WO2012153282A1 - Antenna assembly and mobile terminal - Google Patents

Antenna assembly and mobile terminal Download PDF

Info

Publication number
WO2012153282A1
WO2012153282A1 PCT/IB2012/052316 IB2012052316W WO2012153282A1 WO 2012153282 A1 WO2012153282 A1 WO 2012153282A1 IB 2012052316 W IB2012052316 W IB 2012052316W WO 2012153282 A1 WO2012153282 A1 WO 2012153282A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
mobile terminal
antenna assembly
radiation element
assembly according
Prior art date
Application number
PCT/IB2012/052316
Other languages
French (fr)
Inventor
Yuming Song
Junying Liu
Sheng-Gen Pan
Original Assignee
Tyco Electronics (Shanghai) Co. Ltd.
Tyco Electronics Amp Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Electronics (Shanghai) Co. Ltd., Tyco Electronics Amp Gmbh filed Critical Tyco Electronics (Shanghai) Co. Ltd.
Publication of WO2012153282A1 publication Critical patent/WO2012153282A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present disclosure relates to the field of antenna technique and particularly to an antenna assembly for a mobile terminal.
  • a mobile terminal has increasingly complicated functions and has to comply with a variety of communication protocols and standards while its figure being increasingly miniaturized and ultra-thinned. These trends result in an increasingly small space available for an antenna element in the mobile terminal on one hand and an increasing demand for the performance of the antenna which only occupies a limited space on the other hand. That is to say, an antenna system has to operate with good performance in more frequency bands or at a higher bandwidth.
  • the radiation performance of the antenna which is a frequency-dependent element is proportionate to the size of the space occupied by the antenna. The narrow space will restrain the radiation performance of the antenna and make it difficult for the antenna to satisfy a performance requirement of the system.
  • the mobile terminal typically includes several antennas independent from each other. Particularly in a mobile phone terminal, these antennas are commonly divided functionally into a primary antenna and an auxiliary antenna, wherein the primary antenna is an antenna to support a communication protocol of a cellular system, e.g., GSM, CDMA, WCDMA, etc.
  • the auxiliary antenna may be an antenna to support signals in various frequency bands of Global Positioning System (GPS), Bluetooth, Wireless Local Area Network (WLAN), mobile television, Frequency Modulation (FM) broadcast, etc., or may be a secondary antenna to support Multiple-Input Multiple-Output (MIMO) or signal diversity. Since a specific space internal to the mobile terminal is occupied by the respective antennas, the space occupied by the entire antenna system is considerable. It is rather difficult for each antenna element to achieve an excellent level of radiation performance due to limitations of the occupancy area, the height, the headroom and other factors thereof, and influences of a casing and other components, thus the communication quality of the system is eventually influenced.
  • GPS Global Positioning System
  • a metal casing earns an increasing attention of consumers due to a good texture and the durability thereof.
  • Using metal material to make the casing of a mobile phone has become a trend.
  • a common practice is to electrically connect the metal casing with the ground of a circuit board in the mobile terminal so as to make it become a part of the ground of the system.
  • the metal casing is bored or slotted in the place corresponding to the built-in antenna to enable the radiation of the signal of the antenna. This solution generally may bring a significant adverse influence upon the performance of the antenna due to the large metal component added around the antenna.
  • a fundamental idea of the invention is to use an electrically conductive casing of a mobile terminal as a radiating body of an antenna thereof.
  • the electrically conductive casing may function as a radiating body of an antenna for radio communication in one or more frequency bands.
  • a structure like a micro-strip patch antenna is formed between the metal casing and a ground in the mobile terminal.
  • the micro-strip patch antenna is an antenna formed by affixing a conductor sheet onto a dielectric substrate with a conductor ground. Power is fed in the proper place over a micro-strip line or a coaxial cable so as to have a radio frequency electromagnetic field excited between the conductor sheet and the ground, and radiated through a gap between the periphery of the conductor sheet and the ground.
  • the micro-strip patch antenna has a good radiation performance and enjoys easy conformance, flexible formation, easy circular polarization and dual polarization, operability in multiple frequency bands and other advantages.
  • the micro-strip patch antenna is rarely adopted in a general mobile terminal due to considerable spatial occupancy thereof.
  • a structure like a micro-strip patch antenna is formed between a metal casing and a ground of a printed circuit board in a mobile terminal according to the invention.
  • a frequency band and a mode thereof can be achieved by designing the shape of the casing and the location and mode of the feeding.
  • an antenna is integrated on an exterior component of a mobile terminal, for example, a part of a metal frame of the mobile terminal functions is used as an antenna.
  • the antenna adopted in such design is a traditional antenna form in the mobile terminal such as a monopole antenna, a loop antenna, an Inverted F Antenna (IFA), etc.
  • the casing in such design is of a plastic material except for the metal material embedded in an area of the frame as a radiation element of the antenna.
  • an antenna assembly for a mobile terminal which includes: a radiation element integrated with a cover of the mobile terminal, consisted of electrically conductive material and including at least one antenna port formed thereon; wherein the antenna port is capable of exciting the radiation element to operate in a plurality of frequency bands when the cover is fastened to the mobile terminal.
  • the antenna assembly for a mobile terminal further includes a ground of a printed circuit board in the mobile terminal.
  • a structure like a micro-strip patch antenna is formed by the radiation element and the ground.
  • the antenna assembly for a mobile terminal further includes at least one feeding element in one-to-one correspondence with the antenna port, wherein the feeding element and the antenna port are connected in a contacting or non-contacting manner.
  • the plurality of frequency bands of the antenna assembly for a mobile terminal include any combination of frequency bands corresponding to communication protocols of GPS, Bluetooth, WiFi, frequency modulation broadcast, mobile television, GSM, CDMA, WCDMA, TS-SCDMA, LTE and WiMAX.
  • the antenna port on the radiation element includes at least one multi-band antenna port which is capable of exciting the radiation element to operate in a subset of the plurality of frequency bands, which includes at least two of the plurality of frequency bands.
  • the antenna port on the radiation element includes a plurality of antenna ports, each of which is capable of exciting the radiation element to operate in a different frequency band.
  • an antenna assembly for a mobile terminal which includes: a radiation element integrated with a cover of the mobile terminal, consisted of electrically conductive material and including a plurality of antenna ports formed thereon, wherein at least two of the plurality of antenna ports are capable of exciting the radiation element to operate in the same frequency band when the cover is fastened to the mobile terminal.
  • the antenna assembly for a mobile terminal further includes a ground of a printed circuit board in the mobile terminal.
  • a structure like a micro-strip patch antenna is formed by the radiation element and the ground.
  • the antenna assembly for a mobile terminal further includes a plurality of feeding elements in one-to-one correspondence with the plurality of antenna ports, wherein the feeding elements and the antenna ports are connected in a contacting or non-contacting manner.
  • At least two of the plurality of antenna ports of the antenna assembly for a mobile terminal are capable of exciting the radiation element to operate in orthogonal modes in the same frequency band.
  • the exterior surface of the radiation element of the antenna assembly for a mobile terminal is further covered with an electrically isolated layer to further alleviate an adverse influence upon radio communication performance due to a contact of a user with the radiating element.
  • the electrically conductive material adopted for the radiation element in the antenna assembly for a mobile terminal includes metal, electrically conductive plastic or electrically conductive rubber.
  • a mobile terminal including the antenna assembly according to any one of the foregoing embodiments.
  • the mobile terminal further includes a gating element (a switching element, a duplexer or a multiplexer) connected to the multi-band antenna port
  • the casing is excited at a plurality of different locations so that the casing antenna can generate resonance covering a plurality of radio communication frequency bands with excellent radiation efficiency in the respective resonance frequency bands.
  • An excellent degree of isolation can be achieved between the respective antenna ports, and radio communication of multiple protocols can be performed concurrently.
  • a high efficiency of radiation in a free space can be easily achieved using the metal casing as a radiation body of the antenna due to a large size of the casing. Also this design can reduce the number of separate antennas in an existing mobile terminal and thus further miniaturize the mobile terminal.
  • Fig. l illustrates an exploded structural diagram of a part of a mobile terminal according to an embodiment of the invention
  • Fig.2a illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention
  • Fig.2b illustrates a plan view of a radiation element in the mobile terminal in
  • Fig.2c illustrates echo loss curves of respective antenna ports in the mobile terminal illustrated in Fig.2a;
  • Fig.2d illustrates transmission coefficient curves of the respective antenna ports in the mobile terminal illustrated in Fig.2a
  • Fig.3 illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention
  • Fig.4 illustrates a logic structural diagram of a part of a mobile terminal according to another embodiment of the invention.
  • Fig.5 illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention
  • Fig.6a illustrates a plan view of a radiation element in an antenna assembly according to another embodiment of the invention.
  • Fig.6b illustrates echo loss and transmission coefficient curves of antenna ports illustrated in Fig.6a.
  • a mobile terminal as referred to in the invention is intended to encompass any portable or hand-held mobile device capable of communication with another device via one or more specific radio protocols or standards, for example (but not limited to), a mobile phone, a smart mobile phone, a Personal Digital Assistant (PDA), a portable computer, a portable GPS terminal, etc.
  • PDA Personal Digital Assistant
  • Fig. l illustrates an exploded structural diagram of a part of a mobile terminal 10 according to an embodiment of the invention.
  • the mobile terminal 10 in this embodiment includes a front panel 103, a Printed Circuit Board (PCB) 102, an electrically conductive back cover 101 , an electrically non-conductive casing 104 and a separate built-in antenna 105.
  • a battery can be at least partially between the back cover 101 and the printed circuit board 102.
  • a planar radiation element is integrated on the back cover 101 as a part of an antenna assembly.
  • the entire back cover 101 can function as a radiating element.
  • the radiation element is constituted of an electrically conductive material, e.g., metal, alloy, electrically conductive plastic or electrically conductive rubber.
  • a feeding element 151 and a corresponding signal processing module 11 1, a feeding element 152 and a corresponding signal processing module 1 12, and a feeding element 153 and a corresponding signal processing module 113 are further arranged on the printed circuit board 102.
  • each of the feeding elements 151 , 152 and 153 can feed via respective antenna ports on the radiation element to excite the radiation element to operate in at least one frequency band.
  • the feeding element 151 corresponds to a mobile television frequency band to support a mobile multimedia service
  • the operating frequency band of the feeding element 152 corresponds to the Bluetooth frequency band
  • the operating frequency band of the feeding element 153 corresponds to the GPS frequency band.
  • the presence of the separate built-in antenna 105 is still necessary.
  • the electrically non-conductive casing 104 is adopted for a part of the area of the mobile terminal 10.
  • the casing 104 is typically of a plastic material so that the separate built-in antenna 105 radiates a radio signal effectively without being shielded.
  • the operating frequency bands corresponding to the respective feeding elements can include one or more of frequency bands corresponding to communication protocols of GPS, Bluetooth, WiFi, frequency modulation broadcast, a mobile television UHF frequency band, an S band, GSM, CDMA, WCDMA, TS-SCDMA, LTE and WiMAX.
  • the feeding elements include a necessary matching circuit for transporting a signal effectively to the antenna ports.
  • Fig.2a illustrates an exploded structural diagram of a part of a mobile terminal 20 according to another embodiment of the invention.
  • the mobile terminal 20 in this embodiment includes a printed circuit board 202 and a radiation element 206 integrated on a cover (not illustrated).
  • the radiation element 206 includes antenna ports 261 and 262.
  • the printed circuit board 202 includes feeding elements 251 and 252 and the corresponding signal processing modules (not illustrated).
  • a traditional antenna 208 is arranged on one end of the printed circuit board 202 in an area unshielded by the radiation element 206.
  • the antenna 208 is but will not be limited to a monopole antennal, a PIFA antenna, etc.
  • the feeding element 251 corresponds to the antenna port 261 and excites the radiation element 206 to operate by feeding the antenna port 261.
  • the feeding element 252 corresponds to the antenna port 262 and excites the radiation element 206 to operate by feeding the antenna port 262.
  • a structure like a micro-strip patch antenna is formed by the radiation element 206 integrated with the cover and the ground of the printed circuit board 202.
  • a contracting connection or a non-contacting connection can be adopted between the feeding element 251 and the antenna port 261 and between the feeding element 252 and the antenna port 262.
  • the form of a pogo pine or a spring clip can be adopted for the feeding elements.
  • the feeding elements and the corresponding antenna ports can be coupled, for example (but not limited to), through a capacitor.
  • the feeding elements can alternatively be arranged on the cover.
  • Fig.2b illustrates a plan view of the radiation element 206 in the mobile terminal 20 in Fig.2a
  • Fig.2c illustrates echo loss curves of the respective antenna or antenna ports in the mobile terminal 20 illustrated in Fig.2a
  • Fig.2d illustrates transmission coefficient curves of the respective antenna or antenna ports in the mobile terminal 20 illustrated in Fig.2a.
  • the radiation element 206 is a rectangle with the size of 45mm (along the x axis)* 75mm (along the y axis). With the bottom right corner of the radiation element 206 as illustrated being the origin of coordinates, the coordinates of the central location of the antenna port 261 are (43mm, 22mm), and the coordinates of the central location of the antenna port 262 are (22.5mm, 57mm).
  • the echo loss (vs. frequency) curve of the antenna port 261 is illustrated as the curve in Fig. 2c marked with circles, and the transmission coefficient (vs. frequency) curve thereof is illustrated as the curve in Fig.2d marked with circles.
  • the echo loss curve of the antenna port 262 is illustrated as the curve in Fig.2c marked with triangles and the transmission coefficient curve thereof is illustrated as the curve in Fig.2d marked with triangles.
  • the echo loss curve and the transmission coefficient curve of the antenna 208 are illustrated respectively as the unmarked curves in Fig.2c and Fig.2d.
  • the operating frequency corresponding to the antenna port 261 includes a Bluetooth frequency band or a WiFi frequency band around 2450MHz; the operating frequency corresponding to the antenna port 262 includes a GPS frequency band around 1572.42MHz; and the operating frequency corresponding to the traditional antenna 208 includes various frequency bands of a cellular system, such as the GSM850MHz frequency band, the EGSM900MHz frequency band, the DCS 1800MHz frequency band, the PCS 1900MHz frequency band and WCDMA frequency bands
  • the exterior surface of the radiation element 206 can optionally be further covered with an electrically insulated layer.
  • the radiation element integrated with the cover of the mobile terminal is shaped variously, for example, in the shape of a triangle, a quadrangle, a circle, an ellipse, etc., and a quasi-polygon rounded at corners thereof.
  • there are hollow-carved parts in various shapes or patterns on the radiation element integrated with the cover of the mobile terminal and typically these hollow-carved parts are consisted of or filled with a electrically non-conductive material.
  • Fig.3 illustrates an exploded structural diagram of a part of a mobile terminal 30 according to a further embodiment of the invention.
  • the mobile terminal 30 in this embodiment includes a front panel 303, a printed circuit board 302 and a back cover 301.
  • a battery can be at least partially between a back cover 301 and a printed circuit board 302.
  • the body of the back cover 301 functions as a radiation element and forms a structure like a micro-strip patch antenna together with the ground of the printed circuit board 302.
  • the radiation element can be designed to have a shape in a complex pattern thereon, for example (but not limited to), hollow-carved parts in a strip shape and in an E shape as illustrated.
  • a feeding element 351 and a corresponding signal processing module or circuit 311 are arranged on the printed circuit board 302.
  • the feeding element 351 feeds a corresponding antenna port on the back cover 301 so that the antenna 301 can operate in a plurality of frequency bands of a cellular system.
  • other antenna ports and feeding elements can further be added so that the cover can operate concurrently in a frequency band of another communication protocol to thereby take the place of all of separate antenna elements in the mobile terminal and perform all of antenna functions.
  • the multi-band antenna port there are a plurality of antenna ports on the radiation element integrated with the cover of the mobile terminal.
  • the multi-band antenna port is capable of exciting the radiation element to operate in at least two frequency bands which are a subset of all the operating frequency bands of the radiating element.
  • the operating frequency corresponding to the multi-band antenna port includs a GPS frequency band, a mobile television UHF frequency band, WiFi and a Bluetooth frequency band.
  • the mobile terminal further includes a multiplexer connected to the multi-band antenna port, and the multiplexer is connected to one or more signal processing modules to process a GPS signal, a mobile television signal, a WiFi signal or a Bluetooth signal respectively.
  • Fig.4 illustrates a logic structural diagram of a part of a mobile terminal according to an embodiment of the invention.
  • the radiation element integrated on the cover of the mobile terminal includes a multi-band antenna port 451 connected to the feeding element 411 on the printed circuit board.
  • the feeding element 411 is connected to a gating element 460 connected to a plurality of signal processing modules or circuits 461 and 462 or like.
  • the multi-band antenna port 451 is capable of exciting the radiation element to operate in a plurality of frequency bands, and each of the signal processing modules or the circuits 461 and 462 is configured to process the signal in one of the operating bands.
  • the gating element 460 includes filter elements in one-to-one correspondence with the respective signal processing modules or circuits 461 and 462 to select a signal at an operating frequency corresponding to the respective signal processing modules or circuits.
  • the gating element can be a switching element, a duplexer or a multiplexer respectively dependent upon practical applications and design requirements.
  • there are four single-band antenna ports on the radiation element integrated with the cover of the mobile terminal wherein one port corresponds to an operating frequency band which is a GPS frequency band and is connected to a GPS signal processing module on the printed circuit board.
  • Another port corresponds to an operating frequency band which is a Bluetooth frequency band and is connected with a Bluetooth signal processing module on the printed circuit board.
  • Yet another port corresponds to an operating frequency band which is a frequency modulation broadcast frequency band and is connected with a frequency modulation broadcast signal processing module on the printed circuit board.
  • the remaining port corresponds to an operating frequency band which is a WiFi frequency band and is connected with a WiFi signal processing module on the printed circuit board.
  • Fig.5 illustrates an exploded structural diagram of a part of a mobile terminal 50 according to another embodiment of the invention.
  • the mobile terminal 50 in this embodiment includes a printed circuit board 502 and a radiation element 506 integrated on a cover (not illustrated).
  • a structure like a micro-strip patch antenna is formed by the radiation element 506 and the ground of the printed circuit board 502.
  • first antenna port 561 and a second antenna port 562 formed on the radiation element 506.
  • feeding elements 551 and 552 connected respectively to the first antenna port 561 and the second antenna port 562, and corresponding signal processing modules (not illustrated) on the printed circuit board 502.
  • Both the first antenna port 561 and the second antenna port 562 are capable of exciting the radiation element 506 to operate in a first frequency band which can be a frequency band used in any Multiple-Input Multiple-Output (MIMO)-enabled radio communication protocol, for example (but not limited to), the WiFi frequency band of 2400 ⁇ 2483MHz.
  • MIMO Multiple-Input Multiple-Output
  • the radiation element 506 can be excited to generate two orthogonal modes with the same resonance frequency.
  • the radiation element 506 can be a square or approximately a square, and the first antenna port 561 and the second antenna port 562 can be located respectively on two central axes of the radiation element 506 next to an edge.
  • an antenna assembly for a mobile terminal includes a radiation element integrated with a cover of the mobile terminal and consisted of an electrically conductive material; and when the cover is fastened to the mobile terminal, a structure like a micro-strip patch antenna is formed by the radiation element and the ground of a printed circuit board in the mobile terminal with the distance between the radiation element and the circuit printed board being 5mm.
  • Fig.6a illustrates a plan view of the radiation element 606 in an antenna assembly of this embodiment. As illustrated, the radiation element 606 is sized 55mm* 54mm and includes a first antenna port 661 and a second antenna port 662 thereon.
  • the coordinates of the central location of the antenna port 661 are (27.5mm, 14mm), and the coordinates of the central location of the antenna port 662 are (19mm, 29mm).
  • a mode excited via the antenna port 661 is approximately a TMoi mode polarized in the y direction of a micro-strip patch antenna
  • a mode excited via the antenna port 662 is a TMio mode polarized in the x direction, and these two modes are orthogonal to each other.
  • Fig.6b illustrates performance curves of the antenna ports illustrated in Fig.6a.
  • the echo loss I S 1 11 curve of the antenna port 661 is illustrated as the curve marked with triangles
  • curve of the antenna port 662 is illustrated as the curve marked with circles
  • curve between the antenna ports 661 and 662 is illustrated as the unmarked curve.
  • in-band echo losses of both the antenna ports 661 and 662 are below -6dB, and there is a degree of isolation above 20dB from each other, in the frequency band range (2400 ⁇ 2483MHz) of a wireless local area network.
  • Such excellent performance can satisfy high degree-of-isolation and high-efficiency requirements of an MIMO system upon a mutli-antenna system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Telephone Set Structure (AREA)
  • Waveguide Aerials (AREA)

Abstract

The invention relates to an antenna assembly for a mobile terminal and a mobile terminal using the antenna assembly. A fundamental idea of the invention is to use an electrically conductive casing of the mobile terminal as a radiation element of an antenna system. In an embodiment of the invention, there is a provided an antenna assembly for a mobile terminal (20), which includes: a radiation element (206) integrated with a cover of the mobile terminal, consisted of an electrically conductive material and including at least one antenna port (261, 262) formed thereon,wherein the antenna port is capable of exciting the radiation element to operate in a plurality of frequency bands when the cover is fastened to the mobile terminal. Such a design can reduce the number of separate antennas in an existing mobile terminal and thus further miniaturize the mobile terminal.

Description

Antenna Assembly and Mobile Terminal
Field of the invention
The present disclosure relates to the field of antenna technique and particularly to an antenna assembly for a mobile terminal.
Background of the invention
A mobile terminal has increasingly complicated functions and has to comply with a variety of communication protocols and standards while its figure being increasingly miniaturized and ultra-thinned. These trends result in an increasingly small space available for an antenna element in the mobile terminal on one hand and an increasing demand for the performance of the antenna which only occupies a limited space on the other hand. That is to say, an antenna system has to operate with good performance in more frequency bands or at a higher bandwidth. Unfortunately the radiation performance of the antenna which is a frequency-dependent element is proportionate to the size of the space occupied by the antenna. The narrow space will restrain the radiation performance of the antenna and make it difficult for the antenna to satisfy a performance requirement of the system.
The mobile terminal typically includes several antennas independent from each other. Particularly in a mobile phone terminal, these antennas are commonly divided functionally into a primary antenna and an auxiliary antenna, wherein the primary antenna is an antenna to support a communication protocol of a cellular system, e.g., GSM, CDMA, WCDMA, etc. The auxiliary antenna may be an antenna to support signals in various frequency bands of Global Positioning System (GPS), Bluetooth, Wireless Local Area Network (WLAN), mobile television, Frequency Modulation (FM) broadcast, etc., or may be a secondary antenna to support Multiple-Input Multiple-Output (MIMO) or signal diversity. Since a specific space internal to the mobile terminal is occupied by the respective antennas, the space occupied by the entire antenna system is considerable. It is rather difficult for each antenna element to achieve an excellent level of radiation performance due to limitations of the occupancy area, the height, the headroom and other factors thereof, and influences of a casing and other components, thus the communication quality of the system is eventually influenced.
Furthermore in the field of mobile terminals especially mobile phone terminals, a metal casing earns an increasing attention of consumers due to a good texture and the durability thereof. Using metal material to make the casing of a mobile phone has become a trend. A common practice is to electrically connect the metal casing with the ground of a circuit board in the mobile terminal so as to make it become a part of the ground of the system. In order to prevent a signal of a built-in antenna from being shielded by the body of the metal casing, the metal casing is bored or slotted in the place corresponding to the built-in antenna to enable the radiation of the signal of the antenna. This solution generally may bring a significant adverse influence upon the performance of the antenna due to the large metal component added around the antenna.
Summary of the invention
A fundamental idea of the invention is to use an electrically conductive casing of a mobile terminal as a radiating body of an antenna thereof. By designing the figure, the location of a feed port and the excitation mode, the electrically conductive casing may function as a radiating body of an antenna for radio communication in one or more frequency bands.
In the invention, a structure like a micro-strip patch antenna is formed between the metal casing and a ground in the mobile terminal.
The micro-strip patch antenna is an antenna formed by affixing a conductor sheet onto a dielectric substrate with a conductor ground. Power is fed in the proper place over a micro-strip line or a coaxial cable so as to have a radio frequency electromagnetic field excited between the conductor sheet and the ground, and radiated through a gap between the periphery of the conductor sheet and the ground. The micro-strip patch antenna has a good radiation performance and enjoys easy conformance, flexible formation, easy circular polarization and dual polarization, operability in multiple frequency bands and other advantages. However the micro-strip patch antenna is rarely adopted in a general mobile terminal due to considerable spatial occupancy thereof. Following the foregoing principle, a structure like a micro-strip patch antenna is formed between a metal casing and a ground of a printed circuit board in a mobile terminal according to the invention. A frequency band and a mode thereof can be achieved by designing the shape of the casing and the location and mode of the feeding. In an existing design, there is also a solution in which an antenna is integrated on an exterior component of a mobile terminal, for example, a part of a metal frame of the mobile terminal functions is used as an antenna. However the antenna adopted in such design is a traditional antenna form in the mobile terminal such as a monopole antenna, a loop antenna, an Inverted F Antenna (IFA), etc.. Furthermore the casing in such design is of a plastic material except for the metal material embedded in an area of the frame as a radiation element of the antenna.
In an embodiment of the invention, there is provided an antenna assembly for a mobile terminal, which includes: a radiation element integrated with a cover of the mobile terminal, consisted of electrically conductive material and including at least one antenna port formed thereon; wherein the antenna port is capable of exciting the radiation element to operate in a plurality of frequency bands when the cover is fastened to the mobile terminal.
In an embodiment of the invention, the antenna assembly for a mobile terminal further includes a ground of a printed circuit board in the mobile terminal. A structure like a micro-strip patch antenna is formed by the radiation element and the ground.
In an embodiment of the invention, the antenna assembly for a mobile terminal further includes at least one feeding element in one-to-one correspondence with the antenna port, wherein the feeding element and the antenna port are connected in a contacting or non-contacting manner.
In an embodiment of the invention, the plurality of frequency bands of the antenna assembly for a mobile terminal include any combination of frequency bands corresponding to communication protocols of GPS, Bluetooth, WiFi, frequency modulation broadcast, mobile television, GSM, CDMA, WCDMA, TS-SCDMA, LTE and WiMAX.
In another embodiment of the invention, in the antenna assembly for a mobile terminal, the antenna port on the radiation element includes at least one multi-band antenna port which is capable of exciting the radiation element to operate in a subset of the plurality of frequency bands, which includes at least two of the plurality of frequency bands.
In another embodiment of the invention, in the antenna assembly for a mobile terminal, the antenna port on the radiation element includes a plurality of antenna ports, each of which is capable of exciting the radiation element to operate in a different frequency band.
In an embodiment of the invention, there is provided an antenna assembly for a mobile terminal, which includes: a radiation element integrated with a cover of the mobile terminal, consisted of electrically conductive material and including a plurality of antenna ports formed thereon, wherein at least two of the plurality of antenna ports are capable of exciting the radiation element to operate in the same frequency band when the cover is fastened to the mobile terminal.
In an embodiment of the invention, the antenna assembly for a mobile terminal further includes a ground of a printed circuit board in the mobile terminal. A structure like a micro-strip patch antenna is formed by the radiation element and the ground.
In an embodiment of the invention, the antenna assembly for a mobile terminal further includes a plurality of feeding elements in one-to-one correspondence with the plurality of antenna ports, wherein the feeding elements and the antenna ports are connected in a contacting or non-contacting manner.
In an embodiment of the invention, at least two of the plurality of antenna ports of the antenna assembly for a mobile terminal are capable of exciting the radiation element to operate in orthogonal modes in the same frequency band.
In another embodiment of the invention, the exterior surface of the radiation element of the antenna assembly for a mobile terminal is further covered with an electrically isolated layer to further alleviate an adverse influence upon radio communication performance due to a contact of a user with the radiating element.
In another embodiment of the invention, the electrically conductive material adopted for the radiation element in the antenna assembly for a mobile terminal includes metal, electrically conductive plastic or electrically conductive rubber.
In an embodiment of the invention, there is provided a mobile terminal including the antenna assembly according to any one of the foregoing embodiments.
In an embodiment of the invention, the mobile terminal further includes a gating element (a switching element, a duplexer or a multiplexer) connected to the multi-band antenna port
As can be seen from the disclosed embodiments of the invention, the casing is excited at a plurality of different locations so that the casing antenna can generate resonance covering a plurality of radio communication frequency bands with excellent radiation efficiency in the respective resonance frequency bands. An excellent degree of isolation can be achieved between the respective antenna ports, and radio communication of multiple protocols can be performed concurrently. A high efficiency of radiation in a free space can be easily achieved using the metal casing as a radiation body of the antenna due to a large size of the casing. Also this design can reduce the number of separate antennas in an existing mobile terminal and thus further miniaturize the mobile terminal.
Brief description of drawings
Other features, objects and advantages of the invention will become more apparent upon reading the following detailed description of non-limiting embodiments with reference to the drawings:
Fig. l illustrates an exploded structural diagram of a part of a mobile terminal according to an embodiment of the invention;
Fig.2a illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention;
Fig.2b illustrates a plan view of a radiation element in the mobile terminal in
Fig.2a;
Fig.2c illustrates echo loss curves of respective antenna ports in the mobile terminal illustrated in Fig.2a;
Fig.2d illustrates transmission coefficient curves of the respective antenna ports in the mobile terminal illustrated in Fig.2a; Fig.3 illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention;
Fig.4 illustrates a logic structural diagram of a part of a mobile terminal according to another embodiment of the invention;
Fig.5 illustrates an exploded structural diagram of a part of a mobile terminal according to another embodiment of the invention;
Fig.6a illustrates a plan view of a radiation element in an antenna assembly according to another embodiment of the invention; and
Fig.6b illustrates echo loss and transmission coefficient curves of antenna ports illustrated in Fig.6a.
Identical or like reference numerals will denote corresponding features throughout the figures in the drawings.
Detailed description of embodiments
A mobile terminal as referred to in the invention is intended to encompass any portable or hand-held mobile device capable of communication with another device via one or more specific radio protocols or standards, for example (but not limited to), a mobile phone, a smart mobile phone, a Personal Digital Assistant (PDA), a portable computer, a portable GPS terminal, etc.
Fig. l illustrates an exploded structural diagram of a part of a mobile terminal 10 according to an embodiment of the invention. As illustrated, the mobile terminal 10 in this embodiment includes a front panel 103, a Printed Circuit Board (PCB) 102, an electrically conductive back cover 101 , an electrically non-conductive casing 104 and a separate built-in antenna 105. For example (but not limited to), a battery can be at least partially between the back cover 101 and the printed circuit board 102.
A planar radiation element is integrated on the back cover 101 as a part of an antenna assembly. In some examples, the entire back cover 101 can function as a radiating element. Typically the radiation element is constituted of an electrically conductive material, e.g., metal, alloy, electrically conductive plastic or electrically conductive rubber. A feeding element 151 and a corresponding signal processing module 11 1, a feeding element 152 and a corresponding signal processing module 1 12, and a feeding element 153 and a corresponding signal processing module 113 are further arranged on the printed circuit board 102. When the back cover 101 is fastened to the mobile terminal 10, each of the feeding elements 151 , 152 and 153 can feed via respective antenna ports on the radiation element to excite the radiation element to operate in at least one frequency band. Thus a structure like a micro-strip patch antenna is formed by the radiation element integrated with the back cover 101 and the ground of the printed circuit board 102. In this example, the feeding element 151 corresponds to a mobile television frequency band to support a mobile multimedia service, the operating frequency band of the feeding element 152 corresponds to the Bluetooth frequency band, and the operating frequency band of the feeding element 153 corresponds to the GPS frequency band.
In view of some design considerations, the presence of the separate built-in antenna 105 is still necessary. In this case, the electrically non-conductive casing 104 is adopted for a part of the area of the mobile terminal 10. The casing 104 is typically of a plastic material so that the separate built-in antenna 105 radiates a radio signal effectively without being shielded.
In respective embodiments of the invention, the operating frequency bands corresponding to the respective feeding elements (or antenna ports) can include one or more of frequency bands corresponding to communication protocols of GPS, Bluetooth, WiFi, frequency modulation broadcast, a mobile television UHF frequency band, an S band, GSM, CDMA, WCDMA, TS-SCDMA, LTE and WiMAX. The feeding elements include a necessary matching circuit for transporting a signal effectively to the antenna ports.
Fig.2a illustrates an exploded structural diagram of a part of a mobile terminal 20 according to another embodiment of the invention. The mobile terminal 20 in this embodiment includes a printed circuit board 202 and a radiation element 206 integrated on a cover (not illustrated).
The radiation element 206 includes antenna ports 261 and 262.
The printed circuit board 202 includes feeding elements 251 and 252 and the corresponding signal processing modules (not illustrated). A traditional antenna 208 is arranged on one end of the printed circuit board 202 in an area unshielded by the radiation element 206. For example, the antenna 208 is but will not be limited to a monopole antennal, a PIFA antenna, etc.
The feeding element 251 corresponds to the antenna port 261 and excites the radiation element 206 to operate by feeding the antenna port 261. The feeding element 252 corresponds to the antenna port 262 and excites the radiation element 206 to operate by feeding the antenna port 262. Thus a structure like a micro-strip patch antenna is formed by the radiation element 206 integrated with the cover and the ground of the printed circuit board 202.
A contracting connection or a non-contacting connection can be adopted between the feeding element 251 and the antenna port 261 and between the feeding element 252 and the antenna port 262. For a contacting connection, the form of a pogo pine or a spring clip can be adopted for the feeding elements. For a non-contacting connection, the feeding elements and the corresponding antenna ports can be coupled, for example (but not limited to), through a capacitor. In some other embodiments of the invention, the feeding elements can alternatively be arranged on the cover.
Fig.2b illustrates a plan view of the radiation element 206 in the mobile terminal 20 in Fig.2a; Fig.2c illustrates echo loss curves of the respective antenna or antenna ports in the mobile terminal 20 illustrated in Fig.2a; and Fig.2d illustrates transmission coefficient curves of the respective antenna or antenna ports in the mobile terminal 20 illustrated in Fig.2a.
As illustrated in Fig.2b, the radiation element 206 is a rectangle with the size of 45mm (along the x axis)* 75mm (along the y axis). With the bottom right corner of the radiation element 206 as illustrated being the origin of coordinates, the coordinates of the central location of the antenna port 261 are (43mm, 22mm), and the coordinates of the central location of the antenna port 262 are (22.5mm, 57mm). The echo loss (vs. frequency) curve of the antenna port 261 is illustrated as the curve in Fig. 2c marked with circles, and the transmission coefficient (vs. frequency) curve thereof is illustrated as the curve in Fig.2d marked with circles. The echo loss curve of the antenna port 262 is illustrated as the curve in Fig.2c marked with triangles and the transmission coefficient curve thereof is illustrated as the curve in Fig.2d marked with triangles. The echo loss curve and the transmission coefficient curve of the antenna 208 are illustrated respectively as the unmarked curves in Fig.2c and Fig.2d. As illustrated, the operating frequency corresponding to the antenna port 261 includes a Bluetooth frequency band or a WiFi frequency band around 2450MHz; the operating frequency corresponding to the antenna port 262 includes a GPS frequency band around 1572.42MHz; and the operating frequency corresponding to the traditional antenna 208 includes various frequency bands of a cellular system, such as the GSM850MHz frequency band, the EGSM900MHz frequency band, the DCS 1800MHz frequency band, the PCS 1900MHz frequency band and WCDMA frequency bands
(1710-1755MHz/2110-2155MHz/1920-1980MHz/2110-2170MHz). As can be seen from Fig.2c, corresponding echo losses in all the foregoing frequency bands are below -6dB, and as can be een from Fig.2d, there is a degree of isolation above 15dB between the respective ports, both of which show excellent and reliable operating performance of this design solution.
In order to avoid or alleviate an adverse influence upon the performance of the mobile terminal 20 due to a physical contact of a user with the radiation element 206, the exterior surface of the radiation element 206 can optionally be further covered with an electrically insulated layer.
In some other embodiments of the invention, as a part of the antenna assembly, the radiation element integrated with the cover of the mobile terminal is shaped variously, for example, in the shape of a triangle, a quadrangle, a circle, an ellipse, etc., and a quasi-polygon rounded at corners thereof. In some other embodiments, there are hollow-carved parts in various shapes or patterns on the radiation element integrated with the cover of the mobile terminal, and typically these hollow-carved parts are consisted of or filled with a electrically non-conductive material. The foregoing various designs for the shape of the radiation element are intended to satisfy requirements of various operating bands of the antenna and the combinations thereof.
Fig.3 illustrates an exploded structural diagram of a part of a mobile terminal 30 according to a further embodiment of the invention. As illustrated, the mobile terminal 30 in this embodiment includes a front panel 303, a printed circuit board 302 and a back cover 301. For example (but not limited to), a battery can be at least partially between a back cover 301 and a printed circuit board 302.
In this embodiment, the body of the back cover 301 functions as a radiation element and forms a structure like a micro-strip patch antenna together with the ground of the printed circuit board 302. In order to provide an antenna with a plurality of resonance frequencies to support a plurality of operating bands, the radiation element can be designed to have a shape in a complex pattern thereon, for example (but not limited to), hollow-carved parts in a strip shape and in an E shape as illustrated.
A feeding element 351 and a corresponding signal processing module or circuit 311 are arranged on the printed circuit board 302. For example(but not limited to), when the back cover 301 is fastened to the mobile terminal 30, the feeding element 351 feeds a corresponding antenna port on the back cover 301 so that the antenna 301 can operate in a plurality of frequency bands of a cellular system. Of course, other antenna ports and feeding elements can further be added so that the cover can operate concurrently in a frequency band of another communication protocol to thereby take the place of all of separate antenna elements in the mobile terminal and perform all of antenna functions.
In some embodiments of the invention, there are a plurality of antenna ports on the radiation element integrated with the cover of the mobile terminal. There is at least one multi-band antenna port among the plurality of antenna ports. The multi-band antenna port is capable of exciting the radiation element to operate in at least two frequency bands which are a subset of all the operating frequency bands of the radiating element. In an embodiment, the operating frequency corresponding to the multi-band antenna port includs a GPS frequency band, a mobile television UHF frequency band, WiFi and a Bluetooth frequency band. In this embodiment, the mobile terminal further includes a multiplexer connected to the multi-band antenna port, and the multiplexer is connected to one or more signal processing modules to process a GPS signal, a mobile television signal, a WiFi signal or a Bluetooth signal respectively.
Fig.4 illustrates a logic structural diagram of a part of a mobile terminal according to an embodiment of the invention. In this embodiment, the radiation element integrated on the cover of the mobile terminal includes a multi-band antenna port 451 connected to the feeding element 411 on the printed circuit board. As mentioned above, direct contacting or non-contacting manner can be adopted for the connection. The feeding element 411 is connected to a gating element 460 connected to a plurality of signal processing modules or circuits 461 and 462 or like. The multi-band antenna port 451 is capable of exciting the radiation element to operate in a plurality of frequency bands, and each of the signal processing modules or the circuits 461 and 462 is configured to process the signal in one of the operating bands. Specifically the gating element 460 includes filter elements in one-to-one correspondence with the respective signal processing modules or circuits 461 and 462 to select a signal at an operating frequency corresponding to the respective signal processing modules or circuits. In different embodiments, the gating element can be a switching element, a duplexer or a multiplexer respectively dependent upon practical applications and design requirements.
In some other embodiments of the invention, there are a plurality of single-band antenna ports on the radiation element integrated with the cover of the mobile terminal. These single-band antenna ports are capable of exciting the radiation element respectively to operate in different frequency bands. In an embodiment, there are four single-band antenna ports on the radiation element integrated with the cover of the mobile terminal, wherein one port corresponds to an operating frequency band which is a GPS frequency band and is connected to a GPS signal processing module on the printed circuit board. Another port corresponds to an operating frequency band which is a Bluetooth frequency band and is connected with a Bluetooth signal processing module on the printed circuit board. Yet another port corresponds to an operating frequency band which is a frequency modulation broadcast frequency band and is connected with a frequency modulation broadcast signal processing module on the printed circuit board. The remaining port corresponds to an operating frequency band which is a WiFi frequency band and is connected with a WiFi signal processing module on the printed circuit board.
In some other embodiments, there are a plurality of single-band antenna ports on the radiation element integrated with the cover of the mobile terminal, and the plurality of ports correspond to the operating frequency bands which are the same frequency band.
Fig.5 illustrates an exploded structural diagram of a part of a mobile terminal 50 according to another embodiment of the invention. The mobile terminal 50 in this embodiment includes a printed circuit board 502 and a radiation element 506 integrated on a cover (not illustrated). A structure like a micro-strip patch antenna is formed by the radiation element 506 and the ground of the printed circuit board 502.
There are a first antenna port 561 and a second antenna port 562 formed on the radiation element 506. There are feeding elements 551 and 552, connected respectively to the first antenna port 561 and the second antenna port 562, and corresponding signal processing modules (not illustrated) on the printed circuit board 502.
Both the first antenna port 561 and the second antenna port 562 are capable of exciting the radiation element 506 to operate in a first frequency band which can be a frequency band used in any Multiple-Input Multiple-Output (MIMO)-enabled radio communication protocol, for example (but not limited to), the WiFi frequency band of 2400~2483MHz.
With an elaborate design of the shape and the size of the radiation element 506 and the locations of the first antenna port 561 and the second antenna port 562, the radiation element 506 can be excited to generate two orthogonal modes with the same resonance frequency. For example (but not limited to), the radiation element 506 can be a square or approximately a square, and the first antenna port 561 and the second antenna port 562 can be located respectively on two central axes of the radiation element 506 next to an edge.
In an embodiment of the invention, an antenna assembly for a mobile terminal includes a radiation element integrated with a cover of the mobile terminal and consisted of an electrically conductive material; and when the cover is fastened to the mobile terminal, a structure like a micro-strip patch antenna is formed by the radiation element and the ground of a printed circuit board in the mobile terminal with the distance between the radiation element and the circuit printed board being 5mm. Fig.6a illustrates a plan view of the radiation element 606 in an antenna assembly of this embodiment. As illustrated, the radiation element 606 is sized 55mm* 54mm and includes a first antenna port 661 and a second antenna port 662 thereon. With the bottom left corner of the radiation element 606 as illustrated being origin of coordinate, the coordinates of the central location of the antenna port 661 are (27.5mm, 14mm), and the coordinates of the central location of the antenna port 662 are (19mm, 29mm). In this case, a mode excited via the antenna port 661 is approximately a TMoi mode polarized in the y direction of a micro-strip patch antenna, and a mode excited via the antenna port 662 is a TMio mode polarized in the x direction, and these two modes are orthogonal to each other. Fig.6b illustrates performance curves of the antenna ports illustrated in Fig.6a. The echo loss I S 1 11 curve of the antenna port 661 is illustrated as the curve marked with triangles, the echo loss |Sn | curve of the antenna port 662 is illustrated as the curve marked with circles, and the transmission coefficient |S21 | curve between the antenna ports 661 and 662 is illustrated as the unmarked curve. As illustrated, in-band echo losses of both the antenna ports 661 and 662 are below -6dB, and there is a degree of isolation above 20dB from each other, in the frequency band range (2400~2483MHz) of a wireless local area network. Such excellent performance can satisfy high degree-of-isolation and high-efficiency requirements of an MIMO system upon a mutli-antenna system.
Those skilled in the art shall appreciate that the foregoing embodiments are illustrative but not limiting. Different technical features appearing in different embodiments can be combined to advantage. Those skilled in the art shall appreciate and implement other variant embodiments of the disclosed embodiments upon reviewing the drawings, the description and the claims. In the claims, the term "comprising" will not preclude another means or step(s); the indefinite article "a/an" will not preclude plural; and the terms "first", "second", etc., are intended to designate a name but not to represent any specific order. Any reference numerals in the claims shall not be construed as limiting the scope of the invention. Functions of a plurality of parts appearing in a claim can be performed by a separate module in hardware or software, and a function of one part can be performed by a plurality of different modules in hardware or software. Some technical features appearing in different dependent claims will not mean that these technical features can not be combined to advantage.

Claims

1. An antenna assembly for a mobile terminal (20), comprising:
a radiation element (206) integrated with a cover of the mobile terminal, consisted of electrically conductive material and comprising at least one antenna port (261 , 262) formed thereon;
wherein the antenna port is capable of exciting the radiation element to operate in a plurality of frequency bands when the cover is fastened to the mobile terminal.
2. The antenna assembly according to claim 1 , further comprising a ground of a printed circuit board in the mobile terminal.
3. The antenna assembly according to claim 2, further comprising at least one feeding element (251 , 252) in one-to-one correspondence with the antenna port, wherein the feeding element and the antenna port are connected in a contacting or non-contacting manner.
4. The antenna assembly according to claim 1 , wherein the plurality of frequency bands comprise any combination of frequency bands corresponding to communication protocols of GPS, Bluetooth, WiFi, frequency modulation broadcast, mobile television, GSM, CDMA, WCDMA, TS-SCDMA, LTE and WiMAX.
5. The antenna assembly according to claim 1 , wherein the exterior surface of the radiation element is further covered with an electrically isolated layer.
6. The antenna assembly according to claim 1 , wherein the electrically conductive material comprises metal, electrically conductive plastic or electrically conductive rubber.
7. The antenna assembly according to claim 1 , wherein the antenna port comprises at least one multi-band antenna port which is capable of exciting the radiation element to operate in a subset of the plurality of frequency bands, which comprises at least two of the plurality of frequency bands.
8. The antenna assembly according to claim 1 , wherein the radiation element comprises a plurality of antenna ports formed thereon;
wherein each of the plurality of antenna ports is capable of exciting the radiation element to operate in a different frequency band.
9. A mobile terminal, comprising the antenna assembly according to any one of claims 1 to 8.
10. A mobile terminal, comprising the antenna assembly according to claim 7 and further comprising a gating element connected to the multi-band antenna port.
11. An antenna assembly for a mobile terminal, comprising:
a radiation element integrated with a cover of the mobile terminal, consisted of electrically conductive material and comprising a plurality of antenna ports formed thereon;
wherein at least two of the plurality of antenna ports are capable of exciting the radiation element to operate in the same frequency band when the cover is fastened to the mobile terminal.
12. The antenna assembly according to claim 11 , further comprising a ground of a printed circuit board in the mobile terminal.
13. The antenna assembly according to claim 12, further comprising a plurality of feeding elements in one-to-one correspondence with the plurality of antenna ports, wherein the feeding elements and the antenna ports are connected in a contacting or non-contacting manner.
14. The antenna assembly according to claim 11 , wherein the exterior surface of the radiation element is further covered with an electrically isolated layer.
15. The antenna assembly according to claim 11 , wherein the electrically conductive material comprises metal, electrically conductive plastic or electrically conductive rubber.
16. The antenna assembly according to claim 11 , wherein at least two of the plurality of antenna ports are capable of exciting the radiation element to operate in orthogonal modes in the same frequency band.
17. The A mobile terminal, comprising the antenna assembly according to any one of claims 11 to 16.
PCT/IB2012/052316 2011-05-12 2012-05-09 Antenna assembly and mobile terminal WO2012153282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110123006.4 2011-05-12
CN201110123006.4A CN102780065B (en) 2011-05-12 2011-05-12 Antenna module and mobile terminal

Publications (1)

Publication Number Publication Date
WO2012153282A1 true WO2012153282A1 (en) 2012-11-15

Family

ID=46197633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/052316 WO2012153282A1 (en) 2011-05-12 2012-05-09 Antenna assembly and mobile terminal

Country Status (3)

Country Link
CN (1) CN102780065B (en)
TW (1) TWI607600B (en)
WO (1) WO2012153282A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119897A1 (en) * 2013-01-30 2014-08-07 Samsung Electronics Co., Ltd. Antenna device for portable terminal
WO2014207292A1 (en) * 2013-06-28 2014-12-31 Nokia Corporation Method and apparatus for an antenna
EP2940790A1 (en) * 2014-04-28 2015-11-04 King Slide Technology Co., Ltd. Communication device antenna
EP3007268A1 (en) * 2014-10-08 2016-04-13 Samsung Electronics Co., Ltd. Electronic device and antenna device thereof
CN106410428A (en) * 2015-07-28 2017-02-15 三星电子株式会社 Antenna device and electronic device including same
US9768492B2 (en) 2011-04-14 2017-09-19 Samsung Electronics Co., Ltd. Antenna apparatus for portable terminal
CN109037911A (en) * 2018-08-01 2018-12-18 普联技术有限公司 A kind of antenna assembly and mobile terminal
CN109066057A (en) * 2018-09-28 2018-12-21 深圳市信维通信股份有限公司 One kind is based on metal edge frame three-in-one antenna under small headroom
US10498014B2 (en) 2016-02-19 2019-12-03 Hewlett-Packard Development Company, L.P. Antenna and cap
WO2021125881A1 (en) * 2019-12-20 2021-06-24 Samsung Electronics Co., Ltd. Display apparatus
US11424535B2 (en) 2017-11-24 2022-08-23 Samsung Electronics Co., Ltd. Electronic device for including antenna array

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511377B (en) * 2013-06-06 2015-12-01 Chiun Mai Comm Systems Inc Antenna structure and wireless communication device using same
WO2015085592A1 (en) * 2013-12-13 2015-06-18 展讯通信(上海)有限公司 Antenna and mobile terminal using said antenna
CN105720366B (en) * 2014-12-05 2018-09-11 上海莫仕连接器有限公司 Electronic device
CN105098356A (en) * 2015-09-09 2015-11-25 天津七一二通信广播有限公司 Ultraviolet (UV) frequency band and S frequency band dual-mode integrated antenna system applied to communication terminal
CN105281012A (en) * 2015-10-21 2016-01-27 深圳市天鼎微波科技有限公司 Intelligent wearing product antenna formed by small antenna and lengthened main board
CN106384875A (en) * 2016-11-22 2017-02-08 深圳市天威讯无线技术有限公司 Antenna structure capable of flexibly adjusting antenna use frequency
US11552391B2 (en) * 2017-01-13 2023-01-10 Futurewei Technologies, Inc. Mobile device with multiple-antenna system
KR102245948B1 (en) 2017-06-12 2021-04-30 삼성전자주식회사 Antenna and electronic device for including the same
CN108206329A (en) * 2017-10-17 2018-06-26 中兴通讯股份有限公司 A kind of terminal
JP2019142401A (en) * 2018-02-22 2019-08-29 株式会社デンソー On-vehicle camera
US20200227816A1 (en) * 2019-01-11 2020-07-16 Mediatek Inc. Antenna system and associated radiated module
EP4102643A4 (en) * 2020-02-20 2023-07-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device
CN113764865B (en) * 2020-06-02 2024-04-05 英业达科技有限公司 Antenna module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018541A1 (en) * 2006-07-24 2008-01-24 Nokia Corporation Cover antennas
US20090160712A1 (en) * 2007-12-21 2009-06-25 Nokia Corporation Apparatus and method
US20100123633A1 (en) * 2008-11-15 2010-05-20 Nokia Corporation Apparatus and method of providing an apparatus
WO2011050845A1 (en) * 2009-10-29 2011-05-05 Laird Technologies Ab A metal cover for a radio communication device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE523293C2 (en) * 1999-11-03 2004-04-06 Ericsson Telefon Ab L M Multiband Antenna
US6670925B2 (en) * 2001-06-01 2003-12-30 Matsushita Electric Industrial Co., Ltd. Inverted F-type antenna apparatus and portable radio communication apparatus provided with the inverted F-type antenna apparatus
US6552686B2 (en) * 2001-09-14 2003-04-22 Nokia Corporation Internal multi-band antenna with improved radiation efficiency
FI121518B (en) * 2003-10-09 2010-12-15 Pulse Finland Oy Shell design for a radio
CN1874169B (en) * 2005-05-31 2011-04-13 启碁科技股份有限公司 Mobile communication device
CN101385196B (en) * 2006-02-19 2012-07-25 日本写真印刷株式会社 Feeding structure of housing with antenna
CN202058850U (en) * 2011-05-12 2011-11-30 泰科电子(上海)有限公司 Antenna component and mobile terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080018541A1 (en) * 2006-07-24 2008-01-24 Nokia Corporation Cover antennas
US20090160712A1 (en) * 2007-12-21 2009-06-25 Nokia Corporation Apparatus and method
US20100123633A1 (en) * 2008-11-15 2010-05-20 Nokia Corporation Apparatus and method of providing an apparatus
WO2011050845A1 (en) * 2009-10-29 2011-05-05 Laird Technologies Ab A metal cover for a radio communication device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9768492B2 (en) 2011-04-14 2017-09-19 Samsung Electronics Co., Ltd. Antenna apparatus for portable terminal
WO2014119897A1 (en) * 2013-01-30 2014-08-07 Samsung Electronics Co., Ltd. Antenna device for portable terminal
US10673126B2 (en) 2013-01-30 2020-06-02 Samsung Electronics Co., Ltd. Antenna device for portable terminal
US9373883B2 (en) 2013-01-30 2016-06-21 Samsung Electronics Co., Ltd. Antenna device for portable terminal
US10211515B2 (en) 2013-01-30 2019-02-19 Samsung Electronics Co., Ltd. Antenna device for portable terminal
WO2014207292A1 (en) * 2013-06-28 2014-12-31 Nokia Corporation Method and apparatus for an antenna
US9825655B2 (en) 2013-06-28 2017-11-21 Nokia Technologies Oy Method and apparatus for an antenna
EP2940790A1 (en) * 2014-04-28 2015-11-04 King Slide Technology Co., Ltd. Communication device antenna
US9853348B2 (en) 2014-10-08 2017-12-26 Samsung Electronics Co., Ltd. Electronic device and antenna device thereof
US10587032B2 (en) 2014-10-08 2020-03-10 Samsung Electronics Co., Ltd. Electronic device and antenna device thereof
EP3007268A1 (en) * 2014-10-08 2016-04-13 Samsung Electronics Co., Ltd. Electronic device and antenna device thereof
CN106410428A (en) * 2015-07-28 2017-02-15 三星电子株式会社 Antenna device and electronic device including same
US11189910B2 (en) 2016-02-19 2021-11-30 Hewlett-Packard Development Company, L.P. Antenna and cap
US10498014B2 (en) 2016-02-19 2019-12-03 Hewlett-Packard Development Company, L.P. Antenna and cap
US11424535B2 (en) 2017-11-24 2022-08-23 Samsung Electronics Co., Ltd. Electronic device for including antenna array
CN109037911A (en) * 2018-08-01 2018-12-18 普联技术有限公司 A kind of antenna assembly and mobile terminal
CN109037911B (en) * 2018-08-01 2024-04-02 成都市联洲国际技术有限公司 Antenna device and mobile terminal
CN109066057A (en) * 2018-09-28 2018-12-21 深圳市信维通信股份有限公司 One kind is based on metal edge frame three-in-one antenna under small headroom
CN109066057B (en) * 2018-09-28 2023-12-19 深圳市信维通信股份有限公司 Three-in-one antenna based on metal frame under small clearance
KR20210080049A (en) * 2019-12-20 2021-06-30 삼성전자주식회사 Display apparatus
US11652275B2 (en) 2019-12-20 2023-05-16 Samsung Electronics Co., Ltd. Display apparatus
WO2021125881A1 (en) * 2019-12-20 2021-06-24 Samsung Electronics Co., Ltd. Display apparatus
KR102655173B1 (en) * 2019-12-20 2024-04-08 삼성전자주식회사 Display apparatus

Also Published As

Publication number Publication date
TW201251195A (en) 2012-12-16
CN102780065A (en) 2012-11-14
TWI607600B (en) 2017-12-01
CN102780065B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
WO2012153282A1 (en) Antenna assembly and mobile terminal
Dong et al. A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications
US9379433B2 (en) Multiple-input multiple-output (MIMO) antennas with multi-band wave traps
US20150244063A1 (en) Apparatus for wireless communication
KR101293660B1 (en) MIMO/diversity antenna with high isolation
US8952855B2 (en) Wireless device capable of multiband MIMO operation
Ban et al. Decoupled closely spaced heptaband antenna array for WWAN/LTE smartphone applications
CN202058850U (en) Antenna component and mobile terminal
US9306282B2 (en) Antenna arrangement
US7821470B2 (en) Antenna arrangement
US9343806B2 (en) Antennas integrated in shield can assembly
JP2007533193A (en) Planar antenna assembly with two MEMS switch switching PIFAs
CN103904417A (en) Mobile device
US20110128190A1 (en) Wireless communication terminal with a split multi-band antenna having a single rf feed node
CN102832441B (en) The antenna assembly of a kind of mobile terminal and mobile terminal
US20110206097A1 (en) Terminals and antenna systems with a primary radiator line capacitively excited by a secondary radiator line
EP2375488B1 (en) Planar antenna and handheld device
US8378899B2 (en) Wireless communication terminal with a multi-band antenna that extends between side surfaces thereof
CN109509961B (en) Mobile electronic device
US20120142398A1 (en) Wireless communication module and gsm multiband wireless communication module
US10784592B2 (en) Isolated ground for wireless device antenna
KR100693309B1 (en) Internal Antenna of Multi-Band
EP2736119A1 (en) Printed wide band monopole antenna module
US20130099978A1 (en) Internal printed antenna
CN113131181B (en) Terminal Equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12724731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12724731

Country of ref document: EP

Kind code of ref document: A1