WO2012150002A1 - Dispositif de mesure de caracteristiques dans un reservoir d'uree - Google Patents

Dispositif de mesure de caracteristiques dans un reservoir d'uree Download PDF

Info

Publication number
WO2012150002A1
WO2012150002A1 PCT/EP2012/001652 EP2012001652W WO2012150002A1 WO 2012150002 A1 WO2012150002 A1 WO 2012150002A1 EP 2012001652 W EP2012001652 W EP 2012001652W WO 2012150002 A1 WO2012150002 A1 WO 2012150002A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
sensor
signals
main body
receiver
Prior art date
Application number
PCT/EP2012/001652
Other languages
English (en)
Inventor
Hervé Richard
Bernard Kamel
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201280021825.0A priority Critical patent/CN103620353A/zh
Publication of WO2012150002A1 publication Critical patent/WO2012150002A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/68Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means
    • G01F23/686Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using electrically actuated indicating means using opto-electrically actuated indicating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/76Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats characterised by the construction of the float
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1406Storage means for substances, e.g. tanks or reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/148Arrangement of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1814Tank level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1818Concentration of the reducing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to devices for measuring the characteristics of liquid in a urea tank, used for example in the pollution control systems of internal combustion engines.
  • the invention relates to a device and a method for determining the concentration of urea in the reservoir and the volume of liquid in the reservoir.
  • the purpose of the present invention is to improve the integration of these sensors and to enrich the functionalities proposed by these sensors.
  • the invention provides a measuring device adapted for measuring characteristics in a urea-containing liquid reservoir, said device comprising:
  • a main body adapted to float in said liquid comprising an upper part emerged from the liquid and a lower part immersed in the liquid, and slidably mounted on said guide means,
  • a second sensor located in the lower part of the main body adapted to measure a distance from the tank bottom, comprising a second transmitter adapted signals for transmitting second signals and a second signal receiver adapted to receive the second signals the second signal transmitter after reflection on the bottom of the tank, the measured distance being representative of the volume of liquid in the tank.
  • the determination of the concentration of urea in the tank and the determination of the volume of liquid present in the tank can be obtained by means of a single device.
  • one or more of the arrangements described below may be used in addition.
  • the first transmitter can be adapted to emit at least one infrared ray at a predetermined wavelength, directed to the first receiver, the first receiver then being adapted to measure the intensity of the infrared ray received, so that this intensity makes it possible to have an image of attenuation of the first signal and deduce the concentration of urea in the liquid.
  • the first transmitter is adapted to emit at least infrared rays at a plurality of wavelengths, directed to the first receiver, the first receiver is adapted to measure the intensity of the infrared rays received in each wavelength to deduce from these intensities the concentration of urea in the liquid and the presence of pollutants in the liquid; thus the presence of miscible pollutants can be detected.
  • the first signals pass through the upper surface of the liquid, whereby the first sensor is adapted to detect pollutants floating on the surface of the liquid, the first receiver thus making it possible to measure the intensity of the signals received, this intensity making it possible to have an image attenuation of the first signals and deduce the concentration of urea in the liquid and the presence of floating pollutants on the surface of the liquid.
  • One of the first transmitter or first signal receiver is arranged in the upper part emerging from the main body, that is to say above the surface of the liquid, the other one of the first transmitter or first signal receiver then being arranged. below the surface, in the submerged lower part of the main body, one and the other being arranged vis-à-vis in the vertical direction relative to the reservoir, so that the first signals pass through the air interface -liquid where are suspended potential pollutants.
  • the device may further comprise a third sensor, adapted to measure the concentration of urea in the liquid, comprising a third signal transmitter adapted to emit third signals and a third signal receiver adapted to receive said third signals, the third sensor being located in the submerged part of the main body, and the path of said third signals being totally included in the liquid, whereby the third sensor can deliver more accurate concentration information than the information delivered by the first sensor, and from this information of this first sensor, the information delivered by the third sensor then allows to deduce a more accurate information on the presence of pollutants (concentration, type ..).
  • the device further comprises a single control circuit, the first sensor and the second sensor being connected to said single control circuit, and the third sensor when it is present also being connected to said single control circuit, so that the costs of the solution are minimized.
  • the first sensor, the second sensor and the third sensor when it is present can be implanted on the same printed circuit, located in the lower part of the main body, the device comprising in this case mirrors, located in the upper part of the main body, vis-à-vis the first and third sensors, for reflecting the first signals and the third signals when they are present, so that the costs of the solution are minimized and the integration is improved .
  • the guiding means comprise a base fixed to the bottom of the tank by fastening means such as one or more screws and a guide rod, so as to allow the main body to slide along this rod without resistance and to float freely. in the liquid.
  • the first sensor, the second sensor, the third sensor when it is present and the said single control circuit are arranged in a sealed enclosure, whereby the electronic elements are protected from the liquid.
  • the second signals are for example ultrasonic signals reflecting on the bottom of the tank, so that the measurement of the time difference between the emission and the reception of the second signals is not very complex.
  • the invention also relates to a method for measuring the concentration and level in a liquid reservoir containing urea, implementing the device as described above.
  • FIG. 1 shows the measuring device according to a first embodiment of the invention, arranged in a liquid reservoir containing urea,
  • FIG. 2 is a view from above of the device of FIG. 1,
  • FIG. 3 represents a detailed view of the surface of the liquid with presence of pollutants
  • FIG. 4 represents a second embodiment of the invention
  • FIG. 5 represents a third embodiment of the invention
  • FIG. 6 represents a variant of the third embodiment of the invention.
  • the same references designate identical or similar elements.
  • Figure 1 shows a measuring device 10 adapted to measure characteristics of a liquid in a tank 8 containing urea, used for example in the pollution control systems of internal combustion engines.
  • the device 10 comprises a main body 5 and guide means 4 extending in a substantially vertical direction relative to the tank 8 on which is mounted said main body of the measuring device, movable in a substantially vertical direction.
  • the guide means 4 comprise a base 42 and a substantially vertical guide rod 41, on which flanges 51 integral with the main body can slide.
  • the base 42 is fixed on an excess thickness 80 arranged internally in the lower part of the tank 8, by fasteners 44 screwed or latched for example.
  • the guide means 4 may be made differently without departing from the scope of the present invention.
  • the liquid expanse 9 generally comprises water and urea in a concentration which may vary, but this concentration must be determined in a fairly precise manner in order, in the application envisaged, to ensure good management of the treatment of the pollution of the oxides of nitrogen in the exhaust line of the internal combustion engine.
  • the liquid expanse has an upper surface 90 above which there is air.
  • At the surface 90 of the liquid may be immiscible pollutants with urea in the aqueous phase, such as hydrocarbons of any type which are lighter than the aqueous solution of urea.
  • small puddles 91 of hydrocarbons or even a thicker layer 91 may for example float on surface 90.
  • the presence of such pollutants may come from an error of the user of the vehicle when full of the main fuel tank. It can lead to the damage of the exhaust line or to an incorrect dosage of the amount of urea injected into the depollution means and is therefore detrimental. It is therefore important to detect them, and / or to take them into account when managing the dosage of urea in the exhaust line.
  • the urea reservoir in question may also contain miscible pollutants, the presence and concentration of which may affect the proper functioning of the depollution treatment.
  • the main body comprises an upper part 50a, emerging from the liquid, and a lower part 50b, immersed in the liquid, in addition it also comprises the following elements:
  • a low density floatation element 52 for example polystyrene foam or any other equivalent material, whose dimensions (depending on the properties) are adapted to confer flotation capacity on the main body loaded with its equipment,
  • a control unit 7 such as having an integrated electronic circuit (not shown),
  • a sealed enclosure 50 enclosing all the aforementioned electronic equipment
  • connection wiring 53 for the interface of the device with the electrical equipment of the vehicle (not shown).
  • the first signals 61 may be optical or electromagnetic.
  • the first signals are of an infrared nature and can be emitted either at a predetermined frequency or at several different frequencies, in particular at a frequency for which the attenuation of the urea is particularly important, for example at the wavelength 1, 1 ⁇ , and / or at other frequencies for which the absorption of polluting components is important.
  • the main body 5 floats freely with respect to the waterline constituted by the surface of the liquid 90, the vertical position of the first 1 and that of the second sensor 2 are fixed with respect to this liquid surface 90.
  • the vertical position of the first transmitter 11 and first receiver 12 remains constant relative to the surface 90 of the liquid, since the main body 5 and its equipment move concomitantly with the vertical displacement of the surface of the liquid 90 Therefore, the distance traveled by the first signals 61 in the liquid is constant.
  • the first receiver 12 being adapted for to measure the intensity of the infrared ray received, the electronic circuit 7 can deduce from this intensity (the distance between the first emitter 11 and the first receiver 12 being constant) the attenuation introduced by the urea concentration of the liquid as a function of predefined concentration-attenuation calibration table.
  • the second signals 62 emitted by the second sensor 2 directed towards the bottom of the tank 23 may also be optical or electromagnetic. In the illustrated example, these second signals 62 will preferably be ultrasonic or infrared. In the case where the second signals are ultrasonic, the second signal 62 emitted at a first instant is directed towards the bottom of the tank 23; it is, at this point, reflected by the bottom of the tank 23 and returns to the second receiver 22 in a reflected signal 65 (see Figure 1), which it reaches at a later time.
  • the second sensor 2 thus makes it possible to measure a time difference M between the emission of a second signal 62 by the second transmitter 21 and the reception by the second receiver 22 of the second signal reflected by the bottom 23 of the tank 8.
  • the concentration of urea in the liquid determined by the first sensor 1, makes it possible to determine the speed of propagation of the ultrasonic waves Vs in the liquid which is a function of the measured concentration. This determination is performed according to a predefined parameter table, stored for example in the control unit 7 (electronic circuit). From the measured time difference ⁇ t and from the propagation velocity of the ultrasonic waves Vs in the calculated liquid, a distance traveled by the second transmitted signals 62 and the second reflected signals 65 is deduced.
  • dO the known and fixed distance between the surface of the liquid 90 and the vertical position of the second sensor 2
  • the second signal transmitter 21 emits an infrared signal 62 for example at a predetermined frequency, for which the attenuation as a function of the urea concentration is known.
  • the second receiver 22 captures the reflected infrared signal 65 after reflection on the bottom of the tank 23 and measures its intensity. In this way, the attenuation related to the round trip (that is to say the distance 2xd1) can be calculated.
  • the concentration of urea in the tank 8 at a given instant being known by means of the first sensor 1 as explained above, the attenuation of the intensity of the signal passing through the liquid, per unit length traveled can be determined by means of the concentration-attenuation calibration table mentioned above.
  • the attenuation measured by means of the second sensor 2 then makes it possible to determine the total distance traveled by the second signal during its transmission 62 and its reflection 65, and then this distance divided by two gives the value of the distance d1.
  • FIG. 4 represents a second embodiment of the invention, which is an improvement of the first mode, in which a third sensor 3 is added in the device, and which is located in the submerged lower part 50b of the main body 5.
  • This third sensor 3 is adapted to measure only the concentration of urea in the liquid 9, without its measurement being impacted by the presence of pollutants on the surface of the liquid 90.
  • This third sensor 3 comprises a third signal transmitter 31 adapted to transmit third signals 33 and a third signal receiver 32 adapted to receive said third signals 33, the third receiver 32 being located vis-à-vis the third transmitter 31 according to the vertical direction relative to the reservoir 8, the path of said third signals 33 being totally included in the liquid 9, over a predefined fixed distance, which is the distance separating the third transmitter 31 from the third receiver 32.
  • the third signals 33 are of infrared nature and may comprise several different frequencies, in particular a frequency for which the attenuation of the urea is particularly important, for example for the wavelength 1, 1 ⁇ .
  • the third sensor 3 can deliver very accurate urea concentration information related to the attenuation over the fixed distance, unaffected by any pollutants present on the surface of the liquid.
  • the first sensor 1 provides information regarding the presence of pollutants and urea. Then, the concentration of urea not impacted by the presence of pollutants being known thanks to the third sensor 3, it is thus deduced by calculation the attenuation that the signal undergoes, induced only by the presence of pollutants on the surface.
  • FIG. 5 represents a third embodiment of the invention, which is an alternative to the first and second embodiments, in which a first mirror 13 is advantageously used, advantageously situated in the upper emergent part 50a of the main body 5.
  • This mirror 13 reflects the first signals 61 sent by the first transmitter 11, so that the first transmitter 11 and the first receiver 12 can be positioned side by side in the lower part 50b of the main body 5.
  • another mirror 33 is positioned in the upper part 50a emerging from the main body 5 and facing the third transmitter 31, which is arranged next to the third receiver 32, both located in the lower part 50b of the main body, so that the third signals 63 are reflected in said mirror 33 to return to the third receiver 32.
  • the first sensor 1, the second sensor 2 and the third sensor 3 when it is present are located on the same control circuit 7 (or even integrated circuit) as illustrated in FIGS. which is located in the lower part 50b of the main body 5.
  • the third sensor 3 is optional, it makes it possible to determine with more precision the urea concentration and the pollutant concentration from the information provided by the first sensor 1.
  • the determination the distance d1 remains identical to that explained for the previous embodiments
  • FIG. 6 represents a variant of the third embodiment of the invention, in which the first and third transmitters (1 1, 31) constitute one and the same single transmitter 1 10 which transmits a single signal 660 equivalent to the first and third signals 61, 63 of the preceding embodiments.
  • This single signal 660 is emitted slightly at an angle to the vertical.
  • a part of this single signal 660 is reflected by the first mirror 13 (located opposite the upper part 50a) to return to the first receiver 12, and another part of this single signal 660 is reflected by refraction at the air-liquid interface of the surface 34 of the liquid to return to the third receiver 32.
  • the first sensor 1 and the second sensor 2 are connected to said same control circuit 7 which is unique, and the third sensor 3 when it is present is also connected to said control circuit 7.
  • control circuit 7 comprise the management of the two or three aforementioned sensors 1, 2, 3.
  • the control circuit 7 coordinates the emission of all the signals as well as the calculations of concentration and volume of liquid.
  • the control circuit 7 calculates the attenuation or transfers the measured data to a remote electronic computer (not shown) .
  • the calculated attenuation allows, thanks to a predefined calibration table, to deduce the concentration of urea in the liquid.
  • control circuit 7 controls the transmission of the second signals 62 at a first instant measures the time difference ⁇ t between the emission of the second signals and the reception of these second reflected signals.
  • the control circuit 7 processes this signal. information or transfer it to the remote electronic computer.
  • the single control circuit 7 calculates the attenuation or transfers the measured data to a remote computer.
  • the calculated attenuation allows, thanks to a predefined calibration table, to deduce the concentration of urea in the liquid.
  • the concentration of urea in the liquid makes it possible to determine the speed of propagation of the ultrasonic waves Vs in the liquid. Said speed Vs and the time difference ⁇ t make it possible to calculate the distance d1 with respect to the bottom of the tank as explained above, and to deduce therefrom the volume of liquid Vol present in the tank 8 as also explained above.
  • the single control circuit 7 controls the emission of the third signals 63 to the third transmitter 31 and receives the intensity measured on reception by the third receiver 32.
  • the control circuit 7 calculates the attenuating or transferring the measured data to the remote electronic computer.
  • the attenuation thus calculated makes it possible to determine the concentration of urea in the liquid, more precisely, without any influence of the possible presence of pollutants on the surface of the liquid 90, thanks to the predefined calibration table.
  • the control circuit 7 (or the remote computer) then calculates, thanks to the information collected by the first sensor 1, the characteristics specifically relating to the surface pollutants as indicated above.
  • the sensor referred to as the first sensor V in the description must be understood as the assembly consisting of the first sensor 1 and the third sensor 3 in the case of the second and third embodiments above.
  • the invention allows, via a single compact and sealed device, to: • Determine the concentration of urea in the liquid in the tank,
  • the sensors that allow these determinations can be integrated on the same control circuit.
  • the invention is not limited to the application to urea tanks and can be applied to any liquid reservoir whose concentration, pollution and volume are to be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Dispositif de mesure (10) adapté pour mesurer des caractéristiques dans un réservoir de liquide (9) contenant de l'urée, ledit dispositif comprenant des moyens de guidage (4) un corps principal (5) flottant sur le liquide, monté coulissant verticalement sur lesdits moyens de guidage, un premier capteur (1) fixé au corps principal, adapté pour mesurer la concentration d'urée dans le liquide (9), comprenant un premier émetteur de signaux (11) adapté pour émettre des premiers signaux (61) et un premier récepteur (12) recevant les premiers signaux qui traversent le liquide (9), un deuxième capteur (2) fixé au corps principal, adapté pour mesurer une distance par rapport au fond du réservoir, comprenant un deuxième émetteur de signaux (21) adapté pour émettre des deuxièmes signaux (62) et un deuxième récepteur de signaux (22), recevant les deuxièmes signaux réfléchis par le fond du réservoir (23), la distance mesurée permettant d'en déduire le volume de liquide présent dans le réservoir, et procédé correspondant pour combiner les informations mesurée par les deux capteurs.

Description

DISPOSITIF DE MESURE DE CARACTERISTIQUES
DANS UN RESERVOIR D'UREE
La présente invention est relative aux dispositifs de mesure de caractéristiques de liquide dans un réservoir d'urée, utilisé par exemple dans les systèmes de dépollution des moteurs à combustion interne.
Plus précisément, l'invention concerne un dispositif et un procédé pour déterminer la concentration en urée dans le réservoir et le volume de liquide présent dans le réservoir.
Il est connu, dans l'art antérieur, des systèmes de jaugeage de réservoir utilisant un organe flottant se déplaçant avec la surface du liquide. Par ailleurs, il est connu des dispositifs de mesure de la concentration d'urée dans une phase aqueuse, ces dispositifs étant généralement fixés près de la base du réservoir. L'installation de ces deux types de capteurs est coûteuse et requiert un espace disponible important.
La présente invention a pour but d'améliorer l'intégration de ces capteurs et d'enrichir les fonctionnalités proposées par ces capteurs.
L'invention propose un dispositif de mesure adapté pour mesurer des caractéristiques dans un réservoir de liquide contenant de l'urée, ledit dispositif comprenant :
• des moyens de guidage, situés dans le réservoir, fixés au réservoir par des moyens de fixation et s'étendant selon une direction sensiblement verticale par rapport au réservoir,
· un corps principal adapté pour flotter dans ledit liquide, comprenant une partie supérieur émergée du liquide et une partie inférieure immergée dans le liquide, et monté coulissant sur lesdits moyens de guidage,
• un premier capteur fixé au corps principal, adapté pour mesurer la concentration d'urée dans le liquide, comprenant un premier émetteur de signaux adapté pour émettre des premiers signaux et un premier récepteur de signaux adapté pour recevoir lesdits premiers signaux après traversée d'au moins une partie du liquide,
un deuxième capteur situé dans la partie inférieure du corps principal, adapté pour mesurer une distance par rapport au fond du réservoir, comprenant un deuxième émetteur de signaux adapté pour émettre des deuxièmes signaux et un deuxième récepteur de signaux, adapté pour recevoir les deuxièmes signaux du deuxième émetteur de signaux après réflexion sur le fond du réservoir, la distance mesurée étant représentative du volume de liquide présent dans le réservoir.
Grâce à ces dispositions, la détermination de la concentration en urée dans le réservoir et la détermination du volume de liquide présent dans le réservoir peuvent être obtenues au moyen d'un seul dispositif. Dans divers modes de réalisation de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions décrites ci-après.
Le premier émetteur peut être adapté pour émettre au moins un rayon infrarouge à une longueur d'onde prédéterminée, dirigé vers le premier récepteur, le premier récepteur étant alors adapté pour mesurer l'intensité du rayon infrarouge reçu, de sorte que cette intensité permet d'avoir une image de l'atténuation du premier signal et d'en déduire la concentration en urée dans le liquide.
Le premier émetteur est adapté pour émettre au moins des rayons infrarouge selon une pluralité de longueurs d'onde, dirigés vers le premier récepteur, le premier récepteur est adapté pour mesurer l'intensité des rayons infrarouge reçus dans chaque longueur d'onde pour déduire de ces intensités la concentration en urée dans le liquide et la présence de polluants dans le liquide ; ainsi la présence de polluants miscibles peut être détectée.
Les premiers signaux traversent la surface supérieure du liquide, moyennant quoi le premier capteur est adapté pour détecter des polluants flottant à la surface du liquide, le premier récepteur permettant ainsi de mesurer l'intensité des signaux reçus, cette intensité permettant d'avoir une image de l'atténuation des premiers signaux et d'en déduire la concentration en urée dans le liquide et la présence de polluants flottants à la surface du liquide.
L'un des premier émetteur ou premier récepteur de signaux est agencé dans la partie supérieure émergée du corps principal, c'est-à-dire au dessus de la surface du liquide l'autre du premier émetteur ou premier récepteur de signaux étant alors agencé au dessous de la surface, dans la partie inférieure immergée du corps principal, l'un et l'autre étant agencés en vis-à-vis selon la direction verticale par rapport au réservoir, de sorte que les premiers signaux traversent l'interface air-liquide où se trouvent en suspension des polluants potentiels.
Le dispositif peut comprendre en outre un troisième capteur, adapté pour mesurer la concentration d'urée dans le liquide, comprenant un troisième émetteur de signaux adapté pour émettre des troisièmes signaux et un troisième récepteur de signaux adapté pour recevoir lesdits troisièmes signaux, le troisième capteur étant situé dans la partie immergée du corps principal, et le parcours desdits troisièmes signaux étant totalement inclus dans le liquide, moyennant quoi le troisième capteur peut délivrer une information de concentration plus précise que l'information délivrée par le premier capteur, et à partir de cette information de ce premier capteur, l'information délivrée par le troisième capteur permet alors d'en déduire une information plus précise concernant la présence de polluants (concentration, type..). Le dispositif comprend en outre un circuit de commande unique, le premier capteur et le deuxième capteur étant raccordés audit circuit de commande unique, et le troisième capteur lorsque celui-ci est présent étant également raccordé audit circuit de commande unique, de sorte que les coûts de la solution s'en trouvent minimisés.
Le premier capteur, le deuxième capteur et le troisième capteur lorsque celui- ci est présent peuvent être implantés sur un même circuit imprimé, situé dans la partie inférieur du corps principal, le dispositif comprenant dans ce cas des miroirs, situés dans la partie supérieure du corps principal, en vis-à-vis des premier et troisième capteurs, permettant de réfléchir les premiers signaux et les troisièmes signaux lorsque ces derniers sont présents, de sorte que les coûts de la solution s'en trouvent minimisés et l'intégration est améliorée.
Les moyens de guidage comprennent une embase fixée au fond du réservoir par des moyens de fixation tels qu'une ou plusieurs vis et une tige de guidage, de manière à permettre au corps principal de coulisser le long de cette tige sans résistance et de flotter librement dans le liquide.
Le premier capteur, le deuxième capteur, le troisième capteur lorsque celui-ci est présent et ledit circuit de commande unique sont agencés dans une enceinte étanche, moyennant quoi les éléments électroniques sont protégés du liquide.
Les deuxièmes signaux sont par exemple des signaux ultrasonores se réfléchissant sur le fond du réservoir, de sorte que la mesure de l'écart temporel entre l'émission et la réception des deuxièmes signaux est peu complexe.
L'invention vise aussi un procédé de mesure de la concentration et du niveau dans un réservoir de liquide contenant de l'urée, mettant en œuvre le dispositif tel que décrit ci- dessus.
D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description suivante de trois modes de réalisation de l'invention, donnés à titre d'exemples non limitatifs, en regard des dessins joints sur lesquels :
• la figure 1 présente le dispositif de mesure selon un premier mode de réalisation de l'invention, agencé dans un réservoir de liquide contenant de l'urée,
· la figure 2 est une vue de dessus du dispositif de la figure 1 ,
• la figure 3 représente une vue de détail de la surface du liquide avec présence de polluants,
• la figure 4 représente un deuxième mode de réalisation de l'invention,
• la figure 5 représente un troisième mode de réalisation de l'invention, · la figure 6 représente une variante du troisième mode de réalisation de l'invention. Sur les différentes figures, les mêmes références désignent des éléments identiques ou similaires.
La figure 1 montre un dispositif de mesure 10 adapté pour mesurer des caractéristiques d'un liquide dans un réservoir 8 contenant de l'urée, utilisé par exemple dans les systèmes de dépollution des moteurs à combustion interne.
Le dispositif 10 comprend un corps principal 5 et des moyens de guidage 4 s'étendant selon une direction sensiblement verticale par rapport au réservoir 8 sur lesquels est monté ledit corps principal du dispositif de mesure, mobile selon une direction sensiblement verticale.
Dans l'exemple illustré sur les figures, les moyens de guidage 4 comprennent une embase 42 et une tige de guidage 41 sensiblement verticale, sur laquelle peuvent coulisser des brides 51 solidaires du corps principal.
Comme illustré sur les figures, l'embase 42 est fixée sur une surépaisseur 80 agencée intérieurement en partie inférieure du réservoir 8, par des fixations 44 vissées ou encliquetées par exemple. Les moyens de guidage 4 peuvent être réalisés de manière différente sans sortir du cadre de la présente invention.
L'étendue liquide 9 comprend généralement de l'eau et de l'urée dans une concentration qui peut varier mais cette concentration doit être déterminée de façon assez précise pour, dans l'application envisagée, assurer une bonne gestion du traitement dépollution des oxydes d'azote dans la ligne d'échappement du moteur à combustion interne.
L'étendue liquide présente une surface supérieure 90 au dessus de laquelle se trouve de l'air. A la surface 90 du liquide peuvent se trouver des polluants non miscibles avec de l'urée en phase aqueuse, comme par exemple des hydrocarbures de tout type qui sont plus légers que la solution aqueuse d'urée.
Comme représenté à la figure 3, de petites flaques 91 d'hydrocarbures voire une couche plus épaisse 91 peuvent par exemple surnager à la surface 90. La présence de tels polluants peut provenir d'une erreur de l'utilisateur du véhicule lorsqu'il fait le plein du réservoir de carburant principal. Elle peut conduire à l'endommagement de la ligne d'échappement ou à un dosage incorrect de la quantité d'urée injectée dans les moyens de dépollution et est donc préjudiciable. Il est donc important de les détecter, et/ou d'en tenir compte dans la gestion du dosage d'urée dans la ligne d'échappement.
Le réservoir d'urée en question peut aussi contenir des polluants miscibles, dont la présence et la concentration peuvent influer sur le bon fonctionnement du traitement de dépollution. Comme représenté aux figures 1 et 2, le corps principal comporte une partie supérieure 50a, émergée du liquide, et une partie inférieure 50b, immergée dans le liquide, en outre il comprend aussi les éléments suivants :
• un élément de flottaison 52 de densité faible, par exemple de la mousse de polystyrène ou tout autre matériau équivalent, dont les dimensions (en fonction des propriétés) sont adaptées pour conférer la capacité de flottaison au corps principal chargé de ses équipements,
• une unité de commande 7 telle que comportant un circuit électronique intégré (non représenté),
· un premier capteur 1 fixé au corps principal, adapté pour mesurer notamment la concentration d'urée dans le liquide 9, comprenant un premier émetteur de signaux 1 1 adapté pour émettre des premiers signaux 61 et un premier récepteur 12 de signaux adapté pour recevoir lesdits premiers signaux 61 , lesdits premiers signaux 61 traversant au moins une partie du volume de liquide 9,
· un deuxième capteur 2 fixé au corps principal, préférentiellement dans la partie inférieure immergée 50b du corps principal, adapté pour mesurer une distance par rapport au fond du réservoir, comprenant un deuxième émetteur de signaux 21 adapté pour émettre des deuxièmes signaux 62 et un deuxième récepteur de signaux 22, adapté pour recevoir les deuxièmes signaux réfléchis 65 par le fond du réservoir 23,
· une enceinte étanche 50 renfermant tous les équipements électroniques susmentionnés,
• un câblage de raccordement 53 pour l'interface du dispositif avec l'équipement électrique du véhicule (non représenté).
Les premiers signaux 61 peuvent être optiques ou électromagnétiques. Dans l'exemple illustré, les premiers signaux sont de nature infrarouge et peuvent être émis soit à une fréquence prédéterminée, soit à plusieurs fréquences différentes, en particulier à une fréquence pour laquelle l'atténuation de l'urée est particulièrement importante, par exemple à la longueur d'onde 1 ,1 μιτι, et/ou à d'autres fréquences pour lesquelles l'absorption de composants polluants est importante.
Etant donné que le corps principal 5 flotte librement par rapport à la ligne de flottaison constituée par la surface du liquide 90, la position verticale du premier 1 et celle du deuxième capteur 2 sont fixes par rapport à cette surface de liquide 90.
En l'occurrence la position verticale du premier émetteur 1 1 et premier récepteur 12 reste constante par rapport à la surface 90 du liquide, car le corps principal 5 et ses équipements se déplacent de façon concomitante avec le déplacement vertical de la surface du liquide 90. Par conséquent, la distance parcourue par les premiers signaux 61 dans le liquide est constante. Le premier récepteur 12 étant adapté pour mesurer l'intensité du rayon infrarouge reçu, le circuit électronique 7 peut déduire de cette intensité (la distance entre le premier émetteur 11 et le premier récepteur 12 étant constante) l'atténuation introduite par la concentration en urée du liquide en fonction d'une table de calibration concentration-atténuation prédéfinie.
Les deuxièmes signaux 62 émis par le deuxième capteur 2 dirigés vers le fond du réservoir 23 peuvent être également optiques ou électromagnétiques. Dans l'exemple illustré, ces deuxièmes signaux 62 seront préférentiellement ultrasonores ou infrarouges. Dans le cas où les deuxièmes signaux sont ultrasonores, le deuxième signal 62 émis à un premier instant est dirigé vers le fond du réservoir 23 ; il est, à cet endroit, réfléchi par le fond du réservoir 23 et retourne vers le deuxième récepteur 22 en un signal réfléchi 65 (cf. figure 1), qu'il atteint à un instant postérieur.
Le deuxième capteur 2 permet donc de mesurer un écart de temps M entre l'émission d'un deuxième signal 62 par le deuxième émetteur 21 et la réception par le deuxième récepteur 22, dudit deuxième signal réfléchi 65 par le fond 23 du réservoir 8.
Par ailleurs, la concentration en urée dans le liquide, déterminée par le premier capteur 1 , permet de déterminer la vitesse de propagation des ondes ultrasonores Vs dans le liquide qui est fonction de la concentration mesurée. Cette détermination est réalisée en fonction d'une table de paramètres prédéfinis, stockée par exemple dans l'unité de commande 7 (circuit électronique). On déduit de l'écart de temps At mesurée et de la vitesse de propagation des ondes ultrasonores Vs dans le liquide calculée, une distance parcourue par les deuxièmes signaux émis 62 et par les deuxièmes signaux réfléchis 65. Cette distance, si dans le deuxième capteur, le deuxième émetteur et deuxième récepteur sont situés sur le même niveau par rapport à la verticale, est le double de la distance d1 séparant le deuxième émetteur 21 ou récepteur 22 du fond du réservoir 23 (puisque les deuxièmes signaux font un aller-retour 62,65). La distance ainsi mesurée, d1 = (Vs x At) / 2, permet d'en déduire le volume de liquide Vol présent dans le réservoir, par la formule :
Vol = [ (Vs x At) / 2 + dO] x S (1 )
Avec :
- dO : la distance connue et fixe entre la surface du liquide 90 et la position verticale du deuxième capteur 2, et
- S : la section équivalente du réservoir 8.
Bien sûr, si la position des deuxièmes émetteur 21 et récepteur 22 sont décalées entres elles par rapport à la verticale, il faut tenir compte de cette distance dans la mesure de l'écart de temps et donc de la distance entre le deuxième émetteur 21 et le fond du réservoir ou de la distance entre le deuxième récepteur 22 et le fond du réservoir. Dans le cas où les deuxièmes signaux sont infrarouges, le deuxième émetteur de signaux 21 émet un signal infrarouge 62 par exemple à une fréquence prédéterminée, pour laquelle l'atténuation en fonction de la concentration en urée est connue. Simultanément, le deuxième récepteur 22 capte le signal infrarouge réfléchi 65 après réflexion sur le fond du réservoir 23 et mesure son intensité. De la sorte, l'atténuation liée au parcours aller-retour (c'est-à-dire la distance 2xd1 ) peut être calculée.
La concentration en urée dans le réservoir 8 à un instant donné étant connue au moyen du premier capteur 1 comme exposé ci-dessus, l'atténuation de l'intensité du signal traversant le liquide, par unité de longueur parcourue peut être déterminée au moyen de la table de calibration concentration-atténuation susmentionnée. L'atténuation mesurée au moyen du deuxième capteur 2 permet alors de déterminer la distance totale parcourue par le deuxième signal lors de son émission 62 et de sa réflexion 65 puis, cette distance divisée par deux donne la valeur de la distance d1.
La suite du calcul pour en déduire le volume de liquide Vol présent n'est pas différente de celle exposée ci-dessus à la formule (1 ) dans le cas des signaux ultrasonores.
La figure 4 représente un deuxième mode de réalisation de l'invention, qui est une amélioration du premier mode, dans lequel on adjoint un troisième capteur 3, dans le dispositif, et qui est situé dans la partie inférieure 50b immergée du corps principal 5.
Ce troisième capteur 3 est adapté pour mesurer uniquement la concentration d'urée dans le liquide 9, sans que sa mesure soit impactée par la présence de polluants à la surface du liquide 90.
Ce troisième capteur 3 comporte un troisième émetteur de signaux 31 adapté pour transmettre des troisièmes signaux 33 et un troisième récepteur 32 de signaux adapté pour recevoir lesdits troisièmes signaux 33, le troisième récepteur 32 étant situé en vis-à-vis du troisième émetteur 31 selon la direction verticale par rapport au réservoir 8, le parcours desdits troisièmes signaux 33 étant totalement inclus dans le liquide 9, sur une distance fixe prédéfinie, qui est la distance séparant le troisième émetteur 31 du troisième récepteur 32.
Dans l'exemple illustré, les troisièmes signaux 33 sont de nature infra-rouge et peuvent comporter plusieurs fréquences différentes, en particulier une fréquence pour laquelle l'atténuation de l'urée est particulièrement importante, par exemple pour la longueur d'onde 1 ,1 μιη.
Ainsi, le troisième capteur 3 peut délivrer une information de concentration en urée très précise, liée à l'atténuation sur la distance fixe, non affectée par d'éventuels polluants présents à la surface du liquide 90 Ainsi, le premier capteur 1 fournit une information concernant la présence de polluants et d'urée. Puis, la concentration en urée non impactée par la présence de polluants étant connue grâce au troisième capteur 3, on déduit ainsi par calcul l'atténuation que subit le signal, induite seulement par la présence de polluants en surface.
La figure 5 représente un troisième mode de réalisation de l'invention, qui est une alternative au premier et au deuxième mode de réalisation, dans lequel on utilise un premier miroir 13, situé avantageusement dans la partie supérieure émergée 50a du corps principal 5. Ce miroir 13 réfléchit les premiers signaux 61 envoyés par le premier émetteur 1 1 , de sorte que le premier émetteur 1 1 et le premier récepteur 12 peuvent être positionnés cote-à-cote dans la partie inférieure 50 b du corps principal 5.
De même, en ce qui concerne le troisième capteur 3, s'il est présent, on positionne un autre miroir 33, situé dans la partie supérieure 50a émergée du corps principal 5 et situé en vis-à-vis du troisième émetteur 31 , qui est agencé à côté du troisième récepteur 32, tous les deux situés dans la partie inférieure 50b du corps principal, de sorte que les troisièmes signaux 63 se réfléchissent dans ledit miroir 33 pour revenir vers le troisième récepteur 32.
Avantageusement selon l'invention, le premier capteur 1 , le deuxième capteur 2 et le troisième capteur 3 lorsque celui-ci est présent, sont implantés sur le même circuit de commande 7 (ou même circuit intégré) comme illustré sur les figures 5 et 6, qui est situé dans la partie inférieure 50b du corps principal 5.
Concernant ce troisième mode de réalisation, il est à noter que le troisième capteur 3 est optionnel, il permet de déterminer avec plus de précision la concentration en urée ainsi que la concentration en polluants à partir des informations fournies par le premier capteur 1. La détermination de la distance d1 reste identique à celle expliquée pour les modes de réalisation précédents
La figure 6 représente une variante du troisième mode de réalisation de l'invention, dans lequel les premier et troisième émetteurs (1 1 ,31) ne constituent qu'un seul et même émetteur unique 1 10 qui émet un signal unique 660 équivalant aux premiers et troisièmes signaux 61 , 63 des modes de réalisations précédents. Ce signal unique 660 est émis légèrement en biais par rapport à la verticale. Ainsi, une partie de ce signal unique 660 est réfléchi par le premier miroir 13 (situé en vis-à-vis dans la partie supérieure 50a) pour revenir vers le premier récepteur 12, et une autre partie de ce signal unique 660 est réfléchi par réfraction à l'interface air-liquide de la surface 34 du liquide pour revenir vers le troisième récepteur 32.
Il est à noter que dans tous les modes de réalisations, le premier capteur 1 et le deuxième capteur 2 sont raccordés audit même circuit de commande 7 qui est unique, et le troisième capteur 3 lorsque celui-ci est présent est également raccordé audit circuit de commande 7.
Les fonctions du circuit de commande 7 comprennent la gestion des deux ou trois capteurs susmentionnés 1 , 2, 3. Le circuit de commande 7 coordonne l'émission de tous les signaux ainsi que les calculs de concentration et de volume de liquide.
Il commande l'émission des premiers signaux 61 vers le premier émetteur 1 1 puis reçoit l'intensité mesurée par le premier récepteur 12. Le circuit de commande 7 calcule l'atténuation ou transfère les données mesurées à un calculateur électronique distant (non représenté). L'atténuation ainsi calculée permet, grâce à une table de calibration prédéfinie, de déduire la concentration en urée dans le liquide.
De façon similaire, le circuit de commande 7 commande l'émission des deuxièmes signaux 62 à un premier instant mesure l'écart de temps At entre l'émission des deuxièmes signaux et la réception de ces deuxièmes signaux réfléchis Le circuit de commande 7 traite cette information ou la transfère au calculateur électronique distant.
Le circuit de commande unique 7 calcule l'atténuation ou transfère les données mesurées à un calculateur distant. L'atténuation calculée permet, grâce à une table de calibration prédéfinie, d'en déduire la concentration en urée dans le liquide. Comme déjà décrit plus haut, la concentration en urée dans le liquide permet de déterminer la vitesse de propagation des ondes ultrasonores Vs dans le liquide. Ladite vitesse Vs et l'écart de temps At permettent de calculer la distance d1 par rapport au fond du réservoir comme expliqué plus haut, et d'en déduire le volume de liquide Vol présent dans le réservoir 8 comme également expliqué plus haut.
Lors que le troisième capteur 3 est présent, le circuit de commande unique 7 commande l'émission des troisièmes signaux 63 vers le troisième émetteur 31 et reçoit l'intensité mesurée en réception par le troisième récepteur 32. Le circuit de commande 7 calcule l'atténuation ou transfère les données mesurées au calculateur électronique distant. L'atténuation ainsi calculée permet de déterminer la concentration en urée dans le liquide, de façon plus précise, sans influence de la présence éventuelle de polluants en surface du liquide 90, grâce à la table de calibration prédéfinie. Le circuit de commande 7 (ou le calculateur distant) calcule ensuite, grâce aux informations recueillies par le premier capteur 1 les caractéristiques spécifiquement relatives aux polluants en surface comme indiqué plus haut.
Il est à noter que le capteur dénommé 'premier capteur V dans la description doit être compris comme l'ensemble constitué par le premier capteur 1 et par le troisième capteur 3 dans le cas des deuxième et troisième modes de réalisation ci-dessus.
Ainsi, l'invention permet par l'intermédiaire d'un seul dispositif compact, et étanche, de : • Déterminer la concentration d'urée dans le liquide contenu dans le réservoir,
• Déterminer la concentration et le type de polluants,
• Déterminer le volume de liquide dans le réservoir.
Les capteurs qui permettent ces déterminations peuvent être intégrés sur le même circuit de commande.
Bien sûr, l'invention ne se limite pas à l'application aux réservoirs d'urée et peut s'appliquer à tout réservoir de liquide dont on veut déterminer la concentration, la pollution et le volume.

Claims

REVENDICATIONS
1. Dispositif de mesure (10) adapté pour mesurer des caractéristiques dans un réservoir de liquide (8) contenant de l'urée, ledit dispositif comprenant :
• des moyens de guidage (4), dans le réservoir (8), fixés au réservoir (8) par des moyens de fixation (44) et s'étendant selon une direction sensiblement verticale par rapport au réservoir (8),
• un corps principal (5) adapté pour flotter dans ledit liquide, comprenant une partie supérieur émergée du liquide (50a) et une partie inférieure immergée dans le liquide (50b), et monté coulissant sur lesdits moyens de guidage (4), ledit dispositif comprenant en outre :
· un premier capteur (1 ) fixé au corps principal, adapté pour mesurer la concentration d'urée dans le liquide (9), comprenant un premier émetteur de signaux (11) adapté pour émettre des premiers signaux (61) et un premier récepteur (12) de signaux adapté pour recevoir lesdits premiers signaux, lesdits premiers signaux après traversée d'au moins une partie du liquide (9), « un deuxième capteur (2) situé dans la partie inférieure du corps principal (50b), adapté pour mesurer une distance par rapport au fond du réservoir (8), comprenant un deuxième émetteur de signaux (21) adapté pour émettre des deuxièmes signaux (62) et un deuxième récepteur de signaux (22), adapté pour recevoir les deuxièmes signaux du deuxième émetteur de signaux réfléchis (65) sur le fond du réservoir (23), la distance mesurée (d1) étant représentative du volume de liquide (Vol) présent dans le réservoir (8), ledit dispositif étant caractérisé en ce qu'il comprend en outre :
• un troisième capteur (3), situé dans la partie inférieure (50b) du corps principal (5), adapté pour mesurer la concentration d'urée dans le liquide (9), ledit troisième capteur (3) comprenant un troisième émetteur de signaux (31 ) adapté pour émettre des troisièmes signaux (33) et un troisième récepteur (32) de signaux adapté pour recevoir lesdits troisièmes signaux, le parcours desdits troisièmes signaux (33) étant totalement inclus dans le liquide (9).
2. Dispositif selon la revendication précédente, caractérisé en ce que l'un des premier émetteur (11) et premier récepteur (12) de signaux est agencé au dessus de la surface (90) du liquide, dans la partie supérieure (50a) du corps principal (5) et l'autre des premier émetteur (11) et premier récepteur (12) de signaux est agencé au dessous de la surface, dans la partie inférieure (50b) du corps principal (5), l'un et l'autre étant agencés en vis-à-vis selon une direction sensiblement verticale par rapport au réservoir (8).
3. Dispositif selon l'une des revendications 1 à 2, caractérisé en ce que les premiers signaux (61 ) traversent la surface supérieure du liquide (90), moyennant quoi le premier capteur (1) est adapté pour détecter des polluants (91 ) flottant à la surface du liquide, le premier récepteur (1 1 ) mesurant l'intensité des signaux reçus, pour en déduire la concentration en urée dans le liquide et la présence de polluants flottant à la surface du liquide.
4. Dispositif selon les revendications 1 à 2, caractérisé en ce que le premier émetteur (1 1 ) est adapté pour émettre au moins un rayon infrarouge (61 ) à une longueur d'onde prédéterminée, dirigé vers le premier récepteur (12), et dans lequel le premier récepteur (12) est adapté pour mesurer l'intensité du rayon infrarouge reçu.
5. Dispositif selon les revendications 1 à 3, caractérisé en ce que le premier émetteur (1 1 ) est adapté pour émettre au moins des rayons infrarouge (61 ) selon une pluralité de longueurs d'onde, dirigés vers le premier récepteur (12), et dans lequel le premier récepteur (12) est adapté pour mesurer l'intensité des rayons infrarouge reçus dans chaque longueur d'onde.
6. Dispositif selon l'unes des revendications 1 à 5, comprenant en outre un circuit de commande (7), caractérisé en ce que le premier capteur (1) et le deuxième capteur (2) sont raccordés audit circuit de commande (7).
7. Dispositif selon la revendication 1 , comprenant en outre un circuit de commande (7), caractérisé en ce que le premier capteur (1), le deuxième capteur (2) et le troisième capteur (3) sont connectés audit circuit de commande (7).
8. Dispositif selon la revendication 6, caractérisé en ce que :
• le premier capteur (1 ), le deuxième capteur (2) sont implantés sur un même circuit imprimé du circuit de commande (7), situé dans la partie inférieure (50b) du corps principal (5), et
• ledit dispositif comprend un premier miroir (13), situé dans la partie supérieure (50a) du corps principal (5) permettant de réfléchir les premiers signaux (61 ).
9. Dispositif selon les revendications 1 et 8, caractérisé en ce que :
• le premier capteur (1 ), le deuxième capteur (2) et le troisième capteur (3) sont implantés sur un même circuit imprimé du circuit de commande (7), situé dans la partie inférieure (50b) du corps principal (5), et
• le dispositif comprend en outre un deuxième miroir (33), situé dans la partie inférieure (50b) du corps principal (5) permettant de réfléchir les troisièmes signaux (63).
10. Dispositif selon la revendication 1 , caractérisé en ce que les premier et troisième émetteurs (1 1 ,31 ) sont situés dans la partie inférieure (50b) du corps principal (5) et sont confondus en un seul émetteur unique (1 10) émettant un signal unique (660) selon une direction en biais par rapport à la direction verticale, dont une partie se réfléchit par réfraction sur la surface (34) du liquide, et dont une partie se réfléchit sur un miroir (13) situé dans la partie supérieure (50a) du corps principal (5).
1 1. Dispositif selon l'unes des revendications précédentes, caractérisé en ce que les moyens de guidage (4) comprennent une embase (42) et une tige de guidage (41 ).
12. Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que le corps principal (5) est agencé dans une enceinte étanche (50).
13. Dispositif selon la revendication 1 , caractérisé en ce que les deuxièmes signaux (62,65) sont des signaux ultrasonores se réfléchissant sur le fond (23) du réservoir.
14. Procédé de mesure de la concentration et du niveau dans un réservoir (8) de liquide (9) contenant de l'urée, mettant en œuvre le dispositif selon l'une quelconque des revendications précédentes.
PCT/EP2012/001652 2011-05-05 2012-04-17 Dispositif de mesure de caracteristiques dans un reservoir d'uree WO2012150002A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280021825.0A CN103620353A (zh) 2011-05-05 2012-04-17 用于测量尿素罐内特征的设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1101381A FR2974903B1 (fr) 2011-05-05 2011-05-05 Dispositif de mesure de caracteristiques dans un reservoir d'uree
FR1101381 2011-05-05

Publications (1)

Publication Number Publication Date
WO2012150002A1 true WO2012150002A1 (fr) 2012-11-08

Family

ID=45974250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/001652 WO2012150002A1 (fr) 2011-05-05 2012-04-17 Dispositif de mesure de caracteristiques dans un reservoir d'uree

Country Status (3)

Country Link
CN (1) CN103620353A (fr)
FR (1) FR2974903B1 (fr)
WO (1) WO2012150002A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2876272A1 (fr) * 2013-11-20 2015-05-27 elobau GmbH & Co. KG Unité de prélèvement d'un réservoir d'agent reducteur
EP2976604A4 (fr) * 2013-03-22 2017-01-25 The University of Western Ontario Système de surveillance basé sur ultrasons à auto-étalonnage
DE102015122292A1 (de) * 2015-12-18 2017-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Feldgerät zur Bestimmung einer Prozessgröße eines Mediums

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156620B1 (fr) * 2015-10-13 2018-09-12 Plastic Omnium Advanced Innovation and Research Procédé de détermination de la concentration d'un agent chimique dans une solution basé sur une vélocité d'une onde de pression et système associé
US10690032B2 (en) * 2018-07-11 2020-06-23 GM Global Technology Operations LLC Urea concentration sensor reflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036645A1 (de) * 2004-07-28 2006-02-16 Landis+Gyr Gmbh Ultraschall-Niveausensorvorrichtung
US20070169544A1 (en) * 2006-01-25 2007-07-26 Ngk Spark Plug Co., Ltd. Liquid-condition detection sensor
US20070255458A1 (en) * 2006-04-28 2007-11-01 Haslem Keith R System and method for managing stratified liquids in storage tanks
WO2010069924A2 (fr) * 2008-12-17 2010-06-24 Axsensor Ab Mesure acoustique d'un liquide
US20100327884A1 (en) * 2009-06-26 2010-12-30 Mccall Alan Kenneth Liquid level and quality sensing apparatus, systems and methods using EMF wave propagation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036645A1 (de) * 2004-07-28 2006-02-16 Landis+Gyr Gmbh Ultraschall-Niveausensorvorrichtung
US20070169544A1 (en) * 2006-01-25 2007-07-26 Ngk Spark Plug Co., Ltd. Liquid-condition detection sensor
US20070255458A1 (en) * 2006-04-28 2007-11-01 Haslem Keith R System and method for managing stratified liquids in storage tanks
WO2010069924A2 (fr) * 2008-12-17 2010-06-24 Axsensor Ab Mesure acoustique d'un liquide
US20100327884A1 (en) * 2009-06-26 2010-12-30 Mccall Alan Kenneth Liquid level and quality sensing apparatus, systems and methods using EMF wave propagation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2976604A4 (fr) * 2013-03-22 2017-01-25 The University of Western Ontario Système de surveillance basé sur ultrasons à auto-étalonnage
EP2876272A1 (fr) * 2013-11-20 2015-05-27 elobau GmbH & Co. KG Unité de prélèvement d'un réservoir d'agent reducteur
DE102015122292A1 (de) * 2015-12-18 2017-06-22 Endress+Hauser Conducta Gmbh+Co. Kg Feldgerät zur Bestimmung einer Prozessgröße eines Mediums

Also Published As

Publication number Publication date
CN103620353A (zh) 2014-03-05
FR2974903B1 (fr) 2014-08-29
FR2974903A1 (fr) 2012-11-09

Similar Documents

Publication Publication Date Title
WO2012150002A1 (fr) Dispositif de mesure de caracteristiques dans un reservoir d'uree
EP0247908B1 (fr) Capteur de niveau de liquide à ondes élastiques guidées
US9588246B2 (en) Data collection system, marine seismic survey system and method of estimating a corrected sound speed
FR3069495B1 (fr) Systeme de mesure d'un parametre d'un fluide dans un reservoir.
WO2006013247A1 (fr) Dispositif optique de mesure de l’epaisseur d’un milieu au moins partiellement transparent
FR2940442A1 (fr) Capteur et systeme d'imagerie pour la detection a distance d'un objet
EP3077795A1 (fr) Controle de structure industrielle
EP1910805A1 (fr) Refractometre optique pour la mesure de la salinite de l'eau de mer et capteur de salinite correspondant
JPH04230821A (ja) 光ファイバ液体漏洩検出器
WO2008090186A1 (fr) Capteur optique pour la mesure de la salinite et de la visibilite dans l'eau de mer
EP3914882B1 (fr) Système et procédé de mesure par ondes acoustiques du niveau de remplissage d'un réservoir de fluide
EP0165852B1 (fr) Dispositif de mesure par ultrasons du niveau et/ou du volume d'un liquide dans un récipient
EP1219952B1 (fr) Capteur utilisant la réflexion totale atténuée
CA3111370A1 (fr) Procede de determination d'une profondeur, ou d'un profil bathymetrique, sur la base d'un profil de celerite moyenne du son, procede de determination d'un tel profil de celerite, et systeme sonar associe
FR3076611A1 (fr) Dispositif de mesure pour surveiller le niveau de remplissage et effectuer les mesures différentielles de l’indice de réfraction optique
FR3011323A1 (fr) Dispositif de mesure optique absolue d'un niveau de liquide dans un conteneur
FR3074573A1 (fr) Procede de mesure par ultrasons
FR2971343A1 (fr) Dispositif aeroporte de telemetrie par laser, a division d'impulsions, et systeme de releve topographique correspondant
FR2915278A1 (fr) Systeme de releve des hauteurs comprenant une regle telescopique a deux extremites cooperant avec un faisceau optique a balayage dans un plan horizontal.
FR3071055A1 (fr) Sonde amelioree pour dispositif limiteur de remplissage pour citerne de transport de carburant petrolier et dispositif limiteur de remplissage correspondant
FR3107764A1 (fr) Système de mesure d’un paramètre d’un fluide
FR3073940A1 (fr) Dispositif optique autocalibrant pour la mesure sans contact du niveau d'un liquide
EP3492883A1 (fr) Réservoir avec système de mesure de volume
FR2929412A1 (fr) Systeme permettant a un utilisateur d'un vehicule de localiser ce dernier a partir d'un signal radio
FR3034866A1 (fr) Dispositif numerique de mesure optique absolue d'un niveau de liquide dans un conteneur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12714586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12714586

Country of ref document: EP

Kind code of ref document: A1