WO2012144618A1 - 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池 - Google Patents

黒鉛・炭素混合材料、電池電極用炭素材料、及び電池 Download PDF

Info

Publication number
WO2012144618A1
WO2012144618A1 PCT/JP2012/060761 JP2012060761W WO2012144618A1 WO 2012144618 A1 WO2012144618 A1 WO 2012144618A1 JP 2012060761 W JP2012060761 W JP 2012060761W WO 2012144618 A1 WO2012144618 A1 WO 2012144618A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
carbon
mass
cross
electrode
Prior art date
Application number
PCT/JP2012/060761
Other languages
English (en)
French (fr)
Inventor
嘉介 西村
須藤 彰孝
俊介 吉岡
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2012527936A priority Critical patent/JP5140781B2/ja
Priority to US14/000,329 priority patent/US9099745B2/en
Priority to KR1020127017504A priority patent/KR101211489B1/ko
Priority to EP12773955.5A priority patent/EP2667435B1/en
Priority to CN201280000773.9A priority patent/CN102844919B/zh
Publication of WO2012144618A1 publication Critical patent/WO2012144618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a graphite / carbon mixed material, a carbon material for battery electrodes, and a battery. More specifically, the present invention relates to a graphite / carbon mixed material and a battery electrode carbon material suitable as an electrode material for a non-aqueous electrolyte secondary battery, and a secondary battery excellent in charge / discharge cycle characteristics and large current load characteristics.
  • Lithium ion secondary batteries are mainly used as power sources for portable devices. Mobile devices and the like have diversified functions and have increased power consumption. Therefore, the lithium ion secondary battery is required to increase its battery capacity and simultaneously improve the charge / discharge cycle characteristics. Furthermore, there is an increasing demand for high-power and large-capacity secondary batteries such as electric tools such as electric drills and hybrid vehicles. Conventionally, lead secondary batteries, nickel cadmium secondary batteries, and nickel metal hydride secondary batteries have been mainly used in this field. However, expectations for high-density lithium-ion secondary batteries that are small and light are high. A lithium ion secondary battery having excellent current load characteristics is demanded.
  • the main required characteristics are long-term cycle characteristics over 10 years and large current load characteristics for driving high-power motors.
  • a high volumetric energy density is required to extend the cruising range, which is harsh compared to mobile applications.
  • a lithium salt such as lithium cobaltate is generally used for the positive electrode active material
  • a carbonaceous material such as graphite is used for the negative electrode active material.
  • Graphite includes natural graphite and artificial graphite. Of these, natural graphite is available at low cost. However, since natural graphite has a scaly shape, when it is made into a paste together with a binder and applied to a current collector, the natural graphite is oriented in one direction. When charging with such an electrode, the electrode expands in only one direction, and the performance as an electrode is reduced. Although natural graphite granulated has been proposed, spherical natural graphite is crushed and oriented by pressing during electrode production. Moreover, since the surface of natural graphite was active, a large amount of gas was generated during the initial charge, the initial efficiency was low, and the cycle characteristics were not good. In order to solve these problems, Japanese Patent No.
  • Patent Document 1 proposes a method of coating artificial carbon on the surface of natural graphite processed into a spherical shape.
  • the material produced by this method can meet the high capacity, low current, and medium cycle characteristics required by mobile applications, etc., but it requires the large current and ultra long cycle characteristics of the large battery as described above. It is very difficult to meet.
  • negative electrode materials using so-called hard carbon and amorphous carbon described in JP-A-7-320740 have excellent characteristics against large currents, and The cycle characteristics are also relatively good.
  • the volumetric energy density is too low and the price is very expensive, it is used only for some special large batteries.
  • Japanese Patent No. 3534391 Japanese Patent Laid-Open No. 4-190555 Japanese Patent No. 3361510 Japanese Patent Laid-Open No. 7-320740 JP 2006-140138 A
  • each graphite material particle By adding the graphitizable carbon described above to a graphitized carbon material obtained by heat treatment at 1600-2300 ° C., the present inventors impair the good large current input / output characteristics of the carbon material.
  • the carbon material which can improve discharge capacity was sought.
  • a graphite material having a mosaic structure is used, and while flowing on the surface of a granular or powdery mesophase pitch heat treated product (return medium).
  • the raw material mesophase pitch is heated and polymerized to solidify while receiving shearing force due to flow to form a mosaic structure.
  • the optically anisotropic structure continues to grow, and thus the mosaic structure itself becomes large in the polymerization method as described above.
  • the isotropic part remains crimson, but when the wavelength is slightly increased, it approaches purple from blue, and conversely from orange when the wavelength decreases. Approaching yellow. Therefore, when the optical anisotropy domain is rotated from 0 degree to 45 degrees, the interference color changes in yellow (yellow), red (magenta), blue (blue), etc. depending on the arrangement direction of the graphite mesh surface. Thus, the direction of domain arrangement can be easily determined.
  • the inventors of the present invention have used a polarizing microscope observation method as a method for analyzing the structure of a tissue, and as a result of intensive studies on various carbon materials by this method, a graphite material having a specific internal structure shown below has now been obtained. It has been found that the high-energy density, long-cycle characteristics, and high-current load characteristics, which are not found in the carbon materials for negative electrodes for lithium ion secondary batteries, are balanced in a high dimension. In addition, a method for producing a carbon material having the internal structure from a coke raw material has been found, and an aim to solve the economical problem has been obtained. By mixing this graphite material with the above-mentioned graphitized carbon material, the discharge capacity is improved without losing the excellent large current input / output characteristics of the carbon material.
  • a graphite material comprising graphite particles composed of an optically anisotropic structure, an optically isotropic structure, and voids, and satisfying the following conditions (1) and (2):
  • Graphite / carbon mixed material made by mixing carbonizable carbon material (1)
  • the maximum value of the length of the long side portion is Lmax, and the volume-based average particle diameter (D50) measured by the laser d
  • the graphite material is a cross-section of a molded body made of graphite material, and arbitrarily select 10 square regions each having a side of 100 ⁇ m
  • the cross-section of the graphite particles appearing in the region satisfies the following conditions:
  • Da (n1) is the sum of the areas of the optically anisotropic tissue domains ( ⁇ m 2 ) when the areas of the optically anisotropic tissue domains are integrated in ascending order.
  • (A) represents the area value ( ⁇ m 2 ) of the maximum domain when reaching n1%
  • Db (n2) is the sum of the numbers when the optically anisotropic texture domains are arranged in ascending order of area.
  • the graphite material has a cross section of a molded body made of graphite material and arbitrarily selected 10 square regions having a side of 100 ⁇ m, the cross section of the graphite particles appearing in the region satisfies the following conditions: 4.
  • a carbon material for battery electrodes comprising the graphite / carbon mixed material according to any one of 1 to 11 above.
  • An electrode paste comprising the battery electrode carbon material described in 12 above and a binder.
  • An electrode comprising a molded body of the electrode paste as described in 13 above.
  • a battery comprising the electrode according to 14 as a constituent element.
  • Polarized light microscope image of graphite material A Polarized light microscope image of graphite material C Polarized light microscope image of graphite material E Polarized light microscope image of graphite material G
  • Graphite material Preparation of specimen for observation under a deflection microscope
  • the “cross section of the molded body made of graphite material” in the present specification is prepared as follows. A double-sided tape is affixed to the bottom of a plastic sample container having an internal volume of 30 cm 3 , and about 2 cups of spatula (about 2 g) are placed on the sample.
  • Cold embedding resin (trade name: cold embedding resin # 105, manufacturing company: Japan Composite Co., Ltd., sales company: Marumoto Struers Co., Ltd.) and curing agent (trade name: curing agent (M agent), (Manufacturing company: Nippon Oil & Fats Co., Ltd., sales company: Marumoto Struers Co., Ltd.)) and knead for 30 seconds.
  • the obtained mixture (about 5 ml) is slowly poured into the sample container until it reaches a height of about 1 cm, and allowed to stand for 1 day to solidify.
  • the solidified sample is taken out and the double-sided tape is peeled off.
  • the surface to be measured is polished using a polishing plate rotating type polishing machine.
  • Polishing is performed such that the polishing surface is pressed against the rotating surface.
  • the polishing plate is rotated at 1000 rpm.
  • the counts of the polishing plates are # 500, # 1000, and # 2000 in this order, and the last is alumina (trade name: Baikalox type 0.3CR, particle size 0.3 ⁇ m, manufacturer: Baikowski, sales company: Baikow Mirror polishing using Ski Japan).
  • the polished sample is fixed with clay on a preparation and observed using a polarizing microscope (BX51, manufactured by OLYMPAS).
  • magnification image a square region (100 ⁇ m square) was cut out from the same point at an observation angle of 0 ° and 45 °, respectively, and the following analysis was performed on all particles within the range to obtain an average.
  • color extraction is performed for blue, yellow, magenta, black, and pure magenta, and the respective area ratios are counted.
  • the optical anisotropy domain changes in color depending on the orientation of the crystallite, since the probability of facing the front is very low, even if magenta is shown, the wavelength is almost different from that of pure magenta.
  • the optical isotropic domain always indicates the wavelength of pure magenta. Therefore, in this specification, all pure magenta is recognized as an optically isotropic region.
  • the color extraction is performed using a LUZEX AP command, and the extraction width of each color is set by setting IHP data as shown in Table 1 below.
  • the W-1 command of Eliminate 1 of the logical filter is used to remove an area of 1 dot or less.
  • the number of pixels is used to calculate the total number of pixels of the image and the number of corresponding color pixels.
  • the area ratio of the portion where the color changed when rotated by 0 °, 45 °, and 90 ° is calculated as shown in Table 2.
  • Graphite materials As a rule, have optical anisotropy domains (domains where crystals are developed and the graphite network surface is aligned) and optical isotropic domains (crystals are not yet developed or crystals such as hard carbon) in each particle. Domain) and graphite particles composed of voids.
  • the domain indicates a minimum unit structure of an optically anisotropic structure or an optically isotropic structure that is substantially connected.
  • the area of the optically anisotropic structure in the cross section of the graphite particles appearing in the region. (X), the total area (y) of the optically isotropic structure, and the total area (z) of the voids satisfy the following relationship.
  • the cross section of the graphite particles appearing in a square region having an arbitrarily selected one side of 100 ⁇ m does not include voids between the particles, but only the cross section of the particles.
  • x, y, and z are the total ratios of the respective structures with respect to the total of the cross-sectional portions of the particles, and the voids indicated by z are voids appearing in the particle cross-section (hereinafter referred to as voids unless otherwise specified). ).
  • the amount of optically anisotropic domains is preferable because the domains contribute to insertion / extraction of lithium ions, etc., and as a general rule, the larger the number, the greater the capacity. If the area of the sex domain is less than 3% of the total area, the current load characteristics and the cycle characteristics are extremely deteriorated and the balance of the materials cannot be maintained.
  • voids themselves cannot contribute to the charge / discharge capacity, they are preferably as small as possible, and z is preferably 3% or less, more preferably 2% or less.
  • x: y: z 70 to 97: 3 to 30: 0 to 3
  • x + y + z 100
  • the particles are not occupied by large optical anisotropic domains.
  • Lmax / Lave is 0.5 or less, preferably 0.4 or less, and more preferably 0.3 or less.
  • Lmax / Lave is in this range, the optical anisotropy domain is sufficiently small, and the direction of the carbon network in each domain is not oriented in one direction, but in any direction.
  • This Lmax / Lave is the largest of the Lmax of each particle in the cross section of the graphite particles that appear in the cross section of the graphite particle that appears in the cross section of the molded body made of the graphite material when an arbitrary 10 square areas having a side of 100 ⁇ m are selected. Can be calculated by measuring.
  • the measurement of Lave which is a volume-based average particle diameter (D50) by a laser diffraction method, can be performed using a laser diffraction particle size distribution measuring instrument such as Malvern Mastersizer.
  • the graphite material in a preferred embodiment of the present invention is an aggregate of graphite particles, and the graphite particles are not completely homogeneous, and therefore the graphite material includes particles that do not satisfy the above Lmax / Lave condition.
  • the amount is less than 10%, preferably less than 5%, based on the number. That is, 90% or more of graphite particles, preferably 95% or more of graphite particles on the basis of the number satisfies the above conditions.
  • the size (ratio) of the optically anisotropic domain in the particles is as described above, but the following relationship is also preferable from the viewpoint of the absolute value of the size.
  • the absolute value of the size is influenced by the particle diameter, it cannot be generally stated, but in the cross section of the molded body made of graphite material, it appears in the area when 10 square areas with sides of 100 ⁇ m are arbitrarily selected.
  • the number of those having an area of 25 ⁇ m 2 or less out of the number of optically anisotropic tissue domains having an area of 0.1 ⁇ m 2 or more is preferably 80% or more.
  • the number of those having an area of 15 ⁇ m 2 or less is 80% or more, and more preferably the number of those having an area of 10 ⁇ m 2 or less is 80% or more.
  • the number is preferably 90% or more. If the area of one domain is too large, the expansion and contraction directions of the particles during charge / discharge tend to concentrate and the cycle characteristics deteriorate.
  • the optically isotropic domain cannot be generally described, but the number of optically isotropic tissue domains having an area of 0.1 ⁇ m 2 or more in the cross section in any one particle has an area of 25 ⁇ m 2 or less. Is preferably 80% or more.
  • the number of those having an area of 15 ⁇ m 2 or less is 80% or more, and more preferably the number of those having an area of 10 ⁇ m 2 or less is 80% or more.
  • the number is preferably 90% or more. If the area of one domain is too large, the overall performance balance of the particles is lost and the current load characteristics are excellent, but the discharge capacity is extremely reduced.
  • the following prescribed ranges are preferable.
  • Da (n1) is optical anisotropy in the cross section of the graphite particles appearing in the area.
  • the area of the tissue domain is accumulated in ascending order, the total value of the domain when the total value reaches n1% of the total area of the optically anisotropic tissue domain ( ⁇ m 2 ) ( ⁇ m In the case of 2 ), it is preferable that the following conditions are satisfied.
  • Db (n2) is arranged in the order of increasing area of the optically anisotropic tissue domains, the total number thereof reaches n2% of the total number (B) of the optically anisotropic tissue domains.
  • the area value of the maximum domain of ( ⁇ m 2 ) it is preferable that the following condition is satisfied. 0.75 ⁇ Db (99.5) / Da (100) ⁇ 0.995 If this condition is not satisfied, the variation of the domain area distribution in relatively large particles becomes large, and the balance of discharge capacity, current load characteristics, and cycle characteristics becomes poor.
  • Dc (n3) when Dc (n3) is accumulated in the order of the optical isotropic tissue domain in ascending order, the sum of the accumulated values is n3% of the total area ( ⁇ m 2 ) of the optical isotropic tissue domain.
  • the maximum domain area value ( ⁇ m 2 ) it is preferable to satisfy the following conditions. 0.5 ⁇ m 2 ⁇ Dc (10) ⁇ 2 ⁇ m 2 0.6 ⁇ m 2 ⁇ Dc (50) ⁇ 10 ⁇ m 2 0.7 ⁇ m 2 ⁇ Dc (90) ⁇ 40 ⁇ m 2 If each Dc is out of this range, it becomes difficult to balance the three of discharge capacity, current load characteristics, and cycle characteristics.
  • the crystal orientation (direction of the graphite network surface) in each optically anisotropic domain in the particles is preferably random.
  • the crystal orientation of the optically anisotropic structure can be confirmed by changing the interference color of the domain when rotated from 0 to 45 degrees. In this case, the interference colors of blue, yellow, and magenta are shown depending on the orientation of the crystal, but the area value of the smallest of the total area of each color is substantially 12% or more of the cross-sectional area of one particle. It is preferable.
  • substantially means that the ratio of the measured particle cross-sectional area with respect to the color having the smallest area value regardless of each color is performed for 100 particles and the average value is calculated. More preferably, it is 20% or more. Most preferably each color is 32%.
  • Graphite material preferably has an average spacing d 002 of the X-ray diffraction (002) plane is 0.3356 nm ⁇ 0.3375 nm.
  • the thickness Lc in the C-axis direction of the crystal is preferably 30 to 1000 nm, more preferably 100 nm or less, and particularly preferably 50 nm or more and 100 nm or less.
  • d 002 and Lc can be measured by a known method using a powder X-ray diffraction (XRD) method (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee Sample, 117-71-A- 1 (1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee Sample, 117-121-C-5 (1972), Michio Inagaki, “Carbon”, 1963, No. 36, pages 25-34) .
  • XRD powder X-ray diffraction
  • the rhombohedral peak ratio is 5% or less, more preferably 1% or less.
  • the average interplanar distance d 002 of the optically anisotropic portion in the graphite material is preferably 0.3354 nm to 0.3370 nm. If it is larger than this, the discharge capacity becomes small, and it becomes difficult to satisfy the energy density required for a large battery.
  • the average interplanar spacing of the optically anisotropic portion can be calculated as follows. First, tungsten is vapor-deposited on the sample surface by sputtering, and is sliced with a microtome of a transmission electron microscope (for TEM). This is magnified with a TEM at a magnification of 8 million times or more and printed or printed on photographic paper. From this, 100 points are measured with a caliper for the portion where the crystal network surface of graphite is clearly photographed, and converted to nm with reference to the scale bar on the TEM photograph, and the average is obtained.
  • Aspect ratio of particles of graphite material maximum length Dmax / maximum length vertical length DNmax (Dmax: maximum length at two points on the contour of the particle image; DNmax: the image is sandwiched by two straight lines parallel to the maximum length
  • the shortest length connecting two straight lines vertically is preferably 1.00 to 1.32. More preferably, it is 1.00 to 1.20.
  • the graphite material preferably has a D50 of 3 to 20 ⁇ m in a volume-based particle size distribution measured by a laser diffraction method.
  • a Malvern master sizer or the like can be used for the laser diffraction particle size distribution measuring instrument.
  • the graphite material does not substantially contain particles having a particle size of 0.5 ⁇ m or less. Particles of 0.5 ⁇ m or less have a large active point on the surface and reduce the initial efficiency of the battery.
  • the content of particles of 0.5 ⁇ m or less can be measured with a laser diffraction particle size distribution analyzer. Further, the substantial minimum particle diameter can be obtained by measuring D0.
  • the graphite material has a loose bulk density (0 times tapping) of 0.7 g / cm 3 or more and a powder density (tap density) of 400 to 1.6 g / cm 3 when tapped 400 times. Preferably there is. More preferably, it is 0.9 to 1.6 g / cm 3 , and most preferably 1.1 to 1.6 g / cm 3 .
  • the loose bulk density is a density obtained by dropping 100 g of a sample from a height of 20 cm onto a measuring cylinder and measuring the volume and mass without applying vibration.
  • the tap density is a density obtained by measuring the volume and mass of 100 g of powder tapped 400 times using a cantachrome auto tap.
  • the method for producing a graphite material can be produced, for example, by pulverizing a carbon raw material obtained by the following method and then performing a heat treatment at 2000 ° C. or higher.
  • the carbon raw material for example, a residue obtained by subjecting crude oil to atmospheric distillation under reduced pressure in a petroleum refining process, or a pyrolysis tar or the like can be preferably used.
  • the crude oil that is the source of the carbon raw material is preferably one that contains a large amount of naphthenic hydrocarbons. When the amount of paraffinic and olefinic hydrocarbons increases, the progress of carbonization becomes slow during coking, and the optically anisotropic domain or the like develops too much.
  • the ratio of the following components of the carbon raw material is important because it greatly affects the subsequent composition, particularly the area and distribution of domains, optical anisotropy, and the ratio of optically isotropic structures.
  • asphaltenes, resin components and saturated hydrocarbon components contained therein are high.
  • Asphalten is a black-brown brittle solid with a small H / C condensed polycyclic structure, soluble in benzene, carbon tetrachloride, etc., insoluble in pentane, alcohol, etc. and having a molecular weight of 1000 or more. is there.
  • the resin component is a brown resinous substance and is a compound having a large amount of oxygen and nitrogen.
  • the composition of the carbon raw material is such that the total composition of asphaltenes and resins is 20% by mass to 60% by mass, preferably 25% by mass to 40% by mass. If the total amount of asphaltenes and resin is small, the optical anisotropy domain develops greatly because the crystal development proceeds too slowly during the coking process by the delayed coker. When the optically anisotropic domain is greatly developed, the discharge capacity increases as the characteristics of the negative electrode material after the graphitization treatment, but the current load characteristics and the cycle characteristics are greatly deteriorated. If the sum of the asphaltenes and the resin is too large, the proportion of the optically isotropic structure becomes too large, so that the development of crystals is suppressed.
  • the asphaltene content and the resin content in the carbon raw material mean the content measured based on “Asphalt composition analysis by column chromatography (JPI-5S-22-83)” prescribed by JPI (Japan Petroleum Institute). To do.
  • This method uses alumina as a filler and separates and quantifies the asphaltene component together with the saturated component, aromatic component and resin component from the sample oil.
  • the sulfur compound component mainly composed of polycyclic compounds such as thiophene ring, naphthene ring, and aromatic ring is preferably 0.3% by mass to 6% by mass, more preferably 0.4% by mass to 6% by mass. .
  • the sulfur compound component is small, the optical anisotropy domain develops greatly because the crystal development proceeds too slowly during the coking process by the delayed coker.
  • the optically anisotropic domain is greatly developed, the discharge capacity increases as the characteristics of the negative electrode material after the graphitization treatment, but the current load characteristics and the cycle characteristics are greatly deteriorated.
  • the sulfur compound component in this specification is the value of the sulfur content analyzed according to JISK2541.
  • the outlet temperature of the heating furnace heater before the coke drum is normally controlled at 480 to 500 ° C., but the present carbon material is operated by raising it to 560 to 570 ° C., which is about 10% up.
  • the internal pressure of the drum is normally controlled at 100 to 280 kPa (about 15 psig to 40 psig), but this is increased by about 10% to 115 to 305 kPa (about 17 psig to 44 psig). Since coke is usually produced as a lump, it is common to discharge it while cutting it in water. However, when the raw material is specified and the operation in which the coking conditions are also specified is performed, particulate coke different from usual can be obtained.
  • the particulate special coke obtained in this way has an internal structure when graphitized later within a predetermined range, and the discharge capacity, current load characteristics, and cycle characteristics are balanced, which is a preferable situation. It is not always clear why the graphite material produced from the carbon material in the form of particles shows such characteristics, but the heavy tar of such components exists in a spherical shape due to the viscosity relationship, and this spherical tar is Due to the presence of sulfur, it is thought to be due to abrupt carbonization by heat of reaction due to the crosslinking reaction of asphaltenes. By such an operation, the generation of a structure that tends to develop into an optically anisotropic structure than the coke that is usually obtained is moderately suppressed, and a carbon raw material suitable for a graphite material can be obtained.
  • the obtained carbon raw material preferably has a weight loss of heating (for example, a volatile content of hydrocarbon accompanying carbonization) of 5 to 20% by mass when heated from 300 ° C. to 1200 ° C. in an inert atmosphere. . If the weight loss by heating is less than 5% by mass, the particle shape after pulverization tends to be plate-like. Further, the pulverized surface (edge portion) is exposed, the specific surface area is increased, and side reactions are increased. Conversely, if it exceeds 20% by mass, the particles after graphitization will increase the binding between the particles, which will affect the yield.
  • a weight loss of heating for example, a volatile content of hydrocarbon accompanying carbonization
  • this carbon raw material is pulverized.
  • a known jet mill, hammer mill, roller mill, pin mill, vibration mill or the like is used for pulverizing the carbon raw material.
  • the pulverization of the carbon raw material is preferably performed with a thermal history as low as possible. The lower the heat history, the lower the hardness and the easier the pulverization, and the random crack direction at the time of crushing tends to make the aspect ratio small.
  • the probability that the edge portion exposed to the pulverized surface is repaired in the subsequent heating process is increased, and there is an effect that side reactions during charging and discharging can be reduced.
  • the pulverized carbon raw material is preferably classified so that the volume-based average particle diameter (D50) measured by a laser diffraction method is 3 to 20 ⁇ m. If the average particle size is large, the electrode density tends to be difficult to increase. Conversely, if the average particle size is small, side reactions tend to occur during charge and discharge.
  • the particle size is a value measured by a laser diffraction type master sizer (manufactured by Malvern).
  • the pulverized carbon raw material may be fired at a low temperature of about 500 to 1200 ° C. in a non-oxidizing atmosphere before graphitization.
  • gas generation in the next graphitization treatment can be reduced, and since the bulk density can be lowered, the graphitization treatment cost can also be reduced.
  • the graphitization treatment of the pulverized carbon raw material is desirably performed in an atmosphere in which the carbon raw material is not easily oxidized.
  • a method of heat treatment in an atmosphere such as argon gas, a method of heat treatment in an Atchison furnace (non-oxidation graphitization process), and the like can be given.
  • the lower limit of the graphitization temperature is usually 2000 ° C., preferably 2500 ° C., more preferably 2900 ° C., and most preferably 3000 ° C.
  • the upper limit of the graphitization temperature is not particularly limited, but is preferably 3300 ° C. from the viewpoint that a high discharge capacity is easily obtained. It is preferable not to crush or grind the graphite material after the graphitization treatment. When pulverizing or pulverizing after the graphite treatment, the smooth surface may be damaged and the performance may be deteriorated.
  • the graphite material can be used by being coated with another carbon material.
  • the graphite particles constituting the graphite material can be coated with optical isotropic carbon on the surface.
  • the coating can improve the input characteristics during charging and improve the characteristics required for large batteries.
  • the coating amount is not particularly limited, but is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the core material.
  • a known technique can be used for the coating method and is not particularly limited. For example, by coating graphite particles with a coal tar pitch with a diameter of 0.1 to 1 ⁇ m and a graphite material by a mechanochemical method using a mechanofusion made by Hosokawa Micron, and heating at 800 ° C.
  • a method of forming optically isotropic carbon on the surface, or a composition containing a polymer is attached to at least a part of the surface of graphite particles, and heat-treated at 800 ° C. to 3300 ° C. in a non-oxidizing atmosphere.
  • Examples thereof include a method of forming optically isotropic carbon.
  • the composition containing the polymer for example, a composition containing a drying oil or a fatty acid thereof and a phenol resin can be used. The latter method is described in, for example, Japanese Patent Application Laid-Open Nos. 2003-100293 and 2005-019397.
  • the graphite particles can also bond a part of the carbon fibers to the particle surface.
  • the carbon fibers in the electrode can be easily dispersed, and the cycle characteristics and current load characteristics are further enhanced by a synergistic effect with the characteristics of the graphite particles as the core material.
  • the adhesion amount of the carbon fiber is not particularly limited, but is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the graphite material as the core material.
  • a known method can be used as the bonding method, and is not particularly limited.
  • carbon fiber is bonded simultaneously with a graphite particle coating by mechanochemical method using a coal tar pitch with a diameter of 0.1 to 1 ⁇ m, graphite material and carbon fiber using a mechano-fusion made by Hosokawa Micron, and 800 in a non-oxidizing atmosphere. It can be carried out by heating at from 3 to 3300 ° C. Further, a composition containing a polymer is attached to at least a part of the surface of the graphite particles, and fibrous carbon is mixed therewith, and then the fibrous carbon is attached to the graphite particles through the composition containing the polymer, The graphite particles can be heat treated at 800 ° C. to 3300 ° C. in a non-oxidizing atmosphere.
  • composition containing the polymer for example, a composition containing a drying oil or a fatty acid thereof and a phenol resin can be used.
  • the latter method is described in, for example, Japanese Patent Application Laid-Open Nos. 2003-1000029 and 2005-019397 (WO2004 / 109825).
  • the carbon fiber examples include organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers, and vapor grown carbon fibers.
  • organic carbon fibers such as PAN-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers
  • vapor grown carbon fibers having high crystallinity and high thermal conductivity is particularly preferable.
  • carbon fibers are bonded to the surface of graphite particles, vapor grown carbon fibers are particularly preferable.
  • Vapor grown carbon fiber is produced, for example, by using an organic compound as a raw material, introducing an organic transition metal compound as a catalyst into a high-temperature reactor together with a carrier gas, and subsequently heat-treating (Japanese Patent Laid-Open No. Sho 60- 54998, Japanese Patent No. 2778434, etc.).
  • the fiber diameter is 2 to 1000 nm, preferably 10 to 500 ⁇ m, and the aspect ratio is preferably 10 to 15000.
  • the organic compound used as a raw material for carbon fiber include gases such as toluene, benzene, naphthalene, ethylene, acetylene, ethane, natural gas, carbon monoxide, and mixtures thereof. Of these, aromatic hydrocarbons such as toluene and benzene are preferred.
  • the organic transition metal compound contains a transition metal serving as a catalyst. Examples of the transition metal include metals of groups IVa, Va, VIa, VIIa, and VIII of the periodic table. As the organic transition metal compound, compounds such as ferrocene and nickelocene are preferable.
  • the carbon fiber may be one obtained by pulverizing or pulverizing long fibers obtained by a vapor phase method or the like.
  • the carbon fiber may be aggregated on the floc.
  • the carbon fiber preferably has no thermal decomposition product derived from an organic compound or the like on its surface, or has a high carbon structure crystallinity.
  • Carbon fibers to which no pyrolyzate is attached or carbon fibers having a high carbon structure crystallinity are obtained by, for example, firing (heat treatment) carbon fibers, preferably vapor grown carbon fibers, in an inert gas atmosphere. It is done.
  • carbon fibers to which no pyrolyzate is attached can be obtained by heat treatment at about 800 to 1500 ° C. in an inert gas such as argon.
  • the carbon fiber having high carbon structure crystallinity is preferably obtained by heat treatment in an inert gas such as argon at 2000 ° C. or higher, more preferably 2000 to 3000 ° C.
  • the carbon fiber preferably contains a branched fiber. Further, there may be a portion where the entire fiber has a hollow structure communicating with each other. Therefore, the carbon layer which comprises the cylindrical part of a fiber is continuing.
  • a hollow structure is a structure in which a carbon layer is wound in a cylindrical shape, and includes a structure that is not a complete cylinder, a structure that has a partial cut portion, and a structure in which two stacked carbon layers are bonded to one layer. .
  • the cross section of the cylinder is not limited to a perfect circle, but includes an ellipse or a polygon.
  • the carbon fibers have an average spacing d 002 of the X-ray diffraction (002) plane is preferably 0.344nm or less, more preferably 0.339nm, particularly preferably at most 0.338 nm. Further, it is preferable that the thickness of the crystal in the C-axis direction (Lc) is 40 nm or less.
  • the carbon material in the process of graphitization is not completely graphitized and can be obtained by heat-treating graphitizable carbon at 1700 ° C to 2300 ° C. .
  • the graphitizable carbon is not particularly limited, and examples thereof include petroleum coke, coal coke, and mesocarbon microspheres.
  • the graphitizable carbon is adjusted to a predetermined particle size before the heat treatment. The particle size can be adjusted usually by pulverization and classification. A known jet mill, hammer mill, roller mill, pin mill, vibration mill or the like is used for pulverizing the graphitizable carbon.
  • the pulverization of graphitizable carbon is preferably performed in a state where the thermal history is as low as possible.
  • the probability that the edge portion exposed to the pulverized surface is repaired in the subsequent heating process is increased, and there is an effect that side reactions during charging and discharging can be reduced.
  • the pulverized graphitizable carbon is preferably classified so that the volume-based average particle diameter (D50) measured by a laser diffraction method is 3 to 20 ⁇ m. If the average particle size is large, the electrode density tends to be difficult to increase.
  • D50 volume-based average particle diameter
  • the particle size is a value measured by a laser diffraction type master sizer (manufactured by Malvern).
  • the heat treatment of the graphitizable carbon having the adjusted particle size is desirably performed in an atmosphere in which the graphitizable carbon is not easily oxidized.
  • a method of heat treatment in an atmosphere such as argon gas, a method of heat treatment in an Atchison furnace (non-oxidation heating process), and the like can be given, and among these, the non-oxidation heating process is preferable from the viewpoint of cost.
  • the minimum of heat processing temperature is 1600 degreeC normally, Preferably it is 1700 degreeC, More preferably, it is 1800 degreeC.
  • the upper limit of the heat treatment temperature is usually 2300 ° C, preferably 2100 ° C, more preferably 2000 ° C. This temperature range is in the middle of the development of the graphite crystal, and the discharge capacity is as low as about 250 mAh / g, but the internal structure is robust and particularly excellent in the large current input / output characteristics and cycle characteristics.
  • the carbon material that is not completely graphitized preferably has 0.1 ⁇ IA / IB ⁇ 0.9, more preferably 0.5 ⁇ IA / IB ⁇ 0.8. If IA / IB is too small, the graphite structure is too small and the cycleability becomes very low, which is not preferable. On the other hand, if IA / IB is too large, the crystal structure is developed so that the number of lithium ion accepting sites is reduced.
  • the graphite / carbon mixed material comprises the above graphite material and the graphitized carbon material.
  • the mixing method is not particularly limited as long as it is an ordinary fine powder mixer, but if a high-speed chopper such as a Henschel mixer or a Spartan-Luzer, a Nauter mixer, a ribbon mixer, or the like is used, homogenization can be performed at high speed. Is possible.
  • the content of the graphite material and the graphitizing carbon material is 10 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the graphitizing carbon material, depending on the required battery performance. It is possible to select arbitrarily within the range.
  • the input / output is up to about 5 C, it is possible to obtain a high-capacity battery by mixing the graphite material preferably at 100 parts by mass or more, more preferably 120 parts by mass or more.
  • the total discharge capacity can be increased by making the graphite material preferably 70 parts by mass or less, more preferably 50 parts by mass or less. This ratio is the same when the graphite material is a material coated with another carbon material.
  • the discharge capacity can be improved while maintaining the large current input / output characteristics and cycle characteristics of the graphitized carbon material.
  • the carbon material for battery electrodes comprises the above graphite / carbon mixed material.
  • the graphite / carbon mixed material is used as a carbon material for a battery electrode, it is possible to obtain a battery electrode having a high energy density while maintaining ultra-long cycle characteristics and large current input / output characteristics.
  • a carbon material for battery electrodes it can use, for example as a negative electrode active material and negative electrode electroconductivity imparting material of a lithium ion secondary battery.
  • carbon fiber can also be mix
  • the blending amount is 0.01 to 20 parts by mass, preferably 0.5 to 5 parts by mass with respect to 100 parts by mass in total of the graphite materials 1 and 2.
  • the electrode paste comprises the battery electrode carbon material and a binder. This electrode paste is obtained by kneading the carbon material for battery electrodes and a binder. For kneading, known apparatuses such as a ribbon mixer, a screw kneader, a Spartan rewinder, a ladyge mixer, a planetary mixer, and a universal mixer can be used. The electrode paste can be formed into a sheet shape, a pellet shape, or the like.
  • binder used for the electrode paste examples include fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and rubber-based materials such as SBR (styrene butadiene rubber).
  • the amount of the binder used is suitably 1 to 30 parts by mass with respect to 100 parts by mass of the carbon material for battery electrodes, but about 3 to 20 parts by mass is particularly preferable.
  • a solvent can be used when kneading.
  • the solvent include known solvents suitable for each binder, such as toluene and N-methylpyrrolidone in the case of a fluoropolymer; water in the case of SBR; and dimethylformamide and isopropanol.
  • a binder using water as a solvent it is preferable to use a thickener together. The amount of the solvent is adjusted so that the viscosity is easy to apply to the current collector.
  • the electrode is made of a molded body of the electrode paste.
  • the electrode is obtained, for example, by applying the electrode paste onto a current collector, drying, and pressure-molding.
  • the current collector include foils such as aluminum, nickel, copper, and stainless steel, and meshes.
  • the coating thickness of the paste is usually 50 to 200 ⁇ m. If the coating thickness becomes too large, the negative electrode may not be accommodated in a standardized battery container.
  • the method for applying the paste is not particularly limited, and examples thereof include a method in which the paste is applied with a doctor blade or a bar coater and then molded with a roll press or the like.
  • Examples of the pressure molding method include molding methods such as roll pressing and press pressing.
  • the pressure during pressure molding is preferably about 1 to 3 t / cm 2 .
  • the electrode density of the electrode increases, the battery capacity per volume usually increases. However, if the electrode density is too high, the cycle characteristics usually deteriorate.
  • the maximum value of the electrode density of the electrode obtained by using the electrode paste in a preferred embodiment of the present invention is usually 1.7 to 1.9 g / cm 3 .
  • the electrode thus obtained is suitable for a negative electrode of a battery, particularly a negative electrode of a secondary battery.
  • a battery or a secondary battery can be formed using the electrode as a component (preferably a negative electrode).
  • a battery or a secondary battery will be described using a lithium ion secondary battery as a specific example.
  • a lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are immersed in an electrolytic solution or an electrolyte.
  • the electrode in a preferred embodiment of the present invention is used for the negative electrode.
  • a lithium-containing transition metal oxide is usually used as the positive electrode active material, preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
  • An oxide mainly containing one kind of transition metal element and lithium wherein a compound having a molar ratio of lithium to transition metal element of 0.3 to 2.2 is used, and more preferably V, Cr, Mn,
  • An oxide mainly containing at least one transition metal element selected from Fe, Co, and Ni and lithium and having a molar ratio of lithium to transition metal of 0.3 to 2.2 is used.
  • Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si, P, B, or the like may be contained within a range of less than 30 mol% with respect to the transition metal present mainly.
  • Li x MO 2 (M is at least one of Co, Ni, Fe, and Mn, 0 ⁇ x ⁇ 1.2), or LiyN 2 O 4 (N is at least Mn). It is preferable to use at least one material having a spinel structure represented by 0 ⁇ y ⁇ 2).
  • the value of x is a value before the start of charging / discharging, and increases / decreases by charging / discharging.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • the volume of particles of 0.5 to 30 ⁇ m is preferably 95% or more. More preferably, the volume occupied by a particle group having a particle size of 3 ⁇ m or less is 18% or less of the total volume, and the volume occupied by a particle group of 15 ⁇ m or more and 25 ⁇ m or less is 18% or less of the total volume.
  • the specific surface area is not particularly limited, but is preferably 0.01 ⁇ 50m 2 / g by BET method, particularly preferably 0.2m 2 / g ⁇ 1m 2 / g.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • a separator may be provided between the positive electrode and the negative electrode.
  • the separator include non-woven fabric, cloth, microporous film, or a combination thereof, mainly composed of polyolefin such as polyethylene and polypropylene.
  • organic electrolytes As the electrolyte and electrolyte constituting the lithium ion secondary battery, known organic electrolytes, inorganic solid electrolytes, and polymer solid electrolytes can be used, but organic electrolytes are preferred from the viewpoint of electrical conductivity.
  • organic electrolytes examples include diethyl ether, dibutyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, and ethylene glycol phenyl ether.
  • Cyclic ethers of: carbonates such as ethylene carbonate and propylene carbonate; ⁇ -butyrolactone; N-methylpyrrolidone; solutions of organic solvents such as acetonitrile and nitromethane are preferred.
  • esters such as ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ethers such as dioxolane, diethyl ether, diethoxyethane, dimethyl sulfoxide, acetonitrile, tetrahydrofuran, etc.
  • Particularly preferred are carbonate-based non-aqueous solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or in admixture of two or more.
  • Lithium salts are used as solutes (electrolytes) for these solvents.
  • Commonly known lithium salts include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 and the like. is there.
  • polymer solid electrolyte examples include a polyethylene oxide derivative and a polymer containing the derivative, a polypropylene oxide derivative and a polymer containing the derivative, a phosphate ester polymer, a polycarbonate derivative and a polymer containing the derivative. There are no restrictions on the selection of members other than those described above necessary for the battery configuration.
  • Specific surface area Using a specific surface area measuring apparatus NOVA-1200 (manufactured by Yuasa Ionics Co., Ltd.), measurement is performed by the BET method, which is a general method for measuring the specific surface area.
  • Paste preparation Add 0.1 part by mass of KF polymer L1320 (N-methylpyrrolidone (NMP) solution containing 12% by mass of polyvinylidene fluoride (PVDF)) to 1 part by mass of graphite material, and use a planetary mixer. Knead to make the stock solution.
  • KF polymer L1320 N-methylpyrrolidone (NMP) solution containing 12% by mass of polyvinylidene fluoride (PVDF)
  • NMP is added to the main agent stock solution to adjust the viscosity, and then applied onto a high-purity copper foil to a thickness of 250 ⁇ m using a doctor blade. This is vacuum-dried at 120 ° C. for 1 hour and punched out to 18 mm ⁇ . The punched electrode is sandwiched between super steel press plates, and the press pressure is about 1 ⁇ 10 2 to 3 ⁇ 10 2 N / mm 2 (1 ⁇ 10 3 to 3 ⁇ 10 3 kg / cm 2 ) with respect to the electrode. Press like so. Then, it dries at 120 degreeC with a vacuum dryer for 12 hours, and is set as the electrode for evaluation.
  • a triode cell is produced as follows. The following operation is carried out in a dry argon atmosphere with a dew point of -80 ° C or lower.
  • a cell with an inner diameter of about 18 mm
  • a screw-in lid made of polypropylene
  • the carbon electrode with copper foil prepared in (2) above and a metal lithium foil are sandwiched by a separator (polypropylene microporous film (Cell Guard 2400)) and laminated.
  • separator polypropylene microporous film (Cell Guard 2400)
  • reference metallic lithium is laminated in the same manner. An electrolytic solution is added to this to obtain a test cell.
  • LiPF 6 is dissolved in an amount of 1 mol / liter as an electrolyte in a mixed solution of 8 parts by mass of EC (ethylene carbonate) and 12 parts by mass of DEC (diethyl carbonate).
  • High rate charge / discharge cycle capacity maintenance rate measurement test A constant current low voltage charge / discharge test is performed at a current density of 2 mA / cm 2 (equivalent to 1 C). Charging (insertion of lithium into carbon) is performed by CC (Constant Current) at 0.2 mA / cm 2 from the rest potential to 0.002V. Next, it switches to CV (constant volt: constant voltage) charging at 0.002 V, and stops when the current value drops to 25.4 ⁇ A. As for discharge (release from carbon), CC discharge is performed at a predetermined current density and cut off at a voltage of 1.5V. Moreover, a measurement is performed in the thermostat set to 60 degreeC, and charging / discharging is repeated 200 cycles.
  • Graphite material A Residue obtained by vacuum distillation of Venezuelan crude oil is used as a raw material.
  • the properties of this raw material are a specific gravity of 3.4 ° API, an asphaltene content of 21% by mass, a resin content of 11% by mass, and a sulfur content of 3.3% by mass.
  • This raw material is put into a delayed coking process.
  • the furnace heater outlet temperature before the coke drum is operated at 570 ° C.
  • the internal pressure is about 138 kPa (20 psig).
  • the coke is granulated into particles having a particle size of about 3 to 8 mm. This is cooled with water and discharged from the caulking drum.
  • This is heated at 120 ° C. and dried to a moisture content of 0.5% by mass or less. At this time, the heating loss in the argon atmosphere between 300 ° C. and 1200 ° C. is 11.8% by mass.
  • This is pulverized with a bantam mill manufactured by Hosokawa Micron.
  • This pulverized carbon material was filled in a graphite crucible with a screw lid, and was heat-treated at 3100 ° C. in an Atchison furnace to obtain a graphite material.
  • a deflection microscope image is shown in FIG.
  • Various physical properties of the obtained material were measured. The results are shown in Table 3-1.
  • Graphite material B Residue obtained by atmospheric distillation of Mexican crude oil is used as a raw material.
  • the components of this raw material are a specific gravity of 0.7 ° API, an asphaltene content of 15% by mass, a resin content of 14% by mass, and a sulfur content of 5.3% by mass.
  • This raw material is put into a delayed coking process. At this time, the operation is performed in a state where the furnace heater outlet temperature before the coke drum is 560 ° C. and the internal pressure of the drum is about 207 kPa (30 psig). Then, unlike normal, the coke is granulated into particles having a particle size of about 3 to 8 mm. This is cooled with water and discharged from the caulking drum.
  • the obtained coke is heated at 120 ° C. and dried to a water content of 0.5% by mass or less. At this time, the heating loss in the argon atmosphere from 300 ° C. to 1200 ° C. is 13.1% by mass.
  • This is pulverized with a bantam mill manufactured by Hosokawa Micron.
  • the pulverized carbon material is filled in a graphite crucible with a screw lid, and is heat-treated at 3100 ° C. in an Atchison furnace to obtain a graphite material.
  • Various physical properties of the obtained material were measured. The results are shown in Table 3-1.
  • Graphite material C Residue obtained by vacuum distillation of Californian crude oil is used as a raw material.
  • the raw material has a specific gravity of 3.0 ° API, an asphaltene content of 28% by mass, a resin content of 11% by mass, and a sulfur content of 3.5% by mass.
  • This raw material is put into a delayed coking process.
  • the furnace heater outlet temperature before the coke drum is operated at 570 ° C.
  • the internal pressure is about 214 kPa (31 psig).
  • the coke is granulated into particles having a particle size of about 3 to 8 mm. This is cooled with water and discharged from the caulking drum. This is heated at 120 ° C.
  • a phenolic resin (“Bellpearl C-800”; manufactured by Kanebo Co., Ltd.) is precured at 170 ° C. for 3 minutes and then cured at 130 ° C. for 8 hours. Next, the temperature is raised to 1200 ° C. at a rate of 250 ° C./h in a nitrogen atmosphere, held at 1200 ° C. for 1 hour, and then cooled to obtain a phenol resin calcined charcoal. Various physical properties of the obtained phenol resin calcined charcoal were measured. The results are shown in Table 3-2.
  • Graphite material F Residues obtained by distilling Arabian crude oil under reduced pressure are used as raw materials.
  • the raw material has a specific gravity of 3.4 ° API, an asphaltene content of 7% by mass, a resin content of 7% by mass, and a sulfur content of 6.3% by mass.
  • This raw material is put into a delayed coking process.
  • the furnace heater outlet temperature before the coke drum is operated at 570 ° C.
  • the coke becomes a lump. This is cut out with a water jet, cooled and discharged from the caulking drum. This is heated at 120 ° C. and dried to a moisture content of 0.5% by mass or less. At this time, the heating loss in the argon atmosphere between 300 ° C.
  • Graphite material G 600 g of Chinese natural graphite having an average particle diameter of 7 ⁇ m is charged into a hybridizer NHS1 manufactured by Nara Machinery Co., Ltd. and treated at a rotor peripheral speed of 60 / m / sec for 3 minutes to obtain spherical particles having an average particle diameter of 15 ⁇ m.
  • This operation is performed several times, and 3 kg of the obtained carbon material and 1 kg of petroleum-based tar are put into an M20-type readyge mixer (internal volume 20 liters) manufactured by Matsubo Co., Ltd. and kneaded. Subsequently, the temperature is raised to 700 ° C. in a nitrogen atmosphere and the detarring process is performed, and then the temperature is raised to 1300 ° C.
  • the obtained heat-treated product is crushed with a pin mill, and subjected to a classification treatment for the purpose of removing coarse particles to prepare a multi-layer structure carbon material for an electrode.
  • Various physical properties of the obtained material were measured. The results are shown in Table 3-2.
  • a polarizing microscope image photograph is shown in FIG.
  • Graphitized carbon material Needle coke for an artificial graphite electrode (calcination temperature 1300 ° C.) was used as a raw material.
  • the calcined coke was pulverized with a Hosokawa Micron bantam mill before heating.
  • This pulverized carbon material was filled in a graphite crucible with a screw lid, and was heat-treated at 2000 ° C. in an Atchison furnace to obtain a carbon material in the process of graphitization.
  • the peak intensity IB (IA / IB) attributed to the (100) plane relative to the peak intensity IA attributed to the (101) plane according to the powder X-ray diffraction method of the obtained carbon material was 0.4.
  • Example 1 100 parts by mass of the graphite material A and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 2 100 parts by mass of the graphite material A and 200 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 3 200 parts by mass of the graphite material A and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 4 500 parts by mass of graphite material A and 100 parts by mass of graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 5 100 parts by mass of the graphite material A and 500 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 6 100 parts by mass of the graphite material B and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 7 500 parts by mass of the graphite material B and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 8 100 parts by mass of the graphite material C and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 9 500 parts by mass of the graphite material C and 100 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Example 10 100 parts by mass of the graphite material C and 500 parts by mass of the graphitized carbon material were mixed for 5 minutes with a Spartan Luser. An electrode was produced using the obtained material, and cycle characteristics and the like were measured. The results are shown in Table 4.
  • Comparative Examples 1 to 4 As Comparative Examples 1 to 4, electrodes were prepared using the carbon material D and the graphite materials E, F, and G, respectively, and the cycle characteristics and the like were measured. The results are shown in Table 4.
  • the battery or secondary battery of the present invention is a field in which conventional lead secondary batteries, nickel cadmium secondary batteries, nickel hydride secondary batteries are mainly used, for example, electric tools such as electric drills, hybrid electric vehicles, etc. It can be applied to (HEV), electric vehicle (EV) and the like.

Abstract

 光学異方性と光学等方性の組織の大きさ、存在割合、結晶方向の多様性を持った黒鉛材料と易黒鉛化性の黒鉛化途上炭素材料を含む炭素材料を提供する。この材料を二次電池用電極に用いることにより、充放電サイクル特性、大電流負荷特性に優れた二次電池とすることができる。

Description

黒鉛・炭素混合材料、電池電極用炭素材料、及び電池
 本発明は、黒鉛・炭素混合材料、電池電極用炭素材料、及び電池に関する。さらに詳細には、非水電解液二次電池の電極材料として好適な黒鉛・炭素混合材料及び電池電極用炭素材料、並びに充放電サイクル特性、大電流負荷特性に優れた二次電池に関する。
 携帯機器等の電源としてはリチウムイオン二次電池が主に用いられている。携帯機器等はその機能が多様化し消費電力が大きくなっている。そのため、リチウムイオン二次電池には、その電池容量を増加させ、同時に充放電サイクル特性を向上させることが求められている。さらに、電動ドリル等の電動工具や、ハイブリッド自動車用等、高出力で大容量の二次電池への要求が高まっている。この分野は従来より、鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素二次電池が主に使用されているが、小型軽量で高エネルギー密度のリチウムイオン二次電池への期待は高く、大電流負荷特性に優れたリチウムイオン二次電池が求められている。
 特に、バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)等の自動車用途においては、10年間以上にわたる長期間のサイクル特性と、ハイパワーモーターを駆動させるための大電流負荷特性を主たる要求特性とし、さらに航続距離を伸ばすための高い体積エネルギー密度も要求され、モバイル用途に比して過酷なものとなっている。
 このリチウムイオン二次電池は、一般に、正極活物質にコバルト酸リチウムなどのリチウム塩が使用され、負極活物質に黒鉛などの炭素質材料が使用されている。
 黒鉛には、天然黒鉛と人造黒鉛とがある。これらのうち天然黒鉛は安価に入手できる。しかし、天然黒鉛は鱗片状を成しているので、バインダーとともにペーストにし、それを集電体に塗布すると、天然黒鉛が一方向に配向してしまう。そのような電極で充電すると電極が一方向にのみ膨張し、電極としての性能を低下させる。天然黒鉛を造粒して球状にしたものが提案されているが、電極作製時のプレスによって球状化天然黒鉛が潰れて配向してしまう。また、天然黒鉛の表面がアクティブであるために初回充電時にガスが多量に発生し、初期効率が低く、さらに、サイクル特性も良くなかった。これらを解決するため、特許第3534391号公報(米国特許第6632569号、特許文献1)等では、球状に加工した天然黒鉛の表面に、人造カーボンをコーティングする方法が提案されている。しかし、本方法で作製された材料は、モバイル用途等が要求する高容量・低電流・中サイクル特性については対応可能であるが、上記のような大型電池の大電流、超長期サイクル特性といった要求を満たすことは非常に難しい。
 一方、人造黒鉛については、まず、特開平4-190555号公報(特許文献2)等に記載されているメソカーボン小球体の黒鉛化品が挙げられる。これは非常にバランスの良い負極材であり、高容量、大電流の電池を作製可能であるが、大型電池に要求される、モバイル用途をはるかに超えた長期にわたるサイクル特性を達成することは困難である。
 石油、石炭ピッチ、コークス等の黒鉛化品に代表される人造黒鉛も比較的安価に入手できる。しかし、結晶性のよい針状コークスは鱗片状になり配向しやすい。この問題を解決するため、特許第3361510号公報(特許文献3)等に記載された方法が成果を上げている。この方法は、人造黒鉛原料の微粉の他、天然黒鉛等の微粉も使用可能であり、モバイル用負極材としては、非常に優れた性能を発揮する。しかし、この材料も、モバイル用途等が要求する高容量・低電流・中サイクル特性については対応可能であるが、上記のような大型電池の大電流、超長期サイクル特性といった要求を満たすには至っていない。
 また、特開平7-320740号公報(米国特許第5587255号、特許文献4)に記載されている、いわゆるハードカーボンや、非結晶質カーボンを用いた負極材料は、大電流に対する特性に優れ、また、サイクル特性も比較的良好である。しかし、体積エネルギー密度があまりにも低く、また、価格も非常に高価なため、一部の特殊な大型電池にしか使用されていない。
 一方、今まであまり注目されていなかったが、特開2006-140138号公報(特許文献5)に代表される、いわゆる易黒鉛化炭素を1600~2300℃にて熱処理して得られる炭素材料は、放電容量が250mAh/g程度と、理論容量372mAh/gからかなり低くなるものの、内部構造が高結晶と乱層構造の中間の構造、すなわち、黒鉛化途上構造をもち、この構造ゆえ、大電流入出力特性、サイクル特性が非常に良好であることが知られている。しかし、大電流入出力特性を維持したまま、放電容量を改善することは不可能に近く、また、放電容量の高い天然黒鉛などと混合すると、せっかくの大電流入出力特性を大きく失うこととなり、目標の性能を維持できなくなるという問題があった。
特許第3534391号公報 特開平4-190555号公報 特許第3361510号公報 特開平7-320740号公報 特開2006-140138号公報
 本発明者らは、前述の易黒鉛化炭素を1600~2300℃にて熱処理して得られる黒鉛化途上の炭素材料に添加することで、前記炭素材料の良好な大電流入出力特性を損なうことなく、放電容量を向上することができる炭素材料を模索した。まず、黒鉛材料の粒子1つ1つの内部構造に着目した。すなわち、高エネルギー密度の重要ファクターとなる黒鉛網面が整ったドメインと、高電流負荷特性、サイクル特性に強いハードカーボンのドメインとを複合化した粒子を想定し、上記2種のドメインの大きさ、比率、配向方向、空隙等その他組織の影響等について詳細に検討を加えた。
 例えば、特開2002-124255号公報や特開2000-149946号公報では、モザイク組織をもつ黒鉛材料が採用されており、粒状または粉末状のメソフェーズピッチ熱処理品(戻し媒)の表面で流動させながら、原料メソフェーズピッチを加熱重合することで、流動による剪断力を受けながら固化し、モザイク組織を形成させている。しかしながら、硝酸を用いる等の架橋処理を行わない重合反応の場合には光学的異方性組織は成長を続けるので、上記のような重合方法ではモザイク組織自体が大きくなってしまう。
 炭素関連材料の組織において、結晶が発達し黒鉛網面が整ったドメインは光学異方性を示し、結晶が未発達、もしくはハードカーボンのような結晶の乱れが大きい材料は光学等方性を示すことが、古くから知られており、これは例えば“最新の炭素材料実験技術(分析・解析偏)炭素材料学会偏(2001年),出版:サイペック株式会社,1~8頁”等に記載されている偏光顕微鏡観察法により判別することができる。
 この観察方法を用いると、特に、複屈折体である透明な石膏や白雲母の結晶を一定の方向にガラス板に貼り付けた鋭敏色検板を介することで干渉色の鋭敏化を図ることが可能になる。すなわち、光学異方性を示すドメインについては、偏光顕微鏡像観察時、直交ニコル状態では、一定厚みの鋭敏色検板により位相遅れ530nmの紅色を示す。この系では位相の遅れがわずかに増減しても干渉色が鋭敏に変化する状態となる。すなわち、直交ニコルで全体紅色時、被検体を回転させると、等方性部分は紅色のままであるが、波長がわずかに大きくなれば紫色から青色に近づき、逆に波長が小さくなれば橙色から黄色に近づく。よって、光学異方性ドメインは、0度から45度回転させた場合、黒鉛網面の配列方向によって、黄(イエロー)、赤(マゼンタ)、青(ブルー)等に干渉色の変化を示すことからドメインの配列方向も容易に判別可能である。
 本発明者らは、組織の構造を解析する方法として偏光顕微鏡観察法を用い、この方法で種々の炭素材料について鋭意検討を重ねた結果、以下に示す特定の内部構造を有する黒鉛材料が、今までのリチウムイオン二次電池用負極の炭素材料にない、優れた高エネルギー密度、長サイクル特性、高電流負荷特性を高次元でバランスすることを見出した。また、本内部構造を有する炭素材料を、コークス用原料から製造する方法を見出し、経済性の問題についても解決する目処を得た。この黒鉛材料を、前述の黒鉛化途上の炭素材料に混合することにより、前記炭素材料の優れた大電流入出力特性を失うことなく放電容量が向上する。
[1]光学異方性組織と光学等方性組織と空隙とで構成された黒鉛粒子からなり、下記(1)および(2)の条件を満足することを特徴とする黒鉛材料と、易黒鉛化性の黒鉛化途上炭素材料を混合してなる黒鉛・炭素混合材料:
(1)黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、光学異方性組織の面積の合計(x)、光学等方性組織の面積の合計(y)及び空隙の面積の合計(z)が以下の関係を満足する;
 x:y:z=50~97:3~50:0~10、かつx+y+z=100、
(2)任意の100粒子の断面における光学異方性組織ドメインのうち、長辺部の長さの最大値をLmax、レーザー回折法により測定した体積基準の平均粒子径(D50)をLaveとした場合、Lmax/Lave≦0.5である。
[2]前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の条件を満足するものである前記1に記載の黒鉛・炭素混合材料:
     0.75≦Db(99.5)/Da(100)≦0.995
(上記式中、Da(n1)は、光学異方性組織ドメインの面積を小さい順に積算していった際、その積算値の合計が、光学異方性組織ドメインの面積(μm2)の合計(A)のn1%に達した際の最大ドメインの面積値(μm2)を表わし、Db(n2)は、光学異方性組織ドメインを面積の小さい順に配列させた際、その個数の合計が、光学異方性組織ドメインの個数の合計(B)のn2%に達した際の最大ドメインの面積値(μm2)を表わす。)。
[3]前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面に対して、クロスニコル状態での鋭敏色検板を通過させた偏光顕微鏡像において、光学異方性組織ドメインの黒鉛網面の向きを示す干渉色であるマゼンタ、ブルーおよびイエローの各色の面積の合計値のうち、最も小さいものの面積合計値Cminが、前記黒鉛粒子の断面積合計に対して12~32%である前記1または2に記載の黒鉛・炭素混合材料。
[4]前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の条件を満足するものである前記1~3のいずれか1項に記載の黒鉛材料。
     0.6μm2≦Da(30)≦10μm2
(上記式中、Da(n1)は、前記2の記載と同じ意味を表わす。)。
[5]前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の(1)~(3)の条件をすべて満足するものである前記1~4のいずれか1項に記載の黒鉛・炭素混合材料:
(1)0.5μm2≦Da(10)≦5μm2
(2)0.6μm2≦Da(50)≦50μm2
(3)0.7μm2≦Da(90)≦400μm2
(上記式中、Da(n1)は、前記2の記載と同じ意味を表わす。)。
[6]前記黒鉛材料を構成する黒鉛粒子の表面が他の炭素材料で被覆されている前記1~5のいずれか1項に記載の黒鉛・炭素混合材料。
[7]繊維径2~1000nmの炭素繊維の一部が前記黒鉛粒子の表面に接着している前記6に記載の黒鉛・炭素混合材料。
[8]前記黒鉛化途上炭素材料が、易黒鉛化炭素を1700℃~2300℃で熱処理してなるものである前記1~7のいずれか1項に記載の黒鉛・炭素混合材料。
[9]前記易黒鉛化炭素が、石油コークス、石炭コークス、メソカーボン小球体のうちいずれかである前記8に記載の黒鉛・炭素混合材料。
[10]前記黒鉛化途上炭素材料が、粉末X線回折法による(101)面に帰属するピーク強度IAと(100)面に帰属するピーク強度IBについて、0.1<IA/IB<0.9を満たす材料である前記1~10のいずれか1項に記載の黒鉛・炭素混合材料。
[11]前記黒鉛化途上炭素材料の含有量100質量部に対して、黒鉛材料の含有率が10質量%以上であり1000質量%以下である前記1~10のいずれか1項に記載の黒鉛・炭素混合材料。
[12]前記1~11のいずれかに記載の黒鉛・炭素混合材料を含む電池電極用炭素材料。
[13]前記12に記載の電池電極用炭素材料とバインダーとを含む電極用ペースト。
[14]前記13に記載の電極用ペーストの成形体からなる電極。
[15]前記14に記載の電極を構成要素として含む電池。
[16]前記14に記載の電極を構成要素として含むリチウムイオン二次電池。
[17]前記1~11のいずれか1項に記載の黒鉛・炭素混合材料の製造方法であって、黒鉛材料の製造工程が、アスファルテン分と樹脂分の組成の合計が30質量%~80質量%、硫黄分が0.3質量%~6質量%の原油蒸留残渣を、コークスドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御したディレードコーキングを行ない、得られた炭素原料を粉砕し、2000~3300℃の温度で黒鉛化処理する工程である製造方法。
[18]前記黒鉛化処理のための温度が2500~3300℃である前記17に記載の黒鉛・炭素混合材料の製造方法。
 上記の黒鉛・炭素混合材料を電池電極用炭素材料として用いると高容量、高クーロン効率、高サイクル特性を維持したまま、高エネルギー密度の電池電極を得ることができる。また、この黒鉛・炭素混合材料は経済性、量産性に優れ、安全性の改善された方法により製造することができる。
黒鉛材料Aの偏光顕微鏡像 黒鉛材料Cの偏光顕微鏡像 黒鉛材料Eの偏光顕微鏡像 黒鉛材料Gの偏光顕微鏡像
(1)黒鉛材料
[偏向顕微鏡観察試料作製]
 本明細書における「黒鉛材料からなる成形体断面」は以下のようにして調製する。
 内容積30cm3のプラスチック製サンプル容器の底に両面テープを貼り、その上にスパチュラ2杯ほど(2g程度)の観察用サンプルを乗せる。冷間埋込樹脂(商品名:冷間埋込樹脂#105,製造会社:ジャパンコンポジット(株),販売会社:丸本ストルアス(株))に硬化剤(商品名:硬化剤(M剤),製造会社:日本油脂(株),販売会社:丸本ストルアス(株))を加え、30秒練る。得られた混合物(5ml程度)を前記サンプル容器に高さ約1cmになるまでゆっくりと流し入れ、1日静置して凝固させる。次に凝固したサンプルを取り出し、両面テープを剥がす。そして、研磨板回転式の研磨機を用いて、測定する面を研磨する。
 研磨は、回転面に研磨面を押し付けるように行う。研磨板の回転は1000rpmで行う。研磨板の番手は、#500、#1000、#2000の順に行い、最後はアルミナ(商品名:バイカロックス タイプ0.3CR,粒子径0.3μm,製造会社:バイコウスキー,販売会社:バイコウスキージャパン)を用いて鏡面研磨する。
 研磨したサンプルをプレパラート上に粘土で固定し、偏光顕微鏡(OLYMPAS社製、BX51)を用いて観察を行う。
[偏光顕微鏡像解析方法]
 偏光顕微鏡で観察した画像は、OLYMPUS製CAMEDIA C-5050 ZOOMデジタルカメラをアタッチメントで偏光顕微鏡に接続し、撮影する。撮影モードはHQ2560×1280とし、シャッタータイムは1.6秒で行う。撮影データは、bmp形式で株式会社ニレコ製画像解析装置LUZEX APを用いて読み込んだ。色データの表示形式は、IHPカラーとする(Iは輝度、Hは色相、Pは純度を示す。)。画像は2560×1920画素で取込む。
 選択した倍率の画像を、観察角度0度と45度においてそれぞれ同じ地点から正方形の領域(100μm四方)を切り抜き、その範囲内の全粒子について以下の解析を行い、平均を求めた。解析に用いている倍率は、対物レンズ×50、1画素=0.05μmで行う。粒子内の領域について、ブルー・イエロー・マゼンタ・ブラック・ピュアマゼンタについて色の抽出を行い、それぞれの面積比をカウントする。光学異方性ドメインは結晶子の向きにより色が変化するが、真正面を向いている確率はきわめて低いため、マゼンタを示しても、波長はピュアマゼンタとは若干異なることがほとんどである。一方、光学等方性ドメインは常にピュアマゼンタの波長を示す。そこで本明細書では、ピュアマゼンタはすべて光学等方性領域と認定する。
 色の抽出については、LUZEX APのコマンドを使用し、各色の抽出幅は、IHPのデータを以下の表1のように設定して行う。また、ノイズ除去のため、ロジカルフィルタのELIMINATE1のW-1コマンドを用い、1ドット以下の領域を除去する。カウントについては、ピクセル数を用い、画像の総和ピクセル数と、該当色ピクセル数を算出する。
Figure JPOXMLDOC01-appb-T000001
 光学異方性組織としては、0度、45度、90度回転させた際に色が変化した部分の面積比を表2に示したように算出する。
Figure JPOXMLDOC01-appb-T000002
粒子面積(%)=B1+Y1+M1+K1+PM1
光学等方性面積比(%)=PM1
空隙面積比(%)   =K1
光学異方性面積比(%)=100-(光学等方性面積比)-(空隙面積比)
 同様にd45、d90についても算出し、d00とd45とd90の平均値をとり、当該粒子の値とする。
[黒鉛材料]
 黒鉛材料は、原則として、各粒子中に光学異方性のドメイン(結晶が発達し黒鉛網面が整ったドメイン)と光学等方性のドメイン(結晶が未発達、もしくはハードカーボンのような結晶の乱れが大きいドメイン)と空隙とで構成された黒鉛粒子からなる。ここでドメインとは、実質的につながっている光学異方性組織または光学等方性組織の最小単位組織を示す。
 本発明の好ましい実施態様では、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、光学異方性組織の面積の合計(x)、光学等方性組織の面積の合計(y)及び空隙の面積の合計(z)が以下の関係を満足する。
 x:y:z=50~97:3~50:0~10、かつx+y+z=100
 ここで、任意に選ばれた一辺が100μmの正方形領域中に現れる黒鉛粒子の断面には、粒子間の空隙は含まれず、粒子の断面部分のみである。x、yおよびzは粒子の断面部分の合計に対する各組織の割合合計であり、zで示される空隙は粒子断面に現れる空隙である(以下、空隙というときは特に断りがない限りこの空隙をいう)。
 光学異方性ドメインの量は、前記ドメインがリチウムイオン等の挿入脱離に寄与するため、原則としては多いほど容量の増加につながり好ましいが、光学異方性ドメインが多すぎることにより光学等方性のドメインの面積が全体の面積の3%を下回ると、電流負荷特性、サイクル特性が極端に低下して材料のバランスを保てなくなる。
 また、空隙は、それ自体充放電容量には寄与できないのでできるだけ少ないほうが好ましく、zとして好ましくは3%以下、更に好ましくは2%以下である。
 具体的には、好ましくは、
   x:y:z=70~97:3~30:0~3、かつx+y+z=100、
 さらに好ましくは、
   x:y:z=90~97:3~10:0~2、かつx+y+z=100
である。
 また、本発明の好ましい実施態様における黒鉛粒子を構成する黒鉛材料は、粒子が大きな光学異方性ドメインで占められていない。任意の100粒子の断面における光学異方性組織ドメインのうち、長辺部の長さの最大値をLmax、レーザー回折法により測定した体積基準の平均粒子径(D50)をLaveとした場合、Lmax/Laveが0.5以下、好ましくは0.4以下、さらに好ましくは0.3以下である。
 Lmax/Laveがこの範囲にあることにより、光学異方性ドメインが充分小さく、また、一つ一つのドメインにおける炭素網目の向きが一方向に配向せずに任意の方向を向くことから、充放電時の結晶子の膨張収縮が分散され結果として電極の変形量は小さくなる。これにより、充放電を繰り返しても粒子同士の電気的接点を失う確率が低減され、サイクル特性は向上する。また、イオンの出入りする黒鉛のエッジが電極表面に存在する確率も高まる為、電流負荷特性も有利になる。
 このLmax/Laveは、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、各粒子のLmaxのうち最大のものを測定することにより算出することができる。レーザー回折法による体積基準の平均粒子径(D50)であるLaveの測定はマルバーン製マスターサイザー等のレーザー回折式粒度分布測定器を使用して測定することができる。
 なお、本発明の好ましい実施態様における黒鉛材料は黒鉛粒子の集合体であり、該黒鉛粒子は完全に均質なものではないため、黒鉛材料中には上記Lmax/Laveの条件を満たさない粒子も含まれることもあり得るが、その量は個数基準で10%未満、好ましくは5%未満である。すなわち、個数基準で90%以上の黒鉛粒子、好ましくは95%以上の黒鉛粒子が上記の条件を満足する。
 光学異方性ドメインの粒子中の大きさ(割合)については上記の通りであるが、大きさの絶対値の観点からも以下の関係を有することが好ましい。大きさの絶対値は粒子径にも影響されるため一概には言えないが、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、面積が0.1μm2以上の光学異方性組織ドメインの個数のうち、面積が25μm2以下のものの個数が80%以上であることが好ましい。より好ましくは面積が15μm2以下のものの個数が80%以上であり、さらに好ましくは面積が10μm2以下のものの個数が80%以上である。前記個数は90%以上が好ましい。一つのドメインの面積が大きすぎると、充放電時の粒子の膨張収縮方向が集中しやすくサイクル特性が低下する。
 光学等方性ドメインについても一概には言えないが、任意の1粒子中の断面において、面積が0.1μm2以上の光学等方性組織ドメインの個数のうち、面積が25μm2以下のものの個数が80%以上であることが好ましい。より好ましくは面積が15μm2以下のものの個数が80%以上であり、さらに好ましくは面積が10μm2以下のものの個数が80%以上である。前記個数は90%以上が好ましい。一つのドメインの面積が大きすぎると、粒子全体の性能バランスが崩れ、電流負荷特性には優れるが、放電容量が極端に低下する。
 光学異方性ドメインの大きさの分布の観点からは、以下の規定の範囲が好ましい。
 具体的には、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、Da(n1)を、光学異方性組織ドメインの面積を小さい順に積算していった際、その積算値の合計が、光学異方性組織ドメインの面積(μm2)の合計のn1%に達した際の最大ドメインの面積値(μm2)とした場合、以下の条件を満足することが好ましい。
     0.6μm2≦Da(30)≦10μm2
 さらには、以下の条件を満足することが好ましい。
     0.5μm2≦Da(10)≦5μm2
     0.6μm2≦Da(50)≦50μm2
     0.7μm2≦Da(90)≦400μm2
 各Daがこの範囲をはずれると、放電容量、電流荷特性、サイクル特性の3つのバランスを取ることが難しくなる。
 また、Db(n2)を、光学異方性組織ドメインを面積の小さい順に配列させた際、その個数の合計が、光学異方性組織ドメインの個数の合計(B)のn2%に達した際の最大ドメインの面積値(μm2)とすると、以下の条件を満足することが好ましい。
     0.75≦Db(99.5)/Da(100)≦0.995
 本条件を満足しない場合、比較的大きい粒子におけるドメイン面積分布のばらつきが大きくなり、放電容量・電流負荷特性・サイクル特性のバランスが悪くなる。
 さらに、Dc(n3)を、光学等方性組織ドメインの面積を小さい順に積算していった際、その積算値の合計が、光学等方性組織ドメインの面積(μm2)の合計のn3%に達した際の最大ドメインの面積値(μm2)とした場合、以下の条件を満足することが好ましい。
     0.5μm2≦Dc(10)≦2μm2
     0.6μm2≦Dc(50)≦10μm2
     0.7μm2≦Dc(90)≦40μm2
 各Dcがこの範囲をはずれると、放電容量、電流負荷特性、サイクル特性の3つのバランスを取ることが難しくなる。
 サイクル特性に大きく影響する充放電時の膨張収縮方向が集中しにくいことから、粒子中の各光学異方性ドメインにおける結晶の向き(黒鉛網面の向き)はランダムであることが好ましい。光学異方性組織の結晶の向きは、0度から45度回転した場合、ドメインの干渉色が変化することで確認できる。この場合、結晶の向きにより、ブルー、イエロー、マゼンタの干渉色を示すが、各色の面積の合計値のうち、最も小さいものの面積値が、実質的に1粒子の断面積の12%以上になることが好ましい。実質的とは、1粒子断面について、各色にかかわらず最も小さな面積値を示した色について、測定した粒子の断面積に対する比率を粒子100個について行い、その平均値を算出することを示す。さらに好ましくは20%以上である。最も好ましくは各色が32%である。各色にかかわらず最も小さいものの平均を求めることで、結晶の向いている方向のランダムさを表わすことができる。結晶が、どの方向にせよ偏っている場合は、充放電時の粒子の膨張収縮度合いの拡大につながるため、サイクル特性の低下につながりやすい。
 黒鉛材料は、X線回折法による(002)面の平均面間隔d002が0.3356nm~0.3375nmであることが好ましい。また、結晶のC軸方向の厚さLcは30~1000nmであることが好ましく、100nm以下がさらに好ましく、50nm以上100nm以下が特に好ましい。このような範囲とすることで活物質がドープされるサイトが十分に得られ、かつ結晶子のエッジ部が多すぎないので、電解液の分解がさらに抑制される。d002およびLcは、既知の方法により粉末X線回折(XRD)法を用いて測定することができる(野田稲吉、稲垣道夫,日本学術振興会,第117委員会試料,117-71-A-1(1963)、稲垣道夫他,日本学術振興会,第117委員会試料,117-121-C-5(1972)、稲垣道夫,「炭素」,1963,No.36,25-34頁参照)。
 平均面間隔d002が0.3356nm~0.3375nmにあることにより黒鉛の結晶性が高く、リチウムイオンがインターカレーション可能な空間が増す。
 本発明の好ましい実施態様においては、炭素化後や黒鉛化後に粉砕を行わないので菱面体ピーク割合は5%以下、さらに好ましくは1%以下である。
 このような範囲とすることで、リチウムとの層間化合物の形成がスムーズになり、これを負極材料としてリチウム二次電池に用いた場合、リチウム吸蔵・放出反応が阻害されづらく、急速充放電特性が向上する。
 なお、黒鉛粉末中の菱面体晶構造のピーク割合(x)は、六方晶構造(100)面の実測ピーク強度(P1)、菱面体晶構造の(101)面の実測ピーク強度(P2)から、下記式によって求める。
           x=P2/(P1+P2)
 黒鉛材料における光学異方性部分の平均面間隔d002は、0.3354nm~0.3370nmであることが好ましい。これより大きいと、放電容量が小さくなり、大型電池に要求されるエネルギー密度を満足することが困難になる。
 光学異方性部分の平均面間隔は、次のようにして算出することができる。まず、試料表面にタングステンをスパッタにより蒸着し、透過型電子顕微鏡(TEM用)のミクロトームで薄片化する。これをTEMにて800万倍以上の倍率で拡大し、印刷もしくは印画紙に焼き付ける。この中から、黒鉛の結晶網面が鮮明に撮影されている部分についてノギスを用いて面間隔を100点測定し、TEM写真上のスケールバーを基準にしてnmに換算し、平均を求める。
 黒鉛材料の粒子のアスペクト比:最大長Dmax/最大長垂直長DNmax(Dmax:粒子画像の輪郭上の2点における最大の長さ;DNmax:最大長に平行な2本の直線で画像を挟んだとき、2直線間を垂直に結ぶ最短の長さ)は、1.00~1.32であることが好ましい。さらに好ましくは1.00~1.20である。粒子のアスペクト比を小さくすることで、大型電池に要求されるエネルギー密度を満たす高密度電極を作製することが可能となる。
 粒子のアスペクト比は、シスメックス製のFPIA3000を用い、画像解析で測定することができる。測定点数は少なくとも3000点以上、好ましくは30000点以上、さらに好ましくは50000点以上測定し、算出した平均値を使用する。
 黒鉛材料は、レーザー回折法により測定した体積基準の粒子径分布においてD50が3~20μmであることが好ましい。レーザー回折式粒度分布測定器は、マルバーン製マスターサイザー等が利用できる。また、黒鉛材料には、粒径が0.5μm以下の粒子を実質的に含まないことが好ましい。0.5μm以下の粒子は、表面の活性ポイントが大きく、電池の初期効率を低下させる。0.5μm以下の粒子の含有量はレーザー回折式粒度分布測定装置により測定できる。また、D0を測定することにより実質的な最小粒径を求めることもできる。
 黒鉛材料は、ゆるめ嵩密度(0回タッピング)が0.7g/cm3以上で、かつ400回タッピングを行った際の粉体密度(タップ密度)が0.8~1.6g/cm3であることが好ましい。更に好ましくは、0.9~1.6g/cm3であり、最も好ましくは1.1~~1.6g/cm3である。
 ゆるめ嵩密度は、高さ20cmから試料100gをメスシリンダーに落下させ、振動を加えずに体積と質量を測定して得られる密度である。また、タップ密度は、カンタクローム製オートタップを使用して400回タッピングした100gの粉の体積と質量を測定して得られる密度である。
 これらはASTM B527およびJIS K5101-12-2に準拠した測定方法であるが、タップ密度測定におけるオートタップの落下高さは5mmとした。
 ゆるめ嵩密度が0.7g/cm3以上であることにより、電極へ塗工した際の、プレス前の電極密度をより高めることが可能となる。この値により、ロールプレス一回で十分な電極密度を得ることが可能かどうかを予測できる。また、タップ密度が上記範囲内にあることによりプレス時に到達する電極密度が充分高くすることが可能となる。
[黒鉛材料の製造方法]
 黒鉛材料の製造方法は、例えば以下の方法によって得られた炭素原料を粉砕し、次いで2000℃以上の熱処理をすることにより製造することができる。
 前記炭素原料としては、例えば原油を石油精製プロセスにおいて常圧、減圧蒸留してなる残渣や、熱分解タール等にしたものが好ましく使用できる。
 炭素原料の元になる原油としては、ナフテン系炭化水素を多く含むものが好ましい。パラフィン系、オレフィン系炭化水素が多くなると、コーキングの際に炭化の進行が緩やかになり、光学異方性ドメイン等が大きく発達しすぎてしまう。
 炭素原料の下記成分の割合はその後の組成、特にドメインの面積や分布、光学異方性、光学等方性組織の比率等に大きく影響を及ぼすので重要である。
 上記の蒸留残渣、タール等を原料とする場合、その中に含まれるアスファルテン、樹脂分、飽和炭化水素成分の含有量が高いことが望ましい。アスファルテンは、黒褐色の脆い固体で、H/Cの小さな縮合多環構造の物質であり、ベンゼン、四塩化炭素等に可溶、ペンタン、アルコール等には不溶で分子量は1000以上と考えられる物質である。チオフェン環、ナフテン環、芳香族環等の多環化合物を主体とした硫黄化合物、ピロール環、ピリジン環を主体とする窒素化合物等を含む。また、樹脂分は、褐色樹脂状物質で、酸素、窒素分が多い化合物である。
 炭素原料の組成は、アスファルテン分と樹脂分の組成の合計が、20質量%~60質量%、好ましくは25質量%~40質量%であることが望ましい。アスファルテン分及び樹脂分の合計が少ないと、ディレードコーカーによるコーキング処理中に結晶発達が緩やかに進みすぎることから光学異方性ドメインが大きく発達する。光学異方性ドメインが大きく発達すると、黒鉛化処理後の負極材の特性として、放電容量は伸びるが、電流負荷特性、サイクル特性が大きく低下する。アスファルテン分と樹脂分の合計が多すぎると光学等方性組織の割合が大きくなりすぎることから、結晶の発達が抑えられてしまう。
 炭素原料におけるアスファルテン分、樹脂分とは、JPI(石油学会)で規定する「アスファルトのカラムクロマトグラフィーによる組成分析法(JPI-5S-22-83)」に基づいて含有率を測定したものを意味する。本方法は、アルミナを充填材として使用し試料油から飽和分、芳香族分、樹脂分と共にアスファルテン分を分離定量する。
 また、チオフェン環、ナフテン環、芳香族環等の多環化合物を主体とした硫黄化合物成分は0.3質量%~6質量%が好ましく、より好ましくは0.4質量%~6質量%である。硫黄化合物成分が少ないと、ディレードコーカーによるコーキング処理中に結晶発達が緩やかに進みすぎることから光学異方性ドメインが大きく発達する。光学異方性ドメインが大きく発達すると、黒鉛化処理後の負極材の特性として、放電容量は伸びるが、電流負荷特性、サイクル特性が大きく低下する。また、硫黄化合物成分が多すぎると、過度な硫黄分により、乱れた結晶が発達し、単位ドメイン面積は小さくなるものの、黒鉛化後の結晶性が悪くなり、放電容量が著しく下がるほか、粒子が硬くなりすぎて電極密度も上がらなくなる。
 なお、本明細書における硫黄化合物成分とは、JISK2541にしたがって分析された硫黄分の値である。
 また、FCC(流動接触分解装置)の残渣油(FCCボトム油)は、芳香族指数(fa)=0.8程度と適度であることから、これを添加してコーキングすることでコークスの結晶性を高めることが高結晶コークス作製プロセスでしばしば行われている。しかし、FCCボトム油を添加するとドメインが発達しすぎることから好ましくない。
 これら材料を、ディレードコーキングプロセスに投入する。この際、コークスドラム前の加熱炉ヒーター出口温度は通常480~500℃に制御されているが、本炭素材料については、約10%アップの560~570℃に上げて運転を行う。好ましくは、ドラム内圧力は通常100~280kPa(約15psig~40psig)に制御されているが、これを約10%アップの115~305kPa(約17psig~44psig)に上げて運転を行う。
 コークスは通常塊で生成されるため、水流で輪切りにしながら排出することが一般的である。しかし、このように原料を規定し、コーキング条件も規定した運転を行うと、通常とは異なった粒子状コークスを得ることができる。
 このようにして得られた粒子状の特殊コークスは、後に黒鉛化した際の内部構造が所定の範囲内になり、放電容量、電流負荷特性、サイクル特性のバランスが取れ、好ましい状況となる。なぜ粒子状になった炭素原料で作製した黒鉛材料がこのような特性を示すのかは必ずしも明らかではないが、このような成分の重質タールは粘性の関係から球状で存在し、この球状タールが硫黄の存在もあって、アスファルテン分の架橋反応による反応熱で急激に炭化することによるものと考えている。
 このような操作により、通常得られるコークスよりも光学異方性組織に発達しやすい組織の発生が中程度に抑えられ、黒鉛材料に好適な炭素原料を得ることができる。
 得られた炭素原料は、不活性雰囲気下で300℃から1200℃まで加熱した際の加熱減量分(例えば、炭化に伴う炭化水素の揮発分)が5~20質量%のものであることが好ましい。
 この加熱減量分が5質量%未満のものでは粉砕後の粒子形状が板状になりやすい。また、粉砕面(エッジ部分)が露出しており比表面積が大きくなり副反応も多くなる。逆に20質量%を超えるものは黒鉛化後の粒子同士の結着が多くなり、収率に影響する。
 次にこの炭素原料を粉砕する。炭素原料の粉砕には公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等が用いられる。炭素原料の粉砕はできるだけ熱履歴が低い状態で行うことが好ましい。熱履歴が低い方が、硬度が低く、粉砕が容易である上、破砕時の亀裂方向がランダムに近く、アスペクト比が小さくなりやすい。また、後の加熱プロセスで粉砕面に露出したエッジ部分が修復される確率が高まり、充放電時の副反応を低減できる効果がある。
 粉砕した炭素原料はレーザー回折法により測定した体積基準の平均粒径(D50)が3~20μmになるように分級することが好ましい。平均粒径が大きいと電極密度が上がりにくい傾向になり、逆に小さいと充放電時に副反応が起きやすくなる。なお、粒度はレーザー回折式のマスターサイザー(マルバーン製)で測定される値である。
 粉砕した炭素原料は、黒鉛化処理をする前に、非酸化性雰囲気下で500~1200℃程度で低温焼成してもよい。この低温焼成によって次に行う黒鉛化処理でのガス発生を低減させることができ、また、嵩密度を下げられることから黒鉛化処理コストも低減することが可能となる。
 粉砕された炭素原料の黒鉛化処理は、炭素原料が酸化しにくい雰囲気で行うことが望ましい。例えば、アルゴンガス等の雰囲気で熱処理する方法、アチソン炉で熱処理する方法(非酸化黒鉛化プロセス)等が挙げられ、これらのうち非酸化黒鉛化プロセスがコストの観点から好ましい。
 黒鉛化処理温度の下限は、通常2000℃、好ましくは2500℃、さらに好ましくは2900℃、もっとも好ましくは3000℃である。黒鉛化処理温度の上限は特に限定されないが、高い放電容量が得られやすいという観点から、好ましくは3300℃である。
 黒鉛化処理後は、黒鉛材料を解砕または粉砕しないことが好ましい。黒鉛処理化後に解砕または粉砕すると、滑らかになった表面が傷つき、性能が低下するおそれがある。
[複合材・混合材]
 黒鉛材料は他の炭素材料で被覆して使用することができる。
 例えば、黒鉛材料を構成する黒鉛粒子は、表面に光学等方性炭素によるコーティングを行うことができる。コーティングにより、充電時の入力特性を改善でき、大型電池要求特性が向上する。コーティング量は特に限定はないが、芯材100質量部に対し、0.1~10質量部が好ましい。
 コーティング方法は公知の技術が利用でき、特に制限されない。例えば、直径0.1~1μmのコールタールピッチと黒鉛材料をホソカワミクロン製メカノフージョンを用いてメカノケミカル法により黒鉛粒子のコーティングを行い、非酸化性雰囲気下、800℃~3300℃で加熱することにより表面に光学等方性炭素を形成する方法や、黒鉛粒子の少なくとも一部の表面に重合体を含む組成物を付着させ、非酸化性雰囲気下、800℃~3300℃で熱処理することにより表面に光学等方性炭素を形成する方法などが挙げられる。前記重合体を含む組成物は、例えば、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を用いることができる。後者の方法は、例えば、特開2003-100293号公報や特開2005-019397号公報に記載されている。
 また、黒鉛粒子は、炭素繊維の一部を前記粒子表面に接着させることもできる。炭素繊維を黒鉛粒子表面に接着することで、電極中の炭素繊維の分散が容易となり、芯材である黒鉛粒子の特性との相乗効果で、サイクル特性と電流負荷特性が更に高まる。炭素繊維の接着量は特に限定されないが、芯材である黒鉛材料100質量部に対し0.1~5質量部が好ましい。
 接着方法は公知の方法が利用でき、特に制限されない。例えば、直径0.1~1μmのコールタールピッチと黒鉛材料と炭素繊維をホソカワミクロン製メカノフージョンを用いてメカノケミカル法により黒鉛粒子のコーティングと同時に炭素繊維の接着を行い、非酸化性雰囲気下、800℃~3300℃で加熱することにより行うことができる。また、黒鉛粒子の少なくとも一部の表面に重合体を含む組成物を付着させ、これに繊維状炭素を混合し、重合体を含む組成物を介して黒鉛粒子に繊維状炭素を付着させ、次いで黒鉛粒子を、非酸化性雰囲気下、800℃~3300℃で熱処理することにより行うことができる。前記重合体を含む組成物は、例えば、乾性油またはその脂肪酸及びフェノール樹脂を含む組成物を用いることができる。後者の方法は、例えば、特開2003-100293号公報や特開2005-019397号公報(WO2004/109825)に記載されている。
 炭素繊維としては、例えば、PAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などの有機系カーボンファイバー、気相法炭素繊維などが挙げられる。これらのうち、特に、結晶性が高く、熱伝導性の高い、気相法炭素繊維が好ましい。炭素繊維を黒鉛粒子の表面に接着させる場合には、特に気相法炭素繊維が好ましい。
 気相法炭素繊維は、例えば、有機化合物を原料とし、触媒としての有機遷移金属化合物をキャリアーガスとともに高温の反応炉に導入し生成し、続いて熱処理して製造される(特開昭60-54998号公報、特許第2778434号公報等参照)。その繊維径は2~1000nm、好ましくは10~500μmであり、アスペクト比は好ましくは10~15000である。
 炭素繊維の原料となる有機化合物としては、トルエン、ベンゼン、ナフタレン、エチレン、アセチレン、エタン、天然ガス、一酸化炭素等のガス及びそれらの混合物が挙げられる。中でもトルエン、ベンゼン等の芳香族炭化水素が好ましい。
 有機遷移金属化合物は、触媒となる遷移金属を含むものである。遷移金属としては、周期律表第IVa、Va、VIa、VIIa、VIII族の金属が挙げられる。有機遷移金属化合物としてはフェロセン、ニッケロセン等の化合物が好ましい。
 炭素繊維は、気相法等で得られた長繊維を粉砕または解砕したものであってもよい。また、炭素繊維はフロック上に凝集したものであってもよい。
 炭素繊維は、その表面に有機化合物等に由来する熱分解物が付着していないもの、または炭素構造の結晶性が高いものが好ましい。
 熱分解物が付着していない炭素繊維または炭素構造の結晶性が高い炭素繊維は、例えば、不活性ガス雰囲気下で、炭素繊維、好ましくは気相法炭素繊維を焼成(熱処理)することによって得られる。具体的には、熱分解物が付着していない炭素繊維は、約800~1500℃でアルゴン等の不活性ガス中で熱処理することによって得られる。また、炭素構造の結晶性が高い炭素繊維は、好ましくは2000℃以上、より好ましくは2000~3000℃でアルゴン等の不活性ガス中で熱処理することによって得られる。
 炭素繊維は分岐状繊維が含まれているものが好ましい。また繊維全体が互いに連通した中空構造を有している箇所があってもよい。そのため繊維の円筒部分を構成している炭素層が連続している。中空構造とは炭素層が円筒状に巻いている構造であって、完全な円筒でないもの、部分的な切断箇所を有するもの、積層した2層の炭素層が1層に結合したものなどを含む。また、円筒の断面は完全な円に限らず楕円や多角化のものを含む。
 また炭素繊維は、X線回折法による(002)面の平均面間隔d002が、好ましくは0.344nm以下、より好ましくは0.339nm以下、特に好ましくは0.338nm以下である。また、結晶のC軸方向の厚さ(Lc)が40nm以下のものが好ましい。
(2)易黒鉛化性の黒鉛化途上炭素材料
 黒鉛化途上炭素材料は、完全に黒鉛化していないものであって、易黒鉛化炭素を1700℃~2300℃で熱処理することにより得ることができる。易黒鉛化炭素は特に限定されないが、例えば、石油コークス、石炭コークス、メソカーボン小球体等が挙げられる。
 易黒鉛化炭素は熱処理の前に所定の粒度に調整される。粒度の調整は通常粉砕及び分級により行なうことができる。易黒鉛化炭素の粉砕には公知のジェットミル、ハンマーミル、ローラーミル、ピンミル、振動ミル等が用いられる。易黒鉛化炭素の粉砕はできるだけ熱履歴が低い状態で行うことが好ましい。熱履歴が低い方が、硬度が低く、粉砕が容易である上、破砕時の亀裂方向がランダムに近く、アスペクト比が小さくなりやすい。また、後の加熱プロセスで粉砕面に露出したエッジ部分が修復される確率が高まり、充放電時の副反応を低減できる効果がある。
 粉砕した易黒鉛化炭素はレーザー回折法により測定した体積基準の平均粒径(D50)が3~20μmになるように分級することが好ましい。平均粒径が大きいと電極密度が上がりにくい傾向になり、逆に小さいと充放電時に副反応が起きやすくなる。なお、粒度はレーザー回折式のマスターサイザー(マルバーン製)で測定される値である。
 粒度が調整された易黒鉛化炭素の熱処理は、易黒鉛化炭素が酸化しにくい雰囲気で行うことが望ましい。例えば、アルゴンガス等の雰囲気で熱処理する方法、アチソン炉で熱処理する方法(非酸化加熱プロセス)等が挙げられ、これらのうち非酸化加熱プロセスがコストの観点から好ましい。熱処理温度の下限は、通常1600℃、好ましくは1700℃、さらに好ましくは1800℃である。熱処理温度の上限は、通常2300℃、好ましくは2100℃、さらに好ましくは2000℃である。この温度領域は、黒鉛結晶の発展途中状態であり、放電容量は250mAh/g程度と低いが、内部組織が堅牢で、特に大電流入出力特性、およびサイクル特性に優れる。
 これらの温度で熱処理された易黒鉛化炭素の結晶的な特徴について述べる。
 粉末X線回折法により、CuKα線をターゲットに用いて測定すると、黒鉛の3次元的な構造を示す2θ=44°付近に回折ピークA((101)面に帰属するもの)が観察される。一方、平面方向への結晶の広がりを示す2θ=42°付近のピークB((100)面に帰属するのもの)も観測される。このピークAの強度(IA)とピークBの強度(IB)との関係において、IA/IB=0は結晶がまったく発達していない状態を表わす。
 完全に黒鉛化していない炭素材料は、0.1<IA/IB<0.9が好ましく、0.5<IA/IB<0.8がさらに好ましい。IA/IBが小さすぎると黒鉛構造が少なすぎてサイクル性が非常に低くなってしまい好ましくない。一方、IA/IBが大きすぎると、リチウムイオンの受け入れサイトが少なくなるほどに結晶構造が発達したものであるため、大電流入出力特性が著しく低くなってしまい好ましくない。
(3)黒鉛・炭素混合材料
 黒鉛・炭素混合材料は上記の黒鉛材料と黒鉛化途上炭素材料とを含んでなる。混合方法は、通常の微粉用混合機ならば特に限定はされないが、ヘンシェルミキサーやスパルタンリューザーのような高速チョッパーを有するものや、ナウターミキサー、リボンミキサー等を用いると、高速に均一化が可能である。
 黒鉛材料と黒鉛化途上炭素材料の含有率は、求める電池の性能により、前記黒鉛化途上炭素材料の含有量100質量部に対して、黒鉛材料の含有率が10質量部以上で1000質量部以下の範囲内で任意に選ぶことが可能である。5C程度までの入出力であれば、黒鉛材料を好ましくは100質量部以上、さらに好ましくは120質量部以上混合させることにより、高容量の電池を得ることが可能となる。10C程度の入出力を求める場合は、黒鉛材料を好ましくは70質量部以下、さらに好ましくは50質量部以下にすることによりトータルの放電容量を多くすることが可能である。この比率は、黒鉛材料が、他の炭素材料で被覆された材料である場合も同様である。
 黒鉛化途上炭素材料に黒鉛材料を混合すると、黒鉛化途上炭素材料が有する大電流入出力特性およびサイクル特性を維持した状態で、放電容量を向上させることができる。
(4)各種用途
[電池電極用炭素材料]
 電池電極用炭素材料は、上記黒鉛・炭素混合材料を含んでなる。上記黒鉛・炭素混合材料を電池電極用炭素材料として用いると、超長期サイクル特性、大電流入出力特性を維持しつつ、高エネルギー密度を併せ持った電池電極を得ることができる。
 電池電極用炭素材料としては、例えば、リチウムイオン二次電池の負極活物質及び負極導電付与材として用いることができる。
 また、電池電極用炭素材料には炭素繊維を配合することもできる。炭素繊維は前述のものと同様のものが使用できる。配合量は、前記黒鉛材料1および2の合計100質量部に対して、0.01~20質量部であり、好ましくは0.5~5質量部である。
[電極用ペースト]
 電極用ペーストは、前記電池電極用炭素材料とバインダーとを含んでなる。この電極用ペーストは、前記電池電極用炭素材料とバインダーとを混練することによって得られる。混錬には、リボンミキサー、スクリュー型ニーダー、スパルタンリューザー、レディゲミキサー、プラネタリーミキサー、万能ミキサー等公知の装置が使用できる。電極用ペーストは、シート状、ペレット状等の形状に成形することができる。
 電極用ペーストに用いるバインダーとしては、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素系ポリマー、SBR(スチレンブタジエンラバー)等のゴム系等公知のものが挙げられる。
 バインダーの使用量は、電池電極用炭素材料100質量部に対して1~30質量部が適当であるが、特に3~20質量部程度が好ましい。
 混練する際に溶媒を用いることができる。溶媒としては、各々のバインダーに適した公知のもの、例えばフッ素系ポリマーの場合はトルエン、N-メチルピロリドン等;SBRの場合は水等;その他にジメチルホルムアミド、イソプロパノール等が挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量は集電体に塗布しやすい粘度となるように調整される。
[電極]
 電極は前記電極用ペーストの成形体からなるものである。電極は例えば前記電極用ペーストを集電体上に塗布し、乾燥し、加圧成形することによって得られる。
 集電体としては、例えばアルミニウム、ニッケル、銅、ステンレス等の箔、メッシュなどが挙げられる。ペーストの塗布厚は、通常50~200μmである。塗布厚が大きくなりすぎると、規格化された電池容器に負極を収容できなくなることがある。ペーストの塗布方法は特に制限されず、例えばドクターブレードやバーコーターなどで塗布後、ロールプレス等で成形する方法等が挙げられる。
 加圧成形法としては、ロール加圧、プレス加圧等の成形法を挙げることができる。加圧成形するときの圧力は1~3t/cm2程度が好ましい。電極の電極密度が高くなるほど体積あたりの電池容量が通常大きくなる。しかし電極密度を高くしすぎるとサイクル特性が通常低下する。本発明の好ましい実施態様における電極用ペーストを用いると電極密度を高くしてもサイクル特性の低下が小さいので、高い電極密度の電極を得ることができる。本発明の好ましい実施態様における電極用ペーストを用いて得られる電極の電極密度の最大値は、通常1.7~1.9g/cm3である。このようにして得られた電極は、電池の負極、特に二次電池の負極に好適である。
[電池、二次電池]
 前記電極を構成要素(好ましくは負極)として、電池または二次電池とすることができる。
 リチウムイオン二次電池を具体例に挙げて電池または二次電池を説明する。リチウムイオン二次電池は、正極と負極とが電解液または電解質の中に浸漬された構造をしたものである。負極には本発明の好ましい実施態様における電極が用いられる。
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属元素のモル比が0.3~2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3~2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、0<x≦1.2)、またはLiyN24(Nは少なくともMnを含む。0<y≦2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。
 さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0~1.2、a=0.5~1)を含む材料、またはLiz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1~0.2、z=0~2)で表わされるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。
 具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bOz、LixCobFe1-b2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02~1.2、a=0.1~0.9、b=0.8~0.98、c=1.6~1.96、z=2.01~2.3。)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02~1.2、a=0.1~0.9、b=0.9~0.98、z=2.01~2.3)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
 正極活物質の平均粒子サイズは特に限定されないが、0.1~50μmが好ましい。0.5~30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることが更に好ましい。比表面積は特に限定されないが、BET法で0.01~50m2/gが好ましく、特に0.2m2/g~1m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
 リチウムイオン二次電池では正極と負極との間にセパレーターを設けることがある。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。
 リチウムイオン二次電池を構成する電解液及び電解質としては公知の有機電解液、無機固体電解質、高分子固体電解質が使用できるが、電気伝導性の観点から有機電解液が好ましい。
 有機電解液としては、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールフェニルエーテル等のエーテル;ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルプロピオンアミド、ヘキサメチルホスホリルアミド等のアミド;ジメチルスルホキシド、スルホラン等の含硫黄化合物;メチルエチルケトン、メチルイソブチルケトン等のジアルキルケトン;エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、2-メトキシテトラヒドロフラン、1,2-ジメトキシエタン、1,3-ジオキソラン等の環状エーテル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;γ-ブチロラクトン;N-メチルピロリドン;アセトニトリル、ニトロメタン等の有機溶媒の溶液が好ましい。さらに、好ましくはエチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン等のエステル類、ジオキソラン、ジエチルエーテル、ジエトキシエタン等のエーテル類、ジメチルスルホキシド、アセトニトリル、テトラヒドロフラン等が挙げられ、特に好ましくはエチレンカーボネート、プロピレンカーボネート等のカーボネート系非水溶媒を用いることができる。これらの溶媒は、単独でまたは2種以上を混合して使用することができる。
 これらの溶媒の溶質(電解質)には、リチウム塩が使用される。一般的に知られているリチウム塩にはLiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3SO3、LiCF3CO2、LiN(CF3SO22等がある。
 高分子固体電解質としては、ポリエチレンオキサイド誘導体及び該誘導体を含む重合体、ポリプロピレンオキサイド誘導体及び該誘導体を含む重合体、リン酸エステル重合体、ポリカーボネート誘導体及び該誘導体を含む重合体等が挙げられる。
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
 以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。
 なお、実施例及び比較例の黒鉛材料粒子についての、光学異方性組織面積割合、光学等方性組織面積割合、空隙面積割合、Da(n1)、Db(n2)、Dc(n3)、Cminの割合、Lmax/Lave、X線回折法による平均面間隔(d002)、Lc、TEMによる平均面間隔(d002)、アスペクト比、平均粒子径D0およびD50、タップ密度(0回)(ゆるめ嵩密度)、タップ密度(400回)は、本明細書の「発明を実施するための形態」に詳述した方法により測定する。また、比表面積の測定、電池評価(ハイレート放電容量維持率の測定、ハイレート充放電サイクル容量維持率の測定、電極密度および体積エネルギー密度)は以下の方法により行う。
[比表面積]
 比表面積測定装置NOVA-1200(ユアサアイオニクス(株)製)を用いて、一般的な比表面積の測定方法であるBET法により測定する。
[電池評価方法]
(1)ペースト作製:
 黒鉛材料1質量部に呉羽化学社製KFポリマーL1320(ポリビニリデンフルオライド(PVDF)を12質量%含有したN-メチルピロリドン(NMP)溶液品)0.1質量部を加え、プラネタリーミキサーにて混練し、主剤原液とする。
(2)電極作製:
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて250μm厚に塗布する。これを120℃で1時間真空乾燥し、18mmφに打ち抜く。打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102~3×102N/mm2(1×103~3×103kg/cm2)となるようにプレスする。その後、真空乾燥器で120℃、12時間乾燥して、評価用電極とする。
(3)電池作製:
 下記のようにして3極セルを作製する。なお以下の操作は露点-80℃以下の乾燥アルゴン雰囲気下で実施する。
 ポリプロピレン製のねじ込み式フタ付きのセル(内径約18mm)内において、上記(2)で作製した銅箔付き炭素電極と金属リチウム箔をセパレーター(ポリプロピレン製マイクロポーラスフィルム(セルガード2400))で挟み込んで積層する。さらにリファレンス用の金属リチウムを同様に積層する。これに電解液を加えて試験用セルとする。
(4)電解液:
 EC(エチレンカーボネート)8質量部及びDEC(ジエチルカーボネート)12質量部の混合液に、電解質としてLiPF6を1モル/リットル溶解する。
(5)ハイレート放電容量維持率の測定試験
 電流密度0.2mA/cm2(0.1C相当)、10mA/cm2(5C相当)および20mA/cm2(10C相当)で定電流低電圧放電試験を行う。試験は25℃に設定した恒温槽内で行う。
 充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行う。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させる。
 放電(炭素からの放出)は所定電流密度でCC放電を行い、電圧1.5Vでカットオフする。
(6)ハイレート充放電サイクル容量維持率の測定試験:
 電流密度2mA/cm2(1C相当)で定電流低電圧充放電試験を行う。
 充電(炭素へのリチウムの挿入)はレストポテンシャルから0.002Vまで0.2mA/cm2でCC(コンスタントカレント:定電流)充電を行う。次に0.002VでCV(コンスタントボルト:定電圧)充電に切り替え、電流値が25.4μAに低下した時点で停止させる。
 放電(炭素からの放出)は所定電流密度でCC放電を行い、電圧1.5Vでカットオフする。また、測定は、60℃に設定した恒温槽中で行い、充放電を200サイクル繰り返す。
(7)電極密度および体積エネルギー密度の測定
 主剤原液にNMPを加え、粘度を調整した後、高純度銅箔上でドクターブレードを用いて160μm厚に塗布する。これを120℃で1時間真空乾燥し、22mmφに打ち抜く。打ち抜いた電極を超鋼製プレス板で挟み、プレス圧が電極に対して約1×102~3×102N/mm2(1×103~3×103kg/cm2)となるようにプレスする。次に、膜厚計(SMD-565、(株)TECLOCK)を用いて電極厚さを測定する。そして活物質質量を電極の体積(=活物質厚さ×380mm2)で除算し、電極密度(g/cm3)とする。また、放電容量(0.1C)と電極密度を乗算し、体積エネルギー密度とする。
[炭素材料の調製]
(1)黒鉛材料A
 ベネズエラ産原油を減圧蒸留した残渣を原料とする。本原料の性状は、比重3.4°API、アスファルテン分21質量%、樹脂分11質量%、硫黄分3.3質量%である。この原料を、ディレードコーキングプロセスに投入する。この際、コークスドラム前の加熱炉ヒーター出口温度を570℃で運転する。内部圧力は約138kPa(20psig)とする。すると、コークスは通常とは異なり、粒径約3~8mmの粒子状に造粒された状態となる。これを水冷してコーキングドラムから排出する。これを120℃で加熱し、水分含有率0.5質量%以下まで乾燥する。この時点で、300℃から1200℃まで間のアルゴン雰囲気下中における加熱減量分は11.8質量%である。これをホソカワミクロン製バンタムミルで粉砕する。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、粒径が0.5μm以下の粒子を実質的に含まないD50=13.5μmの炭素材料を得る。この粉砕された炭素材料をネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、黒鉛材料を得た。偏向顕微鏡像を図1に示す。
 得られた材料について各種物性を測定した。結果を表3-1に示す。
(2)黒鉛材料B
 メキシコ産原油を常圧蒸留した残渣を原料とする。本原料の成分は、比重0.7°API、アスファルテン分15質量%、樹脂分14質量%、硫黄分5.3質量%である。この原料を、ディレードコーキングプロセスに投入する。この際、コークスドラム前の加熱炉ヒーター出口温度を560℃とし、かつドラム内圧力を約207kPa(30psig)とした状態で運転する。すると、コークスは通常とは異なり、粒径約3~8mmの粒子状に造粒された状態となる。これを水冷してからコーキングドラムから排出する。得られたコークスは、120℃で加熱し、水分含有率0.5質量%以下まで乾燥する。この時点で、300℃から1200℃まで間のアルゴン雰囲気下中における加熱減量分は13.1質量%である。これをホソカワミクロン製バンタムミルで粉砕する。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、粒径が0.5μm以下の粒子を実質的に含まないD50=18.5μmの炭素材料を得る。この粉砕された炭素材料をネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、黒鉛材料を得る。
 得られた材料について各種物性を測定した。結果を表3-1に示す。
(3)黒鉛材料C
 カリフォルニア産原油を減圧蒸留した残渣を原料とする。本原料の性状は、比重3.0°API、アスファルテン分28質量%、樹脂分11質量%、硫黄分は3.5質量%である。この原料を、ディレードコーキングプロセスに投入する。この際、コークスドラム前の加熱炉ヒーター出口温度を570℃で運転する。内部圧力は約214kPa(31psig)である。すると、コークスは通常とは異なり、粒径約3~8mmの粒子状に造粒された状態となる。これを水冷してコーキングドラムから排出する。これを120℃で加熱し、水分含有率0.5質量%以下まで乾燥する。この時点で、300℃から1200℃まで間のアルゴン雰囲気下中における加熱減量分は12.8質量%である。これをホソカワミクロン製バンタムミルで粉砕する。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、粒径が0.5μm以下の粒子を実質的に含まないD50=15.1μmの炭素材料を得る。この粉砕された炭素材料をネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、黒鉛材料を得る。偏光顕微鏡像写真を図2に示す。
 得られた材料について各種物性を測定した。結果を表3-1に示す。
(4)炭素材料D
 フェノール樹脂(「ベルパール C-800」;鐘紡(株)製)を170℃で3分予備硬化後、130℃で8時間硬化させる。次に窒素雰囲気中で250℃/hの速度で1200℃まで昇温し、1200℃で1時間保持した後冷却してフェノール樹脂焼成炭を得る。得られたフェノール樹脂焼成炭について、各種物性を測定した。結果を表3-2に示す。
(5)黒鉛材料E
 大阪ガス製MCMB2528(黒鉛化温度2800℃)を購入し、各種物性を測定した。結果を表3-2に示す。偏光顕微鏡像写真を図3に示す。
(6)黒鉛材料F
 アラビア産原油を減圧蒸留した残渣を原料とする。本原料の性状は、比重3.4°API、アスファルテン分7質量%、樹脂分7質量%、硫黄分は6.3質量%である。この原料を、ディレードコーキングプロセスに投入する。この際、コークスドラム前の加熱炉ヒーター出口温度を570℃で運転する。すると、コークスは塊状となる。これを水流ジェットで切り出し、冷してコーキングドラムから排出する。これを120℃で加熱し、水分含有率0.5質量%以下まで乾燥する。この時点で、300℃から1200℃まで間のアルゴン雰囲気下中における加熱減量分は11.8質量%である。これをホソカワミクロン製バンタムミルで粉砕する。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、D50=13.1μmの炭素材料を得る。この粉砕された炭素原料をネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて3100℃で加熱処理して、黒鉛材料を得る。得られた材料について、各種物性を測定した。結果を表3-2に示す。
(7)黒鉛材料G
 平均粒子径7μmの中国産天然黒鉛600gを奈良機械製ハイブリダイザーNHS1型に投入しローター周速度60/m/secにて3分間処理し平均粒子径15μmの球状粒子を得る。この操作を数回行い、得られた炭素材料3kgと石油系タール1kgを、(株)マツボー社製のM20型レディゲミキサー(内容積20リットル)に投入し、混練を行う。続いて、窒素雰囲気下にて700℃まで昇温して脱タール処理した後に、1300℃まで昇温して熱処理を行う。得られた熱処理物をピンミルにて解砕し、粗粒子を除く目的で分級処理を行い、電極用複層構造炭素材料を調製する。得られた材料について、各種物性を測定した。結果を表3-2に示す。偏光顕微鏡像写真を図4に示す。
(8)黒鉛化途上炭素材料
 人造黒鉛電極用のニードルコークス(か焼温度1300℃)を原料とした。このコークスは、2800℃にて黒鉛化した後の熱膨張係数CTEが4.6×10-7/℃になるような物性のものを用いた。このか焼コークスを加熱前に、これをホソカワミクロン製バンタムミルで粉砕した。次に、日清エンジニアリング製ターボクラシファイアーTC-15Nで気流分級し、粒径が0.5μm以下の粒子を実質的に含まないD50=13.5μmの炭素材料を得た。この粉砕された炭素材料をネジ蓋つき黒鉛ルツボに充填し、アチソン炉にて2000℃で加熱処理して、黒鉛化途上の炭素材料を得た。得られた炭素材料の粉末X線回折法による(101)面に帰属するピーク強度IAに対する(100)面に帰属するピーク強度IB(IA/IB)は0.4であった。
実施例1:
 黒鉛材料Aを100質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例2:
 黒鉛材料Aを100質量部と黒鉛化途上炭素材料200質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例3:
 黒鉛材料Aを200質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例4:
 黒鉛材料Aを500質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例5:
 黒鉛材料Aを100質量部と黒鉛化途上炭素材料500質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例6:
 黒鉛材料Bを100質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例7:
 黒鉛材料Bを500質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例8:
 黒鉛材料Cを100質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例9:
 黒鉛材料Cを500質量部と黒鉛化途上炭素材料100質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
実施例10:
 黒鉛材料Cを100質量部と黒鉛化途上炭素材料500質量部をスパルタンリューザーで5分間混合した。得られた材料を用いて電極を作製し、サイクル特性等を測定した。結果を表4に示す。
比較例1~4:
 比較例1~4としてそれぞれ炭素材料Dおよび黒鉛材料E,F,Gを用いて、電極を作製し、サイクル特性等を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 光学異方性と光学等方性の組織の大きさ、存在割合、結晶方向の多様性を持った黒鉛材料を形成することにより、リチウムイオン二次電池用添加剤として大電流負荷特性、サイクル特性を高レベルで維持しつつ、放電容量が大きく、不可逆容量が小さいリチウムイオン二次電池用負極材を得ることができる。これを従来の易黒鉛化性の黒鉛化途上炭素材料と混合することにより、種々の程度の大電流入出力特性のニーズに合致した負極材料を提供可能となった。また、本発明の黒鉛材料の製造方法は、経済性、量産性に優れ、今後期待される大型リチウムイオン二次電池用として優れた性能を発揮する。
 本発明の電池または二次電池は、従来の鉛二次電池、ニッケルカドミウム二次電池、ニッケル水素二次電池が主に使用されていた分野、例えば、電動ドリル等の電動工具や、ハイブリッド電気自動車(HEV)、電気自動車(EV)用等への適用が可能である。

Claims (18)

  1.  光学異方性組織と光学等方性組織と空隙とで構成された黒鉛粒子からなり、下記(1)および(2)の条件を満足することを特徴とする黒鉛材料と、易黒鉛化性の黒鉛化途上炭素材料を混合してなる黒鉛・炭素混合材料:
    (1)黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面において、光学異方性組織の面積の合計(x)、光学等方性組織の面積の合計(y)及び空隙の面積の合計(z)が以下の関係を満足する;
     x:y:z=50~97:3~50:0~10、かつx+y+z=100、
    (2)任意の100粒子の断面における光学異方性組織ドメインのうち、長辺部の長さの最大値をLmax、レーザー回折法により測定した体積基準の平均粒子径(D50)をLaveとした場合、Lmax/Lave≦0.5である。
  2.  前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の条件を満足するものである請求項1に記載の黒鉛・炭素混合材料:
         0.75≦Db(99.5)/Da(100)≦0.995
    (上記式中、Da(n1)は、光学異方性組織ドメインの面積を小さい順に積算していった際、その積算値の合計が、光学異方性組織ドメインの面積(μm2)の合計(A)のn1%に達した際の最大ドメインの面積値(μm2)を表わし、Db(n2)は、光学異方性組織ドメインを面積の小さい順に配列させた際、その個数の合計が、光学異方性組織ドメインの個数の合計(B)のn2%に達した際の最大ドメインの面積値(μm2)を表わす。)。
  3.  前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面に対して、クロスニコル状態での鋭敏色検板を通過させた偏光顕微鏡像において、光学異方性組織ドメインの黒鉛網面の向きを示す干渉色であるマゼンタ、ブルーおよびイエローの各色の面積の合計値のうち、最も小さいものの面積合計値Cminが、前記黒鉛粒子の断面積合計に対して12~32%である請求項1または2に記載の黒鉛・炭素混合材料。
  4.  前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の条件を満足するものである請求項1~3のいずれか1項に記載の黒鉛材料。
         0.6μm2≦Da(30)≦10μm2
    (上記式中、Da(n1)は、請求項2の記載と同じ意味を表わす。)。
  5.  前記黒鉛材料が、黒鉛材料からなる成形体断面において、一辺が100μmの正方形領域を任意に10箇所選んだとき、該領域中に現れる黒鉛粒子の断面が、以下の(1)~(3)の条件をすべて満足するものである請求項1~4のいずれか1項に記載の黒鉛・炭素混合材料:
    (1)0.5μm2≦Da(10)≦5μm2
    (2)0.6μm2≦Da(50)≦50μm2
    (3)0.7μm2≦Da(90)≦400μm2
    (上記式中、Da(n1)は、請求項2の記載と同じ意味を表わす。)。
  6.  前記黒鉛材料を構成する黒鉛粒子の表面が他の炭素材料で被覆されている請求項1~5のいずれか1項に記載の黒鉛・炭素混合材料。
  7.  繊維径2~1000nmの炭素繊維の一部が前記黒鉛粒子の表面に接着している請求項6に記載の黒鉛・炭素混合材料。
  8.  前記黒鉛化途上炭素材料が、易黒鉛化炭素を1700℃~2300℃で熱処理してなるものである請求項1~7のいずれか1項に記載の黒鉛・炭素混合材料。
  9.  前記易黒鉛化炭素が、石油コークス、石炭コークス、メソカーボン小球体のうちいずれかである請求項8に記載の黒鉛・炭素混合材料。
  10.  前記黒鉛化途上炭素材料が、粉末X線回折法による(101)面に帰属するピーク強度IAと(100)面に帰属するピーク強度IBについて、0.1<IA/IB<0.9を満たす材料である請求項1~10のいずれか1項に記載の黒鉛・炭素混合材料。
  11.  前記黒鉛化途上炭素材料の含有量100質量部に対して、黒鉛材料の含有率が10質量部以上であり1000質量部以下である請求項1~10のいずれか1項に記載の黒鉛・炭素混合材料。
  12.  請求項1~11のいずれかに記載の黒鉛・炭素混合材料を含む電池電極用炭素材料。
  13.  請求項12に記載の電池電極用炭素材料とバインダーとを含む電極用ペースト。
  14.  請求項13に記載の電極用ペーストの成形体からなる電極。
  15.  請求項14に記載の電極を構成要素として含む電池。
  16.  請求項14に記載の電極を構成要素として含むリチウムイオン二次電池。
  17.  請求項1~11のいずれか1項に記載の黒鉛・炭素混合材料の製造方法であって、黒鉛材料の製造工程が、アスファルテン分と樹脂分の組成の合計が30質量%~80質量%、硫黄分が0.3質量%~6質量%の原油蒸留残渣を、コークスドラム前の加熱炉ヒーター出口温度を550℃~580℃に制御したディレードコーキングを行ない、得られた炭素原料を粉砕し、2000~3300℃の温度で黒鉛化処理する工程である製造方法。
  18.  前記黒鉛化処理のための温度が2500~3300℃である請求項17に記載の黒鉛・炭素混合材料の製造方法。
PCT/JP2012/060761 2011-04-21 2012-04-20 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池 WO2012144618A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012527936A JP5140781B2 (ja) 2011-04-21 2012-04-20 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池
US14/000,329 US9099745B2 (en) 2011-04-21 2012-04-20 Graphite carbon composite material, carbon material for battery electrodes, and batteries
KR1020127017504A KR101211489B1 (ko) 2011-04-21 2012-04-20 흑연·탄소 혼합재료, 전지전극용 탄소재료, 및 전지
EP12773955.5A EP2667435B1 (en) 2011-04-21 2012-04-20 Graphite carbon composite material, carbon material for the battery electrodes, and batteries
CN201280000773.9A CN102844919B (zh) 2011-04-21 2012-04-20 石墨与碳的混合材料、电池电极用碳材料和电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095087 2011-04-21
JP2011-095087 2011-04-21

Publications (1)

Publication Number Publication Date
WO2012144618A1 true WO2012144618A1 (ja) 2012-10-26

Family

ID=47041721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060761 WO2012144618A1 (ja) 2011-04-21 2012-04-20 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池

Country Status (6)

Country Link
US (1) US9099745B2 (ja)
EP (1) EP2667435B1 (ja)
JP (1) JP5140781B2 (ja)
KR (1) KR101211489B1 (ja)
CN (1) CN102844919B (ja)
WO (1) WO2012144618A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129669A1 (ja) * 2014-02-28 2015-09-03 コスモ石油株式会社 石油コークス微粉砕物、石油コークス微粉砕焼成物、ゴム配合物用フィラーおよびゴム配合物
JP2015178583A (ja) * 2014-02-28 2015-10-08 コスモ石油株式会社 フィラー及びこれを含む組成物
JP2017188451A (ja) * 2016-03-31 2017-10-12 三洋化成工業株式会社 リチウムイオン電池用被覆負極活物質
CN110521030A (zh) * 2017-03-23 2019-11-29 株式会社杰士汤浅国际 非水电解质蓄电元件
WO2020137909A1 (ja) * 2018-12-26 2020-07-02 昭和電工株式会社 リチウムイオン二次電池負極用黒鉛材料
WO2020175361A1 (ja) * 2019-02-28 2020-09-03 三洋電機株式会社 非水電解質二次電池
WO2021002384A1 (ja) * 2019-07-01 2021-01-07 昭和電工株式会社 リチウムイオン二次電池
WO2022131262A1 (ja) * 2020-12-16 2022-06-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517319A (zh) * 2013-03-26 2020-08-11 三菱化学株式会社 碳材料、使用该碳材料的非水系二次电池
JP6051318B2 (ja) * 2013-12-05 2016-12-27 株式会社日立製作所 リチウムイオン二次電池用負極材料及びその製造方法、リチウムイオン二次電池用負極及びその製造方法並びにリチウムイオン二次電池
EP3156367B1 (en) * 2014-06-13 2024-02-14 LG Energy Solution, Ltd. Negative electrode active material and method for preparing same
CN108155351B (zh) * 2016-12-06 2021-06-22 宁德时代新能源科技股份有限公司 锂离子电池及其负极材料
FR3094380B1 (fr) * 2019-03-28 2022-01-07 Safran Aircraft Engines Contrôle du positionnement et de la continuité de fils dans un métier à tisser
CN110655413B (zh) * 2019-09-18 2022-03-04 济宁碳素集团有限公司 一种各向同性石墨材料的制备方法
CN111180726B (zh) * 2020-02-17 2024-02-06 中钢集团鞍山热能研究院有限公司 一种负极材料联产各项同性焦的生产工艺及装置
CN113097479B (zh) * 2021-03-30 2023-04-07 吴耀帮 一种快充型锂离子电池负极粉的制备方法及其在锂离子电池中的应用
CN113422019B (zh) * 2021-06-24 2023-03-21 湖南中科星城石墨有限公司 石墨负极材料及其制备方法、二次电池

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054998A (ja) 1983-09-06 1985-03-29 Nikkiso Co Ltd 気相成長炭素繊維の製造方法
JPH04190555A (ja) 1990-11-22 1992-07-08 Osaka Gas Co Ltd リチウム二次電池
JPH07320740A (ja) 1993-02-25 1995-12-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
JPH1095982A (ja) * 1996-09-26 1998-04-14 Osaka Gas Co Ltd 炭素質小球体の製造方法
JP2778434B2 (ja) 1993-11-30 1998-07-23 昭和電工株式会社 気相法炭素繊維の製造方法
JP2000149946A (ja) 1998-11-12 2000-05-30 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池負極用炭素材料およびその製造法
JP2002124255A (ja) 2000-10-12 2002-04-26 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池
JP3361510B2 (ja) 1996-10-30 2003-01-07 日立化成工業株式会社 リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP2003100293A (ja) 2001-09-25 2003-04-04 Showa Denko Kk 炭素材料及びその製造方法並びにその用途
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP2004507426A (ja) * 2000-09-01 2004-03-11 ウエストバージニア ユニバーシティ カーボンフォームの製造方法
JP3534391B2 (ja) 1998-11-27 2004-06-07 三菱化学株式会社 電極用炭素材料及びそれを使用した非水系二次電池
WO2004109825A2 (en) 2003-06-05 2004-12-16 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005019397A (ja) 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2006140138A (ja) 2004-10-12 2006-06-01 Matsushita Electric Ind Co Ltd 高出力型の非水電解質二次電池
JP2006312578A (ja) * 2004-08-27 2006-11-16 Jfe Chemical Corp 黒鉛質材料とその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
WO2008047768A1 (fr) * 2006-10-16 2008-04-24 Panasonic Corporation Matériau composite à activité négative pour batterie secondaire à électrolyte non aqueux, procédé de fabrication associé, et batterie secondaire à électrolyte non aqueux utilisant ce matériau

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888469A (en) 1995-05-31 1999-03-30 West Virginia University Method of making a carbon foam material and resultant product
CN1585172A (zh) * 2004-06-12 2005-02-23 深圳市贝特瑞电子材料有限公司 锂离子电池石墨负极材料及制造方法
CN1956245A (zh) * 2005-10-25 2007-05-02 比亚迪股份有限公司 负极活性材料与采用这种材料的锂离子电池及其制备方法
KR101391217B1 (ko) 2005-12-05 2014-05-07 쇼와 덴코 가부시키가이샤 흑연 재료, 전지 전극용 탄소 재료 및 전지
EP2128916A4 (en) * 2006-12-26 2016-11-30 Mitsubishi Chem Corp COMPOSITE GRAPHITE PARTICLES FOR NONAQUEOUS SECONDARY BATTERIES, NEGATIVE ELECTRODE MATERIAL CONTAINING THE SAME, NEGATIVE ELECTRODES, AND NONAQUEOUS SECONDARY BATTERIES
US8372373B2 (en) * 2009-10-22 2013-02-12 Showa Denko K.K. Graphite material, carbonaceous material for battery electrodes, and batteries
KR101504619B1 (ko) 2010-08-05 2015-03-20 쇼와 덴코 가부시키가이샤 리튬이차전지용 음극활물질

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054998A (ja) 1983-09-06 1985-03-29 Nikkiso Co Ltd 気相成長炭素繊維の製造方法
JPH04190555A (ja) 1990-11-22 1992-07-08 Osaka Gas Co Ltd リチウム二次電池
JPH07320740A (ja) 1993-02-25 1995-12-08 Kureha Chem Ind Co Ltd 二次電池電極用炭素質材料
US5587255A (en) 1993-02-25 1996-12-24 Kureha Kagaku Kogyo Kabushiki Kaisha Carbonaceous electrode material for secondary battery
JP2778434B2 (ja) 1993-11-30 1998-07-23 昭和電工株式会社 気相法炭素繊維の製造方法
JPH1095982A (ja) * 1996-09-26 1998-04-14 Osaka Gas Co Ltd 炭素質小球体の製造方法
JP3361510B2 (ja) 1996-10-30 2003-01-07 日立化成工業株式会社 リチウム二次電池用負極及びその製造法並びにリチウム二次電池
JP2000149946A (ja) 1998-11-12 2000-05-30 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池負極用炭素材料およびその製造法
US6632569B1 (en) 1998-11-27 2003-10-14 Mitsubishi Chemical Corporation Carbonaceous material for electrode and non-aqueous solvent secondary battery using this material
JP3534391B2 (ja) 1998-11-27 2004-06-07 三菱化学株式会社 電極用炭素材料及びそれを使用した非水系二次電池
JP2004507426A (ja) * 2000-09-01 2004-03-11 ウエストバージニア ユニバーシティ カーボンフォームの製造方法
JP2002124255A (ja) 2000-10-12 2002-04-26 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池
JP2003100293A (ja) 2001-09-25 2003-04-04 Showa Denko Kk 炭素材料及びその製造方法並びにその用途
WO2004109825A2 (en) 2003-06-05 2004-12-16 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005019397A (ja) 2003-06-05 2005-01-20 Showa Denko Kk 電池電極用炭素材料、その製造方法及び用途
JP2006312578A (ja) * 2004-08-27 2006-11-16 Jfe Chemical Corp 黒鉛質材料とその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2006140138A (ja) 2004-10-12 2006-06-01 Matsushita Electric Ind Co Ltd 高出力型の非水電解質二次電池
JP2007172901A (ja) * 2005-12-20 2007-07-05 Showa Denko Kk 黒鉛材料、電池電極用炭素材料、及び電池
WO2008047768A1 (fr) * 2006-10-16 2008-04-24 Panasonic Corporation Matériau composite à activité négative pour batterie secondaire à électrolyte non aqueux, procédé de fabrication associé, et batterie secondaire à électrolyte non aqueux utilisant ce matériau

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Modern Carbon Material Experimental Technology (Analysis part", 2001, SIPEC CORPORATION, pages: 1 - 8
I. NODA; M. INAGAKI: "Japan Society for the Promotion of Science", 117TH COMMITTEE MATERIAL, pages 117 - 71,A-1
M. INAGAKI ET AL.: "Japan Society for the Promotion of Science", 117TH COMMITTEE MATERIAL, 1972, pages 117 - 121,C-5
M. INAGAKI: "carbon", NN, 1963, pages 25 - 34

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178583A (ja) * 2014-02-28 2015-10-08 コスモ石油株式会社 フィラー及びこれを含む組成物
WO2015129669A1 (ja) * 2014-02-28 2015-09-03 コスモ石油株式会社 石油コークス微粉砕物、石油コークス微粉砕焼成物、ゴム配合物用フィラーおよびゴム配合物
JP2017188451A (ja) * 2016-03-31 2017-10-12 三洋化成工業株式会社 リチウムイオン電池用被覆負極活物質
JP7103344B2 (ja) 2017-03-23 2022-07-20 株式会社Gsユアサ 非水電解質蓄電素子
CN110521030A (zh) * 2017-03-23 2019-11-29 株式会社杰士汤浅国际 非水电解质蓄电元件
JPWO2018174061A1 (ja) * 2017-03-23 2020-01-30 株式会社Gsユアサ 非水電解質蓄電素子
US11562862B2 (en) 2017-03-23 2023-01-24 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
WO2020137909A1 (ja) * 2018-12-26 2020-07-02 昭和電工株式会社 リチウムイオン二次電池負極用黒鉛材料
WO2020175361A1 (ja) * 2019-02-28 2020-09-03 三洋電機株式会社 非水電解質二次電池
CN113474914A (zh) * 2019-02-28 2021-10-01 三洋电机株式会社 非水电解质二次电池
WO2021002384A1 (ja) * 2019-07-01 2021-01-07 昭和電工株式会社 リチウムイオン二次電池
WO2022131262A1 (ja) * 2020-12-16 2022-06-23 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池

Also Published As

Publication number Publication date
US9099745B2 (en) 2015-08-04
KR101211489B1 (ko) 2012-12-13
US20130323601A1 (en) 2013-12-05
JP5140781B2 (ja) 2013-02-13
CN102844919A (zh) 2012-12-26
CN102844919B (zh) 2014-07-23
JPWO2012144618A1 (ja) 2014-07-28
KR20120129881A (ko) 2012-11-28
EP2667435A1 (en) 2013-11-27
EP2667435A4 (en) 2014-11-12
EP2667435B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP4738553B2 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
JP5140781B2 (ja) 黒鉛・炭素混合材料、電池電極用炭素材料、及び電池
JP5081335B1 (ja) 黒鉛材料、電池電極用炭素材料、及び電池
US10377634B2 (en) Carbon material, material for a battery electrode, and battery
US10535866B2 (en) Carbon material, carbonaceous material for battery electrode, and battery
US20190237763A1 (en) Graphite material and secondary battery electrode using same
US9406936B2 (en) Carbon material, carbon material for battery electrode, and battery
WO2019151201A1 (ja) 黒鉛材料、その製造方法及びその用途
US20170155149A1 (en) Carbon material, method for manufacturing same, and application of same
US10377633B2 (en) Carbon material, method for producing same, and use for same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000773.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012527936

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127017504

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773955

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012773955

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14000329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE