、ホールドオーバーモードへ切り替える(ステップSa6)。
 このように、受信電力が閾値A以上、無線フレームエラーレートが閾値B以上、パケットエラーレートが閾値C以上、及び、タイミングパケット正常受信の各条件が全て満たされた場合、ホールドオーバー切替部46は、タイミング再生モードに切り替え、タイミングパケットに基づいて再生した周期及び位相でクロック及びタイミングパルスを出力する。一方、いずれか1つの条件でも満たさない場合、ホールドオーバー切替部46は、ホールドオーバーモードに切り替え、正常時に保存しておいた周期及び位相で、クロック及びタイミングパルスを出力する。
 以上のように、無線伝送装置40aは、タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、高周波の無線出力信号に変換された無線フレームを、無線伝送路30から受信して復調し、復調した無線フレームからLAN信号を分離するとともに、無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出する無線受信部41aと、無線受信部41aにより算出された無線フレームエラーレートが閾値Bを上回った場合、LAN信号に含まれるタイミングパケットから再生された周期及び位相に基づいてクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを出力するホールオーバーモードに、動作モードを切り替えるホールドオーバー切替部46と、を備える。
 この構成により、無線出力信号から無線フレームが復調され、復調された無線フレーム内の誤り検出符号から無線フレームエラーレートが算出されて、この無線フレームエラーレートが閾値Bを上回った場合に、タイミング再生モードからホールオーバーモードに切替わる。これにより、無線伝送装置40aは、EOAM制御を実行することなく、機器又は伝送路に異常が発生してから短時間で異常状態を検出して、ホールドオーバーモードに移行することが可能となり、クロック周波数及び時刻の精度を保つことができる。また、無線伝送装置40aは、補償型発振器を備える必要もない。
 また、無線受信部41aは、無線伝送路30から受信した無線出力信号の受信電力を測定し、ホールドオーバー切替部46は、無線受信部41aにより測定された受信電力が閾値Aを下回った場合、タイミング再生モードからホールオーバーモードに、動作モードを切り替える。
 この構成により、無線出力信号の受信電力が測定されて、この受信電力が閾値Aを下回った場合に、タイミング再生モードからホールオーバーモードに切替わる。これにより、無線伝送装置40aは、EOAM制御を実行することなく、機器や伝送路に異常が発生してから短時間でホールドオーバーモードに移行することが可能となり、クロック周波数及び時刻の精度を保つことができる。
 また、無線受信部41aで無線フレームから分離されたLAN信号からクロック周波数及び時刻同期に使用するタイミングパケットを検出するとともに、LAN信号のパケット内の冗長符号に基づいて信号誤りを検出することで、パケットエラーレートを算出するパケットスイッチ部42を備え、ホールドオーバー切替部46は、パケットスイッチ部42により算出されたパケットエラーレートが閾値Cを上回った場合、タイミング再生モードからホールオーバーモードに、動作モードを切り替える。
 この構成により、LAN信号のパケット内の冗長符号を基に信号誤りが検出されて、パケットエラーレートが算出され、このパケットエラーレートが閾値Cを上回った場合に、タイミング再生モードからホールオーバーモードに切替わる。これにより、無線伝送装置40aは、EOAM制御を実行することなく、機器や伝送路に異常が発生してから短時間でホールドオーバーモードに移行することが可能となり、クロック周波数及び時刻の精度を保つことができる。
 また、ホールドオーバー切替部46は、無線フレームのエラーレートが閾値B以下、受信電力が閾値A以上、パケットエラーレートが閾値C以下、及び、タイミングパケット正常受信の各条件が全て満たされた場合に、ホールオーバーモードからタイミング再生モードに、動作モードを切り替える。
 この構成により、無線フレームエラーレートが閾値B以下、受信電力が閾値A以上、パケットエラーレートが閾値C以下、及び、タイミングパケット正常受信の各条件が全て満たされると、ホールオーバーモードからタイミング再生モードに切替わる。これにより、無線伝送装置40aは、EOAM制御を実行することなく、ホールオーバーモードとタイミング再生モードの移行を正確に行うことが可能となり、クロック周波数及び時刻の精度を保つことができる。
 [第二実施形態]
 本発明の第二実施形態について図面を参照して詳細に説明する。
 第二実施形態では、無線伝送装置に適応変調方式が採用されている点と、ホールドオーバー移行条件を工夫した点とが、第二実施形態と異なる。以下では、第一実施形態との相違点についてのみ説明する。
 図4は、無線伝送装置を備えたシステムの構成を示すブロック図である。無線伝送装置20b及び無線伝送装置40bは、適応変調方式が採用されている無線伝送装置である。
ここで、適応変調方式とは、実現可能な帯域の最大化を無線受信電力に応じて実行するとともに、天候悪化等による受信電力低下時には、電力及びノイズによる外乱に対する耐力の大きい変調方式に切り替えるという方式である。なお、適応変調方式自体には、所定のアルゴリズムが適宜用いられてよい。
 無線伝送装置40bは、無線受信部41bを備える。無線受信部41bは、無線対向局である無線伝送装置20bから、無線伝送路30を介して無線出力信号を受信する。無線受信部41bは、無線フレーム内に格納された変調方式情報に基づいて、無線変調方式の切り替えを検出し、AMR(Adaptive Modulation Radio)切替信号としてホールドオーバー切替部46に出力する。ホールドオーバー切替部46は、図3を用いて説明した判定手順に加えて、AMR切替信号に基づいて無線変調方式の切替を検出する。ホールドオーバー切替部46は、無線変調方式の切替が発生した場合、動作モードをホールドオーバーモードに一定時間切り替える。また、この切り替えが一定時間安定した場合、ホールドオーバー切替部46は、動作モードをタイミング再生モードに切り替える。
 以上のように、無線伝送装置20b及び無線伝送装置40bは、適応変調方式が採用された無線伝送装置である。無線伝送装置40bのホールドオーバー切替部46は、適応変調による変調方式の切り替えが発生した場合、ホールオーバーモードに動作モードを一定時間切り替え、更に、変調方式が一定時間安定した場合、動作モードをタイミング再生モードに切り替える。
 この構成により、適応変調による変調方式の切り替えが発生した場合、動作モードをホールオーバーモードに一定時間切り替え、一定時間変調方式が安定した場合、動作モードをタイミング再生モードに切り替える。これにより、無線伝送装置40bは、EOAM制御を実行することなく、機器又は伝送路に異常が発生してから短時間で、ホールドオーバーモードに移行することが可能となり、クロック周波数及び時刻の精度を保つことができる。
 ここで、タイミングパケットは、IEEE 1588 Precision Time Protocolによるクロック周波数及び時刻同期に使用するタイミングパケットでもよい。
 なお、IEEE 1588PTPによるクロック周波数及び時刻の再生を行う場合、タイミングパケットの伝搬遅延補正が必要であるが、IEEE 1588準拠の方式では、タイミングパケット自体を用いて遅延測定を実行するため、遅延更新周期が長く、無線フレーム単位という短周期で変調方式が切り替えられる、すなわち、伝搬遅延が変化する適応変調方式では遅延補正が不十分となり、再生クロック周波数及び時刻への誤差が拡大するという可能性がある。
 この場合でも、無線伝送装置40bは、機器障害を含む無線伝送路異常及びパケット通信異常検出に加え、適応変調方式による変調方式の切り替えを検出することで、変調方式の切り替えを起因として、動作モードをホールドオーバーモードに切り替える。これにより、無線伝送装置40bは、クロック周波数及び時刻の誤差を小さく保つことができる。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 例えば、上記の説明では、無線伝送装置20aの送信機能や、ユーザーネットワーク50からユーザーネットワーク10への信号通過のための機能ブロックは、図示が省略されている。当該機能ブロックが追加され、クロック周波数及び時刻の再生のための機能ブロックを無線伝送装置20aが具備しても、本発明の要旨は逸脱しない。
 なお、以上に説明した無線伝送装置を実現するためのプログラムを、コンピュータ読み取り可能な記録媒体に記録し、そのプログラムをコンピュータシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
(付記1)前記タイミングパケットは、IEEE 1588 Precision Time Protocolによるクロック周波数及び時刻同期に使用するタイミングパケットであることを特徴とする無線伝送装置。
(付記2)前記タイミングパケットが、IEEE 1588 Precision Time Protocolによるクロック周波数及び時刻同期に、タイミングパケットを使用するステップを有することを特徴とする無線伝送方法。
 本願は、2011年5月18日に、日本に出願された特願2011-111124号に基づき優先権を主張し、その内容をここに援用する。
 EOAM制御を実行することなく、機器又は伝送路に異常が発生してから短時間で異常状態を検出して、クロック周波数及び時刻の精度を保つことができる無線伝送装置及び無線伝送方法を提供することができる。
 10  ユーザーネットワーク
 20a  無線伝送装置
 20b  無線伝送装置
 20c  無線伝送装置
 21  EOAM部
 30  無線伝送路
 40a  無線伝送装置
 40b  無線伝送装置
 40c  無線伝送装置
 41a  無線受信部
 42  パケットスイッチ部
 43  タイミング処理部
 44  時刻カウンター部
 45  ホールドオーバー部
 46  ホールドオーバー切替部
 47  時刻カウンター発振器
 48  ホールドオーバー発振器
 49  EOAM部
 50  ユーザーネットワーク

Claims (10)

  1.  タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、高周波の無線出力信号に変換された無線フレームを、無線伝送路から受信して復調し、復調した無線フレームからLAN信号を分離するとともに、前記無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出する無線受信部と、
     前記無線受信部により算出された無線フレームエラーレートが第1の閾値を上回った場合、前記LAN信号に含まれるタイミングパケットから再生された周期及び位相に基づいてクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを出力するホールオーバーモードに、動作モードを切り替えるホールドオーバー切替部とを備えた無線伝送装置。
  2.  前記無線受信部は、前記無線伝送路から受信した無線出力信号の受信電力を測定し、
     前記ホールドオーバー切替部は、前記無線受信部により測定された受信電力が第2の閾値を下回った場合、前記タイミング再生モードから前記ホールオーバーモードに、動作モードを切り替える請求項1に記載の無線伝送装置。
  3.  前記無線受信部により無線フレームから分離されたLAN信号から、クロック周波数及び時刻同期に使用するタイミングパケットを検出するとともに、前記LAN信号のパケット内の冗長符号に基づいて信号誤りを検出することで、パケットエラーレートを算出するパケットスイッチ部を備え、
     前記ホールドオーバー切替部は、前記パケットスイッチ部により算出されたパケットエラーレートが第3の閾値を上回った場合、前記タイミング再生モードから前記ホールオーバーモードに、動作モードを切り替えることを特徴とする請求項1又は請求項2に記載の無線伝送装置。
  4.  前記無線受信部により無線フレームから分離されたLAN信号のパケット内の冗長符号に基づいて信号誤りを検出することで、パケットエラーレートを算出するパケットスイッチ部により検出されたタイミングパケットの正常判定処理を実行するタイミング処理部を備え、
     前記ホールドオーバー切替部は、前記無線フレームのエラーレートが前記第1の閾値以下、前記無線受信部により測定された受信電力が第2の閾値以上、前記パケットスイッチ部によって算出された前記パケットエラーレートが第3の閾値以下、及びタイミングパケット正常受信の各条件が全て満たされた場合に、前記ホールオーバーモードから前記タイミング再生モードに、動作モードを切り替える請求項1に記載の無線伝送装置。
  5.  前記ホールドオーバー切替部は、適応変調による変調方式の切り替えが発生した場合、前記ホールオーバーモードに動作モードを一定時間切り替え、更に、変調方式が一定時間安定した場合、動作モードを前記タイミング再生モードに切り替える請求項1から請求項4のいずれか1項に記載の無線伝送装置。
  6.  無線伝送装置における無線伝送方法であって、
     無線受信部が、タイミングパケットを含むLAN信号及び誤り検出符号が多重化され、高周波の無線出力信号に変換された無線フレームを、無線伝送路から受信して復調し、復調した無線フレームからLAN信号を分離するとともに、前記無線フレーム内の誤り検出符号から無線フレームの信号誤りを検出することで、無線フレームエラーレートを算出するステップと、
     ホールドオーバー切替部が、前記無線受信部により算出された無線フレームエラーレートが第1の閾値を上回った場合、前記LAN信号に含まれるタイミングパケットから再生された周期及び位相に基づいてクロック及びタイミングパルスを出力するタイミング再生モードから、正常時に保存しておいた周期及び位相に基づいてクロック及びタイミングパルスを出力するホールオーバーモードに、動作モードを切り替えるステップとを有する無線伝送方法。
  7.  前記無線受信部が、前記無線伝送路から受信した無線出力信号の受信電力を測定するステップと、
     前記ホールドオーバー切替部が、前記無線受信部により測定された受信電力が第2の閾値を下回った場合、前記タイミング再生モードから前記ホールオーバーモードに切り替えるステップとを有する請求項6に記載の無線伝送方法。
  8.  パケットスイッチ部が、前記無線受信部により無線フレームから分離されたLAN信号から、クロック周波数及び時刻同期に使用するタイミングパケットを検出するとともに、前記LAN信号のパケット内の冗長符号に基づいて信号誤りを検出することで、パケットエラーレートを算出するステップと、
     前記ホールドオーバー切替部が、前記パケットスイッチ部により算出されたパケットエラーレートが第3の閾値を上回った場合、前記タイミング再生モードから前記ホールオーバーモードに、動作モードを切り替えるステップとを有することを特徴とする請求項6又は請求項7に記載の無線伝送方法。
  9.  タイミング処理部が、前記無線受信部により無線フレームから分離されたLAN信号のパケット内の冗長符号に基づいて信号誤りを検出することで、パケットエラーレートを算出するパケットスイッチ部により検出されたタイミングパケットの正常判定処理を実行するステップと、
     前記ホールドオーバー切替部が、前記無線フレームのエラーレートが前記第1の閾値以下、前記無線受信部により測定された受信電力が第2の閾値以上、前記パケットスイッチ部によって算出された前記パケットエラーレートが第3の閾値以下、及びタイミングパケット正常受信の各条件が全て満たされた場合に、前記ホールオーバーモードから前記タイミング再生モードに、動作モードを切り替えるステップとを有する請求項6に記載の無線伝送方法。
  10.  前記ホールドオーバー切替部が、適応変調による変調方式の切り替えが発生した場合、前記ホールオーバーモードに動作モードを一定時間切り替え、更に、変調方式が一定時間安定した場合、動作モードを前記タイミング再生モードに切り替えるステップを有する請求項6から請求項9のいずれか1項に記載の無線伝送方法。
PCT/JP2012/062176 2011-05-18 2012-05-11 無線伝送装置及び無線伝送方法 WO2012157570A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/116,339 US20140198784A1 (en) 2011-05-18 2012-05-11 Wireless transmission device and wireless transmission method
JP2013515128A JP5505562B2 (ja) 2011-05-18 2012-05-11 無線伝送装置及び無線伝送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011111124 2011-05-18
JP2011-111124 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012157570A1 true WO2012157570A1 (ja) 2012-11-22

Family

ID=47176888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062176 WO2012157570A1 (ja) 2011-05-18 2012-05-11 無線伝送装置及び無線伝送方法

Country Status (3)

Country Link
US (1) US20140198784A1 (ja)
JP (1) JP5505562B2 (ja)
WO (1) WO2012157570A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109555A (ja) * 2013-12-04 2015-06-11 関西電力株式会社 通信装置、時刻同期方法、及び、時刻同期プログラム
CN110649935A (zh) * 2019-09-12 2020-01-03 北京维普无限智能技术有限公司 一种多码制信号切换方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167395B2 (ja) * 2013-03-22 2017-07-26 パナソニックIpマネジメント株式会社 給電装置
JP6111817B2 (ja) * 2013-04-24 2017-04-12 富士通株式会社 基地局,通信システム
US9883474B2 (en) * 2013-07-19 2018-01-30 Mitsubishi Electric Corporation Ring-shaped synchronous network system and time slave station
US9813173B2 (en) * 2014-10-06 2017-11-07 Schweitzer Engineering Laboratories, Inc. Time signal verification and distribution
JP6602813B2 (ja) 2017-04-24 2019-11-06 株式会社東芝 通信中継システム及び方法
JP6577510B2 (ja) * 2017-04-24 2019-09-18 株式会社東芝 通信中継システム及び方法
US10673883B2 (en) * 2018-05-14 2020-06-02 Cisco Technology, Inc. Time synchronization attack detection in a deterministic network
EP3882667A4 (en) * 2018-11-12 2022-08-24 Furuno Electric Co., Ltd. GNSS RECEIVER DEVICE
GB201911378D0 (en) * 2019-08-08 2019-09-25 Hoptroff Richard George System for timestamping events on edge devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183863A (ja) * 1998-12-18 2000-06-30 Sony Corp 信号処理回路
JP2007258792A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd 同期装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183863A (ja) * 1998-12-18 2000-06-30 Sony Corp 信号処理回路
JP2007258792A (ja) * 2006-03-20 2007-10-04 Fujitsu Ltd 同期装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109555A (ja) * 2013-12-04 2015-06-11 関西電力株式会社 通信装置、時刻同期方法、及び、時刻同期プログラム
CN110649935A (zh) * 2019-09-12 2020-01-03 北京维普无限智能技术有限公司 一种多码制信号切换方法

Also Published As

Publication number Publication date
JP5505562B2 (ja) 2014-05-28
US20140198784A1 (en) 2014-07-17
JPWO2012157570A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5505562B2 (ja) 無線伝送装置及び無線伝送方法
US9548831B2 (en) Synchronizing system, synchronizing method, first synchronizing device, second synchronizing device, and computer program
US9763207B2 (en) Timing synchronization device and timing synchronization control method
WO2014083725A1 (ja) 同期装置、同期システム、無線通信装置及び同期方法
US9451571B2 (en) Determining uplink and downlink delays between a baseband unit and a remote radio head
JP5117507B2 (ja) 無線通信システム、基地局間同期方法および基地局
US8861668B2 (en) Transmission device, transmission method and computer program
US10057867B2 (en) Method and apparatus for synchronising a plurality of distributed devices with a network
WO2019127447A1 (zh) 用于时间同步的方法、装置和***
JP5535464B2 (ja) Ts信号遅延検出調整方法及び装置
US8275001B1 (en) Systems and methods for synchronizing backup receivers to network clocks
JP5262457B2 (ja) 伝送システム
JP2018093362A (ja) 通信制御装置、無線通信装置及び遅延調整方法
CN104661299B (zh) Tdd***同步的方法和***
JP7267117B2 (ja) 無線装置
CN105960820A (zh) 一种同步装置及方法
WO2013069176A1 (ja) 送信装置、送信方法、及びプログラムが格納された非一時的なコンピュータ可読媒体
JP2010074755A (ja) 送信データ出力タイミング調整方法及び基地局
JP2007228040A (ja) 受信パケット欠損対応pll装置
US20240223296A1 (en) Timestamping ethernet physical layer (phy) frames
US20160128012A1 (en) Communication system, communication system control method, transmission device, and reception device
US20160134387A1 (en) Communication system, communication system control method, transmission device, and reception device
KR100534597B1 (ko) 도플러 쉬프트를 이용한 망 동기화 장치 및 그 방법
JP2021077974A (ja) 無線伝送システム及び無線中継装置
JP5536936B2 (ja) Ofdm信号生成方法、ofdm信号生成装置、ofdm信号受信方法、及びofdm信号受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14116339

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12786705

Country of ref document: EP

Kind code of ref document: A1