WO2012157467A1 - Method for setting inspection region, and x-ray inspection system - Google Patents

Method for setting inspection region, and x-ray inspection system Download PDF

Info

Publication number
WO2012157467A1
WO2012157467A1 PCT/JP2012/061741 JP2012061741W WO2012157467A1 WO 2012157467 A1 WO2012157467 A1 WO 2012157467A1 JP 2012061741 W JP2012061741 W JP 2012061741W WO 2012157467 A1 WO2012157467 A1 WO 2012157467A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
image
ray
substrate
inspection object
Prior art date
Application number
PCT/JP2012/061741
Other languages
French (fr)
Japanese (ja)
Inventor
清 村上
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2012157467A1 publication Critical patent/WO2012157467A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Definitions

  • the present invention relates to an inspection region setting method and an X-ray inspection system, and more specifically, an inspection region setting method and an X-ray inspection system used for inspecting the quality of a bond between a printed circuit board and a circuit component. About.
  • X-ray CT Computer Tomography
  • substrate a printed circuit board
  • X-ray CT an object is imaged with X-rays from a plurality of directions, and a plurality of fluoroscopic images showing the distribution of the degree of X-ray absorption (attenuation) are acquired.
  • reconstruction processing based on a plurality of fluoroscopic images is performed to obtain two-dimensional data or three-dimensional data of the distribution of the X-ray absorption coefficient to be inspected.
  • the same position may be inspected one after another for a large number of identically shaped substrates.
  • teaching (teaching) to the inspection device of the inspection position is performed using the object to be measured as a positioning reference.
  • X-ray fluoroscopic images of the same type of object to be measured are successively generated at the taught position of the inspection, and each object under test is inspected based on the fluoroscopic image.
  • Patent Document 1 Japanese Patent Laid-Open No. 2007-218784
  • Patent Document 2 Japanese Patent Laid-Open No. 2007-127490
  • Patent Document 3 Japanese Patent Laid-Open No. 2010-160071 discloses that when a user teaches the outline and position of a component, CT reconstruction is performed and the position of a ball (electrode position) electrode is extracted. ing.
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-220640
  • an object holding mechanism that can rotate with respect to an X-ray source and a detector, and a CCD camera that picks up an image from the same direction as the X-ray source are used.
  • a technique that can be accurately detected without positional alignment with respect to the X-ray source.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-160071
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-160071
  • the board inspection there is a case where not only the front surface of the substrate but also the back surface is inspected. In this case, after the positioning of the front surface and the back surface is accurately performed, the user is inspected. If the position is not confirmed, an erroneous area may be set as the inspection area.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2006-220640
  • a transmission image and a CCD image are captured coaxially, and a surface image and an internal image are displayed together. This is based on the assumption that it is used analytically, and is not an inspection position setting for performing automatic inspection. Further, for example, when the object is larger than the field of view of the camera and the field of view of the X-ray inspection machine, such as a printed circuit board, the inspection area cannot be set.
  • the present invention has been conceived in view of such circumstances, and its purpose is to inspect an inspection area in the inspection object with high accuracy when inspecting the inspection object using an X-ray image.
  • An area setting method and an X-ray inspection system are provided.
  • Another object of the present invention is an inspection region setting method in which information about connection wiring between a mounted component and a substrate is accurately and easily input when the object to be inspected is a substrate on which an electronic component is mounted, X A line inspection apparatus and an X-ray inspection program are provided.
  • an inspection region setting method for setting an inspection region on an inspection object in an X-ray inspection apparatus that performs inspection of the inspection object using X-rays A step of capturing a visible image of a first region including the inspection target of the inspection object, a step of capturing an X-ray image of the second region including the inspection target of the inspection object, and A step of simultaneously displaying a visible image for the first region and an X-ray image for the second region together with a mark indicating the position of the inspection object with the same position and magnification; Receiving a confirmation input for the position of the inspection target in the X-ray image and determining the inspection region.
  • the object to be inspected is a substrate on which a plurality of electronic components are mounted, and the step of capturing a visible image captures a first visible image on the front side and a second visible image on the back side of the substrate.
  • the step of displaying at the same time includes the step of displaying the same position and magnification of one of the first or second visible images and the X-ray image, and the step of determining includes the step of determining each of the front side and the back side Including a step of determining an inspection area.
  • the X-ray image is a reconstructed image of an area including an inspection object of an inspection object reconstructed based on a plurality of X-ray images taken from a plurality of fluoroscopic directions.
  • the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images.
  • the X-ray image is an X-ray transmission image of the inspection object.
  • an X-ray inspection system for inspecting an object to be inspected using X-rays, a storage unit for storing information for designating a position of an inspection object in the object to be inspected, An X-ray image capturing unit that captures an X-ray image of a visible light image capturing unit that captures a visible image of a first region including an inspection target of the inspection object and a second region including an inspection target of the inspection object.
  • a visible image for the first region and an X-ray image for the second region are displayed with the same position and magnification, and a mark indicating the position of the inspection object based on the information stored in the storage unit
  • a control unit for storing for storing.
  • the inspection object is a substrate on which a plurality of electronic components are mounted
  • the visible light image capturing unit captures a first visible image on the front surface side and a second visible image on the back surface side of the substrate
  • the output unit displays the position and magnification of one of the first or second visible images and the X-ray image
  • the control unit displays setting information for specifying the inspection areas on the front side and the back side.
  • the X-ray image is a reconstructed image of an area including an inspection object of an inspection object reconstructed based on a plurality of X-ray images taken from a plurality of fluoroscopic directions.
  • the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images.
  • the X-ray image is an X-ray transmission image of the inspection object.
  • the user can grasp the relationship between the inspection object and the inspection position, and the user can easily see the effect. is there.
  • FIG. 1 is a schematic block diagram of an X-ray inspection apparatus according to an embodiment of the present invention. It is a figure for demonstrating the structure of the X-ray inspection apparatus of FIG. It is a flowchart for demonstrating the flow of the teaching process in the X-ray inspection apparatus of FIG.
  • FIG. 4 is a flowchart for explaining “image registration processing (S114)” and “image expansion / contraction / superposition processing (S116)” shown in FIG. 3; It is a conceptual diagram for demonstrating alignment with the visible light image of the front side of a board
  • FIG. 1 It is a figure which shows the example of a display which superimposed and displayed the visible light image (back side) and the X-ray transmissive image. It is a figure which shows the flow of the X-ray inspection in the X-ray inspection apparatus of FIG. 1 in a flowchart format. It is a figure for demonstrating the quality determination based on the solder area in a binarized image. It is a conceptual diagram for demonstrating the other structural example of a X-ray inspection apparatus.
  • the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. Further, in this specification, the X axis, the Y axis, and the Z axis are axes that are orthogonal to each other.
  • FIG. 1 is a schematic block diagram of an X-ray inspection apparatus 100 according to the present embodiment.
  • the X-ray inspection apparatus 100 includes an X-ray source 10 that outputs X-rays 18, an X-ray detector 23, an image acquisition control mechanism 30, and an inspection target drive mechanism 110 that moves the position of the inspection target 1. Furthermore, the X-ray inspection apparatus 100 includes an input unit 40, an output unit 50, an X-ray source control mechanism 60, a displacement meter 114, an optical camera 116 (not shown), an inspection target position control mechanism 120, an arithmetic operation. Unit 70 and storage unit 90.
  • the X-ray inspection apparatus 100 is based on CAD (Computer Aided Design) data and the like, the model number of the electronic component mounted on the board to be inspected, the placement position of the part itself on the board, the placement direction, the size of the part, And an inspection object database (hereinafter referred to as “inspection object DB”) 200 for storing information related to the arrangement of electrode pads for soldering in the substrate (that is, the arrangement of soldered positions).
  • CAD Computer Aided Design
  • the inspection object 1 is disposed between the X-ray source 10 and the X-ray detector 23.
  • the inspection object 1 is a circuit board on which components are mounted.
  • the X-ray source 10, the inspection object 1, and the X-ray detector 23 are installed in order from the bottom, but from the viewpoint of maintainability of the X-ray source, the X-ray detector 23, These may be arranged in a line with the inspection object 1 and the X-ray source 10.
  • the X-ray source 10 is controlled by the X-ray source control mechanism 60 and irradiates the inspection object 1 with the X-ray 18.
  • the inspection target 1 is a board on which circuit components are mounted.
  • the X-ray source 10 can be a scanning X-ray source capable of moving the focal position on the target in accordance with external control.
  • the inspection object 1 is moved by the inspection object driving mechanism 110.
  • a specific configuration of the inspection target drive mechanism 110 will be described later.
  • the inspection target position control mechanism 120 controls the operation of the inspection target drive mechanism 110 based on an instruction from the calculation unit 70.
  • the X-ray detector 23 is a two-dimensional X-ray detector that detects and images the X-ray output from the X-ray source 10 and transmitted through the inspection object 1.
  • I.I. I. An (Image Intensifier) tube or an FPD (Flat Panel Detector) can be used. From the viewpoint of installation space, it is desirable to use FPD for the X-ray detector 23.
  • the X-ray detector 23 is preferably highly sensitive so that it can be used for in-line inspection, and is particularly preferably a direct conversion FPD using CdTe.
  • the image acquisition control mechanism 30 includes a detector drive control mechanism 32 and an image data acquisition unit 34.
  • the detector drive control mechanism 32 controls the operation of the X-ray detector drive unit 22 and moves the X-ray detector 23 based on an instruction from the calculation unit 70.
  • the image data acquisition unit 34 acquires the image data of the X-ray detector 23 specified from the calculation unit 70.
  • the input unit 40 is an operation input device for receiving an instruction input from the user.
  • the output unit 50 is a device that outputs measurement results and the like to the outside.
  • the output unit 50 is a display for displaying an X-ray image or the like configured by the calculation unit 70.
  • the user can execute various inputs via the input unit 40, and various calculation results obtained by the processing of the calculation unit 70 are displayed on the output unit 50.
  • the image displayed on the output unit 50 is used for teaching processing described later, may be output for visual judgment by the user, or may be output by a quality judgment unit 78 described later. It may be output as a pass / fail judgment result.
  • the X-ray source control mechanism 60 includes an electron beam control unit 62 that controls the output of the electron beam.
  • the electron beam control unit 62 receives an X-ray focal position and X-ray energy (tube voltage, tube current) designation from the calculation unit 70.
  • the designated X-ray energy varies depending on the configuration of the inspection object.
  • the calculation unit 70 executes a program 96 stored in the storage unit 90 to control each unit, and performs predetermined calculation processing.
  • the calculation unit 70 includes an X-ray source control unit 72, an image acquisition control unit 74, a reconstruction unit 76, a quality determination unit 78, an inspection target position control unit 80, an X-ray focal position calculation unit 82, and an imaging.
  • a condition setting unit 84 and an inspection information generation unit 86 are included.
  • the X-ray source control unit 72 determines the X-ray focal position and X-ray energy, and sends a command to the X-ray source control mechanism 60.
  • the image acquisition control unit 74 sends a command to the image acquisition control mechanism 30 so that the X-ray detector 23 acquires an image. Further, the image acquisition control unit 74 acquires image data from the image acquisition control mechanism 30.
  • the reconstruction unit 76 reconstructs three-dimensional data from a plurality of image data acquired by the image acquisition control unit 74.
  • the pass / fail judgment unit 78 obtains the height of the board surface (board height) on which the component is mounted, and judges pass / fail of the inspection object based on the tomographic image of the board height. In addition, since the algorithm for determining pass / fail or the input information to the algorithm varies depending on the inspection target, the pass / fail determination unit 78 obtains them from the imaging condition information 94.
  • the inspection target position control unit 80 controls the inspection target drive mechanism 110 via the inspection target position control mechanism 120.
  • the X-ray focal position calculation unit 82 calculates an X-ray focal position, an irradiation angle, and the like for the inspection area when inspecting an inspection area where the inspection object 1 is present.
  • the imaging condition setting unit 84 sets conditions (for example, applied voltage to the X-ray source, imaging time, etc.) when outputting X-rays from the X-ray source 10 according to the inspection object 1.
  • the storage unit 90 includes X-ray focal position information 92, imaging condition information 94, a program 96 for realizing each function executed by the arithmetic unit 70, and image data 98 captured by the X-ray detector 23. including.
  • the X-ray focal position information 92 includes the X-ray focal position calculated by the X-ray focal position calculator 82.
  • the imaging condition information 94 includes information regarding the imaging conditions set by the imaging condition setting unit 84 and an algorithm for determining pass / fail.
  • the storage unit 90 and the inspection target DB 200 may be anything that can accumulate data.
  • the storage unit 90 includes, for example, a storage device such as a RAM (Random Access Memory), an EEPROM (Electrically Erasable and Programmable Read-Only Memory), and an HDD (Hard Disc Drive).
  • the inspection target DB 200 may be an HDD or a storage device provided in another computer connected via a network.
  • FIG. 2 is a diagram for explaining the configuration of the X-ray inspection apparatus 100 according to the present embodiment.
  • FIG. 2 the same parts as those in FIG. Also, in FIG. 2, among the parts shown in FIG. 1, the parts necessary for explanation are extracted and directly related to the control of the X-ray focal point position, the control of the X-ray detector position, the control of the inspection target position, etc. is doing.
  • the X-ray source 10 is assumed to be a cone beam type radiation source.
  • the X-ray source 10 may be a scanning X-ray source capable of scanning a position (X-ray focal position) where X-rays are generated in a specified direction.
  • the X-ray source 10 generates X-rays according to a command from the calculation unit 70 that has passed through the X-ray source control mechanism 60.
  • the X-ray source 10 is a sealed X-ray source, and is installed on the top or bottom of the X-ray inspection apparatus 100.
  • the target of the X-ray source 10 may be a transmissive type or a reflective type.
  • the X-ray source 10 is attached to an operating part (not shown) and is movable in the vertical direction.
  • the X-ray detector 23 is disposed at a position facing the X-ray source 10 so as to sandwich the inspection object 1 (substrate).
  • the X-ray detector 23 images the X-rays emitted from the X-ray source 10.
  • the X-ray detector 23 is attached to the X-ray detector driving unit 22.
  • the X-ray detector driving unit 22 is a three-dimensional stage, and can move the X-ray detector 23 in the horizontal direction and the vertical direction.
  • the inspection target drive mechanism 110 is installed between the X-ray source 10 and the X-ray detector 23.
  • the inspection object driving mechanism 110 includes stages 111a and 111b and substrate rails 112a and 112b attached to the stages 111a and 111b.
  • the stages 111a and 111b are capable of translating the inspection object 1 in the horizontal direction.
  • the board rails 112a and 112b each fix the board by sandwiching the inspection object 1 from above and below.
  • the operations of the stages 111a and 111b and the substrate rails 112a and 112b are controlled by the substrate drive control mechanism 126.
  • the X-ray inspection apparatus 100 includes a displacement meter 114 and an optical camera 116 (this is not shown in FIG. 1).
  • the displacement meter 114 measures the distance to the substrate. Therefore, the displacement meter 114 can measure the warpage of the substrate, which will be described in detail later.
  • the optical camera 116 images the substrate with visible light.
  • the optical camera 116 is used for photographing a fiducial mark for setting a position to be inspected.
  • the displacement meter 114 and the optical camera 116 are retracted to an area where X-rays are not irradiated by a retracting mechanism (not shown) so as not to be exposed to X-rays during imaging with X-rays.
  • the illumination device 115 is attached to the optical camera 116 by an attachment mechanism (not shown).
  • the illumination device 115 uniformly lights the entire field of view (imaging area) of the optical camera 116.
  • the illumination device 115 is a ring-shaped LED (Light Emitting Diode) light source that emits white light, but is not limited thereto, and may be another light source.
  • the optical camera 116 is not necessarily provided integrally, and may be provided independently of the optical camera 116.
  • the illumination device 115 is also retracted to an area where X-rays are not irradiated by a retracting mechanism (not shown) so as not to be exposed to X-rays when imaging with X-rays.
  • the X-ray inspection apparatus 100 can change the ratio (magnification ratio) of the distance between the source-substrate and the distance between the source-detector. As a result, the X-ray inspection apparatus 100 can change the size (and therefore the resolution) of the inspection object 1 imaged by the X-ray detector 23.
  • the X-ray inspection apparatus 100 can operate the substrate and the X-ray detector 23 so that the substrate can be imaged from various directions.
  • three-dimensional data of the inspection object 1 is generated using a three-dimensional data generation technique called CT (Computed Tomography) based on the imaging results from various directions.
  • the X-ray inspection apparatus 100 is used for in-line inspection.
  • the inspection object driving mechanism 110 further includes a mechanism for carrying in and out the substrate.
  • a substrate carrying / unloading mechanism is not shown in FIG.
  • a substrate carry-in / out mechanism a belt conveyor disposed on a substrate rail is generally used.
  • a rod called a pusher may be used as the carry-in / out mechanism.
  • substrate can be moved by sliding a board
  • the calculation unit 70 a general central processing unit (CPU) can be used.
  • the storage unit 90 includes a main storage unit 90a and an auxiliary storage unit 90b.
  • a memory can be used as the main storage unit 90a
  • an HDD hard disk drive
  • a general computer can be used as the calculation unit 70 and the storage unit 90.
  • the X-ray inspection apparatus 100 can input information for teaching (teaching) the inspection position or the like in the inspection object 1 in advance regarding the inspection of the inspection object 1.
  • the contents of the process of inputting such information (teaching process) will be described with reference to FIG. 3 which is a flowchart of the process.
  • the teaching process is realized by the inspection information generation unit 86 in the X-ray inspection apparatus 100.
  • Information relating to the teaching of the inspection generated in the teaching process is stored in the storage unit 90 as, for example, imaging condition information 94.
  • FIG. 3 is a flowchart for explaining the flow of teaching processing in the present embodiment.
  • the X-ray inspection apparatus 100 captures a visible light image with the optical camera 116 with the substrate facing down (S104). Thereafter, the substrate is once taken out of the driving range in which a visible light image can be taken (S106), the direction is reversed by a predetermined reversing mechanism (not shown in FIGS. 1 and 2), and the substrate is again mounted. It is carried in a face-up state (S108), and a visible light image is taken by the optical camera 116 in a state on the front side of the substrate (S112).
  • an X-ray image is taken with the substrate facing up (S112).
  • the control of the arithmetic unit 70 of the X-ray inspection apparatus 100 controls these three images.
  • Position alignment is executed (S114), and further image expansion / contraction (magnification change) and overlay processing are executed (S116).
  • the superimposed image is displayed on the output unit 50 under the control of the calculation unit 70 (S118).
  • the display is performed from an image in which a visible light image on the front side and an X-ray image are superimposed.
  • the position of the inspection object (here, solder ball) of the component mounted on the front side is further superimposed on the superimposed image as described above.
  • a mark to be displayed for example, a rectangular mark is also displayed.
  • the user determines whether the position of such a mark is appropriate as an inspection area (referred to as “inspection window”) based on the display, and if it is appropriate, a confirmation input for confirming the inspection window. To do. On the other hand, if it is not appropriate, for example, the position and direction of the inspection window are manually moved to a position / direction determined to be appropriate, and then confirmation input is performed.
  • the arithmetic unit 70 stores, as setting information, the relative position of the inspection window with respect to the inspection target component on the front side as the imaging condition information in the storage unit 90.
  • an inspection window is set in the storage unit 90 as a relative position with respect to a predetermined reference point of the component (such as a predetermined corner portion of the external shape of the component) (S120).
  • the output from the output unit 50 is switched to display on the back side (S122), and a superimposed image is displayed on the back side (S124) in the same manner as the front side (S124).
  • a mark inspection window
  • the position of the inspection target here, solder ball
  • the user determines whether or not the position of such a mark is appropriate as the inspection window based on the display, and if it is appropriate, performs a confirmation input for confirming the inspection window.
  • the arithmetic unit 70 stores, as setting information, the relative position of the inspection window with respect to the back inspection target component as the imaging condition information in the storage unit 90. Also in this case, for example, although not particularly limited, an inspection window is set in the storage unit 90 as a relative position with respect to a predetermined reference point of the component (such as a predetermined corner portion of the external shape of the component) (S126). .
  • the inspection standard as described later is set by the user, and a test for confirming the operation by obtaining the inspection result on a trial basis is executed (S128). Further, the substrate is unloaded (S130), and the teaching process is completed (S130).
  • FIG. 4 is a flowchart for explaining the “image alignment processing (S114)” and “image expansion / contraction / superposition processing (S116)” shown in FIG.
  • the optical magnification of the optical camera and the X-ray camera (the configuration for taking an X-ray image by the X-ray detector 23 is referred to as “X-ray camera” for the sake of convenience) is assembling and assembling. Sometimes it is set to a specified value. As performance of the optical camera and the X-ray camera, for example, the following values are assumed.
  • Optical camera Resolution: 22 ⁇ m
  • X-ray camera Resolution: Variable 10, 15, 20, 25, 30 ⁇ m
  • the resolution of the X-ray camera used for setting the teaching window is 20 ⁇ m. That is, the resolutions of the optical camera and the X-ray camera do not necessarily match.
  • the position on the front image taken by the optical camera and the position on the image taken by the corresponding X-ray camera are calibrated so that they match. To do.
  • the image of the optical camera is enlarged to match the resolution of the X-ray camera of 20 ⁇ m. Note that it may be necessary to reduce the image of the optical camera because of the resolution between the two.
  • the following magnification enlargement is executed based on the image center of the visible light image (front side) (S200).
  • a fiducial mark can be used as a reference for such an overlay position.
  • the fiducial mark is formed of a copper wiring pattern at the diagonal end of the substrate. Therefore, the device position can be uniquely defined for the copper wiring pattern on the printed circuit board without being affected by the shape of the board or the offset of the wiring forming position with respect to the board.
  • the position of a predetermined fiducial mark (for example, the corner of the upper left substrate on the front side of the substrate) is detected from the image of the visible light image (front side) (S204).
  • the position A on the image of “the corner of the substrate” is stored in the storage unit 90 (S206).
  • the image enlargement process is executed in the same manner as the front side with reference to the image center of the visible light image (back side) (S210).
  • the position of a predetermined fiducial mark (for example, the corner of the substrate on the upper left side of the substrate back side) is detected from the image of the visible light image (the back side) (S212).
  • the difference ( ⁇ (x, y)) from the position A on the image of “the corner of the substrate” is stored in the storage unit 90 (S212).
  • the visible light image (back side) and the X-ray image are shifted by ⁇ (x, y), and the two are superimposed (S214).
  • the position of the inspection window is specified by aligning the visible light image and the X-ray image with reference to the corner of the substrate in the visible light image on the surface. Since the specified position is registered as a coordinate relative to the part, even if registered in this way, this is a reference coordinate for the part (coordinate based on the fiducial mark). It will be registered.
  • the part number, the coordinates (X, Y) of the part center, and the rotation angle ⁇ of the part are registered for each part mounted on the printed circuit board.
  • the inspection window is an area of the solder to be inspected, and is registered for each part number (for each type of part).
  • the fiducial mark is photographed and the substrate height is measured after the substrate is loaded. Since the substrate height is measured, when the X-ray image is a CT image (reconstructed image), a cross section of a predetermined height is displayed from the measured substrate height, so that the solder portion of the surface is displayed. An image can be displayed. If the X-ray image is a reconstructed image (CT image) based on information on the substrate height and the substrate thickness, [(measured substrate height) ⁇ (substrate thickness) ⁇ (predetermined height)] By displaying the cross section, the image of the solder portion on the back surface can be displayed.
  • CT image reconstructed image
  • FIG. 5 is a conceptual diagram for explaining the alignment of the visible light image on the front side, the visible light image on the back side, and the X-ray image as described above.
  • the relative position of the optical camera and the X-ray camera is determined by measuring and setting the offset value at the time of manufacturing and assembly. It is assumed that the position on the image photographed by the corresponding X-ray camera has been calibrated so that both coincide with each other.
  • the visible light image (front side) is used as a reference, the position of the visible light image (back side) is aligned, and the visible light image (front side) and the X-ray image are replaced with each other. Because there is no, there will be a natural position.
  • the X-ray image may be a single X-ray transmission image or a reconstructed image (CT image) reconstructed from a plurality of X-ray transmission images obtained by imaging the same portion from a plurality of directions.
  • FIG. 6 shows the transmittance of the optical image (percentage of transmission when displaying the superimposed X-ray image so that it can be seen through the visible light image) when the visible light image and the X-ray image are superimposed and displayed. It is an example of the screen to set.
  • the inspection target when the visible light image and the X-ray image are superimposed and displayed is displayed.
  • the visibility of the area is improved.
  • buttons and the like in FIG. 6 are as follows.
  • FIG. 7 is a diagram showing a display example in which a visible light image (front side) and an X-ray reconstructed image are superimposed and displayed.
  • a visible light image (front side) photographed from the upper surface on the front side and a planar image of an X-ray reconstruction image in a direction parallel to the substrate and at a specified height from the substrate surface are superimposed.
  • a reconstructed image showing a designated cross section in the planar image of the X-ray reconstructed image is also displayed.
  • the image displayed by superimposing the visible light image (front side) photographed from the upper surface on the front side and the planar image of the X-ray reconstructed image it is used for soldering on the substrate (front side) based on the CAD data.
  • the position of the electrode pad (land) is displayed in a rectangular shape. Note that a rectangular window (inspection window) is automatically displayed on the “camera image” screen for preset parts. If there is no setting in advance, it may be set manually by the user.
  • the user performs confirmation input (for example, click of the save button) after adjusting the position of the rectangular shape as necessary.
  • the same image display and position adjustment are performed in advance on the visible light image (back side) and the X-ray reconstructed image. It should be noted that the display of the X-ray reconstructed image is also switched to match the display direction in accordance with the switching between the front and back display.
  • FIG. 8 is a diagram showing a display example for further reducing the image shown in FIG. 7 and confirming the soldering position of the entire semiconductor chip.
  • FIG. 9 is a diagram showing a display example in which a visible light image (back side) and a part number are displayed in an overlapping manner.
  • FIG. 10 is a diagram showing a display example in which a visible light image (back side) and an X-ray transmission image are superimposed and displayed.
  • the display of the X-ray transmission image is switched to match the display direction according to the switching of the front and back display.
  • FIG. 11 is a diagram showing a display example in which a visible light image (back side) and an X-ray transmission image are superimposed and displayed as in FIG.
  • FIG. 11 a visible light image (front side) photographed from the upper surface on the front side and an X-ray transmission image are superimposed and displayed in the electrode pad for soldering on the substrate (front side) based on CAD data.
  • the position of (land) is displayed in a rectangular shape.
  • the user performs confirmation input (for example, click of the save button) after adjusting the position of the rectangular shape as necessary.
  • the visible light image and the X-ray image can be overlaid and the display position can be confirmed with respect to the image.
  • the presence of the X-ray image makes the soldered region visible to the user and confirms the coincidence with the position of the soldering electrode pad (land) on the substrate based on the CAD data.
  • FIG. 12 is a flowchart showing the flow of X-ray inspection according to the present embodiment. With reference to FIG. 12, the flow of the whole X-ray inspection according to the present embodiment will be described.
  • X-ray inspection apparatus 100 carries the substrate into a prescribed position inside X-ray inspection apparatus 100 by means of inspection target drive mechanism 110 (step S1). SA3).
  • the specified position is usually preferably set at the center of the X-ray inspection apparatus 100, that is, at the center of the X-ray irradiation range.
  • the specified position may be a position where the X-ray detector 23 can capture an X-ray fluoroscopic image of the substrate.
  • step SA5 the X-ray inspection apparatus 100 images a fiducial mark with the optical camera 116. Further, the X-ray inspection apparatus 100 corrects the substrate position, if necessary, based on the position of the fiducial mark. Specifically, the X-ray inspection apparatus 100 moves the substrate position in the same manner as when carrying in. Through these processes, the X-ray inspection apparatus 100 can recognize the deviation of the substrate position and the inclination of the substrate that occur when the substrate is carried in, and can correct the deviation and the inclination.
  • step SA7 the X-ray inspection apparatus 100 uses the displacement meter 114 to measure the height of the substrate in the reconstruction area (hereinafter also referred to as the field of view).
  • the X-ray inspection apparatus 100 stores the measured substrate height in the main storage unit 90a. The stored height of the substrate is used at the time of CT imaging described later.
  • the X-ray inspection apparatus 100 measures the substrate height for all fields of view before performing CT imaging. Keep it. This is because the displacement meter 114 needs to be retracted so as not to be exposed during CT imaging. Thus, measuring all the substrate heights in advance can reduce the entire inspection time compared to measuring the substrate height each time CT imaging of each field of view is performed.
  • the X-ray inspection apparatus 100 images one field of view from a plurality of directions within the inspection object 1.
  • the X-ray inspection apparatus 100 moves the substrate and the X-ray detector 23 so as to draw a circular orbit in the horizontal direction, and images the visual field from a plurality of directions.
  • the positions of the substrate and the X-ray detector 23 at the time of imaging are determined by the irradiation angle ⁇ R, the source-substrate distance (FOD), and the source-detector distance (FID).
  • the substrate and the X-ray detector 23 are arranged so that the center of the visual field is imaged at the center of the X-ray detector 23.
  • the trajectory of the substrate and the X-ray detector 23 may not be a circle, but may be a rectangle or a straight line.
  • the number of images can be set by the user. It is preferable that the user determines the number of images to be captured based on the required accuracy of reconstruction data.
  • the number of images is usually about 4 to 256. However, the number of captured images is not limited to this. For example, the X-ray inspection apparatus 100 may of course capture more than 256 images.
  • step SA11 the X-ray inspection apparatus 100 generates reconstruction data from captured images in a plurality of directions.
  • Various methods have been proposed for the reconstruction process. For example, the Feldkamp method can be used.
  • step SA13 the X-ray inspection apparatus 100 extracts the board height, that is, the height of the board surface on which the components are arranged. Details of the processing performed in step SA13 will be described later.
  • step SA15 the X-ray inspection apparatus 100 acquires a tomographic image having a height away from the substrate height by a predetermined distance as an inspection image used for the inspection.
  • the distance between the height of the inspection image and the substrate height is set by the user. This distance is preferably set according to the design data of the inspection object 1 and the inspection method.
  • a tomographic image having a height slightly apart from the surface of the substrate on which the component is arranged to the side on which the component is arranged is set as the inspection image.
  • step SA17 the X-ray inspection apparatus 100 performs visual field pass / fail determination using the inspection image. That is, the X-ray inspection apparatus 100 inspects the wettability of solder after heating, the presence or absence of solder voids and bridges, the presence or absence of foreign matter, and the like. Various quality determination methods are well known, and the X-ray inspection apparatus 100 may use a quality determination method suitable for the inspection item.
  • the quality determination unit 78 determines the quality of the mounting board based on the solder area in the binarized image.
  • FIG. 13 is a diagram for explaining quality determination based on the solder area in the binarized image.
  • FIG. 13A is a perspective view of a substrate on which electronic components are mounted.
  • a first component 502 and a second component 503 are mounted on the substrate 501.
  • the second component 503 is physically and electrically connected to the substrate 501 by a BGA (Ball Grid Array) 504 or the like.
  • BGA All Grid Array
  • FIG. 13B is a cross-sectional view in which a connection portion between the substrate 501 and the second component 503 is cut by a cross section perpendicular to the surface of the substrate 501.
  • the BGA 504 connects the second component 503 and the surface layer 505 of the substrate 501.
  • the BGA 504 is heated and deforms into a state 506 after heating.
  • a void 507 may occur in the state 506 after heating.
  • a plurality of solder balls hereinafter also referred to as “ball terminals” may be combined to form a bridge 508.
  • the X-ray inspection apparatus 100 generates three-dimensional data of an area expected to include a solder ball, and creates a tomographic image by cutting out the three-dimensional data.
  • the X-ray inspection apparatus 100 binarizes the created tomographic image, and acquires a binarized image obtained by separating the image into solder and other parts.
  • a general binarization process such as a discriminant analysis method can be used.
  • the inspection apparatus labels the white (or 1) portion from the binarized image, and acquires a labeling image in which solder is distinguished.
  • FIG. 13C is a cross-sectional view of a connection portion cut by a cross section indicated by a broken line in FIG.
  • the solder is indicated by white and the parts other than the solder are indicated by oblique lines.
  • three types of states, normal, void, and bridge are shown. Referring to FIG. 13C, when there is a void 507, a portion without solder is generated in the solder. When the bridge 508 is present, solder is observed in a wider area than in the normal state.
  • the inspection device counts the area of each solder (the number of white or one pixel) from the labeling image to obtain the solder area.
  • the inspection apparatus determines whether the solder joint surface is good or not by determining that the area is within a certain range and is non-defective, and otherwise. In general, the predetermined range of threshold values is set in advance by the user.
  • step SA ⁇ b> 18 the X-ray inspection apparatus 100 determines whether or not all the visual fields have been determined to be acceptable. If there is a field of view for which pass / fail judgment has not been made (NO in step SA18), X-ray inspection apparatus 100 repeats the processing from CT imaging (step SA9). On the other hand, when the pass / fail determination is made for all the visual fields (YES in step SA18), the process proceeds to step SA19.
  • step SA19 the X-ray inspection apparatus 100 carries the substrate out of the X-ray inspection apparatus 100. Specifically, the X-ray inspection apparatus 100 moves the substrate out of the X-ray inspection apparatus 100 by the inspection target drive mechanism 110.
  • the X-ray inspection apparatus 100 ends the inspection for one inspection object 1 (step SA21).
  • the X-ray inspection apparatus 100 repeats a series of processes from Step SA1 to Step SA21 described so far when performing inline inspection on a plurality of inspection objects 1.
  • FIG. 14 is a conceptual diagram for explaining another configuration of the X-ray inspection apparatus 100.
  • the inspection target DB 200 is a configuration provided inside the X-ray inspection apparatus 100.
  • the CAD data or the like does not necessarily need to be stored in the X-ray inspection apparatus 100, and is connected via a network as shown in FIG.
  • the inspection object DB 200 may be stored in an external data creation device arranged outside the storage area.
  • the user can inspect the inspection object (eg, solder ball) and the inspection position in order to display the inspection position by superimposing the X-ray image and the visible light image. It is possible to grasp the relationship between and the user, and there is an effect that the user can easily see.
  • the inspection object eg, solder ball
  • the inspection position can be determined by aligning the back surface and the back surface, and the front and back surfaces can be accurately aligned.
  • inspection object 10 X-ray source, 12 substrate, 18 X-ray, 22 X-ray detector drive unit, 23 X-ray detector, 30 image acquisition control mechanism, 32 detector drive control mechanism, 34 image data acquisition unit, 40 Input unit, 50 output unit, 60 X-ray source control mechanism, 62 electron beam control unit, 70 arithmetic unit, 72 X-ray source control unit, 74 image acquisition control unit, 76 reconstruction unit, 78 pass / fail judgment unit, 80 inspection object Position control unit, 82 X-ray focal position calculation unit, 84 imaging condition setting unit, 86 inspection information generation unit, 90 storage unit, 92 X-ray focal position information, 94 imaging condition information, 96 program, 98 image data, 100 X-ray Inspection device, 110 inspection target position drive mechanism, 111a, 111b stage, 112a, 112b substrate rail, 114 displacement meter, 116 optics Mela, 120 inspection target position control mechanism.

Abstract

An X-ray inspection system (100) inspects, using X-rays, a subject to be inspected. In the X-ray inspection system (100), a storage unit (90) stores information that specifies a position of an area to be inspected in the subject to be inspected. A visible light image pickup unit picks up a visible image of a first region of the subject to be inspected, said first region including the area to be inspected. An X-ray image pickup unit (23) picks up a radiographic image of a second region of the subject to be inspected, said second region including the area to be inspected. An output unit (50) displays the visible image of the first region, and the radiographic image of the second region by having the positions thereof and the magnifications thereof equal to each other, and at the same time, the output unit displays a mark on the basis of the information stored in the storage unit (90), said mark indicating the position of the inspected area.

Description

検査領域設定方法およびX線検査システムInspection area setting method and X-ray inspection system
 本発明は、検査領域設定方法およびX線検査システムに関し、より特定的には、プリント基板と回路部品との間の接合の良否等を検査するのに用いられる検査領域設定方法およびX線検査システムに関する。 The present invention relates to an inspection region setting method and an X-ray inspection system, and more specifically, an inspection region setting method and an X-ray inspection system used for inspecting the quality of a bond between a printed circuit board and a circuit component. About.
 従来から、プリント基板(以下、単に「基板」ともいう)においてはんだ付けされた部品について、はんだ付けの状態の良否等を非破壊検査で検査するために、X線CT(Computed Tomography)がしばしば用いられている。X線CTでは、対象物を複数の方向からX線により撮像し、X線が吸収された度合い(減衰量)の分布を示す複数枚の透視画像を取得する。さらに、複数枚の透視画像に基づく再構成処理を行ない、検査対象のX線吸収係数の分布の2次元データもしくは3次元データを得る。 Conventionally, X-ray CT (Computed Tomography) is often used for non-destructive inspection of a soldered part on a printed circuit board (hereinafter also simply referred to as “substrate”) for non-destructive inspection. It has been. In X-ray CT, an object is imaged with X-rays from a plurality of directions, and a plurality of fluoroscopic images showing the distribution of the degree of X-ray absorption (attenuation) are acquired. Furthermore, reconstruction processing based on a plurality of fluoroscopic images is performed to obtain two-dimensional data or three-dimensional data of the distribution of the X-ray absorption coefficient to be inspected.
 このような検査では、多数の同一形状の基板について、それぞれ同じ位置を次々と検査する場合がある。このような場合、位置決めの基準にする被測定物を用いて検査位置の検査装置への教示(ティーチング)が行なわれる。そして、教示された検査の位置について、同種の被測定物のX線透視画像が次々に生成され、当該透視画像に基づいて、各被測定物についての検査が行なわれる。 In such an inspection, the same position may be inspected one after another for a large number of identically shaped substrates. In such a case, teaching (teaching) to the inspection device of the inspection position is performed using the object to be measured as a positioning reference. Then, X-ray fluoroscopic images of the same type of object to be measured are successively generated at the taught position of the inspection, and each object under test is inspected based on the fluoroscopic image.
 このような検査に関する技術は、従来から種々開示されている。たとえば、特許文献1(特開2007-218784号公報)や特許文献2(特開2007-127490号公報)に開示された技術では、ティーチングにおいて、検査位置の入力を受付ける際に、被測定物の可視光画像が表示される。 Various techniques relating to such inspection have been disclosed. For example, in the techniques disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2007-218784) and Patent Document 2 (Japanese Patent Laid-Open No. 2007-127490), when receiving an input of an inspection position in teaching, A visible light image is displayed.
 基板に関し、上記したような部品のはんだ付けの状態の良否等を検査するためには、部品の位置だけでなく、部品におけるはんだ付けの位置等、検査対象とする位置や形状を指定する情報が設定されていることが必要とされる。 In order to inspect the quality of the soldering state of the component as described above with respect to the board, not only the position of the component but also information specifying the position and shape to be inspected, such as the position of soldering in the component, etc. It needs to be set.
 しかし、従来の検査装置では、基板に、BGA(Ball Grid Array)のようにはんだ付けの部分が部品本体に隠れて見えない部品が実装されている場合、はんだ付けの位置などの情報の入力の正確性は、ユーザの経験に左右されるところが大きく、このため、検査の精度がユーザの経験によって大きく左右されるという問題があった。また、QFP(Quad Flat Package)のようなパッケージ部品についても、部品ごとに多数存在するはんだ付けの位置をユーザが逐一指定することが必要であったため、ユーザに煩雑な作業を要求することとなっていたという問題があった。 However, in a conventional inspection device, when a part on which a soldering part is hidden by the part body, such as BGA (Ball Grid Array), is mounted on a board, information such as a soldering position is not input. The accuracy largely depends on the user's experience. For this reason, there is a problem that the accuracy of the inspection is greatly influenced by the user's experience. In addition, for package parts such as QFP (Quad Flat Package), it is necessary for the user to designate a large number of soldering positions for each part one by one, which requires complicated work for the user. There was a problem that it was.
 そこで、上述したようなX線CTをインラインの検査装置として使用する場合においては、上記のような問題点の改善のために、複数存在する基板の検査箇所について、検査領域および検査ロジックをティーチングすることが知られている。たとえば、特許文献3(特開2010-160071号公報)には、ユーザが部品が外形と位置を教示すると、CT再構成を行い、ボール(電極の位置)電極の位置を抽出することが開示されている。 Therefore, when the X-ray CT as described above is used as an in-line inspection apparatus, teaching areas and inspection logic are inspected with respect to a plurality of inspection locations on a substrate in order to improve the above-described problems. It is known. For example, Patent Document 3 (Japanese Patent Laid-Open No. 2010-160071) discloses that when a user teaches the outline and position of a component, CT reconstruction is performed and the position of a ball (electrode position) electrode is extracted. ing.
 また、特許文献4(特開2006-220640号公報)には、X線源とディテクタに対して回転可能な被検体の保持機構と、X線源と同軸方向から、撮像するCCDカメラで撮像を行い、X線源に対して位置合わせが不要で位置ヅレが無く、正確に検出することが可能な技術が開示されている。 In Patent Document 4 (Japanese Patent Laid-Open No. 2006-220640), an object holding mechanism that can rotate with respect to an X-ray source and a detector, and a CCD camera that picks up an image from the same direction as the X-ray source are used. There is disclosed a technique that can be accurately detected without positional alignment with respect to the X-ray source.
特開2007-218784号公報JP 2007-218784 A 特開2007-127490号公報JP 2007-127490 A 特開2010-160071号公報JP 2010-160071 A 特開2006-220640号公報JP 2006-220640 A
 しかしながら、たとえば、特許文献1(特開2010-160071号公報)に開示されるように、可視光画像において検査領域の位置を矩形等による表示する構成では、必ずしも、ユーザにとって検査位置が正しいかを判断するのに十分な情報が表示されておらず、検査の精度には、やはり、ユーザの経験に負うところが残る。 However, for example, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2010-160071), in the configuration in which the position of the inspection region is displayed in a rectangular shape or the like in the visible light image, it is not always necessary that the inspection position is correct for the user. Not enough information to display is displayed, and the accuracy of the inspection still depends on the user's experience.
 また、基板検査においては、基板の表面だけでなく、裏面も検査をする場合が存在するが、この場合は表面、裏面の位置合わせを正確に行った上で重ね合わせた後、ユーザが検査対象及びその位置を確認をしないと誤った領域を検査領域として設定してしまう可能性がある。 In addition, in the board inspection, there is a case where not only the front surface of the substrate but also the back surface is inspected. In this case, after the positioning of the front surface and the back surface is accurately performed, the user is inspected. If the position is not confirmed, an erroneous area may be set as the inspection area.
 さらに、特許文献4(特開2006-220640号公報)に開示された技術では、透過画像とCCD画像を同軸で撮像し、表面画像と内部画像を合わせて表示する。これは解析的に用いられることが前提であり、自動検査を行う検査位置設定ではない。さらに、たとえば、プリント基板のようにカメラの視野、X線検査機の視野よりも対象物が大きい場合は、検査領域を設定することが出来ない。 Furthermore, in the technique disclosed in Patent Document 4 (Japanese Patent Application Laid-Open No. 2006-220640), a transmission image and a CCD image are captured coaxially, and a surface image and an internal image are displayed together. This is based on the assumption that it is used analytically, and is not an inspection position setting for performing automatic inspection. Further, for example, when the object is larger than the field of view of the camera and the field of view of the X-ray inspection machine, such as a printed circuit board, the inspection area cannot be set.
 本発明はかかる実情に鑑み考え出されたものであり、その目的は、X線画像を用いて被検査対象を検査する場合に、被検査対象における検査領域を精度よく設定することが可能な検査領域設定方法およびX線検査システムを提供することである。 The present invention has been conceived in view of such circumstances, and its purpose is to inspect an inspection area in the inspection object with high accuracy when inspecting the inspection object using an X-ray image. An area setting method and an X-ray inspection system are provided.
 本発明の他の目的は、被検査物が電子部品の実装された基板である場合に、実装部品と基板との接続配線についての情報が正確にかつ容易に入力される検査領域設定方法、X線検査装置およびX線検査プログラムを提供することである。 Another object of the present invention is an inspection region setting method in which information about connection wiring between a mounted component and a substrate is accurately and easily input when the object to be inspected is a substrate on which an electronic component is mounted, X A line inspection apparatus and an X-ray inspection program are provided.
 この発明の1つの局面にしたがうと、検査領域設定方法であって、X線を用いて被検査物の検査を実行するX線検査装置において、被検査物における検査領域を設定する検査領域設定方法であって、被検査物の検査対象を含む第1の領域の可視画像を撮像するステップと、被検査物の検査対象を含む第2の領域に対して、X線画像を撮像するステップと、第1の領域についての可視画像と第2の領域についてのX線画像を、位置および倍率をそろえて、検査対象の位置を示すマークとともに同時に表示するステップと、表示した検査対象のマークの位置およびX線画像における検査対象の位置について確認の入力を受け付け、検査領域を確定するステップとを備える。 According to one aspect of the present invention, an inspection region setting method for setting an inspection region on an inspection object in an X-ray inspection apparatus that performs inspection of the inspection object using X-rays A step of capturing a visible image of a first region including the inspection target of the inspection object, a step of capturing an X-ray image of the second region including the inspection target of the inspection object, and A step of simultaneously displaying a visible image for the first region and an X-ray image for the second region together with a mark indicating the position of the inspection object with the same position and magnification; Receiving a confirmation input for the position of the inspection target in the X-ray image and determining the inspection region.
 好ましくは、被検査物は、複数の電子部品が搭載された基板であり、可視画像を撮像するステップは、基板の表面側の第1の可視画像および裏面側の第2の可視画像を撮像するステップを含み、同時に表示するステップは、第1または第2の可視画像の一方とX線画像との位置および倍率をそろえて表示するステップを含み、確定するステップは、表面側および裏面側それぞれの検査領域を確定するステップを含む。 Preferably, the object to be inspected is a substrate on which a plurality of electronic components are mounted, and the step of capturing a visible image captures a first visible image on the front side and a second visible image on the back side of the substrate. The step of displaying at the same time includes the step of displaying the same position and magnification of one of the first or second visible images and the X-ray image, and the step of determining includes the step of determining each of the front side and the back side Including a step of determining an inspection area.
 好ましくは、X線画像は、複数の透視方向から撮影された複数のX線画像に基づいて再構成された被検査物の検査対象を含む領域の再構成画像である。 Preferably, the X-ray image is a reconstructed image of an area including an inspection object of an inspection object reconstructed based on a plurality of X-ray images taken from a plurality of fluoroscopic directions.
 好ましくは、再構成画像は、第1および第2の可視画像においては、死角となる検査対象を含む部分における基板に平行な断面での断層画像である。 Preferably, the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images.
 好ましくは、X線画像は、被検査物のX線の透過画像である。
 この発明の他の局面に従うと、X線を用いて被検査物を検査するX線検査システムであって、被検査物における検査対象の位置を指定する情報を格納するための記憶部と、被検査物の検査対象を含む第1の領域の可視画像を撮像する可視光画像撮影部と、被検査物の検査対象を含む第2の領域に対して、X線画像を撮像するX線画像撮影部と、第1の領域についての可視画像と第2の領域についてのX線画像を、位置および倍率をそろえて表示するとともに、記憶部に格納された情報に基づいて検査対象の位置を示すマークを同時に表示する出力部と、表示した検査対象のマークの位置およびX線画像における検査対象の位置について確認の入力を受け付ける入力部と、入力に応じて、確定された検査領域を特定するための設定情報を記憶部に格納する制御部とを備える。
Preferably, the X-ray image is an X-ray transmission image of the inspection object.
According to another aspect of the present invention, there is provided an X-ray inspection system for inspecting an object to be inspected using X-rays, a storage unit for storing information for designating a position of an inspection object in the object to be inspected, An X-ray image capturing unit that captures an X-ray image of a visible light image capturing unit that captures a visible image of a first region including an inspection target of the inspection object and a second region including an inspection target of the inspection object. And a visible image for the first region and an X-ray image for the second region are displayed with the same position and magnification, and a mark indicating the position of the inspection object based on the information stored in the storage unit An output unit for simultaneously displaying the mark, the input unit for receiving confirmation of the position of the displayed mark to be inspected and the position of the inspection target in the X-ray image, and a specified inspection region according to the input Setting information storage unit And a control unit for storing.
 好ましくは、被検査物は、複数の電子部品が搭載された基板であり、可視光画像撮影部は、基板の表面側の第1の可視画像および裏面側の第2の可視画像を撮像し、出力部は、第1または第2の可視画像の一方とX線画像との位置および倍率をそろえて表示し、制御部は、表面側および裏面側それぞれの検査領域を特定するための設定情報を記憶部に格納する。 Preferably, the inspection object is a substrate on which a plurality of electronic components are mounted, and the visible light image capturing unit captures a first visible image on the front surface side and a second visible image on the back surface side of the substrate, The output unit displays the position and magnification of one of the first or second visible images and the X-ray image, and the control unit displays setting information for specifying the inspection areas on the front side and the back side. Store in the storage.
 好ましくは、X線画像は、複数の透視方向から撮影された複数のX線画像に基づいて再構成された被検査物の検査対象を含む領域の再構成画像である。 Preferably, the X-ray image is a reconstructed image of an area including an inspection object of an inspection object reconstructed based on a plurality of X-ray images taken from a plurality of fluoroscopic directions.
 好ましくは、再構成画像は、第1および第2の可視画像においては、死角となる検査対象を含む部分における基板に平行な断面での断層画像である。 Preferably, the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images.
 好ましくは、X線画像は、被検査物のX線の透過画像である。 Preferably, the X-ray image is an X-ray transmission image of the inspection object.
 この発明によれば、X線画像と可視光画像を重ね合わせて検査位置を表示するためユーザが検査対象物と検査位置との関係を把握することができ、ユーザが視認しやすいとの効果がある。 According to this invention, since the X-ray image and the visible light image are superimposed to display the inspection position, the user can grasp the relationship between the inspection object and the inspection position, and the user can easily see the effect. is there.
本発明の一実施の形態に係るX線検査装置の概略ブロック図である。1 is a schematic block diagram of an X-ray inspection apparatus according to an embodiment of the present invention. 図1のX線検査装置の構成を説明するための図である。It is a figure for demonstrating the structure of the X-ray inspection apparatus of FIG. 図1のX線検査装置におけるティーチング処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the teaching process in the X-ray inspection apparatus of FIG. 図3に示された「画像の位置合せ処理(S114)」と「画像の伸縮・重ね合わせ処理(S116)」とを説明するためのフローチャートである。FIG. 4 is a flowchart for explaining “image registration processing (S114)” and “image expansion / contraction / superposition processing (S116)” shown in FIG. 3; 基板の表側の可視光画像と裏側の可視光画像とX線画像との位置合わせを説明するための概念図である。It is a conceptual diagram for demonstrating alignment with the visible light image of the front side of a board | substrate, the visible light image of a back side, and an X-ray image. 可視光画像とX線画像とを重ね合わせて表示するにあたり、光学画像の透過率を設定する画面の例である。It is an example of the screen which sets the transmittance | permeability of an optical image in displaying a visible light image and an X-ray image in a superimposed manner. 可視光画像(表側)とX線再構成画像とを重ね合わせて表示した表示例を示す図である。It is a figure which shows the example of a display which accumulated and displayed the visible light image (front side) and the X-ray reconstruction image. 図7に示した画像をさらに縮小して、半導体チップ全体のはんだづけ位置を確認するための表示例を示す図である。It is a figure which shows the example of a display for further reducing the image shown in FIG. 7, and confirming the soldering position of the whole semiconductor chip. 可視光画像(裏側)と部品番号とを重ね合わせて表示した表示例を示す図である。It is a figure which shows the example of a display which overlapped and displayed the visible light image (back side) and the part number. 可視光画像(裏側)とX線透過画像とを重ね合わせて表示した表示例を示す図である。It is a figure which shows the example of a display which superimposed and displayed the visible light image (back side) and the X-ray transmissive image. 可視光画像(裏側)とX線透過画像とを重ね合わせて表示した表示例を示す図である。It is a figure which shows the example of a display which superimposed and displayed the visible light image (back side) and the X-ray transmissive image. 図1のX線検査装置におけるX線検査の流れをフローチャート形式で示す図である。It is a figure which shows the flow of the X-ray inspection in the X-ray inspection apparatus of FIG. 1 in a flowchart format. 2値化画像内のはんだ面積に基づく良否判定について説明するための図である。It is a figure for demonstrating the quality determination based on the solder area in a binarized image. X線検査装置の他の構成例を説明するための概念図である。It is a conceptual diagram for demonstrating the other structural example of a X-ray inspection apparatus.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部分には同一の符号を付してある。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰り返さない。また、本明細書では、X軸、Y軸およびZ軸とは、互いに直行する軸を言うものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated. Further, in this specification, the X axis, the Y axis, and the Z axis are axes that are orthogonal to each other.
 (構成の概略)
 図1を参照して、本実施の形態に係るX線検査装置100の構成について説明する。図1は、本実施の形態に係るX線検査装置100の概略ブロック図である。
(Outline of configuration)
With reference to FIG. 1, the structure of the X-ray inspection apparatus 100 which concerns on this Embodiment is demonstrated. FIG. 1 is a schematic block diagram of an X-ray inspection apparatus 100 according to the present embodiment.
 X線検査装置100は、X線18を出力するX線源10と、X線検出器23と、画像取得制御機構30と、検査対象1の位置を移動する検査対象駆動機構110とを備える。さらに、X線検査装置100は、入力部40と、出力部50と、X線源制御機構60と、変位計114と、光学カメラ116(図示せず)、検査対象位置制御機構120と、演算部70と、記憶部90とを備える。さらに、X線検査装置100は、CAD(Computer Aided Design)データ等に基づいて、検査対象となる基板に実装される電子部品の型番、部品自身の基板における配置位置、配置方向、部品のサイズ、基板内のはんだ付け用の電極パッド配置(すなわち、ハンダづけのされる位置の配置)などに関する情報を格納するための検査対象データベース(以下、「検査対象DB」)200とを備える。 The X-ray inspection apparatus 100 includes an X-ray source 10 that outputs X-rays 18, an X-ray detector 23, an image acquisition control mechanism 30, and an inspection target drive mechanism 110 that moves the position of the inspection target 1. Furthermore, the X-ray inspection apparatus 100 includes an input unit 40, an output unit 50, an X-ray source control mechanism 60, a displacement meter 114, an optical camera 116 (not shown), an inspection target position control mechanism 120, an arithmetic operation. Unit 70 and storage unit 90. Further, the X-ray inspection apparatus 100 is based on CAD (Computer Aided Design) data and the like, the model number of the electronic component mounted on the board to be inspected, the placement position of the part itself on the board, the placement direction, the size of the part, And an inspection object database (hereinafter referred to as “inspection object DB”) 200 for storing information related to the arrangement of electrode pads for soldering in the substrate (that is, the arrangement of soldered positions).
 なお、変位計114と光学カメラ116については、後に詳しく説明する。
 検査対象1は、X線源10とX線検出器23との間に配置される。本実施の形態においては、検査対象1は、部品が実装された回路基板であるとする。なお、図1では、下から順にX線源10、検査対象1、X線検出器23が設置されているが、X線源の保守性の観点より、下から順に、X線検出器23、検査対象1、X線源10との並びでこれらを配置してもよい。
The displacement meter 114 and the optical camera 116 will be described in detail later.
The inspection object 1 is disposed between the X-ray source 10 and the X-ray detector 23. In the present embodiment, it is assumed that the inspection object 1 is a circuit board on which components are mounted. In FIG. 1, the X-ray source 10, the inspection object 1, and the X-ray detector 23 are installed in order from the bottom, but from the viewpoint of maintainability of the X-ray source, the X-ray detector 23, These may be arranged in a line with the inspection object 1 and the X-ray source 10.
 X線源10は、X線源制御機構60によって制御され、検査対象1に対して、X線18を照射する。本実施の形態では、検査対象1は、回路部品を実装した基板であるものとする。特に限定されないが、X線源10は、外部からの制御に応じて、焦点位置をターゲット上で移動させることが可能な走査型X線源とすることが可能である。 The X-ray source 10 is controlled by the X-ray source control mechanism 60 and irradiates the inspection object 1 with the X-ray 18. In the present embodiment, it is assumed that the inspection target 1 is a board on which circuit components are mounted. Although not particularly limited, the X-ray source 10 can be a scanning X-ray source capable of moving the focal position on the target in accordance with external control.
 検査対象1は、検査対象駆動機構110により移動される。検査対象駆動機構110の具体的な構成については、後述する。検査対象位置制御機構120は、演算部70からの指示に基づいて、検査対象駆動機構110の動作を制御する。 The inspection object 1 is moved by the inspection object driving mechanism 110. A specific configuration of the inspection target drive mechanism 110 will be described later. The inspection target position control mechanism 120 controls the operation of the inspection target drive mechanism 110 based on an instruction from the calculation unit 70.
 X線検出器23は、X線源10から出力され、検査対象1を透過したX線を検出して画像化する2次元X線検出器である。X線検出器23としては、I.I.(Image Intensifier)管や、FPD(フラットパネルディテクタ)を用いることができる。設置スペースの観点からは、X線検出器23には、FPDを用いることが望ましい。また、インライン検査で使うことができるようにX線検出器23は、高感度であることが望ましく、CdTeを使った直接変換方式のFPDであることが特に望ましい。 The X-ray detector 23 is a two-dimensional X-ray detector that detects and images the X-ray output from the X-ray source 10 and transmitted through the inspection object 1. As the X-ray detector 23, I.I. I. An (Image Intensifier) tube or an FPD (Flat Panel Detector) can be used. From the viewpoint of installation space, it is desirable to use FPD for the X-ray detector 23. Further, the X-ray detector 23 is preferably highly sensitive so that it can be used for in-line inspection, and is particularly preferably a direct conversion FPD using CdTe.
 画像取得制御機構30は、検出器駆動制御機構32と、画像データ取得部34を含む。検出器駆動制御機構32は、演算部70からの指示に基づき、X線検出器駆動部22の動作を制御し、X線検出器23を移動する。画像データ取得部34は、演算部70から指定されたX線検出器23の画像データを取得する。 The image acquisition control mechanism 30 includes a detector drive control mechanism 32 and an image data acquisition unit 34. The detector drive control mechanism 32 controls the operation of the X-ray detector drive unit 22 and moves the X-ray detector 23 based on an instruction from the calculation unit 70. The image data acquisition unit 34 acquires the image data of the X-ray detector 23 specified from the calculation unit 70.
 入力部40は、ユーザからの指示入力等を受け付けるための操作入力機器である。出力部50は、測定結果等を外部に出力する装置である。本実施の形態では、出力部50は、演算部70で構成されたX線画像等を表示するためのディスプレイである。 The input unit 40 is an operation input device for receiving an instruction input from the user. The output unit 50 is a device that outputs measurement results and the like to the outside. In the present embodiment, the output unit 50 is a display for displaying an X-ray image or the like configured by the calculation unit 70.
 すなわち、ユーザは、入力部40を介して様々な入力を実行することができ、演算部70の処理によって得られる種々の演算結果が出力部50に表示される。出力部50に表示される画像は、後に説明するティーチング処理のために使用される他、ユーザによる目視の良否判定のために出力されてもよいし、あるいは、後で説明する良否判定部78の良否判定結果として出力されてもよい。 That is, the user can execute various inputs via the input unit 40, and various calculation results obtained by the processing of the calculation unit 70 are displayed on the output unit 50. The image displayed on the output unit 50 is used for teaching processing described later, may be output for visual judgment by the user, or may be output by a quality judgment unit 78 described later. It may be output as a pass / fail judgment result.
 X線源制御機構60は、電子ビームの出力を制御する電子ビーム制御部62を含む。電子ビーム制御部62は、演算部70から、X線焦点位置、X線エネルギー(管電圧、管電流)の指定をうける。指定されるX線エネルギーは、検査対象の構成によって異なる。 The X-ray source control mechanism 60 includes an electron beam control unit 62 that controls the output of the electron beam. The electron beam control unit 62 receives an X-ray focal position and X-ray energy (tube voltage, tube current) designation from the calculation unit 70. The designated X-ray energy varies depending on the configuration of the inspection object.
 演算部70は、記憶部90に格納されたプログラム96を実行して各部を制御し、また、所定の演算処理を実施する。演算部70は、X線源制御部72と、画像取得制御部74と、再構成部76と、良否判定部78と、検査対象位置制御部80と、X線焦点位置計算部82と、撮像条件設定部84と、検査情報生成部86とを含む。 The calculation unit 70 executes a program 96 stored in the storage unit 90 to control each unit, and performs predetermined calculation processing. The calculation unit 70 includes an X-ray source control unit 72, an image acquisition control unit 74, a reconstruction unit 76, a quality determination unit 78, an inspection target position control unit 80, an X-ray focal position calculation unit 82, and an imaging. A condition setting unit 84 and an inspection information generation unit 86 are included.
 X線源制御部72は、X線焦点位置、X線エネルギーを決定し、X線源制御機構60に指令を送る。 The X-ray source control unit 72 determines the X-ray focal position and X-ray energy, and sends a command to the X-ray source control mechanism 60.
 画像取得制御部74は、X線検出器23が画像を取得するように、画像取得制御機構30に指令を送る。また、画像取得制御部74は、画像取得制御機構30から、画像データを取得する。 The image acquisition control unit 74 sends a command to the image acquisition control mechanism 30 so that the X-ray detector 23 acquires an image. Further, the image acquisition control unit 74 acquires image data from the image acquisition control mechanism 30.
 再構成部76は、画像取得制御部74により取得された複数の画像データから3次元データを再構成する。 The reconstruction unit 76 reconstructs three-dimensional data from a plurality of image data acquired by the image acquisition control unit 74.
 良否判定部78は、部品が実装される基板表面の高さ(基板高さ)を求め、基板高さの断層画像をもとに検査対象の良否を判定する。なお、良否判定を行なうアルゴリズム、あるいは、アルゴリズムへの入力情報は、検査対象によって異なるため、良否判定部78は、これらを撮像条件情報94から入手する。 The pass / fail judgment unit 78 obtains the height of the board surface (board height) on which the component is mounted, and judges pass / fail of the inspection object based on the tomographic image of the board height. In addition, since the algorithm for determining pass / fail or the input information to the algorithm varies depending on the inspection target, the pass / fail determination unit 78 obtains them from the imaging condition information 94.
 検査対象位置制御部80は、検査対象位置制御機構120を介し、検査対象駆動機構110を制御する。 The inspection target position control unit 80 controls the inspection target drive mechanism 110 via the inspection target position control mechanism 120.
 X線焦点位置計算部82は、検査対象1のある検査エリアを検査する際に、その検査エリアに対するX線焦点位置や照射角などを計算する。 The X-ray focal position calculation unit 82 calculates an X-ray focal position, an irradiation angle, and the like for the inspection area when inspecting an inspection area where the inspection object 1 is present.
 撮像条件設定部84は、検査対象1に応じて、X線源10からX線を出力する際の条件(たとえば、X線源に対する印加電圧、撮像時間等)を設定する。 The imaging condition setting unit 84 sets conditions (for example, applied voltage to the X-ray source, imaging time, etc.) when outputting X-rays from the X-ray source 10 according to the inspection object 1.
 記憶部90は、X線焦点位置情報92と、撮像条件情報94と、上述した演算部70が実行する各機能を実現するためのプログラム96と、X線検出器23が撮像した画像データ98とを含む。X線焦点位置情報92には、X線焦点位置計算部82によって計算されたX線焦点位置が含まれる。撮像条件情報94は、撮像条件設定部84によって設定された撮像条件や、良否判定を行なうアルゴリズムに関する情報を含む。 The storage unit 90 includes X-ray focal position information 92, imaging condition information 94, a program 96 for realizing each function executed by the arithmetic unit 70, and image data 98 captured by the X-ray detector 23. including. The X-ray focal position information 92 includes the X-ray focal position calculated by the X-ray focal position calculator 82. The imaging condition information 94 includes information regarding the imaging conditions set by the imaging condition setting unit 84 and an algorithm for determining pass / fail.
 なお、記憶部90および検査対象DB200は、データを蓄積することができるものであればよい。記憶部90は、例えば、RAM(Random Access Memory)やEEPROM(Electrically Erasable and Programmable Read-Only Memory)やHDD(Hard Disc Drive)等の記憶装置により構成される。検査対象DB200は、HDDでもよいし、あるいは、ネットワークで接続された他のコンピュータに設けられた記憶装置でもよい。 It should be noted that the storage unit 90 and the inspection target DB 200 may be anything that can accumulate data. The storage unit 90 includes, for example, a storage device such as a RAM (Random Access Memory), an EEPROM (Electrically Erasable and Programmable Read-Only Memory), and an HDD (Hard Disc Drive). The inspection target DB 200 may be an HDD or a storage device provided in another computer connected via a network.
  (具体的構成)
 本実施の形態に係るX線検査装置100の具体的構成について、図2を参照して説明する。図2は、本実施の形態に係るX線検査装置100の構成を説明するための図である。なお、図2において、図1と同一部分には、同一符号を付している。また、図2では、図1に示した部分のうち、X線焦点位置の制御、X線検出器位置の制御、検査対象位置の制御等に直接関係し、説明に必要な部分を抜き出して記載している。
(Specific configuration)
A specific configuration of the X-ray inspection apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 2 is a diagram for explaining the configuration of the X-ray inspection apparatus 100 according to the present embodiment. In FIG. 2, the same parts as those in FIG. Also, in FIG. 2, among the parts shown in FIG. 1, the parts necessary for explanation are extracted and directly related to the control of the X-ray focal point position, the control of the X-ray detector position, the control of the inspection target position, etc. is doing.
 X線源10は、本実施の形態では、コーンビーム型の線源であるものとする。なお、上述したように、X線源10は、X線を発生する位置(X線焦点位置)を指定された方向に走査可能な、走査型X線源であってもよい。X線源10は、X線源制御機構60を通した演算部70からの命令に従って、X線を発生させる。 In the present embodiment, the X-ray source 10 is assumed to be a cone beam type radiation source. As described above, the X-ray source 10 may be a scanning X-ray source capable of scanning a position (X-ray focal position) where X-rays are generated in a specified direction. The X-ray source 10 generates X-rays according to a command from the calculation unit 70 that has passed through the X-ray source control mechanism 60.
 X線源10は、密閉型のX線源であり、X線検査装置100の上部もしくは下部に据え付けられている。なお、X線源10のターゲットは透過型であってもよいし、反射型であってもよい。X線源10は、稼動部(図示しない)に取り付けられており、垂直方向に移動可能であるものとする。 The X-ray source 10 is a sealed X-ray source, and is installed on the top or bottom of the X-ray inspection apparatus 100. The target of the X-ray source 10 may be a transmissive type or a reflective type. The X-ray source 10 is attached to an operating part (not shown) and is movable in the vertical direction.
 X線検出器23は、検査対象1(基板)を挟むようにX線源10と対向した位置に配置される。X線検出器23は、X線源10から照射されたX線を画像化する。また、X線検出器23はX線検出器駆動部22に取り付けられている。X線検出器駆動部22は、3次元ステージであって、X線検出器23を、水平方向および垂直方向に移動可能である。 The X-ray detector 23 is disposed at a position facing the X-ray source 10 so as to sandwich the inspection object 1 (substrate). The X-ray detector 23 images the X-rays emitted from the X-ray source 10. The X-ray detector 23 is attached to the X-ray detector driving unit 22. The X-ray detector driving unit 22 is a three-dimensional stage, and can move the X-ray detector 23 in the horizontal direction and the vertical direction.
 検査対象駆動機構110は、X線源10とX線検出器23との間に設置される。検査対象駆動機構110は、ステージ111a,111b、および、ステージ111a,111bに付属されている基板レール112a,112bを含む。ステージ111a,111bは、検査対象1を水平方向に平行移動可能である。基板レール112a,112bは、各々、検査対象1を上下からはさみこむことで基板を固定している。 The inspection target drive mechanism 110 is installed between the X-ray source 10 and the X-ray detector 23. The inspection object driving mechanism 110 includes stages 111a and 111b and substrate rails 112a and 112b attached to the stages 111a and 111b. The stages 111a and 111b are capable of translating the inspection object 1 in the horizontal direction. The board rails 112a and 112b each fix the board by sandwiching the inspection object 1 from above and below.
 ステージ111a,111bおよび基板レール112a,112bの動作は、基板駆動制御機構126によって制御される。 The operations of the stages 111a and 111b and the substrate rails 112a and 112b are controlled by the substrate drive control mechanism 126.
 図2を参照して、X線検査装置100は、変位計114および光学カメラ116(これは、図1では示していなかった)を備える。変位計114は、基板までの距離を測定する。したがって、変位計114は、後で詳述する基板の反りを計測することが可能である。光学カメラ116は可視光により基板を撮影する。光学カメラ116は、検査する位置の設定のためのフィデューシャルマークの撮影に用いられる。変位計114および光学カメラ116は、X線による撮像時にはX線に被爆しないように退避機構(図示していない)により、X線が照射されない領域に退避される。 Referring to FIG. 2, the X-ray inspection apparatus 100 includes a displacement meter 114 and an optical camera 116 (this is not shown in FIG. 1). The displacement meter 114 measures the distance to the substrate. Therefore, the displacement meter 114 can measure the warpage of the substrate, which will be described in detail later. The optical camera 116 images the substrate with visible light. The optical camera 116 is used for photographing a fiducial mark for setting a position to be inspected. The displacement meter 114 and the optical camera 116 are retracted to an area where X-rays are not irradiated by a retracting mechanism (not shown) so as not to be exposed to X-rays during imaging with X-rays.
 また、光学カメラ116には、図示しない取付機構により照明装置115が取付けられている。照明装置115は、光学カメラ116の視野(撮像エリア)全体を均一に点灯する。本実施の形態では、照明装置115は、白色光を発するリング形状のLED(Light Emitting Diode)光源とされるが、これに限定されず、他の光源であっても良い。また、必ずしも光学カメラ116と一体的に設けられなくてもよく、光学カメラ116に対して独立して設けられてもよい。また、照明装置115も、光学カメラ116等と同様に、X線による撮像時にはX線に被爆しないように退避機構(図示していない)により、X線が照射されない領域に退避される。 The illumination device 115 is attached to the optical camera 116 by an attachment mechanism (not shown). The illumination device 115 uniformly lights the entire field of view (imaging area) of the optical camera 116. In the present embodiment, the illumination device 115 is a ring-shaped LED (Light Emitting Diode) light source that emits white light, but is not limited thereto, and may be another light source. In addition, the optical camera 116 is not necessarily provided integrally, and may be provided independently of the optical camera 116. Similarly to the optical camera 116 and the like, the illumination device 115 is also retracted to an area where X-rays are not irradiated by a retracting mechanism (not shown) so as not to be exposed to X-rays when imaging with X-rays.
 以上の構成により、X線検査装置100は、線源-基板間距離と線源-ディテクタ間の距離の比(拡大率)を変更することができる。その結果、X線検査装置100は、X線検出器23で撮像される検査対象1の大きさ(したがって、分解能)を変更できる。 With the above configuration, the X-ray inspection apparatus 100 can change the ratio (magnification ratio) of the distance between the source-substrate and the distance between the source-detector. As a result, the X-ray inspection apparatus 100 can change the size (and therefore the resolution) of the inspection object 1 imaged by the X-ray detector 23.
 また、X線検査装置100は、様々な方向から基板を撮像できるように、基板とX線検出器23とを稼動できる。本実施の形態では、この様々な方向からの撮像結果を基に、CT(Computed Tomography)と呼ばれる3次元データ生成手法を用いて、検査対象1の3次元データを生成する。 In addition, the X-ray inspection apparatus 100 can operate the substrate and the X-ray detector 23 so that the substrate can be imaged from various directions. In the present embodiment, three-dimensional data of the inspection object 1 is generated using a three-dimensional data generation technique called CT (Computed Tomography) based on the imaging results from various directions.
 また、本実施の形態では、X線検査装置100は、インライン検査に用いられる。インライン検査のために、検査対象駆動機構110は、基板を搬入出する機構をさらに含む。ただし、このような基板の搬入出機構は、図2には示していない。基板の搬入出機構としては、基板レール上に配置したベルトコンベアが用いられるのが一般的である。あるいは搬入出機構としてプッシャと呼ばれる棒を用いてもよい。プッシャにより基板をレール上で滑らせることにより、基板を移動させることができる。 In the present embodiment, the X-ray inspection apparatus 100 is used for in-line inspection. For in-line inspection, the inspection object driving mechanism 110 further includes a mechanism for carrying in and out the substrate. However, such a substrate loading / unloading mechanism is not shown in FIG. As a substrate carry-in / out mechanism, a belt conveyor disposed on a substrate rail is generally used. Alternatively, a rod called a pusher may be used as the carry-in / out mechanism. A board | substrate can be moved by sliding a board | substrate on a rail with a pusher.
 演算部70としては、一般的な中央演算装置(CPU)を用いることができる。記憶部90は、主記憶部90aと補助記憶部90bとを含む。主記憶部90aとしてはメモリを、補助記憶部90bとしてはHDD(ハードディスクドライブ)を、例えば用いることができる。つまり、演算部70および記憶部90としては、一般的な計算機を使用可能である。 As the calculation unit 70, a general central processing unit (CPU) can be used. The storage unit 90 includes a main storage unit 90a and an auxiliary storage unit 90b. For example, a memory can be used as the main storage unit 90a, and an HDD (hard disk drive) can be used as the auxiliary storage unit 90b. That is, a general computer can be used as the calculation unit 70 and the storage unit 90.
 (ティーチング処理の流れ)
 以下では、検査対象物である電子部品が表面側および裏面側に実装されているプリント基板を例にとって、本実施の形態のX線検査装置100の動作について説明する。
(Teaching process flow)
Hereinafter, the operation of the X-ray inspection apparatus 100 according to the present embodiment will be described by taking as an example a printed circuit board on which electronic components as inspection objects are mounted on the front surface side and the back surface side.
 X線検査装置100には、検査対象1の検査に関し、事前に、検査対象1における検査位置等についての教示(ティーチング)をする情報を入力できる。このような情報を入力する処理(ティーチング処理)の内容について、当該処理のフローチャートである図3を参照して説明する。なお、ティーチング処理は、X線検査装置100において、検査情報生成部86によって実現される。また、ティーチング処理において生成された、検査の教示に関する情報は、たとえば撮像条件情報94として記憶部90に記憶される。 The X-ray inspection apparatus 100 can input information for teaching (teaching) the inspection position or the like in the inspection object 1 in advance regarding the inspection of the inspection object 1. The contents of the process of inputting such information (teaching process) will be described with reference to FIG. 3 which is a flowchart of the process. The teaching process is realized by the inspection information generation unit 86 in the X-ray inspection apparatus 100. Information relating to the teaching of the inspection generated in the teaching process is stored in the storage unit 90 as, for example, imaging condition information 94.
 図3は、本実施の形態におけるティーチング処理の流れを説明するためのフローチャートである。 FIG. 3 is a flowchart for explaining the flow of teaching processing in the present embodiment.
 図3を参照して、ティーチング処理が開始されると(S100)、まず、検査対象である基板が裏向き(光学カメラ116側に裏面が向かう方向)に搬入される(S102)。 Referring to FIG. 3, when the teaching process is started (S100), first, the substrate to be inspected is carried back (in the direction in which the back surface faces the optical camera 116) (S102).
 続いて、X線検査装置100は、基板が裏向きの状態で光学カメラ116により可視光画像を撮影する(S104)。その後、基板は、いったん、可視光画像を撮影できる駆動範囲からは搬出され(S106)、所定の反転機構(図1および図2には図示せず)により、向きが反転され、再び、基板が表向きの状態で搬入され(S108)、基板の表側の状態で光学カメラ116により可視光画像が撮影される(S112)。 Subsequently, the X-ray inspection apparatus 100 captures a visible light image with the optical camera 116 with the substrate facing down (S104). Thereafter, the substrate is once taken out of the driving range in which a visible light image can be taken (S106), the direction is reversed by a predetermined reversing mechanism (not shown in FIGS. 1 and 2), and the substrate is again mounted. It is carried in a face-up state (S108), and a visible light image is taken by the optical camera 116 in a state on the front side of the substrate (S112).
 引き続いて、基板が表向きの状態で、X線画像の撮影が行なわれる(S112)。
 以上により、基板の表側の可視光画像と裏側の可視光画像とが撮影され、さらに、X線画像が撮影されたので、X線検査装置100の演算部70の制御により、これら3つの画像の位置合せが実行され(S114)、さらに、画像の伸縮(倍率の変更)と重ね合わせ処理が実行される(S116)。さらに、演算部70の制御により、出力部50に対して、重ね合わせ画像の表示が行なわれる(S118)。特に限定されないが、たとえば、表側の可視光画像とX線画像とが重ね合わされた画像から表示がされるものとして説明する。
Subsequently, an X-ray image is taken with the substrate facing up (S112).
As described above, the visible light image on the front side and the visible light image on the back side of the substrate are photographed, and further, the X-ray image is photographed. Therefore, the control of the arithmetic unit 70 of the X-ray inspection apparatus 100 controls these three images. Position alignment is executed (S114), and further image expansion / contraction (magnification change) and overlay processing are executed (S116). Further, the superimposed image is displayed on the output unit 50 under the control of the calculation unit 70 (S118). Although not particularly limited, for example, it is assumed that the display is performed from an image in which a visible light image on the front side and an X-ray image are superimposed.
 ここで、検査対象DB200に格納されている情報に基づいて、上記のような重ね合わされた画像に、さらに重畳して、表側に実装される部品の検査対象(ここでは、はんだボール)の位置を示すマーク、たとえば、矩形のマークも併せて表示される。ここで、ユーザは、このようなマークの位置が検査領域(「検査ウィンドウ」と呼ぶ)として適切であるかを表示に基づいて判断し、適切であれば、検査ウィンドウを確定するための確認入力を行なう。一方で、もしも適切でない場合には、たとえば、手動により、検査ウィンドウの位置および方向を適切と判断される位置・方向に動かし、その上で、確認入力を行う。このような確認入力に応じて、演算部70は、記憶部90の撮像条件情報として、表側の検査対象部品に対する検査ウィンドウの相対的な位置を設定情報として格納する。この場合、たとえば、特に限定されないが、記憶部90には、部品の所定の基準点(部品の外形の所定の角部分等)に対する相対的な位置として、検査ウィンドウが設定される(S120)。 Here, based on the information stored in the inspection object DB 200, the position of the inspection object (here, solder ball) of the component mounted on the front side is further superimposed on the superimposed image as described above. A mark to be displayed, for example, a rectangular mark is also displayed. Here, the user determines whether the position of such a mark is appropriate as an inspection area (referred to as “inspection window”) based on the display, and if it is appropriate, a confirmation input for confirming the inspection window. To do. On the other hand, if it is not appropriate, for example, the position and direction of the inspection window are manually moved to a position / direction determined to be appropriate, and then confirmation input is performed. In response to such confirmation input, the arithmetic unit 70 stores, as setting information, the relative position of the inspection window with respect to the inspection target component on the front side as the imaging condition information in the storage unit 90. In this case, for example, although not particularly limited, an inspection window is set in the storage unit 90 as a relative position with respect to a predetermined reference point of the component (such as a predetermined corner portion of the external shape of the component) (S120).
 次に、演算部70の制御により、出力部50からの出力が、裏面側の表示に切り替わり(S122)、表側と同様にして、裏側についての重ね合わせ画像表示され(S124)、検査対象DB200に格納されている情報に基づいて、上記のような重ね合わされた画像に、さらに重畳して、裏側に実装される部品の検査対象(ここでは、はんだボール)の位置を示すマーク(検査ウィンドウ)も併せて表示される。ここでも、ユーザは、このようなマークの位置が検査ウィンドウとして適切であるかを表示に基づいて判断し、適切であれば、検査ウィンドウを確定するための確認入力を行なう。一方で、もしも適切でない場合には、たとえば、手動により、検査ウィンドウの位置および方向を適切と判断される位置・方向に動かし、その上で、確認入力を行う。このような確認入力に応じても、演算部70は、記憶部90の撮像条件情報として、裏側の検査対象部品に対する検査ウィンドウの相対的な位置を設定情報として格納する。この場合も、たとえば、特に限定されないが、記憶部90には、部品の所定の基準点(部品の外形の所定の角部分等)に対する相対的な位置として、検査ウィンドウが設定される(S126)。 Next, under the control of the calculation unit 70, the output from the output unit 50 is switched to display on the back side (S122), and a superimposed image is displayed on the back side (S124) in the same manner as the front side (S124). Based on the stored information, a mark (inspection window) indicating the position of the inspection target (here, solder ball) of the component mounted on the back side is further superimposed on the superimposed image as described above. Also displayed. Again, the user determines whether or not the position of such a mark is appropriate as the inspection window based on the display, and if it is appropriate, performs a confirmation input for confirming the inspection window. On the other hand, if it is not appropriate, for example, the position and direction of the inspection window are manually moved to a position / direction determined to be appropriate, and then confirmation input is performed. Even in response to such a confirmation input, the arithmetic unit 70 stores, as setting information, the relative position of the inspection window with respect to the back inspection target component as the imaging condition information in the storage unit 90. Also in this case, for example, although not particularly limited, an inspection window is set in the storage unit 90 as a relative position with respect to a predetermined reference point of the component (such as a predetermined corner portion of the external shape of the component) (S126). .
 さらに、後に説明するような検査基準の設定がユーザにより行なわれ、検査結果を試行的に得て動作の確認をするためのテストが実行される(S128)。さらに、基板が搬出され(S130)、ティーチング処理が終了する(S130)。 Further, the inspection standard as described later is set by the user, and a test for confirming the operation by obtaining the inspection result on a trial basis is executed (S128). Further, the substrate is unloaded (S130), and the teaching process is completed (S130).
 図4は、図3に示した「画像の位置合せ処理(S114)」と「画像の伸縮・重ね合わせ処理(S116)」とを説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining the “image alignment processing (S114)” and “image expansion / contraction / superposition processing (S116)” shown in FIG.
 なお、以下の説明では、特に限定されないが、光学カメラおよびX線カメラ(X線検出器23によりX線画像を撮影する構成を便宜上、「X線カメラ」と呼ぶ)の光学倍率は、製造組立て時に、規定値に設定しておくものとする。光学カメラおよびX線カメラの性能としては、たとえば、以下のような値であるものとする。 In the following description, although not particularly limited, the optical magnification of the optical camera and the X-ray camera (the configuration for taking an X-ray image by the X-ray detector 23 is referred to as “X-ray camera” for the sake of convenience) is assembling and assembling. Sometimes it is set to a specified value. As performance of the optical camera and the X-ray camera, for example, the following values are assumed.
  光学カメラ: 分解能:22μm
  X線カメラ: 分解能:可変 10、15、20、25、30μm
 このうち、ティーチングのウィンドウ設定に用いるX線カメラの分解能は、20μmとする。すなわち、光学カメラとX線カメラとの分解能とは、必ずしも一致していない。また、製造時において、光学カメラで撮影された表側の画像上の位置と、これに対応するX線カメラで撮影された画像上の位置とは、両者が一致するように較正されているものとする。
Optical camera: Resolution: 22μm
X-ray camera: Resolution: Variable 10, 15, 20, 25, 30 μm
Among these, the resolution of the X-ray camera used for setting the teaching window is 20 μm. That is, the resolutions of the optical camera and the X-ray camera do not necessarily match. In addition, at the time of manufacture, the position on the front image taken by the optical camera and the position on the image taken by the corresponding X-ray camera are calibrated so that they match. To do.
 そこで、以下に説明するように、光学カメラの画像を拡大することにより、X線カメラの分解能20μmに合わせる。なお、両者の分解能の関係では、光学カメラの画像を縮小することが必要な場合もありうる。 Therefore, as described below, the image of the optical camera is enlarged to match the resolution of the X-ray camera of 20 μm. Note that it may be necessary to reduce the image of the optical camera because of the resolution between the two.
 図4を参照して、可視光画像(表側)の画像中心を基準に、上記の例では、以下のような倍率の拡大が実行されることになる(S200)。 Referring to FIG. 4, in the above example, the following magnification enlargement is executed based on the image center of the visible light image (front side) (S200).
 光学カメラ画像(重ね合わせ用画像)のサイズ
         =光学カメラ画像(オリジナル)のサイズ×22/20
 続いて、可視光画像(表側)とX線画像とが重ねあわされる(S202)。
Size of optical camera image (image for overlay) = Size of optical camera image (original) × 22/20
Subsequently, the visible light image (front side) and the X-ray image are overlaid (S202).
 ここで、このような重ね合わせの位置の基準としては、たとえば、フィデューシャルマークを用いることができる。フィデューシャルマークは、基板の対角方向の端に、銅配線パターンで形成されている。したがって、基板の形状や、基板に対する配線の形成位置のオフセットなどに影響されることなく、プリント基板への銅配線パターンについて一義に、デバイス位置を規定することができる。 Here, for example, a fiducial mark can be used as a reference for such an overlay position. The fiducial mark is formed of a copper wiring pattern at the diagonal end of the substrate. Therefore, the device position can be uniquely defined for the copper wiring pattern on the printed circuit board without being affected by the shape of the board or the offset of the wiring forming position with respect to the board.
 次に、可視光画像(表側)の画像から、所定のフィデューシャルマークの位置(たとえば、基板表側の左上の基板の角)が検出され(S204)、このようにして抽出された「基板左上の基板の角」の画像上の位置Aが記憶部90に保存される(S206)。 Next, the position of a predetermined fiducial mark (for example, the corner of the upper left substrate on the front side of the substrate) is detected from the image of the visible light image (front side) (S204). The position A on the image of “the corner of the substrate” is stored in the storage unit 90 (S206).
 さらに、可視光画像(裏側)の画像中心を基準に、表側と同様にして、画像の拡大処理が実行される(S210)。 Further, the image enlargement process is executed in the same manner as the front side with reference to the image center of the visible light image (back side) (S210).
 次に、可視光画像(裏側)の画像から、所定のフィデューシャルマークの位置(たとえば、基板裏側左上の基板の角)が検出され(S212)、このようにして抽出された「基板裏側左上の基板の角」の画像上の位置Aとの差分(Δ(x、y))が記憶部90に保存される(S212)。 Next, the position of a predetermined fiducial mark (for example, the corner of the substrate on the upper left side of the substrate back side) is detected from the image of the visible light image (the back side) (S212). The difference (Δ (x, y)) from the position A on the image of “the corner of the substrate” is stored in the storage unit 90 (S212).
 裏面側の画像については、可視光画像(裏側)とX線画像とを、Δ(x、y)だけずらして、両者を重ね合わせる(S214)。 For the image on the back side, the visible light image (back side) and the X-ray image are shifted by Δ (x, y), and the two are superimposed (S214).
 上述したように、本実施の形態では、表面の可視光画像における基板の角を基準として、可視光画像とX線画像との位置合せを行い、検査ウィンドウの位置を特定する。特定された位置は、部品に対しての相対的な座標として登録されるので、このようにして登録されても、これは、部品についての基準座標(フィデューシャルマークを基準とした座標)で登録されたことになる。 As described above, in this embodiment, the position of the inspection window is specified by aligning the visible light image and the X-ray image with reference to the corner of the substrate in the visible light image on the surface. Since the specified position is registered as a coordinate relative to the part, even if registered in this way, this is a reference coordinate for the part (coordinate based on the fiducial mark). It will be registered.
 CADデータ上では、プリント基板上に実装される各部品について、部品の品番、部品中心の座標(X,Y)、部品の回転角度θが登録されている。ここでは、検査ウィンドウは、検査したいハンダの領域であり、部品の品番ごと(部品の種類ごと)に登録する。 In the CAD data, the part number, the coordinates (X, Y) of the part center, and the rotation angle θ of the part are registered for each part mounted on the printed circuit board. Here, the inspection window is an area of the solder to be inspected, and is registered for each part number (for each type of part).
 なお、本実施の形態においては、後に説明するように、検査時には、基板の搬入後に、フィデューシャルマークの撮影および基板高さの計測などが行なわれる。基板高さの計測が行なわれるので、X線画像がCT画像(再構成画像)である場合は、測定された基板高さから所定の高さの断面を表示することで、表面のハンダ部分の画像を表示できる。また、基板高さと基板の厚みの情報から、X線画像が再構成画像(CT画像)である場合は、[(測定された基板高さ)-(基板厚み)-(所定の高さ)]の断面を表示することで、裏面のハンダ部分の画像を表示できる。 In this embodiment, as will be described later, at the time of inspection, the fiducial mark is photographed and the substrate height is measured after the substrate is loaded. Since the substrate height is measured, when the X-ray image is a CT image (reconstructed image), a cross section of a predetermined height is displayed from the measured substrate height, so that the solder portion of the surface is displayed. An image can be displayed. If the X-ray image is a reconstructed image (CT image) based on information on the substrate height and the substrate thickness, [(measured substrate height) − (substrate thickness) − (predetermined height)] By displaying the cross section, the image of the solder portion on the back surface can be displayed.
 図5は、上述したような基板の表側の可視光画像と裏側の可視光画像とX線画像との位置合わせを説明するための概念図である。 FIG. 5 is a conceptual diagram for explaining the alignment of the visible light image on the front side, the visible light image on the back side, and the X-ray image as described above.
 前提として、上述のとおり、光学カメラとX線カメラの相対位置は、製造組み立て時に、オフセット値を計測・設定しておくことにより、光学カメラで撮影された表側の画像上の位置と、これに対応するX線カメラで撮影された画像上の位置とは、両者が一致するように較正されているものとする。 As a premise, as described above, the relative position of the optical camera and the X-ray camera is determined by measuring and setting the offset value at the time of manufacturing and assembly. It is assumed that the position on the image photographed by the corresponding X-ray camera has been calibrated so that both coincide with each other.
 そして、図5に示されるように、可視光画像(表側)をリファレンスとして、可視光画像(裏側)の位置を合せと、可視光画像(表側)とX線画像は、基板の入れ替えをしていないので、自然と位置があうことになる。ここで、X線画像は、単一のX線透過画像でもよいし、複数の方向から同一箇所を撮影した複数のX線透過画像から再構成した再構成画像(CT画像)でもよい。 Then, as shown in FIG. 5, the visible light image (front side) is used as a reference, the position of the visible light image (back side) is aligned, and the visible light image (front side) and the X-ray image are replaced with each other. Because there is no, there will be a natural position. Here, the X-ray image may be a single X-ray transmission image or a reconstructed image (CT image) reconstructed from a plurality of X-ray transmission images obtained by imaging the same portion from a plurality of directions.
 図6は、可視光画像とX線画像とを重ね合わせて表示するにあたり、光学画像の透過率(重ね合わされたX線画像を可視光画像越しに見えるように表示する際の透過の割合)を設定する画面の例である。 FIG. 6 shows the transmittance of the optical image (percentage of transmission when displaying the superimposed X-ray image so that it can be seen through the visible light image) when the visible light image and the X-ray image are superimposed and displayed. It is an example of the screen to set.
 図6に示されるように、透過率を事前にまたは事後に適切な値に設定することにより、後に説明するように、可視光画像とX線画像とを重ね合わせて表示した際の検査対象の領域の視認性が向上する。 As shown in FIG. 6, by setting the transmittance to an appropriate value in advance or afterwards, as will be described later, the inspection target when the visible light image and the X-ray image are superimposed and displayed is displayed. The visibility of the area is improved.
 なお、図6中に存在するボタン等で設定可能なパラメータは以下のとおりである。 Note that the parameters that can be set with buttons and the like in FIG. 6 are as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図7は、可視光画像(表側)とX線再構成画像とを重ね合わせて表示した表示例を示す図である。 FIG. 7 is a diagram showing a display example in which a visible light image (front side) and an X-ray reconstructed image are superimposed and displayed.
 図7に示されるように、表側上面から撮影した可視光画像(表側)と基板と平行な方向であって基板表面から指定された高さのX線再構成画像の平面画像とが重ね合わされて表示されるとともに、X線再構成画像の平面画像中の指定された断面を示す再構成画像も併せて表示されている。 As shown in FIG. 7, a visible light image (front side) photographed from the upper surface on the front side and a planar image of an X-ray reconstruction image in a direction parallel to the substrate and at a specified height from the substrate surface are superimposed. In addition to being displayed, a reconstructed image showing a designated cross section in the planar image of the X-ray reconstructed image is also displayed.
 さらに、表側上面から撮影した可視光画像(表側)とX線再構成画像の平面画像とが重ね合わされて表示された画像中には、CADデータに基づいて、基板(表側)上のはんだづけ用の電極パッド(ランド)の位置が矩形形状で表示されている。なお、矩形形状のウィンドウ(検査ウィンドウ)は、事前に設定されている部品については、自動的に「カメラ画像」の画面で表示される。事前に設定がない場合は、手動で、ユーザにより設定されてもよい。 Furthermore, in the image displayed by superimposing the visible light image (front side) photographed from the upper surface on the front side and the planar image of the X-ray reconstructed image, it is used for soldering on the substrate (front side) based on the CAD data. The position of the electrode pad (land) is displayed in a rectangular shape. Note that a rectangular window (inspection window) is automatically displayed on the “camera image” screen for preset parts. If there is no setting in advance, it may be set manually by the user.
 ユーザは、必要に応じて、この矩形形状の位置調整を行った上で、確認入力(たとえば、保存ボタンのクリック)を実行する。 The user performs confirmation input (for example, click of the save button) after adjusting the position of the rectangular shape as necessary.
 同様の画像表示と位置調整が事前に、可視光画像(裏側)とX線再構成画像とについて実行されている。なお、表と裏の表示の切り替えに応じて、X線再構成画像の表示も、表示の向きに合うように切り替えられるものとする。 The same image display and position adjustment are performed in advance on the visible light image (back side) and the X-ray reconstructed image. It should be noted that the display of the X-ray reconstructed image is also switched to match the display direction in accordance with the switching between the front and back display.
 図8は、図7に示した画像をさらに縮小して、半導体チップ全体のはんだづけ位置を確認するための表示例を示す図である。 FIG. 8 is a diagram showing a display example for further reducing the image shown in FIG. 7 and confirming the soldering position of the entire semiconductor chip.
 図9は、可視光画像(裏側)と部品番号とを重ね合わせて表示した表示例を示す図である。 FIG. 9 is a diagram showing a display example in which a visible light image (back side) and a part number are displayed in an overlapping manner.
 図10は、可視光画像(裏側)とX線透過画像とを重ね合わせて表示した表示例を示す図である。 FIG. 10 is a diagram showing a display example in which a visible light image (back side) and an X-ray transmission image are superimposed and displayed.
 X線再構成画像を表示させるか、X線透過画像を表示させるかは、ユーザの選択により設定できるものとする。 Suppose that whether to display an X-ray reconstruction image or an X-ray transmission image can be set by user selection.
 タブの切り替えにより、可視光画像については、基板の表側を表示するか裏側を表示するかが切り替えられる。 By switching the tab, whether the front side of the substrate or the back side of the visible light image is displayed is switched.
 表と裏の表示の切り替えに応じて、X線透過画像の表示も、表示の向きに合うように切り替えられるものとする。 Suppose that the display of the X-ray transmission image is switched to match the display direction according to the switching of the front and back display.
 図11は、図10と同様に表示を可視光画像(裏側)とX線透過画像とを重ね合わせて表示した表示例を示す図である。 FIG. 11 is a diagram showing a display example in which a visible light image (back side) and an X-ray transmission image are superimposed and displayed as in FIG.
 図11では、表側上面から撮影した可視光画像(表側)とX線透過画像とが重ね合わされて表示された画像中には、CADデータに基づいて、基板(表側)上のはんだづけ用の電極パッド(ランド)の位置が矩形形状で表示されている。 In FIG. 11, a visible light image (front side) photographed from the upper surface on the front side and an X-ray transmission image are superimposed and displayed in the electrode pad for soldering on the substrate (front side) based on CAD data. The position of (land) is displayed in a rectangular shape.
 ユーザは、必要に応じて、この矩形形状の位置調整を行った上で、確認入力(たとえば、保存ボタンのクリック)を実行する。 The user performs confirmation input (for example, click of the save button) after adjusting the position of the rectangular shape as necessary.
 以上のような処理により、可視光画像とX線画像とを重ね合わせて表示の位置をその画像に対して確認できる。このとき、X線像があることで、ハンダのある領域が、ユーザに対して可視化され、CADデータに基づく、基板上のはんだづけ用の電極パッド(ランド)の位置との一致を確認できる。 Through the processing as described above, the visible light image and the X-ray image can be overlaid and the display position can be confirmed with respect to the image. At this time, the presence of the X-ray image makes the soldered region visible to the user and confirms the coincidence with the position of the soldering electrode pad (land) on the substrate based on the CAD data.
 (検査処理の流れ)
 図12は、本実施の形態に係るX線検査の流れをフローチャート形式で示す図である。図12を参照して、本実施の形態に係るX線検査全体の流れについて説明する。
(Inspection process flow)
FIG. 12 is a flowchart showing the flow of X-ray inspection according to the present embodiment. With reference to FIG. 12, the flow of the whole X-ray inspection according to the present embodiment will be described.
 図12を参照して、まず、処理が開始されると(ステップSA1)、X線検査装置100は、検査対象駆動機構110により、基板をX線検査装置100内部の規定位置に搬入する(ステップSA3)。規定位置は、通常、X線検査装置100の中央、すなわち、X線照射範囲の中央に設定されていることが好ましい。ただし、規定位置は、X線検出器23が基板のX線透視画像を撮像可能な位置であれば構わない。 Referring to FIG. 12, first, when processing is started (step SA1), X-ray inspection apparatus 100 carries the substrate into a prescribed position inside X-ray inspection apparatus 100 by means of inspection target drive mechanism 110 (step S1). SA3). The specified position is usually preferably set at the center of the X-ray inspection apparatus 100, that is, at the center of the X-ray irradiation range. However, the specified position may be a position where the X-ray detector 23 can capture an X-ray fluoroscopic image of the substrate.
 ステップSA5において、X線検査装置100は、光学カメラ116により、フィデューシャルマークを撮影する。また、X線検査装置100は、フィデューシャルマークの位置に基づいて、必要があれば、基板位置を補正する。具体的には、X線検査装置100は、搬入時と同様に基板位置を移動させる。これらの処理により、X線検査装置100は、基板搬入時に生じた基板位置のずれや基板の傾きを認識し、ずれおよび傾きを補正することが可能である。 In step SA5, the X-ray inspection apparatus 100 images a fiducial mark with the optical camera 116. Further, the X-ray inspection apparatus 100 corrects the substrate position, if necessary, based on the position of the fiducial mark. Specifically, the X-ray inspection apparatus 100 moves the substrate position in the same manner as when carrying in. Through these processes, the X-ray inspection apparatus 100 can recognize the deviation of the substrate position and the inclination of the substrate that occur when the substrate is carried in, and can correct the deviation and the inclination.
 ステップSA7において、X線検査装置100は、変位計114を用いて、再構成領域(以下、視野ともいう)中の基板の高さを測定する。X線検査装置100は、計測された基板の高さを、主記憶部90aに保存しておく。保存された基板の高さは、後述するCT撮像時に使用される。 In step SA7, the X-ray inspection apparatus 100 uses the displacement meter 114 to measure the height of the substrate in the reconstruction area (hereinafter also referred to as the field of view). The X-ray inspection apparatus 100 stores the measured substrate height in the main storage unit 90a. The stored height of the substrate is used at the time of CT imaging described later.
 一度の撮像では検査対象1全体を撮像できないなど、検査対象1が複数の視野を含む場合は、X線検査装置100は、CT撮像を行なう前に、全ての視野について、基板高さを計測しておく。これは、CT撮像時に変位計114が被爆しないように退避させる必要があることによる。このように基板高さを予め全て計測する方が、各視野のCT撮像の都度、基板高さを計測するのに比べて、全体の検査時間を短縮できる。 When the inspection object 1 includes a plurality of fields of view, for example, the entire inspection object 1 cannot be imaged by one imaging, the X-ray inspection apparatus 100 measures the substrate height for all fields of view before performing CT imaging. Keep it. This is because the displacement meter 114 needs to be retracted so as not to be exposed during CT imaging. Thus, measuring all the substrate heights in advance can reduce the entire inspection time compared to measuring the substrate height each time CT imaging of each field of view is performed.
 ステップSA9において、X線検査装置100は、検査対象1内で、1つの視野を複数の方向から撮像する。本実施の形態では、X線検査装置100は、基板とX線検出器23とを水平方向に円軌道を描くように移動させて、視野を複数の方向から撮像する。撮像時の基板およびX線検出器23の位置は、照射角度θR、線源-基板間距離(FOD)、線源-検出器間距離(FID)により決定される。基板およびX線検出器23は、X線検出器23の中心に視野の中心が撮像されるように配置される。なお、基板およびX線検出器23の軌道は円でなくてもよく、矩形や直線等であってもよい。 In step SA9, the X-ray inspection apparatus 100 images one field of view from a plurality of directions within the inspection object 1. In the present embodiment, the X-ray inspection apparatus 100 moves the substrate and the X-ray detector 23 so as to draw a circular orbit in the horizontal direction, and images the visual field from a plurality of directions. The positions of the substrate and the X-ray detector 23 at the time of imaging are determined by the irradiation angle θR, the source-substrate distance (FOD), and the source-detector distance (FID). The substrate and the X-ray detector 23 are arranged so that the center of the visual field is imaged at the center of the X-ray detector 23. The trajectory of the substrate and the X-ray detector 23 may not be a circle, but may be a rectangle or a straight line.
 撮像枚数は、使用者により設定可能であるものとする。使用者は、求められる再構成データの精度に基づいて撮像枚数を決定することが好ましい。撮像枚数は、通常は、4~256枚程度である。しかしながら、撮像枚数はこれに限られるものではない。例えば、X線検査装置100は、256枚を超える枚数の画像を撮像してももちろん構わない。 Suppose the number of images can be set by the user. It is preferable that the user determines the number of images to be captured based on the required accuracy of reconstruction data. The number of images is usually about 4 to 256. However, the number of captured images is not limited to this. For example, the X-ray inspection apparatus 100 may of course capture more than 256 images.
 ステップSA11において、X線検査装置100は、複数方向の撮像画像から再構成データを生成する。再構成処理は、様々な方法が提案されており、たとえば、Feldkamp法を用いることができる。 In step SA11, the X-ray inspection apparatus 100 generates reconstruction data from captured images in a plurality of directions. Various methods have been proposed for the reconstruction process. For example, the Feldkamp method can be used.
 ステップSA13において、X線検査装置100は、基板高さ、すなわち、部品が配置されている基板表面の高さを抽出する。ステップSA13で行なわれる処理の詳細については、後述する。 In step SA13, the X-ray inspection apparatus 100 extracts the board height, that is, the height of the board surface on which the components are arranged. Details of the processing performed in step SA13 will be described later.
 ステップSA15において、X線検査装置100は、基板高さから高さ方向に所定の距離だけ離れた高さの断層画像を、検査に用いる検査画像として取得する。ここで、検査画像の高さと基板高さとの間の距離は、使用者により設定されるものとする。なお、この距離は、検査対象1の設計データおよび検査方法に応じて設定されることが好ましい。本実施の形態では、部品が配置されている基板の表面から、部品が配置されている側に少し離れた高さの断層画像が検査画像に設定される。 In step SA15, the X-ray inspection apparatus 100 acquires a tomographic image having a height away from the substrate height by a predetermined distance as an inspection image used for the inspection. Here, the distance between the height of the inspection image and the substrate height is set by the user. This distance is preferably set according to the design data of the inspection object 1 and the inspection method. In the present embodiment, a tomographic image having a height slightly apart from the surface of the substrate on which the component is arranged to the side on which the component is arranged is set as the inspection image.
 ステップSA17において、X線検査装置100は、検査画像を用いて、視野の良否判定を行なう。すなわち、X線検査装置100は、加熱後のはんだのぬれ性、はんだのボイドおよびブリッジの有無、異物の有無などを検査する。様々な良否判定手法が周知であり、X線検査装置100は、検査項目に適した良否判定手法を用いればよい。 In step SA17, the X-ray inspection apparatus 100 performs visual field pass / fail determination using the inspection image. That is, the X-ray inspection apparatus 100 inspects the wettability of solder after heating, the presence or absence of solder voids and bridges, the presence or absence of foreign matter, and the like. Various quality determination methods are well known, and the X-ray inspection apparatus 100 may use a quality determination method suitable for the inspection item.
 本実施の形態では、良否判定部78は、2値化画像内のはんだ面積に基づいて、実装基板の良否を判定する。以下、図13を参照して、本実施の形態における基板の良否判定の態様について説明する。図13は、2値化画像内のはんだ面積に基づく良否判定について説明するための図である。 In the present embodiment, the quality determination unit 78 determines the quality of the mounting board based on the solder area in the binarized image. In the following, with reference to FIG. 13, a description will be given of an aspect of substrate quality determination in the present embodiment. FIG. 13 is a diagram for explaining quality determination based on the solder area in the binarized image.
 図13の(A)は、電子部品が実装された基板の斜視図である。基板501上に、第1の部品502と、第2の部品503とが実装されている。第2の部品503は、BGA(Ball Grid Array)504等により、基板501に物理的および電気的に接続されている。 FIG. 13A is a perspective view of a substrate on which electronic components are mounted. A first component 502 and a second component 503 are mounted on the substrate 501. The second component 503 is physically and electrically connected to the substrate 501 by a BGA (Ball Grid Array) 504 or the like.
 図13の(B)は、基板501と第2の部品503との接続箇所を基板501の面に垂直な断面で切った断面図である。BGA504は、第2の部品503と基板501の表面層505とを接続する。BGA504は、加熱され、加熱後の状態506に変形する。ただし、加熱後の状態506にボイド507が生じる場合がある。また、複数のはんだボール(以下、「ボール端子」とも言う)が結合しブリッジ508を形成する場合もある。 FIG. 13B is a cross-sectional view in which a connection portion between the substrate 501 and the second component 503 is cut by a cross section perpendicular to the surface of the substrate 501. The BGA 504 connects the second component 503 and the surface layer 505 of the substrate 501. The BGA 504 is heated and deforms into a state 506 after heating. However, a void 507 may occur in the state 506 after heating. In addition, a plurality of solder balls (hereinafter also referred to as “ball terminals”) may be combined to form a bridge 508.
 X線検査装置100は、はんだボールを含むと期待される領域の3次元データを生成し、3次元データを切り出して断層画像を作成する。X線検査装置100は、作成した断層画像を2値化し、画像をはんだとそれ以外に分離した2値化画像を取得する。この2値化処理には、判別分析法等の一般的な2値化処理を用いることが可能である。検査装置は、2値化画像から白(もしくは1)の部分のラベリングを行ない、はんだを区別したラベリング画像を取得する。このラベリング処理には、ラスタスキャンによって連結の有無を判定するような一般的なラベリング処理を用いることが可能である。 The X-ray inspection apparatus 100 generates three-dimensional data of an area expected to include a solder ball, and creates a tomographic image by cutting out the three-dimensional data. The X-ray inspection apparatus 100 binarizes the created tomographic image, and acquires a binarized image obtained by separating the image into solder and other parts. For this binarization process, a general binarization process such as a discriminant analysis method can be used. The inspection apparatus labels the white (or 1) portion from the binarized image, and acquires a labeling image in which solder is distinguished. For this labeling process, it is possible to use a general labeling process that determines the presence or absence of connection by raster scanning.
 基板501の面に平行な断面の一例を、図13の(C)に示す。図13の(C)は、図13の(B)において破線で示した断面で切った接続箇所の断面図である。図13の(C)では、はんだを白、はんだ以外を斜線で示している。ここでは、正常、ボイド、ブリッジの3種類の状態を示した。図13の(C)を参照して、ボイド507がある場合、はんだ内にはんだがない部分が生じる。ブリッジ508がある場合、正常時に比べ広範な領域にはんだが観察される。 An example of a cross section parallel to the surface of the substrate 501 is shown in FIG. FIG. 13C is a cross-sectional view of a connection portion cut by a cross section indicated by a broken line in FIG. In FIG. 13C, the solder is indicated by white and the parts other than the solder are indicated by oblique lines. Here, three types of states, normal, void, and bridge, are shown. Referring to FIG. 13C, when there is a void 507, a portion without solder is generated in the solder. When the bridge 508 is present, solder is observed in a wider area than in the normal state.
 検査装置は、ラベリング画像からそれぞれのはんだの面積(白もしくは1の画素の個数)を計数し、はんだの面積を求める。検査装置は、面積が一定の範囲内であれば良品、それ以外であれば不良とすることで、はんだ接合面の良否を判定する。この一定の範囲の閾値は、予めユーザにより設定されることが一般的である。 The inspection device counts the area of each solder (the number of white or one pixel) from the labeling image to obtain the solder area. The inspection apparatus determines whether the solder joint surface is good or not by determining that the area is within a certain range and is non-defective, and otherwise. In general, the predetermined range of threshold values is set in advance by the user.
 図12に戻って、ステップSA18において、X線検査装置100は、すべての視野に対して良否判定を行なったかどうか判断する。良否判定を行なっていない視野がある場合(ステップSA18においてNO)、X線検査装置100は、CT撮像(ステップSA9)からの処理を繰り返す。一方、すべての視野に対して良否判定が行なわれた場合(ステップSA18においてYES)、処理をステップSA19に進める。 Returning to FIG. 12, in step SA <b> 18, the X-ray inspection apparatus 100 determines whether or not all the visual fields have been determined to be acceptable. If there is a field of view for which pass / fail judgment has not been made (NO in step SA18), X-ray inspection apparatus 100 repeats the processing from CT imaging (step SA9). On the other hand, when the pass / fail determination is made for all the visual fields (YES in step SA18), the process proceeds to step SA19.
 ステップSA19において、X線検査装置100は、基板をX線検査装置100から搬出する。具体的には、X線検査装置100は、検査対象駆動機構110により、基板をX線検査装置100の外に移動する。 In step SA19, the X-ray inspection apparatus 100 carries the substrate out of the X-ray inspection apparatus 100. Specifically, the X-ray inspection apparatus 100 moves the substrate out of the X-ray inspection apparatus 100 by the inspection target drive mechanism 110.
 以上で、X線検査装置100は、1つの検査対象1についての検査を終了する(ステップSA21)。X線検査装置100は、複数の検査対象1についてのインライン検査を実行する場合には、ここまで説明したステップSA1からステップSA21までの一連の処理を繰り返す。 Thus, the X-ray inspection apparatus 100 ends the inspection for one inspection object 1 (step SA21). The X-ray inspection apparatus 100 repeats a series of processes from Step SA1 to Step SA21 described so far when performing inline inspection on a plurality of inspection objects 1.
 図14は、X線検査装置100の他の構成を説明するための概念図である。
 図1に示した構成では、検査対象DB200は、X線検査装置100の内部に設けられる構成であった。
FIG. 14 is a conceptual diagram for explaining another configuration of the X-ray inspection apparatus 100.
In the configuration shown in FIG. 1, the inspection target DB 200 is a configuration provided inside the X-ray inspection apparatus 100.
 しかしながら、X線検査装置100がインラインで使用される場合、必ずしもCADデータ等は、このX線検査装置100に格納される必要はなく、図14に示されるように、ネットワークで接続され、製造ラインの外に配置される外部データ作成装置内に、検査対象DB200が格納されていてもよい。 However, when the X-ray inspection apparatus 100 is used in-line, the CAD data or the like does not necessarily need to be stored in the X-ray inspection apparatus 100, and is connected via a network as shown in FIG. The inspection object DB 200 may be stored in an external data creation device arranged outside the storage area.
 以上説明したような本実施の形態のX線検査装置100の構成により、X線画像と可視光画像を重ね合わせて検査位置を表示するためユーザが検査対象物(例:はんだボール)と検査位置との関係を把握することができ、ユーザが視認しやすいとの効果がある。 With the configuration of the X-ray inspection apparatus 100 of the present embodiment as described above, the user can inspect the inspection object (eg, solder ball) and the inspection position in order to display the inspection position by superimposing the X-ray image and the visible light image. It is possible to grasp the relationship between and the user, and there is an effect that the user can easily see.
 また、裏面及び裏面を位置を合わせて検査位置を確定させ、表面と裏面の位置合わせを精度良く実行できる。 Also, the inspection position can be determined by aligning the back surface and the back surface, and the front and back surfaces can be accurately aligned.
 さらに、表面/裏面に関連するCT断層画像を表示するようにしたため、表面/裏面について対象物が見分けやすくなる。 Furthermore, since the CT tomographic image related to the front / back surface is displayed, it becomes easy to distinguish the object on the front / back surface.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 検査対象、10 X線源、12 基板、18 X線、22 X線検出器駆動部、23 X線検出器、30 画像取得制御機構、32 検出器駆動制御機構、34 画像データ取得部、40 入力部、50 出力部、60 X線源制御機構、62 電子ビーム制御部、70 演算部、72 X線源制御部、74 画像取得制御部、76 再構成部、78 良否判定部、80 検査対象位置制御部、82 X線焦点位置計算部、84 撮像条件設定部、86 検査情報生成部、90 記憶部、92 X線焦点位置情報、94 撮像条件情報、96 プログラム、98 画像データ、100 X線検査装置、110 検査対象位置駆動機構、111a,111b ステージ、112a,112b 基板レール、114 変位計、116 光学カメラ、120 検査対象位置制御機構。 1 inspection object, 10 X-ray source, 12 substrate, 18 X-ray, 22 X-ray detector drive unit, 23 X-ray detector, 30 image acquisition control mechanism, 32 detector drive control mechanism, 34 image data acquisition unit, 40 Input unit, 50 output unit, 60 X-ray source control mechanism, 62 electron beam control unit, 70 arithmetic unit, 72 X-ray source control unit, 74 image acquisition control unit, 76 reconstruction unit, 78 pass / fail judgment unit, 80 inspection object Position control unit, 82 X-ray focal position calculation unit, 84 imaging condition setting unit, 86 inspection information generation unit, 90 storage unit, 92 X-ray focal position information, 94 imaging condition information, 96 program, 98 image data, 100 X-ray Inspection device, 110 inspection target position drive mechanism, 111a, 111b stage, 112a, 112b substrate rail, 114 displacement meter, 116 optics Mela, 120 inspection target position control mechanism.

Claims (10)

  1.  X線を用いて被検査物の検査を実行するX線検査装置において、前記被検査物における検査領域を設定する検査領域設定方法であって、
     前記被検査物の検査対象を含む第1の領域の可視画像を撮像するステップと、
     前記被検査物の前記検査対象を含む第2の領域に対して、X線画像を撮像するステップと、
     前記第1の領域についての前記可視画像と前記第2の領域についての前記X線画像を、位置および倍率をそろえて、前記検査対象の位置を示すマークとともに同時に表示するステップと、
     表示した前記検査対象の前記マークの位置および前記X線画像における前記検査対象の位置について確認の入力を受け付け、前記検査領域を確定するステップとを備える、検査領域設定方法。
    In an X-ray inspection apparatus for inspecting an inspection object using X-rays, an inspection area setting method for setting an inspection area in the inspection object,
    Capturing a visible image of a first region including an inspection target of the inspection object;
    Capturing an X-ray image of the second region including the inspection target of the inspection object;
    Simultaneously displaying the visible image for the first region and the X-ray image for the second region together with a mark indicating the position of the object to be inspected, with the same position and magnification;
    Receiving the confirmation input for the position of the mark to be inspected and the position of the inspection object in the X-ray image, and determining the inspection area.
  2.  前記被検査物は、複数の電子部品が搭載された基板であり、
     前記可視画像を撮像するステップは、前記基板の表面側の第1の可視画像および裏面側の第2の可視画像を撮像するステップを含み、
     前記同時に表示するステップは、前記第1または第2の可視画像の一方と前記X線画像との位置および倍率をそろえて表示するステップを含み、
     前記確定するステップは、表面側および裏面側それぞれの前記検査領域を確定するステップを含む、請求項1記載の検査領域設定方法。
    The inspection object is a substrate on which a plurality of electronic components are mounted,
    The step of capturing the visible image includes the step of capturing a first visible image on the front surface side and a second visible image on the back surface side of the substrate,
    The step of displaying simultaneously includes the step of displaying the position and magnification of one of the first or second visible images and the X-ray image together,
    The inspection region setting method according to claim 1, wherein the determining step includes a step of determining the inspection regions on the front surface side and the back surface side.
  3.  前記X線画像は、複数の透視方向から撮影された複数のX線画像に基づいて再構成された前記被検査物の前記検査対象を含む領域の再構成画像である、請求項2記載の検査領域設定方法。 The inspection according to claim 2, wherein the X-ray image is a reconstructed image of a region including the inspection object of the inspection object reconstructed based on a plurality of X-ray images taken from a plurality of fluoroscopic directions. Area setting method.
  4.  前記再構成画像は、前記第1および第2の可視画像においては、死角となる前記検査対象を含む部分における前記基板に平行な断面での断層画像である、請求項3記載の検査領域設定方法。 The inspection area setting method according to claim 3, wherein the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images. .
  5.  前記X線画像は、前記前記被検査物のX線の透過画像である、請求項1記載の検査領域設定方法。 2. The inspection region setting method according to claim 1, wherein the X-ray image is an X-ray transmission image of the inspection object.
  6.  X線を用いて被検査物を検査するX線検査システム(100)であって、
     前記被検査物における検査対象の位置を指定する情報を格納するための記憶部(90)と、
     前記被検査物の前記検査対象を含む第1の領域の可視画像を撮像する可視光画像撮影部(116)と、
     前記被検査物の前記検査対象を含む第2の領域に対して、X線画像を撮像するX線画像撮影部(23)と、
     前記第1の領域についての前記可視画像と前記第2の領域についての前記X線画像を、位置および倍率をそろえて表示するとともに、前記記憶部(90)に格納された情報に基づいて前記検査対象の位置を示すマークを同時に表示する出力部(50)と、
     表示した前記検査対象の前記マークの位置および前記X線画像における前記検査対象の位置について確認の入力を受け付ける入力部(40)と、
     前記入力に応じて、確定された前記検査領域を特定するための設定情報を前記記憶部(90)に格納する制御部(70)とを備える、X線検査システム(100)。
    An X-ray inspection system (100) for inspecting an inspection object using X-rays,
    A storage unit (90) for storing information designating a position of an inspection object in the inspection object;
    A visible light image capturing unit (116) for capturing a visible image of a first region including the inspection target of the inspection object;
    An X-ray imaging unit (23) that captures an X-ray image of the second region including the inspection target of the inspection object;
    The visible image for the first region and the X-ray image for the second region are displayed with the same position and magnification, and the inspection is performed based on information stored in the storage unit (90). An output unit (50) for simultaneously displaying a mark indicating the position of the object;
    An input unit (40) for receiving an input for confirming the position of the mark to be inspected and the position of the inspection object in the X-ray image;
    An X-ray inspection system (100) comprising: a control unit (70) that stores setting information for specifying the determined inspection region in the storage unit (90) in response to the input.
  7.  前記被検査物は、複数の電子部品が搭載された基板であり、
     前記可視光画像撮影部(116)は、前記基板の表面側の第1の可視画像および裏面側の第2の可視画像を撮像し、
     前記出力部(50)は、前記第1または第2の可視画像の一方と前記X線画像との位置および倍率をそろえて表示し、
     前記制御部(70)は、表面側および裏面側それぞれの前記検査領域を特定するための設定情報を前記記憶部(90)に格納する、請求項6記載のX線検査システム(100)。
    The inspection object is a substrate on which a plurality of electronic components are mounted,
    The visible light image capturing unit (116) captures a first visible image on the front side and a second visible image on the back side of the substrate,
    The output unit (50) displays the same position and magnification of one of the first or second visible images and the X-ray image,
    The X-ray inspection system (100) according to claim 6, wherein the control unit (70) stores setting information for specifying the inspection regions on the front side and the back side in the storage unit (90).
  8.  前記X線画像は、複数の透視方向から撮影された複数のX線画像に基づいて再構成された前記被検査物の前記検査対象を含む領域の再構成画像である、請求項7記載のX線検査システム(100)。 The X-ray image according to claim 7, wherein the X-ray image is a reconstructed image of an area including the inspection target of the inspection object reconstructed based on a plurality of X-ray images photographed from a plurality of fluoroscopic directions. Line inspection system (100).
  9.  前記再構成画像は、前記第1および第2の可視画像においては、死角となる前記検査対象を含む部分における前記基板に平行な断面での断層画像である、請求項8記載のX線検査システム(100)。 The X-ray inspection system according to claim 8, wherein the reconstructed image is a tomographic image in a cross section parallel to the substrate in a portion including the inspection target that becomes a blind spot in the first and second visible images. (100).
  10.  前記X線画像は、前記前記被検査物のX線の透過画像である、請求項6記載のX線検査システム(100)。 The X-ray inspection system (100) according to claim 6, wherein the X-ray image is an X-ray transmission image of the inspection object.
PCT/JP2012/061741 2011-05-13 2012-05-08 Method for setting inspection region, and x-ray inspection system WO2012157467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011108608A JP5830928B2 (en) 2011-05-13 2011-05-13 Inspection area setting method and X-ray inspection system
JP2011-108608 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157467A1 true WO2012157467A1 (en) 2012-11-22

Family

ID=47176800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061741 WO2012157467A1 (en) 2011-05-13 2012-05-08 Method for setting inspection region, and x-ray inspection system

Country Status (3)

Country Link
JP (1) JP5830928B2 (en)
TW (1) TW201300768A (en)
WO (1) WO2012157467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094953A (en) * 2017-09-19 2020-05-01 柯尼卡美能达株式会社 Nondestructive inspection method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025768B2 (en) * 2014-02-27 2016-11-16 三菱電機株式会社 Noble metal amount calculation device and noble metal amount calculation method
WO2016063381A1 (en) * 2014-10-22 2016-04-28 株式会社システムスクエア Inspection device using electromagnetic wave detection unit and optical detection unit
WO2016063380A1 (en) * 2014-10-22 2016-04-28 株式会社システムスクエア Package inspecting apparatus
JP7466362B2 (en) 2020-04-13 2024-04-12 東芝Itコントロールシステム株式会社 Non-destructive Inspection Equipment
JP6976613B1 (en) * 2020-09-24 2021-12-08 昭立電気工業株式会社 Soldering work program creation system, soldering work program creation device and soldering robot

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252246A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH05322803A (en) * 1992-05-15 1993-12-07 Sony Corp Method for confirming alignment of x ray, method for confirming alignment and aligning x ray, and x-ray inspecting device
JPH11295242A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X-ray substrate inspection equipment and visible light reflective film for x-ray
JP2002310954A (en) * 2001-04-18 2002-10-23 Shimadzu Corp Sample analyzer
JP2004233262A (en) * 2003-01-31 2004-08-19 Horiba Ltd Measuring result displaying method, x-ray device and computer program
JP2007101391A (en) * 2005-10-05 2007-04-19 Shimadzu Corp X-ray inspection device
JP2009097934A (en) * 2007-10-15 2009-05-07 Sony Corp Cross-sectional sample preparation system and cross-sectional sample preparation method
JP2010160071A (en) * 2009-01-08 2010-07-22 Omron Corp X-ray inspection method, x-ray inspection device and x-ray inspection program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252246A (en) * 1988-08-15 1990-02-21 Tokyo Electron Ltd X-ray inspection device
JPH05322803A (en) * 1992-05-15 1993-12-07 Sony Corp Method for confirming alignment of x ray, method for confirming alignment and aligning x ray, and x-ray inspecting device
JPH11295242A (en) * 1998-04-10 1999-10-29 Matsushita Electric Ind Co Ltd X-ray substrate inspection equipment and visible light reflective film for x-ray
JP2002310954A (en) * 2001-04-18 2002-10-23 Shimadzu Corp Sample analyzer
JP2004233262A (en) * 2003-01-31 2004-08-19 Horiba Ltd Measuring result displaying method, x-ray device and computer program
JP2007101391A (en) * 2005-10-05 2007-04-19 Shimadzu Corp X-ray inspection device
JP2009097934A (en) * 2007-10-15 2009-05-07 Sony Corp Cross-sectional sample preparation system and cross-sectional sample preparation method
JP2010160071A (en) * 2009-01-08 2010-07-22 Omron Corp X-ray inspection method, x-ray inspection device and x-ray inspection program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111094953A (en) * 2017-09-19 2020-05-01 柯尼卡美能达株式会社 Nondestructive inspection method

Also Published As

Publication number Publication date
JP5830928B2 (en) 2015-12-09
TW201300768A (en) 2013-01-01
JP2012237729A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5493360B2 (en) X-ray inspection method, X-ray inspection apparatus and X-ray inspection program
US9442080B2 (en) Method and apparatus for generating a three-dimensional model of a region of interest using an imaging system
JP5444718B2 (en) Inspection method, inspection device, and inspection program
JP5830928B2 (en) Inspection area setting method and X-ray inspection system
US10054432B2 (en) X-ray inspection apparatus and control method
JP5246187B2 (en) X-ray inspection apparatus, X-ray inspection method and program
JP5104962B2 (en) X-ray inspection method and X-ray inspection apparatus
WO2010029862A1 (en) X-ray inspection device and method for x-ray inspection
TW200848723A (en) X ray inspecting method and X ray inspecting device
JP5646769B2 (en) X-ray inspection method and apparatus
US20110081070A1 (en) Process and Apparatus for Image Processing and Computer-readable Medium Storing Image Processing Program
JP2010145359A (en) X-ray inspection device, method of x-ray inspection, and x-ray inspection program
JP4228773B2 (en) Board inspection equipment
CN111247424A (en) Inspection position specifying method, three-dimensional image generating method, and inspection device
JP5569061B2 (en) X-ray inspection method, X-ray inspection apparatus and X-ray inspection program
JP6676023B2 (en) Inspection position specifying method and inspection device
JP4449596B2 (en) Mounting board inspection equipment
JP4072420B2 (en) Calibration method for fluoroscopic inspection apparatus
JP3902017B2 (en) Solder height measuring apparatus and method
KR0171690B1 (en) Tomographical inspection apparatus and method
KR100300586B1 (en) Single Layer Inspection Device and Inspection Method of Printed Circuit Board Using X-Ray
KR101447968B1 (en) Base plane setting method for inspecting circuit board and circuit inspection method using the base plane
JP2021032816A (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785873

Country of ref document: EP

Kind code of ref document: A1