WO2012157190A1 - Optical system for reflection characteristic measuring apparatus, and reflection characteristic measuring apparatus - Google Patents

Optical system for reflection characteristic measuring apparatus, and reflection characteristic measuring apparatus Download PDF

Info

Publication number
WO2012157190A1
WO2012157190A1 PCT/JP2012/002716 JP2012002716W WO2012157190A1 WO 2012157190 A1 WO2012157190 A1 WO 2012157190A1 JP 2012002716 W JP2012002716 W JP 2012002716W WO 2012157190 A1 WO2012157190 A1 WO 2012157190A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflection characteristic
optical system
characteristic measuring
sample
Prior art date
Application number
PCT/JP2012/002716
Other languages
French (fr)
Japanese (ja)
Inventor
利夫 河野
阿部 芳久
Original Assignee
コニカミノルタオプティクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプティクス株式会社 filed Critical コニカミノルタオプティクス株式会社
Priority to JP2013514971A priority Critical patent/JP5672376B2/en
Publication of WO2012157190A1 publication Critical patent/WO2012157190A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Definitions

  • a standard plate is provided in the reflection characteristic measuring apparatus, the standard plate is moved to a measurement opening facing a sample, and the standard plate is measured to determine the amount of change in the optical characteristics of illumination light.
  • the reflection surface of the standard plate is closer to the illumination optical system and the light receiving optical system than the measurement surface of the sample, the irradiation position where the illumination light is irradiated onto the sample and the irradiation position where the standard plate is irradiated are shifted. Therefore, the calibration accuracy is reduced accordingly.
  • the illumination light-receiving optical system 1A transmits illumination light to the sample measurement surface of the sample SM with a predetermined geometry set in advance with respect to a predetermined measurement plane set in advance as a position (place) for measuring the sample SM to be measured.
  • This is an optical system that irradiates the SMF and receives the reflected light.
  • the geometry is an incident direction of illumination light and an observation direction of reflected light with respect to the measurement plane.
  • the illumination light receiving optical system 1A includes an illumination system 11A and a light receiving optical system 12A.
  • the reflection member 13A and the standard member 14A are further provided for calibration in the reflection characteristic measuring apparatus DA. I have. In FIG. 1, the reflecting member 13A and the standard member 14A are not shown.
  • the reflection member 13A is configured to be insertable / removable at a calibration position arranged when the reflection characteristic measuring apparatus DA is calibrated. That is, the reflection member 13A can be inserted and arranged at the calibration position when calibration is performed, and can be removed from the calibration position when measurement is performed. More specifically, the reflecting member 13A measures the calibration position arranged when the reflection characteristic measuring apparatus DA is calibrated, and the reflection characteristic of the sample measurement surface SMF in the sample SM that is retracted from the calibration position. The standby position arranged in this case can be switched by, for example, a mechanism described later.
  • the calibration position of the reflecting member 13A is a predetermined position on the first optical path of the illumination light irradiated on the sample measurement surface SMF of the sample SM.
  • the first and second guide rods 26-1 and 26-2 are protruded with a space therebetween.
  • the reflecting member 13A (the first reflecting member 13A-1 and the second reflecting member 13A-2) and the standard member are guided by the pair of first and second guide rods 26-1 and 26-2.
  • An attachment member 25 attached to one side of 14A is movably disposed on the pair of first and second guide rods 26-1 and 26-2.
  • a long rod-like arm member 24 is connected to the other end of the mounting member 25 at one end thereof.
  • a rotation shaft of the solenoid motor 23 is fixed at the approximate center of the arm member 24.
  • the solenoid motor 23 is fixed to the fixed body 21 via a substantially L-shaped fixed connection member 22 in a side view.
  • the arithmetic control unit 3 is, for example, a microcomputer including a CPU (Central Processing Unit), storage elements such as ROM and RAM, and peripheral circuits thereof.
  • CPU Central Processing Unit
  • the input unit 4 is a device for inputting commands (commands), data, and the like from the outside, such as a touch panel and a keyboard.
  • the output unit 5 is a device for outputting commands and data input from the input unit 4 and the calculation result of the calculation control unit 3, and is an LCD (liquid crystal display), an organic EL display, or the like.
  • the sample surface of the sample SM is arranged on the measurement plane (the outer surface of the cover glass 27) by the operator (user). Then, when the reflecting member 13A and the standard member 14A are arranged at the standby position by the above-described operation, the arithmetic control unit 3 controls the illumination system 11A to send illumination light to the illumination system 11A and the sample measurement surface SMF of the sample SM. To irradiate.
  • the illumination light emitted from the illumination system 11A is incident on the sample measurement surface SMF (measurement plane) of the sample SM with a predetermined geometry and reflected as shown in FIG.
  • the reflected light of the illumination light is received by the light receiving optical system 12A with a predetermined geometry with respect to the sample measurement surface SMF (measurement plane) of the sample SM, and is incident on the spectroscopic unit 2 through the light guide member 6.
  • the reflecting member 13A and the standard member 14A are at the standby position and not at the calibration position, the reflecting member 13A and the standard member 14A are indicated by broken lines in FIG.
  • the spectroscopic unit 2 splits the diffuse reflected light and outputs the result to the arithmetic control unit 3.
  • the arithmetic control unit 3 obtains calibration data for calibrating the reflection characteristic measuring device DA based on the output of the spectroscopic unit 2.
  • the obtained calibration data is stored in the arithmetic control unit 3, and is used when obtaining the reflection characteristic of the sample measurement surface SMF in the sample SM in the measurement mode.
  • Such a calibration mode is performed, for example, when the power switch of the reflection characteristic measuring apparatus DA is turned on or when a predetermined time set in advance has passed since the most recent calibration mode.
  • the first reflecting member 13A-1 of the reflecting member 13A is arranged at the first calibration position and the reflecting member 13A
  • the second reflecting member 13A-2 is disposed at the second calibration position, the illumination light is reflected by the first reflecting member 13A-1, and thereby the illumination light is guided to the standard member 14A, and the sample measurement surface of the sample SM
  • the diffuse reflected light of the illumination light diffusely reflected by the standard member 14 is reflected by the second reflecting member 13A-2 so that it has substantially the same optical path as the reflected light of the illumination light reflected by the SMF, and is received by the light receiving optical system 12A. Is done.
  • the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14A are attached to the attaching member 25. Therefore, the reflection characteristic measuring apparatus DA and its illumination light receiving optical system 1A in the present embodiment can move the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14 together. Accordingly, the mutual geometric arrangement relationship between the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14 is maintained constant, and even if these are repeatedly rearranged between the calibration position and the standby position. Further, the displacement of the mutual geometric arrangement relationship between the first reflecting member 13A-1, the second reflecting member 13A-2 and the standard member 14 is reduced. As a result, calibration is performed well over a longer period.
  • the measurement plane, the optical axis in the first optical path of illumination light irradiated on the sample measurement surface SMF of the sample SM (that is, the optical axis of the illumination optical system of the illumination system 11B), and the sample measurement surface of the sample SM
  • the rotation axis R is inclined at a predetermined angle.
  • the spectroscopic unit 2 splits the reflected light of the illumination light and outputs the result to the arithmetic control unit 3.
  • the arithmetic control unit 3 obtains a reflection characteristic such as a spectral reflection characteristic in the reflected light of the illumination light based on the output of the spectroscopic unit 2.
  • the obtained reflection characteristic is output to the output unit 5 under the control of the arithmetic control unit 3.
  • the light shielding state and the non-light shielding state can be switched, and the diffuse reflection of the standard member 14 in the light shielding state.
  • This light shielding member is in a light shielding state at least when the reflected light of the illumination light reflected by the sample measurement surface SMF of the sample SM is guided to the spectroscopic unit 2 via the light guide member 6. More specifically, the light shielding member is in a light shielding state at least in the measurement mode.
  • an angle formed by the first reflecting surface and the measuring plane is formed on the first reflecting surface and the standard member.
  • the optical distance between the first reflection surface and the diffuse reflection surface is equal to the distance between the first reflection surface and the measurement plane.
  • the optical system for the reflection characteristic measuring apparatus can move the first reflecting member and the second reflecting member integrally.
  • the optical system for the reflection characteristic measuring device can move the first reflecting member, the second reflecting member, and the standard member integrally.
  • a first driving mechanism that moves the first reflecting member forward and backward with respect to the first calibration position, and the second reflecting member is the second reflecting member.
  • a second drive mechanism that moves forward and backward with respect to the calibration position.
  • a housing including a measurement opening through which the reflected light of the illumination light reflected by the sample is incident, and a measurement opening light shield that blocks the measurement opening. And a member.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

In this optical system (1A) for a reflection characteristic measuring apparatus, at the time of performing calibration, a first reflecting member (13A-1) is disposed at a first calibration position, and a second reflecting member (13A-2) is disposed at a second calibration position, illuminating light is guided to a standard member (14A) by reflecting the illuminating light by means of the first reflecting member (13A-1), and diffusely reflected light of the illuminating light, said diffusely reflected light having been diffusely reflected by means of the standard member (14A), is reflected by means of a second reflecting member (13A-2) such that the optical path is substantially same as that of reflected light of the illuminating light, said reflected light having been reflected by means of a sample (SM).

Description

反射特性測定装置用光学系および反射特性測定装置Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus
 本発明は、測定対象である試料の反射特性を測定する反射特性測定装置に用いられる反射特性測定装置用光学系に関し、特に、光量ロスを低減することができ、種々のジオメトリに適用することができる反射特性測定装置に関する。そして、本発明は、この反射特性測定装置用光学系を備える反射特性測定装置に関する。 The present invention relates to an optical system for a reflection characteristic measuring apparatus used in a reflection characteristic measuring apparatus that measures the reflection characteristic of a sample to be measured, and in particular, can reduce light loss and can be applied to various geometries. The present invention relates to an apparatus for measuring reflection characteristics. And this invention relates to a reflection characteristic measuring apparatus provided with this optical system for reflection characteristic measuring apparatuses.
 従来、例えば車両等の工業製品における表面色の管理や印刷物の色の管理等を行うために、例えば測色計や色彩計等の反射特性測定装置が用いられて来た。この反射特性測定装置は、一般に、測定対象である試料に照明光を照射し、その試料からの前記照明光の反射光における、例えば分光反射特性等の反射特性を測定する装置である。このような反射特性測定装置による反射特性の測定結果は、照明光を試料に照射する照明系および試料からの反射光を受光する受光系のいわゆるジオメトリ(光学的条件)によって影響を受ける。このため、反射特性測定装置には、通常、CIE(国際照明委員会)が推奨する45/0(45度照明、垂直受光)、0/45(垂直照明、45度受光)および45/45(45度照明、45度受光)等のいずれかのジオメトリが採用されている。一例を挙げると、このような反射特性測定装置は、照明光を放射する光源と、前記光源から放射された前記照明光を試料へ45度の入射角で照射する照明光学系と、前記試料で反射された前記照明光の反射光を垂直方向で受光する受光光学系と、前記受光光学系で受光された前記照明光の反射光を分光する分光部と、前記分光部の出力に基づいて前記試料の反射特性を求める演算部とを備えている。前記演算部は、より具体的には、反射分光特性が既知の白色校正板を測定することによって得られた基準データを予め記憶しておき、この基準データおよび前記分光部の出力を用いることによって前記試料の反射特性を求めている。 Conventionally, reflection characteristic measuring devices such as a colorimeter and a colorimeter have been used to manage the surface color and the color of printed matter in industrial products such as vehicles. This reflection characteristic measuring apparatus is generally an apparatus that irradiates a sample to be measured with illumination light and measures reflection characteristics such as spectral reflection characteristics in the reflected light of the illumination light from the sample. The measurement result of the reflection characteristic by such a reflection characteristic measuring apparatus is influenced by so-called geometry (optical conditions) of an illumination system that irradiates the sample with illumination light and a light receiving system that receives the reflected light from the sample. For this reason, reflection characteristic measuring apparatuses usually have 45/0 (45-degree illumination, vertical light reception), 0/45 (vertical illumination, 45-degree light reception) and 45/45 (recommended by the International Lighting Commission). Any geometry such as 45 degree illumination, 45 degree light reception) is employed. For example, such a reflection characteristic measuring apparatus includes a light source that emits illumination light, an illumination optical system that irradiates the illumination light emitted from the light source to the sample at an incident angle of 45 degrees, and the sample. A light receiving optical system that receives reflected light of the reflected illumination light in a vertical direction, a spectroscopic unit that splits reflected light of the illumination light received by the light receiving optical system, and the output based on the output of the spectroscopic unit And an arithmetic unit for obtaining the reflection characteristic of the sample. More specifically, the arithmetic unit stores in advance reference data obtained by measuring a white calibration plate having a known reflection spectral characteristic, and uses the reference data and the output of the spectroscopic unit. The reflection characteristics of the sample are obtained.
 このような反射特性測定装置では、例えば経年劣化等の何らかの原因によって、照明光における、例えば光強度や分光特性等の光学特性が変化すると、試料からの前記照明光の反射光における光学特性も変化してしまう。このため、照明光の光学特性の変化を測定してその変化を補正する反射特性測定装置の校正が必要である。 In such a reflection characteristic measuring apparatus, for example, when optical characteristics such as light intensity and spectral characteristics change in illumination light due to some cause such as aging, the optical characteristics in reflected light of the illumination light from the sample also change. Resulting in. For this reason, it is necessary to calibrate a reflection characteristic measuring apparatus that measures changes in the optical characteristics of illumination light and corrects the changes.
 この照明光の光学特性における変化の測定として、例えば反射特性測定装置とは別体に用意された標準板を測定し、この標準板の初期値と測定値との差分を求めることによって、照明光の光学特性における変化量を求める方法がある。しかしながら、このような方法では、反射特性測定装置を用いるユーザごとに、また校正ごとに、測定値がばらつき易く(測定値の再現性が悪く)、その結果、校正が適正に行われ難い。 As a measurement of the change in the optical characteristics of the illumination light, for example, a standard plate prepared separately from the reflection characteristic measurement device is measured, and the difference between the initial value and the measurement value of the standard plate is obtained, thereby obtaining the illumination light. There is a method for obtaining the amount of change in the optical characteristics. However, in such a method, the measured value is likely to vary for each user who uses the reflection characteristic measuring apparatus and for each calibration (the reproducibility of the measured value is poor), and as a result, the calibration is difficult to be performed properly.
 そこで、反射特性測定装置内に、照明光の光学特性を測定する照明光の監視用に専用される分光器が設けられ、常時、照明光の光学特性を監視(モニタ)する方法がある。この方法は、上述の不都合を解消することができる。しかしながら、このような方法では、別途に専用の分光器を設ける必要があるため、その分、コスト高となり、また、反射特性測定装置が大型化してしまう。 Therefore, there is a method in which a spectroscope dedicated for monitoring the illumination light for measuring the optical characteristic of the illumination light is provided in the reflection characteristic measurement device, and the optical characteristic of the illumination light is constantly monitored (monitored). This method can eliminate the above-mentioned disadvantages. However, in such a method, it is necessary to separately provide a dedicated spectroscope, and accordingly, the cost is increased, and the reflection characteristic measuring apparatus is enlarged.
 そこで、例えば特許文献1に開示の校正機構がある。この校正機構は、試料の測定面に対して光学的に共役な位置に配置される拡散面を持つプリズムを備え、このプリズムに入射され、内部反射して前記拡散面を透過した照明光の拡散透過光を受光光学系で受光することによって照明光の光強度変化を監視している。しかしながら、この特許文献1に開示の校正機構では、照明光の一部が拡散面で拡散反射されるため、拡散透過光の光量は、照明光の光量よりその分少なくなり、光量ロス(光量損失)が生じてしまう。また、特許文献1に開示の校正機構は、45/0ジオメトリおよび0/45ジオメトリを前提としており、これらジオメトリを除く他のジオメトリに適用することが難しい。 Therefore, for example, there is a calibration mechanism disclosed in Patent Document 1. The calibration mechanism includes a prism having a diffusing surface disposed at a position optically conjugate with the measurement surface of the sample, and diffuses illumination light that is incident on the prism and internally reflected and transmitted through the diffusing surface. The light intensity change of the illumination light is monitored by receiving the transmitted light with the light receiving optical system. However, in the calibration mechanism disclosed in Patent Document 1, since a part of the illumination light is diffusely reflected by the diffusing surface, the light amount of the diffuse transmitted light becomes smaller than the light amount of the illumination light, and the light loss (light loss) ) Will occur. The calibration mechanism disclosed in Patent Document 1 is based on 45/0 geometry and 0/45 geometry, and is difficult to apply to other geometries other than these geometries.
 一方、反射特性測定装置内に標準板を備え、試料に臨まれる測定開口に前記標準板を移動し、前記標準板を測定することで、照明光の光学特性における変化量を求める方法がある。しかしながら、この方法では、標準板の反射面が試料の測定面より照明光学系や受光光学系に近づくため、照明光が試料に照射される照射位置と標準板に照射される照射位置とがずれるから、その分、校正精度が低下してしまう。 On the other hand, there is a method in which a standard plate is provided in the reflection characteristic measuring apparatus, the standard plate is moved to a measurement opening facing a sample, and the standard plate is measured to determine the amount of change in the optical characteristics of illumination light. However, in this method, since the reflection surface of the standard plate is closer to the illumination optical system and the light receiving optical system than the measurement surface of the sample, the irradiation position where the illumination light is irradiated onto the sample and the irradiation position where the standard plate is irradiated are shifted. Therefore, the calibration accuracy is reduced accordingly.
米国特許第7538871号明細書US Pat. No. 7,538,871
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、光量ロスを低減することができ、種々のジオメトリに適用することができる反射特性測定装置用光学系およびこの反射特性測定装置用光学系を備える反射特性測定装置を提供することである。 The present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce an amount of light loss and to apply the optical system for a reflection characteristic measuring apparatus that can be applied to various geometries and the reflection characteristic thereof. It is to provide a reflection characteristic measuring device including an optical system for a measuring device.
 本発明にかかる反射特性測定装置用光学系および反射特性測定装置では、校正を行う場合に第1反射部材が第1校正位置に配置されるとともに第2反射部材が第2校正位置に配置され、照明光を第1反射部材で反射することによって照明光が標準部材に導光され、そして、試料で反射した前記照明光の反射光と略同じ光路となるように、この標準部材で拡散反射した照明光の拡散反射光が第2反射部材で反射される。校正の際に使用される照明光の拡散反射光は、このように反射によって導光されるので、このような構成の反射特性測定装置用光学系および反射特性測定装置は、光量ロスを低減することができる。そして、このような構成の反射特性測定装置用光学系および反射特性測定装置は、これが用いられる反射特性測定装置のジオメトリと関連しないので、種々のジオメトリに適用することができる。 In the optical system for a reflection characteristic measurement apparatus and the reflection characteristic measurement apparatus according to the present invention, when calibration is performed, the first reflection member is disposed at the first calibration position and the second reflection member is disposed at the second calibration position. Illumination light is guided to the standard member by reflecting the illumination light on the first reflecting member, and is diffusely reflected on this standard member so that it has substantially the same optical path as the reflected light of the illumination light reflected on the sample. The diffuse reflection light of the illumination light is reflected by the second reflecting member. Since the diffusely reflected light of the illumination light used for calibration is guided by reflection in this way, the optical system for the reflection characteristic measuring apparatus and the reflection characteristic measuring apparatus having such a configuration reduce the light amount loss. be able to. Since the optical system for the reflection characteristic measuring apparatus and the reflection characteristic measuring apparatus having such a configuration are not related to the geometry of the reflection characteristic measuring apparatus in which it is used, it can be applied to various geometries.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態における反射特性測定装置の全体概略構成を示すブロック図である。It is a block diagram which shows the whole schematic structure of the reflection characteristic measuring apparatus in 1st Embodiment. 試料を測定する場合における第1実施形態の反射特性測定装置の光学系を示す図である。It is a figure which shows the optical system of the reflection characteristic measuring apparatus of 1st Embodiment in the case of measuring a sample. 校正を行う場合における第1実施形態の反射特性測定装置の光学系を示す図である。It is a figure which shows the optical system of the reflective characteristic measuring apparatus of 1st Embodiment in the case of performing calibration. 第1実施形態の反射特性測定装置における光学系および駆動機構を示す斜視図である。It is a perspective view which shows the optical system and drive mechanism in the reflection characteristic measuring apparatus of 1st Embodiment. 試料を測定する場合における第2実施形態の反射特性測定装置の光学系を示す図である。It is a figure which shows the optical system of the reflection characteristic measuring apparatus of 2nd Embodiment in the case of measuring a sample. 校正を行う場合における第2実施形態の反射特性測定装置の光学系を示す図である。It is a figure which shows the optical system of the reflection characteristic measuring apparatus of 2nd Embodiment in the case of performing calibration. 校正を行う場合における測定開口部の遮光の様子を説明するための図である。It is a figure for demonstrating the mode of the light shielding of the measurement opening part in the case of performing calibration.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 (第1実施形態)
 図1は、第1実施形態における反射特性測定装置の全体概略構成を示すブロック図である。図2は、試料を測定する場合における第1実施形態の反射特性測定装置の光学系を示す図である。図3は、校正を行う場合における第1実施形態の反射特性測定装置の光学系を示す図である。図2(A)および図3(A)は、側面図であり、図2(B)および図3(B)は、正面図であり、そして、図2(C)および図3(C)は、底面図である。図4は、第1実施形態の反射特性測定装置における光学系および駆動機構を示す斜視図である。図4(A)は、反射部材が校正位置にある場合を示し、図4(B)は、反射部材が待機位置にある場合を示す。
(First embodiment)
FIG. 1 is a block diagram showing an overall schematic configuration of the reflection characteristic measuring apparatus according to the first embodiment. FIG. 2 is a diagram showing an optical system of the reflection characteristic measuring apparatus according to the first embodiment when measuring a sample. FIG. 3 is a diagram illustrating an optical system of the reflection characteristic measuring apparatus according to the first embodiment when calibration is performed. 2 (A) and 3 (A) are side views, FIG. 2 (B) and FIG. 3 (B) are front views, and FIG. 2 (C) and FIG. 3 (C) are FIG. FIG. 4 is a perspective view showing an optical system and a drive mechanism in the reflection characteristic measuring apparatus of the first embodiment. FIG. 4A shows a case where the reflecting member is in the calibration position, and FIG. 4B shows a case where the reflecting member is in the standby position.
 第1実施形態における反射特性測定装置DAは、測定対象である試料SMの反射特性を測定する装置であり、例えば、図1ないし図4に示すように、照明受光光学系1Aと、分光部2と、演算制御部3と、入力部4と、出力部5とを備えている。 The reflection characteristic measuring apparatus DA in the first embodiment is an apparatus that measures the reflection characteristic of the sample SM that is a measurement target. For example, as shown in FIGS. 1 to 4, the illumination light receiving optical system 1A and the spectroscopic unit 2 are used. And an arithmetic control unit 3, an input unit 4, and an output unit 5.
 照明受光光学系1Aは、測定対象の試料SMを測定するための位置(場所)として予め設定された所定の測定平面に対し予め設定された所定のジオメトリで、照明光を試料SMの試料測定面SMFに照射してその反射光を受光する光学系である。ジオメトリ(光学的条件)は、測定平面に対する、照明光の入射方向および反射光の観察方向である。照明受光光学系1Aは、照明系11Aと、受光光学系12Aとを備え、本実施形態では、反射特性測定装置DA内でその校正を行うために、反射部材13Aと、標準部材14Aとをさらに備えている。なお、図1では、反射部材13Aおよび標準部材14Aの図示が省略されている。 The illumination light-receiving optical system 1A transmits illumination light to the sample measurement surface of the sample SM with a predetermined geometry set in advance with respect to a predetermined measurement plane set in advance as a position (place) for measuring the sample SM to be measured. This is an optical system that irradiates the SMF and receives the reflected light. The geometry (optical condition) is an incident direction of illumination light and an observation direction of reflected light with respect to the measurement plane. The illumination light receiving optical system 1A includes an illumination system 11A and a light receiving optical system 12A. In this embodiment, the reflection member 13A and the standard member 14A are further provided for calibration in the reflection characteristic measuring apparatus DA. I have. In FIG. 1, the reflecting member 13A and the standard member 14A are not shown.
 照明系11Aは、前記測定平面に臨むように配置された、試料SMの試料測定面SMFに照明光を照射するものである。反射特性測定装置DAでは、通常、正確な測定結果を得るべく、試料SMの試料測定面SMFが前記測定平面に一致するように配置されることが予定されており、そして、このように配置されることが理想的であり好ましい。照明系11Aは、例えば、照明光を放射する光源と、前記光源から放射された照明光を、試料SMの試料測定面SMFに対し所定の入射角で入射させる照明光学系とを備えている。前記光源は、例えば、ハロゲンランプや白色ランプやLED光源等である。前記照明光学系は、例えば、前記光源から放射された照明光を平行光に換えて射出する両凸のコリメートレンズ等である。 The illumination system 11A irradiates the sample measurement surface SMF of the sample SM, which is arranged so as to face the measurement plane, with illumination light. In the reflection characteristic measuring apparatus DA, normally, in order to obtain an accurate measurement result, it is planned that the sample measurement surface SMF of the sample SM is arranged so as to coincide with the measurement plane. Ideal and preferred. The illumination system 11A includes, for example, a light source that emits illumination light and an illumination optical system that causes the illumination light emitted from the light source to enter the sample measurement surface SMF of the sample SM at a predetermined incident angle. The light source is, for example, a halogen lamp, a white lamp, an LED light source, or the like. The illumination optical system is, for example, a biconvex collimating lens that emits illumination light emitted from the light source instead of parallel light.
 受光光学系12Aは、試料SMの試料測定面SMFで反射した照明光の反射光を試料SMの試料測定面SMFに対し所定の角度で受光するものである。受光光学系12Aは、例えば、前記所定の角度で受光した照明光の反射光を集光する両凸の集光レンズ等である。 The light receiving optical system 12A receives the reflected light of the illumination light reflected by the sample measurement surface SMF of the sample SM at a predetermined angle with respect to the sample measurement surface SMF of the sample SM. The light receiving optical system 12A is, for example, a biconvex condensing lens that condenses the reflected light of the illumination light received at the predetermined angle.
 反射特性測定装置DAは、任意のジオメトリであってよいが、本実施形態では、45/0のジオメトリを採用しており、この45/0のジオメトリとなるように、これら前記照明光学系と受光光学系12Aとは、前記測定平面に対して配置される。言い換えれば、例えば仕様等に応じてジオメトリが決まると、このジオメトリに従うように前記測定平面、前記照明光学系の光軸および受光光学系12Aの光軸の各位置が相互に規定される。すなわち、ジオメトリは、上述のように定義されるので、ジオメトリおよび測定平面を設定すると、この測定平面に対し、照明系11Aの前記照明光学系の光軸の位置および受光光学系12Aの光軸の位置が決まる。一方、ジオメトリ、照明系11Aの前記照明光学系の光軸および受光光学系12Aの光軸が設定されると、測定平面が決まる。 The reflection characteristic measuring apparatus DA may have an arbitrary geometry, but in the present embodiment, a 45/0 geometry is adopted, and the illumination optical system and the light receiving unit are arranged so as to have the 45/0 geometry. The optical system 12A is arranged with respect to the measurement plane. In other words, for example, when the geometry is determined according to the specifications, the positions of the measurement plane, the optical axis of the illumination optical system, and the optical axis of the light receiving optical system 12A are mutually defined so as to follow the geometry. That is, since the geometry is defined as described above, when the geometry and the measurement plane are set, the position of the optical axis of the illumination optical system of the illumination system 11A and the optical axis of the light receiving optical system 12A are set with respect to the measurement plane. The position is determined. On the other hand, when the geometry, the optical axis of the illumination optical system of the illumination system 11A, and the optical axis of the light receiving optical system 12A are set, the measurement plane is determined.
 反射部材13Aは、入射光を反射する平板状の部材であり、例えば、反射鏡(ミラー)等である。反射部材13Aは、第1反射面を形成する第1反射部材13A-1と、第2反射面を形成する第2反射部材13A-2とを備えている。すなわち、第1反射部材13A-1と第2反射部材13A-2とは、本実施形態では、反射部材13Aとして一体で構成されている。第1および第2反射面は、それぞれ、例えばアルミニウム等の金属薄膜や誘電体多層膜等で構成される。あるいは、例えば、反射部材13A自体が光沢のある金属板であって、該金属板の表面が第1および第2反射面を形成してもよい。 The reflecting member 13A is a flat plate member that reflects incident light, and is, for example, a reflecting mirror (mirror). The reflecting member 13A includes a first reflecting member 13A-1 that forms a first reflecting surface and a second reflecting member 13A-2 that forms a second reflecting surface. That is, the first reflecting member 13A-1 and the second reflecting member 13A-2 are integrally configured as the reflecting member 13A in the present embodiment. The first and second reflecting surfaces are each composed of a metal thin film such as aluminum, a dielectric multilayer film, or the like. Alternatively, for example, the reflecting member 13A itself may be a glossy metal plate, and the surface of the metal plate may form the first and second reflecting surfaces.
 反射部材13Aは、反射特性測定装置DAの校正を行う場合に配置される校正位置に挿抜可能に構成されている。すなわち、反射部材13Aは、校正を行う場合に校正位置に挿入配置可能であって、測定を行う場合に校正位置から脱抜可能に構成されている。より具体的には、反射部材13Aは、反射特性測定装置DAの校正を行う場合に配置される校正位置と、この校正位置から退避した、試料SMにおける試料測定面SMFの反射特性の測定を行う場合に配置される待機位置とを例えば後述の機構によって切り換え可能に構成されている。この反射部材13Aの校正位置は、試料SMの試料測定面SMFに照射される照明光の第1光路上における所定の位置である。この反射部材13Aの待機位置は、前記第1光路上を除く位置である。すなわち、この反射部材13Aの待機位置は、照明系11Aから試料SMの試料測定面SMFに照射される照明光を反射部材13Aが妨げることなく、かつ、試料SMの試料測定面SMFから受光光学系12Aで受光される照明光の反射光を反射部材13Aが妨げない位置である。本実施形態では、第1および第2反射部材13A-1、13A-2は、反射部材13Aとして一体で構成されていることから、反射部材13Aの校正位置は、第1反射部材13A-1の第1校正位置であるとともに第2反射部材13A-2の第2校正位置であり、反射部材13Aの待機位置は、第1反射部材13A-1の第1待機位置であるとともに第2反射部材13A-2の第2待機位置である。 The reflection member 13A is configured to be insertable / removable at a calibration position arranged when the reflection characteristic measuring apparatus DA is calibrated. That is, the reflection member 13A can be inserted and arranged at the calibration position when calibration is performed, and can be removed from the calibration position when measurement is performed. More specifically, the reflecting member 13A measures the calibration position arranged when the reflection characteristic measuring apparatus DA is calibrated, and the reflection characteristic of the sample measurement surface SMF in the sample SM that is retracted from the calibration position. The standby position arranged in this case can be switched by, for example, a mechanism described later. The calibration position of the reflecting member 13A is a predetermined position on the first optical path of the illumination light irradiated on the sample measurement surface SMF of the sample SM. The standby position of the reflecting member 13A is a position excluding the first optical path. That is, the standby position of the reflecting member 13A is such that the reflecting member 13A does not block the illumination light irradiated from the illumination system 11A to the sample measurement surface SMF of the sample SM, and the light receiving optical system from the sample measurement surface SMF of the sample SM. This is a position where the reflecting member 13A does not block the reflected light of the illumination light received by 12A. In the present embodiment, since the first and second reflecting members 13A-1 and 13A-2 are integrally formed as the reflecting member 13A, the calibration position of the reflecting member 13A is the position of the first reflecting member 13A-1. The first calibration position and the second calibration position of the second reflecting member 13A-2. The standby position of the reflecting member 13A is the first standby position of the first reflecting member 13A-1 and the second reflecting member 13A. -2 is the second standby position.
 反射部材13Aにおける第1反射部材13A-1は、この第1校正位置に配置されている場合に、照明系11Aから照射される照明光を標準部材14Aへ反射する第1姿勢であり、そして、反射部材13Aにおける第2反射部材13A-2は、この第2校正位置に配置されている場合に、標準部材14Aで反射した照明光の拡散反射光を、試料SMの試料測定面SMFで反射した照明光の反射光の第2光路と重なるように、反射する第2姿勢である。より具体的には、本実施形態では、例えば、第1反射部材13A-1の前記第1姿勢は、第1反射部材13A-1に形成された第1反射面が、反射特性測定装置DAの前記測定平面、および、試料SMの試料測定面SMFに照射される照明光の前記第1光路における光軸(すなわち、照明系11Aの前記照明光学系の光軸)と、試料SMの試料測定面SMFで反射した照明光の反射光の前記第2光路における光軸(すなわち、受光光学系12Aの光軸)とが成す第1平面(ジオメトリによって規定される平面)の両方に平行な直線Rを回転軸Rとして所定の角度で傾斜した姿勢である。第2反射部材13A-2の前記第2姿勢は、第2反射部材13A-2が第1反射部材13A-1と一体で形成されているので、前記回転軸Rで所定の角度で傾斜した姿勢である。第1反射部材13A-1における前記所定の角度や第2反射部材13A-2における前記所定の角度は、標準部材14Aの配置位置や拡散反射する拡散反射面の角度等に応じて適宜に設定される。 When the first reflecting member 13A-1 in the reflecting member 13A is disposed at the first calibration position, the first reflecting member 13A-1 reflects the illumination light emitted from the illumination system 11A to the standard member 14A, and When the second reflecting member 13A-2 in the reflecting member 13A is disposed at the second calibration position, the diffuse reflected light of the illumination light reflected by the standard member 14A is reflected by the sample measurement surface SMF of the sample SM. It is the 2nd attitude | position which reflects so that it may overlap with the 2nd optical path of the reflected light of illumination light. More specifically, in the present embodiment, for example, the first posture of the first reflecting member 13A-1 is such that the first reflecting surface formed on the first reflecting member 13A-1 is the reflection characteristic measuring device DA. The measurement plane, the optical axis in the first optical path of illumination light irradiated on the sample measurement surface SMF of the sample SM (that is, the optical axis of the illumination optical system of the illumination system 11A), and the sample measurement surface of the sample SM A straight line R parallel to both the first plane (the plane defined by the geometry) formed by the optical axis in the second optical path of the reflected light of the illumination light reflected by the SMF (that is, the optical axis of the light receiving optical system 12A) is formed. The rotation axis R is inclined at a predetermined angle. The second posture of the second reflecting member 13A-2 is such that the second reflecting member 13A-2 is formed integrally with the first reflecting member 13A-1, so that the second reflecting member 13A-2 is inclined at a predetermined angle with respect to the rotation axis R. It is. The predetermined angle in the first reflecting member 13A-1 and the predetermined angle in the second reflecting member 13A-2 are appropriately set according to the arrangement position of the standard member 14A, the angle of the diffuse reflecting surface that diffusely reflects, and the like. The
 標準部材14Aは、入射光を拡散反射する部材であり、第1反射部材13A-1で反射された照明光(照明光の反射光)を第2反射部材13A-2へ向けて拡散反射する。標準部材14Aは、照明系11Aから照射される照明光の光学特性の変動を補正して校正する場合に使用されるものである。標準部材14Aは、例えば、拡散反射板であってよく、また例えば、白色校正板であってもよい。要は、標準部材14Aは、少なくとも拡散反射するものであればよい。本実施形態では、標準部材14Aも、反射部材13Aと同様に、校正位置に挿抜可能に構成されている。より具体的には、標準部材14Aは、校正位置と待機位置とを例えば後述の機構によって切り換え可能に構成されている。 The standard member 14A is a member that diffusely reflects incident light, and diffusely reflects the illumination light reflected by the first reflecting member 13A-1 (reflected light of the illumination light) toward the second reflecting member 13A-2. The standard member 14A is used when correcting and correcting the variation in the optical characteristics of the illumination light emitted from the illumination system 11A. The standard member 14A may be, for example, a diffuse reflection plate, or may be a white calibration plate, for example. In short, the standard member 14A may be at least diffusely reflected. In the present embodiment, the standard member 14A is also configured to be insertable / removable at the calibration position, similarly to the reflecting member 13A. More specifically, the standard member 14A is configured to be switchable between a calibration position and a standby position, for example, by a mechanism described later.
 このような反射部材13Aおよび標準部材14Aは、反射特性測定装置DAが校正位置でこれらを保持する保持部材を備え、校正を行う場合(校正モード)では校正位置にオペレータ(ユーザ)によって直接的に配置され、試料SMの測定を行う場合(測定モード)では校正位置からオペレータ(ユーザ)によって直接的に取り除かれてもよいが、本実施形態では、反射特性測定装置DAは、これら反射部材13Aおよび標準部材14Aを動かして校正位置に対し挿抜する駆動機構を備えている。そして、これら反射部材13Aおよび標準部材14Aは、オペレータがこの駆動機構を駆動することで動かされてもよいが、本実施形態では、反射特性測定装置DAは、駆動機構に動力を与える動力源を備えており、これら反射部材13Aおよび標準部材14Aは、動力源の動力によって駆動機構を駆動することで動かされる。より具体的には、例えば、図4に示す構成によって校正位置および待機位置のいずれか一方の位置に切り換え配置される。 The reflecting member 13A and the standard member 14A include a holding member that holds the reflection characteristic measuring apparatus DA at the calibration position. When calibration is performed (calibration mode), the operator (user) directly at the calibration position. In the case where the sample SM is placed and the sample SM is measured (measurement mode), it may be directly removed from the calibration position by the operator (user). A drive mechanism is provided that moves the standard member 14A and inserts and removes it from the calibration position. The reflection member 13A and the standard member 14A may be moved by the operator driving the drive mechanism. In the present embodiment, the reflection characteristic measuring device DA is a power source that provides power to the drive mechanism. The reflecting member 13A and the standard member 14A are moved by driving a drive mechanism by the power of the power source. More specifically, for example, the arrangement shown in FIG. 4 is switched to one of the calibration position and the standby position.
 図4において、図略の筐体に形成された測定開口に嵌め込まれたカバーガラス27の測定平面に対し所定のジオメトリとなるように、前記筐体内に固定配置される多角柱形状の固定体21に照明系11Aおよび受光光学系12Aが固定される。測定開口は、試料SMの試料測定面SMF(測定平面)で反射した照明光の反射光が入射される、前記図略の筐体に形成された貫通孔である。固定体21には、照明系11Aの前記照明光学系の光軸と受光光学系12Aの光軸とが成す平面(前記第1平面)の法線方向に沿って延びる長尺円柱状の一対の第1および第2案内ロッド26-1、26-2が互いに間隔を空けて凸設されている。これら一対の第1および第2案内ロッド26-1、26-2によって案内(ガイド)されるように、反射部材13A(第1反射部材13A-1および第2反射部材13A-2)と標準部材14Aとをその一方側に取り付けた取付部材25がこれら一対の第1および第2案内ロッド26-1、26-2に移動可能に配設されている。取付部材25の他方側の端部には、長尺棒状のアーム部材24がその一方端部で接続される。アーム部材24の略中央には、ソレノイドモータ23の回転軸が固定されている。そして、ソレノイドモータ23は、側面視で略L字形状の固定接続部材22を介して固定体21に固定される。 In FIG. 4, a polygonal column-shaped fixed body 21 fixedly arranged in the casing so as to have a predetermined geometry with respect to the measurement plane of the cover glass 27 fitted in a measurement opening formed in a not-illustrated casing. The illumination system 11A and the light receiving optical system 12A are fixed. The measurement opening is a through hole formed in the housing (not shown) into which the reflected light of the illumination light reflected by the sample measurement surface SMF (measurement plane) of the sample SM is incident. The fixed body 21 has a pair of long cylindrical columns extending along the normal direction of the plane (the first plane) formed by the optical axis of the illumination optical system of the illumination system 11A and the optical axis of the light receiving optical system 12A. The first and second guide rods 26-1 and 26-2 are protruded with a space therebetween. The reflecting member 13A (the first reflecting member 13A-1 and the second reflecting member 13A-2) and the standard member are guided by the pair of first and second guide rods 26-1 and 26-2. An attachment member 25 attached to one side of 14A is movably disposed on the pair of first and second guide rods 26-1 and 26-2. A long rod-like arm member 24 is connected to the other end of the mounting member 25 at one end thereof. A rotation shaft of the solenoid motor 23 is fixed at the approximate center of the arm member 24. The solenoid motor 23 is fixed to the fixed body 21 via a substantially L-shaped fixed connection member 22 in a side view.
 このような構成では、演算制御部3の制御によってソレノイドモータ23が稼働すると、ソレノイドモータ23の回転軸が回転駆動され、この回転軸の回転駆動に伴ってアーム部材24も回転駆動される。このアーム部材24の回転駆動に従って取付部材25が駆動されるが、取付部材25の運動は、一対の第1および第2案内ロッド26-1、26-2によって規制されるため、アーム部材24の一方端部における周方向に沿った運動は、取付部材25の直進方向に沿った運動となる。この運動によって、取付部材25に取り付けられた反射部材13Aおよび標準部材14Aは、例えば、照明光および照明光の反射光の各光路から外れた待機位置(図4(B))から、これら各光路上の校正位置(図4(A))へ切り換え配置される。そして、ソレノイドモータ23の回転軸を逆回転させることによって、反射部材13Aおよび標準部材14Aは、校正位置(図4(A))から待機位置(図4(B))へ切り換え配置される。 In such a configuration, when the solenoid motor 23 is operated under the control of the arithmetic control unit 3, the rotating shaft of the solenoid motor 23 is rotationally driven, and the arm member 24 is also rotationally driven along with the rotational driving of the rotating shaft. The attachment member 25 is driven in accordance with the rotational drive of the arm member 24. The movement of the attachment member 25 is restricted by the pair of first and second guide rods 26-1 and 26-2. On the other hand, the movement along the circumferential direction at the end is a movement along the straight direction of the mounting member 25. Due to this movement, the reflecting member 13A and the standard member 14A attached to the attaching member 25, for example, from the standby positions (FIG. 4B) deviated from the respective optical paths of the illumination light and the reflected light of the illumination light. The position is switched to the calibration position on the road (FIG. 4A). Then, by rotating the rotating shaft of the solenoid motor 23 in the reverse direction, the reflecting member 13A and the standard member 14A are switched from the calibration position (FIG. 4A) to the standby position (FIG. 4B).
 なお、前記測定開口は、照明系11Aの照明光を試料SMの試料測定面SMFへ照射するために、前記筐体の適所に形成された開口(孔)であり、カバーガラス27は、平板状であり、前記筐体内に例えばチリやホコリ等のゴミの進入を防ぐために、前記測定開口に嵌め込まれている。試料SMを測定する場合には、カバーガラス27に試料SMの試料測定面SMFが当接され、前記測定開口に試料SMの試料測定面SMFが臨まれる。このため、図4に示す構成では、カバーガラス27の外面が前記測定平面とされる。 The measurement aperture is an aperture (hole) formed at an appropriate position of the housing in order to irradiate the illumination light of the illumination system 11A to the sample measurement surface SMF of the sample SM, and the cover glass 27 has a flat plate shape. In order to prevent the entry of dust such as dust and dust into the housing, it is fitted into the measurement opening. When measuring the sample SM, the sample measurement surface SMF of the sample SM is brought into contact with the cover glass 27, and the sample measurement surface SMF of the sample SM faces the measurement opening. For this reason, in the configuration shown in FIG. 4, the outer surface of the cover glass 27 is the measurement plane.
 分光部2は、受光光学系12Aで受光された照明光の反射光を分光測定する装置である。分光測定は、測定対象光(ここでは照明光の反射光)の光強度を所定の波長間隔で波長ごとに測定するものである。照明光の反射光は、受光光学系12Aから直接的に分光部2へ導光されてもよいが、本実施形態では、分光部2の配置位置に自由度を与えるために、受光光学系12Aから導光部材6を介して分光部2に導光されている。導光部材6は、全反射を繰り返して所定の或る箇所から所定の他の箇所まで光を伝播して導くものであり、例えば光ファイバ等である。 The spectroscopic unit 2 is a device for spectroscopically measuring the reflected light of the illumination light received by the light receiving optical system 12A. Spectroscopic measurement is to measure the light intensity of measurement target light (here, reflected light of illumination light) for each wavelength at a predetermined wavelength interval. The reflected light of the illumination light may be guided directly from the light receiving optical system 12A to the spectroscopic unit 2, but in this embodiment, the light receiving optical system 12A is provided in order to give a degree of freedom to the arrangement position of the spectroscopic unit 2. Is guided to the spectroscopic unit 2 through the light guide member 6. The light guide member 6 repeats total reflection and propagates and guides light from a predetermined location to another predetermined location, and is, for example, an optical fiber.
 分光部2は、より具体的には、例えば、スリット部材と、反射鏡と、回折格子と、測定用アレイセンサとを備えている。前記スリット部材は、前記測定用アレイセンサに入射される反射光を規制する、矩形形状の開口であるスリットを形成した板状部材である。前記反射鏡は、前記スリット部材の前記スリットを介して入射された反射光を回折格子へ反射する凹面鏡である。前記回折格子は、前記反射鏡で反射された反射光を回折することによって該反射光を所定の波長間隔で波長ごとに分光し、前記測定用アレイセンサへ導く光学素子である。前記測定用アレイセンサは、前記回折格子により分光される波長方向に一列に配列された複数の光電変換素子を備えており、各光電変換素子がそれぞれ互いに異なる波長の光を受光し、これら受光した各光の光強度に応じた各電気信号を出力する素子である。 More specifically, the spectroscopic unit 2 includes, for example, a slit member, a reflecting mirror, a diffraction grating, and a measurement array sensor. The slit member is a plate-like member in which a slit that is a rectangular opening that restricts reflected light incident on the measurement array sensor. The reflecting mirror is a concave mirror that reflects the reflected light incident through the slit of the slit member to the diffraction grating. The diffraction grating is an optical element that diffracts the reflected light reflected by the reflecting mirror to split the reflected light for each wavelength at a predetermined wavelength interval and guide the reflected light to the measurement array sensor. The measurement array sensor includes a plurality of photoelectric conversion elements arranged in a line in a wavelength direction split by the diffraction grating, and each photoelectric conversion element receives light having a wavelength different from each other and receives the light. It is an element which outputs each electric signal according to the light intensity of each light.
 このような分光部2では、試料SMから照明光の反射光は、前記スリット部材のスリットで規制されて前記反射鏡に入射され、前記反射鏡で反射されて前記回折格子に入射され、回折されて分光され、前記測定用アレイセンサに入射される。前記測定用アレイセンサの受光面には、前記スリットの分散像が結像される。前記測定用アレイセンサでは、各光電変換素子が反射光の分散光を光電変換し、試料SMの試料測定面SMFからの反射光の分光強度に応じた電気信号を出力する。なお、前記反射鏡および前駆回折格子は、反射型凹面回折格子に代えてもよい。 In such a spectroscopic unit 2, the reflected light of the illumination light from the sample SM is regulated by the slit of the slit member and incident on the reflecting mirror, reflected by the reflecting mirror, incident on the diffraction grating, and diffracted. And is incident on the measurement array sensor. A dispersion image of the slit is formed on the light receiving surface of the measurement array sensor. In the measurement array sensor, each photoelectric conversion element photoelectrically converts the dispersed light of the reflected light, and outputs an electrical signal corresponding to the spectral intensity of the reflected light from the sample measurement surface SMF of the sample SM. The reflecting mirror and the precursor diffraction grating may be replaced with a reflective concave diffraction grating.
 演算制御部3は、反射特性測定装置DA全体の動作を司るとともに、分光部2の出力に基づいて試料SMにおける試料測定面SMFの反射特性を求めるものである。演算制御部3は、例えば、照明系11Aの前記光源における照明光の発光を制御し、反射部材13Aおよび標準部材14Aを待機位置および校正位置のいずれか一方に配置されるように制御し、試料SMの試料測定面SMFからの照明光の反射光を分光するべく分光部2を制御し、分光部2の出力に基づいて試料SMにおける試料測定面SMFの反射特性を求め、そして、校正を行うべく分光部2を制御し、分光部2の出力に基づいて標準部材14Aの反射特性を求めて校正を行うものである。演算制御部3は、例えば、CPU(Central Processing Unit、中央処理装置)、ROMやRAM等の記憶素子およびこれらの周辺回路とを備えて構成されるマイクロコンピュータ等である。 The arithmetic control unit 3 controls the operation of the entire reflection characteristic measuring apparatus DA and obtains the reflection characteristic of the sample measurement surface SMF in the sample SM based on the output of the spectroscopic unit 2. The arithmetic control unit 3 controls, for example, the emission of illumination light from the light source of the illumination system 11A, and controls the reflecting member 13A and the standard member 14A so as to be arranged at any one of the standby position and the calibration position. The spectroscopic unit 2 is controlled to split the reflected light of the illumination light from the sample measurement surface SMF of the SM, the reflection characteristic of the sample measurement surface SMF in the sample SM is obtained based on the output of the spectroscopic unit 2, and calibration is performed. Thus, the spectroscopic unit 2 is controlled, and the reflection characteristic of the standard member 14A is obtained based on the output of the spectroscopic unit 2 to perform calibration. The arithmetic control unit 3 is, for example, a microcomputer including a CPU (Central Processing Unit), storage elements such as ROM and RAM, and peripheral circuits thereof.
 入力部4は、外部からコマンド(命令)やデータ等を入力するための装置であり、例えばタッチパネルやキーボード等である。出力部5は、入力部4から入力されたコマンドやデータおよび演算制御部3の演算結果等を出力するための装置であり、例えばLCD(液晶ディスプレイ)や有機ELディスプレイ等である。 The input unit 4 is a device for inputting commands (commands), data, and the like from the outside, such as a touch panel and a keyboard. The output unit 5 is a device for outputting commands and data input from the input unit 4 and the calculation result of the calculation control unit 3, and is an LCD (liquid crystal display), an organic EL display, or the like.
 次に、本実施形態の動作について説明する。このような構成の反射特性測定装置DAでは、試料SMの試料測定面SMFの反射特性を測定する場合には、演算制御部3の制御に従ってソレノイドモータ23が稼働され、ソレノイドモータ23の回転軸の回転によってアーム部材24が回転運動を行い、これによって取付部材25が一対の第1および第2案内ロッド26-1、26-2に案内されて移動し、取付部材25に取り付けられた反射部材13Aおよび標準部材14Aは、図4(B)に示すように、待機位置に配置される。 Next, the operation of this embodiment will be described. In the reflection characteristic measuring apparatus DA having such a configuration, when measuring the reflection characteristic of the sample measurement surface SMF of the sample SM, the solenoid motor 23 is operated according to the control of the arithmetic control unit 3, and the rotation axis of the solenoid motor 23 is adjusted. The rotation causes the arm member 24 to rotate, whereby the attachment member 25 is guided and moved by the pair of first and second guide rods 26-1 and 26-2, and the reflection member 13 A attached to the attachment member 25. As shown in FIG. 4B, the standard member 14A is disposed at the standby position.
 オペレータ(ユーザ)によって測定平面(カバーガラス27の外面)に試料SMの試料面が配置される。そして、上述の動作によって、反射部材13Aおよび標準部材14Aが待機位置に配置されると、演算制御部3は、照明系11Aを制御し、照明系11Aに照明光を試料SMの試料測定面SMFに照射させる。 The sample surface of the sample SM is arranged on the measurement plane (the outer surface of the cover glass 27) by the operator (user). Then, when the reflecting member 13A and the standard member 14A are arranged at the standby position by the above-described operation, the arithmetic control unit 3 controls the illumination system 11A to send illumination light to the illumination system 11A and the sample measurement surface SMF of the sample SM. To irradiate.
 照明系11Aから照射された照明光は、図2に示すように、試料SMの試料測定面SMF(測定平面)に対し所定のジオメトリで入射され、反射される。この照明光の反射光は、試料SMの試料測定面SMF(測定平面)に対し所定のジオメトリで受光光学系12Aによって受光され、導光部材6を介して分光部2へ入射される。なお、この場合、反射部材13Aおよび標準部材14Aは、待機位置にあって校正位置にはないので、図2では、反射部材13Aおよび標準部材14Aは、破線で示されている。 The illumination light emitted from the illumination system 11A is incident on the sample measurement surface SMF (measurement plane) of the sample SM with a predetermined geometry and reflected as shown in FIG. The reflected light of the illumination light is received by the light receiving optical system 12A with a predetermined geometry with respect to the sample measurement surface SMF (measurement plane) of the sample SM, and is incident on the spectroscopic unit 2 through the light guide member 6. In this case, since the reflecting member 13A and the standard member 14A are at the standby position and not at the calibration position, the reflecting member 13A and the standard member 14A are indicated by broken lines in FIG.
 分光部2は、この照明光の反射光を分光し、その結果を演算制御部3へ出力する。演算制御部3は、分光部2の出力に基づいて照明光の反射光における例えば分光反射特性等の反射特性を求める。この求めた反射特性は、演算制御部3の制御に従って出力部5に出力される。 The spectroscopic unit 2 splits the reflected light of the illumination light and outputs the result to the arithmetic control unit 3. The arithmetic control unit 3 obtains a reflection characteristic such as a spectral reflection characteristic in the reflected light of the illumination light based on the output of the spectroscopic unit 2. The obtained reflection characteristic is output to the output unit 5 under the control of the arithmetic control unit 3.
 一方、反射特性測定装置DAを校正する場合には、演算制御部3の制御に従ってソレノイドモータ23が稼働され、ソレノイドモータ23の回転軸の回転によってアーム部材24が回転運動を行い、これによって取付部材25が一対の第1および第2案内ロッド26-1、26-2に案内されて移動し、取付部材25に取り付けられた反射部材13Aおよび標準部材14Aは、図4(A)に示すように、校正位置に配置される。 On the other hand, when the reflection characteristic measuring apparatus DA is calibrated, the solenoid motor 23 is operated according to the control of the arithmetic control unit 3, and the arm member 24 rotates by the rotation of the rotating shaft of the solenoid motor 23. As shown in FIG. 4A, the reflecting member 13A and the standard member 14A attached to the attachment member 25 are guided by the pair of first and second guide rods 26-1 and 26-2 and moved. , Placed in the calibration position.
 そして、上述の動作によって、反射部材13Aおよび標準部材14Aが校正位置に配置されると、演算制御部3は、照明系11Aを制御し、照明系11Aに照明光を照射させる。 Then, when the reflecting member 13A and the standard member 14A are arranged at the calibration position by the above-described operation, the arithmetic control unit 3 controls the illumination system 11A to irradiate the illumination system 11A with illumination light.
 なお、オペレータ(ユーザ)によって測定平面(カバーガラス27の外面)は、測定平面用遮光部材41によって遮光されることが好ましい。これによって校正時にカバーガラス27から入射されるノイズ光を遮光することができ、より精度よく校正を行うことができる。 Note that the measurement plane (the outer surface of the cover glass 27) is preferably shielded by the measurement plane light shielding member 41 by the operator (user). As a result, noise light incident from the cover glass 27 during calibration can be shielded, and calibration can be performed with higher accuracy.
 あるいは、図7に示すように、図略の測定平面遮光機構によって上述の動作に連動して測定平面用遮光部材41が移動し、校正時にカバーガラス27から入射されるノイズ光を遮光するように反射特性測定装置DAが構成されてもよい。このような測定平面用遮光部材41は、少なくともカバーガラス27を覆う大きさおよび形状を備え、赤外線や可視光の波長領域を遮断する材料で形成される。そして、例えば、測定平面用遮光部材41を保持する保持枠、前記保持枠にその一端が連結されたアーム部材、および、前記アーム部材の他方端にその駆動軸が連結されたモータ等を備える図略の前記測定平面遮光機構によって、遮光位置(カバーガラス27を覆って遮光する位置)と待機位置(カバーガラス27からの光束を阻害しない位置)との間で自動的に切り換え制御される。後述の第2実施形態も同様である。 Alternatively, as shown in FIG. 7, the measurement plane light shielding member 41 is moved in conjunction with the above-described operation by a measurement plane light shielding mechanism (not shown) so as to shield noise light incident from the cover glass 27 during calibration. The reflection characteristic measuring device DA may be configured. Such a measurement plane light blocking member 41 has a size and shape that covers at least the cover glass 27, and is formed of a material that blocks the wavelength region of infrared light and visible light. And, for example, a holding frame for holding the measurement plane light shielding member 41, an arm member having one end connected to the holding frame, a motor having a drive shaft connected to the other end of the arm member, etc. Switching between a light shielding position (a position where light is shielded by covering the cover glass 27) and a standby position (a position where the light flux from the cover glass 27 is not obstructed) is automatically controlled by the substantially measuring plane light shielding mechanism. The same applies to a second embodiment described later.
 照明系11Aから照射された照明光は、図3に示すように、反射部材13Aにおける第1反射部材13A-1の第1反射面に入射され、反射される。この照明光の反射光は、標準部材14Aに入射される。標準部材14Aは、この照明光の反射光を受光光学系12Aに向けて拡散反射光として拡散反射する。受光光学系12Aによって受光された前記拡散反射光は、導光部材6を介して分光部2へ入射される。 As shown in FIG. 3, the illumination light emitted from the illumination system 11A is incident on and reflected by the first reflecting surface of the first reflecting member 13A-1 in the reflecting member 13A. The reflected light of the illumination light is incident on the standard member 14A. The standard member 14A diffuses and reflects the reflected light of the illumination light as diffuse reflected light toward the light receiving optical system 12A. The diffusely reflected light received by the light receiving optical system 12 </ b> A is incident on the spectroscopic unit 2 through the light guide member 6.
 分光部2は、この拡散反射光を分光し、その結果を演算制御部3へ出力する。演算制御部3は、分光部2の出力に基づいて当該反射特性測定装置DAを校正するための校正データを求める。この求めた校正データは、演算制御部3に記憶され、測定モードで試料SMにおける試料測定面SMFの反射特性を求める場合に、用いられる。 The spectroscopic unit 2 splits the diffuse reflected light and outputs the result to the arithmetic control unit 3. The arithmetic control unit 3 obtains calibration data for calibrating the reflection characteristic measuring device DA based on the output of the spectroscopic unit 2. The obtained calibration data is stored in the arithmetic control unit 3, and is used when obtaining the reflection characteristic of the sample measurement surface SMF in the sample SM in the measurement mode.
 このような校正モードは、例えば、反射特性測定装置DAの電源スイッチがオンされた場合や、直近の校正モードから予め設定された所定時間が経過した場合等に行われる。 Such a calibration mode is performed, for example, when the power switch of the reflection characteristic measuring apparatus DA is turned on or when a predetermined time set in advance has passed since the most recent calibration mode.
 校正データは、例えば、分光部2の出力データと所定の初期校正データとの差として定義される。この初期校正データは、例えば製造段階や出荷段階等の反射特性測定装置が未使用である初期状態において、校正モードによって得られた分光部2の出力データである。 The calibration data is defined as, for example, the difference between the output data of the spectroscopic unit 2 and predetermined initial calibration data. The initial calibration data is output data of the spectroscopic unit 2 obtained by the calibration mode in an initial state where the reflection characteristic measurement device is not used, for example, at the manufacturing stage or the shipping stage.
 以上、説明したように、本実施形態では、試料SMの試料測定面SMFを測定するための光学系(本実施形態では照明系11Aおよび受光光学系12A)と校正を行う光学系(本実施形態では照明系11A、反射部材13A、標準部材14Aおよび受光光学系12A)とを備えた反射特性測定装置DAおよびその照明受光光学系1Aを提供することができる。そして、本実施形態における反射特性測定装置DAおよびその照明受光光学系1Aでは、校正を行う場合に反射部材13Aの第1反射部材13A-1が第1校正位置に配置されるとともに反射部材13Aの第2反射部材13A-2が第2校正位置に配置され、照明光を第1反射部材13A-1で反射することによって照明光が標準部材14Aに導光され、そして、試料SMの試料測定面SMFで反射した照明光の反射光と略同じ光路となるように、この標準部材14で拡散反射した照明光の拡散反射光が第2反射部材13A-2で反射され、受光光学系12Aによって受光される。校正の際に使用される照明光の拡散反射光は、このように反射によって受光光学系12Aへ導光されるので、本実施形態における反射特性測定装置DAおよびその照明受光光学系1Aは、光量ロスを低減することができる。そして、本実施形態における反射特性測定装置DAおよびその照明受光光学系1Aは、これが用いられる反射特性測定装置DAのジオメトリと関連しないので、種々のジオメトリに適用することができる。 As described above, in the present embodiment, the optical system for measuring the sample measurement surface SMF of the sample SM (in this embodiment, the illumination system 11A and the light receiving optical system 12A) and the optical system for performing calibration (this embodiment). Then, it is possible to provide the reflection characteristic measuring device DA including the illumination system 11A, the reflection member 13A, the standard member 14A, and the light receiving optical system 12A) and the illumination light receiving optical system 1A. In the reflection characteristic measuring apparatus DA and its illumination light receiving optical system 1A in the present embodiment, when calibration is performed, the first reflecting member 13A-1 of the reflecting member 13A is arranged at the first calibration position and the reflecting member 13A The second reflecting member 13A-2 is disposed at the second calibration position, the illumination light is reflected by the first reflecting member 13A-1, and thereby the illumination light is guided to the standard member 14A, and the sample measurement surface of the sample SM The diffuse reflected light of the illumination light diffusely reflected by the standard member 14 is reflected by the second reflecting member 13A-2 so that it has substantially the same optical path as the reflected light of the illumination light reflected by the SMF, and is received by the light receiving optical system 12A. Is done. Since the diffusely reflected light of the illumination light used for calibration is guided to the light receiving optical system 12A by reflection in this way, the reflection characteristic measuring device DA and its illumination light receiving optical system 1A in the present embodiment Loss can be reduced. The reflection characteristic measuring apparatus DA and its illumination light receiving optical system 1A in this embodiment are not related to the geometry of the reflection characteristic measuring apparatus DA in which it is used, and can be applied to various geometries.
 また、本実施形態では、第1反射部材13A-1と第2反射部材13A-2とは、反射部材13Aとして一体に形成されている。このため、本実施形態における反射特性測定装置DAおよびその照明受光光学系1Aは、第1反射部材13A-1および第2反射部材13A-2を一体に動かすことができる。したがって、第1反射部材13A-1および第2反射部材13A-2を動かす駆動機構を設ける場合に、この駆動機構は、より簡易に構成することができる。 In the present embodiment, the first reflecting member 13A-1 and the second reflecting member 13A-2 are integrally formed as the reflecting member 13A. Therefore, the reflection characteristic measuring apparatus DA and its illumination light receiving optical system 1A in the present embodiment can move the first reflecting member 13A-1 and the second reflecting member 13A-2 together. Therefore, when a driving mechanism for moving the first reflecting member 13A-1 and the second reflecting member 13A-2 is provided, this driving mechanism can be configured more simply.
 また、本実施形態では、第1反射部材13A-1と第2反射部材13A-2と標準部材14Aとは、上述した駆動機構によって待機位置と校正位置とで切り換えられる。このため、これら第1反射部材13A-1、第2反射部材13A-2および標準部材14Aの各移動を自動化することが可能となり、本実施形態では、ソレノイドモータ23および演算制御部3によって自動化されている。 In the present embodiment, the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14A are switched between the standby position and the calibration position by the drive mechanism described above. Therefore, each movement of the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14A can be automated. In the present embodiment, the movement is automated by the solenoid motor 23 and the calculation control unit 3. ing.
 また、本実施形態では、第1反射部材13A-1と第2反射部材13A-2と標準部材14Aは、取付部材25に取り付けられている。このため、本実施形態における反射特性測定装置DAおよびその照明受光光学系1Aは、第1反射部材13A-1、第2反射部材13A-2および標準部材14を一体に動かすことができる。したがって、第1反射部材13A-1、第2反射部材13A-2および標準部材14における相互の幾何学的配置関係が一定に維持され、これらが校正位置と待機位置とで繰り返し配置換えされても、第1反射部材13A-1、第2反射部材13A-2および標準部材14における相互の幾何学的配置関係のズレが低減される。この結果、校正がより長期間に亘って良好に行われる。 In the present embodiment, the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14A are attached to the attaching member 25. Therefore, the reflection characteristic measuring apparatus DA and its illumination light receiving optical system 1A in the present embodiment can move the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14 together. Accordingly, the mutual geometric arrangement relationship between the first reflecting member 13A-1, the second reflecting member 13A-2, and the standard member 14 is maintained constant, and even if these are repeatedly rearranged between the calibration position and the standby position. Further, the displacement of the mutual geometric arrangement relationship between the first reflecting member 13A-1, the second reflecting member 13A-2 and the standard member 14 is reduced. As a result, calibration is performed well over a longer period.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第2実施形態)
 図5は、試料を測定する場合における第2実施形態の反射特性測定装置の光学系を示す図である。図6は、校正を行う場合における第2実施形態の反射特性測定装置の光学系を示す図である。なお、図5では、反射部材13Bおよび標準部材14Bは、待機位置にあって校正位置にはないので、破線で示されている。
(Second Embodiment)
FIG. 5 is a diagram showing an optical system of a reflection characteristic measuring apparatus according to the second embodiment when measuring a sample. FIG. 6 is a diagram illustrating an optical system of the reflection characteristic measuring apparatus according to the second embodiment when calibration is performed. In FIG. 5, the reflecting member 13B and the standard member 14B are shown in broken lines because they are in the standby position and not in the calibration position.
 第2実施形態における反射特性測定装置DBは、第1実施形態における反射特性測定装置DAと同様に、測定対象である試料SMの反射特性を測定する装置であり、例えば、照明受光光学系と、分光部と、演算制御部と、入力部と、出力部とを備えている。 The reflection characteristic measurement apparatus DB in the second embodiment is an apparatus that measures the reflection characteristic of the sample SM that is the measurement target, similar to the reflection characteristic measurement apparatus DA in the first embodiment, and includes, for example, an illumination light receiving optical system, A spectroscopic unit, a calculation control unit, an input unit, and an output unit are provided.
 ここで、第1実施形態における反射特性測定装置DAおよびその照明受光光学系1Aは、ジオメトリの一例として45/0ジオメトリであったが、第2実施形態における反射特性測定装置DBおよびその照明受光光学系は、ジオメトリの他の一例として45/45ジオメトリである。このため、第2実施形態における反射特性測定装置DBは、その照明受光光学系が第1実施形態の反射特性測定装置DAにおける照明受光光学系1Aと異なるだけであり、第2実施形態の反射特性測定装置DBにおける前記分光部、前記演算制御部、前記入力部および前記出力部のそれぞれは、第1実施形態の反射特性測定装置DAにおける分光部2、演算制御部3、入力部4および出力部5のそれぞれと同様であり、その説明を省略する。 Here, the reflection characteristic measurement device DA and its illumination light receiving optical system 1A in the first embodiment have a 45/0 geometry as an example of the geometry, but the reflection characteristic measurement device DB and its illumination light reception optical in the second embodiment. The system is a 45/45 geometry as another example of geometry. For this reason, the reflection characteristic measuring apparatus DB in the second embodiment is different only in the illumination light receiving optical system from the illumination light receiving optical system 1A in the reflection characteristic measuring apparatus DA of the first embodiment, and the reflection characteristic of the second embodiment. The spectroscopic unit, the calculation control unit, the input unit, and the output unit in the measurement apparatus DB are respectively the spectroscopic unit 2, the calculation control unit 3, the input unit 4, and the output unit in the reflection characteristic measurement apparatus DA of the first embodiment. This is the same as each of 5 and the description thereof is omitted.
 この第2実施形態の反射特性測定装置DBにおける照明受光光学系1Bは、第1実施形態の照明受光光学系1Aと同様に、測定対象の試料SMを測定するための位置(場所)として予め設定された所定の測定平面に対し予め設定された所定のジオメトリで、照明光を試料SMの試料測定面SMFに照射してその反射光を受光する光学系であり、例えば、図5および図6に示すように、照明系11Bと、受光光学系12Bと、反射部材13Bと、標準部材14Bとを備えている。 The illumination light receiving optical system 1B in the reflection characteristic measuring apparatus DB of the second embodiment is set in advance as a position (place) for measuring the sample SM to be measured, like the illumination light receiving optical system 1A of the first embodiment. An optical system that irradiates the sample measurement surface SMF of the sample SM with illumination light with a predetermined geometry set in advance with respect to the predetermined measurement plane and receives the reflected light. For example, FIG. 5 and FIG. As shown, an illumination system 11B, a light receiving optical system 12B, a reflecting member 13B, and a standard member 14B are provided.
 そして、上述と同様の理由により、第2実施形態の照明受光光学系1Bにおける照明系11B、受光光学系12B、反射部材13Bおよび標準部材14Bは、その幾何学的配置関係が第1実施形態の照明受光光学系1Aと異なるだけであり、第2実施形態の照明受光光学系1Bにおける照明系11B、受光光学系12B、反射部材13Bおよび標準部材14Bのそれぞれは、機能的には、第1実施形態の照明受光光学系1Aにおける照明系11A、受光光学系12A、反射部材13Aおよび標準部材14Aのそれぞれと同様であり、ここでは、その幾何学的配置関係を説明する。 For the same reason as described above, the illumination system 11B, the light receiving optical system 12B, the reflecting member 13B, and the standard member 14B in the illumination light receiving optical system 1B of the second embodiment have the geometric arrangement relationship of the first embodiment. Only the illumination light receiving optical system 1A is different, and each of the illumination system 11B, the light receiving optical system 12B, the reflecting member 13B, and the standard member 14B in the illumination light receiving optical system 1B of the second embodiment is functionally the first embodiment. This is the same as each of the illumination system 11A, the light reception optical system 12A, the reflection member 13A, and the standard member 14A in the illumination light reception optical system 1A of the embodiment.
 第2実施形態の反射特性測定装置DBおよびその照明受光光学系1Bは、上述したように、45/45ジオメトリであるので、照明系11Bにおける照明光学系は、光源から放射された照明光を、測定平面に対し45度の入射角で入射させるように配置され、受光光学系12Bは、照明光の反射光を、測定平面に対し45度で受光するように配置される。すなわち、測定平面と照明系11Bにおける照明光学系の光軸とが成す角度は、45度であり、測定平面と受光光学系12Bの光軸とが成す角度は、45度である。これによって測定平面に略一致するように配置される試料SMの試料測定面SMFには、照明光が45度の入射角で入射され、この試料SMの試料測定面SMFでの照明光の反射光は、45度の角度で受光(観察)される。 As described above, the reflection characteristic measuring apparatus DB and the illumination light receiving optical system 1B of the second embodiment have a 45/45 geometry, and therefore the illumination optical system in the illumination system 11B is configured to emit illumination light emitted from a light source. The light receiving optical system 12B is disposed so as to receive the reflected light of the illumination light at 45 degrees with respect to the measurement plane. That is, the angle formed by the measurement plane and the optical axis of the illumination optical system in the illumination system 11B is 45 degrees, and the angle formed by the measurement plane and the optical axis of the light receiving optical system 12B is 45 degrees. Thereby, illumination light is incident on the sample measurement surface SMF of the sample SM arranged so as to substantially coincide with the measurement plane at an incident angle of 45 degrees, and reflected light of the illumination light on the sample measurement surface SMF of the sample SM. Is received (observed) at an angle of 45 degrees.
 反射部材13Bは、第1実施形態の反射部材13Aと同様に、入射光を反射する平板状の部材であり、例えば、反射鏡(ミラー)等である。反射部材13Bは、第1反射面を形成する第1反射部材13B-1と、第2反射面を形成する第2反射部材13B-2とを備えている。反射部材13Bは、反射特性測定装置DBの校正を行う場合に配置される校正位置に挿抜可能に構成されている。より具体的には、反射部材13Bは、校正位置と待機位置とを切り換え可能に構成されている。この反射部材13Bの校正位置は、試料SMの試料測定面SMFに照射される照明光の第1光路上における所定の位置である。この反射部材13Aの待機位置は、前記第1光路上を除く位置である。本実施形態でも、第1および第2反射部材13B-1、13B-2は、反射部材13Bとして一体で構成されていることから、反射部材13Bの校正位置は、第1反射部材13B-1の第1校正位置であるとともに第2反射部材13B-2の第2校正位置であり、反射部材13Bの待機位置は、第1反射部材13B-1の第1待機位置であるとともに第2反射部材13B-2の第2待機位置である。反射部材13Bにおける第1反射部材13B-1は、この第1校正位置に配置されている場合に、照明系11Bから照射される照明光を標準部材14Bへ反射する第1姿勢であり、そして、反射部材13Bにおける第2反射部材13B-2は、この第2校正位置に配置されている場合に、標準部材14Bで反射した照明光の拡散反射光を、試料SMの試料測定面SMFで反射した照明光の反射光の第2光路と重なるように、反射する第2姿勢である。より具体的には、本実施形態でも、例えば、第1反射部材13B-1の前記第1姿勢は、第1反射部材13B-1に形成された第1反射面が、反射特性測定装置DBの前記測定平面、および、試料SMの試料測定面SMFに照射される照明光の前記第1光路における光軸(すなわち、照明系11Bの前記照明光学系の光軸)と、試料SMの試料測定面SMFで反射した照明光の反射光の前記第2光路における光軸(すなわち、受光光学系12Bの光軸)とが成す第1平面(ジオメトリによって規定される平面)の両方に平行な直線Rを回転軸Rとして所定の角度で傾斜した姿勢である。第2反射部材13B-2の前記第2姿勢は、第2反射部材13B-2が第1反射部材13B-1と一体で形成されているので、前記回転軸Rで所定の角度で傾斜した姿勢である。第1反射部材13B-1における前記所定の角度や第2反射部材13B-2における前記所定の角度は、標準部材14Bの配置位置や拡散反射する拡散反射面の角度等に応じて適宜に設定される。 The reflection member 13B is a flat plate-like member that reflects incident light, like the reflection member 13A of the first embodiment, and is, for example, a reflection mirror (mirror). The reflecting member 13B includes a first reflecting member 13B-1 that forms a first reflecting surface and a second reflecting member 13B-2 that forms a second reflecting surface. The reflection member 13B is configured to be insertable / removable at a calibration position arranged when the reflection characteristic measurement apparatus DB is calibrated. More specifically, the reflecting member 13B is configured to be able to switch between a calibration position and a standby position. The calibration position of the reflecting member 13B is a predetermined position on the first optical path of the illumination light irradiated on the sample measurement surface SMF of the sample SM. The standby position of the reflecting member 13A is a position excluding the first optical path. Also in this embodiment, since the first and second reflecting members 13B-1 and 13B-2 are integrally formed as the reflecting member 13B, the calibration position of the reflecting member 13B is set to the position of the first reflecting member 13B-1. It is the first calibration position and the second calibration position of the second reflecting member 13B-2, and the standby position of the reflecting member 13B is the first standby position of the first reflecting member 13B-1 and the second reflecting member 13B. -2 is the second standby position. When the first reflecting member 13B-1 in the reflecting member 13B is disposed at the first calibration position, the first reflecting member 13B-1 reflects the illumination light irradiated from the illumination system 11B to the standard member 14B, and When the second reflecting member 13B-2 in the reflecting member 13B is disposed at the second calibration position, the diffuse reflected light of the illumination light reflected by the standard member 14B is reflected by the sample measurement surface SMF of the sample SM. It is the 2nd attitude | position which reflects so that it may overlap with the 2nd optical path of the reflected light of illumination light. More specifically, also in the present embodiment, for example, the first posture of the first reflecting member 13B-1 is that the first reflecting surface formed on the first reflecting member 13B-1 is the reflection characteristic measuring device DB. The measurement plane, the optical axis in the first optical path of illumination light irradiated on the sample measurement surface SMF of the sample SM (that is, the optical axis of the illumination optical system of the illumination system 11B), and the sample measurement surface of the sample SM A straight line R parallel to both the first plane (plane defined by the geometry) formed by the optical axis in the second optical path of the reflected light of the illumination light reflected by the SMF (that is, the optical axis of the light receiving optical system 12B) is formed. The rotation axis R is inclined at a predetermined angle. The second posture of the second reflecting member 13B-2 is a posture in which the second reflecting member 13B-2 is formed integrally with the first reflecting member 13B-1, so that the second reflecting member 13B-2 is inclined at a predetermined angle with respect to the rotation axis R. It is. The predetermined angle in the first reflecting member 13B-1 and the predetermined angle in the second reflecting member 13B-2 are appropriately set according to the arrangement position of the standard member 14B, the angle of the diffuse reflecting surface that diffusely reflects, and the like. The
 標準部材14Bは、第1実施形態の標準部材14Aと同様であり、入射光を拡散反射する部材であり、第1反射部材13B-1で反射された照明光(照明光の反射光)を第2反射部材13B-2へ向けて拡散反射する。本実施形態では、標準部材14Bも、反射部材13Bと同様に、校正位置に挿抜可能に構成されている。 The standard member 14B is the same as the standard member 14A of the first embodiment, and is a member that diffusely reflects incident light. The standard member 14B reflects the illumination light (reflected light of illumination light) reflected by the first reflective member 13B-1. 2 Diffuse reflection toward the reflecting member 13B-2. In the present embodiment, the standard member 14B is also configured to be insertable / removable at the calibration position, like the reflecting member 13B.
 このような構成の反射特性測定装置DBでは、測定モードでは、反射部材13Bおよび標準部材14Bは、待機位置に配置され、図5に示すように、照明系11Bから照射された照明光は、試料SMの試料測定面SMF(測定平面)に対し45度で入射され、反射される。この照明光の反射光は、試料SMの試料測定面SMF(測定平面)に対し45度で受光光学系12Bによって受光され、分光部2へ入射される。なお、この場合、反射部材13Bおよび標準部材14Bは、待機位置にあって校正位置にはないので、図5では、反射部材13Bおよび標準部材14Bは、破線で示されている。そして、分光部2は、この照明光の反射光を分光し、その結果を演算制御部3へ出力する。演算制御部3は、分光部2の出力に基づいて照明光の反射光における例えば分光反射特性等の反射特性を求める。この求めた反射特性は、演算制御部3の制御に従って出力部5に出力される。 In the reflection characteristic measuring apparatus DB having such a configuration, in the measurement mode, the reflecting member 13B and the standard member 14B are arranged at the standby position, and as shown in FIG. 5, the illumination light irradiated from the illumination system 11B is a sample. The sample is incident on the sample measurement surface SMF (measurement plane) of SM at 45 degrees and reflected. The reflected light of the illumination light is received by the light receiving optical system 12B at 45 degrees with respect to the sample measurement surface SMF (measurement plane) of the sample SM and is incident on the spectroscopic unit 2. In this case, since the reflecting member 13B and the standard member 14B are at the standby position and not at the calibration position, the reflecting member 13B and the standard member 14B are indicated by broken lines in FIG. Then, the spectroscopic unit 2 splits the reflected light of the illumination light and outputs the result to the arithmetic control unit 3. The arithmetic control unit 3 obtains a reflection characteristic such as a spectral reflection characteristic in the reflected light of the illumination light based on the output of the spectroscopic unit 2. The obtained reflection characteristic is output to the output unit 5 under the control of the arithmetic control unit 3.
 一方、校正モードでは、反射部材13Bおよび標準部材14Bは、校正位置に配置され、図6に示すように、照明系11Bから照射された照明光は、反射部材13Bにおける第1反射部材13B-1の第1反射面に入射され、反射される。この照明光の反射光は、標準部材14Bに入射される。標準部材14Bは、この照明光の反射光を受光光学系12Bに向けて拡散反射光として拡散反射する。受光光学系12Bによって受光された前記拡散反射光は、分光部2へ入射される。分光部2は、この拡散反射光を分光し、その結果を演算制御部3へ出力する。演算制御部3は、分光部2の出力に基づいて当該反射特性測定装置DAを校正するための校正データを求める。この求めた校正データは、演算制御部3に記憶され、測定モードで試料SMにおける試料測定面SMFの反射特性を求める場合に、用いられる。 On the other hand, in the calibration mode, the reflecting member 13B and the standard member 14B are arranged at the calibration position, and as shown in FIG. 6, the illumination light emitted from the illumination system 11B is the first reflecting member 13B-1 in the reflecting member 13B. Is incident on and reflected from the first reflecting surface. The reflected light of the illumination light is incident on the standard member 14B. The standard member 14B diffuses and reflects the reflected light of the illumination light as diffuse reflected light toward the light receiving optical system 12B. The diffusely reflected light received by the light receiving optical system 12B enters the spectroscopic unit 2. The spectroscopic unit 2 splits the diffuse reflected light and outputs the result to the arithmetic control unit 3. The arithmetic control unit 3 obtains calibration data for calibrating the reflection characteristic measuring device DA based on the output of the spectroscopic unit 2. The obtained calibration data is stored in the arithmetic control unit 3, and is used when obtaining the reflection characteristic of the sample measurement surface SMF in the sample SM in the measurement mode.
 以上、説明したように、本実施形態における反射特性測定装置DBおよびその照明受光光学系1Bでは、校正の際に使用される照明光の拡散反射光は、上述のように反射によって受光光学系12Bへ導光されるので、本実施形態における反射特性測定装置DBおよびその照明受光光学系1Bは、光量ロスを低減することができる。 As described above, in the reflection characteristic measuring apparatus DB and its illumination light receiving optical system 1B in the present embodiment, the diffuse reflection light of the illumination light used for calibration is reflected by the light reception optical system 12B as described above. Therefore, the reflection characteristic measuring device DB and its illumination light receiving optical system 1B in the present embodiment can reduce the light amount loss.
 なお、上述の第1および第2実施形態では、ジオメトリの一例として、45/0ジオメトリおよび45/45ジオメトリの場合について説明したが、第1および第2反射部材13-1、13-2および標準部材14は、任意のジオメトリに対し適用することができる。 In the first and second embodiments described above, the case of the 45/0 geometry and the 45/45 geometry has been described as an example of the geometry. However, the first and second reflecting members 13-1, 13-2 and the standard are described. Member 14 can be applied to any geometry.
 また、上述の第1および第2実施形態では、標準部材14も反射部材13の移動に応じて移動したが、標準部材14は、照明系11から試料SMの試料測定面SMFに照射される照明光を反射部材13が妨げることなく、かつ、試料SMの試料測定面SMFから受光光学系12で受光される照明光の反射光を反射部材13が妨げない位置に固定的に配置されてもよい。 In the first and second embodiments described above, the standard member 14 is also moved in accordance with the movement of the reflecting member 13. However, the standard member 14 is illuminated from the illumination system 11 to the sample measurement surface SMF of the sample SM. The light may not be blocked by the reflecting member 13 and may be fixedly arranged at a position where the reflecting member 13 does not block the reflected light of the illumination light received by the light receiving optical system 12 from the sample measurement surface SMF of the sample SM. .
 また、上述の第1および第2実施形態の反射特性測定装置Dおよびその照明受光光学系1において、遮光状態と非遮光状態とを切り換え可能であって、前記遮光状態で標準部材14の拡散反射面を遮光可能な遮光部材をさらに備えてもよい。この遮光部材は、少なくとも、試料SMの試料測定面SMFで反射した照明光の反射光が導光部材6を介して分光部2に導光される場合には、遮光状態にある。より具体的には、この遮光部材は、少なくとも前記測定モードである場合には遮光状態にある。本実施形態では、例えば、この遮光部材は、第1反射部材13-1が第1待機位置に配置されている場合であって第2反射部材13-2が第2待機位置に配置されている場合には前記遮光状態にあって、第1反射部材13-1が第1待機位置に配置されていない場合、例えば第1校正位置に配置されている場合であって第2反射部材13-2が第2待機位置に配置されていない場合、例えば第2校正位置に配置されている場合(前記校正モードである場合)には前記非遮光状態にあるものである。 Further, in the reflection characteristic measuring apparatus D and its illumination light receiving optical system 1 of the first and second embodiments described above, the light shielding state and the non-light shielding state can be switched, and the diffuse reflection of the standard member 14 in the light shielding state. You may further provide the light-shielding member which can light-shield the surface. This light shielding member is in a light shielding state at least when the reflected light of the illumination light reflected by the sample measurement surface SMF of the sample SM is guided to the spectroscopic unit 2 via the light guide member 6. More specifically, the light shielding member is in a light shielding state at least in the measurement mode. In the present embodiment, for example, the light shielding member is a case where the first reflecting member 13-1 is disposed at the first standby position, and the second reflecting member 13-2 is disposed at the second standby position. In this case, the first reflecting member 13-1 is not in the first standby position in the light-shielding state, for example, in the first calibration position, and the second reflecting member 13-2. Is not located at the second standby position, for example, when it is located at the second calibration position (in the calibration mode), it is in the non-light-shielding state.
 このような遮光部材をさらに備えることによって、試料SMの試料測定面SMFの反射特性を測定する場合に標準部材14を遮光状態とすることによって、標準部材14で生じる迷光を防止することができる。この結果、このような構成の反射特性測定装置Dは、試料SMにおける試料測定面SMFの反射特性をより精度に測定することが可能となる。 By further providing such a light shielding member, stray light generated in the standard member 14 can be prevented by placing the standard member 14 in a light shielding state when measuring the reflection characteristics of the sample measurement surface SMF of the sample SM. As a result, the reflection characteristic measuring apparatus D having such a configuration can more accurately measure the reflection characteristic of the sample measurement surface SMF in the sample SM.
 また、上述の第1および第2実施形態の反射特性測定装置Dおよびその照明受光光学系1において、好ましくは、第1反射部材13-1の第1反射面と前記測定平面とが成す角の角度aは、第1反射部材13-1の第1反射面と標準部材14に形成された拡散反射面とが成す角の角度aに等しく、第1反射部材13-1の第1反射面と標準部材14の拡散反射面との間の光学的距離は、第1反射部材13-1の第1反射面と前記測定平面との間の距離bに等しい。すなわち、測定平面と標準部材14の拡散反射面とは、反射部材13を対称面とした光学的に対称な関係である。図2および図3には、このような構成の反射特性測定装置DAおよびその照明受光光学系1Aが示されており、図5および図6には、このような構成の反射特性測定装置DBおよびその照明受光光学系1Bが示されている。なお、図2および図3ならびに図5および図6に示す例では、第1反射部材13-1の第1反射面と標準部材14の拡散反射面との間の光学的距離は、その間の屈折率が1であり、第1反射部材13-1の第1反射面と標準部材14の拡散反射面との間の距離b(物理的な距離b)である。 Further, in the reflection characteristic measuring apparatus D and its illumination light receiving optical system 1 according to the first and second embodiments described above, preferably, the angle formed by the first reflecting surface of the first reflecting member 13-1 and the measurement plane is set. The angle a is equal to the angle a formed by the first reflecting surface of the first reflecting member 13-1 and the diffuse reflecting surface formed on the standard member 14, and the first reflecting surface of the first reflecting member 13-1 The optical distance between the diffuse reflection surface of the standard member 14 is equal to the distance b between the first reflection surface of the first reflection member 13-1 and the measurement plane. That is, the measurement plane and the diffuse reflection surface of the standard member 14 are in an optically symmetrical relationship with the reflection member 13 as a symmetry plane. 2 and 3 show the reflection characteristic measuring apparatus DA having such a configuration and its illumination light receiving optical system 1A. FIGS. 5 and 6 show the reflection characteristic measuring apparatus DB having such a configuration and The illumination light receiving optical system 1B is shown. In the examples shown in FIGS. 2 and 3 and FIGS. 5 and 6, the optical distance between the first reflecting surface of the first reflecting member 13-1 and the diffuse reflecting surface of the standard member 14 is the refraction between them. The ratio is 1, and is a distance b (physical distance b) between the first reflecting surface of the first reflecting member 13-1 and the diffuse reflecting surface of the standard member 14.
 このような構成の反射特性測定装置Dおよびその照明受光光学系1は、反射特性測定装置Dのジオメトリと同じジオメトリで標準部材14に対し照明光を入出射させることができるから、より高精度に校正を行うことができる。 The reflection characteristic measuring apparatus D and the illumination light receiving optical system 1 having such a configuration can input and output illumination light with respect to the standard member 14 with the same geometry as that of the reflection characteristic measuring apparatus D. Calibration can be performed.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる反射特性測定装置用光学系は、入射光を拡散反射する標準部材と、測定対象である試料に照射される照明光の第1光路上の第1校正位置と、前記第1校正位置から退避した第1位置との間で移動可能であって、入射光を反射する第1反射部材と、前記第1光路上の第2校正位置と、前記第2校正位置から退避した第2位置との間で移動可能であって、入射光を反射する第2反射部材とを備え、前記第1反射部材は、前記第1校正位置に配置されている時に、前記照明光を前記標準部材へ反射する第1姿勢であり、前記第2反射部材は、前記第2校正位置に配置されている時に、前記標準部材で反射した前記照明光の拡散反射光を、前記試料で反射した前記照明光の反射光の第2光路と重なるように、反射する第2姿勢である。 An optical system for a reflection characteristic measuring apparatus according to one aspect includes a standard member that diffusely reflects incident light, a first calibration position on a first optical path of illumination light irradiated to a sample to be measured, and the first calibration. A first reflecting member that is movable between the first position retracted from the position and reflects incident light, a second calibration position on the first optical path, and a second retracted from the second calibration position. And a second reflecting member that reflects incident light. When the first reflecting member is disposed at the first calibration position, the illumination light is transmitted to the standard member. The illumination device reflects the diffuse reflection light of the illumination light reflected by the standard member when reflected by the sample when the second reflection member is disposed at the second calibration position. It is the 2nd attitude | position which reflects so that it may overlap with the 2nd optical path of the reflected light of light
 また、他の一態様では、上述の反射特性測定装置用光学系において、好ましくは、前記第1反射部材の第1姿勢は、前記第1反射部材に形成された第1反射面が、測定平面および前記第1光路の光軸と前記第2光路の光軸とが成す第1平面の両方に平行な直線を回転軸として傾斜した姿勢である。 In another aspect, in the above-described optical system for a reflection characteristic measurement device, preferably, the first posture of the first reflection member is such that the first reflection surface formed on the first reflection member is a measurement plane. And a posture inclined with a straight line parallel to both the first plane formed by the optical axis of the first optical path and the optical axis of the second optical path as a rotation axis.
 このような構成の反射特性測定装置用光学系では、校正を行う場合に第1反射部材が第1校正位置に配置されるとともに第2反射部材が第2校正位置に配置され、照明光を第1反射部材で反射することによって照明光が標準部材に導光され、そして、前記試料で反射した前記照明光の反射光と略同じ光路となるように、この標準部材で拡散反射した照明光の拡散反射光が第2反射部材で反射される。校正の際に使用される照明光の拡散反射光は、このように反射によって導光されるので、このような構成の反射特性測定装置用光学系は、光量ロスを低減することができる。そして、このような構成の反射特性測定装置用光学系は、これが用いられる反射特性測定装置のジオメトリと関連しないので、種々のジオメトリに適用することができる。 In the optical system for the reflection characteristic measuring apparatus having such a configuration, when calibration is performed, the first reflecting member is disposed at the first calibration position and the second reflecting member is disposed at the second calibration position, and the illumination light is transmitted in the first calibration position. The illumination light is guided to the standard member by being reflected by one reflecting member, and the illumination light diffused and reflected by this standard member so as to have substantially the same optical path as the reflected light of the illumination light reflected by the sample. Diffuse reflected light is reflected by the second reflecting member. Since the diffusely reflected light of the illumination light used for calibration is guided by reflection in this way, the optical system for the reflection characteristic measuring apparatus having such a configuration can reduce the light amount loss. Since the optical system for the reflection characteristic measuring apparatus having such a configuration is not related to the geometry of the reflection characteristic measuring apparatus in which it is used, it can be applied to various geometries.
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、前記第1反射面と前記測定平面とが成す角の角度は、前記第1反射面と前記標準部材に形成された拡散反射面とが成す角の角度に等しく、前記第1反射面と前記拡散反射面との間の光学的距離は、前記第1反射面と前記測定平面との間の距離に等しい。 According to another aspect, in the above-described optical system for a reflection characteristic measuring apparatus, an angle formed by the first reflecting surface and the measuring plane is formed on the first reflecting surface and the standard member. The optical distance between the first reflection surface and the diffuse reflection surface is equal to the distance between the first reflection surface and the measurement plane.
 このような構成の反射特性測定装置用光学系は、これが用いられる反射特性測定装置のジオメトリと同じジオメトリで標準部材に対し照明光を入出射させることができるから、より高精度に校正を行うことができる。 The optical system for a reflection characteristic measuring apparatus having such a configuration can illuminate and emit illumination light with respect to a standard member with the same geometry as that of the reflection characteristic measuring apparatus in which it is used. Can do.
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、前記第1反射部材と前記第2反射部材とは、一体である。 In another aspect, in the above-described optical system for a reflection characteristic measuring apparatus, the first reflecting member and the second reflecting member are integrated.
 この構成によれば、反射特性測定装置用光学系は、第1反射部材および第2反射部材を一体に動かすことができる。 According to this configuration, the optical system for the reflection characteristic measuring apparatus can move the first reflecting member and the second reflecting member integrally.
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、前記第1反射部材と前記第2反射部材と前記標準部材とを取り付ける取付部材をさらに備える。 In another aspect, the above-described optical system for a reflection characteristic measuring apparatus further includes an attachment member for attaching the first reflecting member, the second reflecting member, and the standard member.
 この構成によれば、反射特性測定装置用光学系は、第1反射部材、第2反射部材および標準部材を一体に動かすことができる。 According to this configuration, the optical system for the reflection characteristic measuring device can move the first reflecting member, the second reflecting member, and the standard member integrally.
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、遮光状態と非遮光状態とを切り換え可能であって、前記遮光状態で前記拡散反射面を遮光可能な遮光部材をさらに備え、前記遮光部材は、前記試料で反射した前記照明光の反射光が前記第2光路に導光される場合には前記遮光状態にある。 According to another aspect, in the above-described optical system for a reflection characteristic measuring device, a light shielding member that can switch between a light shielding state and a non-light shielding state and can shield the diffuse reflection surface in the light shielding state is further provided. The light shielding member is in the light shielding state when the reflected light of the illumination light reflected by the sample is guided to the second optical path.
 この構成によれば、試料の反射特性を測定する場合に標準部材を遮光状態とすることによって、標準部材で生じる迷光を防止することができ、試料の反射特性の測定精度を向上することができる。 According to this configuration, stray light generated in the standard member can be prevented by setting the standard member in a light-shielding state when measuring the reflection characteristic of the sample, and the measurement accuracy of the reflection characteristic of the sample can be improved. .
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、前記照明光を放射する光源と、前記光源で放射された前記照明光を前記試料に照射させる照明光学系と、前記試料で反射した前記照明光の前記反射光を受光する受光光学系とをさらに備える。 In another aspect, in the above-described optical system for the reflection characteristic measuring device, a light source that emits the illumination light, an illumination optical system that irradiates the sample with the illumination light emitted from the light source, and And a light receiving optical system that receives the reflected light of the illumination light reflected by the sample.
 このような構成によれば、試料を測定するための光学系と校正を行う光学系とを備えた反射特性測定装置用光学系を提供することができる。 According to such a configuration, it is possible to provide an optical system for a reflection characteristic measuring apparatus including an optical system for measuring a sample and an optical system for performing calibration.
 また、他の一態様では、これら上述の反射特性測定装置用光学系において、前記第1反射部材を前記第1校正位置に対し進退する第1駆動機構と、前記第2反射部材を前記第2校正位置に対し進退する第2駆動機構とをさらに備える。 In another aspect, in the above-described optical system for a reflection characteristic measuring apparatus, a first driving mechanism that moves the first reflecting member forward and backward with respect to the first calibration position, and the second reflecting member is the second reflecting member. And a second drive mechanism that moves forward and backward with respect to the calibration position.
 このような構成によれば、第1および第2反射部材を第1および第2校正位置に対し進退する第1および第2駆動機構を備えた反射特性測定装置用光学系を提供することができる。このような構成の反射特性測定装置用光学系は、このような第1および第2駆動機構を用いることによって、第1および第2反射部材の移動の自動化が容易となる。 According to such a configuration, it is possible to provide an optical system for a reflection characteristic measuring apparatus including the first and second drive mechanisms that advance and retract the first and second reflecting members with respect to the first and second calibration positions. . By using such first and second drive mechanisms, the optical system for a reflection characteristic measuring apparatus having such a configuration can easily automate the movement of the first and second reflecting members.
 また、他の一態様にかかる反射特性測定装置は、これら上述のいずれかの反射特性測定用光学系と、前記受光光学系で受光された前記照明光の前記反射光を分光する分光部と、前記分光部の出力に基づいて前記試料の反射特性を求める演算部とを備える。 Further, a reflection characteristic measuring apparatus according to another aspect includes any one of the above-described reflection characteristic measuring optical system, a spectroscopic unit that splits the reflected light of the illumination light received by the light receiving optical system, An arithmetic unit that obtains the reflection characteristics of the sample based on the output of the spectroscopic unit.
 このような構成の反射特性測定装置は、これら上述のいずれかの反射特性測定用光学系が用いられるので、校正を行う場合に光量ロスを低減することができ、種々のジオメトリを採用することができる。 Since the reflection characteristic measuring apparatus having such a configuration uses any one of the above-described reflection characteristic measuring optical systems, it is possible to reduce a light amount loss when performing calibration and adopt various geometries. it can.
 また、他の一態様では、上述の反射特性測定装置において、前記試料で反射した前記照明光の前記反射光が入射される測定開口を備える筐体と、前記測定開口を遮光する測定開口用遮光部材とをさらに備える。 According to another aspect, in the above-described reflection characteristic measurement apparatus, a housing including a measurement opening through which the reflected light of the illumination light reflected by the sample is incident, and a measurement opening light shield that blocks the measurement opening. And a member.
 このような構成の反射特性測定装置は、校正の際に測定開口を測定開口用遮光部材で遮光することができるので、ノイズ光が遮光され、より精度よく校正を行うことができる。 The reflection characteristic measuring apparatus having such a configuration can shield the measurement aperture with the measurement aperture light-shielding member during calibration, so that noise light is shielded and calibration can be performed with higher accuracy.
 この出願は、2011年5月13日に出願された日本国特許出願特願2011-107814を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2011-107814 filed on May 13, 2011, the contents of which are included in this application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. It is interpreted that it is included in
 本発明によれば、反射特性測定装置用光学系および反射特性測定装置を提供することができる。 According to the present invention, an optical system for a reflection characteristic measuring device and a reflection characteristic measuring device can be provided.

Claims (10)

  1.  入射光を拡散反射する標準部材と、
     測定対象である試料に照射される照明光の第1光路上の第1校正位置と、前記第1校正位置から退避した第1位置との間で移動可能であって、入射光を反射する第1反射部材と、
     前記第1光路上の第2校正位置と、前記第2校正位置から退避した第2位置との間で移動可能であって、入射光を反射する第2反射部材とを備え、
     前記第1反射部材は、前記第1校正位置に配置されている時に、前記照明光を前記標準部材へ反射する第1姿勢であり、
     前記第2反射部材は、前記第2校正位置に配置されている時に、前記標準部材で反射した前記照明光の拡散反射光を、前記試料で反射した前記照明光の反射光の第2光路と重なるように、反射する第2姿勢であること
     を特徴とする反射特性測定装置用光学系。
    A standard member that diffusely reflects incident light;
    It is movable between the first calibration position on the first optical path of the illumination light irradiated to the sample to be measured and the first position retracted from the first calibration position, and reflects the incident light. 1 reflective member;
    A second reflecting member that is movable between a second calibration position on the first optical path and a second position retracted from the second calibration position and reflects incident light;
    The first reflecting member is in a first posture to reflect the illumination light to the standard member when arranged at the first calibration position;
    When the second reflecting member is disposed at the second calibration position, the diffuse reflected light of the illumination light reflected by the standard member is converted into a second optical path of the reflected light of the illumination light reflected by the sample. An optical system for a reflection characteristic measuring apparatus, characterized by being in a second posture to reflect so as to overlap.
  2.  前記第1反射部材の第1姿勢は、前記第1反射部材に形成された第1反射面が、測定平面および前記第1光路の光軸と前記第2光路の光軸とが成す第1平面の両方に平行な直線を回転軸として傾斜した姿勢であること
     を特徴とする請求項1に記載の反射特性測定装置用光学系。
    The first posture of the first reflecting member is such that the first reflecting surface formed on the first reflecting member is a measurement plane and the first plane formed by the optical axis of the first optical path and the optical axis of the second optical path. The optical system for a reflection characteristic measuring apparatus according to claim 1, wherein the optical system is inclined with a straight line parallel to both as a rotation axis.
  3.  前記第1反射面と前記測定平面とが成す角の角度は、前記第1反射面と前記標準部材に形成された拡散反射面とが成す角の角度に等しく、
     前記第1反射面と前記拡散反射面との間の光学的距離は、前記第1反射面と前記測定平面との間の距離に等しいこと
     を特徴とする請求項1または請求項2に記載の反射特性測定装置用光学系。
    The angle formed by the first reflecting surface and the measurement plane is equal to the angle formed by the first reflecting surface and the diffuse reflecting surface formed on the standard member,
    3. The optical distance between the first reflecting surface and the diffuse reflecting surface is equal to a distance between the first reflecting surface and the measurement plane. 4. Optical system for reflection characteristic measuring device.
  4.  前記第1反射部材と前記第2反射部材とは、一体であること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の反射特性測定装置用光学系。
    The optical system for a reflection characteristic measuring apparatus according to any one of claims 1 to 3, wherein the first reflecting member and the second reflecting member are integrated.
  5.  前記第1反射部材と前記第2反射部材と前記標準部材とを取り付ける取付部材とをさらに備えること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の反射特性測定装置用光学系。
    The optical device for a reflection characteristic measuring apparatus according to any one of claims 1 to 4, further comprising an attachment member for attaching the first reflecting member, the second reflecting member, and the standard member. system.
  6.  遮光状態と非遮光状態とを切り換え可能であって、前記遮光状態で前記拡散反射面を遮光可能な遮光部材をさらに備え、
     前記遮光部材は、前記試料で反射した前記照明光の反射光が前記第2光路に導光される場合には前記遮光状態にあること、
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の反射特性測定装置用光学系。
    A light shielding member capable of switching between a light shielding state and a non-light shielding state, and capable of shielding the diffuse reflection surface in the light shielding state;
    The light shielding member is in the light shielding state when the reflected light of the illumination light reflected by the sample is guided to the second optical path;
    The optical system for a reflection characteristic measuring apparatus according to any one of claims 1 to 4, wherein:
  7.  前記照明光を放射する光源と、
     前記光源で放射された前記照明光を前記試料に照射させる照明光学系と、
     前記試料で反射した前記照明光の前記反射光を受光する受光光学系とをさらに備えること
     を特徴とする請求項1ないし請求項6のいずれか1項に記載の反射特性測定装置用光学系。
    A light source that emits the illumination light;
    An illumination optical system for irradiating the sample with the illumination light emitted from the light source;
    The optical system for a reflection characteristic measuring apparatus according to any one of claims 1 to 6, further comprising a light receiving optical system that receives the reflected light of the illumination light reflected by the sample.
  8.  前記第1反射部材を前記第1校正位置に対し進退する第1駆動機構と、
     前記第2反射部材を前記第2校正位置に対し進退する第2駆動機構とをさらに備えること
     を特徴とする請求項1ないし請求項7のいずれか1項に記載の反射特性測定装置用光学系。
    A first drive mechanism for moving the first reflecting member back and forth with respect to the first calibration position;
    The optical system for a reflection characteristic measuring apparatus according to any one of claims 1 to 7, further comprising a second drive mechanism that advances and retracts the second reflecting member with respect to the second calibration position. .
  9.  請求項7または請求項8に記載の反射特性測定装置用光学系と、
     前記受光光学系で受光された前記照明光の前記反射光を分光する分光部と、
     前記分光部の出力に基づいて前記試料の反射特性を求める演算部とを備えること
     を特徴とする反射特性測定装置。
    An optical system for a reflection characteristic measuring device according to claim 7 or 8,
    A spectroscopic unit that splits the reflected light of the illumination light received by the light receiving optical system;
    A reflection characteristic measuring apparatus comprising: an arithmetic unit that obtains the reflection characteristic of the sample based on the output of the spectroscopic unit.
  10.  前記試料で反射した前記照明光の前記反射光が入射される測定開口を備える筐体と、
     前記測定開口を遮光する測定開口用遮光部材とをさらに備えること
     を特徴とする請求項9に記載の反射特性測定装置。
    A housing having a measurement aperture into which the reflected light of the illumination light reflected by the sample is incident;
    The reflection characteristic measuring apparatus according to claim 9, further comprising a measurement aperture light shielding member that shields the measurement aperture.
PCT/JP2012/002716 2011-05-13 2012-04-19 Optical system for reflection characteristic measuring apparatus, and reflection characteristic measuring apparatus WO2012157190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013514971A JP5672376B2 (en) 2011-05-13 2012-04-19 Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107814 2011-05-13
JP2011-107814 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157190A1 true WO2012157190A1 (en) 2012-11-22

Family

ID=47176544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002716 WO2012157190A1 (en) 2011-05-13 2012-04-19 Optical system for reflection characteristic measuring apparatus, and reflection characteristic measuring apparatus

Country Status (2)

Country Link
JP (1) JP5672376B2 (en)
WO (1) WO2012157190A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138028A (en) * 2014-01-23 2015-07-30 ベーユプスィロンカー−ガードネルゲーエムベーハー Device for calibration of optical measuring instrument
CN109964105A (en) * 2016-11-14 2019-07-02 浜松光子学株式会社 Spectral measurement apparatus and spectroscopic measurements system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278484A (en) * 1975-12-25 1977-07-01 Asahi Optical Co Ltd Apparatus for measuring reflection factor of mirror surface
JPS6388430A (en) * 1986-09-30 1988-04-19 Shimadzu Corp Absolute reflection factor measuring apparatus
JPH05142036A (en) * 1991-05-10 1993-06-08 Mitsui Mining & Smelting Co Ltd Photo sensor device
JP2002022656A (en) * 2000-07-04 2002-01-23 Shimadzu Corp Spectrophotometer
JP2007506976A (en) * 2003-09-23 2007-03-22 メトロソル・インコーポレーテツド Standard alignment type vacuum ultraviolet reflectometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2710564B1 (en) * 1993-10-01 1995-11-24 Iname Int Fruit or vegetable recognition and / or sorting device, method and corresponding use.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278484A (en) * 1975-12-25 1977-07-01 Asahi Optical Co Ltd Apparatus for measuring reflection factor of mirror surface
JPS6388430A (en) * 1986-09-30 1988-04-19 Shimadzu Corp Absolute reflection factor measuring apparatus
JPH05142036A (en) * 1991-05-10 1993-06-08 Mitsui Mining & Smelting Co Ltd Photo sensor device
JP2002022656A (en) * 2000-07-04 2002-01-23 Shimadzu Corp Spectrophotometer
JP2007506976A (en) * 2003-09-23 2007-03-22 メトロソル・インコーポレーテツド Standard alignment type vacuum ultraviolet reflectometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138028A (en) * 2014-01-23 2015-07-30 ベーユプスィロンカー−ガードネルゲーエムベーハー Device for calibration of optical measuring instrument
CN109964105A (en) * 2016-11-14 2019-07-02 浜松光子学株式会社 Spectral measurement apparatus and spectroscopic measurements system
EP3540394A4 (en) * 2016-11-14 2020-11-11 Hamamatsu Photonics K.K. Spectroscopic measurement device and spectrometry system
US10928249B2 (en) 2016-11-14 2021-02-23 Hamamatsu Photonics K.K. Spectroscopic measurement device and spectrometry system
CN109964105B (en) * 2016-11-14 2021-07-06 浜松光子学株式会社 Spectroscopic measurement device and spectroscopic measurement system

Also Published As

Publication number Publication date
JP5672376B2 (en) 2015-02-18
JPWO2012157190A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
KR20130106810A (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
US20120250022A1 (en) Hand-Held Color Measurement Device
CN110018127B (en) Spectroscopy reflectometer
KR101279066B1 (en) Measuring arrangement for the optical monitoring of coating processes
KR101987506B1 (en) Measurement apparatus and measurement method
JP2007327923A (en) Spectrometer and adjustment method of spectrometer
HU186069B (en) Spectrophotometer operating on discrete wave-lengths
JP5672376B2 (en) Optical system for reflection characteristic measuring apparatus and reflection characteristic measuring apparatus
KR100495604B1 (en) Automatic optical measurement method
US9551612B2 (en) Tandem dispersive range monochromator
US8717557B2 (en) Spectrophotometer and method for determining performance thereof
KR101823197B1 (en) Optical measurement device
JP7024624B2 (en) Support frame, spectroscope, spectroscopic analysis unit, and image forming apparatus
JP5985629B2 (en) Photometric device
US8625092B2 (en) Apparatus for measuring a spectral distribution of a translucent printed product produced with a printing device
JP7358985B2 (en) spectrophotometer
JP2007010362A (en) Measuring instrument of optical characteristics
US7787125B2 (en) Apparatus for measuring a spectral distribution of a printed product produced with a printing device
JP2005321344A (en) Colorimetric analyzer
CN117441094A (en) Stabilized and modulated dual channel broadband light source
KR890004719B1 (en) A spectrometry photometer
JP4569316B2 (en) Spectral colorimeter
JP2001235370A (en) Device for measuring reflection property
US20040065833A1 (en) Method and apparatus for illuminating and collecting radiation
JP2010281696A (en) Light emitting element measuring device and light emitting element measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785106

Country of ref document: EP

Kind code of ref document: A1