WO2012144747A2 - Solar cell generator - Google Patents

Solar cell generator Download PDF

Info

Publication number
WO2012144747A2
WO2012144747A2 PCT/KR2012/002133 KR2012002133W WO2012144747A2 WO 2012144747 A2 WO2012144747 A2 WO 2012144747A2 KR 2012002133 W KR2012002133 W KR 2012002133W WO 2012144747 A2 WO2012144747 A2 WO 2012144747A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
solar cell
panel
heat pipe
solar
Prior art date
Application number
PCT/KR2012/002133
Other languages
French (fr)
Korean (ko)
Other versions
WO2012144747A3 (en
Inventor
이상철
Original Assignee
아이스파이프 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이스파이프 주식회사 filed Critical 아이스파이프 주식회사
Publication of WO2012144747A2 publication Critical patent/WO2012144747A2/en
Publication of WO2012144747A3 publication Critical patent/WO2012144747A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/42Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell generator.
  • Photovoltaic power generation using solar cells among the energy using natural force is a technology for directly converting sunlight into electrical energy and converts light energy into electrical energy by the photoelectric effect when the photoelectric conversion element receives sunlight.
  • the present invention is to provide a solar cell generator that can effectively heat the heat of the solar panel.
  • the present invention provides a solar cell generator having a heat dissipation structure that is simple in structure and easy to install and maintain.
  • one side of the solar panel is disposed facing the direction in which sunlight is incident, the front side is supporting the other surface of the solar panel, the support receiving the heat absorbed by the solar panel
  • a solar cell generator including a heat pipe having a panel, a heat absorbing portion coupled to a rear surface of the support panel to receive heat, and a heat dissipating portion releasing heat absorbed from the heat absorbing portion.
  • the heat pipe may include a heat dissipation loop having a spiral structure repeatedly forming the heat absorbing portion and the heat dissipation portion.
  • the heat pipe may have an annular structure, and each of the heat absorbing portion and the heat dissipating portion may be disposed radially with respect to the central axis of the annular structure.
  • the apparatus may further include a thermal base interposed between the rear surface of the support panel and the heat pipe.
  • the heat pipe may include a vibrating tubular heat pipe into which a working fluid is injected.
  • the solar panel may further include a solar tracker for rotating the support panel to face the sun.
  • FIG. 1 is a perspective view showing a solar cell generator according to an embodiment of the present invention.
  • FIGS. 2 and 3 are views illustrating a heat dissipation structure in a solar cell generator according to an embodiment of the present invention.
  • Figure 4 is a perspective view of a solar cell generator according to another embodiment of the present invention.
  • FIG. 5 is a view for explaining a heat radiation structure in a solar cell generator according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a solar cell generator according to an embodiment of the present invention.
  • Solar cell generator according to an embodiment of the present invention includes a solar panel 10, the support panel 20 and the heat pipe (30).
  • the solar cell panel 10 is a portion that converts sunlight into electricity and is disposed so that one surface on which the photovoltaic element is formed faces the direction in which the sunlight is incident. At this time, a plurality of solar panel 10 can be gathered to form a solar cell module 12 for a large amount of power generation.
  • the support panel 20 to be described below is inclined in accordance with the incident angle of sunlight, and the plurality of solar cell panels 10 are arranged on the support panel 20. It is installed to form a.
  • the solar cell generator of the present embodiment in order to increase the power generation efficiency of the solar panel 10, the solar tracker 40 for rotating the support panel 20 so that the solar panel 10 always faces the sun (5). ) May be further included.
  • the solar tracker 40 of the present embodiment may include a support arm 42, a support pillar 46, and a controller 46.
  • the support panel 20 of the present embodiment is articulated to be rotatable up and down with respect to the support arm 42, the inclination angle of the support panel 20 can be adjusted to the height of the sun. have.
  • the support arm 42 is rotatably jointed with respect to the support pillar 44 about the central axis of the support pillar 44, so that the arrangement direction of the support panel 20 can be adjusted according to the movement of the sun. have.
  • each joint may be provided with a driving device such as a motor for determining the inclination angle or the arrangement direction, the drive device may be adjusted by the controller 46 for sending a control signal in accordance with the change in position of the sun.
  • the solar tracker 40 may further include a solar sensor 48 so that the controller 46 can detect the actual change in the sun.
  • the support panel 20 is a part for supporting the solar cell panel 10 and receiving heat absorbed by the solar cell panel 10 and cutting the heat pipe 30. At this time, for fast heat transfer to the heat pipe 30, the support panel 20 may be made of a metal material such as copper, aluminum with high thermal conductivity.
  • FIGS. 2 and 3 are views illustrating a heat dissipation structure in a solar cell generator according to an embodiment of the present invention.
  • the support panel 20 of the present embodiment supports the other surface of the solar cell panel 10 is the front surface facing the sun. Accordingly, a shade which does not reach solar heat is formed on the rear side and the adjacent region of the support panel 20 to form a region having a lower temperature than the front side, and a heat pipe that radiates heat on the rear side of the support panel 20. 30) are combined.
  • the heat pipe 30 is coupled to the support panel 20 to radiate heat transferred from the support panel 20.
  • the heat dissipation member of the present embodiment may be coupled to the rear surface of the support panel 20 having a relatively low temperature to release heat by using a temperature difference.
  • the heat pipe 30 of the present embodiment can be a rapid heat dissipation by using a tubular heat pipe to which the working fluid is injected.
  • a vibrating tubular heat pipe may be used.
  • the vibrating tubular heat pipe has a structure in which the working fluid 34 and the bubble 36 are injected into the tubule 32 at a predetermined ratio and the inside of the tubule 32 is sealed from the outside. Accordingly, the vibrating tubular heat pipe has a heat transfer cycle for transporting a large amount of heat in latent form by volume expansion and condensation of the bubble 36 and the working fluid 34.
  • the heat absorbing portion (30a) is nucleate boiling (Nucleate Boiling) occurs by the amount of heat absorbed bubbles (36) located in the heat absorbing portion (30a) is the volume expansion.
  • nucleate Boiling occurs by the amount of heat absorbed bubbles (36) located in the heat absorbing portion (30a) is the volume expansion.
  • the bubbles 36 located in the heat dissipating part 30b dissipating heat as much as the bubbles 36 located in the heat absorbing part 30a have a volume expansion so that they contract. do. Accordingly, as the pressure equilibrium in the tubule 32 collapses, the flow including the vibration of the working fluid 34 and the bubbles 36 in the tubule 32 is accompanied, and thus the temperature due to the volume change of the foam 36 is accompanied.
  • the heat dissipation is carried out by the latent heat transportation by lifting and lowering.
  • the vibrating capillary heat pipe may include a capillary tube made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubble 36 injected therein can be quickly induced.
  • the heat pipe 30 formed of the tubule 32 may have a large heat transfer area to volume, it may quickly absorb or release a large amount of heat.
  • heat transfer is excellent in any direction, and there is an advantage in that the arrangement is free.
  • the vibrating tubular heat pipe performs heat dissipation without supplying additional power, thereby forming a heat dissipation structure having a simple structure and easy installation and maintenance.
  • the communication structure of the vibrating tubular heat pipe can be both an open loop (close loop) and (close loop).
  • all or part of the vibrating tubular heat pipe may be in communication with a neighboring vibrating tubular heat pipe.
  • the plurality of vibrating capillary heat pipes may have an open loop or closed loop shape as a design necessity.
  • the vibrating tubular heat pipe in this embodiment forms a heat radiation loop of a spiral structure. Accordingly, the heat absorbing portion 30a coupled to the support panel 20 and the heat dissipating portion 30b spaced apart from the support panel 20 to release heat in the vibrating tubular heat pipe are repeatedly formed, thereby absorbing the heat absorbing portion 30a. ) And the heat dissipation portion 30b can be quickly released through a short heat transfer path. In addition, since air can pass freely between the spirals of the heat dissipation loop, high ventilation required for heat dissipation can be ensured.
  • FIG 4 is a perspective view showing a solar cell generator according to another embodiment of the present invention
  • Figure 5 is a view for explaining a heat radiation structure in the solar cell generator according to another embodiment of the present invention.
  • the heat dissipation loop having a spiral structure repeatedly forming the heat absorbing portion 30a and the heat dissipating portion 30b as described above is rolled in an annular shape.
  • the heat pipe 30 has an annular structure as a whole.
  • each of the heat absorbing portion 30a and the heat dissipating portion 30b may be disposed radially with respect to the central axis of the annular structure.
  • the heat absorbing portion 30a for performing heat absorption and the heat radiating portion 30b for radiating heat are disposed radially around the central axis of the annular structure, thereby allowing more free flow of air for radiating heat, resulting in higher efficiency.
  • the heat dissipation can be made.
  • a thermal base 35 having a plate structure made of, for example, copper may be interposed between the heat pipe 30 and the rear surface of the support panel 20. That is, the thermal base 35 may be attached to the heat absorbing portion 30a of the heat pipe 30, and the thermal base 35 to which the heat pipe 30 is attached is attached to the rear surface of the support panel 20. By doing so, the heat pipe 30 can be more easily coupled to the rear surface of the support panel 20.
  • the solar cell generator according to the present embodiment has a heat dissipation structure for quickly dissipating a large amount of heat, thereby stably maintaining the power generation performance of the solar cell panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar cell generator comprising: a solar cell panel disposed so that one side thereof faces the direction in which the sun light is incident; a support panel for supporting, with the front side thereof, the other side of the solar cell panel and receiving the heat absorbed by the solar cell panel; and a heat pipe, provided with a heat-absorbing part, connected to the back side of the support panel, for receiving heat and a heat-dissipating part, spaced from the heat-absorbing part, for dissipating the absorbed heat. The solar cell generator can be stably sustain the generating performance of the solar cell panel by having a heat-dissipating structure rapidly dissipating a large amount of heat.

Description

태양전지 발전기Solar cell generator
본 발명은 태양전지 발전기에 관한 것이다.The present invention relates to a solar cell generator.
최근에는 화석연료의 사용에 따른 이산화탄소 발생과 이로 인한 지구의 온난화 및 원자력발전소의 핵폐기물에 대한 처리곤란 등 지구의 환경에 대한 문제가 크게 대두되어 자연의 청정에너지를 활용하기 위한 연구가 활발히 이루어지고 있다.In recent years, research on the use of clean energy of nature has been actively conducted due to the great environmental problems such as carbon dioxide generation caused by the use of fossil fuels, global warming, and difficulty in treating nuclear waste of nuclear power plants.
자연력을 이용한 에너지 중 태양전지를 이용한 태양광 발전은, 태양광을 직접 전기에너지로 변환시키는 기술로서 광전변환소자가 햇빛을 받으면 광전효과에 의해 빛 에너지를 전기 에너지로 변환한다.Photovoltaic power generation using solar cells among the energy using natural force is a technology for directly converting sunlight into electrical energy and converts light energy into electrical energy by the photoelectric effect when the photoelectric conversion element receives sunlight.
그런데, 태양광 발전에서는 태양전지패널이 가열되면 발전효율이 떨어지는 문제가 있다. 즉, 태양전지패널이 태양열을 받아 뜨거워지면 발전 전압이 낮아지게 되어서 전체 발전량이 떨어지게 되는 것이다. 이에 따라, 태양전지패널을 이용한 발전기에 사용되는 다양한 형태의 방열장치가 개발되고 있으나, 대부분 장치가 크고 복잡하여 설치가 어려우며 고장 시에 유지보수가 어려운 문제가 있다.However, in solar power generation, there is a problem that power generation efficiency is lowered when the solar panel is heated. In other words, when the solar panel is heated by solar heat, the power generation voltage is lowered, and thus the total amount of power generation is reduced. Accordingly, various types of heat dissipation apparatuses used for generators using solar panels have been developed, but most of the apparatuses are large and complex, so that installation is difficult and maintenance is difficult in case of failure.
본 발명은 태양전지패널의 열을 효과적으로 방열할 수 있는 태양전지 발전기를 제공하는 것이다.The present invention is to provide a solar cell generator that can effectively heat the heat of the solar panel.
또한, 본 발명은 구조가 간단하고 설치 및 유지보수가 용이한 방열구조를 구비한 태양전지 발전기를 제공하는 것이다.In addition, the present invention provides a solar cell generator having a heat dissipation structure that is simple in structure and easy to install and maintain.
본 발명의 일 측면에 따르면, 일면이 태양광이 입사되는 방향을 향하도록 배치된 태양전지패널, 전면이 상기 태양전지패널의 타면을 지지하고 있으며, 상기 태양전지패널이 흡수한 열을 전달받는 지지패널, 상기 지지패널의 후면에 결합되어 열을 전달받는 흡열부 및 상기 흡열부에서 이격되어 흡수된 열을 방출하는 방열부를 구비한 히트파이프를 포함하는 태양전지 발전기가 제공된다.According to an aspect of the present invention, one side of the solar panel is disposed facing the direction in which sunlight is incident, the front side is supporting the other surface of the solar panel, the support receiving the heat absorbed by the solar panel Provided is a solar cell generator including a heat pipe having a panel, a heat absorbing portion coupled to a rear surface of the support panel to receive heat, and a heat dissipating portion releasing heat absorbed from the heat absorbing portion.
상기 히트파이프는, 상기 흡열부와 상기 방열부를 반복적으로 형성하는 나선형 구조의 방열루프를 포함할 수 있다.The heat pipe may include a heat dissipation loop having a spiral structure repeatedly forming the heat absorbing portion and the heat dissipation portion.
상기 히트파이프는 환형 구조로 이루어져, 상기 흡열부 및 상기 방열부 각각이 상기 환형 구조의 중심축을 기준으로 방사상으로 배치될 수 있다.The heat pipe may have an annular structure, and each of the heat absorbing portion and the heat dissipating portion may be disposed radially with respect to the central axis of the annular structure.
상기 지지패널의 후면과 상기 히트파이프 사이에 개재되는 서멀베이스(thermal base)를 더 포함할 수 있다.The apparatus may further include a thermal base interposed between the rear surface of the support panel and the heat pipe.
상기 히트파이프는, 작동유체가 주입되는 진동세관형의 히트파이프를 포함할 수 있다.The heat pipe may include a vibrating tubular heat pipe into which a working fluid is injected.
상기 태양전지패널이 태양을 향하도록 상기 지지패널을 회동시키는 태양추적기를 더 포함할 수 있다.The solar panel may further include a solar tracker for rotating the support panel to face the sun.
도 1은 본 발명의 일 실시예에 따른 태양전지 발전기를 나타낸 사시도.1 is a perspective view showing a solar cell generator according to an embodiment of the present invention.
도 2 및 도 3은 본 발명의 일 실시예에 따른 태양전지 발전기에서 방열구조를 설명하는 도면.2 and 3 are views illustrating a heat dissipation structure in a solar cell generator according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 태양전지 발전기를 나타낸 사시도.Figure 4 is a perspective view of a solar cell generator according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 태양전지 발전기에서 방열구조를 설명하는 도면.5 is a view for explaining a heat radiation structure in a solar cell generator according to another embodiment of the present invention.
<부호의 설명><Description of the code>
10: 태양전지패널10: solar panel
20: 지지패널20: support panel
30: 히트파이프30: heat pipe
30a: 흡열부30a: endothermic portion
30b: 방열부30b: heat sink
35: 서멀베이스35: thermal base
40: 태양추적기40: Sun Tracker
이하에서 본 발명의 실시예를 첨부도면을 참조하여 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 태양전지 발전기를 나타낸 사시도이다.1 is a perspective view showing a solar cell generator according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 태양전지 발전기는 태양전지패널(10), 지지패널(20) 및 히트파이프(30)를 포함한다.Solar cell generator according to an embodiment of the present invention includes a solar panel 10, the support panel 20 and the heat pipe (30).
태양전지패널(10)은 태양광을 전기로 변환하는 부분으로, 광기전소자(光起電棄子)가 형성된 일면이 태양광이 입사되는 방향을 향하도록 배치된다. 이 때, 대량의 발전을 위하여 복수 개의 태양전지패널(10)이 모여서 태양전지 모듈(12)을 구성할 수 있다.The solar cell panel 10 is a portion that converts sunlight into electricity and is disposed so that one surface on which the photovoltaic element is formed faces the direction in which the sunlight is incident. At this time, a plurality of solar panel 10 can be gathered to form a solar cell module 12 for a large amount of power generation.
도 1에 나타난 바와 같이, 본 실시예에서는 태양광의 입사각에 맞추어 후술할 지지패널(20)이 경사지게 배치되어 있으며, 지지패널(20) 상에는 복수의 태양전지패널(10)이 태양전지 모듈(12)을 이루며 설치되어 있다.As shown in FIG. 1, in the present embodiment, the support panel 20 to be described below is inclined in accordance with the incident angle of sunlight, and the plurality of solar cell panels 10 are arranged on the support panel 20. It is installed to form a.
이 때, 본 실시예의 태양전지 발전기는 태양전지패널(10)의 발전효율을 높이기 위하여, 태양전지패널(10)이 항상 태양(5)을 향하도록 지지패널(20)을 회동시키는 태양추적기(40)를 추가로 포함할 수 있다. 구체적으로, 본 실시예의 태양추적기(40)는 지지암(42), 지지기둥(46) 및 제어기(46)를 포함할 수 있다. At this time, the solar cell generator of the present embodiment, in order to increase the power generation efficiency of the solar panel 10, the solar tracker 40 for rotating the support panel 20 so that the solar panel 10 always faces the sun (5). ) May be further included. Specifically, the solar tracker 40 of the present embodiment may include a support arm 42, a support pillar 46, and a controller 46.
도 1에 나타난 바와 같이, 본 실시예의 지지패널(20)은 지지암(42)에 대하여 상하로 회전이 가능하게 관절 결합되어 있어서, 태양의 고도에 맞추어 지지패널(20)의 경사각이 조절될 수 있다. 그리고, 지지암(42)은 지지기둥(44)에 대하여 지지기둥(44)의 중심축을 기준으로 회전이 가능하게 관절 결합되어서, 태양의 이동에 맞추어 지지패널(20)의 배치방향이 조절될 수 있다. As shown in Figure 1, the support panel 20 of the present embodiment is articulated to be rotatable up and down with respect to the support arm 42, the inclination angle of the support panel 20 can be adjusted to the height of the sun. have. In addition, the support arm 42 is rotatably jointed with respect to the support pillar 44 about the central axis of the support pillar 44, so that the arrangement direction of the support panel 20 can be adjusted according to the movement of the sun. have.
여기서, 각 관절에는 경사각 또는 배치방향을 결정하는 모터 등의 구동장치가 설치될 수 있으며, 구동장치는 태양의 위치변화에 따라 제어신호를 보내는 제어기(46)에 의해 조절될 수 있다. 이 때, 제어기(46)가 실제 태양의 변화를 감지할 수 있도록, 태양추적기(40)는 태양광 감지센서(48)를 추가로 구비할 수 있다.Here, each joint may be provided with a driving device such as a motor for determining the inclination angle or the arrangement direction, the drive device may be adjusted by the controller 46 for sending a control signal in accordance with the change in position of the sun. At this time, the solar tracker 40 may further include a solar sensor 48 so that the controller 46 can detect the actual change in the sun.
지지패널(20)은 태양전지패널(10)을 지지하고 태양전지패널(10)에서 흡수된 열을 받아서 후술할 히트파이프(30)에 절단하는 부분이다. 이 때, 히트파이프(30)로의 빠른 열전달을 위하여, 지지패널(20)은 열전도도가 높은 구리, 알루미늄 등의 금속 소재로 이루질 수 있다.The support panel 20 is a part for supporting the solar cell panel 10 and receiving heat absorbed by the solar cell panel 10 and cutting the heat pipe 30. At this time, for fast heat transfer to the heat pipe 30, the support panel 20 may be made of a metal material such as copper, aluminum with high thermal conductivity.
도 2 및 도 3은 본 발명의 일 실시예에 따른 태양전지 발전기에서 방열구조를 설명하는 도면이다.2 and 3 are views illustrating a heat dissipation structure in a solar cell generator according to an embodiment of the present invention.
도 2 및 도 3에 나타난 바와 같이, 본 실시예의 지지패널(20)은 태양을 향하는 전면이 태양전지패널(10)의 타면을 지지한다. 이에 따라, 지지패널(20)의 후면 및 인접한 영역에는 태양열이 도달하지 않는 그늘이 형성되어 전면에 비하여 낮은 온도를 가지는 영역이 형성되며, 지지패널(20)의 후면에는 방열을 수행하는 히트파이프(30)가 결합된다.As shown in Figure 2 and 3, the support panel 20 of the present embodiment supports the other surface of the solar cell panel 10 is the front surface facing the sun. Accordingly, a shade which does not reach solar heat is formed on the rear side and the adjacent region of the support panel 20 to form a region having a lower temperature than the front side, and a heat pipe that radiates heat on the rear side of the support panel 20. 30) are combined.
히트파이프(30)는 지지패널(20)에 결합되어 지지패널(20)에서 전달된 열을 방열하는 부분이다. 본 실시예의 방열부재는 상대적으로 온도가 낮은 지지패널(20)의 후면에 결합되어 온도차를 이용하여 열을 방출할 수 있다. The heat pipe 30 is coupled to the support panel 20 to radiate heat transferred from the support panel 20. The heat dissipation member of the present embodiment may be coupled to the rear surface of the support panel 20 having a relatively low temperature to release heat by using a temperature difference.
특히, 본 실시예의 히트파이프(30)로는 작동유체가 주입되는 세관형 히트파이프가 사용되어서 신속한 방열이 이루어질 수 있다. 구체적으로, 진동세관형 히트파이프가 사용될 수 있다.In particular, the heat pipe 30 of the present embodiment can be a rapid heat dissipation by using a tubular heat pipe to which the working fluid is injected. Specifically, a vibrating tubular heat pipe may be used.
진동세관형 히트파이프는 세관(32) 내부에 작동유체(34)와 기포(36)가 소정 비율로 주입된 후 세관(32) 내부가 외부로부터 밀폐되는 구조를 가진다. 이에 따라, 진동세관형 히트파이프는 기포(36) 및 작동유체(34)의 부피팽창 및 응축에 의하여 열을 잠열 형태로 대량으로 수송하는 열전달 사이클을 가진다. The vibrating tubular heat pipe has a structure in which the working fluid 34 and the bubble 36 are injected into the tubule 32 at a predetermined ratio and the inside of the tubule 32 is sealed from the outside. Accordingly, the vibrating tubular heat pipe has a heat transfer cycle for transporting a large amount of heat in latent form by volume expansion and condensation of the bubble 36 and the working fluid 34.
열전달 메카니즘을 살펴보면, 열을 흡수한 흡열부(30a)에서는 흡수된 열량만큼 핵비등(Nucleate Boiling)이 일어나면서 흡열부(30a)에 위치된 기포(36)들이 부피 팽창을 하게 된다. 이때 세관(32)은 일정한 내부 체적을 유지하므로, 흡열부(30a)에 위치된 기포(36)들이 부피 팽창을 한 만큼 열을 발산하는 방열부(30b)에 위치된 기포(36)들은 수축하게 된다. 따라서 세관(32) 내의 압력 평형상태가 붕괴되면서, 세관(32) 내에서 작동유체(34) 및 기포(36)의 진동을 포함한 유동이 수반되고, 이에 따라 기포(36)의 체적 변화에 의한 온도의 승강에 의하여 잠열 수송이 이루어짐으로써 방열이 수행된다.Looking at the heat transfer mechanism, the heat absorbing portion (30a) is nucleate boiling (Nucleate Boiling) occurs by the amount of heat absorbed bubbles (36) located in the heat absorbing portion (30a) is the volume expansion. At this time, since the tubule 32 maintains a constant internal volume, the bubbles 36 located in the heat dissipating part 30b dissipating heat as much as the bubbles 36 located in the heat absorbing part 30a have a volume expansion so that they contract. do. Accordingly, as the pressure equilibrium in the tubule 32 collapses, the flow including the vibration of the working fluid 34 and the bubbles 36 in the tubule 32 is accompanied, and thus the temperature due to the volume change of the foam 36 is accompanied. The heat dissipation is carried out by the latent heat transportation by lifting and lowering.
여기서, 진동세관형 히트파이프는 열전도도가 높은 구리, 알루미늄 등의 금속 소재로 이루어진 세관을 포함할 수 있다. 이에 따라, 열을 빠른 속도로 전도 받음과 아울러 그 내부에 주입된 기포(36)의 체적변화를 빠르게 유발할 수 있다.Here, the vibrating capillary heat pipe may include a capillary tube made of a metal material such as copper and aluminum having high thermal conductivity. Accordingly, while conducting heat at a high speed, the volume change of the bubble 36 injected therein can be quickly induced.
또한, 세관(32)으로 형성된 히트파이프(30)는 부피 대비 넓은 열전달면적을 가질 수 있으므로, 대량의 열을 빠르게 흡수 또는 방출할 수 있다. 그리고, 열전달의 방향성에 대한 제약이 없어서 어떠한 방향으로든 열전달이 우수하며 배치가 자유로운 장점도 있다.In addition, since the heat pipe 30 formed of the tubule 32 may have a large heat transfer area to volume, it may quickly absorb or release a large amount of heat. In addition, since there is no restriction on the direction of heat transfer, heat transfer is excellent in any direction, and there is an advantage in that the arrangement is free.
또한, 진동세관형 히트파이프는 별도의 동력을 공급하지 않고도 방열을 수행함으로써, 구조가 간단하고 설치 및 유지보수가 용이한 방열구조를 형성할 수 있다.In addition, the vibrating tubular heat pipe performs heat dissipation without supplying additional power, thereby forming a heat dissipation structure having a simple structure and easy installation and maintenance.
한편, 진동세관형 히트파이프의 연통구조는 개루프(open loop)와 폐루프(close loop) 모두 가능하다. 또한, 진동세관형 히트파이프가 복수 일 때, 진동세관형 히트파이프의 전부 또는 일부는 이웃하는 진동세관형 히트파이프와 연통될 수 있다. 이에 따라, 복수의 진동세관형 히트파이프는 설계상 필요에 따라 전체적으로 개루프 또는 폐루프 형상을 가질 수도 있다.On the other hand, the communication structure of the vibrating tubular heat pipe can be both an open loop (close loop) and (close loop). In addition, when there are a plurality of vibrating tubular heat pipes, all or part of the vibrating tubular heat pipe may be in communication with a neighboring vibrating tubular heat pipe. Accordingly, the plurality of vibrating capillary heat pipes may have an open loop or closed loop shape as a design necessity.
도 2 및 3에 나타난 바와 같이, 본 실시예에서 진동세관형 히트파이프는 나선형 구조의 방열루프를 형성한다. 이에 따라, 진동세관형 히트파이프에서 지지패널(20)과 결합된 흡열부(30a)와 지지패널(20)에서 이격되어 열을 방출하는 방열부(30b)가 반복적으로 형성되어서, 흡열부(30a)와 방열부(30b) 사이에 짧은 열전달 경로를 통하여 신속하게 열을 방출할 수 있다. 또한, 방열루프의 나선 사이로는 공기가 자유롭게 통과할 수 있으므로, 방열에 필요한 높은 통기성도 확보할 수 있다.As shown in Figures 2 and 3, the vibrating tubular heat pipe in this embodiment forms a heat radiation loop of a spiral structure. Accordingly, the heat absorbing portion 30a coupled to the support panel 20 and the heat dissipating portion 30b spaced apart from the support panel 20 to release heat in the vibrating tubular heat pipe are repeatedly formed, thereby absorbing the heat absorbing portion 30a. ) And the heat dissipation portion 30b can be quickly released through a short heat transfer path. In addition, since air can pass freely between the spirals of the heat dissipation loop, high ventilation required for heat dissipation can be ensured.
더불어, 경량의 진동세관형 히트파이프를 이용하여 방열을 수행하므로, 종래의 방열구조에 비해 무게를 현저하게 줄일 수 있으며 이에 따라 구조적인 안정성을 확보할 수 있다.In addition, since heat radiation is performed using a lightweight vibrating tubular heat pipe, the weight can be remarkably reduced compared to the conventional heat dissipation structure, thereby ensuring structural stability.
도 4는 본 발명의 다른 실시예에 따른 태양전지 발전기를 나타낸 사시도이고, 도 5는 본 발명의 다른 실시예에 따른 태양전지 발전기에서 방열구조를 설명하는 도면이다.4 is a perspective view showing a solar cell generator according to another embodiment of the present invention, Figure 5 is a view for explaining a heat radiation structure in the solar cell generator according to another embodiment of the present invention.
도 4 및 도 5에 도시된 바와 같이 본 실시예에 따른 태양전지 발전기의 경우, 상술한 바와 같이 흡열부(30a)와 방열부(30b)를 반복적으로 형성하는 나선형 구조의 방열루프가 환형으로 말아짐으로써, 히트파이프(30)가 전체적으로 환형 구조를 이루게 된다.As shown in FIGS. 4 and 5, in the solar cell generator according to the present embodiment, the heat dissipation loop having a spiral structure repeatedly forming the heat absorbing portion 30a and the heat dissipating portion 30b as described above is rolled in an annular shape. As a result, the heat pipe 30 has an annular structure as a whole.
이에 따라 흡열부(30a) 및 방열부(30b) 각각은 이러한 환형 구조의 중심축을 기준으로 방사상으로 배치될 수 있다. 다시 말해, 흡열을 수행하는 흡열부(30a)와 방열을 수행하는 방열부(30b)가 환형 구조의 중심축을 중심으로 방사상으로 배치되며, 이에 따라 방열에 필요한 공기의 유동이 보다 자유롭게 되어 보다 높은 효율의 방열이 이루어질 수 있다.Accordingly, each of the heat absorbing portion 30a and the heat dissipating portion 30b may be disposed radially with respect to the central axis of the annular structure. In other words, the heat absorbing portion 30a for performing heat absorption and the heat radiating portion 30b for radiating heat are disposed radially around the central axis of the annular structure, thereby allowing more free flow of air for radiating heat, resulting in higher efficiency. The heat dissipation can be made.
그리고 이러한 히트파이프(30)와 지지패널(20)의 후면 사이에는 예를 들어 구리 등으로 이루어진 판형 구조의 서멀베이스(35)가 개재될 수 있다. 즉, 히트파이프(30)의 흡열부(30a)에는 서멀베이스(35)가 부착될 수 있으며, 이와 같이 히트파이프(30)가 부착된 서멀베이스(35)를 지지패널(20)의 후면에 부착함으로써 보다 용이하게 히트파이프(30)를 지지패널(20)의 후면에 결합할 수 있게 된다.In addition, a thermal base 35 having a plate structure made of, for example, copper may be interposed between the heat pipe 30 and the rear surface of the support panel 20. That is, the thermal base 35 may be attached to the heat absorbing portion 30a of the heat pipe 30, and the thermal base 35 to which the heat pipe 30 is attached is attached to the rear surface of the support panel 20. By doing so, the heat pipe 30 can be more easily coupled to the rear surface of the support panel 20.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to embodiments of the present invention, those skilled in the art may variously modify the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. And can be changed.
전술한 실시예 외의 많은 실시예들이 본 발명의 특허청구범위 내에 존재한다.Many embodiments other than the above-described embodiments are within the scope of the claims of the present invention.
본 실시예에 따른 태양전지 발전기는 대량의 열을 신속하게 방열하는 방열구조를 구비함으로써, 태양전지패널의 발전 성능을 안정적으로 유지시킬 수 있다.The solar cell generator according to the present embodiment has a heat dissipation structure for quickly dissipating a large amount of heat, thereby stably maintaining the power generation performance of the solar cell panel.
또한, 별도의 동력을 공급하지 않고도 방열을 수행함으로써, 구조가 간단하고 설치 및 유지보수가 용이한 방열구조를 형성할 수 있다.In addition, by performing heat dissipation without supplying additional power, it is possible to form a heat dissipation structure having a simple structure and easy installation and maintenance.
또한, 경량의 세관형 히트파이프를 이용하므로 경량화하고 구조적 안정성을 확보할 수 있다.In addition, by using a lightweight tubular heat pipe, it is possible to reduce the weight and ensure structural stability.

Claims (6)

  1. 일면이 태양광이 입사되는 방향을 향하도록 배치된 태양전지패널;A solar cell panel having one surface facing a direction in which sunlight is incident;
    전면이 상기 태양전지패널의 타면을 지지하고 있으며, 상기 태양전지패널이 흡수한 열을 전달받는 지지패널;A front panel supporting the other surface of the solar panel and receiving heat absorbed by the solar panel;
    상기 지지패널의 후면에 결합되어 열을 전달받는 흡열부 및 상기 흡열부에서 이격되어 흡수된 열을 방출하는 방열부를 구비한 히트파이프를 포함하는 태양전지 발전기.And a heat pipe having a heat absorbing portion coupled to a rear surface of the support panel to receive heat and a heat dissipating portion releasing heat absorbed by the heat absorbing portion.
  2. 제1항에 있어서,The method of claim 1,
    상기 히트파이프는,The heat pipe,
    상기 흡열부와 상기 방열부를 반복적으로 형성하는 나선형 구조의 방열루프를 포함하는 것을 특징으로 하는 태양전지 발전기.And a heat dissipation loop having a spiral structure repeatedly forming the heat absorbing portion and the heat dissipation portion.
  3. 제2항에 있어서,The method of claim 2,
    상기 히트파이프는 환형 구조로 이루어져, 상기 흡열부 및 상기 방열부 각각이 상기 환형 구조의 중심축을 기준으로 방사상으로 배치되는 것을 특징으로 하는 태양전지 발전기.The heat pipe has an annular structure, wherein the heat absorbing portion and the heat dissipating portion are each disposed radially with respect to the central axis of the annular structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 지지패널의 후면과 상기 히트파이프 사이에 개재되는 서멀베이스(thermal base)를 더 포함하는 태양전지 발전기.And a thermal base interposed between the rear surface of the support panel and the heat pipe.
  5. 제1항에 있어서,The method of claim 1,
    상기 히트파이프는,The heat pipe,
    작동유체가 주입되는 진동세관형의 히트파이프를 포함하는 것을 특징으로 하는 태양전지 발전기.A solar cell generator comprising a vibrating tubular heat pipe into which a working fluid is injected.
  6. 제1항에 있어서,The method of claim 1,
    상기 태양전지패널이 태양을 향하도록 상기 지지패널을 회동시키는 태양추적기를 더 포함하는 태양전지 발전기.And a solar tracker for rotating the support panel so that the solar panel faces the sun.
PCT/KR2012/002133 2011-04-21 2012-03-23 Solar cell generator WO2012144747A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110037485A KR20120119514A (en) 2011-04-21 2011-04-21 Generator using solar cell
KR10-2011-0037485 2011-04-21

Publications (2)

Publication Number Publication Date
WO2012144747A2 true WO2012144747A2 (en) 2012-10-26
WO2012144747A3 WO2012144747A3 (en) 2013-01-17

Family

ID=47042013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002133 WO2012144747A2 (en) 2011-04-21 2012-03-23 Solar cell generator

Country Status (2)

Country Link
KR (1) KR20120119514A (en)
WO (1) WO2012144747A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101429233B1 (en) * 2013-04-15 2014-08-12 한국과학기술원 Tower type solar thermal power plant system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101116A (en) * 1998-09-25 2000-04-07 Shimizu Corp Solar electric power generating system
JP2001290537A (en) * 2000-04-06 2001-10-19 Seiko Epson Corp Solar power generating device
KR20050106164A (en) * 2004-05-04 2005-11-09 부경대학교 산학협력단 Hybrid solar energy apparatus using heat pipe and solar cell module
KR20110001817A (en) * 2009-06-30 2011-01-06 엘지이노텍 주식회사 Solar cell aparatus
KR20110036221A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Solar cell apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101116A (en) * 1998-09-25 2000-04-07 Shimizu Corp Solar electric power generating system
JP2001290537A (en) * 2000-04-06 2001-10-19 Seiko Epson Corp Solar power generating device
KR20050106164A (en) * 2004-05-04 2005-11-09 부경대학교 산학협력단 Hybrid solar energy apparatus using heat pipe and solar cell module
KR20110001817A (en) * 2009-06-30 2011-01-06 엘지이노텍 주식회사 Solar cell aparatus
KR20110036221A (en) * 2009-10-01 2011-04-07 엘지이노텍 주식회사 Solar cell apparatus

Also Published As

Publication number Publication date
KR20120119514A (en) 2012-10-31
WO2012144747A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2012115378A2 (en) Photovoltaic apparatus comprising a reflective plate, the angle of which is adjustable
WO2014003491A1 (en) Concentrated solar power generation system
ES2201080T3 (en) SOLAR POWER PLANT FOR THE PRODUCTION OF ELECTRICAL ENERGY AND / OR HYDROGEN.
WO2011145847A2 (en) Heat-collecting apparatus for a solar water heater
JP2008547209A5 (en)
WO2013073823A1 (en) Electricity-generating system using solar heat energy
WO2009001225A3 (en) Solar energy collection system
US11431289B2 (en) Combination photovoltaic and thermal energy system
WO2013069875A1 (en) Stacking system for photovoltaic power generation module
WO2017115980A1 (en) Power generation apparatus using wave force and temperature difference
CN101922803A (en) Solar distributed point-focusing optical lens tracking system and application thereof
JP3539729B1 (en) Solar tracking system
CN102721195A (en) Solar condensation and tracking array horizontal directional collection system
CN203590122U (en) Wind-solar complementary solar power generation system
CN109253553B (en) Tower type Fresnel solar light-gathering and heat-collecting device
Sandberg Cooling of building integrated photovoltaics by ventilation air.
CN102231612A (en) Concentrating photovoltaic power generation unit, power generation device and a power generation system
WO2012144747A2 (en) Solar cell generator
CN200946553Y (en) Cluster type heat-storing solar energy photothermal generation device
US20030196652A1 (en) Solar energy collector system
WO2014092409A1 (en) Solar power generation system
ITBS20090056A1 (en) PLANT OF SOLAR COLLECTORS WITH CONCENTRATION WITH AZIMUTAL ORIENTATION SYSTEM
CN201628802U (en) Solar linear lens zooming tracking use system
JP2004317117A (en) Solar heat collector with solar power generation function
CN101846787A (en) Solar linear lens zoom tracking system and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773511

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12773511

Country of ref document: EP

Kind code of ref document: A2