WO2012147792A1 - Power generation system and method for operating same - Google Patents

Power generation system and method for operating same Download PDF

Info

Publication number
WO2012147792A1
WO2012147792A1 PCT/JP2012/061086 JP2012061086W WO2012147792A1 WO 2012147792 A1 WO2012147792 A1 WO 2012147792A1 JP 2012061086 W JP2012061086 W JP 2012061086W WO 2012147792 A1 WO2012147792 A1 WO 2012147792A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
power generation
generation system
power
compressor
Prior art date
Application number
PCT/JP2012/061086
Other languages
French (fr)
Japanese (ja)
Inventor
良輔 福田
Original Assignee
Fukuda Ryosuke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Ryosuke filed Critical Fukuda Ryosuke
Priority to JP2012535277A priority Critical patent/JP5158828B2/en
Publication of WO2012147792A1 publication Critical patent/WO2012147792A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a power generation system and an operation method thereof.
  • the present invention relates to a power generation system that applies compressed air storage gas turbine power generation (hereinafter sometimes simply referred to as CAES).
  • CAES compressed air storage gas turbine power generation
  • LNG liquefied natural gas
  • this gas turbine natural gas is combusted by a combustor using compressed air generated by a compressor, gas rapidly expanded by the heat is sent to a turbine coaxially driven with the compressor, and the turbine is rotated.
  • Driving such a turbine requires a large amount of compressed air in order to burn the fuel efficiently.
  • About 2/3 of the driving force generated in the turbine is used to drive the compressor that generates compressed air, and only about 1/3 of the driving force of the turbine is used to drive the generator.
  • Non-Patent Document 1 The practical application of CAES (Compressed Air Energy Storage System) that increases the power generation output by operating the turbine using compressed air is being studied (Non-Patent Document 1). The power consumption is greatly reduced on weekends and Sundays at weekends, or on national holidays, but in this specification, these are collectively described at night when power consumption is reduced.
  • CAES Compressed Air Energy Storage System
  • CAES is a system in which a generator is arranged between a compressor and a turbine, and a clutch is provided between the compressor and the generator and between the generator and the turbine.
  • the compression cycle and the power generation cycle are performed independently by separating them.
  • the compressor-side clutch is connected and the turbine-side clutch is disconnected.
  • the generator is driven as an electric motor by the electric power from the external electric power system.
  • the compressor is operated to generate compressed air, and the compressed air is stored in a compressed air storage tank provided in an underground cavity or the like.
  • the clutch on the turbine side is connected and the clutch on the compressor side is disconnected. Then, the natural gas is burned using the compressed air in the compressed air storage tank to drive the turbine, and the generator is driven by the power to generate power.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to increase the utilization rate of the turbine, increase the power generation capacity at the time of heavy loads such as daytime, and increase the power generation capacity at nighttime. It is an object of the present invention to provide a power generation system that can reduce the consumption of fuel at a low load with a low load and an operation method thereof.
  • the power generation system of the present invention includes a generator, a compressor, a compressed air storage tank, a combustor, a turbine, a first clutch, a second clutch, a first opening / closing means, and a second opening / closing means.
  • the compressor generates compressed air by compressing the sucked air.
  • the compressed air storage tank stores the compressed air.
  • the combustor mixes fuel with at least one of the compressed air generated by the compressor and the compressed air stored in the compressed air storage tank and burns the fuel.
  • the turbine is rotated by the combustion gas burned in the combustor.
  • the first clutch transmits or interrupts the rotational force of the turbine to the compressor.
  • the second clutch transmits or interrupts the rotational force of the turbine to the generator.
  • the first opening / closing means allows or blocks the compressed air generated by the compressor from being sent to the compressed air storage tank.
  • the second opening / closing means allows or blocks the compressed air in the compressed air storage tank from being sent to the combustor.
  • the operation method of the power generation system of the present invention is operated as follows using the power generation system of the present invention.
  • the first clutch When the load is high, such as during the daytime, the first clutch is disconnected, the second clutch is connected, the first opening / closing means is disconnected, the second opening / closing means is opened, and the compressed air storage tank is compressed.
  • the fuel is burned using air, and a generator is driven by the rotation of the turbine to generate power.
  • the first clutch is coupled, the second clutch is disconnected, the first opening / closing means is opened, the second opening / closing means is disconnected, and the turbine and the compressor And the compressed air generated by the compressor is supplied to the combustor and the compressed air storage tank.
  • the turbine can be driven at all times by causing each clutch and each opening / closing means to perform a predetermined operation, whereby the turbine can be operated in comparison with the conventional gas turbine power generation system and CAES.
  • the utilization rate can be increased.
  • the turbine is driven using the compressed air in the compressed air storage tank without driving the compressor at high loads, and the output of the generator is increased at low loads.
  • compressed air can be generated by operating the compressor in an operation that suppresses fuel consumption.
  • electric power from an external power source in order to generate compressed air for storage, electric power from an external power source must be supplied to an electric motor (usually using a generator as an electric motor) that drives the compressor.
  • compressed air for storage can be generated by using electric power from an external power source.
  • the compressor is rotated by the rotational force of its own turbine. Therefore, there is an advantage that compressed air for storage can be generated independently and in a closed manner without requiring power from an external power source.
  • the turbine is always driven, the fuel is required, so if you look only at the fuel consumption per day, it will be more than the conventional gas turbine power generation, but the amount of power obtained per day will increase significantly, From the viewpoint of fuel efficiency (power generation amount / fuel consumption), it can be said that the power generation system of the present invention is more advantageous. This point will be clarified in a trial calculation example described later.
  • Driving the turbine at all times is a preferable mode, but it is not essential, as long as the utilization rate of the turbine can be improved as compared with the conventional gas turbine power generation system.
  • the power generation system of the present invention it is preferable to include an electric motor driven by external electric power and a power transmission mechanism that transmits the driving force of the electric motor to the compressor.
  • the electric motor is the generator.
  • the external power is power derived from renewable energy such as sunlight, wind power, geothermal heat, tide.
  • the power generation system of the present invention by using external power as power derived from renewable energy, it is possible to reduce fossil fuel consumption and contribute to reduction of carbon dioxide emissions. Moreover, the intermittent power generation property and the variability of the generated power using the renewable energy can be stabilized by utilizing a buffering action of storing compressed air. Furthermore, according to the power generation system of the present invention, it is not necessary to decide whether or not to adopt the power generation system according to the conventional power generation efficiency, that is, the power generation amount per unit fossil fuel consumption. This is because the power generation system of the present invention enables storage of compressed air without using fossil fuel. Therefore, if a wind turbine generator that can generate power only with the stored compressed air is used, the fossil fuel is no longer used. It is because it is liberated from considering the consumption of the. Therefore, the power generation system of the present invention opens up a great path to sustainable power generation using renewable energy resources.
  • the generator, the compressor, the combustor, the turbine, the first clutch, the second clutch, the first opening / closing means, and the second opening / closing means are defined as one unit, and one unit is provided for a plurality of units.
  • a common use is a compressed air storage tank.
  • the compressed air storage tank can be used more efficiently by sharing the compressed air storage tank, which is economically and technically burdensome for construction, with a plurality of units.
  • the power generation system of the present invention it is installed in a nuclear power plant, and the external power is used as power generated by the nuclear power plant.
  • Nuclear power plants are more efficient and safer to operate at a constant output without adjusting the output according to the power load.
  • surplus power is generated at low loads such as at night, so compressed air is generated by operating the compressor directly connected by driving the motor (generator) using the surplus power. can do.
  • the power generation system of the present invention can be used as a standby power source for the nuclear power plant.
  • the power generation system of the present invention can be used when a nuclear power plant loses the power source for operating various accessories and circulating the cooling water due to a natural disaster such as an earthquake or tsunami. It can be used as a standby power source for the power plant. Even if the power system is damaged, the power generation system of the present invention can be operated as long as it can basically be replenished with fuel. Nuclear power plants are often installed in coastal areas, and fuel such as LNG can be replenished relatively easily by transporting fuel by ship, and can be suitably used as an emergency standby power source.
  • the compressed air in the compressed air storage tank can be used as a standby power source for the nuclear power plant.
  • the compressed air in the compressed air storage tank can be used for driving the turbine.
  • it is used as a driving power for a turbine different from the system of the present invention, or a power source for various actuators such as an air cylinder. It can also be. Therefore, by using compressed air as a reserve power source, various facilities in the nuclear power plant can be driven.
  • the power generation system of the present invention may further include a second compressor that generates compressed air to be stored in the compressed air storage tank using external power.
  • the second compressor that is driven by external power in addition to the compressor that is linked to the turbine at low load, the second compressor that is driven by external power is provided, so that the surplus power is effectively used to drive the second compressor.
  • the compressed air generated by the compressor linked to the compressed air the compressed air generated by the second compressor can also be stored in the compressed air storage tank.
  • the compressed air storage tank includes a plurality of nested pipes, and the pressure in the inner pipe is higher than the pressure in the outer pipe.
  • tube here is a pipe
  • the power generation system of the present invention provided with the above-described nested compressed air storage tank, it is possible to include a differential pressure valve that communicates the inside of the inner tube and the inside of the outer tube according to a predetermined differential pressure.
  • the differential pressure valve is opened to reduce the pressure.
  • the pressure drop of the pipe containing the compressed air can be compensated.
  • the power generation system of the present invention including the plurality of nested pipes and a differential pressure valve that communicates the inside and the outside of the pipe according to a predetermined differential pressure is used.
  • a power generation system including the plurality of nested pipes and a differential pressure valve that communicates the inside and the outside of the pipe according to a predetermined differential pressure.
  • One example is operating a power generation system. In that case, the air in the outer pipe is supplied to the combustor, and the supplied air is supplied from the inner pipe to the outer pipe through the differential pressure valve, so that the pressure in the outer pipe is substantially constant. Hold.
  • the power generation system and the operation method of the present invention it is possible to increase the utilization rate of the turbine and increase the amount of generated power per unit combustion consumption.
  • FIG. 1 is a schematic diagram of a power generation system of the present invention according to Embodiment 1.
  • FIG. It is the schematic of this invention electric power generation system which concerns on Embodiment 3.
  • FIG. It is the schematic of this invention electric power generation system which concerns on Embodiment 4.
  • FIG. 5 The compressed air storage tank used for this invention electric power generation system which concerns on Embodiment 6 is shown, (A) is sectional drawing of the tank, (B) is the schematic which shows the structure of the valve
  • the compressed air storage tank used for this invention electric power generation system which concerns on Embodiment 7 is shown, (A) is sectional drawing of the tank, (B) is the schematic which shows the structure of the valve provided in the tank.
  • the power generation system 1A includes a generator 10, a compressor 20 (first compressor), a compressed air storage tank 30, a combustor 40, and a turbine 50.
  • the conventional CAES has a generator arranged between the compressor and the turbine
  • the power generation system of the present invention includes the compressor 20 and the generator 10.
  • the turbine 50 is arranged between the two.
  • the first clutch 60A and the second clutch 60B are provided between the compressor 20 and the turbine 50, and between the generator 10 and the turbine 50, respectively. Then, the rotational force of the turbine 50 is transmitted to or cut off from the compressor 20 or the generator 10.
  • the power generation system 1A constantly drives the turbine 50 to control the coupling state of the clutches 60A and 60B, thereby generating a compression cycle for generating compressed air by the compressor 20, and a power generation cycle for driving the generator 10. And do.
  • the compressed air generated in the compression cycle is opened and closed by the valves 70A to 70D provided in the compressed air flow paths between the compressor 20, the combustor 40, and the turbine 50, and the compressed air storage tank 30 and the combustor 40 are thereby opened. To be supplied.
  • the generator 10, the compressor 20, the combustor 40, and the turbine 50 can use the same configurations as those of conventional members.
  • the generator 10 converts the rotational force (mechanical energy) obtained from the turbine 50 into electric energy and outputs it using electromagnetic induction.
  • electromagnetic induction for example, an induction generator can be used.
  • the compressor 20 sucks air and compresses it to generate compressed air.
  • a centrifugal compressor or an axial flow compressor can be used.
  • the combustor 40 mixes and burns fuel supplied from a fuel supply unit (not shown) with compressed air, generates high-temperature and high-pressure combustion gas, and supplies the combustion gas to the turbine 50. LNG, oil, etc. can be suitably used as the fuel.
  • the turbine 50 is rotated by the combustion gas supplied from the combustor 40 and generates a rotational force that is a driving force of the generator 10.
  • the generator 10, the compressor 20, the combustor 40, and the turbine 50 are preferably arranged coaxially.
  • the compressed air storage tank 30 is a space for storing the compressed air generated by the compressor 20.
  • the compressed air storage tank 30 in the power generation system of the present invention is a space formed in the ground by excavation or the like (not only a building artificially embedded in the ground or the sea floor, for example, a structure that forms a space by a steel pipe or concrete ( Including abandoned mines) or naturally formed cavities.
  • the constant pressure type is a system that stores compressed air at a constant pressure, and stores air using the hydrostatic pressure of water by digging a cavity deep in the ground or installing a storage tank on the sea floor.
  • a reservoir is set up on land, and a constant volume of air is stored using the hydrostatic pressure corresponding to the depth of the underground cavity.
  • compressed air the volume of the air discharged from the cavity Is replaced with water.
  • the transformer type is a system in which air is injected into a container of a certain capacity and the pressure is gradually increased to store the container. When compressed air is used, the pressure gradually decreases and the pressure of the compressed air in the container fluctuates.
  • the constant pressure type For storing compressed air, the constant pressure type has higher air storage efficiency. If the existing gas turbine generator is used, the relational expression between the storage of the constant pressure type compressed air and the power generation amount is expressed as follows, for example.
  • V 4.2 / P [m 3 / kWh]
  • P Pressure [kg / cm 2 ]
  • the first clutch 60A transmits or interrupts the rotational force of the turbine 50 to the compressor 20, and the second clutch 60B transmits or interrupts the rotational force of the turbine 50 to the generator 10.
  • Various known clutches can be used for the configurations of the clutches 60A and 60B. For example, utilization of a meshing clutch, an electromagnetic clutch, a conical clutch, etc. can be expected.
  • these clutches 60A and 60B may be configured to be retrofitted to the power generation system.
  • a separation end is provided in the middle of each of the power transmission shaft of the turbine 50 and the compressor 20 and the power transmission shaft of the turbine 50 and the generator 10, and the separation ends are usually flanged joints, etc. It is connected by a coupling means that can maintain the transmission state in a fixed manner. In that case, like the conventional gas turbine power generation, the compressor, the turbine, and the generator are driven only during a high load such as daytime, and the driving is stopped when the load is low such as at night.
  • the power generation system of the present invention when it is necessary to increase the power generation capacity, it is possible to configure the power generation system of the present invention by disconnecting the coupling of the flange joint and attaching the clutches 60A and 60B between the separated ends of the power transmission shafts. it can. In that case, as will be described later, the power generation system can be operated by increasing the power generation capacity compared to the same operation as that of the conventional gas turbine power generation.
  • valves 70A to 70D introduce the compressed air generated by the compressor 20 into at least one of the turbine 50 and the compressed air storage tank 30 by opening and closing operations thereof.
  • valves 70A and 70B are provided between the compressor 20 and the turbine 50
  • a valve 70C is provided between the valves 70A and 70B and the compressed air storage tank 30.
  • the air flow path is branched downstream of the valve 70A (compressed air storage tank side), and the branch end is connected downstream of the valve 70B (combustor side).
  • a valve 70D is provided in the middle of the branch.
  • the turbine 50 is rotated by combustion of a mixed gas of fuel and compressed air, and the compressor 20 can be interlocked by coupling the first clutch 60A.
  • valves 70A and 70D first opening / closing means
  • valve 70B second opening / closing means
  • valves 70B and 70C and opening the valves 70A and 70D all the compressed air generated by the compressor 20 can be supplied to the combustor 40, and the same operation as that of the conventional gas turbine can be performed.
  • the compressor 20 is stopped, the turbine 50 and the generator 10 are driven, and the generated power is added to the generated power of a nuclear power plant, etc. Supply the amount of power that can handle the power peak.
  • the first clutch 60A is disconnected and the second clutch 60B is connected.
  • the valves 70B and 70C are opened, and the valves 70A and 70D are closed.
  • the compressed air is supplied from the compressed air storage tank 30 to the combustor 40, and the fuel is also supplied to the combustor 40 so that the fuel mixed with the compressed air is burned, and the turbine 50 is driven by the combustion gas. can do.
  • the generator 10 Since the rotational force of the turbine 50 is transmitted to the generator 10 via the coupled second clutch 60B, the generator 10 is driven to generate power. In the conventional gas turbine power generation system, about 2/3 of the driving force generated in the turbine is used for driving the compressor, but in the system of this example, it is not necessary to drive the compressor 20.
  • the generator is stopped and the turbine 50 and the compressor 20 are driven to store a part of the generated compressed air in the compressed air storage tank 30.
  • the first clutch 60A is connected and the second clutch 60B is disconnected.
  • the valves 70A, 70C, and 70D are opened, and the valve 70B is closed.
  • fuel is supplied to the combustor 40 and the turbine 50 is driven.
  • the rotational force of the turbine 50 is transmitted to the compressor 20 via the coupled first clutch 60A, and the compressor 20 can be linked to the turbine 50.
  • Compressed air is generated by driving the compressor 20, a part of which is supplied to the combustor 40 via the valve 70D and used for driving the turbine 50, and the remainder is compressed air storage tank via the valves 70A and 70C. Stored at 30.
  • the compressor 20 a part of which is supplied to the combustor 40 via the valve 70D and used for driving the turbine 50, and the remainder is compressed air storage tank via the valves 70A and 70C.
  • the fuel required to drive the turbine 50 can be reduced, and the compressed air used during the high load can be stored in the compressed air storage tank 30. Accordingly, the utilization rate of the expensive turbine 50 can be improved and the power generation capacity at the time of high load can be increased, so that the same amount of power generation capacity can be obtained with a smaller number of units than the conventional gas turbine power generation system. Can do. Further, when the compressed air in the compressed air storage tank 30 is exhausted and cannot be used, the conventional gas turbine is driven by connecting the clutches 60A and 60B to drive the compressor 20, the turbine 50, and the generator 10. The same operation as the power generation system can be performed.
  • the power generation system according to this example can be expected to be used in remote areas away from urban areas.
  • the power generation system according to this example is available in mountainous areas where there is enough land that can be used effectively, and there is no power generation equipment even though it is suitable for installation of a solar power generation system, and power needs to be transmitted from a large coastal power plant. Can be expected to be self-supporting in this mountainous area.
  • the power generation system of this example can be economically installed by utilizing the abandoned mine as the compressed air storage tank 30.
  • the power generation system according to this example may be installed in a nuclear power plant.
  • a nuclear power plant needs a power source for maintaining the power plant, such as circulating its cooling water.
  • the power generation system of this example can be effectively used as a standby power source for the power plant. This is because the power generation system of this example can be operated using a fuel such as LNG and basically does not require an external power source.
  • Example calculation Next, the fuel efficiency when the power generation system of the present invention was operated was estimated.
  • fuel consumption power generation amount / fuel consumption
  • fuel consumption was calculated by calculating the fuel consumption and power generation amount per day of the conventional gas turbine power generation system and the power generation system of the present invention.
  • half of the day is daytime, and the other half is night
  • a trial calculation example of a conventional gas turbine power generation system is a comparative example
  • a trial calculation example of the power generation system of the present invention is an embodiment.
  • the turbine is driven for 24 hours.
  • the compressed air stored in the compressed air storage tank can be used to generate power by driving the turbine and generator without driving the compressor.
  • the compressor is used as in the comparative example. And drive the turbine and generator.
  • the turbine and the compressor are driven without driving the generator.
  • the amount of compressed air necessary for driving the turbine is increased or decreased in the same pattern as the required amount of fuel. That is, in the embodiment, the compressed air generated by the compressor at night (1/2 day) needs only the turbine driving force (2/3) necessary to rotate the compressor, so it is stored.
  • the driving engine other than the turbine is shown in the embodiment.
  • Fig. 4 shows a forecast graph of the maximum power consumption per day and the amount of power that can be supplied in the summer of this year (2011) in the Kanto region.
  • a considerable number of generators will have a total power generation capacity. It turns out that it can be brought to the power generation stop while decreasing the power generation output because the demand will be surplus.
  • the number of generators that can overcome the peak of power demand will be The construction period is long and the investment amount is large, and the necessary land is vast, resulting in many problems.
  • the energy obtained is stored by converting it into compressed air at low loads, and conversely at high loads such as daytime, the power generation capacity of one generator using the stored compressed air
  • the power generation capacity of one generator using the stored compressed air By greatly improving the power supply / demand balance, it is possible to balance power supply and demand. Therefore, it can contribute effectively to many improvement of the subject mentioned above.
  • the power generation system 1B of the present example is premised on that there is a conventional thermal power plant H-PS installed in a mountainous area where an abandoned mine can be used and further provided in a coastal area.
  • the conventional thermal power plant H-PS includes, for example, a generator 10H, a compressor 20H, a combustor 40H, and a turbine 50H, and operates 24 hours a day.
  • the thermal power plant H-PS is connected to switching means 90 that switches and supplies the generated power to the power consumption area and the power generation system 1B of this example.
  • the power generation system 1B of this example further includes an electric motor 80 and a second compressor 22 in addition to the power generation system of the first embodiment.
  • the electric motor 80 is driven by electric power from the thermal power plant H-PS, and can operate the second compressor 22 to generate compressed air. Furthermore, the power generation system similar to that of the first embodiment is connected to a blocking unit 92 that supplies / cuts off generated power from the generator 10 to a power consumption area.
  • the electric power of the thermal power plant H-PS is supplied to the electric motor 80 of the power generation system in the mountain area, and the electric motor 80 is driven by the electric power.
  • the second compressor 22 is driven and the compressed air is stored in the compressed air storage tank 30.
  • the turbine 50 and the compressor 20 are driven without driving the generator 10 in a state where the blocking unit 92 is blocked from the consumption area. Accordingly, the remaining compressed air excluding the compressed air required for driving the turbine 50 can be stored in the compressed air storage tank 30.
  • a solar power generation system is provided, and the generated power of the solar cell is used for driving the electric motor 80.
  • the driving of the electric motor by this solar power generation system can be similarly used in the power generation systems of Embodiment 4 (FIG. 7) and Embodiment 5 (FIG. 8) described later.
  • a solar thermal power generation system using a concentrator may be provided, and compressed air may be heated with the heat obtained by this system and introduced into the combustor.
  • This power generation system includes a power generation system 1C and a power generation system 1D.
  • Each system 1C, 1D includes a generator 10, a compressor 20, a combustor 40, a turbine 50, and clutches 60A, 60B as in the first embodiment. I have.
  • Both power generation systems 1C and 1D may be provided close to each other or may exist in a remote place.
  • one compressed air storage tank 30 exists for a plurality of units, and compressed air can be stored and supplied to each unit. Examples of the installation of each unit and the compressed air storage tank 30 include providing each unit in a coastal area, and providing the compressed air storage tank 30 in an undersea tank near the sea, an urban underground drainage storage (tank), or the like.
  • the compressed air storage tank 30 may be a tank installed underground in the nuclear power plant.
  • each power generation system 1C, 1D is the same as the operation method of the system of the first embodiment.
  • the compressed air storage tank 30 is shared for a plurality of units, so that it is costly, labor-intensive and time-consuming for construction.
  • the number of installed air storage tanks 30 can be reduced.
  • the system 1E of this example includes a generator 10, a compressor 20, a combustor 40, a turbine 50, and clutches 60A and 60B. Also used as.
  • the generator 10 is used as the electric motor 80
  • the electric motor 80 is driven by using, for example, surplus electric power at night of other power plants as external electric power.
  • the driving force of the electric motor 80 is transmitted to the compressor 20 via the power transmission mechanism 85.
  • the third clutch 60C and the fourth clutch 60D are used to transmit the driving force of the electric motor 80. That is, the second clutch 60B is disconnected and the third clutch 60C is connected, so that the driving force of the electric motor 80 is transmitted to the power transmission mechanism 85 without being transmitted to the turbine 50.
  • the fourth clutch 60D the driving force of the power transmission mechanism 85 transmitted from the electric motor 80 is transmitted to the compressor 20.
  • the first clutch 60A may be coupled or disconnected. If the first clutch 60A is connected, the compressor 20 can be driven by adding the driving force of the electric motor 80 to the driving force of the turbine 50. If the first clutch 60A is disconnected, the turbine 50 is The compressor 20 can be driven without being driven.
  • the amount of compressed air that can be stored in the compressed air storage tank 30 at the time of low load can be increased.
  • the compressor 20 can be operated by adding the driving force of the electric motor 80 to the driving force of the turbine 50 at night, the turbine 50 is operated at a low output, fuel is reduced, and it is necessary for driving the turbine 50.
  • the amount of compressed air stored in the compressed air storage tank 30 can be increased by reducing the amount of compressed air.
  • the compressor 20 is driven by the driving force of the electric motor 80, and all of the generated compressed air is stored in the compressed air storage tank 30. Can do.
  • the external electric power can be effectively utilized by driving the electric motor 80.
  • an electric motor 80 is provided on the opposite side to the turbine 50 of the compressor 20, and a fifth clutch 60E is provided between the electric motor 80 and the compressor 20. Yes.
  • the electric motor 80 is driven by using external power such as surplus power of another power plant.
  • the fifth clutch 60E transmits or blocks the driving force of the electric motor 80 to the compressor 20.
  • the amount of compressed air that can be stored in the compressed air storage tank 30 at the time of low load can be increased.
  • the compressor 20 can be operated by adding the driving force of the electric motor 80 to the driving force of the turbine 50 at night, the turbine 50 is operated at a low output, fuel is reduced, and it is necessary for driving the turbine 50.
  • the amount of compressed air stored in the compressed air storage tank 30 can be increased by reducing the amount of compressed air.
  • the compressor 20 is driven by the driving force of the electric motor 80, and all of the generated compressed air is stored in the compressed air storage tank 30. Can do.
  • the external electric power can be effectively utilized by driving the electric motor 80.
  • the compressed air storage tank 30 used in the system of this example is composed of, for example, a multi-tube tank buried underground. More specifically, the inner tube 31, the intermediate tube 33, and the outer tube 35 are configured in a nested manner. The number of multiple tubes is not limited to three as long as it is plural.
  • the inner tube 31 and the intermediate tube 33 and the intermediate tube 33 and the outer tube 35 are held coaxially by a spacer (not shown).
  • the pipes 31, 33, and 35 may be arranged so that the positions of the pipes 31, 33, and 35 can be held by appropriate positioning members (not shown), even if they are not coaxial.
  • the pressures in the pipes 31, 33, and 35 are set higher in the inner pipe.
  • the pressure in the inner tube 31 is the highest, the pressure in the outer tube 35 is the lowest, and the pressure in the middle tube 33 is the pressure between them.
  • the inner tube 31 is configured to be 200 atm
  • the middle tube 33 is set to 100 atm
  • the outer tube 35 is configured to be 50 atm.
  • valves 70E to 70G are provided in the middle of the pipes connected to the pipes 31, 33, 35, and compressed air can be introduced into the pipes 31, 33, 35 from the compressor. It is comprised so that compressed air can be supplied from each of 35 to a combustor.
  • differential pressure valves 72I and 72M connected to each of the inner pipe 31 and the middle pipe 33 are provided, and the pressure in the inner pipe 31 and the middle pipe 33 and between the middle pipe 33 and the outer pipe 35 can be maintained at a predetermined differential pressure. it can.
  • a differential pressure valve 72I that can be opened / closed from the inner tube 31 to the middle tube 33 and a differential pressure valve 72M that can be opened / sealed from the middle tube 33 to the outer tube 35 are provided.
  • a ratio adjusting valve that maintains a ratio of two different pressures at a constant ratio may be used.
  • the power generation system using the tank 30 of this example is basically the same as that of the first embodiment in the manner of operation.
  • compressed air in a low pressure tube, that is, the outer tube 35 is supplied to the combustor.
  • the valves 70C and 70E are opened, and the valves 70F and 70G are sealed.
  • the pressure in the outer pipe 35 decreases.
  • the differential pressure valve 72M is opened, and a part of the compressed air in the intermediate tube 33 moves into the outer tube 35, and the outer tube 35 Compensates for almost the pressure drop. Furthermore, if the pressure difference between the intermediate pipe 33 and the inner pipe 31 becomes a certain value or more as the pressure in the intermediate pipe 33 decreases, the differential pressure valve 72I is opened and a part of the compressed air in the inner pipe 31 is opened. It moves into 33 and compensates for the pressure drop in the middle pipe 33.
  • valves 70C and 70G are opened.
  • the valves 70E and 70F are sealed to supply compressed air stored in a high-pressure pipe, for example, the inner pipe 31, to the combustor, rotate the turbine at high output, and increase the power generation capacity of the generator.
  • compressed air may be supplied to the combustor from the middle tube 33 instead of the inner tube 31.
  • an appropriate value can be selected as the differential pressure at which the differential pressure valve operates or the ratio of the pressure of the ratio adjusting valve.
  • the differential pressure valve 72M when the specified pressure (50 atm) in the outer tube 35 is reduced to 40 atm, the differential pressure valve 72M operates to return the pressure in the outer tube 35 to 50 atm. .
  • the movement of air between the middle tube 33 and the inner tube 31 can be performed in the same manner.
  • the constant pressure method can be realized relatively easily without using the equilibrium with the water pressure. If gas turbine power generation is performed using the constant pressure method, it is possible to supply constant high-pressure compressed air to the combustor, so compared to the transformer method where the internal pressure of the compressed air storage tank decreases with the supply of air to the combustor, The power generation capacity can be greatly increased, and the control of the gas turbine power generation system is remarkably facilitated.
  • the inner pipe 31 is a differential pressure with respect to the pressure in the middle pipe 33
  • the middle pipe 33 is a differential pressure with respect to the pressure in the outer pipe 35
  • the outer pipe 35 is among the three pipes. Since it is sufficient to use a tank having a strength capable of storing the compressed air having the lowest pressure, it is possible to reduce the overall dimensions of the compressed air storage tank 30 and the constituent materials of the tank.
  • the tank 30 used in this example may be a tube that can hold a pressure corresponding to the differential pressure between the tubes 31, 33, and 35, and the diameter of the tube that stores highly compressed air is larger. Since it is small, the compressed air storage tank 30 can be configured without using an excessively thick pipe.
  • each of the differential pressure valves 72I and 72M may be a valve having a pressure resistance corresponding to the differential pressure between the high compressed air side and the low compressed air side, and therefore may not be of an excessively high pressure specification.
  • valve 70E to 70G for taking compressed air into and out of the tank 31, 33, and 35 into the tank 30 of this configuration, and a differential pressure valve 72I, between the high compressed air side pipe and the low compressed air side pipe, By providing 72M, the above-described different power generation systems can be operated.
  • the compressed air storage tank 30 of the sixth embodiment has a triple nested structure, whereas the compressed air storage tank of this example has three small pipes 32 arranged in parallel in one large pipe 34. is doing.
  • the number of small tubes 32 arranged in the large tube 34 is not particularly limited. In this example, high compressed air is stored in each small pipe 32 and low compressed air is stored in the large pipe 34. Although the pressure in each small pipe 32 is the same, the pressure in any small pipe 32 may be different from the pressure in the other small pipe 32.
  • valves 70H to 70K are provided in the middle of the pipes connected to the pipes 32 and 34, and compressed air can be introduced from the compressor to each of the pipes 32 and 34, and a combustor is provided from each of the pipes 32 and 34. It is comprised so that compressed air can be supplied to.
  • a differential pressure valve 72I connected to each of the small pipes 32 is provided, and the pressure in the small pipe 32 and the large pipe 34 can be maintained at a predetermined differential pressure.
  • a ratio adjusting valve that holds the ratio of two different pressures at a constant ratio may be used.
  • the small tubes 32 are arranged in a triangular shape, but in FIG. 10B, the small tubes 32 are shown side by side for convenience of explanation.
  • the operation method itself of the power generation system using the tank 30 of this example is basically the same as that of the first embodiment, and the method of supplying compressed air from the compressed air storage tank 30 to the combustor is the sixth embodiment. Can be done as well. That is, a low-pressure pipe, that is, compressed air in the large pipe 34 is supplied to the combustor, and the differential pressure valve 72I is opened as the pressure in the pipe decreases, or a high-pressure pipe, that is, the small pipe 32 at the time of peak power consumption. The compressed air can be directly supplied to the combustor.
  • compressed air is supplied from the large pipe 34 to the combustor, and air corresponding to the supply amount is immediately supplemented from the inside of at least one small pipe 32, and the inside of the large pipe 34 is maintained at a substantially constant pressure.
  • the system of this example can also be operated by the constant pressure method.
  • the power generation system and the operation method of the present invention can be used in combination with other power generation systems such as a nuclear power plant and a thermal power plant, thereby contributing to more efficient use of energy, or a backup of other power generation systems. It is expected to be used as a power source.

Abstract

Provided is a power generation system capable of increasing the utilization rate of a turbine, increasing power generation capacity during the day, and reducing the consumption of a fuel during the night, and also provided is a method for operating the power generation system. The power generation system (1A) comprises a power generator (10), a compressor (20), a compressed air storage tank (30), a combustor (40), a turbine (50), a first clutch (60A), a second clutch (60B), first opening/closing means (70A, 70D), and a second opening/closing means (70B). The compressor compresses air taken in and produces compressed air. The compressed air storage tank stores the compressed air. The combustor mixes a fuel with the compressed air and combusts the resulting mixture. The turbine is rotated by the combustion gas produced by the combustor. Each of the clutches transmits or blocks the torque of the turbine to the compressor or the power generator. The first opening/closing means permit or block sending of the compressed air produced by the compressor to the compressed air storage tank. The second opening/closing means permits or blocks sending of the compressed air in the compressed air storage tank to the combustor.

Description

発電システム及びその運転方法Power generation system and operation method thereof
 本発明は、発電システムとその運転方法に関する。特に、圧縮空気貯蔵ガスタービン発電(以下、単にCAESということがある)を応用した発電システムに関する。 The present invention relates to a power generation system and an operation method thereof. In particular, the present invention relates to a power generation system that applies compressed air storage gas turbine power generation (hereinafter sometimes simply referred to as CAES).
 火力発電所では化石燃料、中でも主としてLNG(液化天然ガス)を燃料としてガスタービンを回し、その回転力を利用して発電機を駆動している。以下燃料としてはLNGを代表として説明する。このガスタービンは、圧縮機で生成した圧縮空気を用いて燃焼器で天然ガスを燃焼させ、その熱で急膨張したガスを圧縮機と同軸駆動されるタービンに送り込み、タービンを回転させている。このようなタービンの駆動には、燃料を効率よく燃焼させるために大量の圧縮空気を必要とする。圧縮空気を生成する圧縮機の駆動には、タービンで発生した駆動力の2/3程度が使われ、発電機の駆動にはタービンの駆動力の1/3程度しか用いられない。 In thermal power plants, fossil fuels, especially LNG (liquefied natural gas), is used as the fuel to rotate the gas turbine, and the generator is driven using the rotational force. Hereinafter, LNG will be described as a representative fuel. In this gas turbine, natural gas is combusted by a combustor using compressed air generated by a compressor, gas rapidly expanded by the heat is sent to a turbine coaxially driven with the compressor, and the turbine is rotated. Driving such a turbine requires a large amount of compressed air in order to burn the fuel efficiently. About 2/3 of the driving force generated in the turbine is used to drive the compressor that generates compressed air, and only about 1/3 of the driving force of the turbine is used to drive the generator.
 一方、一般的な電力消費量は、昼間と夜間とでは、図4に示す通り、大幅な変動があるため、昼間のピーク電力供給のためにガスタービン発電システムをフル稼働するが、夜間の電力需要が落ちる場合は、負荷調整上、ガスタービン発電システムの運転を止める必要がある。従って、ガスタービン発電システムの稼働率は昼間のピークで100%であるが、その他では低下し、夜間には0%に落とさざるを得ない。そこで、ガスタービン発電システムにおいて、夜間の電力で圧縮機を駆動して圧縮空気を生成し、この圧縮空気を圧縮空気貯蔵タンクに貯蔵しておき、電力消費量の大きい昼間に、貯蔵してある圧縮空気を使用してタービンを運転し、発電出力を増大させるCAES(Compressed Air Energy Storage System)の実用化が検討されている(非特許文献1)。尚、電力消費量はウィークエンドの土曜日や日曜日、あるいは国民の休日などにも大きく低下するが、この明細書ではこれらもまとめて電力消費量の低下する夜間で代表して説明する。 On the other hand, general power consumption varies greatly between daytime and nighttime, as shown in FIG. 4, and the gas turbine power generation system is fully operated to supply peak power during the daytime. When the demand falls, it is necessary to stop the operation of the gas turbine power generation system for load adjustment. Therefore, the operating rate of the gas turbine power generation system is 100% at the peak of the daytime, but decreases at other times, and must be reduced to 0% at night. Therefore, in the gas turbine power generation system, the compressor is driven by nighttime electric power to generate compressed air, and this compressed air is stored in a compressed air storage tank and stored in the daytime when power consumption is large. The practical application of CAES (Compressed Air Energy Storage System) that increases the power generation output by operating the turbine using compressed air is being studied (Non-Patent Document 1). The power consumption is greatly reduced on weekends and Sundays at weekends, or on national holidays, but in this specification, these are collectively described at night when power consumption is reduced.
 CAESは、概略的には、圧縮機とタービンの間に発電機を配し、圧縮機と発電機の間及び発電機とタービンとの間の各々にクラッチを設けたシステムで、各クラッチの接続と切り離しにより圧縮サイクルと発電サイクルとを独立して行う。圧縮サイクルでは、例えば夜間に、圧縮機側のクラッチを接続し、タービン側のクラッチを切り離す。その際、外部の電力系統からの電力で発電機を電動機として駆動させる。この電動機の駆動により圧縮機を動作させて圧縮空気を生成して、その圧縮空気を地下の空洞などに設けた圧縮空気貯蔵タンクに貯蔵する。発電サイクルでは、例えば昼間に、タービン側のクラッチを接続し、圧縮機側のクラッチを切り離す。そして、圧縮空気貯蔵タンクの圧縮空気を利用して天然ガスを燃焼させてタービンを駆動し、その動力で発電機を駆動して発電を行う。 In general, CAES is a system in which a generator is arranged between a compressor and a turbine, and a clutch is provided between the compressor and the generator and between the generator and the turbine. The compression cycle and the power generation cycle are performed independently by separating them. In the compression cycle, for example, at night, the compressor-side clutch is connected and the turbine-side clutch is disconnected. At that time, the generator is driven as an electric motor by the electric power from the external electric power system. By driving the electric motor, the compressor is operated to generate compressed air, and the compressed air is stored in a compressed air storage tank provided in an underground cavity or the like. In the power generation cycle, for example, in the daytime, the clutch on the turbine side is connected and the clutch on the compressor side is disconnected. Then, the natural gas is burned using the compressed air in the compressed air storage tank to drive the turbine, and the generator is driven by the power to generate power.
 このCAESによれば、圧縮空気の生成にオフピーク時の余剰電力を利用し、ピーク時には貯蔵された圧縮空気と天然ガスなどの燃料とを用いてタービン及び発電機を駆動することで、圧縮機の駆動に要するエネルギー分を発電機の駆動に利用することができる。しかし、CAESであっても、タービンを駆動しているのは主として昼間だけであり、高価なタービンの利用率という点で見れば、はなはだ不十分と言わざるを得ない。 According to this CAES, surplus power during off-peak hours is used to generate compressed air, and the turbine and generator are driven using compressed air stored at the peak and fuel such as natural gas. The energy required for driving can be used for driving the generator. However, even in CAES, the turbine is driven mainly during the daytime, and it must be said that it is extremely insufficient in terms of the utilization rate of the expensive turbine.
 本発明は上記の事情に鑑みてなされたもので、その目的の一つは、タービンの利用率を高め、昼間などの電力需要の多い高負荷時の発電容量を増大させ、夜間などの電力需要の少ない低負荷時の燃料の消費を低減できる発電システムとその運転方法を提供することにある。 The present invention has been made in view of the above circumstances, and one of its purposes is to increase the utilization rate of the turbine, increase the power generation capacity at the time of heavy loads such as daytime, and increase the power generation capacity at nighttime. It is an object of the present invention to provide a power generation system that can reduce the consumption of fuel at a low load with a low load and an operation method thereof.
 本発明の発電システムは、発電機と、圧縮機と、圧縮空気貯蔵タンクと、燃焼器と、タービンと、第一クラッチと、第二クラッチと、第一開閉手段と、第二開閉手段とを備える。圧縮機は、吸入した空気を圧縮して圧縮空気を生成する。圧縮空気貯蔵タンクは、前記圧縮空気を貯蔵する。燃焼器は、前記圧縮機で生成された圧縮空気及び前記圧縮空気貯蔵タンクに貯蔵された圧縮空気の少なくとも一方に燃料を混合して燃焼させる。タービンは、前記燃焼器で燃焼された燃焼ガスにより回転される。第一クラッチは、前記タービンの回転力を前記圧縮機に伝達又は遮断する。第二クラッチは、前記タービンの回転力を前記発電機に伝達又は遮断する。第一開閉手段は、前記圧縮機で生成した圧縮空気が前記圧縮空気貯蔵タンクに送られることを許容又は遮断する。そして、第二開閉手段は、前記圧縮空気貯蔵タンクの圧縮空気が前記燃焼器に送られることを許容又は遮断する。 The power generation system of the present invention includes a generator, a compressor, a compressed air storage tank, a combustor, a turbine, a first clutch, a second clutch, a first opening / closing means, and a second opening / closing means. Prepare. The compressor generates compressed air by compressing the sucked air. The compressed air storage tank stores the compressed air. The combustor mixes fuel with at least one of the compressed air generated by the compressor and the compressed air stored in the compressed air storage tank and burns the fuel. The turbine is rotated by the combustion gas burned in the combustor. The first clutch transmits or interrupts the rotational force of the turbine to the compressor. The second clutch transmits or interrupts the rotational force of the turbine to the generator. The first opening / closing means allows or blocks the compressed air generated by the compressor from being sent to the compressed air storage tank. The second opening / closing means allows or blocks the compressed air in the compressed air storage tank from being sent to the combustor.
 一方、本発明の発電システムの運転方法は、上記本発明の発電システムを用い、次のように運転する。 On the other hand, the operation method of the power generation system of the present invention is operated as follows using the power generation system of the present invention.
 昼間などの電力需要の多い高負荷時、前記第一クラッチを遮断、前記第二クラッチを結合、前記第一開閉手段を遮断、前記第二開閉手段を開放して、前記圧縮空気貯蔵タンクの圧縮空気を用いて前記燃料を燃焼させ、タービンの回転により発電機を駆動して発電する。 When the load is high, such as during the daytime, the first clutch is disconnected, the second clutch is connected, the first opening / closing means is disconnected, the second opening / closing means is opened, and the compressed air storage tank is compressed. The fuel is burned using air, and a generator is driven by the rotation of the turbine to generate power.
 夜間などの電力需要の少ない低負荷時、前記第一クラッチを結合、前記第二クラッチを遮断、前記第一開閉手段を開放、前記第二開閉手段を遮断して、前記タービンと前記圧縮機とを連動させ、その圧縮機で生成した圧縮空気を前記燃焼器及び前記圧縮空気貯蔵タンクに供給する。 At low load, such as at night, when the power demand is low, the first clutch is coupled, the second clutch is disconnected, the first opening / closing means is opened, the second opening / closing means is disconnected, and the turbine and the compressor And the compressed air generated by the compressor is supplied to the combustor and the compressed air storage tank.
 本発明の発電システムによれば、各クラッチと各開閉手段の各々に所定の動作をさせることで、常時タービンを駆動させることができ、それにより従来のガスタービン発電システムやCAESに比べてタービンの利用率を高めることができる。そして、本発明の発電システムの運転方法により、高負荷時は圧縮機を駆動することなく圧縮空気貯蔵タンクの圧縮空気を用いてタービンを駆動して発電機の出力を高め、低負荷時にはタービンを発電機と分離して駆動することで、燃料消費を抑えた運転により圧縮機を連動させ、圧縮空気を生成することができる。また、従来のCAESでは、貯蔵用の圧縮空気を生成するには、圧縮機を駆動する電動機(通常は発電機を電動機として利用)に外部電源から電力を供給しなくてはならない。これに対し、本発明の発電システムでは、後述する通り、外部電源からの電力を活用して貯蔵用の圧縮空気を生成することもできるが、自らのタービンの回転力によって圧縮機を回転駆動させ得るので、外部電源からの電力を必要とせず、自ら閉鎖的に独立して貯蔵用の圧縮空気を生成できる利点がある。なお、タービンを常時駆動すると、その燃料が必要なため、1日当たりの燃料消費量だけを見れば従来のガスタービン発電よりも多くなるが、1日当たりに得られる電力量は大幅に増加するため、燃料効率(発電電力量/消費燃料)で見れば、本発明の発電システムの方が有利と言える。この点については、後述する試算例で明らかにする。常時タービンを駆動することは好ましい形態であるが必須ではなく、従来のガスタービン発電システムよりもタービンの利用率が向上できればよい。 According to the power generation system of the present invention, the turbine can be driven at all times by causing each clutch and each opening / closing means to perform a predetermined operation, whereby the turbine can be operated in comparison with the conventional gas turbine power generation system and CAES. The utilization rate can be increased. Then, according to the operation method of the power generation system of the present invention, the turbine is driven using the compressed air in the compressed air storage tank without driving the compressor at high loads, and the output of the generator is increased at low loads. By driving separately from the generator, compressed air can be generated by operating the compressor in an operation that suppresses fuel consumption. Further, in the conventional CAES, in order to generate compressed air for storage, electric power from an external power source must be supplied to an electric motor (usually using a generator as an electric motor) that drives the compressor. On the other hand, in the power generation system of the present invention, as will be described later, compressed air for storage can be generated by using electric power from an external power source. However, the compressor is rotated by the rotational force of its own turbine. Therefore, there is an advantage that compressed air for storage can be generated independently and in a closed manner without requiring power from an external power source. In addition, if the turbine is always driven, the fuel is required, so if you look only at the fuel consumption per day, it will be more than the conventional gas turbine power generation, but the amount of power obtained per day will increase significantly, From the viewpoint of fuel efficiency (power generation amount / fuel consumption), it can be said that the power generation system of the present invention is more advantageous. This point will be clarified in a trial calculation example described later. Driving the turbine at all times is a preferable mode, but it is not essential, as long as the utilization rate of the turbine can be improved as compared with the conventional gas turbine power generation system.
 本発明の発電システムにおいて、外部電力により駆動される電動機と、この電動機の駆動力を前記圧縮機に伝達する動力伝達機構とを備えることが好ましい。 In the power generation system of the present invention, it is preferable to include an electric motor driven by external electric power and a power transmission mechanism that transmits the driving force of the electric motor to the compressor.
 この構成によれば、従来のCAESと同様に、夜間などの低負荷時における余剰電力を利用して電動機の駆動に伴って圧縮機を作動させ、圧縮空気を生成することができる。それにより、生成した圧縮空気を圧縮空気貯蔵タンクに貯蔵することができる。 According to this configuration, similarly to the conventional CAES, it is possible to generate compressed air by operating the compressor as the motor is driven using surplus power at the time of low load such as nighttime. Thereby, the generated compressed air can be stored in the compressed air storage tank.
 本発明の発電システムにおいて、前記電動機が前記発電機であることが挙げられる。 In the power generation system of the present invention, it can be mentioned that the electric motor is the generator.
 この構成によれば、発電機が電動機と兼用であるため、発電機と別に電動機を設置する必要がない。 According to this configuration, since the generator is also used as an electric motor, there is no need to install an electric motor separately from the generator.
 本発明の発電システムにおいて、前記外部電力が、太陽光、風力、地熱、潮汐などの再生可能エネルギー由来の電力であることが挙げられる。 In the power generation system of the present invention, it is mentioned that the external power is power derived from renewable energy such as sunlight, wind power, geothermal heat, tide.
 この構成によれば、外部電力を再生可能エネルギー由来の電力とすることで、化石燃料の消費を低減し、二酸化炭素の排出量削減に寄与することができる。また、再生可能エネルギーを利用した発電システムの間歇発電性や発電電力の変動性を、圧縮空気の貯蔵という緩衝作用を活用することによって安定化することができる。さらに、本発明の発電システムによれば、従来の発電効率、すなわち単位化石燃料消費量当たりの発電量の良否によって発電システムの採否を決める必要がなくなる。これは、本発明の発電システムにより化石燃料を使用せずに圧縮空気の貯蔵が可能になるため、この貯蔵された圧縮空気のみで発電できる風力(空気)タービン発電機を用いれば、最早化石燃料の消費量を考慮することから解放されるからである。従って、本発明の発電システムは、再生可能エネルギー資源による持続可能発電への大きな道を拓くことになる。 According to this configuration, by using external power as power derived from renewable energy, it is possible to reduce fossil fuel consumption and contribute to reduction of carbon dioxide emissions. Moreover, the intermittent power generation property and the variability of the generated power using the renewable energy can be stabilized by utilizing a buffering action of storing compressed air. Furthermore, according to the power generation system of the present invention, it is not necessary to decide whether or not to adopt the power generation system according to the conventional power generation efficiency, that is, the power generation amount per unit fossil fuel consumption. This is because the power generation system of the present invention enables storage of compressed air without using fossil fuel. Therefore, if a wind turbine generator that can generate power only with the stored compressed air is used, the fossil fuel is no longer used. It is because it is liberated from considering the consumption of the. Therefore, the power generation system of the present invention opens up a great path to sustainable power generation using renewable energy resources.
 本発明の発電システムにおいて、前記発電機、圧縮機、燃焼器、タービン、第一クラッチ、第二クラッチ、第一開閉手段、及び第二開閉手段を一ユニットとし、複数ユニットに対して一つの前記圧縮空気貯蔵タンクを共用することが挙げられる。 In the power generation system of the present invention, the generator, the compressor, the combustor, the turbine, the first clutch, the second clutch, the first opening / closing means, and the second opening / closing means are defined as one unit, and one unit is provided for a plurality of units. A common use is a compressed air storage tank.
 この構成によれば、建設に経済的・技術的負担の大きい圧縮空気貯蔵タンクを複数のユニットで共用することで、圧縮空気貯蔵タンクをより効率的に利用することができる。 According to this configuration, the compressed air storage tank can be used more efficiently by sharing the compressed air storage tank, which is economically and technically burdensome for construction, with a plurality of units.
 本発明の発電システムにおいて、原子力発電所に設置され、前記外部電力を前記原子力発電所の発電電力とすることが挙げられる。 In the power generation system of the present invention, it is installed in a nuclear power plant, and the external power is used as power generated by the nuclear power plant.
 原子力発電所は、電力負荷に合わせて出力調整せず、一定出力で運転することが効率的であり安全性を高めることになる。この場合、通常、夜間などの低負荷時には余剰電力が発生するため、この余剰電力を利用して上述の電動機(発電機)を駆動して直結する圧縮機を作動させれば、圧縮空気を生成することができる。 Nuclear power plants are more efficient and safer to operate at a constant output without adjusting the output according to the power load. In this case, normally, surplus power is generated at low loads such as at night, so compressed air is generated by operating the compressor directly connected by driving the motor (generator) using the surplus power. can do.
 本発明の発電システムにおいて、前記原子力発電所の予備電源として用いられることが挙げられる。 In the power generation system of the present invention, it can be used as a standby power source for the nuclear power plant.
 この構成によれば、原子力発電所が地震や津波などの天災により、その発電所の各種付属設備の運転や冷却水の循環を行うための電源をも喪失した場合に、本発明の発電システムを同発電所の予備電源として利用することができる。本発明の発電システムは、電力系統が損傷を受けていても、基本的に燃料を補充できれば稼働できる。原子力発電所は臨海地域に設置されていることが多く、LNGなどの燃料の補充は、船舶により燃料の運搬を行うことで比較的容易に補充でき、非常時の予備電源として好適に利用できる。 According to this configuration, the power generation system of the present invention can be used when a nuclear power plant loses the power source for operating various accessories and circulating the cooling water due to a natural disaster such as an earthquake or tsunami. It can be used as a standby power source for the power plant. Even if the power system is damaged, the power generation system of the present invention can be operated as long as it can basically be replenished with fuel. Nuclear power plants are often installed in coastal areas, and fuel such as LNG can be replenished relatively easily by transporting fuel by ship, and can be suitably used as an emergency standby power source.
 本発明の発電システムにおいて、前記圧縮空気貯蔵タンクの圧縮空気を前記原子力発電所の予備動力源とすることができる。 In the power generation system of the present invention, the compressed air in the compressed air storage tank can be used as a standby power source for the nuclear power plant.
 圧縮空気貯蔵タンクの圧縮空気は、タービンの駆動に利用できることは上述した通りであるが、それ以外に、本発明システムとは別のタービンの駆動動力としたり、エアシリンダなどの各種アクチュエータの動力源とすることもできる。そのため、圧縮空気を予備動力源とすることで、原子力発電所内の各種設備の駆動を行うことができる。 As described above, the compressed air in the compressed air storage tank can be used for driving the turbine. However, other than that, it is used as a driving power for a turbine different from the system of the present invention, or a power source for various actuators such as an air cylinder. It can also be. Therefore, by using compressed air as a reserve power source, various facilities in the nuclear power plant can be driven.
 本発明の発電システムにおいて、さらに、外部電力を用いて前記圧縮空気貯蔵タンクに貯蔵するための圧縮空気を生成する第二圧縮機を備えることが挙げられる。 The power generation system of the present invention may further include a second compressor that generates compressed air to be stored in the compressed air storage tank using external power.
 この構成によれば、低負荷時にタービンに連動される圧縮機に加え、外部電力により駆動される第二圧縮機を備えることで、余剰電力を有効利用して第二圧縮機を駆動し、タービンに連動される圧縮機で生成した圧縮空気に加え、第二圧縮機で生成した圧縮空気も圧縮空気貯蔵タンクに貯蔵することができる。その結果、高負荷時には、圧縮空気貯蔵タンクからの圧縮空気のみでタービンを運転できる時間を延ばすことができる。 According to this configuration, in addition to the compressor that is linked to the turbine at low load, the second compressor that is driven by external power is provided, so that the surplus power is effectively used to drive the second compressor. In addition to the compressed air generated by the compressor linked to the compressed air, the compressed air generated by the second compressor can also be stored in the compressed air storage tank. As a result, when the load is high, the time during which the turbine can be operated only with the compressed air from the compressed air storage tank can be extended.
 本発明の発電システムにおいて、前記圧縮空気貯蔵タンクは、入れ子式に配される複数の管を備え、内側の管内の圧力が外側の管内の圧力よりも高圧であることが挙げられる。 In the power generation system of the present invention, the compressed air storage tank includes a plurality of nested pipes, and the pressure in the inner pipe is higher than the pressure in the outer pipe.
 この構成によれば、各管は、互いの内圧の差圧に応じた強度を有すればよいため、過度に管の厚みを大きくすることなく圧縮空気貯蔵タンクを構成することができる。なお、ここでの管には、空気を貯蔵できるように両端部が封止された管であって、長尺の管は勿論、短尺の管の他、広く空気を貯蔵できる種々の形態の容器を含む。 According to this configuration, since each tube only needs to have a strength corresponding to the differential pressure between the internal pressures, a compressed air storage tank can be configured without excessively increasing the thickness of the tube. In addition, the pipe | tube here is a pipe | tube with which both ends were sealed so that air could be stored, In addition to a long pipe | tube, the container of various forms which can store air widely besides a short pipe | tube. including.
 上記の入れ子式の圧縮空気貯蔵タンクを備える本発明の発電システムにおいて、前記内側の管内と外側の管内とを所定の差圧に応じて連通させる差圧弁を備えることが挙げられる。 In the power generation system of the present invention provided with the above-described nested compressed air storage tank, it is possible to include a differential pressure valve that communicates the inside of the inner tube and the inside of the outer tube according to a predetermined differential pressure.
 この構成によれば、低圧縮空気を内蔵する管から燃焼器に圧縮空気を供給することで、高圧縮空気を内蔵する管との差圧が所定以上になれば、差圧弁の開放により、低圧縮空気を内蔵する管の圧力低下分を補償することができる。 According to this configuration, by supplying the compressed air from the pipe containing the low compressed air to the combustor, if the differential pressure with the pipe containing the high compressed air exceeds a predetermined level, the differential pressure valve is opened to reduce the pressure. The pressure drop of the pipe containing the compressed air can be compensated.
 その他、本発明の発電システムの運転方法として、上記入れ子式の複数の管と、内外の管内を所定の差圧に応じて連通させる差圧弁とを備える本発明の発電システムを用い、定圧法により発電システムを運転することが挙げられる。その場合、外側の管内の空気を燃焼器に供給し、この供給分の空気を内側の管内から差圧弁を介して外側の管内に補填することで、実質的に外側の管内の圧力を一定に保持する。 In addition, as a method of operating the power generation system of the present invention, the power generation system of the present invention including the plurality of nested pipes and a differential pressure valve that communicates the inside and the outside of the pipe according to a predetermined differential pressure is used. One example is operating a power generation system. In that case, the air in the outer pipe is supplied to the combustor, and the supplied air is supplied from the inner pipe to the outer pipe through the differential pressure valve, so that the pressure in the outer pipe is substantially constant. Hold.
 この運転方法によれば、従来、池や海水などの水圧と圧縮空気貯蔵タンク内の圧力との平衡を利用して実現するしかなかった定圧法による燃焼器への圧縮空気の供給を容易に実現することができる。 According to this operation method, it is easy to supply compressed air to the combustor by the constant pressure method, which has conventionally been achieved by using the balance between the water pressure of ponds and seawater and the pressure in the compressed air storage tank. can do.
 本発明の発電システム及びその運転方法によれば、タービンの利用率を高め、単位燃焼消費量当たりの発電電力量を増やすことができる。 According to the power generation system and the operation method of the present invention, it is possible to increase the utilization rate of the turbine and increase the amount of generated power per unit combustion consumption.
実施形態1に係る本発明発電システムの概略図である。1 is a schematic diagram of a power generation system of the present invention according to Embodiment 1. FIG. 実施形態1に係るシステムの高負荷時の運転状態を示す説明図である。It is explanatory drawing which shows the driving | running state at the time of high load of the system which concerns on Embodiment 1. FIG. 実施形態1に係るシステムの低負荷時の運転状態を示す説明図である。It is explanatory drawing which shows the driving | running state at the time of the low load of the system which concerns on Embodiment 1. FIG. 関東圏における1日当たりの電力消費量の推移を示すグラフである。It is a graph which shows transition of the electric power consumption per day in the Kanto area. 実施形態2に係る本発明発電システムの概略図である。It is the schematic of this invention electric power generation system which concerns on Embodiment 2. FIG. 実施形態3に係る本発明発電システムの概略図である。It is the schematic of this invention electric power generation system which concerns on Embodiment 3. FIG. 実施形態4に係る本発明発電システムの概略図である。It is the schematic of this invention electric power generation system which concerns on Embodiment 4. FIG. 実施形態5に係る本発明発電システムの概略図である。It is the schematic of this invention electric power generation system which concerns on Embodiment 5. FIG. 実施形態6に係る本発明発電システムに用いる圧縮空気貯蔵タンクを示し、(A)は同タンクの断面図、(B)は同タンクに設けたバルブの構成を示す概略図である。The compressed air storage tank used for this invention electric power generation system which concerns on Embodiment 6 is shown, (A) is sectional drawing of the tank, (B) is the schematic which shows the structure of the valve | bulb provided in the tank. 実施形態7に係る本発明発電システムに用いる圧縮空気貯蔵タンクを示し、(A)は同タンクの断面図、(B)は同タンクに設けたバルブの構成を示す概略図である。The compressed air storage tank used for this invention electric power generation system which concerns on Embodiment 7 is shown, (A) is sectional drawing of the tank, (B) is the schematic which shows the structure of the valve provided in the tank.
 以下、本発明の実施の形態を図に基づいて説明する。各図において、同一部材又は対応する部材には同一符号を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the same code | symbol is attached | subjected to the same member or a corresponding member.
 [実施形態1]
  (システム構成)
  《概要》
 この発電システム1Aは、図1に示すように、発電機10、圧縮機20(第一圧縮機)、圧縮空気貯蔵タンク30、燃焼器40、及びタービン50を備える。従来のCAESとの相違点の一つは、従来のCAESが圧縮機とタービンとの間に発電機を配しているのに対し、本発明の発電システムは、圧縮機20と発電機10との間にタービン50を配している点にある。また、発電システム1Aでは、圧縮機20とタービン50との間、並びに発電機10とタービン50の間にそれぞれ第一クラッチ60A及び第二クラッチ60Bを備えており、各クラッチ60A、60Bの動作により、タービン50の回転力を圧縮機20又は発電機10に伝達又は遮断する。そして、この発電システム1Aは、常時タービン50を駆動し、各クラッチ60A、60Bの結合状態を制御することで、圧縮機20で圧縮空気を生成する圧縮サイクルと、発電機10を駆動する発電サイクルとを行う。圧縮サイクルで生成された圧縮空気は、圧縮機20、燃焼器40、及びタービン50の間の圧縮空気流路に設けられた各バルブ70A~70Dの開閉により、圧縮空気貯蔵タンク30や燃焼器40に供給される。
[Embodiment 1]
(System configuration)
"Overview"
As shown in FIG. 1, the power generation system 1A includes a generator 10, a compressor 20 (first compressor), a compressed air storage tank 30, a combustor 40, and a turbine 50. One of the differences from the conventional CAES is that the conventional CAES has a generator arranged between the compressor and the turbine, whereas the power generation system of the present invention includes the compressor 20 and the generator 10. The turbine 50 is arranged between the two. Further, in the power generation system 1A, the first clutch 60A and the second clutch 60B are provided between the compressor 20 and the turbine 50, and between the generator 10 and the turbine 50, respectively. Then, the rotational force of the turbine 50 is transmitted to or cut off from the compressor 20 or the generator 10. The power generation system 1A constantly drives the turbine 50 to control the coupling state of the clutches 60A and 60B, thereby generating a compression cycle for generating compressed air by the compressor 20, and a power generation cycle for driving the generator 10. And do. The compressed air generated in the compression cycle is opened and closed by the valves 70A to 70D provided in the compressed air flow paths between the compressor 20, the combustor 40, and the turbine 50, and the compressed air storage tank 30 and the combustor 40 are thereby opened. To be supplied.
  《発電機、圧縮機、燃焼器、タービン》
 発電機10、圧縮機20、燃焼器40、及びタービン50は、従来の各部材と同様の構成が利用できる。発電機10は、電磁誘導を利用して、タービン50から得られる回転力(機械的エネルギー)を電気エネルギーに変換出力する。例えば、誘導発電機が利用できる。圧縮機20は、空気を吸入して圧縮し、圧縮空気を生成するもので、例えば、遠心圧縮機や軸流圧縮機が利用できる。燃焼器40は、図示しない燃料供給部から供給される燃料を圧縮空気と混合して燃焼させ、高温高圧の燃焼ガスを発生させて、その燃焼ガスをタービン50に供給する。燃料にはLNGや石油などが好適に利用できる。タービン50は、燃焼器40から供給される燃焼ガスにより回転され、発電機10の駆動力となる回転力を発生させる。これら発電機10、圧縮機20、燃焼器40、及びタービン50は同軸配置されることが好適である。
《Generator, Compressor, Combustor, Turbine》
The generator 10, the compressor 20, the combustor 40, and the turbine 50 can use the same configurations as those of conventional members. The generator 10 converts the rotational force (mechanical energy) obtained from the turbine 50 into electric energy and outputs it using electromagnetic induction. For example, an induction generator can be used. The compressor 20 sucks air and compresses it to generate compressed air. For example, a centrifugal compressor or an axial flow compressor can be used. The combustor 40 mixes and burns fuel supplied from a fuel supply unit (not shown) with compressed air, generates high-temperature and high-pressure combustion gas, and supplies the combustion gas to the turbine 50. LNG, oil, etc. can be suitably used as the fuel. The turbine 50 is rotated by the combustion gas supplied from the combustor 40 and generates a rotational force that is a driving force of the generator 10. The generator 10, the compressor 20, the combustor 40, and the turbine 50 are preferably arranged coaxially.
  《圧縮空気貯蔵タンク》
 圧縮空気貯蔵タンク30は、圧縮機20で生成した圧縮空気を貯蔵する空間である。本発明の発電システムにおける圧縮空気貯蔵タンク30は、地中や海底に人工的に埋設された部材、例えば鋼管やコンクリートにより空間を形成する建造物は勿論、掘削などにより地中に形成した空間(廃坑なども含む)、或いは自然に形成された空洞なども含む。
《Compressed air storage tank》
The compressed air storage tank 30 is a space for storing the compressed air generated by the compressor 20. The compressed air storage tank 30 in the power generation system of the present invention is a space formed in the ground by excavation or the like (not only a building artificially embedded in the ground or the sea floor, for example, a structure that forms a space by a steel pipe or concrete ( Including abandoned mines) or naturally formed cavities.
 この圧縮空気の貯蔵方式には定圧式と変圧式がある。定圧式は、圧縮空気を一定圧力で貯蔵する方式で、地中の深部に空洞を掘ったり、海底に貯蔵タンクを設置するなどして、水の静水圧を利用して空気を貯える。地中の場合、陸上に貯水池を設け、地下空洞との深さに相当する静水圧を利用して、一定圧の空気を貯蔵し、圧縮空気を使用すると、空洞から排出される空気の体積分が水に置換される。海中の場合、タンク内部の空気は、タンクの外側の水圧とバランスしており、タンクを沈設した深さに相当する水圧で空気が貯えられる。一方、変圧式は、ある一定容量の容器に空気を注入し、圧力を徐々に高めて貯蔵する方式である。圧縮空気を使用すると、圧力は徐々に減少し、容器内の圧縮空気の圧力が変動する。 ¡There are two types of compressed air storage systems: constant pressure and transformer. The constant pressure type is a system that stores compressed air at a constant pressure, and stores air using the hydrostatic pressure of water by digging a cavity deep in the ground or installing a storage tank on the sea floor. In the case of underground, a reservoir is set up on land, and a constant volume of air is stored using the hydrostatic pressure corresponding to the depth of the underground cavity. When compressed air is used, the volume of the air discharged from the cavity Is replaced with water. In the sea, the air inside the tank is balanced with the water pressure outside the tank, and air is stored at a water pressure corresponding to the depth at which the tank is set. On the other hand, the transformer type is a system in which air is injected into a container of a certain capacity and the pressure is gradually increased to store the container. When compressed air is used, the pressure gradually decreases and the pressure of the compressed air in the container fluctuates.
 圧縮空気の貯蔵には、定圧式の方が、空気貯蔵効率が高いとされる。定圧式の圧縮空気の貯蔵と発電量との関係式は、既存のガスタービン発電機を使用したとすると、例えば次のように表わされる。 For storing compressed air, the constant pressure type has higher air storage efficiency. If the existing gas turbine generator is used, the relational expression between the storage of the constant pressure type compressed air and the power generation amount is expressed as follows, for example.
 V=4.2/P 〔m3/kWh〕
 V:必要貯蔵容量〔m3/kWh〕 P:圧力〔kg/cm2
 一例として圧縮空気貯蔵タンク30の容積を試算すると、10万kWの発電量で10時間運転するための空気を30気圧で貯蔵するのに必要な空間は、14万m3となる。これは、300mの海底に、直径10m×長さ50mの海水圧平衡型(下部開放)タンクを約35本並べて設置するか、15万トン・タンカークラスの容量のタンクを1基沈設したケースに相当する。
V = 4.2 / P [m 3 / kWh]
V: Required storage capacity [m 3 / kWh] P: Pressure [kg / cm 2 ]
As an example, if the volume of the compressed air storage tank 30 is estimated, the space required to store air for 30 hours at a power of 100,000 kW for 10 hours is 140,000 m 3 . This is the case where approximately 35 seawater pressure balanced (lower open) tanks with a diameter of 10m x length of 50m are installed side by side on a 300m seabed, or a tank with a capacity of 150,000ton tanker class is installed. Equivalent to.
  《第一クラッチ、第二クラッチ》
 第一クラッチ60Aは、タービン50の回転力を圧縮機20に伝達又は遮断し、第二クラッチ60Bは、タービン50の回転力を発電機10に伝達又は遮断する。各クラッチ60A、60Bの構成には、公知の各種クラッチが利用できる。例えば、噛み合いクラッチ、電磁クラッチ、円錐クラッチなどの利用が期待できる。
<First clutch, second clutch>
The first clutch 60A transmits or interrupts the rotational force of the turbine 50 to the compressor 20, and the second clutch 60B transmits or interrupts the rotational force of the turbine 50 to the generator 10. Various known clutches can be used for the configurations of the clutches 60A and 60B. For example, utilization of a meshing clutch, an electromagnetic clutch, a conical clutch, etc. can be expected.
 その他、これらクラッチ60A、60Bは、発電システムに後付けできるように構成してもよい。例えば、タービン50と圧縮機20との動力伝達軸及びタービン50と発電機10との動力伝達軸の各軸の途中に分離端を設けておき、常時は、その分離端同士をフランジ継手など、伝達状態を固定的に維持できる結合手段により連結しておく。その場合、従来のガスタービン発電と同様に、昼間などの高負荷時のみ圧縮機、タービン及び発電機を駆動し、夜間などの低負荷時はこれらの駆動を停止するといった運転を行う。一方、発電容量の増量が必要になった場合、フランジ継手の結合を切り離して、各動力伝達軸の分離端の間にクラッチ60A、60Bを取り付けることで、本発明の発電システムとして構成することができる。その場合、後述するように、従来のガスタービン発電と同様の運転に比べて発電容量を増量して発電システムを運転することができる。 In addition, these clutches 60A and 60B may be configured to be retrofitted to the power generation system. For example, a separation end is provided in the middle of each of the power transmission shaft of the turbine 50 and the compressor 20 and the power transmission shaft of the turbine 50 and the generator 10, and the separation ends are usually flanged joints, etc. It is connected by a coupling means that can maintain the transmission state in a fixed manner. In that case, like the conventional gas turbine power generation, the compressor, the turbine, and the generator are driven only during a high load such as daytime, and the driving is stopped when the load is low such as at night. On the other hand, when it is necessary to increase the power generation capacity, it is possible to configure the power generation system of the present invention by disconnecting the coupling of the flange joint and attaching the clutches 60A and 60B between the separated ends of the power transmission shafts. it can. In that case, as will be described later, the power generation system can be operated by increasing the power generation capacity compared to the same operation as that of the conventional gas turbine power generation.
  《各バルブ》
 各バルブ70A~70Dは、その開閉動作により、圧縮機20で生成した圧縮空気をタービン50及び圧縮空気貯蔵タンク30の少なくとも一方に導入させる。例えば本例では、圧縮機20とタービン50との間にバルブ70A、70Bが設けられ、この両バルブ70A、70Bの間と圧縮空気貯蔵タンク30との間にバルブ70Cが設けられている。さらに、バルブ70Aの下流(圧縮空気貯蔵タンク側)で空気の流路が分岐され、その分岐端はバルブ70Bの下流(燃焼器側)に接続されている。そして、その分岐の途中にバルブ70Dが設けられている。タービン50は燃料と圧縮空気の混合ガスの燃焼により回転され、第一クラッチ60Aの結合により圧縮機20を連動することができる。そのため、バルブ70A、70D(第一開閉手段)を開き、バルブ70Bを閉じることで、圧縮機20で生成された圧縮空気の一部を燃焼器40に供給してタービンの回転に供し、残部を圧縮空気貯蔵タンク30に貯えることができる。一方、バルブ70A、70Dを閉じ、バルブ70B(第二開閉手段)を開くと、圧縮空気貯蔵タンク30内の圧縮空気のみを燃焼器40に供給することができ、圧縮機20を駆動することなくタービン50を動作させることができる。さらに、バルブ70B、70Cを閉じ、バルブ70A、70Dを開くことで、圧縮機20で生成した圧縮空気を全て燃焼器40に供給でき、従来のガスタービンと同様の動作を行うこともできる。勿論、各バルブ70A~70Dの開閉状態を調整することで、圧縮機20で生成された圧縮空気と圧縮空気貯蔵タンク30に貯蔵された圧縮空気の双方を燃焼器40に供給することも可能である。
《Each valve》
The valves 70A to 70D introduce the compressed air generated by the compressor 20 into at least one of the turbine 50 and the compressed air storage tank 30 by opening and closing operations thereof. For example, in this example, valves 70A and 70B are provided between the compressor 20 and the turbine 50, and a valve 70C is provided between the valves 70A and 70B and the compressed air storage tank 30. Further, the air flow path is branched downstream of the valve 70A (compressed air storage tank side), and the branch end is connected downstream of the valve 70B (combustor side). A valve 70D is provided in the middle of the branch. The turbine 50 is rotated by combustion of a mixed gas of fuel and compressed air, and the compressor 20 can be interlocked by coupling the first clutch 60A. Therefore, by opening the valves 70A and 70D (first opening / closing means) and closing the valve 70B, a part of the compressed air generated by the compressor 20 is supplied to the combustor 40 for rotation of the turbine, and the remaining part is Can be stored in compressed air storage tank 30. On the other hand, when the valves 70A and 70D are closed and the valve 70B (second opening / closing means) is opened, only the compressed air in the compressed air storage tank 30 can be supplied to the combustor 40 without driving the compressor 20. The turbine 50 can be operated. Furthermore, by closing the valves 70B and 70C and opening the valves 70A and 70D, all the compressed air generated by the compressor 20 can be supplied to the combustor 40, and the same operation as that of the conventional gas turbine can be performed. Of course, it is also possible to supply both the compressed air generated by the compressor 20 and the compressed air stored in the compressed air storage tank 30 to the combustor 40 by adjusting the open / closed state of the valves 70A to 70D. is there.
  (運転方法)
 次に、上記の発電システムの運転方法を図2、図3に基づいて説明する。
(how to drive)
Next, an operation method of the power generation system will be described with reference to FIGS.
 まず、昼間などの電力消費量が多い高負荷時は、圧縮機20を停止し、タービン50及び発電機10を駆動して、その発電電力を原子力発電所などの発電電力に加えることで、消費電力ピークに対応できる電力量を供給する。具体的には、図2に示すように、第一クラッチ60Aを切り離し、第二クラッチ60Bを結合する。また、バルブ70B、70Cを開き、バルブ70A、70Dを閉じる。この状態で、圧縮空気貯蔵タンク30から圧縮空気を燃焼器40に供給し、さらに燃料も燃焼器40に供給することで、圧縮空気と混合した燃料を燃焼させ、その燃焼ガスによりタービン50を駆動することができる。タービン50の回転力は、結合された第二クラッチ60Bを介して発電機10に伝達されるため、発電機10が駆動され、発電が行われる。従来のガスタービン発電システムでは、タービンで発生した駆動力の2/3程度は圧縮機の駆動に利用されるが、本例のシステムでは、圧縮機20を駆動する必要がない。 First, during heavy loads such as daytime, when the load is high, the compressor 20 is stopped, the turbine 50 and the generator 10 are driven, and the generated power is added to the generated power of a nuclear power plant, etc. Supply the amount of power that can handle the power peak. Specifically, as shown in FIG. 2, the first clutch 60A is disconnected and the second clutch 60B is connected. Further, the valves 70B and 70C are opened, and the valves 70A and 70D are closed. In this state, the compressed air is supplied from the compressed air storage tank 30 to the combustor 40, and the fuel is also supplied to the combustor 40 so that the fuel mixed with the compressed air is burned, and the turbine 50 is driven by the combustion gas. can do. Since the rotational force of the turbine 50 is transmitted to the generator 10 via the coupled second clutch 60B, the generator 10 is driven to generate power. In the conventional gas turbine power generation system, about 2/3 of the driving force generated in the turbine is used for driving the compressor, but in the system of this example, it is not necessary to drive the compressor 20.
 次に、夜間などの電力消費量が少ない低負荷時は、発電機を停止し、タービン50及び圧縮機20を駆動して、生成された圧縮空気の一部を圧縮空気貯蔵タンク30に貯蔵する。具体的には、図3に示すように、第一クラッチ60Aを結合し、第二クラッチ60Bを切り離す。また、バルブ70A、70C、70Dを開き、バルブ70Bを閉じる。この状態において、燃料を燃焼器40に供給し、タービン50を駆動する。タービン50の回転力は結合された第一クラッチ60Aを介して圧縮機20に伝達され、圧縮機20をタービン50に連動することができる。この圧縮機20の駆動により圧縮空気が生成され、その一部はバルブ70Dを介して燃焼器40に供給されてタービン50の駆動に利用され、残部はバルブ70A、70Cを介して圧縮空気貯蔵タンク30に貯蔵される。従来のガスタービン発電システムでは、タービンで発生した駆動力の1/3程度が発電機の駆動に利用されるが、本例のシステムでは、低負荷時には発電機10を駆動する必要がない。 Next, when the power consumption is low such as at night, the generator is stopped and the turbine 50 and the compressor 20 are driven to store a part of the generated compressed air in the compressed air storage tank 30. . Specifically, as shown in FIG. 3, the first clutch 60A is connected and the second clutch 60B is disconnected. Further, the valves 70A, 70C, and 70D are opened, and the valve 70B is closed. In this state, fuel is supplied to the combustor 40 and the turbine 50 is driven. The rotational force of the turbine 50 is transmitted to the compressor 20 via the coupled first clutch 60A, and the compressor 20 can be linked to the turbine 50. Compressed air is generated by driving the compressor 20, a part of which is supplied to the combustor 40 via the valve 70D and used for driving the turbine 50, and the remainder is compressed air storage tank via the valves 70A and 70C. Stored at 30. In the conventional gas turbine power generation system, about 1/3 of the driving force generated in the turbine is used for driving the generator, but in the system of this example, it is not necessary to drive the generator 10 at a low load.
  (作用効果)
 本発明の発電システムによれば、高負荷時は圧縮機20を駆動することなく圧縮空気貯蔵タンク30の圧縮空気を用いてタービン50を駆動し、発電を行うことができる。一方、低負荷時は発電機10を駆動することなくタービン50を駆動し、そのタービン50に圧縮機20を連動させることで、タービン50の駆動に必要な圧縮空気を生成すると共に、余剰の圧縮空気を圧縮空気貯蔵タンク30に貯えることができる。つまり、高負荷時は圧縮機20を駆動する必要がないため、従来のガスタービン発電に比べて、タービン50の駆動に要する燃料を削減し、或いは発電機10の発電容量を最高で約3倍にすることができる。また、低負荷時は発電機10を駆動する必要がないため、タービン50の駆動に要する燃料を削減し、高負荷時に利用する圧縮空気を圧縮空気貯蔵タンク30に貯えることができる。従って、一般に高価なタービン50の利用率を向上させることができ、高負荷時の発電容量を高めることができるため、従来のガスタービン発電システムに比べて少ない台数で同量の発電容量を得ることができる。さらに、圧縮空気貯蔵タンク30の圧縮空気が枯渇して利用できない場合は、両クラッチ60A、60Bを結合することで、圧縮機20、タービン50、及び発電機10を駆動して、従来のガスタービン発電システムと同様の運転を行うことができる。
(Effect)
According to the power generation system of the present invention, it is possible to generate power by driving the turbine 50 using the compressed air in the compressed air storage tank 30 without driving the compressor 20 at high load. On the other hand, when the load is low, the turbine 50 is driven without driving the generator 10, and the compressor 20 is linked to the turbine 50, thereby generating compressed air necessary for driving the turbine 50 and excessive compression. Air can be stored in the compressed air storage tank 30. In other words, since it is not necessary to drive the compressor 20 at high loads, the fuel required to drive the turbine 50 is reduced or the power generation capacity of the generator 10 is about three times higher than the conventional gas turbine power generation. Can be. Further, since it is not necessary to drive the generator 10 when the load is low, the fuel required to drive the turbine 50 can be reduced, and the compressed air used during the high load can be stored in the compressed air storage tank 30. Accordingly, the utilization rate of the expensive turbine 50 can be improved and the power generation capacity at the time of high load can be increased, so that the same amount of power generation capacity can be obtained with a smaller number of units than the conventional gas turbine power generation system. Can do. Further, when the compressed air in the compressed air storage tank 30 is exhausted and cannot be used, the conventional gas turbine is driven by connecting the clutches 60A and 60B to drive the compressor 20, the turbine 50, and the generator 10. The same operation as the power generation system can be performed.
 本例に係る発電システムは、都市部から離れた遠隔地などでの利用が期待できる。例えば、有効利用できる土地が十分にあり、太陽光発電システムの設置に適しているのに発電設備がなく、臨海大型発電所から電力を送電する必要がある山間地域などに本例に係る発電システムを太陽光発電システムと併設すれば、この山間地域での電力の自立を図ることが期待できる。特に、廃坑がある場合、その廃坑を圧縮空気貯蔵タンク30として活用することで、本例の発電システムを経済的に設置できることが期待される。 The power generation system according to this example can be expected to be used in remote areas away from urban areas. For example, the power generation system according to this example is available in mountainous areas where there is enough land that can be used effectively, and there is no power generation equipment even though it is suitable for installation of a solar power generation system, and power needs to be transmitted from a large coastal power plant. Can be expected to be self-supporting in this mountainous area. In particular, when there is an abandoned mine, it is expected that the power generation system of this example can be economically installed by utilizing the abandoned mine as the compressed air storage tank 30.
 また、本例に係る発電システムは原子力発電所に併設することも考えられる。原子力発電所は、その冷却水の循環など、発電所を維持するための電源が必要である。この発電所の維持のための電源が地震や津波などで利用できない場合、本例の発電システムは、当該発電所の予備電源として有効に利用できる。これは、本例の発電システムは、LNGなどの燃料を用いて運転でき、基本的に外部電源を必要としないシステムだからである。 Also, the power generation system according to this example may be installed in a nuclear power plant. A nuclear power plant needs a power source for maintaining the power plant, such as circulating its cooling water. When the power source for maintaining the power plant cannot be used due to an earthquake or tsunami, the power generation system of this example can be effectively used as a standby power source for the power plant. This is because the power generation system of this example can be operated using a fuel such as LNG and basically does not require an external power source.
  (試算例)
 次に、本発明の発電システムを運転した場合の燃料効率を試算してみた。この試算では、従来のガスタービン発電システムと本発明の発電システムの一日当たりの消費燃料と発電電力量とを試算し、燃料効率(発電電力量/消費燃料)を試算した。試算の前提として、一日の半分を昼間、残る半分を夜間とし、従来のガスタービン発電システムの試算例を比較例、本発明の発電システムの試算例を実施例としている。
(Example calculation)
Next, the fuel efficiency when the power generation system of the present invention was operated was estimated. In this trial calculation, fuel consumption (power generation amount / fuel consumption) was calculated by calculating the fuel consumption and power generation amount per day of the conventional gas turbine power generation system and the power generation system of the present invention. As a premise of the trial calculation, half of the day is daytime, and the other half is night, and a trial calculation example of a conventional gas turbine power generation system is a comparative example, and a trial calculation example of the power generation system of the present invention is an embodiment.
 比較例では、昼間は常に最大出力で発電し、夜間は発電を停止することとする。つまり、昼間は圧縮機、タービン、発電機が全て駆動され、夜間はこれら全てが停止される。 In the comparative example, power is always generated at the maximum output during the day, and power generation is stopped at night. That is, the compressor, turbine, and generator are all driven during the daytime, and all are stopped at nighttime.
 実施例では、24時間タービンを駆動する。昼間は圧縮空気貯蔵タンクの圧縮空気が利用できる間は圧縮機を駆動することなくタービン及び発電機を駆動して発電を行い、同タンクの圧縮空気が利用できない間は比較例と同様に圧縮機、タービン及び発電機の駆動を行う。また、夜間は発電機を駆動することなくタービン及び圧縮機を駆動する。但し、タービンの駆動に必要な圧縮空気量は、燃料の必要量と同じパターンで増減するものとする。即ち、実施例において、夜間(1/2日)に圧縮機で生成した圧縮空気は、圧縮機を回転させるのに必要なタービンの駆動力分(2/3)だけは必要になるので、貯蔵に回せる圧縮空気量は「1/3」となる。従って、昼間(1/2日)に圧縮機を止めて発電できる時間も「1/2×1/3=1/6日」分に限られることになる。以下の「消費燃料」において、実施例にはタービン以外の駆動機関を示している。 In the embodiment, the turbine is driven for 24 hours. During the daytime, the compressed air stored in the compressed air storage tank can be used to generate power by driving the turbine and generator without driving the compressor. When the compressed air in the tank cannot be used, the compressor is used as in the comparative example. And drive the turbine and generator. Further, at night, the turbine and the compressor are driven without driving the generator. However, the amount of compressed air necessary for driving the turbine is increased or decreased in the same pattern as the required amount of fuel. That is, in the embodiment, the compressed air generated by the compressor at night (1/2 day) needs only the turbine driving force (2/3) necessary to rotate the compressor, so it is stored. The amount of compressed air that can be turned into 1 is “1/3”. Therefore, the time during which the compressor can be stopped during the daytime (1/2 days) is limited to “1/2 × 1/3 = 1/6 days”. In the following “consumed fuel”, the driving engine other than the turbine is shown in the embodiment.
  《消費燃料》
 比較例: 1/2(昼間)×1=1/2
 実施例: 1/2×1/3(昼間の一部:ピーク時)×1/3(発電機のみ運転)
      +1/2×2/3(昼間の残り時間)×1(発電機と圧縮機を運転)
      +1/2(夜間)×2/3(圧縮機のみ運転)
     ={(1/2×1/3)×1/3+(1/2×2/3)×1}+(1/2×2/3)
     =7/18+6/18=13/18=(13/9)/2=1.44/2
 以上より、1日に消費する燃料の量は、実施例の方が比較例に比べて1.44倍多くなる。
《Fuel consumption》
Comparative example: 1/2 (daytime) x 1 = 1/2
Example: 1/2 x 1/3 (part of daytime: at peak) x 1/3 (only generators run)
+ 1/2 × 2/3 (time remaining in daytime) × 1 (operating generator and compressor)
+1/2 (nighttime) x 2/3 (only compressor operation)
= {(1/2 × 1/3) × 1/3 + (1/2 × 2/3) × 1} + (1/2 × 2/3)
= 7/18 + 6/18 = 13/18 = (13/9) /2=1.44/2
From the above, the amount of fuel consumed per day is 1.44 times greater in the example than in the comparative example.
  《発電電力量》
 比較例: 1/2(昼間)×1=1/2
 実施例: (1/2×1/3)×3+(1/2×2/3)×1=3/6+2/6=5/6=(5/3)/2=1.67/2
 以上より、1日に発電する電力量は、実施例の方が比較例に比べて1.67倍多くなる。
《Power generation amount》
Comparative example: 1/2 (daytime) x 1 = 1/2
Example: (1/2 × 1/3) × 3 + (1/2 × 2/3) × 1 = 3/6 + 2/6 = 5/6 = (5/3) /2=1.67/2
From the above, the amount of power generated per day is 1.67 times greater in the example than in the comparative example.
  《燃料効率》
 比較例: (1/2)/(1/2)=1
 実施例: (5/6)/(13/18)=15/13=1.15
 従って、実施例は比較例に対して燃料効率が「1.15倍」にアップすることになる。つまり、燃料消費量だけを見れば、実施例の方が比較例よりも劣るが、実施例は発電電力量が多いため、燃料効率という点で見れば、実施例の方が効率的であることがわかる。
《Fuel efficiency》
Comparison example: (1/2) / (1/2) = 1
Example: (5/6) / (13/18) = 15/13 = 1.15
Therefore, the fuel efficiency of the example increases to “1.15 times” compared to the comparative example. In other words, the example is inferior to the comparative example if only the fuel consumption is observed, but the example is more efficient in terms of fuel efficiency because the example has a larger amount of generated power. I understand.
 ここで、関東圏における今年(2011年)の夏場の1日当たりの最大消費電力量と供給可能電力量の予想グラフを図4に示す。このグラフから明らかなように、午前10時頃から午後4時頃までの約6時間のピーク帯(1日の1/4の時間)を乗り切れば、かなりの数の発電機は総発電能力が需要をオーバーして余剰になるので、順次発電出力を落としながら発電停止へ持っていけることがわかる。ところが、災害や事故等で必要電力が不足し(2011年4月現在)、緊急で発電能力を復活する必要がある場合に、電力需要のピークを乗り切る台数だけ発電機を新設していては、その建設期間も長くなり且つ投資金額も大きくなる上に、必要用地が広大になるなど、多くの課題を生じる。 Here, Fig. 4 shows a forecast graph of the maximum power consumption per day and the amount of power that can be supplied in the summer of this year (2011) in the Kanto region. As is clear from this graph, if you survive the peak period of about 6 hours from 10:00 am to 4:00 pm (1/4 of the day), a considerable number of generators will have a total power generation capacity. It turns out that it can be brought to the power generation stop while decreasing the power generation output because the demand will be surplus. However, if there is a shortage of necessary power due to a disaster or accident (as of April 2011) and it is necessary to revive the power generation capacity urgently, the number of generators that can overcome the peak of power demand will be The construction period is long and the investment amount is large, and the necessary land is vast, resulting in many problems.
 本発明の発電システムであれば、低負荷時には得られたエネルギーを圧縮空気に変えて貯蔵し、逆に昼間等の高負荷時では、貯蔵した圧縮空気を用いて1台の発電機の発電能力を大きく向上させることによって、電力の需給バランスをとることができる。よって、上述した課題の多くの改善に効果的に資することができる。 With the power generation system of the present invention, the energy obtained is stored by converting it into compressed air at low loads, and conversely at high loads such as daytime, the power generation capacity of one generator using the stored compressed air By greatly improving the power supply / demand balance, it is possible to balance power supply and demand. Therefore, it can contribute effectively to many improvement of the subject mentioned above.
 [実施形態2]
 次に、実施形態1の発電システムの応用例を図5に基づいて説明する。
[Embodiment 2]
Next, an application example of the power generation system of Embodiment 1 will be described with reference to FIG.
  (システム構成)
 本例の発電システム1Bは、廃坑などを利用できる山間部などに設置され、さらに臨海地域などに設けられた従来の火力発電所H-PSが存在することを前提としている。従来の火力発電所H-PSでは、例えば、発電機10H、圧縮機20H、燃焼器40H、及びタービン50Hを備え、24時間定常運転する。また、この火力発電所H-PSは、電力の消費地及び本例の発電システム1Bに対して、発電電力を切り替えて供給する切替手段90が接続されている。一方、本例の発電システム1Bは、実施形態1の発電システムに加え、さらに電動機80と第二圧縮機22を備える。この電動機80は火力発電所H-PSからの電力により駆動され、第二圧縮機22を動作させて、圧縮空気を生成することができる。さらに、上記実施形態1と同様の発電システムは、発電機10から電力の消費地に発電電力を供給/遮断する遮断部92が接続されている。
(System configuration)
The power generation system 1B of the present example is premised on that there is a conventional thermal power plant H-PS installed in a mountainous area where an abandoned mine can be used and further provided in a coastal area. The conventional thermal power plant H-PS includes, for example, a generator 10H, a compressor 20H, a combustor 40H, and a turbine 50H, and operates 24 hours a day. In addition, the thermal power plant H-PS is connected to switching means 90 that switches and supplies the generated power to the power consumption area and the power generation system 1B of this example. On the other hand, the power generation system 1B of this example further includes an electric motor 80 and a second compressor 22 in addition to the power generation system of the first embodiment. The electric motor 80 is driven by electric power from the thermal power plant H-PS, and can operate the second compressor 22 to generate compressed air. Furthermore, the power generation system similar to that of the first embodiment is connected to a blocking unit 92 that supplies / cuts off generated power from the generator 10 to a power consumption area.
  (運転方法)
 このような発電システム1Bにおいて、昼間などの高負荷時には、火力発電所H-PSの発電電力を消費地に供給すると共に、山間部の発電システムの発電電力も消費地に供給する。このとき、山間部の発電システムでは、実施形態1と同様に、圧縮空気貯蔵タンク30の圧縮空気を利用して、圧縮機20(第一圧縮機)を駆動することなくタービン50及び発電機10を駆動する。
(how to drive)
In such a power generation system 1B, at the time of high load such as daytime, the generated power of the thermal power plant H-PS is supplied to the consuming area, and the generated power of the mountainous power generation system is also supplied to the consuming area. At this time, in the power generation system in the mountainous area, similarly to the first embodiment, the turbine 50 and the generator 10 are driven without using the compressed air in the compressed air storage tank 30 to drive the compressor 20 (first compressor). Drive.
 一方、夜間などの低負荷時には、火力発電所H-PSの電力を山間部の発電システムの電動機80に供給し、その電力によって電動機80を駆動する。この電動機80の駆動により、第二圧縮機22を駆動して、その圧縮空気を圧縮空気貯蔵タンク30に貯蔵する。同時に、遮断部92を消費地に対して遮断した状態で、山間部の発電システムでは発電機10は駆動せずにタービン50と圧縮機20を駆動する。それにより、タービン50の駆動に要する圧縮空気を除いた残部の圧縮空気を圧縮空気貯蔵タンク30に貯蔵することができる。 On the other hand, at the time of low load such as at night, the electric power of the thermal power plant H-PS is supplied to the electric motor 80 of the power generation system in the mountain area, and the electric motor 80 is driven by the electric power. By driving the electric motor 80, the second compressor 22 is driven and the compressed air is stored in the compressed air storage tank 30. At the same time, in the mountainous power generation system, the turbine 50 and the compressor 20 are driven without driving the generator 10 in a state where the blocking unit 92 is blocked from the consumption area. Accordingly, the remaining compressed air excluding the compressed air required for driving the turbine 50 can be stored in the compressed air storage tank 30.
  (作用効果)
 本例の発電システム1Bによれば、火力発電所H-PSが24時間定常運転するため夜間に余剰電力が生じると、その余剰電力を有効利用して第二圧縮機22を駆動し、圧縮空気を生成することができる。この第二圧縮機22により生成される圧縮空気は、第一圧縮機20により生成されて圧縮空気貯蔵タンク30に貯蔵される圧縮空気に付加して同タンク30に貯蔵されるため、高負荷時、第一圧縮機20を駆動することなく山間部の発電システムを運転できる時間を長くすることができる。
(Effect)
According to the power generation system 1B of this example, when the thermal power plant H-PS operates 24 hours a day, when surplus power is generated at night, the surplus power is effectively used to drive the second compressor 22 and compressed air. Can be generated. The compressed air generated by the second compressor 22 is added to the compressed air generated by the first compressor 20 and stored in the compressed air storage tank 30 and stored in the tank 30. The time during which the power generation system in the mountain area can be operated without driving the first compressor 20 can be extended.
 その他、太陽光を利用する発電システムと組み合わせれば、一層エネルギーの効率的な利用が期待できる。具体的には、太陽光発電システムを併設し、太陽電池の発電電力を電動機80の駆動に利用することが挙げられる。この太陽光発電システムによる電動機の駆動は、後述する実施形態4(図7)や実施形態5(図8)の発電システムでも同様に利用できる。或いは、集光器を用いた太陽熱発電システムを併設し、このシステムで得られた熱で圧縮空気を加熱して燃焼器に導入するなどの利用が考えられる。 In addition, when combined with a power generation system that uses sunlight, more efficient use of energy can be expected. Specifically, a solar power generation system is provided, and the generated power of the solar cell is used for driving the electric motor 80. The driving of the electric motor by this solar power generation system can be similarly used in the power generation systems of Embodiment 4 (FIG. 7) and Embodiment 5 (FIG. 8) described later. Alternatively, a solar thermal power generation system using a concentrator may be provided, and compressed air may be heated with the heat obtained by this system and introduced into the combustor.
 [実施形態3]
 次に、実施形態1の発電システムの応用例として、発電機、圧縮機、燃焼器、タービン、及び各クラッチを一ユニットとし、複数ユニットに対して一つの圧縮空気貯蔵タンクを共用するシステムを図6に基づいて説明する。
[Embodiment 3]
Next, as an application example of the power generation system according to the first embodiment, a system in which a generator, a compressor, a combustor, a turbine, and each clutch are used as one unit and a single compressed air storage tank is shared among a plurality of units is illustrated. 6 will be described.
  (システム構成)
 この発電システムは、発電システム1Cと発電システム1Dを備え、各システム1C、1Dは、実施形態1と同様に発電機10、圧縮機20、燃焼器40、タービン50、及び各クラッチ60A、60Bを備えている。両発電システム1C、1Dは互いに近接して設けても良いし、遠隔地に存在しても構わない。一方、圧縮空気貯蔵タンク30は、複数のユニットに対して一つ存在し、各ユニットとの間で圧縮空気の貯蔵・供給を行うことができる。各ユニットと圧縮空気貯蔵タンク30の設置例としては、各ユニットを臨海地域に設け、圧縮空気貯蔵タンク30を近海の海中タンクや、都市地下排水貯蔵所(タンク)などに設けることが挙げられる。或いは、圧縮空気貯蔵タンク30は、原子力発電所内の地中に設置したタンクとすることも挙げられる。
(System configuration)
This power generation system includes a power generation system 1C and a power generation system 1D. Each system 1C, 1D includes a generator 10, a compressor 20, a combustor 40, a turbine 50, and clutches 60A, 60B as in the first embodiment. I have. Both power generation systems 1C and 1D may be provided close to each other or may exist in a remote place. On the other hand, one compressed air storage tank 30 exists for a plurality of units, and compressed air can be stored and supplied to each unit. Examples of the installation of each unit and the compressed air storage tank 30 include providing each unit in a coastal area, and providing the compressed air storage tank 30 in an undersea tank near the sea, an urban underground drainage storage (tank), or the like. Alternatively, the compressed air storage tank 30 may be a tank installed underground in the nuclear power plant.
  (運転方法)
 各発電システム1C、1Dの運転方法は、実施形態1のシステムの運転方法と同様である。
(how to drive)
The operation method of each power generation system 1C, 1D is the same as the operation method of the system of the first embodiment.
  (作用効果)
 本例の発電システムによれば、実施形態1のシステムの作用効果に加え、複数のユニットに対して一つの圧縮空気貯蔵タンク30を共用することで、建設にコスト・労力・時間がかかり易い圧縮空気貯蔵タンク30の設置数を削減することができる。
(Effect)
According to the power generation system of the present example, in addition to the operational effects of the system of the first embodiment, the compressed air storage tank 30 is shared for a plurality of units, so that it is costly, labor-intensive and time-consuming for construction. The number of installed air storage tanks 30 can be reduced.
 [実施形態4]
 次に、発電機を電動機として利用する発電システムを図7に基づいて説明する。
[Embodiment 4]
Next, a power generation system using the generator as an electric motor will be described with reference to FIG.
  (システム構成)
 本例のシステム1Eは、実施形態1のシステム1Aと同様に、発電機10、圧縮機20、燃焼器40、タービン50、及び各クラッチ60A、60Bを備えており、この発電機10を電動機80としても利用する。発電機10を電動機80として利用する場合、他の発電所の夜間の余剰電力などを外部電力として利用して電動機80を駆動する。その電動機80の駆動力は、動力伝達機構85を介して圧縮機20に伝達される。この電動機80の駆動力の伝達には、第三クラッチ60Cと第四クラッチ60Dを用いる。つまり、第二クラッチ60Bを切り離し、第三クラッチ60Cを結合することで、電動機80の駆動力は、タービン50に伝達することなく動力伝達機構85に伝達される。また、第四クラッチ60Dを結合することで、電動機80から伝達された動力伝達機構85の駆動力は圧縮機20に伝達される。その際、第一クラッチ60Aは結合していても良いし、切り離されていても良い。第一クラッチ60Aが結合していれば、タービン50の駆動力に電動機80の駆動力を付加して圧縮機20を駆動することができ、第一クラッチ60Aが切り離されていれば、タービン50を駆動することなく圧縮機20を駆動することができる。
(System configuration)
Similar to the system 1A of the first embodiment, the system 1E of this example includes a generator 10, a compressor 20, a combustor 40, a turbine 50, and clutches 60A and 60B. Also used as. When the generator 10 is used as the electric motor 80, the electric motor 80 is driven by using, for example, surplus electric power at night of other power plants as external electric power. The driving force of the electric motor 80 is transmitted to the compressor 20 via the power transmission mechanism 85. The third clutch 60C and the fourth clutch 60D are used to transmit the driving force of the electric motor 80. That is, the second clutch 60B is disconnected and the third clutch 60C is connected, so that the driving force of the electric motor 80 is transmitted to the power transmission mechanism 85 without being transmitted to the turbine 50. Further, by coupling the fourth clutch 60D, the driving force of the power transmission mechanism 85 transmitted from the electric motor 80 is transmitted to the compressor 20. At that time, the first clutch 60A may be coupled or disconnected. If the first clutch 60A is connected, the compressor 20 can be driven by adding the driving force of the electric motor 80 to the driving force of the turbine 50. If the first clutch 60A is disconnected, the turbine 50 is The compressor 20 can be driven without being driven.
  (運転方法)
 本例のシステム1Eでも、昼間などの高負荷時、圧縮空気貯蔵タンク30の圧縮空気を利用してタービン50を駆動し、さらに発電機10を駆動して発電を行う。一方、夜間などの低負荷時には、第二クラッチ60Bを切り離し、第一クラッチ60A、第三クラッチ60C、第四クラッチ60Dを結合し、発電機10を電動機80として外部電力で駆動し、その動力を圧縮機20の駆動に利用する。或いは、さらに第一クラッチ60Aを切り離し、タービン50を駆動することなく電動機80を駆動させ、その駆動力で圧縮機20を駆動する。
(how to drive)
Even in the system 1E of this example, at the time of high load such as daytime, the turbine 50 is driven using the compressed air in the compressed air storage tank 30, and the generator 10 is further driven to generate power. On the other hand, when the load is low, such as at night, the second clutch 60B is disconnected, the first clutch 60A, the third clutch 60C, and the fourth clutch 60D are connected, and the generator 10 is driven by external power as the motor 80, and the power is Used to drive the compressor 20. Alternatively, the first clutch 60A is further disconnected, the electric motor 80 is driven without driving the turbine 50, and the compressor 20 is driven with the driving force.
  (作用効果)
 本例のシステム1Eでも、実施形態1と同様の作用効果が得られることに加え、低負荷時に圧縮空気貯蔵タンク30に貯蔵できる圧縮空気量を増大できる。例えば、夜間、タービン50の駆動力に電動機80の駆動力を付加して圧縮機20を動作できるため、タービン50を低出力で運転し、燃料を削減すると共に、そのタービン50の駆動に必要な圧縮空気量をも削減して、圧縮空気貯蔵タンク30に貯蔵する圧縮空気量を増大させることができる。或いは、第一クラッチ60Aを切り離して夜間にタービン50を駆動しないのであれば、電動機80の駆動力で圧縮機20を駆動し、生成される圧縮空気の全てを圧縮空気貯蔵タンク30に貯蔵することができる。さらに、いずれの場合も、電動機80の駆動により、外部電力の有効活用も行える。
(Effect)
In the system 1E of this example, in addition to the same effects as those of the first embodiment, the amount of compressed air that can be stored in the compressed air storage tank 30 at the time of low load can be increased. For example, since the compressor 20 can be operated by adding the driving force of the electric motor 80 to the driving force of the turbine 50 at night, the turbine 50 is operated at a low output, fuel is reduced, and it is necessary for driving the turbine 50. The amount of compressed air stored in the compressed air storage tank 30 can be increased by reducing the amount of compressed air. Alternatively, if the first clutch 60A is disconnected and the turbine 50 is not driven at night, the compressor 20 is driven by the driving force of the electric motor 80, and all of the generated compressed air is stored in the compressed air storage tank 30. Can do. Further, in any case, the external electric power can be effectively utilized by driving the electric motor 80.
 [実施形態5]
 次に、実施形態1の発電システムに、さらに電動機を付加したシステムを図8に基づいて説明する。
[Embodiment 5]
Next, a system in which an electric motor is further added to the power generation system of Embodiment 1 will be described with reference to FIG.
  (システム構成)
 本例のシステム1Fでは、実施形態1の発電システム1Aに加え、圧縮機20のタービン50と反対側に電動機80を備え、その電動機80と圧縮機20との間に第五クラッチ60Eを設けている。この電動機80は、他の発電所の余剰電力などの外部電力を利用して駆動する。第五クラッチ60Eは、電動機80の駆動力を圧縮機20に伝達又は遮断する。
(System configuration)
In the system 1F of this example, in addition to the power generation system 1A of the first embodiment, an electric motor 80 is provided on the opposite side to the turbine 50 of the compressor 20, and a fifth clutch 60E is provided between the electric motor 80 and the compressor 20. Yes. The electric motor 80 is driven by using external power such as surplus power of another power plant. The fifth clutch 60E transmits or blocks the driving force of the electric motor 80 to the compressor 20.
  (運転方法)
 昼間などの高負荷時、圧縮空気貯蔵タンク30の圧縮空気を利用してタービン50を駆動し、さらに発電機10を駆動して発電を行う。一方、夜間などの低負荷時には、第一クラッチ60Aと第五クラッチ60Eとを結合させ、タービン50と電動機80の両駆動力を利用して圧縮機20を駆動する。その際、第二クラッチ60Bは切り離して、発電機10は駆動されない。或いは、さらに第一クラッチ60Aを切り離し、タービン50を駆動することなく電動機80により圧縮機20を駆動させてもよい。
(how to drive)
During a high load such as during the daytime, the turbine 50 is driven using the compressed air in the compressed air storage tank 30, and the generator 10 is further driven to generate power. On the other hand, when the load is low, such as at night, the first clutch 60A and the fifth clutch 60E are coupled, and the compressor 20 is driven using both driving forces of the turbine 50 and the electric motor 80. At that time, the second clutch 60B is disconnected and the generator 10 is not driven. Alternatively, the first clutch 60A may be further disconnected, and the compressor 20 may be driven by the electric motor 80 without driving the turbine 50.
  (作用効果)
 本例のシステム1Fでも、実施形態1と同様の作用効果が得られることに加え、低負荷時に圧縮空気貯蔵タンク30に貯蔵できる圧縮空気量を増大できる。例えば、夜間、タービン50の駆動力に電動機80の駆動力を付加して圧縮機20を動作できるため、タービン50を低出力で運転し、燃料を削減すると共に、そのタービン50の駆動に必要な圧縮空気量をも削減して、圧縮空気貯蔵タンク30に貯蔵する圧縮空気量を増大させることができる。或いは、第一クラッチ60Aを切り離して夜間にタービン50を駆動しないのであれば、電動機80の駆動力で圧縮機20を駆動し、生成される圧縮空気の全てを圧縮空気貯蔵タンク30に貯蔵することができる。さらに、いずれの場合も、電動機80の駆動により、外部電力の有効活用も行える。
(Effect)
In the system 1F of this example, in addition to the same effects as those of the first embodiment, the amount of compressed air that can be stored in the compressed air storage tank 30 at the time of low load can be increased. For example, since the compressor 20 can be operated by adding the driving force of the electric motor 80 to the driving force of the turbine 50 at night, the turbine 50 is operated at a low output, fuel is reduced, and it is necessary for driving the turbine 50. The amount of compressed air stored in the compressed air storage tank 30 can be increased by reducing the amount of compressed air. Alternatively, if the first clutch 60A is disconnected and the turbine 50 is not driven at night, the compressor 20 is driven by the driving force of the electric motor 80, and all of the generated compressed air is stored in the compressed air storage tank 30. Can do. Further, in any case, the external electric power can be effectively utilized by driving the electric motor 80.
 [実施形態6]
 次に、実施形態1の発電システムにおける圧縮空気貯蔵タンクの構成に工夫を施した実施形態を図9に基づいて説明する。本例の発電システムは、圧縮空気貯蔵タンクの構成が実施形態1との相違点であるため、主としてこの相違点について以下に説明する。
[Embodiment 6]
Next, an embodiment in which the configuration of the compressed air storage tank in the power generation system of Embodiment 1 is devised will be described with reference to FIG. Since the configuration of the compressed air storage tank of the power generation system of this example is different from the first embodiment, this difference will be mainly described below.
  (システム構成)
 本例のシステムに用いる圧縮空気貯蔵タンク30は、例えば地下に埋設した多重管のタンクで構成される。より具体的には、入れ子式に構成された内管31、中管33、外管35の3つで構成される。多重管の数は複数であればよく、3つに限定されるわけではない。内管31と中管33、及び中管33と外管35との間は、図示しないスペーサにより互いに同軸に保持されている。その他、各管31,33,35の配置は、同軸でなくても、適宜な位置決め部材(図示略)により互いの位置を保持できるように配置されていても良い。これら各管内31,33,35の圧力は、内側の管ほど高圧とされている。つまり、内管31の圧力が最も高く、外管35の圧力が最も低く、中管33の圧力が両者の間の圧力とされている。一例として、内管31を200気圧、中管33を100気圧、外管35を50気圧となるように構成する。
(System configuration)
The compressed air storage tank 30 used in the system of this example is composed of, for example, a multi-tube tank buried underground. More specifically, the inner tube 31, the intermediate tube 33, and the outer tube 35 are configured in a nested manner. The number of multiple tubes is not limited to three as long as it is plural. The inner tube 31 and the intermediate tube 33 and the intermediate tube 33 and the outer tube 35 are held coaxially by a spacer (not shown). In addition, the pipes 31, 33, and 35 may be arranged so that the positions of the pipes 31, 33, and 35 can be held by appropriate positioning members (not shown), even if they are not coaxial. The pressures in the pipes 31, 33, and 35 are set higher in the inner pipe. That is, the pressure in the inner tube 31 is the highest, the pressure in the outer tube 35 is the lowest, and the pressure in the middle tube 33 is the pressure between them. As an example, the inner tube 31 is configured to be 200 atm, the middle tube 33 is set to 100 atm, and the outer tube 35 is configured to be 50 atm.
 本例では、各管31,33,35につながる配管の途中にバルブ70E~70Gを設け、各管31,33,35の各々に圧縮機から圧縮空気を導入でき、かつ各管31,33,35の各々から燃焼器に圧縮空気を供給できるように構成している。また、内管31及び中管33の各々につながる差圧弁72I,72Mを設け、内管31と中管33、並びに中管33と外管35内の圧力を所定の差圧に保持することができる。具体的には、内管31から中管33に開放/封止可能な差圧弁72Iと、中管33から外管35に開放/封止可能な差圧弁72Mを設けている。これら差圧弁72I,72Mの代わりに、相異なる二つの圧力の比率を一定比に保持する比率調整弁を用いても良い。 In this example, valves 70E to 70G are provided in the middle of the pipes connected to the pipes 31, 33, 35, and compressed air can be introduced into the pipes 31, 33, 35 from the compressor. It is comprised so that compressed air can be supplied from each of 35 to a combustor. In addition, differential pressure valves 72I and 72M connected to each of the inner pipe 31 and the middle pipe 33 are provided, and the pressure in the inner pipe 31 and the middle pipe 33 and between the middle pipe 33 and the outer pipe 35 can be maintained at a predetermined differential pressure. it can. Specifically, a differential pressure valve 72I that can be opened / closed from the inner tube 31 to the middle tube 33 and a differential pressure valve 72M that can be opened / sealed from the middle tube 33 to the outer tube 35 are provided. Instead of these differential pressure valves 72I and 72M, a ratio adjusting valve that maintains a ratio of two different pressures at a constant ratio may be used.
  (運転方法)
 本例のタンク30を用いた発電システムも運転方法の仕方自体は、基本的に実施形態1と共通する。但し、圧縮空気貯蔵タンク30から燃焼器への圧縮空気の供給の仕方が複数挙げられる。その一つとしては、圧力の低い管、つまり外管35内の圧縮空気を燃焼器へ供給する。例えば、バルブ70C,70Eを開放し、バルブ70F,70Gは封止する。外管35内の圧縮空気をタービンの駆動に利用すると、外管35内の圧力が下がる。それに伴い外管35と中管33との圧力差が一定値以上になれば、差圧弁72Mが開放され、中管33内の圧縮空気の一部が外管35内に移動し、外管35内のほぼ圧力低下分を補償する。さらに中管33内の圧力の低下に伴い、中管33と内管31との圧力差が一定値以上になれば、差圧弁72Iが開放され、内31管内の圧縮空気の一部が中管33内に移動し、中管33内のほぼ圧力低下分を補償する。
(how to drive)
The power generation system using the tank 30 of this example is basically the same as that of the first embodiment in the manner of operation. However, there are a plurality of ways of supplying compressed air from the compressed air storage tank 30 to the combustor. As one of them, compressed air in a low pressure tube, that is, the outer tube 35 is supplied to the combustor. For example, the valves 70C and 70E are opened, and the valves 70F and 70G are sealed. When the compressed air in the outer pipe 35 is used for driving the turbine, the pressure in the outer pipe 35 decreases. Accordingly, if the pressure difference between the outer tube 35 and the intermediate tube 33 becomes a certain value or more, the differential pressure valve 72M is opened, and a part of the compressed air in the intermediate tube 33 moves into the outer tube 35, and the outer tube 35 Compensates for almost the pressure drop. Furthermore, if the pressure difference between the intermediate pipe 33 and the inner pipe 31 becomes a certain value or more as the pressure in the intermediate pipe 33 decreases, the differential pressure valve 72I is opened and a part of the compressed air in the inner pipe 31 is opened. It moves into 33 and compensates for the pressure drop in the middle pipe 33.
 圧縮空気貯蔵タンク30から燃焼器への圧縮空気の別な供給方法としては、例えば、昼間の電力消費ピーク時など、特に発電容量を増量した運転が必要な場合、バルブ70C,70Gを開放し、バルブ70E,70Fは封止して、高圧の管、例えば内管31に貯蔵される圧縮空気を燃焼器に供給して、タービンを高出力で回転させ、発電機の発電容量を増加させる。勿論、内管31の代わりに中管33から圧縮空気を燃焼器に供給してもよい。 As another method for supplying compressed air from the compressed air storage tank 30 to the combustor, for example, when operation with an increased power generation capacity is required, such as during peak power consumption during the daytime, the valves 70C and 70G are opened. The valves 70E and 70F are sealed to supply compressed air stored in a high-pressure pipe, for example, the inner pipe 31, to the combustor, rotate the turbine at high output, and increase the power generation capacity of the generator. Of course, compressed air may be supplied to the combustor from the middle tube 33 instead of the inner tube 31.
 これらの異なる圧縮空気の供給方法は、いずれか単独で行っても構わないし、双方を組み合わせて運用しても構わない。いずれの圧縮方法の供給方法の場合も、圧縮機から各管31,33,35へ圧縮空気を導入する場合は、バルブ70C~70Gを適宜開放して行えばよい。 These different compressed air supply methods may be performed either alone or in combination. In any of the compression methods, when the compressed air is introduced from the compressor to the pipes 31, 33, 35, the valves 70C to 70G may be opened as appropriate.
 なお、上記差圧弁の動作する差圧、又は比率調整弁の上記圧力の比率は、適宜な値を選択できる。例えば、本例の場合、外管35内の規定圧力(50気圧)が40気圧にまで低下した際に差圧弁72Mが動作して外管35内の圧力を50気圧に復帰させることが挙げられる。中管33と内管31との間の空気の移動についても同様に行うことができる。その他、例えば、外管35と中管33の各規定圧力(中管:100気圧、外管:50気圧)の差(100気圧-50気圧=50気圧)以上を、差圧弁の動作する差圧とし、外管35内から燃焼器へ空気が供給されると、その供給分に相当する空気を即時に中管33から外管35内に補填し、実質的に外管35内が一定圧力に保持されるように構成することが考えられる。この場合、外管35から燃焼器への空気の供給量に関わらず、外管35内の圧力は実質的に一定に保持される。このような定圧法は、従来、池や海水などの水圧と圧縮空気貯蔵タンク内の圧力との平衡を利用して実現するしかなく、そのことは圧縮空気貯蔵タンクの設置場所や構造に対する制約となっていた。一方、本例の運転方法によれば、上記水圧との平衡を利用しなくても、比較的容易に定圧法を実現できる。定圧法を用いてガスタービン発電を行えば、一定の高圧の圧縮空気を燃焼器に供給できるため、燃焼器への空気の供給に伴い圧縮空気貯蔵タンクの内圧が低下する変圧法に比べて、発電能力を大幅に高めることができ、さらにはガスタービン発電システムの制御が著しく容易になる。 Note that an appropriate value can be selected as the differential pressure at which the differential pressure valve operates or the ratio of the pressure of the ratio adjusting valve. For example, in the case of this example, when the specified pressure (50 atm) in the outer tube 35 is reduced to 40 atm, the differential pressure valve 72M operates to return the pressure in the outer tube 35 to 50 atm. . The movement of air between the middle tube 33 and the inner tube 31 can be performed in the same manner. In addition, for example, the differential pressure at which the differential pressure valve operates is greater than the difference (100 atm – 50 atm = 50 atm) between the specified pressures of the outer tube 35 and the inner tube 33 (middle tube: 100 atm, outer tube: 50 atm). When air is supplied from the inside of the outer pipe 35 to the combustor, the air corresponding to the supplied amount is immediately supplemented into the outer pipe 35 from the middle pipe 33, and the inside of the outer pipe 35 is substantially maintained at a constant pressure. It is conceivable to configure to be held. In this case, the pressure in the outer pipe 35 is kept substantially constant regardless of the amount of air supplied from the outer pipe 35 to the combustor. Conventionally, such a constant pressure method can only be realized by utilizing the balance between the water pressure of a pond or seawater and the pressure in the compressed air storage tank, which is a limitation on the location and structure of the compressed air storage tank. It was. On the other hand, according to the operation method of this example, the constant pressure method can be realized relatively easily without using the equilibrium with the water pressure. If gas turbine power generation is performed using the constant pressure method, it is possible to supply constant high-pressure compressed air to the combustor, so compared to the transformer method where the internal pressure of the compressed air storage tank decreases with the supply of air to the combustor, The power generation capacity can be greatly increased, and the control of the gas turbine power generation system is remarkably facilitated.
  (作用効果)
 上記の構成のタンク30によれば、内管31は中管33内の圧力との差圧、中管33は外管35内の圧力との差圧、外管35は3つの管の中で最も低圧の圧縮空気を貯蔵できる強度のタンクを用いればよいため、圧縮空気貯蔵タンク30全体の寸法及びタンクの構成材料の削減を実現することができる。一般に、管に作用するフープストレスδ(kg/cm2)は、管の内径をr、管の肉厚をt、管の内圧をPとすると、δ=(r/t)Pで表わされる。そのため、単一の管で高圧の圧縮空気を貯蔵しようとすれば、管の肉厚を非常に大きくしなければならず、特にタンク容積を大きくするにはタンクの径が大きくなってフープストレスも大きくなるため、さらに管の肉厚を大きくする必要があり、実用的な圧縮空気貯蔵タンクを構築することが難しい。これに対し、本例で用いたタンク30であれば、各管31,33,35の差圧に応じた圧力を保持できる管とすればよく、かつ高圧縮の空気を貯蔵する管ほど径が小さいため、過剰に肉厚の大きい管を用いることなく圧縮空気貯蔵タンク30を構成することができる。また、各差圧弁72I,72Mも高圧縮空気側と低圧縮空気側との差圧に応じた耐圧性を有する弁でよいため、過度に高圧仕様のものでなくても構わない。
(Effect)
According to the tank 30 configured as described above, the inner pipe 31 is a differential pressure with respect to the pressure in the middle pipe 33, the middle pipe 33 is a differential pressure with respect to the pressure in the outer pipe 35, and the outer pipe 35 is among the three pipes. Since it is sufficient to use a tank having a strength capable of storing the compressed air having the lowest pressure, it is possible to reduce the overall dimensions of the compressed air storage tank 30 and the constituent materials of the tank. In general, the hoop stress δ (kg / cm 2 ) acting on the tube is expressed by δ = (r / t) P, where r is the inner diameter of the tube, t is the wall thickness of the tube, and P is the inner pressure of the tube. Therefore, if high pressure compressed air is to be stored with a single pipe, the thickness of the pipe must be very large. In particular, in order to increase the tank volume, the tank diameter increases and hoop stress also increases. Since it becomes large, it is necessary to further increase the wall thickness of the pipe, and it is difficult to construct a practical compressed air storage tank. On the other hand, the tank 30 used in this example may be a tube that can hold a pressure corresponding to the differential pressure between the tubes 31, 33, and 35, and the diameter of the tube that stores highly compressed air is larger. Since it is small, the compressed air storage tank 30 can be configured without using an excessively thick pipe. Further, each of the differential pressure valves 72I and 72M may be a valve having a pressure resistance corresponding to the differential pressure between the high compressed air side and the low compressed air side, and therefore may not be of an excessively high pressure specification.
 さらに、この構成のタンク30に各管31,33,35から圧縮空気を出し入れするためのバルブ70E~70Gや、高圧縮空気側の管と低圧縮空気側の管との間に差圧弁72I,72Mを設けることで、上述した異なる発電システムの運転を行うことができる。 Further, a valve 70E to 70G for taking compressed air into and out of the tank 31, 33, and 35 into the tank 30 of this configuration, and a differential pressure valve 72I, between the high compressed air side pipe and the low compressed air side pipe, By providing 72M, the above-described different power generation systems can be operated.
 [実施形態7]
 次に、実施形態6の発電システムに用いた圧縮空気貯蔵タンクの変形例を図10に基づいて説明する。本例でも発電システムは、圧縮空気貯蔵タンクの構成が相違点する点を除き、基本的に実施形態6と共通であるため、主としてこの相違点について以下に説明する。
[Embodiment 7]
Next, a modified example of the compressed air storage tank used in the power generation system of Embodiment 6 will be described with reference to FIG. In this example as well, the power generation system is basically the same as that of the sixth embodiment except that the configuration of the compressed air storage tank is different, so this difference will be mainly described below.
  (システム構成)
 実施形態6の圧縮空気貯蔵タンク30は、三重の入れ子式の構成であったのに対し、本例の圧縮空気貯蔵タンクは、一つの大管34内に、3つの小管32を並列状態に配置している。大管34内に配置される小管32の数は特に限定されない。本例の場合、各小管32内に高圧縮空気を貯蔵し、大管34内に低圧縮空気を貯蔵している。各小管32内の圧力は同等としたが、いずれかの小管32の圧力が他の小管32の圧力と異なっても良い。
(System configuration)
The compressed air storage tank 30 of the sixth embodiment has a triple nested structure, whereas the compressed air storage tank of this example has three small pipes 32 arranged in parallel in one large pipe 34. is doing. The number of small tubes 32 arranged in the large tube 34 is not particularly limited. In this example, high compressed air is stored in each small pipe 32 and low compressed air is stored in the large pipe 34. Although the pressure in each small pipe 32 is the same, the pressure in any small pipe 32 may be different from the pressure in the other small pipe 32.
 本例でも、各管32,34につながる配管の途中にバルブ70H~70Kを設け、各管32,34の各々に圧縮機から圧縮空気を導入でき、かつ各管32,34の各々から燃焼器に圧縮空気を供給できるように構成している。また、各小管32の各々につながる差圧弁72Iを設け、小管32と大管34内の圧力を所定の差圧に保持することができる。これら差圧弁72Iの代わりに、相異なる二つの圧力の比率を一定比に保持する比率調整弁を用いても良い。なお、図10(A)では、小管32を三角形状に配置して示しているが、図10(B)では、説明の便宜上、各小管32を横並びに並列して示している。 Also in this example, valves 70H to 70K are provided in the middle of the pipes connected to the pipes 32 and 34, and compressed air can be introduced from the compressor to each of the pipes 32 and 34, and a combustor is provided from each of the pipes 32 and 34. It is comprised so that compressed air can be supplied to. Further, a differential pressure valve 72I connected to each of the small pipes 32 is provided, and the pressure in the small pipe 32 and the large pipe 34 can be maintained at a predetermined differential pressure. Instead of these differential pressure valves 72I, a ratio adjusting valve that holds the ratio of two different pressures at a constant ratio may be used. In FIG. 10A, the small tubes 32 are arranged in a triangular shape, but in FIG. 10B, the small tubes 32 are shown side by side for convenience of explanation.
  (運転方法)
 本例のタンク30を用いた発電システムも運転方法の仕方自体は、基本的に実施形態1と共通であり、かつ圧縮空気貯蔵タンク30から燃焼器への圧縮空気の供給の仕方は実施形態6と同様に行うことができる。即ち、圧力の低い管、つまり大管34内の圧縮空気を燃焼器へ供給し、その管内の圧力低下に伴って差圧弁72Iを開放したり、電力ピーク消費時に圧力の高い管、つまり小管32から直接燃焼器に圧縮空気を供給したりすることができる。また、大管34から燃焼器に圧縮空気を供給し、その供給量に相当する空気を即時に少なくとも一つの小管32内から補填して、大管34内を実質的に一定圧力に保持するなど、本例のシステムでも定圧法により運転することが可能である。
(how to drive)
The operation method itself of the power generation system using the tank 30 of this example is basically the same as that of the first embodiment, and the method of supplying compressed air from the compressed air storage tank 30 to the combustor is the sixth embodiment. Can be done as well. That is, a low-pressure pipe, that is, compressed air in the large pipe 34 is supplied to the combustor, and the differential pressure valve 72I is opened as the pressure in the pipe decreases, or a high-pressure pipe, that is, the small pipe 32 at the time of peak power consumption. The compressed air can be directly supplied to the combustor. In addition, compressed air is supplied from the large pipe 34 to the combustor, and air corresponding to the supply amount is immediately supplemented from the inside of at least one small pipe 32, and the inside of the large pipe 34 is maintained at a substantially constant pressure. The system of this example can also be operated by the constant pressure method.
  (作用効果)
 上記のタンクでも、実施形態6と同様の作用効果を奏することができる。
(Effect)
Even in the tank described above, the same effects as those of the sixth embodiment can be achieved.
 本発明は、上記の実施形態に限定されるものではなく、本発明の要旨の範囲で種々の変更が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
 本発明の発電システム及びその運転方法は、原子力発電所や火力発電所など、他の発電システムと組み合わせて利用することで、よりエネルギーの効率的な利用に寄与したり、他の発電システムの予備電源として利用したりすることが期待される。 The power generation system and the operation method of the present invention can be used in combination with other power generation systems such as a nuclear power plant and a thermal power plant, thereby contributing to more efficient use of energy, or a backup of other power generation systems. It is expected to be used as a power source.
 1A,1B,1C,1D,1E,1F 発電システム
 10,10H 発電機 20,20H 圧縮機(第一圧縮機) 22 第二圧縮機
 30 圧縮空気貯蔵タンク 31 内管 33 中管 35 外管 32 小管 34 大管
 40,40H 燃焼器 50,50H タービン
 60A 第一クラッチ 60B 第二クラッチ
 60C 第三クラッチ 60D 第四クラッチ 60E 第五クラッチ
 70A~70K バルブ 72I、72M 差圧弁
 80 電動機 85 動力伝達機構 90 切替手段 92 遮断部
 H-PS 火力発電所
1A, 1B, 1C, 1D, 1E, 1F Power generation system 10, 10H Generator 20,20H Compressor (first compressor) 22 Second compressor 30 Compressed air storage tank 31 Inner pipe 33 Middle pipe 35 Outer pipe 32 Small pipe 34 Large pipe 40,40H Combustor 50,50H Turbine 60A 1st clutch 60B 2nd clutch 60C 3rd clutch 60D 4th clutch 60E 5th clutch 70A ~ 70K Valve 72I, 72M Differential pressure valve 80 Electric motor 85 Power transmission mechanism 90 Switching means 92 Shut-off section H-PS thermal power plant

Claims (13)

  1.  発電機と、
     吸入した空気を圧縮して圧縮空気を生成する圧縮機と、
     前記圧縮空気を貯蔵する圧縮空気貯蔵タンクと、
     前記圧縮機で生成された圧縮空気及び前記圧縮空気貯蔵タンクに貯蔵された圧縮空気の少なくとも一方に燃料を混合して燃焼させる燃焼器と、
     前記燃焼器で燃焼された燃焼ガスにより回転されるタービンと、
     前記タービンの回転力を前記圧縮機に伝達又は遮断する第一クラッチと、
     前記タービンの回転力を前記発電機に伝達又は遮断する第二クラッチと、
     前記圧縮機で生成した圧縮空気が前記圧縮空気貯蔵タンクに送られることを許容又は遮断する第一開閉手段と、
     前記圧縮空気貯蔵タンクの圧縮空気が前記燃焼器に送られることを許容又は遮断する第二開閉手段とを備えることを特徴とする発電システム。
    A generator,
    A compressor that compresses inhaled air to generate compressed air;
    A compressed air storage tank for storing the compressed air;
    A combustor that mixes and burns fuel with at least one of compressed air generated by the compressor and compressed air stored in the compressed air storage tank;
    A turbine rotated by combustion gas combusted in the combustor;
    A first clutch that transmits or interrupts the rotational force of the turbine to the compressor;
    A second clutch that transmits or interrupts the rotational force of the turbine to the generator;
    First opening / closing means for allowing or blocking compressed air generated by the compressor from being sent to the compressed air storage tank;
    A power generation system comprising: second opening / closing means that allows or blocks compressed air in the compressed air storage tank from being sent to the combustor.
  2.  外部電力により駆動される電動機と、
     この電動機の駆動力を前記圧縮機に伝達する動力伝達機構とを備えることを特徴とする請求項1に記載の発電システム。
    An electric motor driven by external power;
    The power generation system according to claim 1, further comprising a power transmission mechanism that transmits a driving force of the electric motor to the compressor.
  3.  前記電動機が前記発電機であることを特徴とする請求項2に記載の発電システム。 The power generation system according to claim 2, wherein the electric motor is the generator.
  4.  前記外部電力が、太陽光、風力、地熱、潮汐などの再生可能エネルギー由来の電力であることを特徴とする請求項2又は3に記載の発電システム。 The power generation system according to claim 2 or 3, wherein the external power is power derived from renewable energy such as sunlight, wind power, geothermal heat, and tide.
  5.  前記発電機、圧縮機、燃焼器、タービン、第一クラッチ、第二クラッチ、第一開閉手段、及び第二開閉手段を一ユニットとし、
     複数ユニットに対して一つの前記圧縮空気貯蔵タンクを共用することを特徴とする請求項1~4のいずれか一項に記載の発電システム。
    The generator, compressor, combustor, turbine, first clutch, second clutch, first opening / closing means, and second opening / closing means as one unit,
    The power generation system according to any one of claims 1 to 4, wherein one compressed air storage tank is shared by a plurality of units.
  6.  原子力発電所に設置され、前記外部電力を前記原子力発電所の発電電力とすることを特徴とする請求項2~5のいずれか一項に記載の発電システム。 The power generation system according to any one of claims 2 to 5, wherein the power generation system is installed in a nuclear power plant and the external power is used as power generated by the nuclear power plant.
  7.  前記原子力発電所の予備電源として用いられることを特徴とする請求項6に記載の発電システム。 The power generation system according to claim 6, wherein the power generation system is used as a standby power source for the nuclear power plant.
  8.  前記圧縮空気貯蔵タンクの圧縮空気を前記原子力発電所の予備動力源とすることを特徴とする請求項6又は7に記載の発電システム。 The power generation system according to claim 6 or 7, wherein the compressed air in the compressed air storage tank is used as a standby power source for the nuclear power plant.
  9.  さらに、外部電力を用いて前記圧縮空気貯蔵タンクに貯蔵するための圧縮空気を生成する第二圧縮機を備えることを特徴とする請求項1~8のいずれか一項に記載の発電システム。 The power generation system according to any one of claims 1 to 8, further comprising a second compressor that generates compressed air to be stored in the compressed air storage tank using external electric power.
  10.  前記圧縮空気貯蔵タンクは、入れ子式に配される複数の管を備え、
     内側の管内の圧力が外側の管内の圧力よりも高圧であることを特徴とする請求項1~9のいずれか一項に記載の発電システム。
    The compressed air storage tank includes a plurality of pipes arranged in a nested manner,
    The power generation system according to any one of claims 1 to 9, wherein the pressure in the inner pipe is higher than the pressure in the outer pipe.
  11.  前記内側の管内と外側の管内とを所定の差圧に応じて連通させる差圧弁を備えることを特徴とする請求項10に記載の発電システム。 The power generation system according to claim 10, further comprising a differential pressure valve that communicates the inside of the inner tube and the inside of the outer tube according to a predetermined differential pressure.
  12.  請求項1~11のいずれか一項に記載の発電システムを用い、
     昼間などの電力需要の多い高負荷時、前記第一クラッチを遮断、前記第二クラッチを結合、前記第一開閉手段を遮断、前記第二開閉手段を開放して、前記圧縮空気貯蔵タンクの圧縮空気を用いて前記燃料を燃焼させ、タービンの回転により発電機を駆動して発電し、
     夜間などの電力需要の少ない低負荷時、前記第一クラッチを結合、前記第二クラッチを遮断、前記第一開閉手段を開放、前記第二開閉手段を遮断して、前記タービンと前記圧縮機とを連動させ、その圧縮機で生成した圧縮空気を前記燃焼器及び前記圧縮空気貯蔵タンクに供給することを特徴とする発電システムの運転方法。
    Using the power generation system according to any one of claims 1 to 11,
    When the load is high, such as during the daytime, the first clutch is disconnected, the second clutch is connected, the first opening / closing means is disconnected, the second opening / closing means is opened, and the compressed air storage tank is compressed. Combusting the fuel using air, driving a generator by rotation of the turbine to generate electricity,
    At low load, such as at night, when the power demand is low, the first clutch is coupled, the second clutch is disconnected, the first opening / closing means is opened, the second opening / closing means is disconnected, and the turbine and the compressor , And the compressed air generated by the compressor is supplied to the combustor and the compressed air storage tank.
  13.  請求項11に記載の発電システムを用い、
     前記外側の管内の空気を前記燃焼器に供給し、この供給分の空気を前記内側の管内から前記差圧弁を介して前記外側の管内に補填することで、実質的に前記外側の管内の圧力を一定に保持することを特徴とする請求項12に記載の発電システムの運転方法。
    Using the power generation system according to claim 11,
    By supplying the air in the outer pipe to the combustor and supplementing the supplied air from the inner pipe through the differential pressure valve into the outer pipe, the pressure in the outer pipe is substantially increased. The power generation system operating method according to claim 12, wherein the power generation system is kept constant.
PCT/JP2012/061086 2011-04-25 2012-04-25 Power generation system and method for operating same WO2012147792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012535277A JP5158828B2 (en) 2011-04-25 2012-04-25 Power generation system and operation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-097685 2011-04-25
JP2011097685 2011-04-25
JP2011-236708 2011-10-28
JP2011236708 2011-10-28

Publications (1)

Publication Number Publication Date
WO2012147792A1 true WO2012147792A1 (en) 2012-11-01

Family

ID=47072310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061086 WO2012147792A1 (en) 2011-04-25 2012-04-25 Power generation system and method for operating same

Country Status (2)

Country Link
JP (1) JP5158828B2 (en)
WO (1) WO2012147792A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH708072A1 (en) * 2013-05-17 2014-11-28 Swiss Green Systems Sagl Device for the production of electrical energy.
WO2015002402A1 (en) * 2013-07-04 2015-01-08 삼성테크윈 주식회사 Gas turbine system
KR20150005429A (en) * 2013-07-04 2015-01-14 삼성테크윈 주식회사 Gas turbine system
CN111594287A (en) * 2020-05-22 2020-08-28 哈电发电设备国家工程研究中心有限公司 Nuclear energy-air Brayton regenerative cycle distributed energy supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472311A (en) * 1977-11-17 1979-06-09 Bbc Brown Boveri & Cie Gas turbine facility
US4441028A (en) * 1977-06-16 1984-04-03 Lundberg Robert M Apparatus and method for multiplying the output of a generating unit
JPH02504411A (en) * 1987-05-13 1990-12-13 ギブス アンド ヒル インコーポレーテッド Retrofit of simple cycle gas turbine for compressed air storage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275310A (en) * 1980-02-27 1981-06-23 Summers William A Peak power generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441028A (en) * 1977-06-16 1984-04-03 Lundberg Robert M Apparatus and method for multiplying the output of a generating unit
JPS5472311A (en) * 1977-11-17 1979-06-09 Bbc Brown Boveri & Cie Gas turbine facility
JPH02504411A (en) * 1987-05-13 1990-12-13 ギブス アンド ヒル インコーポレーテッド Retrofit of simple cycle gas turbine for compressed air storage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH708072A1 (en) * 2013-05-17 2014-11-28 Swiss Green Systems Sagl Device for the production of electrical energy.
WO2015002402A1 (en) * 2013-07-04 2015-01-08 삼성테크윈 주식회사 Gas turbine system
KR20150005429A (en) * 2013-07-04 2015-01-14 삼성테크윈 주식회사 Gas turbine system
US10273882B2 (en) 2013-07-04 2019-04-30 Hanwha Aerospace Co., Ltd. Gas turbine system using supplemental compressed air to cool
KR102256476B1 (en) * 2013-07-04 2021-05-27 한화에어로스페이스 주식회사 Gas turbine system
CN111594287A (en) * 2020-05-22 2020-08-28 哈电发电设备国家工程研究中心有限公司 Nuclear energy-air Brayton regenerative cycle distributed energy supply system

Also Published As

Publication number Publication date
JP5158828B2 (en) 2013-03-06
JPWO2012147792A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
US8272212B2 (en) Systems and methods for optimizing thermal efficiencey of a compressed air energy storage system
US8522538B2 (en) Systems and methods for compressing and/or expanding a gas utilizing a bi-directional piston and hydraulic actuator
US10344741B2 (en) Hydro-pneumatic energy storage system
JP5158828B2 (en) Power generation system and operation method thereof
US11414273B2 (en) System and method for compressed air energy storage
Power Adele–adiabatic compressed-air energy storage for electricity supply
CA2879871C (en) Compressed air energy storage system having variable generation modes
CN108895017B (en) Multistage constant voltage compressed air energy memory
KR101179668B1 (en) Compressed air storage and electricity generating system connected with offshore wind farm and Compressed air storage tank
CN102392795A (en) Energy storing and generating system of vertical shaft wind-driven generator and method thereof
JP4480051B1 (en) A hybrid power generator connected to a gravity power generator using a balance having a pressure load device.
CN102400858A (en) Energy storage generating system and method for vertical axis wind turbine
KR101179664B1 (en) Compressed air energy storage and electricity generation systems connected with offshore wind farm
van der Linden Wind Power: Integrating Wind Turbine Generators (WTG’s) with Energy Storage
US11761416B2 (en) Energy storage system
KR101295082B1 (en) Apparatus for Compressed Air Energy Storage Generation using the New Renewable Energy
CN202348585U (en) Energy storage and power generation system of vertical axis wind generator
RU2431015C1 (en) Diversion well hydraulic power plant
CN111442190B (en) Method for storing energy by using tunnel
KR101494940B1 (en) System and method of power supply combining EGS power plant and intermittent renewable energy
Lindblom City energy management through underground storage
Ciocan Contributions to energy storage using hybrid systems from alternative energy sources
CN219242095U (en) Offshore compressed air energy storage system and power system
CN202348584U (en) Energy-storage power-generation system for vertical axis wind turbine
Luke Compressed air storage for electricity generation in South Africa

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535277

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777474

Country of ref document: EP

Kind code of ref document: A1