WO2012151960A1 - 一种控制信令的传输方法及*** - Google Patents

一种控制信令的传输方法及*** Download PDF

Info

Publication number
WO2012151960A1
WO2012151960A1 PCT/CN2011/083052 CN2011083052W WO2012151960A1 WO 2012151960 A1 WO2012151960 A1 WO 2012151960A1 CN 2011083052 W CN2011083052 W CN 2011083052W WO 2012151960 A1 WO2012151960 A1 WO 2012151960A1
Authority
WO
WIPO (PCT)
Prior art keywords
control signaling
decoding
sent
received
signaling
Prior art date
Application number
PCT/CN2011/083052
Other languages
English (en)
French (fr)
Inventor
李卫敏
刘锟
鲁照华
宁迪浩
郁光辉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012151960A1 publication Critical patent/WO2012151960A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to an Orthogonal Frequency Division Multiplexing (OFDM) technology, and more particularly to a transmission method and system for control signaling.
  • OFDM Orthogonal Frequency Division Multiplexing
  • IP Internet Protocol
  • the cellular mobile communication system is mainly designed for the traditional telecommunication service with high-speed mobile and seamless handover, when it carries the large-flow and low-speed IP data packet service, there will be problems of low efficiency and high cost, so There is a need to provide a specialized solution for nomadic/local wireless data access scenarios.
  • the existing solutions for data service transmission suitable for nomadic/local wireless data access scenarios include: 802.11 series of standards of IEEE, Institute of Electrical and Electronics Engineers and next-generation ultra-high-speed throughput ( NUHT, Next Ultra-High Throughout) standard.
  • NUHT Next Ultra-High Throughout
  • the NUHT standard uses OFDM technology.
  • the frame structure of Time Division Duplexing (TDD) is configured, and the basic parameters of the OFDM system can be seen in Table 1.
  • an OFDM symbol includes 256 subcarriers in the frequency domain, wherein the number of data subcarriers is 224, the number of phase tracking pilot subcarriers is 6, and the number of virtual subcarriers is 26
  • the subcarriers may also be referred to as fast Fourier transform (FFT) samples
  • the virtual subcarriers may also be referred to as guard subcarriers.
  • FIG. 1 is a schematic diagram of a basic frame structure of an OFDM system. As shown in FIG. 1, a basic frame of an OFDM system is mainly transmitted by a preamble sequence, a system information channel (SICH, System Information CHannel), and a control channel (CCH, Control CHannel).
  • SICH system information channel
  • CCH Control CHannel
  • the CCH transmitted information uses a modulation and coding scheme of QPSK 1/2 (Quarature Phase Shift Keying 1/2) instead of space-time coding.
  • the information transmitted by the CCH is control signaling, including: multiple unicast and broadcast control signaling.
  • the definitions of the uplink and downlink unicast control signaling fields can be found in Table 2.
  • MU-MIMO spatial stream start bit
  • 3 ⁇ 4 ⁇ 5 ⁇ , request BFM feedback index, domain value 0 ⁇ 7
  • M1 ⁇ 2 GI, frequency domain demodulation pilot pattern 2
  • M3 ⁇ 4 IG
  • frequency domain demodulation pilot pattern 3 ⁇ 1 ⁇ 2
  • BitMap indicates CQI, CSI,
  • b 56 ⁇ can be calculated according to formula (1):
  • the terminal needs to decode the unicast and broadcast scheduling signaling sent by the base station on the CCH, and generate a 16-bit CRC check code according to the decoded data, and generate a to-be-checked according to formula (1).
  • Data [ 6 7 '' ⁇ ] then compare the decoded data [ 6 7... ] and data to be verified "A", if the two are consistent, the signaling is considered to be signaling sent to the terminal, otherwise, the signaling is considered not to be sent to the terminal.
  • the terminal in order to obtain all control signaling sent to itself in the CCH, the terminal needs to decode all control signaling, and then compare each signaling according to the foregoing method, whether it is signaling sent to itself, and thus, significantly increase the processing delay of the terminal; in addition, it also increases the power consumption of the terminal, thereby reducing the standby time of the terminal.
  • the main object of the present invention is to provide a transmission method and system for control signaling, which can effectively improve the processing speed of the terminal.
  • the present invention provides a method for transmitting control signaling, the method comprising:
  • the base station allocates continuous time-frequency resources for two or more control signalings sent to the same terminal, and sends the control signaling after allocating the time-frequency domain resources.
  • the base station allocates consecutive time-frequency resources for two or more control signalings that are sent to the same terminal, and is:
  • the two or more control signalings are allocated in two or more consecutive time domain OFDM symbols, as follows:
  • the two or more control signalings are allocated to consecutive OFDM symbols in the time domain according to the first frequency domain resource and the time domain resource, and the time domain is allocated according to the OFDM symbol index from small to large.
  • the method when allocating time-frequency resources, the method further includes: A time-frequency resource of the same size is allocated for each of the two or more control signalings.
  • the method before the sending the control signaling after the time-frequency domain resource is allocated, the method further includes:
  • the modulation and coding mode adopted by the control signaling is configured by the system by default.
  • the two or more control signalings include: broadcast control signaling, and/or multicast control signaling, and/or unicast control signaling.
  • each of the control signaling includes: continuing to decode indication information; the continuation decoding indication information is used to indicate whether the terminal continues to decode the control signaling where the indication information is located, and whether there is still control signaling sent to the terminal .
  • control signaling after the time-frequency resource is allocated is sent: the control signaling after the time-frequency resource is allocated is sent by using the CCH.
  • control signaling after the time-frequency domain resource is allocated is sent, and when the two or more pieces of control information include: broadcast control signaling, multicast control signaling, and unicast control signaling,
  • the method further includes:
  • the base station first sends broadcast control signaling, then sends multicast control signaling, and finally sends unicast control signaling.
  • the invention further provides a method for receiving control signaling, the method comprising:
  • the terminal After receiving the control signaling, the terminal decodes the control signaling, and learns the control signaling sent to itself;
  • the control signaling sent to itself is continuously distributed in a time-frequency domain.
  • control signaling includes: broadcast control signaling, and/or multicast control signaling, and/or unicast control signaling.
  • the decoding the control signaling is:
  • the received control signaling is decoded according to the pre-set principle.
  • the decoding of the received control signaling according to a preset principle is:
  • the terminal When the received control signaling does not include the continuation of the decoding indication information, the terminal attempts to decode the unicast control signaling sent by the first one of the received control signaling to itself, if the received control signaling does not include the first A unicast control signaling sent to itself is considered to complete the decoding of the received control signaling, and if the first unicast control signaling sent to itself is successfully decoded, the subsequent continuous distribution is continued. Unicast control signaling, until it is determined that the decoded continuous distributed unicast control signaling is not sent to itself, stopping decoding of the remaining control signaling in the received control signaling, and completing the said Decoding of received control signaling;
  • the terminal attempts to decode the first one of the received control signaling and sends the unicast control signaling to itself, if the received control signaling does not include the first If the unicast control signaling is sent to itself, it is considered that the decoding of the received control signaling is completed; if the first unicast control signaling sent to itself is successfully decoded, by continuing to decode the indication information, Obtaining whether the unicast control signaling that is subsequently continuously distributed is also the unicast control signaling sent to itself, and if it is determined to be the unicast control signaling sent to itself, continuing to decode the subsequent continuously distributed unicast control signaling, If it is determined that the unicast control signaling is not sent to itself, the decoding of the remaining control signaling in the received control signaling is stopped, and the decoding of the received control signaling is considered complete.
  • the received control signaling when the received control signaling includes: broadcast control signaling, and/or multicast control signaling, the received control signaling is decoded according to a preset principle, as follows: When the received control signaling does not include continuing to decode the indication information, the terminal decodes the first broadcast control signaling in the received control signaling, and continues to decode the subsequent continuous distribution after successfully decoding the first broadcast control signaling. Broadcast control signaling until it is determined that decoding of the broadcast control signaling in the received control signaling is completed;
  • the terminal decodes the received control signal.
  • the first broadcast control signaling in the command and after successfully decoding the first broadcast control signaling, by continuing to decode the indication information, it is learned whether the subsequent continuously distributed control signaling is still broadcast control signaling, if it is determined still For broadcasting control signaling, continuing to decode the subsequent continuously distributed broadcast control signaling, and if it is determined that it is not broadcast control signaling, it is considered to complete decoding of the broadcast control signaling in the received control signaling; /or,
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues. Decoding the subsequent continuously distributed multicast control signaling, and after determining that the decoding of the multicast control signaling is completed, stopping decoding the remaining control signaling in the received control signaling, and determining that the received control signaling is completed Decoding
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues Decoding the indication information, and knowing whether the subsequently continuously distributed control signaling is still the multicast control signaling, and if it is determined that the multicast control signaling is still, continuing to decode the subsequent continuously distributed multicast control signaling, if it is determined that it is not a group If the control signaling is broadcasted, the decoding of the remaining control signaling in the received control signaling is stopped, and the decoding of the received control signaling is considered complete.
  • the received control signaling includes: multicast control signaling, unicast control signaling, and/or broadcast control signaling
  • the received control signaling is performed according to a preset principle.
  • Decode for:
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues. Decoding the subsequent continuously distributed multicast control signaling, and after determining that the decoding of the multicast control signaling is completed, stopping decoding the remaining control signaling in the received control signaling, and determining that the received control signaling is completed Or decoding; or, after determining that the decoding of the multicast control signaling is completed, the terminal attempts to decode the first one of the received control signaling and sends the unicast control signaling to itself, if received If the control signaling does not include the first unicast control signaling sent to itself, it is considered that the decoding of the received control signaling is completed, and if the first unicast control signaling sent to itself is successfully decoded, And continuing to decode the subsequent continuously distributed unicast control signaling until the decoding of the continuously distributed unicast control signaling is not sent to itself, and then
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues Decoding the indication information, and knowing whether the subsequently continuously distributed control signaling is still the multicast control signaling, and if it is determined that the multicast control signaling is still, continuing to decode the subsequent continuously distributed multicast control signaling, if it is determined that it is not a group If the control signaling is broadcasted, the decoding of the remaining control signaling in the received control signaling is stopped, and the decoding of the received control signaling is considered to be completed; or, after determining that it is not the multicast control signaling, the terminal Trying to decode the first unicast control signaling sent to itself in the received control signaling.
  • the received control signaling does not include the first unicast control signaling sent to itself, it is considered to be completed. Decoding the received control signaling; if the first unicast control signaling sent to itself is successfully decoded, continuing to decode the indication information to obtain a subsequent continuous distribution of unicast Whether the signaling is also the unicast control signaling sent to itself, if it is determined to be the unicast control signaling sent to itself, continue to decode the subsequent continuously distributed unicast control signaling, if it is determined not to be sent to itself.
  • the unicast control signaling stops decoding the remaining control signaling in the received control signaling, and considers that decoding of the received control signaling is completed; and/or, when the received control signaling is not
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, continues to decode the subsequent continuously distributed broadcast control signaling. Until it is determined that the decoding of the broadcast control signaling in the received control
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, After continuing to decode the indication information, it is learned whether the subsequently continuously distributed control signaling is still broadcast control signaling, and if it is determined to be still the broadcast control signaling, continue to decode the subsequent continuously distributed broadcast control signaling, if it is determined that it is not broadcast control Signaling, it is considered that decoding of the broadcast control signaling in the received control signaling is completed.
  • the present invention also provides a transmitting device for controlling signaling, the device comprising: an allocating module and a sending module;
  • An allocation module configured to allocate consecutive time-frequency resources for two or more control signalings sent to the same terminal, and send control signaling after allocating time-frequency resources to the sending module;
  • the sending module is configured to send the control signaling after receiving the control signaling sent by the allocation module.
  • the allocation module is further configured to allocate the same-sized time-frequency resources for each of the two or more control signalings when the time-frequency resources in the time-frequency domain are allocated.
  • the apparatus further includes: a modulation and coding module, configured to: after receiving the control signaling sent by the allocation module, modulate and encode the control signaling by using a standard default configuration modulation coding manner, and modulate and encode the control signaling Control signaling is sent to the sending module;
  • the allocation module is further configured to send control signaling after allocating time-frequency resources to the modulation and coding module;
  • the sending module is further configured to: after receiving the control signaling sent by the modulation and coding module, send the control signaling.
  • the present invention further provides a receiving apparatus for control signaling, the apparatus comprising: a decoding module, configured to: after receiving the control signaling, decode the control signaling, and obtain control signaling sent to itself; The control signaling sent to itself is continuously distributed in the time-frequency domain.
  • a decoding module configured to: after receiving the control signaling, decode the control signaling, and obtain control signaling sent to itself; The control signaling sent to itself is continuously distributed in the time-frequency domain.
  • the device further includes: a receiving module, configured to receive control signaling, and send the received control signaling to the decoding module;
  • the decoding module is further configured to receive control signaling sent by the receiving module.
  • the present invention further provides a transmission system for control signaling, the system comprising: a transmitting device for controlling signaling and a receiving device for controlling signaling; wherein the transmitting device for controlling signaling further comprises: an allocating module and a transmitting module
  • the receiving device of the control signaling further includes: a decoding module;
  • An allocation module configured to allocate consecutive resources for two or more control signalings sent to the same terminal, and send control signaling after allocating time-frequency resources to the sending module;
  • a sending module configured to send the control signaling after receiving the control signaling sent by the allocation module
  • a decoding module configured to: after receiving the control signaling, decode the control signaling, and obtain control signaling sent to itself;
  • the control signaling sent to itself is continuously distributed in a time-frequency domain.
  • the allocating module is configured to allocate the same-sized time-frequency resource for each control signaling in the two or more control signalings when allocating time-frequency resources in the time-frequency domain; and / or,
  • the transmitting device of the control signaling further includes a modulation and coding module, configured to: after receiving the control signaling sent by the allocation module, modulate and encode the control signaling by using a standard default configuration, and modulate and encode the control signaling. Control signaling is sent to the sending module;
  • the allocation module is further configured to send control signaling after allocating time-frequency resources to the modulation and coding module;
  • the sending module is further configured to: after receiving the control signaling sent by the modulation and coding module, send the control signaling.
  • the receiving device of the control signaling further includes: a receiving module, configured to receive control signaling, and send the received control signaling to the decoding module;
  • the decoding module is further configured to receive control signaling sent by the receiving module.
  • the method and system for transmitting control signaling provided by the present invention, the base station allocates continuous time-frequency resources for two or more control signalings sent to the same terminal, and the base station sends the control signaling after allocating the time-frequency domain resources.
  • the terminal decodes the control signaling, and learns the control signaling sent to itself; where the control signaling sent to itself is continuously distributed in the time-frequency domain, so that the terminal can effectively improve
  • the terminal processes the decoding speed of the received control signaling.
  • the technical solution provided by the present invention reduces the power consumption of the terminal, thereby greatly reducing the power consumption of the terminal, thereby prolonging the standby time of the terminal.
  • 1 is a schematic diagram of a basic frame structure of an OFDM system
  • FIG. 2 is a schematic flowchart of a method for transmitting control signaling according to the present invention
  • FIG. 3 is a schematic structural diagram of control signaling of a CCH transmission according to Embodiment 1;
  • FIG. 4 is a schematic structural diagram of control signaling of a CCH transmission according to Embodiment 2;
  • FIG. 5 is a schematic structural diagram of control signaling of a CCH transmission in Embodiment 3.
  • FIG. 6 is a schematic structural diagram of control signaling of a CCH transmission in Embodiment 4.
  • FIG. 7 is a schematic structural diagram of control signaling of a CCH transmission according to Embodiment 5;
  • FIG. 8 is a schematic structural diagram of a device for transmitting control signaling according to the present invention.
  • FIG. 9 is a schematic structural diagram of a receiving apparatus for controlling signaling according to the present invention. detailed description
  • the method for transmitting control signaling of the present invention includes the following steps:
  • Step 201 The base station allocates continuous time-frequency resources for two or more control signalings sent to the same terminal.
  • the base station allocates the two or more control signalings in the same OFDM symbol, and the frequency domain resources occupied by the two or more control signalings are continuously distributed, and/or, the two are Upper control signaling is allocated in more than two consecutive time domain OFDM symbols;
  • the two control signalings may be allocated to two or more according to the first frequency domain resource and the time domain resource.
  • the time-frequency resources of the contiguous OFDM symbols are allocated, and the time domain is allocated according to the OFDM symbol index from small to large.
  • the OFDM symbols may be allocated to more than two consecutive time domain OFDM symbols according to the first time domain resource and the frequency domain resource.
  • the terminal has previously learned the allocation mode adopted by the base station; the base station can learn OFDM by using the prior art.
  • the method may further include:
  • a time-frequency resource of the same size is allocated for each of the two or more control signalings, so that the terminal can know the location of each control signaling received.
  • the method may further include:
  • the base station modulates and encodes the control signaling by using a standard default configuration modulation coding mode.
  • the modulation and coding mode adopted by the control signaling is configured by the system by default; wherein the modulation and coding mode used by the control signaling may be carried in the information transmitted by the SICH, and sent to the terminal, where the terminal can learn the control signal.
  • the modulation coding method adopted is adopted; the specific processing for performing demodulation coding can adopt the prior art.
  • the control signaling may specifically include: broadcast control signaling, and/or multicast control signaling, and/or unicast control signaling; where the broadcast control signaling refers to: all terminals in the OFDM system Broadcast control signaling, the multicast control signaling refers to: control signaling sent to all terminals in the same terminal group in the OFDM system, the unicast control signaling refers to: control sent to a terminal Signaling.
  • the control signaling may include continuing to decode the indication information, where the continuation decoding indication information is used to indicate to the terminal whether to continue decoding the control signaling where the indication information is located, and whether there is still control signaling sent to the terminal. In actual application, continue to decode the indication information and adopt lbit drawing.
  • the decoding instruction information is " ⁇ "
  • the control signaling indicating that the continuation of the decoding indication information is located is followed by control signaling sent to the specific terminal; when the continuation of the decoding indication information is "0”
  • the control signaling in which the indication information is continued is not sent to the control signaling of the specific terminal, where the specific terminal refers to the terminal to which the control signaling including the continuation decoding indication information needs to be sent.
  • Step 202 Send the control signaling after allocating time-frequency resources
  • control signaling after the time-frequency resource is allocated is sent through the CCH.
  • the method may further include:
  • the base station first sends broadcast control signaling, then sends multicast control signaling, and finally sends unicast control signaling.
  • the present invention also provides a method for receiving control signaling, the basic idea of which is: after receiving the control signaling, the terminal decodes the control signaling, and learns the control signaling sent to itself; wherein, the sending is sent to itself
  • the control signaling is continuously distributed in the time-frequency domain.
  • the terminal decodes the received control signaling in the received control signaling according to a preset principle
  • the method decodes the received control signaling in the received control signaling, specifically:
  • the terminal When the received control signaling does not include the continuation of the decoding indication information, the terminal attempts to decode the unicast control signaling sent by the first one of the received control signaling to itself, if the received control signaling does not include The first unicast control signaling sent to itself is considered to complete the decoding of the received control signaling. If the first unicast control signaling sent to itself is successfully decoded, the decoding continues to be continued.
  • the terminal attempts to decode the unicast control signaling sent by the first one of the received control signaling to itself, if the received control signaling does not include the first A unicast control signaling sent to itself is considered to complete decoding of the received control signaling; if the first unicast control signaling sent to itself is successfully decoded, the decoding indication information is continued.
  • control signaling includes: broadcast control signaling, and/or multicast control signaling
  • decoding according to a preset principle, decoding received control signaling in the received control signaling, specifically For:
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, continues to decode the subsequent Continuously distributed broadcast control signaling until it is determined that decoding of the broadcast control signaling in the received control signaling is completed;
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, continues to decode the indication.
  • Information whether the subsequent continuously distributed control signaling is still broadcast control signaling, and if it is determined to be still broadcast control signaling, continuing to decode the subsequent continuously distributed broadcast control signaling, if it is determined that it is not broadcast control signaling, Determining that decoding of the broadcast control signaling in the received control signaling is completed; and/or,
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues. Decoding subsequent successively distributed multicast control signaling until it is determined that the multicast control signaling is decoded After the decoding of the remaining control signaling in the received control signaling is stopped, it is considered that the decoding of the received control signaling is completed;
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues Decoding the indication information, and knowing whether the subsequently continuously distributed control signaling is still the multicast control signaling, and if it is determined that the multicast control signaling is still, continuing to decode the subsequent continuously distributed multicast control signaling, if it is determined that it is not a group If the control signaling is broadcasted, the decoding of the remaining control signaling in the received control signaling is stopped, and the decoding of the received control signaling is considered complete.
  • the received control signaling includes: multicast control signaling, unicast control signaling, and/or broadcast control signaling
  • the received control signaling is decoded according to a preset principle, specifically :
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues. Decoding the subsequent continuously distributed multicast control signaling, and after determining that the decoding of the multicast control signaling is completed, stopping decoding the remaining control signaling in the received control signaling, and determining that the received control signaling is completed Or decoding; or, after determining that the decoding of the multicast control signaling is completed, the terminal attempts to decode the first one of the received control signaling and sends the unicast control signaling to itself, if the received control signaling does not include The first unicast control signaling sent to itself is considered to complete the decoding of the received control signaling.
  • the decoding continues to be continued.
  • the distributed unicast control signaling until it is determined that the decoded continuously distributed unicast control signaling is not sent to itself, stopping the solution of the remaining control signaling in the received control signaling , That the decoding of the control signaling is received;
  • the terminal decodes the first multicast control signaling in the received control signaling, and after successfully decoding the first multicast control signaling, continues Decoding the indication information, and knowing whether the subsequent continuously distributed control signaling is still a multicast control signal. If the determination is still the multicast control signaling, continue to decode the subsequent continuously distributed multicast control signaling, and if it is determined not to be the multicast control signaling, stop the remaining control signaling in the received control signaling.
  • the decoding of the command is considered to complete the decoding of the received control signaling; or, after determining that it is not the multicast control signaling, the terminal attempts to decode the first one of the received control signaling and sends it to the unicast itself.
  • Control signaling if the received control signaling does not include the first unicast control signaling sent to itself, it is considered that the decoding of the received control signaling is completed; if the first transmission is successfully decoded If the unicast control signaling is sent to itself, it is determined whether the unicast control signaling that is continuously distributed is also the unicast control signaling sent to itself, if it is determined to be the unicast control signaling sent to itself. And continuing to decode the subsequent continuously distributed unicast control signaling, and if it is determined that the unicast control signaling is not sent to itself, stopping the remaining control in the received control signaling Decoding order, that the decoding of the received control signaling; a and / or,
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, continues to decode the subsequent Continuously distributed broadcast control signaling until it is determined that decoding of the broadcast control signaling in the received control signaling is completed;
  • the terminal decodes the first broadcast control signaling in the received control signaling, and after successfully decoding the first broadcast control signaling, continues to decode the indication.
  • Information whether the subsequent continuously distributed control signaling is still broadcast control signaling, and if it is determined to be still broadcast control signaling, continuing to decode the subsequent continuously distributed broadcast control signaling, if it is determined that it is not broadcast control signaling, Decoding of the broadcast control signaling in the received control signaling is considered complete.
  • the received control signaling includes: broadcast control signaling, multicast control signaling, and unicast control signaling, decoding the broadcast control signaling, decoding the multicast control signaling, and finally decoding the unicast control Signaling; wherein, the terminal is in the terminal group, if the control signaling sent to the terminal is In the multicast control signaling, after the terminal completes decoding the multicast control signaling, the terminal stops decoding the remaining control signaling in the received control signaling, and considers that decoding of the received control signaling is completed.
  • the terminal needs to continue to decode the unicast control signaling; here, the terminal has previously learned to send to Whether its own control signaling is in multicast control signaling or partially in multicast control signaling.
  • the specific processing process for performing decoding may adopt the prior art; the terminal may know, according to the prior art, which control signaling is broadcast control signaling, which control signaling is multicast control signaling, and which control signaling is unicast control. Signaling.
  • the application scenario of this embodiment is as follows:
  • the communication system adopts OFDM technology, and the frame structure of the TDD is configured.
  • the basic parameters of the communication system are as shown in Table 1.
  • One OFDM symbol includes 256 subcarriers in the frequency domain, where the data sub The number of carriers is 224, the number of phase tracking pilot subcarriers is six, and the number of virtual subcarriers is 26.
  • the subcarriers may also be referred to as FFT samples, and the virtual subcarriers are also It can be called a protection subcarrier.
  • the basic frame structure is shown in Figure 1. It consists mainly of the preamble sequence, the information transmitted by the SICH, the control signaling of the CCH transmission, and the information transmitted by the TCH.
  • the terminal in this embodiment includes: terminal 1 and terminal 2, and all control information is unicast control signaling.
  • the terminal 1 and the terminal 2 are terminals that have been connected to the system.
  • control signaling of the CCH transmission includes six control signalings, namely, control signaling 1, control signaling 2, and control signaling.
  • Control signalling 4 control signaling 5, and control signaling 6; wherein each control signaling occupies the same video resource size, and each control signaling uses the same modulation and coding mode, and is sent to the same by the standard default configuration.
  • Multiple control signaling of a terminal occupies the same OFDM symbol or occupied Multiple OFDM symbols consecutive on the domain.
  • control signaling 1 and the control signaling 2 sent to the terminal 1 occupy consecutive frequency resources in the OFDM symbol N, and transmit control signaling 3, control signaling 4, control signaling 5, and control signaling to the terminal 2.
  • 6 occupies two consecutive OFDM symbols, namely: OFDM symbol N and OFDM symbol N+1, and control signaling 4, control signaling 5, and control signaling 6 occupy consecutive frequency resources in OFDM symbol N+1.
  • the base station After the above processing, the base station sends control signaling to the terminal through the CCH.
  • the terminal 1 After receiving the control signaling sent by the base station through the CCH, the terminal 1 decodes the control signaling 1 and learns that the control signaling 1 is the signaling sent to itself, and then continues to decode the subsequent control signaling 2, and learns that the control signaling 2 is sent to The self-signaling, and then continue to decode the subsequent control signaling 3, knowing that the control signaling 3 is not the signaling sent to itself, and then the terminal 1 no longer decodes the other control signaling, thereby completing the control signal for the control channel transmission. Decoding. Since the terminal 1 no longer decodes other control signals, the processing speed of the terminal 1 is improved, and the power consumption is reduced, thereby increasing the standby time.
  • the terminal 2 After receiving the control signaling sent by the base station through the CCH, the terminal 2 decodes the control signaling 1 and learns that the control signaling 1 is not the signaling sent to itself, and continues to decode the subsequent control signaling 2, and learns that the control signaling 2 is not sent to itself. The signaling continues to decode the subsequent control signaling 3, and learns that the control signaling 3 is the signaling sent to itself, and then continues to decode the subsequent control signaling 4, and learns that the control signaling 4 is the signaling sent to itself, and then continues to decode.
  • Subsequent control signaling 5 knowing that the control signaling 5 is the signaling sent to itself, and then continuing to decode the subsequent control signaling 6, and knowing that the control signaling 6 is the signaling sent to itself, since there is no subsequent control signaling, The terminal 2 completes the decoding of the control signaling for the control channel transmission.
  • the application scenario of this embodiment is as follows:
  • the communication system adopts OFDM technology, and the frame structure of the TDD is configured.
  • the basic parameters of the communication system are as shown in Table 1.
  • One OFDM symbol includes 256 subcarriers in the frequency domain, where the data sub The number of carriers is 224, and the phase tracking pilot subcarrier The number of waves is six, and the number of virtual subcarriers is 26.
  • the subcarriers may also be referred to as FFT samples
  • the virtual subcarriers may also be referred to as guard subcarriers.
  • the basic frame structure is shown in FIG. 1 and is mainly composed of a preamble sequence, information transmitted by the SICH, control signaling of CCH transmission, and information transmitted by the TCH.
  • the terminal in this embodiment includes: a terminal 1 and a terminal 2, and the control information includes: a broadcast control signal, a multicast control signaling, and a unicast control signaling.
  • the terminal 1 and the terminal 2 are terminals that have been connected to the system, and are in one terminal group.
  • control signaling of the CCH transmission includes six control signalings, namely, control signaling 1, control signaling 2, and control signaling. And control signaling 4, control signaling 5, and control signaling 6; wherein, control signaling 1 is broadcast control signaling, control signaling 2 is multicast control signaling, and video resource size occupied by each control signaling Similarly, each control signaling uses the same modulation and coding mode. By default, the multiple control signalings sent to the same terminal occupy the same OFDM symbol or occupy multiple OFDM symbols in the time domain.
  • control signaling 3 and the control signaling 4 sent to the terminal 1 occupy two consecutive OFDM symbols, namely: OFDM symbol N and OFDM symbol N+1, control signaling 5 sent to the terminal 2, and control signaling. 6 occupies consecutive frequency resources in the OFDM symbol N+1.
  • Control signaling 1 and control signaling 2 occupy consecutive frequency resources in OFDM symbol N.
  • the base station sends control signaling to the terminal through the CCH, and when transmitting, first sends broadcast control signaling, then sends multicast control signaling, and finally sends unicast control signaling.
  • the terminal 1 After receiving the control signaling sent by the base station through the CCH, the terminal 1 first decodes the broadcast control signaling, that is, the control signaling 1, and then decodes the multicast control signaling, that is, the control signaling 2, and then the decoding control signaling 3, Obtaining that the control signaling 3 is the signaling sent to itself, and then continuing to decode the subsequent control signaling 4, knowing that the control signaling 4 is the signaling sent to itself, and then continuing to decode the subsequent control signaling 5, knowing that the control signaling 5 is not The signaling sent to itself, after which terminal 1 no longer decodes other control signaling, thereby completing the decoding of the control signaling for control channel transmission. Since terminal 1 is no longer correct The other control signaling is decoded, thus improving the processing speed of the terminal 1, and at the same time, reducing the power consumption, thereby increasing the standby time.
  • the terminal 2 After receiving the control signaling sent by the base station through the CCH, the terminal 2 first decodes the broadcast control signaling, that is, the control signaling 1, and then decodes the multicast control signaling, that is, the control signaling 2, and then the control signaling 3, It is known that the control signaling 3 is not the signaling sent to itself, continues to decode the subsequent control signaling 4, and learns that the control signaling 4 is not the signaling sent to itself, and then continues to decode the subsequent control signaling 5, and learns that the control signaling 5 is sent. For the signaling of itself, continue to decode the subsequent control signaling 6, and learn that the control signaling 6 is the signaling sent to itself. Since there is no subsequent control signaling, the terminal 2 completes the control signaling for the control channel transmission. decoding.
  • the application scenario of this embodiment is as follows:
  • the communication system adopts OFDM technology, and the frame structure of the TDD is configured.
  • the basic parameters of the communication system are as shown in Table 1.
  • One OFDM symbol includes 256 subcarriers in the frequency domain, where the data sub The number of carriers is 224, the number of phase tracking pilot subcarriers is six, and the number of virtual subcarriers is 26.
  • the subcarriers may also be referred to as FFT samples, and the virtual subcarriers are also It can be called a protection subcarrier.
  • the basic frame structure is shown in Figure 1. It consists mainly of the preamble sequence, the information transmitted by the SICH, the control signaling of the CCH transmission, and the information transmitted by the TCH.
  • the terminal in this embodiment includes: terminal 1 and terminal 2, and all control information is unicast control information.
  • the terminal 1 and the terminal 2 are terminals that have been connected to the system.
  • control signaling of the CCH transmission includes six control signalings, namely, control signaling 1, control signaling 2, and control signaling.
  • the signaling includes the continuation of the decoding indication information, and the multiple control signalings sent to the same terminal occupy the same OFDM symbol or occupy a plurality of consecutive OFDM symbols in the time domain.
  • control signal 1 and the control signaling 2 sent to the terminal 1 occupy consecutive frequency resources in the OFDM symbol N, and transmit control signaling 3, control signaling 4, control signaling 5, and control signaling to the terminal 2.
  • 6 occupies two consecutive OFDM symbols, namely: OFDM symbol N and OFDM symbol N+1, and control signaling 4, control signaling 5, and control signaling 6 occupy consecutive frequency resources in OFDM symbol N+1.
  • the continuation of the decoding indication information is described by using a bit, and when the continuation of the decoding indication information is “ ⁇ , the control signaling indicating that the continuation of the decoding indication information is located is followed by the control signaling sent to the specific terminal; When the decoding indication information is "0", the control signaling indicating that the continuation of the decoding indication information is not followed by the control signaling sent to the specific terminal, where the specific terminal refers to the control signal including the continuation decoding indication information. Let the terminal that needs to be sent.
  • the base station After the above processing, the base station sends control signaling to the terminal through the CCH.
  • the terminal 1 After receiving the control signaling sent by the base station through the CCH, the terminal 1 decodes the control signaling 1 and learns that the control signaling 1 is the signaling sent to itself, and learns that the continuous decoding indication information in the control signaling 1 is "1". Further, it is learned that the control signaling 2 is also the signaling sent to itself, and then continues to decode the control signaling 2, and learns that the continuation decoding indication information in the control signaling 2 is "0", and further knows that the control signaling 3 is not sent to itself. After the signaling, the terminal 1 no longer continues to decode other control signaling, thereby completing the decoding of the control signaling for the control channel transmission. Since the terminal 1 no longer decodes other control signaling, the processing speed of the terminal 1 is improved, and at the same time, the power consumption is reduced, thereby increasing the standby time.
  • the terminal 2 After receiving the control signaling sent by the base station through the CCH, the terminal 2 decodes the control signaling 1 and learns that the control signaling 1 is not the signaling sent to itself, and continues to decode the control signaling 2, and learns that the control signaling 2 is not sent to itself. Signaling, continue to decode the control signaling 3, learn that the control signaling 3 is the signaling sent to itself, and know that the continuation decoding indication information in the control signaling 3 is "1", and further know that the control signaling 4 is also sent to itself.
  • the application scenario of this embodiment is as follows:
  • the communication system adopts OFDM technology, and the frame structure of the TDD is configured.
  • the basic parameters of the communication system are as shown in Table 1.
  • One OFDM symbol includes 256 subcarriers in the frequency domain, where the data sub The number of carriers is 224, the number of phase tracking pilot subcarriers is six, and the number of virtual subcarriers is 26.
  • the subcarriers may also be referred to as FFT samples, and the virtual subcarriers are also It can be called a protection subcarrier.
  • the basic frame structure is shown in Figure 1. It consists mainly of the preamble sequence, the information transmitted by the SICH, the control signaling of the CCH transmission, and the information transmitted by the TCH.
  • the terminal in this embodiment includes: a terminal 1 and a terminal 2, and the control signaling includes: a broadcast control signal, a multicast control signaling, and a unicast control signaling.
  • the terminal 1 and the terminal 2 are terminals that have been connected to the system, and are in one terminal group.
  • control signaling of the CCH transmission includes six control signalings, namely, control signaling 1, control signaling 2, and control signaling.
  • Control signalling 4 control signaling 5, and control signaling 6; wherein each control signaling occupies the same video resource size, and each control signaling uses the same modulation and coding mode, and is configured by default, each control
  • the signaling includes the continuation of the decoding indication information, and the multiple control signalings sent to the same terminal occupy the same OFDM symbol or occupy a plurality of consecutive OFDM symbols in the time domain.
  • control signaling 3 and the control signaling 4 sent to the terminal 1 occupy two consecutive OFDM symbols, namely: OFDM symbol N and OFDM symbol N+1, and control signaling 5 sent to the terminal 2.
  • control signaling 6 occupies consecutive frequency resources in OFDM symbol N+1.
  • Control signaling 1 and control signaling 2 occupy consecutive frequency resources in OFDM symbol N.
  • the continuation of the decoding indication information is described by using a bit, and when the continuation of the decoding indication information is “ ⁇ , the control signaling indicating that the continuation of the decoding indication information is located is followed by the control signaling sent to the specific terminal; When the decoding indication information is "0", the control signaling indicating that the continuation of the decoding indication information is not followed by the control signaling sent to the specific terminal, where the specific terminal refers to the control signal including the continuation decoding indication information. Let the terminal that needs to be sent.
  • the base station After the above processing, the base station sends control signaling to the terminal through the CCH.
  • the terminal 1 After receiving the control signaling sent by the base station through the CCH, the terminal 1 first decodes the broadcast control signaling, that is, the control signaling 1, and then decodes the multicast control signaling, that is, the control signaling 2, and then the decoding control signaling 3, It is learned that the control signaling 3 is the signaling sent to itself, and knows that the continuation decoding indication information in the control signaling 3 is "1", and further knows that the control signaling 4 is also the signaling sent to itself, and then continues to decode the control signaling. 4, knowing that the continuation decoding indication information in the control signaling 4 is "0", and further knows that the control signaling 5 is not signaling sent to itself, and then the terminal 1 does not continue to decode other control signaling, thereby completing the control channel.
  • Decoding of the transmitted control signaling Since the terminal 1 no longer decodes other control signaling, the processing speed of the terminal 1 is improved, and at the same time, the power consumption is reduced, thereby increasing the standby time. Wherein, regardless of whether the continuation decoding indication information in the broadcast control signaling and the multicast control signaling is "1" or "0", the terminal 1 needs to continue decoding other control signaling.
  • the terminal 2 After receiving the control signaling sent by the base station through the CCH, the terminal 2 first decodes the broadcast control signaling, that is, the control signaling 1, and then decodes the multicast control signaling, that is, the control signaling 2, and then the control signaling 3, After learning that the control signaling 3 is not the signaling sent to itself, it continues to decode the control signaling 4, and learns that the control signaling 4 is not the signaling sent to itself, and continues to decode the control signaling 5, and learns that the control signaling 5 is sent to Self-signaling, and knowing that the continued decoding indication information in the control signaling 5 is "1", and further know that the control signaling 6 is also the signaling sent to itself, continues to decode the control signaling 6, and learns that the continuation decoding indication information in the control signaling 6 is "0", and further knows the control behind the control signaling 6.
  • the signaling is not the signaling sent to itself, and the terminal 2 does not continue to decode other control signaling, thereby completing the decoding of the control signaling for the control channel transmission.
  • the terminal 2 needs to continue decoding other control signaling.
  • the application scenario of this embodiment is as follows:
  • the communication system adopts OFDM technology, and the frame structure of the TDD is configured.
  • the basic parameters of the communication system are as shown in Table 1.
  • One OFDM symbol includes 256 subcarriers in the frequency domain, where the data sub The number of carriers is 224, the number of phase tracking pilot subcarriers is six, and the number of virtual subcarriers is 26.
  • the subcarriers may also be referred to as FFT samples, and the virtual subcarriers are also It can be called a protection subcarrier.
  • the basic frame structure is shown in Figure 1. It consists mainly of the preamble sequence, the information transmitted by the SICH, the control signaling of the CCH transmission, and the information transmitted by the TCH.
  • the terminal in this embodiment includes: a terminal 1, a terminal 2, and a terminal 3, and the control information includes: broadcast control signaling, multicast control signaling, and unicast control signaling.
  • Terminal 1 and terminal 2 are terminals that have access to the system, and terminal 3 is a terminal that is performing an access operation, and can perform decoding operations on control signaling of CCH transmission; terminal 1 is not in the terminal group, and terminal 2 is in Within the terminal group.
  • control signaling of the CCH transmission includes six control signalings, namely, control signaling 1, control signaling 2, and control signaling.
  • the signaling includes the continuation of the decoding indication information, and the multiple control signalings sent to the same terminal occupy the same OFDM symbol or occupy a plurality of consecutive OFDM symbols in the time domain. Specifically, the control signaling 5 and the control signaling 6 sent to the terminal 1 occupy the OFDM symbol N+1.
  • the contiguous frequency resource, and the control signaling 1 and the control signaling 2 occupy consecutive frequency resources in the OFDM symbol N, and the control signaling 3 and the control signaling 4 occupy two consecutive OFDM symbols, namely: OFDM symbol N and OFDM symbol N+1.
  • the continuation of the decoding indication information is described by using a bit, and when the continuation of the decoding indication information is “ ⁇ , the control signaling indicating that the continuation of the decoding indication information is located is followed by the control signaling sent to the specific terminal; When the decoding indication information is "0", the control signaling indicating that the continuation of the decoding indication information is not followed by the control signaling sent to the specific terminal, where the specific terminal refers to the control signal including the continuation decoding indication information. Let the terminal that needs to be sent.
  • the base station After the above processing, the base station sends control signaling to the terminal through the CCH.
  • the terminal 1 After receiving the control signaling sent by the base station through the CCH, the terminal 1 first decodes the broadcast control signaling, that is, the control signaling 1, and learns that the continuous decoding indication information in the control signaling 1 is "1", and further knows the control signaling 2 It is also broadcast control signaling, and continues to decode the control signaling 2, and learns that the continuation decoding indication information in the control signaling 2 is "0", and further knows that the control signaling 3 is not broadcast control signaling, thereby completing the broadcast control signaling. Decoding; the terminal 1 continues to decode the multicast control signaling, that is, the control signaling 3 and the control signaling 4.
  • the terminal 1 Since the terminal 1 is not in the terminal group, the terminal 1 needs to continue to decode the unicast control signaling, that is, the control signaling 5 and control signaling 6; the terminal 1 continues to decode the control signaling 5, knows that the control signaling 5 is the signaling sent to itself, and learns that the continuous decoding indication information in the control signaling 5 is "1", and then learns the control signal. Let 6 also send the signaling to itself, continue to decode the control signaling 6, and know that the continuation decoding indication information in the control signaling 6 is "0", and further know that the control signaling behind the control signaling 6 is not Of the own signaling, thus completing the decoding control signaling transmission of the control channel.
  • the terminal 1 needs to continue to decode the unicast control signaling, that is, the control signaling 5 and control signaling 6; the terminal 1 continues to decode the control signaling 5, knows that the control signaling 5 is the signaling sent to itself, and learns that the continuous decoding indication information in the control signaling 5 is "1
  • the terminal 2 After receiving the control signaling sent by the base station through the CCH, the terminal 2 first decodes the broadcast control signaling, that is, the control signaling 1, and learns that the continuous decoding indication information in the control signaling 1 is "1", and further knows the control signaling 2 Also broadcast control signaling, continue to decode control signaling 2, and learn about control signaling 2 Continue to decode the indication information to "0", and further know that the control signaling 3 is not the broadcast control signaling, thereby completing the decoding of the broadcast control signaling; the terminal 2 continues to decode the multicast control signaling, that is, the control signaling 3 and the control Signaling 4, since the terminal 2 is in the terminal group, the terminal 2 continues to decode the control signaling 3, and learns that the control signaling 3 is sent to the terminal group in which it is located, and learns that the continuous decoding indication information in the control signaling 3 is "1", and further know that the control signaling 4 is also sent to the terminal group in which it is located, continues to decode the control signaling 4, and
  • control signaling of all the terminals in the group is sent to the terminals in the group through the multicast control signaling, and does not need to be sent through the unicast control signaling, so the terminal 2 does not continue to decode the subsequent control signaling.
  • the terminal 3 After receiving the control signaling sent by the base station through the CCH, the terminal 3 first decodes the broadcast control signaling, that is, the control signaling 1, and learns that the continuous decoding indication information of the control signaling 1 is "1", and further knows that the control signaling 2 is also The broadcast control signaling continues to decode the control signaling 2, and learns that the continuation decoding indication information in the control signaling 2 is "0", and further knows that the control signaling 3 is not the broadcast control signaling, thereby completing the decoding of the broadcast control signaling.
  • the terminal 3 since the terminal 3 is performing the terminal accessing the system operation, only the broadcast control signaling can be decoded. Therefore, after the terminal 3 completes the decoding of the broadcast control signaling, the terminal 3 does not continue to decode other control signaling. .
  • the control signaling of the terminal 2 described in this embodiment is transmitted through the multicast control signaling.
  • the partial control signaling of the terminal 2 can also be sent through the unicast control signaling. At this time, the terminal 2 completes the multicast control. After the decoding of the signaling, it is also necessary to decode the unicast control signaling.
  • the present invention further provides a device for transmitting control signaling.
  • the device includes: an allocating module 81 and a sending module 82. For transmitting more than two control signalings to the same terminal, allocating consecutive time-frequency resources, and transmitting control signaling after allocating time-frequency resources to the sending module 82;
  • the sending module 82 is configured to: after receiving the control signaling sent by the allocating module 81, send the control signal Order issued.
  • the allocating module 81 is further configured to allocate time-frequency resources of the same size for each of the two or more control signalings when the time-frequency resources are allocated in the time-frequency domain.
  • the apparatus may further include: a modulation and coding module, configured to: after receiving the control signaling sent by the allocation module, modulate and encode the control signaling by using a standard default configuration modulation coding manner, and modulate the encoded control signal Send to the sending module 82;
  • a modulation and coding module configured to: after receiving the control signaling sent by the allocation module, modulate and encode the control signaling by using a standard default configuration modulation coding manner, and modulate the encoded control signal Send to the sending module 82;
  • the allocating module 81 is further configured to send control signaling after allocating time-frequency resources to the modulation and coding module;
  • the sending module 82 is further configured to: after receiving the control signaling sent by the modulation and coding module, send the control signaling.
  • each module in the transmitting device of the control signaling of the present invention is a logic module of a base station; and a specific processing of an allocating module and a transmitting module in the transmitting device of the control signaling of the present invention The process has been detailed above and will not be described again.
  • the present invention further provides a receiving device for controlling signaling, as shown in FIG. 9, the device includes: a decoding module 91, configured to: after receiving control signaling, decode the The control signaling is obtained, and the control signaling sent to itself is learned; wherein the control signaling sent to itself is continuously distributed in the time-frequency domain.
  • a decoding module 91 configured to: after receiving control signaling, decode the The control signaling is obtained, and the control signaling sent to itself is learned; wherein the control signaling sent to itself is continuously distributed in the time-frequency domain.
  • the device may further include: a receiving module 92, configured to receive control signaling, and send the received control signaling to the decoding module 91;
  • the decoding module 91 is further configured to receive control signaling sent by the receiving module 92.
  • each module in the receiving device of the control signaling of the present invention is a logic module of the terminal; the specific processing procedure of the decoding module in the receiving device of the control signaling of the present invention is already on Detailed in the text, no longer repeat them.
  • the present invention also provides a transmission system for control signaling, which includes: a control signaling transmission device and a control signal, based on the above-mentioned control signaling transmitting device and control signaling receiving device
  • the receiving device of the control signaling further includes: an allocating module and a sending module; and the receiving device of the control signaling further includes: a decoding module;
  • An allocation module configured to allocate consecutive resources for two or more control signalings sent to the same terminal, and send control signaling after allocating time-frequency resources to the sending module;
  • a sending module configured to send the control signaling after receiving the control signaling sent by the allocation module
  • the decoding module is configured to: after receiving the control signaling, decode the control signaling, and obtain control signaling sent to itself; where the control signaling sent to itself is continuously distributed in a time-frequency domain.
  • a base station allocates continuous time-frequency resources for two or more control signalings sent to the same terminal, and sends the control signaling after allocating time-frequency domain resources; After the control signaling, the control signaling is decoded, and the control signaling sent to itself is learned; wherein the control signaling sent to itself is continuously distributed in the time-frequency domain, so that the terminal can effectively improve the received processing.
  • the decoding speed of the control signaling reduces the power consumption of the terminal, thereby greatly reducing the power consumption of the terminal, thereby prolonging the standby time of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种控制信令的传输方法及***,包括:基站为发送给同一个终端的两个以上控制信令,分配连续的时频资源,将分配时频域资源后的所述控制信令发出;终端收到控制信令后,解码所述控制信令,获知发送给自身的控制信令;其中,所述发送给自身的控制信令在时频域上连续分布。采用本发明,能有效地终端处理收到的控制信令的解码速度。

Description

一种控制信令的传输方法及*** 技术领域
本发明涉及正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )技术, 特别是指一种控制信令的传输方法及***。 背景技术
随着移动互联网的发展和智能手机的普及, 人们对移动数据流量的需 求飞速增长, 同时, 快速增长的数据业务量对移动通信网络的传输能力提 出了严峻挑战。 根据权威机构的预测, 在未来十年内, 即: 2011-2020年, 移动数据业务量还将每年翻一番, 十年将增长一千倍。
大部分的移动数据业务主要发生在室内和热点环境, 体现为游牧 /本地 无线接入场景。 据统计, 目前移动数据业务量中的近 70%发生在室内, 而 且这一比例还将会继续增长, 预计到 2012年将会超过 80%。 数据业务主要 为互联网业务,换句话说,数据业务主要为互联网协议( IP, Internet Protocol ) 数据包业务, 因此, 对服务质量的要求比较单一, 且远低于传统电信业务 对服务质量的要求。 由于蜂窝移动通信***主要是针对高速移动、 无缝切 换的传统电信业务设计的, 所以, 当其承载大流量低速 IP数据包业务时, 会存在效率偏低、 成本过高的问题, 如此, 就需要为游牧 /本地无线数据接 入场景提供专门的解决方案。
目前, 现有的适合游牧 /本地无线数据接入场景的数据业务传输的解决 方案主要包括: 电子电气工程师协会 ( IEEE , Institute of Electrical and Electronics Engineers ) 的 802.11系列标准及下一代超高速吞吐量( NUHT, Next Ultra-High Throughout )标准。 其中, NUHT标准采用的是 OFDM技 术, 且配置时分双工 (TDD, Time Division Duplexing ) 的帧结构, OFDM ***的基本参数可详见表 1
表 1
Figure imgf000004_0001
如表 1所示, 一个 OFDM符号在频域上包括 256个子载波, 其中, 数 据子载波的个数为 224个, 相位跟踪导频子载波的个数为 6个, 虚拟子载 波的个数 26个, 这里, 所述子载波也可以称为快速傅里叶变换(FFT, fast Fourier transform )样点数, 所述虚拟子载波也可以称为保护子载波。 图 1为 OFDM***的基本帧结构示意图, 如图 1所示, OFDM***的 基本帧主要由前导序列、***信息信道( SICH, System Information CHannel ) 传输的信息、 控制信道(CCH, Control CHannel )传输的信息、 传输信道 (TCH, Traffic CHannel)传输的信息等构成。 其中, CCH传输的信息采用 的调制编码方式为四相相移键控 1/2 ( QPSK1/2, Quadrature Phase Shift Keying 1/2 ), 而不采用空时编码。 CCH传输的信息为控制信令, 包括: 多 个单播和广播控制信令。 其中, 上行与下行单播控制信令字段的定义可详 见表 2。
表 2 定义
比特
DL UL
¾=1, 下行调度
¾=°, 上行调度
¾=0, 时分资源调度
= ι, 预留
[ ·Α。], 用户资源块起始 OFDM符号, 域值: 0-511 lbnbn-b19] , 用户资源块连续 OFDM符号数, 域值: 1-512
[。 ·· 3] , 20MHz子信道 Bit MCAP 24 25... 30 码字 I的 MCS及并行空间流数(≤4 )指示 32=00, BCC编码
¾ι =01 , LDPC码长 1 ( 1344比特 )
¾ι =10, LDPC码长 2 ( 2688比特)
¾ι =11 , LDPC码长 3 ( 5376比特) ¾ = 1, 请求 CQI反馈
SU-MIMO: 000
A=oi, 请求 CSI反馈
MU-MIMO:空间流起始位
¾Α5=ιο, 请求 BFM反馈 置索引, 域值 0~7
A=ii, 请求 CMI反馈 =Q, 时域解调导频周期 1 ¾-=1, 时域解调导频周期 2
M½ = oo, 频域解调导频图样 1
M½ = GI, 频域解调导频图样 2
b b
M¾ = IG, 频域解调导频图样 3 Μ½ = ιι, 频域解调导频图样 4 码字 II的 MCS及并行空间
流数指示
1111111 , 本次传输为
SU-MIMO***字 II
limn), 本次传输为 2 流
BitMap指示 CQI, CSI,
MU-MIMO
BFM或 CMI反馈带宽
1111101 , 本次传输为 3 流
¾9 ¾0… 45 b43 b4A5 , 对于 CSI反馈, 指示反馈
MU-MIMO
矩阵的行数; 对于 BFM反馈, 指示 iiiiioo, 本次传输为 4 流
反馈矩阵的列数
MU-MIMO
lmoii, 本次传输为 5 流
MU-MIMO
mioio, 本次传输为 6 流
MU-MIMO
Figure imgf000007_0001
这里, b56 · 可根据公式( 1 ), 计算获得:
[Κ (丄) 其中, [^^…^]^表示单播调度信令字段的循环冗余校验(CRC, Cyclical Redundancy Check )校验码; [J" 。·· 。]表示基站分配给终端的本 小区唯一的 12比特标识(ID, IDentity ); ㊉表示异或运算符。
在 OFDM***中, 终端需要对基站在 CCH上发送的单播和广播调度 信令进行解码, 根据解码得到的数据, 生成 16位的 CRC校验码, 并根据 公式 ( 1 ), 产生待校验数据 [ 6 7 ''Αι] , 之后比较解码得到的数据 [ 6 7… ]和待校验数据
Figure imgf000008_0001
"A ] , 如果两者一致, 则认为该信令为发 送给该终端的信令, 否则, 认为该信令不是发送给该终端的信令。
在现有技术中, 终端为了获得 CCH中发送给自身的全部控制信令, 需 要对全部控制信令进行解码, 然后按照上述方法比较每个信令是否为发送 给自身的信令, 这样, 会严重增加终端的处理时延; 另外, 还会增加终端 的耗电量, 从而降低了终端待机的时间。 发明内容
有鉴于此, 本发明的主要目的在于提供一种控制信令的传输方法及系 统, 能有效地提高终端的处理速度。
为达到上述目的, 本发明的技术方案是这样实现的:
本发明提供了一种控制信令的发送方法, 该方法包括:
基站为发送给同一个终端的两个以上控制信令, 分配连续的时频资源; 将分配时频域资源后的所述控制信令发出。
上述方案中, 所述基站为发送给同一个终端的两个以上控制信令, 分 配连续的时频资源, 为:
将所述两个以上控制信令, 分配在同一个 OFDM符号内, 且所述两个 以上控制信令占用的频域资源连续分布, 和 /或, 将所述两个以上控制信令 分配在两个以上时域连续的 OFDM符号内。
上述方案中, 所述将所述两个以上控制信令分配在两个以上时域连续 的 OFDM符号内, 为:
将所述两个以上控制信令, 按照先频域资源再时域资源的方式分配到 所述时域上连续的 OFDM符号内,且时域按照 OFDM符号索引由小到大依 次分配。
上述方案中, 在分配时频资源时, 该方法进一步包括: 为所述两个以上控制信令中的每个控制信令分配相同大小的时频资 源。
上述方案中, 在将分配时频域资源后的所述控制信令发出之前, 该方 法进一步包括:
所述控制信令采用的调制编码方式由***默认配置。
上述方案中, 所述两个以上控制信令包括: 广播控制信令、 和 /或组播 控制信令、 和 /或单播控制信令。
上述方案中, 每个所述控制信令包括: 继续解码指示信息; 所述继续 解码指示信息用于指示终端继续解码指示信息所在的控制信令后面是否还 有发送给所述终端的控制信令。
上述方案中, 所述将分配时频资源后的所述控制信令发出, 为: 通过 CCH将分配时频资源后的所述控制信令发出。
上述方案中, 在将分配时频域资源后的所述控制信令发出, 且当所述 两个以上控制信息包括: 广播控制信令、 组播控制信令、 以及单播控制信 令时, 该方法进一步包括:
基站先发送广播控制信令, 再发送组播控制信令, 最后发送单播控制 信令。
本发明又提供了一种控制信令的接收方法, 该方法包括:
终端收到控制信令后, 解码所述控制信令, 获知发送给自身的控制信 令;
其中, 所述发送给自身的控制信令在时频域上连续分布。
上述方案中, 所述控制信令包括: 广播控制信令、 和 /或组播控制信令、 和 /或单播控制信令。
上述方案中, 所述解码所述控制信令, 为:
依据预先设置的原则, 对收到的控制信令进行解码。 上述方案中, 当收到的控制信令包括: 单播控制信令时, 所述依据预 先设置的原则, 对收到的控制信令进行解码, 为:
当收到的控制信令不包括继续解码指示信息时, 终端尝试解码收到的 控制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令中 未包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控制 信令的解码, 如果成功解码出第一个发送给自身的单播控制信令, 则继续 解码后续连续分布的单播控制信令, 直至确定解码的所述连续分布的单播 控制信令不是发送给自身的, 则停止对收到的控制信令中的剩余控制信令 的解码, 认为完成对所述收到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端尝试解码收到的控 制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令中未 包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控制信 令的解码; 如果成功解码出第一个发送给自身的单播控制信令, 则通过继 续解码指示信息, 获知后续连续分布的单播控制信令是否也是发送给自身 的单播控制信令, 如果确定是发送给自身的单播控制信令, 则继续解码所 述后续连续分布的单播控制信令, 如果确定不是发送给自身的单播控制信 令, 则停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述 收到的控制信令的解码。
上述方案中, 当收到的控制信令包括: 广播控制信令、 和 /或组播控制 信令时, 所述依据预先设置的原则, 对收到的控制信令进行解码, 为: 当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码; 和 /或,
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码。
上述方案中, 当收到的控制信令包括: 组播控制信令、 单播控制信令、 和 /或广播控制信令时, 所述依据预先设置的原则, 对收到的控制信令进行 解码, 为:
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码; 或者, 在确定组播控制信令解码完成后, 终端尝试 解码收到的控制信令中的第一个发送给自身的单播控制信令, 如果收到的 控制信令未包含第一个发送给自身的单播控制信令, 则认为完成对所述收 到的控制信令的解码, 如果成功解码出第一个发送给自身的单播控制信令, 则继续解码后续连续分布的单播控制信令, 直至确定解码的所述连续分布 的单播控制信令不是发送给自身的, 则停止对收到的控制信令中的剩余控 制信令的解码, 认为完成对所述收到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码; 或者, 在确定 不是组播控制信令后, 终端尝试解码收到的控制信令中的第一个发送给自 身的单播控制信令, 如果收到的控制信令未包含第一个发送给自身的单播 控制信令, 则认为完成对所述收到的控制信令的解码; 如果成功解码出第 一个发送给自身的单播控制信令, 则通过继续解码指示信息, 获知后续连 续分布的单播控制信令是否也是发送给自身的单播控制信令, 如果确定是 发送给自身的单播控制信令, 则继续解码所述后续连续分布的单播控制信 令, 如果确定不是发送给自身的单播控制信令, 则停止对收到的控制信令 中的剩余控制信令的解码,认为完成对所述收到的控制信令的解码; 和 /或, 当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码。
本发明还提供了一种控制信令的发送装置, 该装置包括: 分配模块及 发送模块; 其中,
分配模块, 用于为发送给同一个终端的两个以上控制信令, 分配连续 的时频资源, 并将分配时频资源后的控制信令发送给发送模块;
发送模块, 用于收到分配模块发送的控制信令后, 将所述控制信令发 出。
上述方案中, 所述分配模块, 在分配时频域上连续的时频资源时, 还 用于为所述两个以上控制信令中的每个控制信令分配相同大小的时频资 源。
上述方案中, 该装置进一步包括: 调制编码模块, 用于收到分配模块 发送的控制信令后, 采用标准默认配置的调制编码方式对所述控制信令进 行调制编码, 并将调制编码后的控制信令发送给发送模块;
所述分配模块, 还用于将分配时频资源后的控制信令发送给调制编码 模块;
所述发送模块, 还用于收到调制编码模块发送的控制信令后, 将所述 控制信令发出。
本发明还提供了一种控制信令的接收装置, 该装置包括: 解码模块, 用于收到控制信令后, 解码所述控制信令, 获知发送给自身的控制信令; 其中, 所述发送给自身的控制信令在时频域上连续分布。
上述方案中, 该装置进一步包括: 接收模块, 用于接收控制信令, 并 将收到的控制信令发送给解码模块; 所述解码模块, 还用于接收接收模块发送的控制信令。
本发明还提供了一种控制信令的传输***, 该***包括: 控制信令的 发送装置及控制信令的接收装置; 其中, 所述控制信令的发送装置进一步 包括: 分配模块及发送模块; 所述控制信令的接收装置进一步包括: 解码 模块; 其中,
分配模块, 用于为发送给同一个终端的两个以上控制信令, 分配连续 的资源, 并将分配时频资源后的控制信令发送给发送模块;
发送模块, 用于收到分配模块发送的控制信令后, 将所述控制信令发 出;
解码模块, 用于收到控制信令后, 解码所述控制信令, 获知发送给自 身的控制信令;
其中, 所述发送给自身的控制信令在时频域上连续分布。
上述方案中, 所述分配模块, 在分配时频域上连续的时频资源时, 还 用于为所述两个以上控制信令中的每个控制信令分配相同大小的时频资 源; 和 /或,
所述控制信令的发送装置进一步包括调制编码模块, 用于收到分配模 块发送的控制信令后, 采用标准默认配置的调制编码方式对所述控制信令 进行调制编码, 并将调制编码后的控制信令发送给发送模块;
所述分配模块, 还用于将分配时频资源后的控制信令发送给调制编码 模块;
所述发送模块, 还用于收到调制编码模块发送的控制信令后, 将所述 控制信令发出。
上述方案中, 所述控制信令的接收装置进一步包括: 接收模块, 用于 接收控制信令, 并将收到的控制信令发送给解码模块;
所述解码模块, 还用于接收接收模块发送的控制信令。 本发明提供的控制信令的传输方法及***, 基站为发送给同一个终端 的两个以上控制信令, 分配连续的时频资源, 基站将分配时频域资源后的 所述控制信令发出; 终端收到控制信令后, 解码所述控制信令, 获知发送 给自身的控制信令; 其中, 所述发送给自身的控制信令在时频域上连续分 布, 如此, 能有效地提高终端处理收到的控制信令的解码速度。
另外, 本发明提供的技术方案, 由于减少了终端解码的工作量, 如此, 大大降低了终端的耗电量, 从而延长了终端待机的时间。 附图说明
图 1为 OFDM***的基本帧结构示意图;
图 2为本发明控制信令的发送方法流程示意图;
图 3为实施例一 CCH传输的控制信令的结构示意图;
图 4为实施例二 CCH传输的控制信令的结构示意图;
图 5为实施例三 CCH传输的控制信令的结构示意图;
图 6为实施例四 CCH传输的控制信令的结构示意图;
图 7为实施例五 CCH传输的控制信令的结构示意图;
图 8为本发明控制信令的发送装置结构示意图;
图 9为本发明控制信令的接收装置结构示意图。 具体实施方式
下面结合附图及实施例对本发明再作进一步详细的说明。
本发明控制信令的发送方法, 如图 2所示, 包括以下步驟:
步驟 201 : 基站为发送给同一个终端的两个以上控制信令, 分配连续的 时频资源;
具体地,基站将所述两个以上控制信令,分配在同一个 OFDM符号内, 且所述两个以上控制信令占用的频域资源连续分布, 和 /或, 将所述两个以 上控制信令分配在两个以上时域连续的 OFDM符号内;
其中, 当所述两个以上控制信令占用时域上连续的两个以上 OFDM符 号时, 所述两个控制信令可以按照先频域资源再时域资源的方式, 分配到 两个以上时域连续的 OFDM符号的时频资源上,且时域按照 OFDM符号索 引由小到大依次分配; 也可以按照先时域资源再频域资源的方式, 分配到 两个以上时域连续的 OFDM符号的时频资源上,且时域按照 OFDM符号索 引由小到大依次分配; 这里, 基站无论采用哪种分配方式, 终端均事先已 获知基站所采用的分配方式; 基站可采用现有技术获知 OFDM符号索引。
在分配时频资源时, 该方法还可以进一步包括:
为所述两个以上控制信令中的每个控制信令分配相同大小的时频资 源, 以便终端可以获知收到的每个控制信令的位置。
本步驟完成后, 该方法还可以进一步包括:
基站采用标准默认配置的调制编码方式对所述控制信令进行调制编 码。 换句话说, 所述控制信令采用的调制编码方式由***默认配置; 其中, 控制信令所采用的调制编码方式可以携带在 SICH传输的信息中,发送给终 端, 终端据此可以获知控制信令所采用的调制编码方式; 进行解调编码的 具体处理过程可采用现有技术。
所述控制信令具体可以包括: 广播控制信令、 和 /或组播控制信令、 和 / 或单播控制信令; 其中, 所述广播控制信令是指: 向 OFDM***中所有的 终端广播的控制信令, 所述组播控制信令是指: 向 OFDM***中同一个终 端组内的所有终端发送的控制信令, 所述单播控制信令是指: 发送给一个 终端的控制信令。
所述控制信令可以包括继续解码指示信息, 其中, 所述继续解码指示 信息用于指示终端, 继续解码指示信息所在的控制信令后面是否还有发送 给该终端的控制信令。 在实际应用时, 继续解码指示信息可以采用 lbit描 述, 当继续解码指示信息为 "Γ 时, 表示所述继续解码指示信息所在的控 制信令后面还有发送给特定终端的控制信令; 当继续解码指示信息为 "0" 时, 表示所述继续解码指示信息所在的控制信令后面没有发送给特定终端 的控制信令。 其中, 所述特定终端是指包含所述继续解码指示信息的控制 信令需要发送到的终端。
步驟 202: 将分配时频资源后的所述控制信令发出;
具体地, 通过 CCH将分配时频资源后的所述控制信令发出。
当所述两个以上控制信息包括: 广播控制信令、 组播控制信令、 以及 单播控制信令时, 该方法还可以进一步包括:
基站先发送广播控制信令, 再发送组播控制信令, 最后发送单播控制 信令。
本发明还提供了一种控制信令的接收方法, 其基本思想是: 终端收到 控制信令后, 解码所述控制信令, 获知发送给自身的控制信令; 其中, 所 述发送给自身的控制信令在时频域上连续分布。
具体地, 终端依据预先设置的原则, 对收到的控制信令中的收到的控 制信令进行解码;
其中, 所述依据预先设置的原则, 对收到的控制信令中的收到的控制 信令进行解码, 具体为:
当收到的控制信令中不包括继续解码指示信息时, 终端尝试解码收到 的控制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令 中未包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控 制信令的解码, 如果成功解码出第一个发送给自身的单播控制信令, 则继 续解码后续连续分布的单播控制信令, 直至确定解码的所述连续分布的单 播控制信令不是发送给自身的, 则停止对收到的控制信令中的剩余控制信 令的解码, 认为完成对所述收到的控制信令的解码; 当收到的控制信令中包括继续解码指示信息时, 终端尝试解码收到的 控制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令中 未包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控制 信令的解码; 如果成功解码出第一个发送给自身的单播控制信令, 则通过 继续解码指示信息, 获知后续连续分布的单播控制信令是否也是发送给自 身的单播控制信令, 如果是, 则继续解码所述后续连续分布的单播控制信 令, 如果不是, 则认为所述控制信道中没有与自身有关的单播控制信令, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收到的 控制信令的解码。
当所述控制信令包括: 广播控制信令、 和 /或组播控制信令时, 所述依 据预先设置的原则, 对收到的控制信令中的收到的控制信令进行解码, 具 体为:
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码; 和 /或,
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码。
当收到的控制信令包括: 组播控制信令、 单播控制信令、 和 /或广播控 制信令时, 所述依据预先设置的原则, 对收到的控制信令进行解码, 具体 为:
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码; 或者, 在确定组播控制信令解码完成后, 终端尝试 解码收到的控制信令中的第一个发送给自身的单播控制信令, 如果收到的 控制信令中未包含第一个发送给自身的单播控制信令, 则认为完成对所述 收到的控制信令的解码, 如果成功解码出第一个发送给自身的单播控制信 令, 则继续解码后续连续分布的单播控制信令, 直至确定解码的所述连续 分布的单播控制信令不是发送给自身的, 则停止对收到的控制信令中的剩 余控制信令的解码, 认为完成对所述收到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码; 或者, 在确定 不是组播控制信令后, 终端尝试解码收到的控制信令中的第一个发送给自 身的单播控制信令, 如果收到的控制信令中未包含第一个发送给自身的单 播控制信令, 则认为完成对所述收到的控制信令的解码; 如果成功解码出 第一个发送给自身的单播控制信令, 则通过继续解码指示信息, 获知后续 连续分布的单播控制信令是否也是发送给自身的单播控制信令, 如果确定 是发送给自身的单播控制信令, 则继续解码所述后续连续分布的单播控制 信令, 如果确定不是发送给自身的单播控制信令, 则停止对收到的控制信 令中的剩余控制信令的解码, 认为完成对所述收到的控制信令的解码; 和 / 或,
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码。
其中, 当收到的控制信令包括: 广播控制信令、 组播控制信令、 以及 单播控制信令时, 先解码广播控制信令, 再解码组播控制信令, 最后解码 单播控制信令; 其中, 终端在终端组内, 如果发送给终端的控制信令均在 组播控制信令中, 则终端完成对组播控制信令的解码后, 停止对收到的控 制信令中的剩余控制信令的解码, 认为完成对所述收到的控制信令的解码; 如果发送给终端的控制信令并不完全在组播控制信令中, 则终端完成对组 播控制信令的解码后, 需要继续解码单播控制信令; 这里, 终端事先已获 知发送给自身的控制信令是都在组播控制信令中, 还是部分在组播控制信 令中。
这里, 进行解码的具体处理过程可采用现有技术; 终端可根据现有技 术获知哪些控制信令为广播控制信令, 哪些控制信令为组播控制信令, 哪 些控制信令为单播控制信令。
下面结合实施例对本发明再作进一步详细的描述。
实施例一
本实施例的应用场景为: 通信***采用的是 OFDM技术, 且配置 TDD 的帧结构, 通信***的基本参数如表 1所示, 一个 OFDM符号在频域上包 括 256个子载波, 其中, 数据子载波的个数为 224个, 相位跟踪导频子载 波的个数为 6个, 虚拟子载波的个数 26个, 这里, 所述子载波也可以称为 FFT样点数, 所述虚拟子载波也可以称为保护子载波。 基本帧结构如图 1 所示, 主要由前导序列、 SICH传输的信息、 CCH传输的控制信令、 以及 TCH传输的信息等构成。
本实施例的终端包括: 终端 1及终端 2, 且所有控制信息均为单播控制 信令。 其中, 终端 1及终端 2为已接入***的终端。
图 3为本实施例 CCH传输的控制信令的结构,如图 3所示, CCH传输 的控制信令包括六个控制信令, 分别为控制信令 1、 控制信令 2、 控制信令 3、 控制信令 4、 控制信令 5以及控制信令 6; 其中, 每个控制信令占用的 视频资源大小相同, 每个控制信令使用的调制编码方式相同, 由标准默认 配置, 发送给同一个终端的多个控制信令占用同一个 OFDM符号或占用时 域上连续的多个 OFDM符号。 具体地, 发送给终端 1的控制信令 1及控制 信令 2占用 OFDM符号 N中连续的频率资源,发送给终端 2的控制信令 3、 控制信令 4、控制信令 5以及控制信令 6占用两个连续的 OFDM符号, 即: OFDM符号 N及 OFDM符号 N+1 , 且控制信令 4、 控制信令 5以及控制信 令 6占用 OFDM符号 N+1中连续的频率资源。
经过上述处理后, 基站通过 CCH向终端发送控制信令。
终端 1收到基站通过 CCH发送的控制信令后, 解码控制信令 1 , 获知 控制信令 1是发送给自身的信令,之后继续解码后续控制信令 2, 获知控制 信令 2是发送给自身的信令,之后继续解码后续控制信令 3, 获知控制信令 3不是发送给自身的信令,之后终端 1不再对其它控制信令进行解码,从而 完成了对控制信道传输的控制信令的解码。 由于终端 1 不再对其它控制信 令进行解码, 如此, 提高了终端 1 的处理速度, 同时, 减少了耗电量, 从 而提高了待机的时间。
终端 2收到基站通过 CCH发送的控制信令后, 解码控制信令 1 , 获知 控制信令 1不是发送给自身的信令, 继续解码后续控制信令 2, 获知控制信 令 2不是发送给自身的信令, 继续解码后续控制信令 3, 获知控制信令 3是 发送给自身的信令,之后继续解码后续控制信令 4, 获知控制信令 4是发送 给自身的信令,之后继续解码后续控制信令 5, 获知控制信令 5是发送给自 身的信令,之后继续解码后续控制信令 6, 获知控制信令 6是发送给自身的 信令, 由于后续没有控制信令了, 至此, 终端 2完成了对控制信道传输的 控制信令的解码。
实施例二
本实施例的应用场景为: 通信***采用的是 OFDM技术, 且配置 TDD 的帧结构, 通信***的基本参数如表 1所示, 一个 OFDM符号在频域上包 括 256个子载波, 其中, 数据子载波的个数为 224个, 相位跟踪导频子载 波的个数为 6个, 虚拟子载波的个数 26个, 这里, 所述子载波也可以称为 FFT样点数, 所述虚拟子载波也可以称为保护子载波。 基本帧结构如图 1 所示, 主要由前导序列、 SICH传输的信息、 CCH传输的控制信令、 以及 TCH传输的信息等构成。
本实施例的终端包括: 终端 1及终端 2, 且控制信息包括: 广播控制信 令、 组播控制信令、 以及单播控制信令。 其中, 终端 1及终端 2为已接入 ***的终端, 且在一个终端组内。
图 4为本实施例 CCH传输的控制信令的结构,如图 4所示, CCH传输 的控制信令包括六个控制信令, 分别为控制信令 1、 控制信令 2、 控制信令 3、 控制信令 4、 控制信令 5、 以及控制信令 6; 其中, 控制信令 1为广播控 制信令, 控制信令 2为组播控制信令, 每个控制信令占用的视频资源大小 相同, 每个控制信令使用的调制编码方式相同, 由标准默认配置, 发送给 同一个终端的多个控制信令占用同一个 OFDM符号或占用时域上连续的多 个 OFDM符号。 具体地, 发送给终端 1的控制信令 3及控制信令 4占用两 个连续的 OFDM符号, 即: OFDM符号 N及 OFDM符号 N+1 , 发送给终 端 2的控制信令 5及控制信令 6占用 OFDM符号 N+1中连续的频率资源。 控制信令 1及控制信令 2占用 OFDM符号 N中连续的频率资源。
经过上述处理后, 基站通过 CCH向终端发送控制信令, 且在发送时, 先发送广播控制信令, 再发送组播控制信令, 最后再发送单播控制信令。
终端 1收到基站通过 CCH发送的控制信令后,首先解码广播控制信令, 即: 控制信令 1 , 再解码组播控制信令, 即: 控制信令 2, 之后解码控制信 令 3,获知控制信令 3是发送给自身的信令,之后继续解码后续控制信令 4, 获知控制信令 4是发送给自身的信令,之后继续解码后续控制信令 5, 获知 控制信令 5不是发送给自身的信令, 之后终端 1不再对其它控制信令进行 解码, 从而完成了对控制信道传输的控制信令的解码。 由于终端 1 不再对 其它控制信令进行解码, 如此, 提高了终端 1 的处理速度, 同时, 减少了 耗电量, 从而提高了待机的时间。
终端 2收到基站通过 CCH发送的控制信令后 ,首先解码广播控制信令, 即: 控制信令 1 , 再解码组播控制信令, 即: 控制信令 2, 之后解码控制信 令 3, 获知控制信令 3不是发送给自身的信令, 继续解码后续控制信令 4, 获知控制信令 4不是发送给自身的信令,之后继续解码后续控制信令 5, 获 知控制信令 5是发送给自身的信令, 继续解码后续控制信令 6, 获知控制信 令 6是发送给自身的信令, 由于后续没有控制信令了, 至此, 终端 2完成 了对控制信道传输的控制信令的解码。
实施例三
本实施例的应用场景为: 通信***采用的是 OFDM技术, 且配置 TDD 的帧结构, 通信***的基本参数如表 1所示, 一个 OFDM符号在频域上包 括 256个子载波, 其中, 数据子载波的个数为 224个, 相位跟踪导频子载 波的个数为 6个, 虚拟子载波的个数 26个, 这里, 所述子载波也可以称为 FFT样点数, 所述虚拟子载波也可以称为保护子载波。 基本帧结构如图 1 所示, 主要由前导序列、 SICH传输的信息、 CCH传输的控制信令、 以及 TCH传输的信息等构成。
本实施例的终端包括: 终端 1及终端 2, 且所有控制信息均为单播控制 信息。 其中, 终端 1及终端 2为已接入***的终端。
图 5为本实施例 CCH传输的控制信令的结构,如图 5所示, CCH传输 的控制信令包括六个控制信令, 分别为控制信令 1、 控制信令 2、 控制信令 3、 控制信令 4、 控制信令 5以及控制信令 6; 其中, 每个控制信令占用的 视频资源大小相同, 每个控制信令使用的调制编码方式相同, 由标准默认 配置, 每个控制信令均包括继续解码指示信息, 发送给同一个终端的多个 控制信令占用同一个 OFDM符号或占用时域上连续的多个 OFDM符号。具 体地,发送给终端 1的控制信令 1及控制信令 2占用 OFDM符号 N中连续 的频率资源, 发送给终端 2的控制信令 3、 控制信令 4、 控制信令 5以及控 制信令 6占用两个连续的 OFDM符号, 即: OFDM符号 N及 OFDM符号 N+1 , 且控制信令 4、 控制信令 5以及控制信令 6占用 OFDM符号 N+1中 连续的频率资源。
在本实施例中, 继续解码指示信息采用 lbit描述, 当继续解码指示信 息为 "Γ 时, 表示所述继续解码指示信息所在的控制信令后面还有发送给 特定终端的控制信令; 当继续解码指示信息为 "0" 时, 表示所述继续解码 指示信息所在的控制信令后面没有发送给特定终端的控制信令。 其中, 所 述特定终端是指包含所述继续解码指示信息的控制信令需要发送到的终 端。
经过上述处理后, 基站通过 CCH向终端发送控制信令。
终端 1收到基站通过 CCH发送的控制信令后, 解码控制信令 1 , 获知 控制信令 1是发送给自身的信令, 并且获知控制信令 1 中的继续解码指示 信息为 "1" , 进而获知控制信令 2也是发送给自身的信令, 之后继续解码 控制信令 2, 并且获知控制信令 2中的继续解码指示信息为 "0" , 进而获知 控制信令 3不是发送给自身的信令, 之后终端 1不再继续解码其它控制信 令, 从而完成了对控制信道传输的控制信令的解码。 由于终端 1 不再对其 它控制信令进行解码, 如此, 提高了终端 1 的处理速度, 同时, 减少了耗 电量, 从而提高了待机的时间。
终端 2收到基站通过 CCH发送的控制信令后, 解码控制信令 1 , 获知 控制信令 1不是发送给自身的信令, 继续解码控制信令 2, 获知控制信令 2 不是发送给自身的信令, 继续解码控制信令 3, 获知控制信令 3是发送给自 身的信令, 并且获知控制信令 3 中的继续解码指示信息为 "1" , 进而获知 控制信令 4也是发送给自身的信令, 继续解码控制信令 4, 获知控制信令 4 中的继续解码指示信息为 "1" , 进而获知控制信令 5也是发送给自身的信 令, 继续解码控制信令 5, 获知控制信令 5中的继续解码指示信息为 "1" , 进而获知控制信令 6也是发送给自身的信令, 继续解码控制信令 6, 获知控 制信令 6中的继续解码指示信息为 "0" , 进而控制信令 6后面的控制信令 不是发送给自身的信令, 终端 2不再继续解码其它控制信令, 从而完成了 对控制信道传输的控制信令的解码。
实施例四
本实施例的应用场景为: 通信***采用的是 OFDM技术, 且配置 TDD 的帧结构, 通信***的基本参数如表 1所示, 一个 OFDM符号在频域上包 括 256个子载波, 其中, 数据子载波的个数为 224个, 相位跟踪导频子载 波的个数为 6个, 虚拟子载波的个数 26个, 这里, 所述子载波也可以称为 FFT样点数, 所述虚拟子载波也可以称为保护子载波。 基本帧结构如图 1 所示, 主要由前导序列、 SICH传输的信息、 CCH传输的控制信令、 以及 TCH传输的信息等构成。
本实施例的终端包括: 终端 1及终端 2, 且控制信令包括: 广播控制信 令、 组播控制信令、 以及单播控制信令。 其中, 终端 1及终端 2为已接入 ***的终端, 且在一个终端组内。
图 6为本实施例 CCH传输的控制信令的结构,如图 6所示, CCH传输 的控制信令包括六个控制信令, 分别为控制信令 1、 控制信令 2、 控制信令 3、 控制信令 4、 控制信令 5以及控制信令 6; 其中, 每个控制信令占用的 视频资源大小相同, 每个控制信令使用的调制编码方式相同, 由标准默认 配置, 每个控制信令均包括继续解码指示信息, 发送给同一个终端的多个 控制信令占用同一个 OFDM符号或占用时域上连续的多个 OFDM符号。具 体地, 发送给终端 1的控制信令 3及控制信令 4占用两个连续的 OFDM符 号, 即: OFDM符号 N及 OFDM符号 N+1 , 发送给终端 2的控制信令 5 及控制信令 6占用 OFDM符号 N+1中连续的频率资源。控制信令 1及控制 信令 2占用 OFDM符号 N中连续的频率资源。
在本实施例中, 继续解码指示信息采用 lbit描述, 当继续解码指示信 息为 "Γ 时, 表示所述继续解码指示信息所在的控制信令后面还有发送给 特定终端的控制信令; 当继续解码指示信息为 "0" 时, 表示所述继续解码 指示信息所在的控制信令后面没有发送给特定终端的控制信令。 其中, 所 述特定终端是指包含所述继续解码指示信息的控制信令需要发送到的终 端。
经过上述处理后, 基站通过 CCH向终端发送控制信令。
终端 1收到基站通过 CCH发送的控制信令后,首先解码广播控制信令, 即: 控制信令 1 , 再解码组播控制信令, 即: 控制信令 2, 之后解码控制信 令 3, 获知控制信令 3是发送给自身的信令, 并且获知控制信令 3中的继续 解码指示信息为 "1" , 进而获知控制信令 4也是发送给自身的信令, 之后 继续解码控制信令 4, 获知控制信令 4中的继续解码指示信息为 "0" , 进而 获知控制信令 5不是发送给自身的信令, 之后终端 1不再继续解码其它控 制信令, 从而完成了对控制信道传输的控制信令的解码。 由于终端 1 不再 对其它控制信令进行解码, 如此, 提高了终端 1 的处理速度, 同时, 减少 了耗电量, 从而提高了待机的时间。 其中, 不论广播控制信令和组播控制 信令中的继续解码指示信息为 "1" 还是 "0" , 终端 1都需要继续解码其它 控制信令。
终端 2收到基站通过 CCH发送的控制信令后 ,首先解码广播控制信令, 即: 控制信令 1 , 再解码组播控制信令, 即: 控制信令 2, 之后解码控制信 令 3, 获知控制信令 3不是发送给自身的信令, 则继续解码控制信令 4, 获 知控制信令 4不是发送给自身的信令, 则继续解码控制信令 5, 获知控制信 令 5是发送给自身的信令, 并且获知控制信令 5 中的继续解码指示信息为 "1" , 进而获知控制信令 6也是发送给自身的信令, 继续解码控制信令 6, 获知控制信令 6中的继续解码指示信息为 "0" , 进而获知控制信令 6后面 的控制信令不是发送给自身的信令, 终端 2不再继续解码其它控制信令, 从而完成了对控制信道传输的控制信令的解码。 其中, 不论广播控制信令 和组播控制信令中的继续解码指示信息为 "1" 还是 "0" , 终端 2都需要继 续解码其它控制信令。
实施例五
本实施例的应用场景为: 通信***采用的是 OFDM技术, 且配置 TDD 的帧结构, 通信***的基本参数如表 1所示, 一个 OFDM符号在频域上包 括 256个子载波, 其中, 数据子载波的个数为 224个, 相位跟踪导频子载 波的个数为 6个, 虚拟子载波的个数 26个, 这里, 所述子载波也可以称为 FFT样点数, 所述虚拟子载波也可以称为保护子载波。 基本帧结构如图 1 所示, 主要由前导序列、 SICH传输的信息、 CCH传输的控制信令、 以及 TCH传输的信息等构成。
本实施例的终端包括: 终端 1、 终端 2及终端 3, 且控制信息包括: 广 播控制信令、 组播控制信令、 以及单播控制信令。 其中, 终端 1 及终端 2 为已接入***的终端,终端 3为正在进行接入操作的终端,且已可以对 CCH 传输的控制信令进行解码操作; 终端 1不在终端组内, 终端 2在终端组内。
图 7为本实施例 CCH传输的控制信令的结构,如图 7所示, CCH传输 的控制信令包括六个控制信令, 分别为控制信令 1、 控制信令 2、 控制信令 3、 控制信令 4、 控制信令 5以及控制信令 6; 其中, 每个控制信令占用的 视频资源大小相同, 每个控制信令使用的调制编码方式相同, 由标准默认 配置, 每个控制信令均包括继续解码指示信息, 发送给同一个终端的多个 控制信令占用同一个 OFDM符号或占用时域上连续的多个 OFDM符号。具 体地,发送给终端 1的控制信令 5及控制信令 6占用 OFDM符号 N+1中连 续的频率资源,且控制信令 1及控制信令 2占用 OFDM符号 N中连续的频 率资源,控制信令 3及控制信令 4占用两个连续的 OFDM符号,即: OFDM 符号 N及 OFDM符号 N+1。
在本实施例中, 继续解码指示信息采用 lbit描述, 当继续解码指示信 息为 "Γ 时, 表示所述继续解码指示信息所在的控制信令后面还有发送给 特定终端的控制信令; 当继续解码指示信息为 "0" 时, 表示所述继续解码 指示信息所在的控制信令后面没有发送给特定终端的控制信令。 其中, 所 述特定终端是指包含所述继续解码指示信息的控制信令需要发送到的终 端。
经过上述处理后, 基站通过 CCH向终端发送控制信令。
终端 1收到基站通过 CCH发送的控制信令后,首先解码广播控制信令, 即: 控制信令 1 , 获知控制信令 1中的继续解码指示信息为 "1" , 进而获知 控制信令 2也是广播控制信令, 继续解码控制信令 2, 获知控制信令 2中的 继续解码指示信息为 "0" , 进而获知控制信令 3 不是广播控制信令, 从而 完成了对广播控制信令的解码; 终端 1 继续解码组播控制信令, 即: 控制 信令 3及控制信令 4, 由于终端 1并不在终端组内, 终端 1还需要继续解码 单播控制信令, 即: 控制信令 5及控制信令 6; 终端 1继续解码控制信令 5 , 获知控制信令 5是发送给自身的信令, 并且获知控制信令 5 中的继续解码 指示信息为 "1" , 进而获知控制信令 6也是发送给自身的信令, 继续解码 控制信令 6, 获知控制信令 6中的继续解码指示信息为 "0" , 进而获知控制 信令 6后面的控制信令不是发送给自身的信令, 从而完成了对控制信道传 输的控制信令的解码。
终端 2收到基站通过 CCH发送的控制信令后 ,首先解码广播控制信令, 即: 控制信令 1 , 获知控制信令 1中的继续解码指示信息为 "1" , 进而获知 控制信令 2也是广播控制信令, 继续解码控制信令 2, 获知控制信令 2中的 继续解码指示信息为 "0" , 进而获知控制信令 3 不是广播控制信令, 从而 完成了对广播控制信令的解码; 终端 2继续解码组播控制信令, 即: 控制 信令 3及控制信令 4,由于终端 2在终端组内,终端 2继续解码控制信令 3 , 获知控制信令 3是发送给自身所在的终端组的, 并且获知控制信令 3中的 继续解码指示信息为 "1" , 进而获知控制信令 4也是发送给自身所在的终 端组的, 继续解码控制信令 4, 并且获知控制信令 4中的继续解码指示信息 为 "0" , 进而获知控制信令 5不是发送给自身所在的终端组的, 从而终端 2 完成组播控制信令的解码。 本实施例中假设所有组内终端的控制信令都通 过组播控制信令发送给组内的终端, 不需要通过单播控制信令发送, 所以 终端 2不再继续解码后续的控制信令。
终端 3收到基站通过 CCH发送的控制信令后 ,首先解码广播控制信令, 即: 控制信令 1 , 获知控制信令 1的继续解码指示信息为 "1" , 进而获知控 制信令 2也是广播控制信令, 继续解码控制信令 2, 获知控制信令 2中的继 续解码指示信息为 "0" , 进而获知控制信令 3 不是广播控制信令, 从而完 成了广播控制信令的解码。 在本实施例中, 由于终端 3正在进行接入*** 操作的终端, 所以, 只能解码广播控制信令, 因此, 终端 3 完成广播控制 信令的解码后, 就不再继续解码其它控制信令。
除了本实施例中描述的终端 2的控制信令都通过组播控制信令发送之 外, 终端 2 的部分控制信令还可以通过单播控制信令发送, 此时, 终端 2 完成组播控制信令的解码后, 还需要解码单播控制信令。
为实现上述控制信令的发送方法, 本发明还提供了一种控制信令的发 送装置, 如图 8所示, 该装置包括: 分配模块 81及发送模块 82; 其中, 分配模块 81 , 用于为发送给同一个终端的两个以上控制信令, 分配连 续的时频资源, 并将分配时频资源后的控制信令发送给发送模块 82;
发送模块 82, 用于收到分配模块 81发送的控制信令后,将所述控制信 令发出。
其中, 所述分配模块 81 , 在分配时频域上连续的时频资源时, 还用于 为所述两个以上控制信令中的每个控制信令分配相同大小的时频资源。
该装置还可以进一步包括: 调制编码模块, 用于收到分配模块发送的 控制信令后, 采用标准默认配置的调制编码方式对所述控制信令进行调制 编码, 并将调制编码后的控制信令发送给发送模块 82;
所述分配模块 81 , 还用于将分配时频资源后的控制信令发送给调制编 码模块;
所述发送模块 82, 还用于收到调制编码模块发送的控制信令后, 将所 述控制信令发出。
这里, 需要说明的是: 本发明的所述控制信令的发送装置中的各个模 块为基站的逻辑模块; 本发明的所述控制信令的发送装置中的分配模块、 及发送模块的具体处理过程已在上文中详述, 不再赘述。
为实现上述控制信令的接收方法, 本发明还提供了一种控制信令的接 收装置, 如图 9所示, 该装置包括: 解码模块 91 , 用于收到控制信令后, 解码所述控制信令, 获知发送给自身的控制信令; 其中, 所述发送给自身 的控制信令在时频域上连续分布。
其中, 该装置还可以进一步包括: 接收模块 92, 用于接收控制信令, 并将收到的控制信令发送给解码模块 91 ;
所述解码模块 91 , 还用于接收接收模块 92发送的控制信令。
这里, 需要说明的是: 本发明的所述控制信令的接收装置中的各个模 块为终端的逻辑模块; 本发明的所述控制信令的接收装置中的解码模块的 具体处理过程已在上文中详述, 不再赘述。
基于上述控制信令的发送装置及控制信令的接收装置, 本发明还提供 了一种控制信令的传输***, 该***包括: 控制信令的发送装置及控制信 令的接收装置; 其中, 所述控制信令的发送装置进一步包括: 分配模块及 发送模块; 所述控制信令的接收装置进一步包括: 解码模块; 其中,
分配模块, 用于为发送给同一个终端的两个以上控制信令, 分配连续 的资源, 并将分配时频资源后的控制信令发送给发送模块;
发送模块, 用于收到分配模块发送的控制信令后, 将所述控制信令发 出;
解码模块, 用于收到控制信令后, 解码所述控制信令, 获知发送给自 身的控制信令; 其中 , 所述发送给自身的控制信令在时频域上连续分布。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 工业实用性 本发明提供的技术方案, 基站为发送给同一个终端的两个以上控制信 令, 分配连续的时频资源; 将分配时频域资源后的所述控制信令发出; 终 端收到控制信令后, 解码所述控制信令, 获知发送给自身的控制信令; 其 中, 所述发送给自身的控制信令在时频域上连续分布, 如此, 能有效地提 高终端处理收到的控制信令的解码速度。 另外, 本发明提供的技术方案, 由于减少了终端解码的工作量, 如此, 大大降低了终端的耗电量, 从而延 长了终端待机的时间。

Claims

权利要求书
1、 一种控制信令的发送方法, 该方法包括:
基站为发送给同一个终端的两个以上控制信令, 分配连续的时频资源; 将分配时频域资源后的所述控制信令发出。
2、 根据权利要求 1所述的方法, 其中, 所述基站为发送给同一个终端 的两个以上控制信令, 分配连续的时频资源, 为:
将所述两个以上控制信令, 分配在同一个正交频分复用(OFDM )符号 内, 且所述两个以上控制信令占用的频域资源连续分布, 和 /或, 将所述两 个以上控制信令分配在两个以上时域连续的 OFDM符号内。
3、 根据权利要求 2所述的方法, 其中, 所述将所述两个以上控制信令 分配在两个以上时域连续的 OFDM符号内, 为:
将所述两个以上控制信令, 按照先频域资源再时域资源的方式分配到 所述时域上连续的 OFDM符号内,且时域按照 OFDM符号索引由小到大依 次分配。
4、 根据权利要求 1所述的方法, 其中, 在分配时频资源时, 该方法进 一步包括:
为所述两个以上控制信令中的每个控制信令分配相同大小的时频资 源。
5、 根据权利要求 1至 4任一项所述的方法, 其中, 在将分配时频域资 源后的所述控制信令发出之前, 该方法进一步包括:
所述控制信令采用的调制编码方式由***默认配置。
6、 根据权利要求 1至 4任一项所述的方法, 其中, 所述两个以上控制 信令包括: 广播控制信令、 和 /或组播控制信令、 和 /或单播控制信令。
7、 根据权利要求 1至 4任一项所述的方法, 其中, 每个所述控制信令 包括: 继续解码指示信息; 所述继续解码指示信息用于指示终端继续解码 指示信息所在的控制信令后面是否还有发送给所述终端的控制信令。
8、 根据权利要求 1至 4任一项所述的方法, 其中, 所述将分配时频资 源后的所述控制信令发出, 为:
通过控制信道(CCH )将分配时频资源后的所述控制信令发出。
9、 根据权利要求 8所述的方法, 其中, 在将分配时频域资源后的所述 控制信令发出, 且当所述两个以上控制信息包括: 广播控制信令、 组播控 制信令、 以及单播控制信令时, 该方法进一步包括:
基站先发送广播控制信令, 再发送组播控制信令, 最后发送单播控制 信令。
10、 一种控制信令的接收方法, 该方法包括:
终端收到控制信令后, 解码所述控制信令, 获知发送给自身的控制信 令;
其中, 所述发送给自身的控制信令在时频域上连续分布。
11、 根据权利要求 10所述的方法, 其中, 所述控制信令包括: 广播控 制信令、 和 /或组播控制信令、 和 /或单播控制信令。
12、 根据权利要求 10所述的方法, 其中, 每个所述控制信令包括: 继 续解码指示信息; 所述继续解码指示信息用于指示终端继续解码指示信息 所在的控制信令后面是否还有发送给所述终端的控制信令。
13、 根据权利要求 10、 11或 12所述的方法, 其中, 所述解码所述控 制信令, 为:
依据预先设置的原则, 对收到的控制信令进行解码。
14、 根据权利要求 13所述的方法, 其中, 当收到的控制信令包括: 单 播控制信令时, 所述依据预先设置的原则, 对收到的控制信令进行解码, 为:
当收到的控制信令不包括继续解码指示信息时, 终端尝试解码收到的 控制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令中 未包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控制 信令的解码, 如果成功解码出第一个发送给自身的单播控制信令, 则继续 解码后续连续分布的单播控制信令, 直至确定解码的所述连续分布的单播 控制信令不是发送给自身的, 则停止对收到的控制信令中的剩余控制信令 的解码, 认为完成对所述收到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端尝试解码收到的控 制信令中的第一个发送给自身的单播控制信令, 如果收到的控制信令中未 包含第一个发送给自身的单播控制信令, 则认为完成对所述收到的控制信 令的解码; 如果成功解码出第一个发送给自身的单播控制信令, 则通过继 续解码指示信息, 获知后续连续分布的单播控制信令是否也是发送给自身 的单播控制信令, 如果确定是发送给自身的单播控制信令, 则继续解码所 述后续连续分布的单播控制信令, 如果确定不是发送给自身的单播控制信 令, 则停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述 收到的控制信令的解码。
15、 根据权利要求 13所述的方法, 其中, 当收到的控制信令包括: 广 播控制信令、 和 /或组播控制信令时, 所述依据预先设置的原则, 对收到的 控制信令进行解码, 为:
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码; 和 /或,
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码。
16、 根据权利要求 13所述的方法, 其中, 当收到的控制信令包括: 组 播控制信令、 单播控制信令、 和 /或广播控制信令时, 所述依据预先设置的 原则, 对收到的控制信令进行解码, 为:
当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 继续解码后续连续分布的组播控制信令, 直至确定组播控制信令解码完成 后, 停止对收到的控制信令中的剩余控制信令的解码, 认为完成对所述收 到的控制信令的解码; 或者, 在确定组播控制信令解码完成后, 终端尝试 解码收到的控制信令中的第一个发送给自身的单播控制信令, 如果收到的 控制信令未包含第一个发送给自身的单播控制信令, 则认为完成对所述收 到的控制信令的解码, 如果成功解码出第一个发送给自身的单播控制信令, 则继续解码后续连续分布的单播控制信令, 直至确定解码的所述连续分布 的单播控制信令不是发送给自身的, 则停止对收到的控制信令中的剩余控 制信令的解码, 认为完成对所述收到的控制信令的解码;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个组播控制信令, 并在成功解码出第一个组播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为组播控制信 令, 如果确定仍为组播控制信令, 则继续解码所述后续连续分布的组播控 制信令, 如果确定不是组播控制信令, 则停止对收到的控制信令中的剩余 控制信令的解码, 认为完成对所述收到的控制信令的解码; 或者, 在确定 不是组播控制信令后, 终端尝试解码收到的控制信令中的第一个发送给自 身的单播控制信令, 如果收到的控制信令未包含第一个发送给自身的单播 控制信令, 则认为完成对所述收到的控制信令的解码; 如果成功解码出第 一个发送给自身的单播控制信令, 则通过继续解码指示信息, 获知后续连 续分布的单播控制信令是否也是发送给自身的单播控制信令, 如果确定是 发送给自身的单播控制信令, 则继续解码所述后续连续分布的单播控制信 令, 如果确定不是发送给自身的单播控制信令, 则停止对收到的控制信令 中的剩余控制信令的解码,认为完成对所述收到的控制信令的解码; 和 /或, 当收到的控制信令不包括继续解码指示信息时, 终端解码收到的控制 信令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 继续解码后续连续分布的广播控制信令, 直至确定对所述收到的控制信令 中的广播控制信令解码完成;
当收到的控制信令包括继续解码指示信息时, 终端解码收到的控制信 令中的第一个广播控制信令, 并在成功解码出第一个广播控制信令后, 通 过继续解码指示信息, 获知后续连续分布的控制信令是否仍为广播控制信 令, 如果确定仍为广播控制信令, 则继续解码所述后续连续分布的广播控 制信令, 如果确定不是广播控制信令, 则认为完成对所述收到的控制信令 中的广播控制信令的解码。
17、 一种控制信令的发送装置, 该装置包括: 分配模块及发送模块; 其中,
分配模块, 用于为发送给同一个终端的两个以上控制信令, 分配连续 的时频资源, 并将分配时频资源后的控制信令发送给发送模块;
发送模块, 用于收到分配模块发送的控制信令后, 将所述控制信令发 出。
18、 根据权利要求 17所述的装置, 其中, 所述分配模块, 在分配时频 域上连续的时频资源时, 还用于为所述两个以上控制信令中的每个控制信 令分配相同大小的时频资源。
19、 根据权利要求 17或 18所述的装置, 其中, 该装置进一步包括: 调制编码模块, 用于收到分配模块发送的控制信令后, 采用标准默认配置 的调制编码方式对所述控制信令进行调制编码, 并将调制编码后的控制信 令发送给发送模块;
所述分配模块, 还用于将分配时频资源后的控制信令发送给调制编码 模块;
所述发送模块, 还用于收到调制编码模块发送的控制信令后, 将所述 控制信令发出。
20、 一种控制信令的接收装置, 该装置包括: 解码模块, 用于收到控 制信令后, 解码所述控制信令, 获知发送给自身的控制信令;
其中, 所述发送给自身的控制信令在时频域上连续分布。
21、 根据权利要求 20所述的装置, 其中, 该装置进一步包括: 接收模 块, 用于接收控制信令, 并将收到的控制信令发送给解码模块;
所述解码模块, 还用于接收接收模块发送的控制信令。
22、 一种控制信令的传输***, 该***包括: 控制信令的发送装置及 控制信令的接收装置; 其中, 所述控制信令的发送装置进一步包括: 分配 模块及发送模块; 所述控制信令的接收装置进一步包括: 解码模块; 其中, 分配模块, 用于为发送给同一个终端的两个以上控制信令, 分配连续 的资源, 并将分配时频资源后的控制信令发送给发送模块;
发送模块, 用于收到分配模块发送的控制信令后, 将所述控制信令发 出;
解码模块, 用于收到控制信令后, 解码所述控制信令, 获知发送给自 身的控制信令;
其中, 所述发送给自身的控制信令在时频域上连续分布。
23、 根据权利要求 22所述的***, 其中, 所述分配模块, 在分配时频 域上连续的时频资源时, 还用于为所述两个以上控制信令中的每个控制信 令分配相同大小的时频资源; 和 /或,
所述控制信令的发送装置进一步包括调制编码模块, 用于收到分配模 块发送的控制信令后, 采用标准默认配置的调制编码方式对所述控制信令 进行调制编码, 并将调制编码后的控制信令发送给发送模块;
所述分配模块, 还用于将分配时频资源后的控制信令发送给调制编码 模块;
所述发送模块, 还用于收到调制编码模块发送的控制信令后, 将所述 控制信令发出。
24、 根据权利要求 22或 23所述的***, 其中, 所述控制信令的接收 装置进一步包括: 接收模块, 用于接收控制信令, 并将收到的控制信令发 送给解码模块;
所述解码模块, 还用于接收接收模块发送的控制信令。
PCT/CN2011/083052 2011-09-21 2011-11-28 一种控制信令的传输方法及*** WO2012151960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110281901.9 2011-09-21
CN201110281901A CN102316068A (zh) 2011-09-21 2011-09-21 一种控制信令的传输方法及***

Publications (1)

Publication Number Publication Date
WO2012151960A1 true WO2012151960A1 (zh) 2012-11-15

Family

ID=45428894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083052 WO2012151960A1 (zh) 2011-09-21 2011-11-28 一种控制信令的传输方法及***

Country Status (2)

Country Link
CN (1) CN102316068A (zh)
WO (1) WO2012151960A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103873183B (zh) * 2012-12-07 2017-03-01 电信科学技术研究院 一种数据传输方法及装置
CN112512122B (zh) * 2017-05-04 2022-04-08 华为技术有限公司 一种控制信息传输方法、相关装置及计算机存储介质
PL3590283T3 (pl) 2018-05-11 2023-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Sposób i aparat do wykorzystania informacji wskazania alokacji zasobów w dziedzinie czasu

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064903A (zh) * 2006-04-25 2007-10-31 华为技术有限公司 一种通信***资源分配指示方法、基站及用户设备
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN102118808A (zh) * 2011-03-03 2011-07-06 电信科学技术研究院 触发切换及移动管理实体池标识信息的传递方法和设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3660278B2 (ja) * 2001-07-13 2005-06-15 松下電器産業株式会社 基地局装置、移動局装置、無線通信システム及び無線通信方法
CN100433924C (zh) * 2005-10-27 2008-11-12 华为技术有限公司 一种上行/下行控制信道的实现方法
CN101005362A (zh) * 2006-01-16 2007-07-25 北京三星通信技术研究有限公司 传送下行控制信令的设备和方法
CN101039160B (zh) * 2006-03-17 2011-04-06 华为技术有限公司 共享控制信道资源的复用***、方法及其接收设备
CN101277167A (zh) * 2006-03-20 2008-10-01 华为技术有限公司 正交频分复用***中的反馈控制方法、装置及收发信机
JP4705162B2 (ja) * 2006-04-06 2011-06-22 株式会社日立製作所 無線通信システム、無線基地局装置及び無線端末装置
CN101064577A (zh) * 2006-04-29 2007-10-31 北京三星通信技术研究有限公司 下行控制信令的传输方法和设备
CN101119277A (zh) * 2006-08-03 2008-02-06 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN101242625B (zh) * 2007-02-06 2011-08-03 华为技术有限公司 一种控制信道资源映射的方法、***及装置
CN101330346A (zh) * 2007-06-22 2008-12-24 华为技术有限公司 控制信令信息的处理方法及装置
CN101132387B (zh) * 2007-08-15 2013-01-16 中兴通讯股份有限公司 用于通信***的控制信令及其参考信号的发射方法
CN101553034B (zh) * 2008-03-31 2012-10-10 中兴通讯股份有限公司 资源分配方法
CN101730241B (zh) * 2008-10-31 2012-06-06 中兴通讯股份有限公司 无线通信***中非用户专有控制信息的传输方法
CN101931961A (zh) * 2009-06-23 2010-12-29 华为技术有限公司 实现中继***回程链路控制信道传输的方法、***和设备
CN102036391A (zh) * 2010-12-09 2011-04-27 中兴通讯股份有限公司 基于终端服务等级的上行mu-mimo传输方法及基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064903A (zh) * 2006-04-25 2007-10-31 华为技术有限公司 一种通信***资源分配指示方法、基站及用户设备
CN101222260A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输控制信令的设备和方法
CN102118808A (zh) * 2011-03-03 2011-07-06 电信科学技术研究院 触发切换及移动管理实体池标识信息的传递方法和设备

Also Published As

Publication number Publication date
CN102316068A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
US10785769B2 (en) Physical downlink control channel design for 5G new radio
US20200280351A1 (en) Operation method of station in wireless local area network
US11082964B2 (en) Data and control multiplexing for uplink data transmission method and device
JP6170194B2 (ja) 無線通信システムにおいて基地局が下りリンク制御チャネルを送信する方法及びそのための装置
US9467819B2 (en) Multicast service using unicast subframe
US8780798B2 (en) Method and devices for providing enhanced signaling
EP1908191B1 (en) In-band rate indicator method and wireless terminal
EP3151459B1 (en) Resource indication processing method, processing apparatus, access point and site
CN108632192B (zh) 数据传输的方法、设备和***
US9131465B2 (en) Methods and apparatus for mapping control channels to resources in OFDM systems
US7936831B2 (en) Methods and apparatus for implementing and using an in-band rate indicator
US8081696B2 (en) Method and apparatus for multi-carrier HSDPA traffic transmission channel coding
US20180167164A1 (en) Ultra Reliable Low Latency Communications (URLLC) Transmission
WO2017000143A1 (zh) 传输上行数据的方法和装置
US20140355493A1 (en) Multicast service using unicast subframe
EP2140599A1 (en) Method and apparatus for allocating ackch resources in a wireless communication system
WO2020187054A1 (zh) 传输数据的方法和通信装置
KR20160137153A (ko) 통신 시스템에서 방송 정보 수신 방법 및 장치
CN111615193A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN110740434A (zh) 一种被用于无线通信的节点中的方法和装置
WO2017000900A1 (zh) 传输信息的方法和设备
WO2012151960A1 (zh) 一种控制信令的传输方法及***
CN110611546B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2013135184A1 (zh) 控制信令的发送、接收方法、网络侧设备和用户设备
CN114979967A (zh) 一种用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865399

Country of ref document: EP

Kind code of ref document: A1