WO2012144499A1 - Laminate, method for producing same, and use of same - Google Patents

Laminate, method for producing same, and use of same Download PDF

Info

Publication number
WO2012144499A1
WO2012144499A1 PCT/JP2012/060377 JP2012060377W WO2012144499A1 WO 2012144499 A1 WO2012144499 A1 WO 2012144499A1 JP 2012060377 W JP2012060377 W JP 2012060377W WO 2012144499 A1 WO2012144499 A1 WO 2012144499A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
inorganic insulating
glass substrate
resin layer
support plate
Prior art date
Application number
PCT/JP2012/060377
Other languages
French (fr)
Japanese (ja)
Inventor
研一 江畑
祥孝 松山
大輔 内田
健吾 川原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020137027608A priority Critical patent/KR20140018937A/en
Priority to JP2013511010A priority patent/JPWO2012144499A1/en
Priority to CN201280019767.8A priority patent/CN103492173B/en
Publication of WO2012144499A1 publication Critical patent/WO2012144499A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes

Definitions

  • the present invention relates to a laminate, a method for producing the laminate, a display device panel with a support plate, a display device panel, and a display device.
  • devices such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the substrates used for these devices have been made thinner. is doing. If the strength of the substrate is insufficient due to the thin plate, the handling property of the substrate is lowered in the device manufacturing process.
  • PV solar cells
  • LCD liquid crystal panels
  • OLED organic EL panels
  • a method in which a device member for example, a thin film transistor
  • a chemical etching process has been widely adopted.
  • this method for example, when the thickness of one substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original substrate material is scraped off with an etching solution. From the viewpoint of productivity and efficiency of use of raw materials, it is not preferable.
  • a laminated body in which a thin glass substrate and a reinforcing plate are laminated is prepared, and after a device member is formed on the thin glass substrate of the laminated body, a reinforcing plate is attached from the thin glass substrate.
  • a separation method has been proposed (see, for example, Patent Document 1).
  • the reinforcing plate has a support plate and a resin layer fixed on the support plate, and the resin layer and the thin glass substrate are in close contact with each other in a peelable manner.
  • the interface between the resin layer of the laminate and the thin glass substrate is peeled off, and the reinforcing plate separated from the thin glass substrate can be laminated with a new thin glass substrate and reused as a laminate.
  • the separated thin glass substrate peeling surface may be further processed, and it is desired that the surface is clean.
  • a part of the resin layer component is adhered to the separation surface of the separated thin glass substrate, and the adhered matter is removed by cleaning treatment using a solvent or the like. Even if it tried, it was not able to be removed to a practically desirable level.
  • a glass crack (crack) or the like may occur on the peeling surface of the separated thin glass substrate during peeling or subsequent handling, which may lead to a decrease in yield. It was.
  • the present invention has been made in view of the above-described problem, and even after the high-temperature heat treatment is performed, the resin layer and the glass substrate are peeled from the separation surface of the glass layer.
  • Laminate and laminate capable of suppressing adhesion and maintaining the cleanliness of the separation surface of the glass substrate separated by performing a cleaning treatment, and further suppressing the occurrence of cracks on the separation surface of the glass substrate It aims at providing the manufacturing method of a body. Furthermore, an object of this invention is to provide the display apparatus panel with a support plate containing this laminated body, the display apparatus panel formed using the display apparatus panel with a support plate, and a display apparatus.
  • a first aspect of the present invention includes a support plate layer, a resin layer, and a layer of a glass substrate with an inorganic insulating film in this order, and the inorganic insulating film A laminated body in which the inorganic insulating film of the attached glass substrate is in contact with the resin layer, wherein the glass substrate with the inorganic insulating film is at least one selected from the group consisting of silicon and aluminum on one side of the glass substrate.
  • an inorganic insulating film containing an oxide, nitride or oxynitride, and the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film in contact with the resin layer is 0.5 at%
  • the inorganic insulating film is preferably a film made of silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide.
  • the surface roughness (Ra) of the surface of the inorganic insulating film in contact with the resin layer is preferably less than 30 nm.
  • the inorganic insulating film preferably has a thickness of 5 to 5000 nm.
  • the glass substrate preferably has a thickness of 0.03 to 0.8 mm.
  • the resin of the resin layer is preferably a silicone resin.
  • the silicone resin is preferably a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
  • the thickness of the resin layer is preferably 1 to 100 ⁇ m.
  • the support plate is preferably a glass plate.
  • the second aspect of the present invention is a method for producing a laminate comprising a support plate layer, a resin layer, and a layer of a glass substrate with an inorganic insulating film in this order, on one side of the glass substrate.
  • Alkali metal and alkaline earth metal having an inorganic insulating film containing an oxide, nitride or oxynitride containing at least one selected from the group consisting of silicon and aluminum, and in contact with the resin layer of the inorganic insulating film
  • a support plate with a resin layer is prepared, and the inorganic insulating film surface of the glass substrate with the inorganic insulating film and the resin layer surface of the support plate with the resin layer are laminated on the laminated surface.
  • the support plate with a resin layer is a support plate having a silicone resin layer obtained by reaction-curing organoalkenylpolysiloxane and organohydrogenpolysiloxane on the support plate. It is preferable.
  • a third aspect of the present invention is a display device-equipped panel having the laminate of the first aspect of the present invention and a display device member provided on the glass substrate surface of the laminate.
  • the support plate with a resin layer is peeled and removed from the panel for a display device with a support plate according to the third aspect of the present invention, with the interface between the inorganic insulating film and the resin layer as a release surface. It is the panel for display apparatuses formed.
  • a fifth aspect of the present invention is a display device having the display device panel according to the fourth aspect of the present invention.
  • the resin of the resin layer is peeled from the glass substrate side (that is, the inorganic insulating film).
  • the cleanliness of the release surface on the side of the glass substrate separated by the cleaning treatment can be maintained, and the chemical resistance of the release surface on the side of the glass substrate can be maintained.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a laminate according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of one embodiment of the display device-equipped panel according to the present invention.
  • the peel strength at the interface between the support plate layer and the resin layer is higher than the peel strength at the interface between the resin layer and the inorganic insulating film.
  • the support plate and the resin layer are fixed.
  • “at%” refers to the ratio of each atom to the total number of atoms.
  • FIG. 1 is a schematic cross-sectional view of an example of a laminate according to the present invention.
  • the laminated body 10 is a laminated body in which the layer of the glass substrate 24 with an inorganic insulating film, the layer of the support plate 31, and the resin layer 32 exist therebetween.
  • the glass substrate 24 with an inorganic insulating film includes a glass substrate 20 and an inorganic insulating film 22 provided on the surface thereof.
  • the layer of the glass substrate 24 with the inorganic insulating film is disposed on the resin layer 32 so that the inorganic insulating film 22 and the resin layer 32 are in contact with each other, and the interface between the inorganic insulating film 22 and the resin layer 32 can be peeled off. Is in close contact.
  • the surface of the inorganic insulating film serving as the interface between the inorganic insulating film 22 and the resin layer 32 is referred to as a surface 221, and the surface of the resin layer is referred to as a surface 321.
  • the resin layer 32 has one surface fixed to the layer of the support plate 31 and the other surface (surface 321) in contact with the inorganic insulating film 22 of the glass substrate 24 with the inorganic insulating film. And the inorganic insulating film 22 are in close contact with each other in a peelable manner.
  • the two-layer portion composed of the layer of the support plate 31 and the resin layer 32 reinforces the glass substrate 24 with an inorganic insulating film in the process of manufacturing a device (electronic device) such as a liquid crystal panel.
  • the two-layer portion including the layer of the support plate 31 and the resin layer 32 of the laminate 10 independent of the laminate 10 is referred to as a support plate with a resin layer (hereinafter also referred to as a reinforcing plate).
  • the two-layer portion is referred to as a reinforcing plate 30 layer.
  • the resin layer 32 is fixed to the support plate 31.
  • This laminate 10 is used halfway through the device manufacturing process. That is, the laminate 10 is used until a device member such as a thin film transistor is formed on the surface of the glass substrate (that is, the second main surface 202 where the inorganic insulating film 22 of the glass substrate 24 with the inorganic insulating film does not exist). Is done. Thereafter, the layer of the reinforcing plate 30 is peeled off at the interface with the layer of the glass substrate 24 with the inorganic insulating film, and the layer of the reinforcing plate 30 of the laminate 10 does not become a part constituting the device.
  • a device member such as a thin film transistor
  • the laminated body 10 having a configuration in which the inorganic insulating film 22 and the resin layer 32 are in contact with each other.
  • each configuration a glass substrate with an inorganic insulating film, a resin layer, a support plate
  • the glass substrate 24 with an inorganic insulating film includes a glass substrate 20 and an inorganic insulating film 22 provided on the surface thereof.
  • the inorganic insulating film 22 is disposed on the outermost surface in the glass substrate 24 with the inorganic insulating film so as to be in close contact with a resin layer 32 to be described later.
  • the manufacturing method of the glass substrate 20, the inorganic insulating film 22, and the inorganic insulating film 22 is explained in full detail.
  • the glass substrate 20 includes the inorganic insulating film 22 on the first main surface 201 on the resin layer 32 side, and a device member is formed on the second main surface 202 on the opposite side to the resin layer 32 side to constitute a device.
  • the device member refers to a member constituting at least a part of the device, such as a constituent member of a display device panel described later. Specific examples include a thin film transistor (TFT) and a color filter (CF). Examples of the device include a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED).
  • the type of the glass substrate 20 may be a general one, and examples thereof include a glass substrate for a display device such as an LCD or an OLED.
  • the glass substrate 20 is excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate.
  • As an index of the heat shrinkage rate a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
  • the device manufacturing process often involves heat treatment, and various inconveniences are likely to occur.
  • the TFT may be excessively misaligned due to thermal contraction of the glass substrate 20.
  • the glass substrate 20 is obtained by melting a glass raw material and molding the molten glass into a plate shape.
  • a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used.
  • the glass substrate 20 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
  • the glass of the glass substrate 20 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable.
  • oxide-based glass a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
  • a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included).
  • the glass of the glass substrate is appropriately selected based on the type of device to be applied and its manufacturing process.
  • the thickness of the glass substrate 20 is not particularly limited, but is usually 0.8 mm or less, preferably 0.3 mm or less, more preferably 0.8 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 20. It is 15 mm or less. When the thickness exceeds 0.8 mm, the glass substrate 20 cannot satisfy the demand for thinning and / or lightening. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 20. In the case of 0.15 mm or less, the glass substrate 20 can be rolled up. Further, the thickness of the glass substrate 20 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 20 and easy handling of the glass substrate 20.
  • the glass substrate 20 may be composed of two or more layers.
  • the material for forming each layer may be the same material or different materials.
  • the “thickness of the glass substrate 20” means the total thickness of all the layers.
  • the inorganic insulating film 22 includes an oxide, nitride, or oxynitride containing at least one selected from the group consisting of silicon and aluminum, and may include a mixture of these compounds.
  • the inorganic insulating film 22 contains an oxide, nitride or oxynitride of silicon or aluminum, and may be a mixture of these compounds.
  • the inorganic insulating film 22 is preferably made of either silicon or aluminum oxide, nitride, or oxynitride. In some cases, the inorganic insulating film 22 may contain metal atoms other than silicon atoms and aluminum atoms as metal atoms.
  • a titanium atom, a tungsten atom, a tantalum atom, a molybdenum atom, or the like may be included.
  • an alkali metal atom and an alkaline earth metal atom are not substantially contained as described later.
  • silicon dioxide SiO 2
  • Al 2 O 3 aluminum oxide
  • AlN silicon oxynitride
  • SiO x N 2 ⁇ x , x is 0 .1 to 1.9
  • aluminum oxynitride (Al 2 O y N 3 -y , y is 0.1 to 2.9)
  • silicon dioxide SiO 2
  • silicon nitride Si 3 N 4
  • SiO x N 2-x and x is 0.6 to 0.6
  • Preferred examples include silicon oxynitride and aluminum oxide (Al 2 O 3 ) in the range of 1.4.
  • crystalline silicon dioxide is preferable.
  • the inorganic insulating film 22 preferably contains the oxide, nitride, or oxynitride as a main component. Specifically, the content of the oxide, nitride, and oxynitride is inorganic. It is preferably 98% by mass or more, more preferably 99% by mass or more, and particularly preferably 99.999% by mass or more with respect to the total amount of the insulating film.
  • the inorganic insulating film 22 exhibits excellent heat resistance. Therefore, even if the laminated body 10 is exposed to a high temperature condition, chemical change of the film itself hardly occurs, chemical bond with the resin layer 32 hardly occurs, and the resin with the inorganic insulating film of the resin of the resin layer 32 by heavy peeling. Adhesion to the substrate 24 hardly occurs. Further, the inorganic insulating film 22 itself has excellent mechanical strength, and can impart crack resistance to the surface of the glass substrate 20.
  • the above heavy peeling means that the peeling strength at the interface between the inorganic insulating film 22 and the resin layer 32 is the peeling strength at the interface between the support plate 31 and the resin layer 32 and the strength of the material itself of the resin layer 32 (bulk strength).
  • the thickness of the inorganic insulating film 22 is not particularly limited, but is preferably 5 to 5000 nm from the viewpoint of further suppressing the adhesion of the resin layer 32 to the glass substrate 24 with the inorganic insulating film due to heavy peeling and maintaining the scratch resistance. 10 to 500 nm is more preferable.
  • the inorganic insulating film 22 is preferably transparent in consideration of using the glass substrate 24 with an inorganic insulating film for device applications.
  • the transmittance at a wavelength of 380 to 780 nm, that is, the visible light transmittance of the glass substrate 24 with an inorganic insulating film is preferably 70% or more, and more preferably 80% or more.
  • the inorganic insulating film 22 is described as a single layer in FIG. 1, but may be a laminate of two or more layers.
  • a first inorganic insulating film in contact with the glass substrate 20 and a second inorganic insulating film provided on the first inorganic insulating film are provided.
  • the components of the first inorganic insulating film and the second inorganic insulating film may be different.
  • an inorganic conductive film may be provided between the first inorganic insulating film and the second inorganic insulating film, or between the glass substrate 20 and the first inorganic insulating film.
  • the inorganic conductive film may be provided in an island shape or a stripe shape in a range where the surface roughness (Ra) of the surface of the inorganic insulating film 22 in contact with the resin layer 32 is less than 30 nm.
  • an alkali barrier layer that prevents diffusion of alkali ions from the glass substrate 20 to the inorganic insulating film 22, and planarization that flattens the surface of the inorganic insulating film 22.
  • a layer may be provided between the glass substrate 20 and the inorganic insulating film 22.
  • the inorganic insulating film 22 may be provided on a part of the surface of the glass substrate 20 as long as the effects of the present invention are not impaired.
  • the inorganic insulating film 22 may be provided on the surface of the glass substrate 20 in an island shape or a stripe shape. More specifically, the coverage of the inorganic insulating film 22 on the surface of the glass substrate 20 is 50 to 100% in terms of further suppressing the adhesion of the resin layer 32 to the glass substrate 24 with the inorganic insulating film due to heavy peeling. Is preferable, and 75 to 100% is more preferable.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film 22 in contact with the resin layer 32 is 0.5 at% or less. More preferably, it is 0.1 at% or less.
  • the total content of atoms of the alkaline earth metal is 0.5 at% or less, and more preferably 0.1 at% or less.
  • the inorganic insulating film surface 221 in the laminate 10 and the inorganic insulating film surface of the glass substrate 24 itself with an inorganic insulating film are referred to as the inorganic insulating film surface 221.
  • the total content of alkali metal and alkaline earth metal atoms means the surface of alkali metal atoms and alkaline earth metal atoms obtained by measuring the inorganic insulating film surface with XPS (X-ray photoelectron spectrometer). Means the content of.
  • XPS X-ray photoelectron spectrometer
  • a known XPS measurement device can be used.
  • the total content of alkali metal and alkaline earth metal atoms being 0.5 at% or less is also referred to as substantially free of alkali metal atoms and alkaline earth metal atoms.
  • the surface roughness (Ra) of the surface of the laminated body 10 in contact with the resin layer 32 of the inorganic insulating film 22 is preferably less than 30 nm.
  • the surface roughness (Ra) of the surface of the inorganic insulating film is preferably less than 30 nm.
  • the surface roughness (Ra) is preferably 10 nm or less, and more preferably 1 nm or less, in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but is preferably 0 nm.
  • Ra is measured according to JIS B 0601 (revised 2001).
  • JIS B 0601 JIS B 0601 (revised 2001).
  • the inorganic insulating film side surface of the glass substrate 24 with the inorganic insulating film does not substantially contain alkali metal atoms and alkaline earth metal atoms, and the surface roughness (Ra) is less than 30 nm. .
  • a normal glass substrate contains a predetermined amount of alkali metal or alkaline earth metal component, alkali metal atoms or alkaline earth metal atoms are present on the surface thereof.
  • a glass substrate made of alkali-free borosilicate glass is substantially free of alkali metal components, but contains a predetermined amount of alkaline earth metal components, so that there are alkaline earth metal atoms on the surface. To do.
  • a glass substrate made of soda lime glass contains a predetermined amount of alkali metal component and alkaline earth metal component, alkali metal atoms and alkaline earth metal atoms are present on the surface thereof.
  • alkali metal atoms or alkaline earth metal atoms are detached and chemically react with the components of the resin layer. And the bonding force between the resin layers in contact with the surface increases. For this reason, it becomes difficult to separate the glass substrate 20 and the resin layer 32, and heavy peeling easily occurs.
  • the alkali metal refers to lithium, sodium, and potassium
  • the alkaline earth metal refers to magnesium, calcium, barium, and strontium.
  • alkali metal atoms and alkaline earth metal atoms in the glass substrate 20 are blocked by the inorganic insulating film 22, and the inorganic insulating film surface 221 also has alkali metal atoms and alkaline earth metal.
  • the layer substantially free of atoms there is no progress of a chemical reaction caused by desorption of alkali metal atoms or alkaline earth metal atoms from the inorganic insulating film surface 221 to the resin layer 32 side in the laminate 10, and heavy It is considered that exfoliation is unlikely to occur.
  • the total content of alkali metal and alkaline earth metal atoms by XPS measurement on the inorganic insulating film surface 221 is 0.5 at% or less, and more preferably 0.1 at% or less.
  • a material that does not substantially contain alkali metal atoms or alkaline earth metal atoms is used as a material for forming the inorganic insulating film 22. Is obtained.
  • an alkali insulating material such as a sputtering target or a material containing few alkali metal atoms or alkaline earth metal atoms is used as a material such as a sputtering atmosphere gas.
  • An inorganic insulating film 22 having a surface substantially free of metal atoms and alkaline earth metal atoms can be formed.
  • the inorganic insulating film 22 obtained by using a normally used material is an inorganic insulating film substantially not containing alkali metal atoms or alkaline earth metal atoms.
  • the inorganic insulating film 22 is particularly thin, alkali metal atoms or alkali metal atoms of the glass substrate 20 penetrate into the inorganic insulating film 22 and do not reach the surface not in contact with the glass substrate. As described above, when the thickness of the inorganic insulating film 22 is about 5 nm or more, alkali metal atoms and alkaline earth metal atoms of the glass substrate 20 can be sufficiently blocked.
  • the surface of the normally used glass substrate 20 is smooth, and the surface of the inorganic insulating film 22 formed thereon is also smooth. That is, the surface roughness (Ra) of the glass substrate 20 that is normally used is less than 30 nm, and the surface of the inorganic insulating film 22 formed on the glass substrate 20 that is not in contact with the glass substrate 20 (inorganic insulating film surface 221). The surface roughness is less than 30 nm. However, in some cases, the surface of the glass substrate 20 may be roughened by etching or the like. For example, depending on the type of the inorganic insulating film 22, the surface of the glass substrate 20 may be roughened in order to increase the bonding strength with the surface of the glass substrate 20.
  • the surface of the glass substrate 20 may be roughened as a process (non-glare process) for diffusing reflected light from the surface of the glass substrate 20 to reduce glare caused by the reflected light.
  • the surface of the glass substrate 20 is roughened, when the surface roughness (Ra) of the roughened surface becomes 30 nm or more, the surface of the inorganic insulating film 22 formed thereon that is not in contact with the glass substrate 20 (inorganic The surface roughness of the insulating film surface 221) may be 30 nm or more.
  • the formation of the inorganic insulating film 22 does not necessarily limit the surface roughness of the glass substrate 20 surface directly to the surface roughness of the inorganic insulating film surface 221, and the surface roughness of the inorganic insulating film 22 may be relaxed.
  • the surface roughness of the inorganic insulating film surface 221 is not limited only to the surface roughness of the glass substrate 20 surface.
  • the manufacturing method in particular of the inorganic insulating film 22 is not restrict
  • a method of providing a predetermined oxide, nitride, or oxynitride on the glass substrate 20 by vapor deposition or sputtering is used.
  • a silicon dioxide film formed by a CVD method may be nitrided by a method such as a plasma nitriding method to form a silicon nitride oxide film, or a silicon nitride film formed by a CVD method may be formed by a plasma oxidation method or the like
  • a silicon nitride oxide film may be formed by oxidation treatment by a method.
  • optimum conditions are appropriately selected according to the metal oxide, nitride and oxynitride used.
  • the support plate 31 cooperates with the resin layer 32 to support and reinforce the glass substrate 24 with the inorganic insulating film, and prevents deformation, scratching, breakage, etc. of the glass substrate 24 with the inorganic insulating film in the device manufacturing process. To do.
  • the glass with the conventional thickness is used.
  • One of the purposes of using the support plate 31 is to make it possible to use manufacturing technology and manufacturing equipment suitable for the substrate.
  • the support plate 31 for example, a metal plate such as a glass plate, a resin plate, or a SUS plate is used.
  • the support plate 31 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 20, and more preferably formed of the same material as the glass substrate 20.
  • the support plate 31 is preferably a glass plate.
  • the support plate 31 is preferably a glass plate made of the same glass material as that of the glass substrate 20.
  • the thickness of the support plate 31 may be thicker or thinner than the glass substrate 20.
  • the thickness of the support plate 31 is selected based on the thickness of the glass substrate 24 with an inorganic insulating film, the thickness of the resin layer 32, and the thickness of the laminated body 10.
  • the current device manufacturing process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 24 with an inorganic insulating film and the thickness of the resin layer 32 is 0.
  • the thickness of the support plate 31 is set to 0.4 mm.
  • the thickness of the support plate 31 is preferably 0.2 to 5.0 mm.
  • the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled after the device member is formed.
  • the difference in average linear expansion coefficient between glass substrate 20 and support plate 31 at 25 to 300 ° C. is preferably 500 ⁇ 10 ⁇ 7 / ° C. or less, more preferably It is 300 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 200 ⁇ 10 ⁇ 7 / ° C. or less. If the difference is too large, the laminated body 10 may be warped severely during heating and cooling in the device manufacturing process, or the glass substrate 24 with an inorganic insulating film and the reinforcing plate 30 may be peeled off. When the material of the glass substrate 20 and the material of the support plate 31 are the same, it can suppress that such a problem arises.
  • the resin layer 32 is fixed on the support plate 31 and is in close contact with the glass substrate 24 with an inorganic insulating film in a peelable manner.
  • the resin layer 32 prevents the displacement of the glass substrate 24 with the inorganic insulating film until the operation of separating the glass substrate 24 with the inorganic insulating film and the support plate 31 is performed, and the glass substrate 24 with the inorganic insulating film by the separation operation.
  • the glass substrate 24 with the inorganic insulating film is prevented from being damaged by the separation operation.
  • the resin layer 32 is fixed to the support plate 31, and there is no fear that the resin layer 32 and the support plate 31 are separated in the separation operation, and a support plate with a resin layer (reinforcing plate 30) is obtained by the separation operation.
  • a support plate with a resin layer (reinforcing plate 30) is obtained by the separation operation.
  • a surface 321 in contact with the inorganic insulating film 22 of the resin layer 32 is in close contact with the surface 221 of the inorganic insulating film 22 so as to be peeled off.
  • peelability the property which can peel this resin layer surface 321 easily is called peelability.
  • the above-mentioned fixing and (separable) adhesion have a difference in peeling strength (that is, stress required for peeling), and fixing means that the peeling strength is larger than the adhesion.
  • the peelable adhesion means that it can be peeled at the same time that it can be peeled without causing peeling of the fixed surface.
  • the laminated body 10 of the present invention when the operation of separating the glass substrate 24 with the inorganic insulating film and the support plate 31 is performed, it is peeled off at the closely contacted surface and not peeled off at the fixed surface. Means.
  • the laminated body 10 is composed of the glass substrate 24 with an inorganic insulating film and the support plate with a resin layer (reinforcing plate 30). Separated into two.
  • the resin layer 32 is preferably fixed to the surface of the support plate 31 with a strong bonding force such as an adhesive force or an adhesive force.
  • a reaction-curable resin is reacted and cured on the surface of the support plate 31 so that the cured resin adheres to the surface of the support plate 31.
  • the process for example, process using a coupling agent
  • the resin layer 32 is preferably bonded to the inorganic insulating film surface 221 with a weak bonding force, for example, with a bonding force resulting from van der Waals force between solid molecules.
  • the resin layer surface 321 before coming into contact with the inorganic insulating film 22 is preferably a non-adhesive surface.
  • both surfaces are made to contact each other. It can be combined with a weak binding force. That is, when the resin layer surface 321 is non-adhesive, the peelability at the interface with the inorganic insulating film surface 221 becomes better. Both surfaces are in contact with each other without any gap, and this state is referred to as close contact in the present invention.
  • the surface of the resin layer can be made non-adhesive also by a surface treatment that imparts non-adhesiveness to the surface of the resin layer that is not non-adhesive in a normal sense.
  • a resin layer that is not non-adherent in a normal sense is a resin that can be adhered with a sufficiently low bonding force with respect to the fixing force (and the peeling of the inorganic insulating film from the glass substrate). If it can be peeled without causing damage to the glass substrate with an inorganic insulating film or the support plate), it can be used as a material for the resin layer without surface treatment.
  • the resin layer surface is less likely to remain on the surface of the inorganic insulating film during peeling, and the inorganic insulating film is damaged. Therefore, a part of the material is hardly left on the surface of the resin layer.
  • the bonding force of the resin layer 32 to the surface of the support plate 31 is relatively higher than the bonding force of the resin layer 32 to the inorganic insulating film surface 221.
  • the peel strength between the resin layer 32 and the support plate 31 is higher than the peel strength between the resin layer 32 and the glass substrate 24 with an inorganic insulating film.
  • the resin layer 32 and the support plate 31 are bonded together by adhesion or adhesion.
  • the present invention is not limited to this. As long as the bonding force of the resin layer 32 to the glass substrate 24 with the inorganic insulating film is relatively higher than that of the resin layer 32, the resin layer 32 and the support plate 31 are caused by other bonding forces. They may be joined by force.
  • the size of the resin layer 32 is not particularly limited. The size of the resin layer 32 may be larger or smaller than the glass substrate 20 or the support plate 31.
  • the thickness of the resin layer 32 is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 7 to 20 ⁇ m. This is because when the thickness of the resin layer 32 is within such a range, the resin layer 32 and the glass substrate 24 with an inorganic insulating film are sufficiently adhered. In addition, even if bubbles or foreign matter may be present between the resin layer 32 and the glass substrate 24 with the inorganic insulating film, it is possible to suppress the occurrence of distortion defects in the glass substrate 24 with the inorganic insulating film. . Further, if the thickness of the resin layer 32 is too thick, it takes time and materials to form the resin layer 32, which is not economical.
  • the resin layer 32 may be composed of two or more layers.
  • “the thickness of the resin layer 32” means the total thickness of all the layers.
  • the kind of resin which forms each layer may differ.
  • the resin layer 32 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or having no glass transition point. This is because it can be more easily peeled off from the glass substrate 24 with an inorganic insulating film, and at the same time, the adhesion with the glass substrate 24 with an inorganic insulating film becomes sufficient.
  • the resin layer 32 since the resin layer 32 is often heat-treated in the device manufacturing process, the resin layer 32 preferably has heat resistance.
  • the elastic modulus of the resin layer 32 is too high, the adhesion with the glass substrate 24 with an inorganic insulating film tends to be low. On the other hand, if the elastic modulus of the resin layer 32 is too low, the peelability is lowered.
  • the type of resin forming the resin layer 32 is not particularly limited.
  • acrylic resin, polyolefin resin, polyurethane resin, or silicone resin can be used.
  • Several types of resins can be mixed and used. Of these, silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and peelability.
  • silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and peelability.
  • the support plate 31 is a glass plate, it is easy to fix to the glass plate by a condensation reaction with a silanol group on the surface of the glass plate. In the state where the silicone resin layer is interposed between the support plate 31 and the glass substrate 24 with the inorganic insulating film, the peelability is not substantially deteriorated even if it is treated in the atmosphere at about 200 ° C. for about 1 hour, for example. Is also preferable.
  • the resin layer 32 is preferably made of a silicone resin (cured product) used for release paper among silicone resins.
  • the silicone resin of the release layer of the release paper is formed by curing a layer of the curable silicone resin composition coated on the release paper.
  • a resin layer made of a cured silicone resin formed by curing the curable silicone resin composition on the surface of the support plate 31 using the curable silicone resin composition is adhered to the surface of the support plate 31 and its free surface. Is preferable because it has excellent non-adhesiveness.
  • the curable silicone resin composition used to form a release layer such as a release paper has a condensation reaction type silicone resin composition, an addition reaction type silicone resin composition, and an ultraviolet curable type silicone resin depending on its curing mechanism. Although classified into a composition and an electron beam curable silicone resin composition, both can be used. Among these, addition reaction type silicone resin compositions are preferred. This is because the curing reaction is easy, the degree of non-adhesion of the cured resin layer surface 321 is good, and the heat resistance is high.
  • the addition reaction type silicone resin composition is a curable composition that contains a main agent and a crosslinking agent and cures in the presence of a catalyst such as a platinum-based catalyst. Curing of the addition reaction type silicone resin composition is accelerated by heat treatment.
  • the main component in the addition reaction type silicone resin composition is preferably an organopolysiloxane having an alkenyl group (such as a vinyl group) bonded to a silicon atom (that is, an organoalkenylpolysiloxane, preferably a straight chain).
  • An alkenyl group or the like serves as a crosslinking point.
  • the crosslinking agent in the addition reaction type silicone resin composition is an organopolysiloxane having a hydrogen atom (hydrosilyl group) bonded to a silicon atom (that is, an organohydrogenpolysiloxane, preferably a straight chain). Is preferred, and a hydrosilyl group or the like serves as a crosslinking point.
  • the addition reaction type silicone resin composition is cured by an addition reaction between the crosslinking points of the main agent and the crosslinking agent.
  • the curable silicone resin composition used for forming a release layer such as release paper has a solvent type, an emulsion type and a solventless type, and any type can be used.
  • a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent.
  • it does not contain a solvent that causes foaming at the time of curing when forming the resin layer 32, that is, at the time of heat curing, ultraviolet curing, or electron beam curing, so that bubbles are unlikely to remain in the resin layer 32.
  • curable silicone resin compositions used for forming a release layer such as release paper
  • KNS-320A and KS-847 both Shin-Etsu Silicone Co., Ltd.
  • TPR6700 made by Momentive Performance Materials Japan GK
  • a combination of vinyl silicone “8500” made by Arakawa Chemical Industries
  • methylhydrogenpolysiloxane “12031” made by Arakawa Chemical Industries
  • Combination of vinyl silicone “11364” Arakawa Chemical Industries
  • methyl hydrogen polysiloxane “12031” Arakawa Chemical Industries
  • vinyl silicone “11365” Arakawa Chemical Industries
  • methyl hydrogen polysiloxane "12031” Such as a combination of the like.
  • KNS-320A, KS-847 and TPR6700 are curable silicone resin compositions containing a main agent and a crosslinking agent in advance.
  • the silicone resin forming the resin layer 32 (cured product of the curable silicone resin composition) has a property that components such as low molecular weight silicone in the silicone resin layer are difficult to migrate to the glass substrate 24 with an inorganic insulating film, That is, it preferably has low silicone migration.
  • the method for fixing the resin layer 32 on the support plate 31 is not particularly limited.
  • a layer of a curable resin composition that becomes the resin layer 32 is formed on the surface of the support plate 31 and then the curable resin composition is formed.
  • a method of forming the resin layer 32 fixed on the support plate 31 by a method of forming a resin layer 32 by curing an object is preferable.
  • the resin layer 32 can be formed by a method of fixing a film-like resin to the surface of the support plate 31. Specifically, in order to give the surface of the support plate 31 a high fixing force (high peel strength) with respect to the surface of the film, the surface of the support plate 31 is subjected to surface modification treatment (priming treatment).
  • the method of fixing on top is mentioned.
  • chemical methods that improve the fixing force chemically such as silane coupling agents, physical methods that increase surface active groups such as flame (flame) treatment, surface treatments such as sandblast treatment
  • surface treatments such as sandblast treatment
  • mechanical processing method for increasing the catch by increasing the roughness.
  • a resin layer 32 by forming a layer of the curable resin composition to be the resin layer 32 on the surface of the support plate 31 and then curing the curable resin composition to cure the surface of the support plate 31.
  • the method for forming the layer of the curable resin composition include a method of coating the curable resin composition on the support plate 31.
  • the coating method include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to the kind of resin composition.
  • the coating amount is preferably 1 to 100 g / m 2 and more preferably 5 to 20 g / m 2. .
  • the resin layer 32 is formed from an addition reaction type silicone resin composition
  • a curable resin composition composed of a mixture of an organoalkenylpolysiloxane, an organohydrogenpolysiloxane, and a catalyst is used for the known spray coating method. It is applied on the support plate 31 by the method described above, and then cured by heating. The heat curing conditions vary depending on the blending amount of the catalyst.
  • the reaction is carried out at 50 ° C to 250 ° C, preferably 100 ° C to 200 ° C.
  • the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes.
  • the silicone resin By curing the curable resin composition by heating, the silicone resin is chemically bonded to the support plate 31 during the curing reaction, and the silicone resin layer is bonded to and bonded to the support plate 31 by an anchor effect. By these actions, the silicone resin layer is firmly fixed to the support plate 31.
  • the resin layer which consists of resin other than a silicone resin from a curable resin composition
  • the resin layer 32 fixed to the support plate 31 by the method similar to the above can be formed.
  • the laminate 10 of the present invention is a laminate in which the glass substrate 24 with an inorganic insulating film, the support plate 31, and the resin layer 32 exist between them.
  • the manufacturing method of the laminated body of this invention is not restrict
  • a method of laminating both of the surfaces of the inorganic insulating film of the glass substrate 24 and the resin layer surface of the support plate with the resin layer (reinforcing plate 30) as a laminated surface is preferable.
  • the resin layer 32 can be easily and peelably adhered by normal superposition and pressure.
  • the resin layer 32 and the glass substrate 24 with an inorganic insulating film are used using a roll or a press. And the method of pressure bonding. It is preferable because the resin layer 32 and the glass substrate 24 with the inorganic insulating film are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because air bubbles mixed between the resin layer 32 and the glass substrate 24 with the inorganic insulating film are removed relatively easily by pressure bonding with a roll or a press.
  • the surfaces of the resin layer 32 and the glass substrate 24 with the inorganic insulating film that are in contact with each other are sufficiently washed to provide a high degree of cleanliness. It is preferable to laminate in an environment. Even if a foreign substance is mixed between the resin layer 32 and the glass substrate 24 with the inorganic insulating film, the resin layer 32 is deformed, so that the flatness of the surface of the glass substrate 24 with the inorganic insulating film is not affected. The higher the degree of cleanness, the better the flatness.
  • the laminate 10 of the present invention can be used for various applications, for example, for manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface. Applications are listed. In this application, the laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 320 ° C. or higher).
  • the display device panel includes an LCD, an OLED, an electronic paper, a plasma display panel, a field emission panel, a quantum dot LED panel, a MEMS (MICRO ELECTRO mechanical system) shutter panel, and the like.
  • FIG. 2 is a schematic cross-sectional view of an example of a display device-equipped panel according to the present invention.
  • the display device-equipped panel 40 includes a laminate 10 and a display device panel component member 50.
  • the constituent member 50 of the display device panel refers to a member formed on the glass substrate or a part thereof in a display device such as an LCD or an OLED using a glass substrate.
  • a display device such as an LCD or an OLED using a glass substrate.
  • members such as TFT arrays (hereinafter simply referred to as “arrays”), protective layers, color filters, liquid crystals, transparent electrodes made of ITO, etc. on the surface of the substrate. Or a combination of these.
  • the semiconductor material used for the array is not particularly limited, and examples thereof include silicon such as amorphous / microcrystal and polycrystal, metal oxides such as ZnO / IGZO, and organic substances such as thiophene derivatives / pentacene derivatives. Further, for example, in a display device made of OLED, a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like formed on a substrate can be used.
  • the manufacturing method of the panel 40 for display devices with a support plate mentioned above is not specifically limited, The surface of the glass substrate 24 with the inorganic insulating film of the laminated body 10 by a conventionally well-known method according to the kind of structural member of the panel for display devices.
  • the constituent member 50 of the display device panel is formed thereon.
  • a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc.
  • the constituent members are deposited on the surface on which the transparent electrode is formed, and a back electrode is formed.
  • Various layers are formed and processed, such as sealing with a sealing plate.
  • Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
  • the formation of these constituent members may be part of the formation of all the constituent members necessary for the display device panel. In that case, after separating the glass substrate 24 with the inorganic insulating film on which some of the constituent members are formed from the reinforcing plate 30, the remaining constituent members are formed on the glass substrate 24 with the inorganic insulating film to form a display device panel. To manufacture.
  • the display device panel 60 includes a glass substrate 24 with an inorganic insulating film and a constituent member 50 of the display device panel.
  • the display device panel 60 may be obtained by separating the interface between the inorganic insulating film 22 and the resin layer 32 from the display device panel 40 with a support plate and separating the glass substrate 24 with the inorganic insulating film 24 and the reinforcing plate 30. it can.
  • the constituent members on the separated glass substrate 24 with the inorganic insulating film are a part of the formation of all the constituent members necessary for the display device panel, the remaining constituent members are then used as the glass substrate with the inorganic insulating film.
  • the panel 60 for display devices is manufactured by forming on 24.
  • the method for peeling the inorganic insulating film 22 and the peelable surface of the resin layer 32 is not particularly limited. However, it is preferable to first peel off by forming a peeling start point at the interface between the inorganic insulating film 22 and the resin layer 32. Specifically, for example, a sharp blade-like object is inserted into the interface between the inorganic insulating film 22 and the resin layer 32 to give a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed. Peeling is preferable.
  • the separated reinforcing plate 30 can be laminated with a new glass substrate with an inorganic insulating film to produce the laminate 10 of the present invention. As a manufacturing method of this new laminated body 10, the manufacturing method of this invention mentioned above is preferable.
  • a display device can be obtained from such a display device panel 60.
  • the display device include an LCD and an OLED.
  • Examples of LCD include TN type, STN type, FE type, TFT type, and MIM type.
  • the operation for obtaining the display device is not particularly limited.
  • the display device can be manufactured by a conventionally known method.
  • a glass plate made of alkali-free borosilicate glass (length 720 mm, width 600 mm, plate thickness 0.4 mm, linear expansion coefficient 38 ⁇ 10 ⁇ 7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.
  • a glass plate made of soda lime glass (linear expansion coefficient 85 ⁇ 10 ⁇ 7 / ° C., trade name “AS” manufactured by Asahi Glass Co., Ltd.) was used as the glass substrate and the support plate.
  • Example 7 and Comparative Example 3 this glass plate made of soda lime glass was chemically strengthened by immersing it in a molten salt of potassium nitrate at 450 ° C. for 1 hour, and the resulting tempered glass plate was a glass substrate and a support plate. Used as. The size and thickness of these glass substrates are the same as those used in Examples 1 to 5, and the size and thickness of these support plates are also the same as those used in Examples 1 to 5. In Examples and Comparative Examples to be described later, the surface roughness (Ra) was measured using an atomic microscope (Seiko Instruments Inc., SPA300 / SPI3800).
  • the peelability of the glass substrate with an inorganic insulating film after the heating of the laminate described later is determined by peeling the glass substrate with the inorganic insulating film and the resin layer after the heat treatment under a predetermined condition described later, and the resin of the glass substrate with the inorganic insulating film. Evaluation was made by visually observing the surface that was in contact with the layer. Those having no resin layer residue are good, and those having a resin layer residue are bad evaluations.
  • the glass substrate with the inorganic insulating film peeled off from the laminate was subjected to ultrasonic treatment (5 minutes) in hexane, and then on the surface that was in contact with the resin layer (inorganic insulating film)
  • a cellophane tape (trade name Cellotape (registered trademark), manufactured by Nichiban Co., Ltd.) was attached to the surface, peeled at 90 °, and the peel strength was measured.
  • Example 1 First, a support plate having a thickness of 0.4 mm was cleaned with pure water, and further cleaned by UV cleaning. Next, a solvent-free addition reaction type release paper silicone (manufactured by Shin-Etsu Silicone Co., Ltd., KNS-320A, viscosity: 0.40 Pa ⁇ s, solubility parameter (SP value): 7.3 is provided on the first main surface of the support plate. ) A mixed solution of 100 parts by mass and 2 parts by mass of a platinum-based catalyst (CAT-PL-56, manufactured by Shin-Etsu Silicone Co., Ltd.) was applied in a rectangular shape with a size of 705 mm in length and 595 mm in width using a screen printing machine.
  • CAT-PL-56 platinum-based catalyst
  • the silicone for solvent-free addition reaction type release paper is composed of a linear organoalkenylpolysiloxane (main agent) having a vinyl group and a methyl group bonded to a silicon atom, and a hydrogen atom bonded to a silicon atom as a methyl group. And a straight-chain organohydrogenpolysiloxane (crosslinking agent).
  • the surface (first main surface) of the glass substrate having a plate thickness of 0.3 mm that was brought into contact with the silicone resin was cleaned with pure water, and then cleaned by UV cleaning. Further, a SiO 2 film having a thickness of 30 nm is formed on the cleaned surface by a magnetron sputtering method (heating temperature 300 ° C., film forming pressure 4 mTorr, power density 3 W / cm 2 ) to obtain a glass substrate with an inorganic insulating film. It was.
  • the surface roughness (Ra) of the surface of the inorganic insulating film was 0.8 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement is below the detection limit (0.1 at. % Or less).
  • the SiO 2 film-forming surface of the glass substrate and the silicone resin layer surface of the support plate were bonded together by vacuum pressing at room temperature to obtain a laminate A.
  • the support plate and the glass substrate were in close contact with the silicone resin layer without generating bubbles, no distortion defects, and good smoothness.
  • the laminate A was subjected to heat treatment at 350 ° C. for 1 hour in a nitrogen atmosphere with atmospheric oxygen of 0.1% or less.
  • a peel test was performed. Specifically, first, the second main surface of the glass substrate in the laminate A was fixed on a fixed base. On the other hand, the second main surface of the support plate was adsorbed by an adsorption pad. Next, a knife having a thickness of 0.4 mm is inserted into the interface between the glass substrate with the inorganic insulating film and the resin layer, which is one of the four corners of the laminate A, and the inorganic insulating film The interface of the resin layer was slightly peeled to give a trigger for peeling.
  • the suction pad was moved in a direction away from the fixed base to peel off the entire interface between the inorganic insulating film and the resin layer, and the glass substrate with the inorganic insulating film and the support plate with the resin layer were separated. There was no resin residue on the peeled surface (on the inorganic insulating film) of the separated glass substrate with the inorganic insulating film. Moreover, when the said cleanliness evaluation was performed with respect to the isolate
  • the separated glass substrate with an inorganic insulating film was immersed in a resist stripping solution diluted to 20% by weight (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) at 50 ° C. for 10 minutes, and then with water After performing brush cleaning, it was immersed in an aqueous hydrochloric acid solution having a concentration of 0.1 mol / liter at 90 ° C. for 20 hours, and brush cleaning with water and air blowing were performed.
  • a resist stripping solution diluted to 20% by weight (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) at 50 ° C. for 10 minutes, and then with water After performing brush cleaning, it was immersed in an aqueous hydrochloric acid solution having a concentration of 0.1 mol / liter at 90 ° C. for 20 hours, and brush cleaning with water and air blowing were performed.
  • Example 1b instead of magnetron sputtering method, the thickness is 100 nm by thermal CVD method (heating temperature 400 ° C., reaction pressure 1 Pa, reaction gas is tetraethoxysilane and ozone / oxygen, carrier gas is nitrogen: 2000 sccm, ozone / oxygen ratio: 3%)
  • a laminate A ′ was obtained according to the same procedure as in Example 1 except that the SiO 2 film was formed.
  • the surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 2 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was 0.5 at%. Then, peelability evaluation was performed on the laminate A ′ in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film. Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, the peel strength was 0.8 N / 25 mm, and it was found that the surface had excellent surface cleanliness.
  • Example 2 the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I could't. Note that it is considered that the atoms of alkali metal and alkaline earth metal on the surface of the inorganic insulating film are caused by impurities in tetraethoxysilane.
  • Example 2> instead of forming the SiO 2 film, ICP-CVD (inductively coupled plasma CVD) (heating temperature 400 ° C., film forming pressure 1 Pa, RF power 400 W, DC power 230 V / 0.5 A / 80 W, gas flow rate (100% SiH 4 : 10 sccm, N 2 : 140 sccm)), and a laminate B was obtained in the same manner as in Example 1 except that a 100 nm thick Si 3 N 4 film was formed.
  • the surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 2 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
  • the peelability of the laminate B was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
  • cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
  • a laminate C was obtained according to the same procedure as in Example 1 except that.
  • the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 1 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less). Then, peelability evaluation was performed on the laminate C in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film. Moreover, when the cleanliness evaluation was performed on the separated glass substrate with an inorganic insulating film in the same manner as in Example 1, the peel strength was 0.6 N / 25 mm and had excellent surface cleanliness. I understood.
  • Example 4 The surface of the glass substrate used in Example 1 was roughened by spraying buffered hydrofluoric acid (hydrofluoric acid 6 wt%: ammonium fluoride 30 wt%, the remainder being water, the same applies hereinafter) (for about 20 seconds) to roughen the glass substrate.
  • buffered hydrofluoric acid hydrofluoric acid 6 wt%: ammonium fluoride 30 wt%, the remainder being water, the same applies hereinafter
  • An SiO 2 film having a thickness of 30 nm was formed on the glass substrate by the magnetron sputtering method performed in Example 1 on the surface, and the glass substrate with the inorganic insulating film used in Example 1 was used.
  • a laminate D was obtained by the same procedure as in Example 1.
  • the surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 25 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less). Thereafter, the peelability of the laminate D was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film. Moreover, when cleanliness evaluation was performed with respect to the glass substrate with the inorganic insulating film which peeled, it turned out that peeling strength is 0.6 N / 25mm and it has the outstanding surface cleanliness.
  • Example 5 instead of forming the SiO 2 film, an Al 2 O 3 film having a thickness of 50 nm is formed by a reactive sputtering method (aluminum target, no heating, film forming pressure 0.1 Pa, gas flow rate (O 2 : 25 sccm, Ar: 25 sccm)).
  • a laminate E was obtained according to the same procedure as in Example 1 except that was formed.
  • the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 0.8 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
  • the peelability of the laminate E was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
  • cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
  • Example 6 A laminate F was obtained in the same manner as in Example 1 except that a glass plate made of soda lime glass was used as the support plate and the glass substrate.
  • the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 0.8 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less). Thereafter, the peelability of the laminate F was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
  • Example 7 A laminate G was obtained by the same method as in Example 2 except that a chemically strengthened glass plate was used as the support plate and the glass substrate.
  • the surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 0.8 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less). Thereafter, the peelability of the laminate G was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the peeled glass substrate with an inorganic insulating film.
  • a laminate H was obtained by the same procedure as in Example 1 except that a glass substrate without an inorganic insulating film was used.
  • the laminate H does not include an inorganic insulating film.
  • the surface of the glass substrate that is in contact with the resin layer surface was cleaned with pure water and then cleaned with UV.
  • the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.0 at%.
  • peelability was evaluated after heat treatment, and the glass substrate in the laminate H and the support plate having the resin layer were separated. A part of the resin of the resin layer adhered to the surface of the separated glass substrate that had been in contact with the resin layer, and damage was confirmed at a corresponding portion of the surface of the resin layer on the support plate. Moreover, when the cleanliness evaluation was performed on the separated glass substrate, the peel strength was 0.1 N / 25 mm, and the resin adhering to the surface could not be removed sufficiently. When the peeled surface of the glass substrate was observed with an optical microscope after removing the resin with the blade, cracks were found on a part of the peeled surface.
  • a laminate J was obtained in the same manner as in Comparative Example 1 except that the glass plate made of the same soda lime glass as in Example 6 was used as the support plate and the glass substrate.
  • the laminate J does not include an inorganic insulating film. Note that the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.5 at%.
  • peelability was evaluated after heat treatment, and the glass substrate in the laminate J and the support plate having the resin layer were separated.
  • a laminate K was obtained in the same manner as in Comparative Example 1 except that the same chemically strengthened glass plate as in Example 7 was used as the support plate and the glass substrate.
  • the laminated body K does not include an inorganic insulating film. Note that the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.5 at%.
  • peelability was evaluated after heat treatment, and the glass substrate in the laminate K and the support plate having the resin layer were separated.
  • Comparative Example 4 The glass substrate surface used in Comparative Example 1 is roughened by spraying buffered hydrofluoric acid (about 60 seconds), and the roughened glass substrate is used in place of the glass substrate with an inorganic insulating film used in Example 1. Then, a laminate L was obtained by the same procedure as in Example 1. The laminate L does not include an inorganic insulating film.
  • the surface of the roughened glass substrate that is in contact with the resin layer was cleaned with pure water and then cleaned with UV.
  • the surface roughness (Ra) of the cleaned surface (roughened surface) of the obtained roughened glass substrate was 100 nm.
  • the total content of alkali metal and alkaline earth metal atoms on the cleaned surface of the roughened glass substrate obtained by XPS measurement was 1.1 at%.
  • Example 8 an OLED is manufactured using the laminate C obtained in Example 3.
  • the glass substrate of the laminate C is subjected to a step of forming a transparent electrode, a step of forming an auxiliary electrode, a step of depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like, and a step of sealing them.
  • An organic EL structure is formed thereon.
  • a laminate C (hereinafter referred to as a panel C) having an organic EL structure on a glass substrate is a display-equipped panel for a support according to the present invention.
  • a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the resin layer at the corner of the panel C, and the glass substrate Triggers peeling at the interface between the inorganic insulating layer and the resin layer. And after adsorb
  • the separated glass substrate is cut using a laser cutter or a scribe-break method, and divided into 288 cells of 41 mm length ⁇ 30 mm width, and then the glass substrate on which the organic EL structure is formed and the counter substrate Are assembled, and a module forming process is performed to produce an OLED.
  • the OLED obtained in this way does not have a problem in characteristics.

Abstract

The present invention relates to a laminate which comprises a layer of a supporting plate, a resin layer, and a layer of a glass substrate with an inorganic insulating film, sequentially in this order, with the inorganic insulating film of the glass substrate with an inorganic insulating film being in contact with the resin layer. The glass substrate with an inorganic insulating film has an inorganic insulating film, which contains an oxide, nitride or oxynitride containing at least one element selected from the group consisting of silicon and aluminum, on one surface of a glass substrate. The total content of alkali metal atoms and alkaline earth metal atoms in a surface of the inorganic insulating film, said surface being in contact with the resin layer, is 0.5 at% or less. The peel strength at the interface between the layer of the supporting plate and the resin layer is higher than the peel strength at the interface between the resin layer and the inorganic insulating film. The present invention also relates to: a display device panel with a supporting plate, which comprises the laminate and a display device member that is provided on the glass substrate surface of the laminate; a display device panel which is obtained by removing the supporting plate with the resin layer from the display device panel with a supporting plate, using the interface between the inorganic insulating film and the resin layer as a releasing surface; and a display device which has the display device panel.

Description

[規則37.2に基づきISAが決定した発明の名称] 積層体、その製造方法及び用途[Name of invention determined by ISA based on Rule 37.2] Laminate, manufacturing method and use
 本発明は、積層体、積層体の製造方法、支持板付き表示装置用パネル、表示装置用パネル、および表示装置に関する。 The present invention relates to a laminate, a method for producing the laminate, a display device panel with a support plate, a display device panel, and a display device.
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などのデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いる基板の薄板化が進行している。薄板化により基板の強度が不足すると、デバイスの製造工程において、基板のハンドリング性が低下する。 In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the substrates used for these devices have been made thinner. is doing. If the strength of the substrate is insufficient due to the thin plate, the handling property of the substrate is lowered in the device manufacturing process.
 そこで、従来から、最終厚さよりも厚い基板上にデバイス用部材(例えば、薄膜トランジスタ)を形成した後、基板を化学エッチング処理により薄板化する方法が広く採用されている。しかしながら、この方法では、例えば、1枚の基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々の基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。 Therefore, conventionally, a method in which a device member (for example, a thin film transistor) is formed on a substrate thicker than the final thickness and then the substrate is thinned by a chemical etching process has been widely adopted. However, in this method, for example, when the thickness of one substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original substrate material is scraped off with an etching solution. From the viewpoint of productivity and efficiency of use of raw materials, it is not preferable.
 また、上記の化学エッチングによる基板の薄板化方法においては、基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。 Further, in the above-described method for thinning a substrate by chemical etching, when a fine scratch is present on the substrate surface, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
 最近では、上記の課題に対応するため、薄板ガラス基板と補強板とを積層した積層体を用意し、積層体の薄板ガラス基板上にデバイス用部材を形成した後、薄板ガラス基板から補強板を分離する方法が提案されている(例えば、特許文献1参照)。補強板は、支持板と、該支持板上に固定された樹脂層とを有し、樹脂層と薄板ガラス基板とが剥離可能に密着される。積層体の樹脂層と薄板ガラス基板の界面が剥離され、薄板ガラス基板から分離された補強板は、新たな薄板ガラス基板と積層され、積層体として再利用することが可能である。 Recently, in order to cope with the above-mentioned problems, a laminated body in which a thin glass substrate and a reinforcing plate are laminated is prepared, and after a device member is formed on the thin glass substrate of the laminated body, a reinforcing plate is attached from the thin glass substrate. A separation method has been proposed (see, for example, Patent Document 1). The reinforcing plate has a support plate and a resin layer fixed on the support plate, and the resin layer and the thin glass substrate are in close contact with each other in a peelable manner. The interface between the resin layer of the laminate and the thin glass substrate is peeled off, and the reinforcing plate separated from the thin glass substrate can be laminated with a new thin glass substrate and reused as a laminate.
国際公開第2007/018028号パンフレットInternational Publication No. 2007/018028 Pamphlet
 しかしながら、上記従来の構成の積層体では、補強板を薄板ガラス基板から分離する際に、樹脂層の一部が製品側である薄板ガラス基板の剥離面に付着してしまうことがあった。特に、積層体に対して高温条件で加熱処理を行った後に、樹脂層の一部が製品側である薄板ガラス基板の剥離面へ付着することが頻繁に発生し、結果として歩留まりの低下を招く懸念があった。 However, in the laminate having the above-described conventional configuration, when the reinforcing plate is separated from the thin glass substrate, a part of the resin layer may adhere to the peeling surface of the thin glass substrate on the product side. In particular, after the heat treatment is performed on the laminated body under high temperature conditions, a part of the resin layer frequently adheres to the peeling surface of the thin glass substrate on the product side, resulting in a decrease in yield. There was concern.
 また、分離された薄板ガラス基板剥離面上にさらに処理が施される場合があり、表面が清浄であることが望まれている。
 しかし、上記従来の構成の積層体では、分離された薄板ガラス基板の剥離面に樹脂層の成分が一部付着しており、溶媒等を使用した洗浄などによる清浄化処理により該付着物を除去しようとしても実用上望ましいレベルまで除去することができなかった。
Further, the separated thin glass substrate peeling surface may be further processed, and it is desired that the surface is clean.
However, in the laminated body having the above conventional configuration, a part of the resin layer component is adhered to the separation surface of the separated thin glass substrate, and the adhered matter is removed by cleaning treatment using a solvent or the like. Even if it tried, it was not able to be removed to a practically desirable level.
 さらに、従来の構成の積層体では、分離された薄板ガラス基板の剥離面において、剥離時やその後の取扱い時に、ガラスの割れ(クラック)などが生じることがあり、歩留まりの低下を招くことがあった。 Furthermore, in the laminated body having the conventional structure, a glass crack (crack) or the like may occur on the peeling surface of the separated thin glass substrate during peeling or subsequent handling, which may lead to a decrease in yield. It was.
 本発明は、上記課題に鑑みてなされたものであって、高温加熱処理が施された後であっても、樹脂層とガラス基板とを剥離する際に樹脂層のガラス基板の剥離面への付着を抑制すると共に、清浄化処理を施すことにより分離されたガラス基板の剥離面の清浄性を保持でき、さらに、ガラス基板の剥離面でのクラックの発生を抑制することができる積層体および積層体の製造方法を提供することを目的とする。
 さらに、本発明は、該積層体を含む支持板付き表示装置用パネル、支持板付き表示装置用パネルを用いて形成される表示装置用パネル、および、表示装置を提供することを目的とする。
The present invention has been made in view of the above-described problem, and even after the high-temperature heat treatment is performed, the resin layer and the glass substrate are peeled from the separation surface of the glass layer. Laminate and laminate capable of suppressing adhesion and maintaining the cleanliness of the separation surface of the glass substrate separated by performing a cleaning treatment, and further suppressing the occurrence of cracks on the separation surface of the glass substrate It aims at providing the manufacturing method of a body.
Furthermore, an object of this invention is to provide the display apparatus panel with a support plate containing this laminated body, the display apparatus panel formed using the display apparatus panel with a support plate, and a display apparatus.
 本発明者は、上記課題を解決するために鋭意検討を重ね、本発明を完成した。
 すなわち、上記目的を達成するために、本発明の第1の態様は、支持板の層と、樹脂層と、無機絶縁膜付きガラス基板の層と、をこの順で備え、かつ該無機絶縁膜付きガラス基板の無機絶縁膜と、該樹脂層と、が接している積層体であって、該無機絶縁膜付きガラス基板が、ガラス基板の片面にケイ素およびアルミニウムからなる群より選ばれる少なくとも一種を含む酸化物、窒化物または酸窒化物を含む無機絶縁膜を有し、該無機絶縁膜の前記樹脂層に接した面のアルカリ金属およびアルカリ土類金属の原子の合計含有量が0.5at%以下であり、該支持板の層と該樹脂層の界面の剥離強度が、該樹脂層と該無機絶縁膜の界面の剥離強度よりも高い、積層体である。
The inventor of the present invention has intensively studied in order to solve the above problems, and has completed the present invention.
That is, in order to achieve the above object, a first aspect of the present invention includes a support plate layer, a resin layer, and a layer of a glass substrate with an inorganic insulating film in this order, and the inorganic insulating film A laminated body in which the inorganic insulating film of the attached glass substrate is in contact with the resin layer, wherein the glass substrate with the inorganic insulating film is at least one selected from the group consisting of silicon and aluminum on one side of the glass substrate. And an inorganic insulating film containing an oxide, nitride or oxynitride, and the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film in contact with the resin layer is 0.5 at% This is a laminate in which the peel strength at the interface between the support plate layer and the resin layer is higher than the peel strength at the interface between the resin layer and the inorganic insulating film.
 第1の態様において、該無機絶縁膜が、酸化ケイ素、窒化ケイ素、酸窒化ケイ素または酸化アルミニウムからなる膜であることが好ましい。
 第1の態様において、該無機絶縁膜の該樹脂層に接した面の表面粗さ(Ra)が30nm未満であることが好ましい。
In the first aspect, the inorganic insulating film is preferably a film made of silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide.
In the first aspect, the surface roughness (Ra) of the surface of the inorganic insulating film in contact with the resin layer is preferably less than 30 nm.
 第1の態様において、該無機絶縁膜の厚さが5~5000nmであることが好ましい。
 第1の態様において、該ガラス基板の厚さが0.03~0.8mmであることが好ましい。
 第1の態様において、該樹脂層の樹脂がシリコーン樹脂であることが好ましい。
In the first aspect, the inorganic insulating film preferably has a thickness of 5 to 5000 nm.
In the first aspect, the glass substrate preferably has a thickness of 0.03 to 0.8 mm.
In the first aspect, the resin of the resin layer is preferably a silicone resin.
 第1の態様において、該シリコーン樹脂が、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンの反応硬化物であることが好ましい。
 第1の態様において、該樹脂層の厚さが1~100μmであることが好ましい。
 第1の態様において、該支持板がガラス板であることが好ましい。
In the first aspect, the silicone resin is preferably a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
In the first aspect, the thickness of the resin layer is preferably 1 to 100 μm.
In the first aspect, the support plate is preferably a glass plate.
 本発明の第2の態様は、支持板の層と、樹脂層と、無機絶縁膜付きガラス基板の層と、をこの順で備えた積層体を製造する方法であって、ガラス基板の片面にケイ素およびアルミニウムからなる群より選ばれる少なくとも一種を含む酸化物、窒化物または酸窒化物を含む無機絶縁膜を有し、該無機絶縁膜の該樹脂層に接する面のアルカリ金属およびアルカリ土類金属の原子の合計含有量が0.5at%以下である無機絶縁膜付きガラス基板を用意し、該支持板の片面に固定された該樹脂層を有しかつ該樹脂層の露出した表面が非付着性を有する、樹脂層付き支持板を用意し、該無機絶縁膜付きガラス基板の無機絶縁膜の面と、該樹脂層付き支持板の樹脂層表面と、を積層面として、該無機絶縁膜付きガラス基板と、該樹脂層付き支持板と、を積層する積層体の製造方法である。 The second aspect of the present invention is a method for producing a laminate comprising a support plate layer, a resin layer, and a layer of a glass substrate with an inorganic insulating film in this order, on one side of the glass substrate. Alkali metal and alkaline earth metal having an inorganic insulating film containing an oxide, nitride or oxynitride containing at least one selected from the group consisting of silicon and aluminum, and in contact with the resin layer of the inorganic insulating film A glass substrate with an inorganic insulating film having a total content of atoms of 0.5 at% or less, having the resin layer fixed on one side of the support plate, and the exposed surface of the resin layer being non-adhering A support plate with a resin layer is prepared, and the inorganic insulating film surface of the glass substrate with the inorganic insulating film and the resin layer surface of the support plate with the resin layer are laminated on the laminated surface. A glass substrate, a support plate with the resin layer, A method for producing a laminate to be laminated.
 第2の態様において、該樹脂層付き支持板が、オルガノアルケニルポリシロキサンと、オルガノハイドロジェンポリシロキサンと、を該支持板上で反応硬化して得られたシリコーン樹脂の層を有する支持板であることが好ましい。 In the second embodiment, the support plate with a resin layer is a support plate having a silicone resin layer obtained by reaction-curing organoalkenylpolysiloxane and organohydrogenpolysiloxane on the support plate. It is preferable.
 本発明の第3の態様は、本発明の第1の態様の積層体と、該積層体のガラス基板表面に設けられた表示装置用部材とを有する、支持板付き表示装置用パネルである。 A third aspect of the present invention is a display device-equipped panel having the laminate of the first aspect of the present invention and a display device member provided on the glass substrate surface of the laminate.
 本発明の第4の態様は、本発明の第3の態様の支持板付き表示装置用パネルから、該無機絶縁膜と該樹脂層との界面を剥離面として樹脂層付き支持板を剥離除去して形成された表示装置用パネルである。 According to a fourth aspect of the present invention, the support plate with a resin layer is peeled and removed from the panel for a display device with a support plate according to the third aspect of the present invention, with the interface between the inorganic insulating film and the resin layer as a release surface. It is the panel for display apparatuses formed.
 本発明の第5の態様は、本発明の第4の態様の表示装置用パネルを有する表示装置である。 A fifth aspect of the present invention is a display device having the display device panel according to the fourth aspect of the present invention.
 本発明によれば、積層体が高温加熱処理が施された後であっても、樹脂層とガラス基板とを剥離する際に樹脂層の樹脂がガラス基板側の剥離面(すなわち、無機絶縁膜の表面)へ付着することを抑制することができ、清浄化処理を施すことにより分離されたガラス基板側の剥離面の清浄性を保持でき、さらに、ガラス基板側の剥離面の耐薬品性を向上しかつクラックの発生を抑制することができる積層体および積層体の製造方法を提供することができる。
 さらに、本発明によれば、該積層体を含む支持板付き表示装置用パネル、支持板付き表示装置用パネルを用いて形成される表示装置用パネル、および、表示装置を提供することができる。
According to the present invention, even after the laminate has been subjected to high-temperature heat treatment, when the resin layer and the glass substrate are peeled off, the resin of the resin layer is peeled from the glass substrate side (that is, the inorganic insulating film). Can be prevented from adhering to the surface of the glass substrate, the cleanliness of the release surface on the side of the glass substrate separated by the cleaning treatment can be maintained, and the chemical resistance of the release surface on the side of the glass substrate can be maintained. It is possible to provide a laminate and a method for manufacturing the laminate that can improve and suppress the occurrence of cracks.
Furthermore, according to the present invention, it is possible to provide a display device panel with a support plate including the laminate, a display device panel formed using the display device panel with the support plate, and a display device.
図1は、本発明に係る積層体の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a laminate according to the present invention. 図2は、本発明に係る支持板付き表示装置用パネルの一実施形態の模式的断面図である。FIG. 2 is a schematic cross-sectional view of one embodiment of the display device-equipped panel according to the present invention.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。
 なお、本発明において、支持板の層と樹脂層の界面の剥離強度が樹脂層と無機絶縁膜の界面の剥離強度よりも高いことを、以下、樹脂層と無機絶縁膜とは剥離可能に密着し、支持板と樹脂層とは固定されているという。
 本発明において、at%とは、全原子数に対する各原子の割合を指す。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not deviated from the scope of the present invention. Various modifications and substitutions can be made.
In the present invention, the peel strength at the interface between the support plate layer and the resin layer is higher than the peel strength at the interface between the resin layer and the inorganic insulating film. The support plate and the resin layer are fixed.
In the present invention, “at%” refers to the ratio of each atom to the total number of atoms.
 図1は、本発明に係る積層体の一例の模式的断面図である。
 図1に示すように、積層体10は、無機絶縁膜付きガラス基板24の層と、支持板31の層と、それらの間に樹脂層32が存在する積層体である。
 無機絶縁膜付きガラス基板24は、ガラス基板20と、その表面上に設けられる無機絶縁膜22とを備える。無機絶縁膜付きガラス基板24の層は、その無機絶縁膜22と、樹脂層32と、が接するように樹脂層32上に配置され、その無機絶縁膜22と樹脂層32との界面は剥離可能に密着されている。なお、無機絶縁膜22と、樹脂層32と、の界面となる無機絶縁膜表面を表面221とし、樹脂層表面を表面321とする。
 また、樹脂層32は、その一方の面が支持板31の層に固定されると共に、その他方の面(表面321)が無機絶縁膜付きガラス基板24の無機絶縁膜22に接し、樹脂層32と無機絶縁膜22との界面は剥離可能に密着されている。支持板31の層および樹脂層32からなる2層部分は、液晶パネルなどのデバイス(電子機器)を製造する工程において、無機絶縁膜付きガラス基板24を補強する。なお、積層体10の支持板31の層および樹脂層32からなる2層部分が積層体10から独立したものを樹脂層付き支持板(以下、補強板ともいう。)といい、積層体10における該2層部分を補強板30の層という。補強板30において樹脂層32は支持板31に固定されている。
FIG. 1 is a schematic cross-sectional view of an example of a laminate according to the present invention.
As shown in FIG. 1, the laminated body 10 is a laminated body in which the layer of the glass substrate 24 with an inorganic insulating film, the layer of the support plate 31, and the resin layer 32 exist therebetween.
The glass substrate 24 with an inorganic insulating film includes a glass substrate 20 and an inorganic insulating film 22 provided on the surface thereof. The layer of the glass substrate 24 with the inorganic insulating film is disposed on the resin layer 32 so that the inorganic insulating film 22 and the resin layer 32 are in contact with each other, and the interface between the inorganic insulating film 22 and the resin layer 32 can be peeled off. Is in close contact. Note that the surface of the inorganic insulating film serving as the interface between the inorganic insulating film 22 and the resin layer 32 is referred to as a surface 221, and the surface of the resin layer is referred to as a surface 321.
The resin layer 32 has one surface fixed to the layer of the support plate 31 and the other surface (surface 321) in contact with the inorganic insulating film 22 of the glass substrate 24 with the inorganic insulating film. And the inorganic insulating film 22 are in close contact with each other in a peelable manner. The two-layer portion composed of the layer of the support plate 31 and the resin layer 32 reinforces the glass substrate 24 with an inorganic insulating film in the process of manufacturing a device (electronic device) such as a liquid crystal panel. In addition, the two-layer portion including the layer of the support plate 31 and the resin layer 32 of the laminate 10 independent of the laminate 10 is referred to as a support plate with a resin layer (hereinafter also referred to as a reinforcing plate). The two-layer portion is referred to as a reinforcing plate 30 layer. In the reinforcing plate 30, the resin layer 32 is fixed to the support plate 31.
 この積層体10は、デバイスの製造工程の途中まで使用される。即ち、この積層体10は、そのガラス基板表面(すなわち、無機絶縁膜付きガラス基板24の無機絶縁膜22が存在しない第2主面202)上に薄膜トランジスタなどのデバイス用部材が形成されるまで使用される。その後、補強板30の層は、無機絶縁膜付きガラス基板24の層との界面で剥離され、積層体10の補強板30の層は、デバイスを構成する部分とはならない。無機絶縁膜付きガラス基板24から分離された補強板30、すなわち樹脂層付き支持板、は新たな無機絶縁膜付きガラス基板24と積層され、積層体10として再利用することができる。 This laminate 10 is used halfway through the device manufacturing process. That is, the laminate 10 is used until a device member such as a thin film transistor is formed on the surface of the glass substrate (that is, the second main surface 202 where the inorganic insulating film 22 of the glass substrate 24 with the inorganic insulating film does not exist). Is done. Thereafter, the layer of the reinforcing plate 30 is peeled off at the interface with the layer of the glass substrate 24 with the inorganic insulating film, and the layer of the reinforcing plate 30 of the laminate 10 does not become a part constituting the device. The reinforcing plate 30 separated from the glass substrate 24 with an inorganic insulating film, that is, the support plate with a resin layer, is laminated with a new glass substrate 24 with an inorganic insulating film, and can be reused as the laminate 10.
 本発明においては、無機絶縁膜22と、樹脂層32と、が接した構成の積層体10であることにより、所望の効果が得られることを見出した。
 以下、各構成(無機絶縁膜付きガラス基板、樹脂層、支持板)について詳説する。
In the present invention, it has been found that a desired effect can be obtained by the laminated body 10 having a configuration in which the inorganic insulating film 22 and the resin layer 32 are in contact with each other.
Hereinafter, each configuration (a glass substrate with an inorganic insulating film, a resin layer, a support plate) will be described in detail.
<無機絶縁膜付きガラス基板>
 はじめに、無機絶縁膜付きガラス基板24について説明する。
 無機絶縁膜付きガラス基板24は、ガラス基板20と、その表面上に設けられる無機絶縁膜22と、を備える。無機絶縁膜22は、後述する樹脂層32と剥離可能に密着するように、無機絶縁膜付きガラス基板24中の最表面に配置される。
 以下に、ガラス基板20、無機絶縁膜22、および無機絶縁膜22の製造方法について詳述する。
<Glass substrate with inorganic insulating film>
First, the glass substrate 24 with an inorganic insulating film will be described.
The glass substrate 24 with an inorganic insulating film includes a glass substrate 20 and an inorganic insulating film 22 provided on the surface thereof. The inorganic insulating film 22 is disposed on the outermost surface in the glass substrate 24 with the inorganic insulating film so as to be in close contact with a resin layer 32 to be described later.
Below, the manufacturing method of the glass substrate 20, the inorganic insulating film 22, and the inorganic insulating film 22 is explained in full detail.
(ガラス基板)
 ガラス基板20は、樹脂層32側の第1主面201に無機絶縁膜22を備え、樹脂層32側とは反対側の第2主面202にデバイス用部材が形成されてデバイスを構成する。ここで、デバイス用部材とは、後述する表示装置用パネルの構成部材のように、デバイスの少なくとも一部を構成する部材をいう。具体例としては、薄膜トランジスタ(TFT)、カラーフィルタ(CF)が挙げられる。デバイスとしては、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などが例示される。
(Glass substrate)
The glass substrate 20 includes the inorganic insulating film 22 on the first main surface 201 on the resin layer 32 side, and a device member is formed on the second main surface 202 on the opposite side to the resin layer 32 side to constitute a device. Here, the device member refers to a member constituting at least a part of the device, such as a constituent member of a display device panel described later. Specific examples include a thin film transistor (TFT) and a color filter (CF). Examples of the device include a solar cell (PV), a liquid crystal panel (LCD), and an organic EL panel (OLED).
 ガラス基板20の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板20は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。 The type of the glass substrate 20 may be a general one, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 20 is excellent in chemical resistance and moisture permeability and has a low thermal shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
 ガラス基板20の線膨張係数が大きいと、デバイスの製造工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、ガラス基板20上にTFTを形成する場合、加熱下でTFTが形成されたガラス基板20を冷却すると、ガラス基板20の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the glass substrate 20 is large, the device manufacturing process often involves heat treatment, and various inconveniences are likely to occur. For example, when a TFT is formed on the glass substrate 20, if the glass substrate 20 on which the TFT is formed is cooled under heating, the TFT may be excessively misaligned due to thermal contraction of the glass substrate 20.
 ガラス基板20は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板20は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 20 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. The glass substrate 20 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板20のガラスは、特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The glass of the glass substrate 20 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板20のガラスとしては、デバイスの種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 20, glass suitable for the type of device and its manufacturing process is adopted. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate is appropriately selected based on the type of device to be applied and its manufacturing process.
 ガラス基板20の厚さは、特に限定されないが、ガラス基板20の薄型化および/または軽量化の観点から、通常0.8mm以下であり、好ましくは0.3mm以下であり、さらに好ましくは0.15mm以下である。0.8mm超の場合、ガラス基板20の薄型化および/または軽量化の要求を満たせない。0.3mm以下の場合、ガラス基板20に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板20をロール状に巻き取ることが可能である。また、ガラス基板20の厚さは、ガラス基板20の製造が容易であること、ガラス基板20の取り扱いが容易であることなどの理由から、0.03mm以上であることが好ましい。 The thickness of the glass substrate 20 is not particularly limited, but is usually 0.8 mm or less, preferably 0.3 mm or less, more preferably 0.8 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 20. It is 15 mm or less. When the thickness exceeds 0.8 mm, the glass substrate 20 cannot satisfy the demand for thinning and / or lightening. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 20. In the case of 0.15 mm or less, the glass substrate 20 can be rolled up. Further, the thickness of the glass substrate 20 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 20 and easy handling of the glass substrate 20.
 なお、ガラス基板20は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板20の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 20 may be composed of two or more layers. In this case, the material for forming each layer may be the same material or different materials. In this case, the “thickness of the glass substrate 20” means the total thickness of all the layers.
(無機絶縁膜)
 無機絶縁膜22は、ケイ素およびアルミニウムからなる群より選ばれる少なくとも一種を含む酸化物、窒化物または酸窒化物を含み、これら化合物の混合物を含んでいてもよい。好ましくは無機絶縁膜22は、ケイ素またはアルミニウムの酸化物、窒化物または酸窒化物を含み、これら化合物の混合物であってもよい。無機絶縁膜22は、ケイ素またはアルミニウムの酸化物、窒化物または酸窒化物のいずれかからなることが好ましい。場合により、無機絶縁膜22は、金属原子としてケイ素原子とアルミニウム原子以外の金属原子を含んでいてもよい。例えば、チタン原子、タングステン原子、タンタル原子、モリブデン原子などを含んでいてもよい。しかし、後述のようにアルカリ金属原子およびアルカリ土類金属原子は実質的に含まないことが好ましい。
 具体的には、二酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、窒化ケイ素(Si34)、窒化アルミニウム(AlN)、酸窒化ケイ素(SiOx2-x、xは0.1~1.9)、酸窒化アルミニウム(Al2y3-y、yは0.1~2.9)、酸窒化ケイ素アルミニウム(Al2-xSixz4-x、xは0.1~1.9であり、zは0.1~3.9)などが挙げられる。または、これらの混合物であってもよい。
 なかでも、耐熱性に優れ、耐クラック性が良好であることより、二酸化ケイ素(SiO2)、窒化ケイ素(Si34)、SiOx2-xで表わされxが0.6~1.4の範囲にある酸窒化ケイ素、酸化アルミニウム(Al23)が好ましく挙げられる。特に、結晶性の二酸化ケイ素が好ましい。
(Inorganic insulating film)
The inorganic insulating film 22 includes an oxide, nitride, or oxynitride containing at least one selected from the group consisting of silicon and aluminum, and may include a mixture of these compounds. Preferably, the inorganic insulating film 22 contains an oxide, nitride or oxynitride of silicon or aluminum, and may be a mixture of these compounds. The inorganic insulating film 22 is preferably made of either silicon or aluminum oxide, nitride, or oxynitride. In some cases, the inorganic insulating film 22 may contain metal atoms other than silicon atoms and aluminum atoms as metal atoms. For example, a titanium atom, a tungsten atom, a tantalum atom, a molybdenum atom, or the like may be included. However, it is preferable that an alkali metal atom and an alkaline earth metal atom are not substantially contained as described later.
Specifically, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), silicon oxynitride (SiO x N 2−x , x is 0 .1 to 1.9), aluminum oxynitride (Al 2 O y N 3 -y , y is 0.1 to 2.9), aluminum oxynitride (Al 2 -x Si x O z N 4 -x , x is 0.1 to 1.9, and z is 0.1 to 3.9). Alternatively, a mixture thereof may be used.
Among them, since it has excellent heat resistance and good crack resistance, it is represented by silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), SiO x N 2-x and x is 0.6 to 0.6 Preferred examples include silicon oxynitride and aluminum oxide (Al 2 O 3 ) in the range of 1.4. In particular, crystalline silicon dioxide is preferable.
 無機絶縁膜22は、上記酸化物、窒化物、または酸窒化物が主成分として含まれていることが好ましく、具体的には上記酸化物、窒化物、および酸窒化物の含有量が、無機絶縁膜全量に対して、98質量%以上であることが好ましく、99質量%以上であることがより好ましく、99.999質量%以上であることが特に好ましい。 The inorganic insulating film 22 preferably contains the oxide, nitride, or oxynitride as a main component. Specifically, the content of the oxide, nitride, and oxynitride is inorganic. It is preferably 98% by mass or more, more preferably 99% by mass or more, and particularly preferably 99.999% by mass or more with respect to the total amount of the insulating film.
 無機絶縁膜22は、優れた耐熱性を示す。そのため、積層体10を高温条件に曝しても、膜自体の化学変化が起きにくく、樹脂層32との間でも化学結合を生じにくく、重剥離化による樹脂層32の樹脂の無機絶縁膜付きガラス基板24への付着を生じにくい。また、無機絶縁膜22自体が優れた機械的強度を有しており、ガラス基板20表面に対して耐クラック性を付与し得る。
 上記の重剥離化とは、無機絶縁膜22と樹脂層32との界面の剥離強度が、支持板31と樹脂層32の界面の剥離強度、および、樹脂層32の材料自体の強度(バルク強度)のいずれかよりも大きくなることをいう。無機絶縁膜22と樹脂層32の界面で重剥離化が起こると、露出した無機絶縁膜表面221に樹脂層32の表面321の樹脂が付着しやすく、その表面の清浄化が困難となりやすい。無機絶縁膜表面221への樹脂の付着とは、樹脂層32全体が無機絶縁膜表面221に付着すること、および、樹脂層32の表面321が損傷し樹脂層32の表面321の樹脂の一部が無機絶縁膜表面221に付着すること、などを意味する。
The inorganic insulating film 22 exhibits excellent heat resistance. Therefore, even if the laminated body 10 is exposed to a high temperature condition, chemical change of the film itself hardly occurs, chemical bond with the resin layer 32 hardly occurs, and the resin with the inorganic insulating film of the resin of the resin layer 32 by heavy peeling. Adhesion to the substrate 24 hardly occurs. Further, the inorganic insulating film 22 itself has excellent mechanical strength, and can impart crack resistance to the surface of the glass substrate 20.
The above heavy peeling means that the peeling strength at the interface between the inorganic insulating film 22 and the resin layer 32 is the peeling strength at the interface between the support plate 31 and the resin layer 32 and the strength of the material itself of the resin layer 32 (bulk strength). ) Means larger than any of the above. When heavy peeling occurs at the interface between the inorganic insulating film 22 and the resin layer 32, the resin on the surface 321 of the resin layer 32 tends to adhere to the exposed inorganic insulating film surface 221, and it becomes difficult to clean the surface. The adhesion of the resin to the inorganic insulating film surface 221 means that the entire resin layer 32 adheres to the inorganic insulating film surface 221, and the surface 321 of the resin layer 32 is damaged and a part of the resin on the surface 321 of the resin layer 32. Means to adhere to the surface 221 of the inorganic insulating film.
 無機絶縁膜22の厚みは特に制限されないが、重剥離化による樹脂層32の無機絶縁膜付きガラス基板24への付着をより抑制し、かつ耐擦傷性を維持する点では、5~5000nmが好ましく、10~500nmがより好ましい。 The thickness of the inorganic insulating film 22 is not particularly limited, but is preferably 5 to 5000 nm from the viewpoint of further suppressing the adhesion of the resin layer 32 to the glass substrate 24 with the inorganic insulating film due to heavy peeling and maintaining the scratch resistance. 10 to 500 nm is more preferable.
 無機絶縁膜22は、無機絶縁膜付きガラス基板24をデバイス用途に使用する点を考慮すると、透明であることが好ましい。具体的には、波長380~780nmにおける透過率、すなわち無機絶縁膜付きガラス基板24の可視光透過率が70%以上であることが好ましく、80%以上であることがより好ましい。 The inorganic insulating film 22 is preferably transparent in consideration of using the glass substrate 24 with an inorganic insulating film for device applications. Specifically, the transmittance at a wavelength of 380 to 780 nm, that is, the visible light transmittance of the glass substrate 24 with an inorganic insulating film is preferably 70% or more, and more preferably 80% or more.
 無機絶縁膜22は、図1において単層として記載されているが、2層以上の積層であってもよい。例えば、無機絶縁膜22が2層である場合、ガラス基板20に接する第1の無機絶縁膜と、第1の無機絶縁膜の上に設けられた第2の無機絶縁膜が設けられる。無機絶縁膜22が2層である場合、第1の無機絶縁膜と第2の無機絶縁膜との成分は異なっていてもよい。さらに、第1の無機絶縁膜と第2の無機絶縁膜の間、あるいはガラス基板20と第1の無機絶縁膜の間に無機導電膜が設けられていてもよい。
 また、例えば、無機絶縁膜22の樹脂層32に接した面の表面粗さ(Ra)が30nm未満である範囲において、無機導電膜が、島状や、ストライプ状に設けられていてもよい。
 また、ガラス基板20と無機絶縁膜22との間に、例えば、ガラス基板20から無機絶縁膜22へのアルカリイオンの拡散を防止するアルカリバリア層、無機絶縁膜22の表面を平坦化させる平坦化層が設けられていてもよい。
The inorganic insulating film 22 is described as a single layer in FIG. 1, but may be a laminate of two or more layers. For example, when the inorganic insulating film 22 has two layers, a first inorganic insulating film in contact with the glass substrate 20 and a second inorganic insulating film provided on the first inorganic insulating film are provided. When the inorganic insulating film 22 has two layers, the components of the first inorganic insulating film and the second inorganic insulating film may be different. Furthermore, an inorganic conductive film may be provided between the first inorganic insulating film and the second inorganic insulating film, or between the glass substrate 20 and the first inorganic insulating film.
For example, the inorganic conductive film may be provided in an island shape or a stripe shape in a range where the surface roughness (Ra) of the surface of the inorganic insulating film 22 in contact with the resin layer 32 is less than 30 nm.
Further, between the glass substrate 20 and the inorganic insulating film 22, for example, an alkali barrier layer that prevents diffusion of alkali ions from the glass substrate 20 to the inorganic insulating film 22, and planarization that flattens the surface of the inorganic insulating film 22. A layer may be provided.
 無機絶縁膜22は、本発明の効果を損なわない範囲で、ガラス基板20表面上の一部に設けられていてもよい。例えば、無機絶縁膜22が、ガラス基板20表面上に、島状や、ストライプ状に設けられていてもよい。
 より具体的には、無機絶縁膜22のガラス基板20表面上の被覆率は、重剥離化による樹脂層32の無機絶縁膜付きガラス基板24への付着をより抑制する点では、50~100%が好ましく、75~100%がより好ましい。
The inorganic insulating film 22 may be provided on a part of the surface of the glass substrate 20 as long as the effects of the present invention are not impaired. For example, the inorganic insulating film 22 may be provided on the surface of the glass substrate 20 in an island shape or a stripe shape.
More specifically, the coverage of the inorganic insulating film 22 on the surface of the glass substrate 20 is 50 to 100% in terms of further suppressing the adhesion of the resin layer 32 to the glass substrate 24 with the inorganic insulating film due to heavy peeling. Is preferable, and 75 to 100% is more preferable.
 積層体10において、無機絶縁膜22の樹脂層32に接している面(すなわち、無機絶縁膜表面221。)のアルカリ金属およびアルカリ土類金属の原子の合計含有量は0.5at%以下であり、0.1at%以下であることがより好ましい。積層前の無機絶縁膜付きガラス基板24、または積層体10から分離した後の無機絶縁膜付きガラス基板24においても、無機絶縁膜22のガラス基板20がある側とは反対側の表面のアルカリ金属およびアルカリ土類金属の原子の合計含有量も同様であり、0.5at%以下であり、0.1at%以下であることがより好ましい。上記範囲とすることにより重剥離化などが生じにくくなり、高温処理後における樹脂層32の樹脂の付着をさらに抑制することができると共に、付着した樹脂の除去性にもより優れた表面とすることができる。以下、積層体10における無機絶縁膜表面221と、無機絶縁膜付きガラス基板24自体の無機絶縁膜表面と、を特に言及しない限りいずれも無機絶縁膜表面221という。
 本発明において、アルカリ金属およびアルカリ土類金属の原子の合計含有量とは、無機絶縁膜表面をXPS(X線光電子分光装置)で測定して得られる表面のアルカリ金属原子およびアルカリ土類金属原子の含有量を意味する。また、XPS測定には、公知のXPS測定装置を使用することができる。なお、以下、アルカリ金属およびアルカリ土類金属の原子の合計含有量が0.5at%以下であることを、アルカリ金属原子およびアルカリ土類金属原子を実質的に含まない、ともいう。
In the laminate 10, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film 22 in contact with the resin layer 32 (that is, the inorganic insulating film surface 221) is 0.5 at% or less. More preferably, it is 0.1 at% or less. Also in the glass substrate 24 with the inorganic insulating film before lamination or the glass substrate 24 with the inorganic insulating film after separation from the laminated body 10, the alkali metal on the surface opposite to the side where the glass substrate 20 of the inorganic insulating film 22 is present. Similarly, the total content of atoms of the alkaline earth metal is 0.5 at% or less, and more preferably 0.1 at% or less. By making it in the above range, it becomes difficult to cause heavy peeling, etc., and it is possible to further suppress the adhesion of the resin of the resin layer 32 after the high temperature treatment, and to make the surface more excellent in the removability of the adhered resin. Can do. Hereinafter, unless specifically mentioned, the inorganic insulating film surface 221 in the laminate 10 and the inorganic insulating film surface of the glass substrate 24 itself with an inorganic insulating film are referred to as the inorganic insulating film surface 221.
In the present invention, the total content of alkali metal and alkaline earth metal atoms means the surface of alkali metal atoms and alkaline earth metal atoms obtained by measuring the inorganic insulating film surface with XPS (X-ray photoelectron spectrometer). Means the content of. For XPS measurement, a known XPS measurement device can be used. Hereinafter, the total content of alkali metal and alkaline earth metal atoms being 0.5 at% or less is also referred to as substantially free of alkali metal atoms and alkaline earth metal atoms.
 さらに、積層体10において無機絶縁膜22の樹脂層32に接した面(すなわち、無機絶縁膜表面221。)の表面粗さ(Ra)は30nm未満であることが好ましい。同様に、無機絶縁膜付きガラス基板24においても無機絶縁膜表面の表面粗さ(Ra)は30nm未満であることが好ましい。上記範囲とすることにより重剥離化などが生じにくくなり、高温処理後における樹脂層32の樹脂の付着をさらに抑制することができると共に、付着した樹脂の除去性にもより優れた表面とすることができる。なかでも、本発明の効果がより優れる点で、表面粗さ(Ra)は10nm以下が好ましく、1nm以下がより好ましい。なお、下限は特に制限されないが、0nmであることが好ましい。
 RaはJIS B 0601(2001年改正)に従って測定される。
 また、無機絶縁膜付きガラス基板24の無機絶縁膜側表面に関する上記2つの表面特性は、いずれも満たされていることがより好ましい。すなわち、無機絶縁膜付きガラス基板24の無機絶縁膜側表面は、アルカリ金属原子およびアルカリ土類金属原子を実質的に含まず、かつその表面粗さ(Ra)は30nm未満であることがより好ましい。
Furthermore, the surface roughness (Ra) of the surface of the laminated body 10 in contact with the resin layer 32 of the inorganic insulating film 22 (that is, the inorganic insulating film surface 221) is preferably less than 30 nm. Similarly, in the glass substrate 24 with an inorganic insulating film, the surface roughness (Ra) of the surface of the inorganic insulating film is preferably less than 30 nm. By making it in the above range, it becomes difficult to cause heavy peeling, etc., and it is possible to further suppress the adhesion of the resin of the resin layer 32 after the high temperature treatment, and to make the surface more excellent in the removability of the adhered resin. Can do. Among these, the surface roughness (Ra) is preferably 10 nm or less, and more preferably 1 nm or less, in that the effect of the present invention is more excellent. The lower limit is not particularly limited, but is preferably 0 nm.
Ra is measured according to JIS B 0601 (revised 2001).
Moreover, it is more preferable that both of the two surface characteristics related to the surface of the inorganic insulating film-side glass substrate 24 on the inorganic insulating film side are satisfied. That is, it is more preferable that the inorganic insulating film side surface of the glass substrate 24 with the inorganic insulating film does not substantially contain alkali metal atoms and alkaline earth metal atoms, and the surface roughness (Ra) is less than 30 nm. .
 通常のガラス基板には、所定量のアルカリ金属やアルカリ土類金属成分が含まれることより、その表面にはアルカリ金属原子やアルカリ土類金属原子が存在する。例えば、無アルカリホウケイ酸ガラスからなるガラス基板にはアルカリ金属成分は実質的に含まれないが、所定量のアルカリ土類金属成分が含まれることより、その表面にはアルカリ土類金属原子が存在する。また、ソーダライムガラスからなるガラス基板は、所定量のアルカリ金属成分とアルカリ土類金属成分が含まれることより、その表面にはアルカリ金属原子とアルカリ土類金属原子が存在する。そのため、ガラス基板と、樹脂層と、を直接接触させて高温条件に曝した場合、アルカリ金属原子やアルカリ土類金属原子が脱離して樹脂層の成分と化学反応し、その結果、ガラス基板表面とその表面に接した樹脂層間の結合力が増大する。このため、ガラス基板20と樹脂層32とを分離することが困難になりやすく、また重剥離化も起こりやすい。なお、アルカリ金属とはリチウム、ナトリウム、およびカリウムをいい、アルカリ土類金属とは、マグネシウム、カルシウム、バリウムおよびストロンチウムをいう。 Since a normal glass substrate contains a predetermined amount of alkali metal or alkaline earth metal component, alkali metal atoms or alkaline earth metal atoms are present on the surface thereof. For example, a glass substrate made of alkali-free borosilicate glass is substantially free of alkali metal components, but contains a predetermined amount of alkaline earth metal components, so that there are alkaline earth metal atoms on the surface. To do. In addition, since a glass substrate made of soda lime glass contains a predetermined amount of alkali metal component and alkaline earth metal component, alkali metal atoms and alkaline earth metal atoms are present on the surface thereof. Therefore, when the glass substrate and the resin layer are directly contacted and exposed to high temperature conditions, alkali metal atoms or alkaline earth metal atoms are detached and chemically react with the components of the resin layer. And the bonding force between the resin layers in contact with the surface increases. For this reason, it becomes difficult to separate the glass substrate 20 and the resin layer 32, and heavy peeling easily occurs. The alkali metal refers to lithium, sodium, and potassium, and the alkaline earth metal refers to magnesium, calcium, barium, and strontium.
 無機絶縁膜付きガラス基板24においては、ガラス基板20中のアルカリ金属原子やアルカリ土類金属原子が無機絶縁膜22によりブロックされるとともに、さらに無機絶縁膜表面221もアルカリ金属原子やアルカリ土類金属原子を実質的に含まないものとすることにより、積層体10において無機絶縁膜表面221からアルカリ金属原子やアルカリ土類金属原子が樹脂層32側に脱離して生じる化学反応の進行がなく、重剥離化などが生じにくいと考えられる。これにより、積層体10が高温処理された後における剥離において、無機絶縁膜表面221に樹脂の付着を抑制することができると共に、付着した樹脂の除去性にもより優れた表面とすることができる。無機絶縁膜表面221のXPS測定によるアルカリ金属やアルカリ土類金属の原子の合計含有量は、0.5at%以下であり、0.1at%以下であることがより好ましい。 In the glass substrate 24 with the inorganic insulating film, alkali metal atoms and alkaline earth metal atoms in the glass substrate 20 are blocked by the inorganic insulating film 22, and the inorganic insulating film surface 221 also has alkali metal atoms and alkaline earth metal. By making the layer substantially free of atoms, there is no progress of a chemical reaction caused by desorption of alkali metal atoms or alkaline earth metal atoms from the inorganic insulating film surface 221 to the resin layer 32 side in the laminate 10, and heavy It is considered that exfoliation is unlikely to occur. Thereby, in the peeling after the laminated body 10 is subjected to the high temperature treatment, the adhesion of the resin to the inorganic insulating film surface 221 can be suppressed, and the surface having a more excellent removability of the adhered resin can be obtained. . The total content of alkali metal and alkaline earth metal atoms by XPS measurement on the inorganic insulating film surface 221 is 0.5 at% or less, and more preferably 0.1 at% or less.
 アルカリ金属原子やアルカリ土類金属原子を実質的に含まない表面は、無機絶縁膜22を形成するための材料として、アルカリ金属原子やアルカリ土類金属原子を実質的に含まない材料を使用することにより得られる。例えば、スパッタリング法で無機絶縁膜22を形成する場合は、スパッタターゲットなどの無機絶縁膜材料やスパッタリング雰囲気ガスなどの材料としてアルカリ金属原子やアルカリ土類金属原子が少ない材料を使用することにより、アルカリ金属原子やアルカリ土類金属原子を実質的に含まない表面を有する無機絶縁膜22を形成することができる。通常、無機絶縁膜22を形成するための上記のような材料に意図的にアルカリ金属原子やアルカリ土類金属原子を添加しない限り、不純物として該材料に含まれるアルカリ金属原子やアルカリ土類金属原子は少ない。したがって、通常使用される材料を使用して得られる無機絶縁膜22は、実質的にアルカリ金属原子やアルカリ土類金属原子を含まない無機絶縁膜となる。
 また、特に厚さの薄い無機絶縁膜22でない限り、ガラス基板20のアルカリ金属原子やアルカリ金属原子が無機絶縁膜22に浸透し、ガラス基板に接していない表面まで達することはない。上記のように、無機絶縁膜22の厚さが5nm程度以上であれば、ガラス基板20のアルカリ金属原子やアルカリ土類金属原子を充分ブロックできる。
For the surface that does not substantially contain alkali metal atoms or alkaline earth metal atoms, a material that does not substantially contain alkali metal atoms or alkaline earth metal atoms is used as a material for forming the inorganic insulating film 22. Is obtained. For example, when the inorganic insulating film 22 is formed by a sputtering method, an alkali insulating material such as a sputtering target or a material containing few alkali metal atoms or alkaline earth metal atoms is used as a material such as a sputtering atmosphere gas. An inorganic insulating film 22 having a surface substantially free of metal atoms and alkaline earth metal atoms can be formed. Usually, unless an alkali metal atom or an alkaline earth metal atom is intentionally added to the above-described material for forming the inorganic insulating film 22, an alkali metal atom or an alkaline earth metal atom contained in the material as an impurity There are few. Therefore, the inorganic insulating film 22 obtained by using a normally used material is an inorganic insulating film substantially not containing alkali metal atoms or alkaline earth metal atoms.
In addition, unless the inorganic insulating film 22 is particularly thin, alkali metal atoms or alkali metal atoms of the glass substrate 20 penetrate into the inorganic insulating film 22 and do not reach the surface not in contact with the glass substrate. As described above, when the thickness of the inorganic insulating film 22 is about 5 nm or more, alkali metal atoms and alkaline earth metal atoms of the glass substrate 20 can be sufficiently blocked.
 通常使用されているガラス基板20の表面は平滑であり、その上に形成した無機絶縁膜22の表面も平滑なものとなる。すなわち、通常使用されているガラス基板20の表面粗さ(Ra)は30nm未満であり、その上に形成された無機絶縁膜22のガラス基板20と接していない表面(無機絶縁膜表面221)の表面粗さは30nm未満となる。しかし、場合により、ガラス基板20表面をエッチング等により粗面化することがある。例えば、無機絶縁膜22の種類によってはガラス基板20表面との結合強度を高めるためにガラス基板20表面を粗面化することがある。また、ガラス基板20表面からの反射光を拡散して反射光による眩しさを低減するための処理(ノングレア化処理)として、ガラス基板20表面を粗面化することもある。ガラス基板20表面を粗面化した場合、粗面化された表面の表面粗さ(Ra)が30nm以上となるとその上に形成された無機絶縁膜22のガラス基板20と接していない表面(無機絶縁膜表面221)の表面粗さも30nm以上となるおそれが生じる。なお、無機絶縁膜22の形成により、ガラス基板20表面の表面粗さが直接無機絶縁膜表面221の表面粗さとなるとは限られず、無機絶縁膜22の表面粗さが緩和されることもあるので、無機絶縁膜表面221の表面粗さはガラス基板20表面の表面粗さのみに規定されるものではない。 The surface of the normally used glass substrate 20 is smooth, and the surface of the inorganic insulating film 22 formed thereon is also smooth. That is, the surface roughness (Ra) of the glass substrate 20 that is normally used is less than 30 nm, and the surface of the inorganic insulating film 22 formed on the glass substrate 20 that is not in contact with the glass substrate 20 (inorganic insulating film surface 221). The surface roughness is less than 30 nm. However, in some cases, the surface of the glass substrate 20 may be roughened by etching or the like. For example, depending on the type of the inorganic insulating film 22, the surface of the glass substrate 20 may be roughened in order to increase the bonding strength with the surface of the glass substrate 20. Further, the surface of the glass substrate 20 may be roughened as a process (non-glare process) for diffusing reflected light from the surface of the glass substrate 20 to reduce glare caused by the reflected light. When the surface of the glass substrate 20 is roughened, when the surface roughness (Ra) of the roughened surface becomes 30 nm or more, the surface of the inorganic insulating film 22 formed thereon that is not in contact with the glass substrate 20 (inorganic The surface roughness of the insulating film surface 221) may be 30 nm or more. Note that the formation of the inorganic insulating film 22 does not necessarily limit the surface roughness of the glass substrate 20 surface directly to the surface roughness of the inorganic insulating film surface 221, and the surface roughness of the inorganic insulating film 22 may be relaxed. The surface roughness of the inorganic insulating film surface 221 is not limited only to the surface roughness of the glass substrate 20 surface.
(無機絶縁膜の製造方法)
 無機絶縁膜22の製造方法は特に制限されず、公知の方法を採用することができる。例えば、蒸着法、または、スパッタリング法により、ガラス基板20上に所定の酸化物、窒化物、酸窒化物を設ける方法が挙げられる。例えば、CVD法により成膜した二酸化珪素膜をプラズマ窒化法などの方法で窒化処理して窒化酸化珪素膜を形成してもよいし、CVD法により成膜した窒化珪素膜をプラズマ酸化法などの方法で酸化処理して窒化酸化珪素膜を形成してもよい。
 製造条件は、使用される金属の酸化物、窒化物、酸窒化物に応じて、適宜最適な条件が選択される。
(Inorganic insulating film manufacturing method)
The manufacturing method in particular of the inorganic insulating film 22 is not restrict | limited, A well-known method is employable. For example, a method of providing a predetermined oxide, nitride, or oxynitride on the glass substrate 20 by vapor deposition or sputtering is used. For example, a silicon dioxide film formed by a CVD method may be nitrided by a method such as a plasma nitriding method to form a silicon nitride oxide film, or a silicon nitride film formed by a CVD method may be formed by a plasma oxidation method or the like A silicon nitride oxide film may be formed by oxidation treatment by a method.
As the manufacturing conditions, optimum conditions are appropriately selected according to the metal oxide, nitride and oxynitride used.
<支持板>
 支持板31は、樹脂層32と協働して、無機絶縁膜付きガラス基板24を支持して補強し、デバイスの製造工程において無機絶縁膜付きガラス基板24の変形、傷付き、破損などを防止する。また、従来よりも厚さが薄い無機絶縁膜付きガラス基板24を使用する場合、従来のガラス基板と同じ厚さの積層体10とすることにより、デバイスの製造工程において、従来の厚さのガラス基板に適合した製造技術や製造設備を使用可能にすることも、支持板31を使用する目的の1つである。
<Support plate>
The support plate 31 cooperates with the resin layer 32 to support and reinforce the glass substrate 24 with the inorganic insulating film, and prevents deformation, scratching, breakage, etc. of the glass substrate 24 with the inorganic insulating film in the device manufacturing process. To do. In addition, when using a glass substrate 24 with an inorganic insulating film that is thinner than the conventional glass substrate, by using the laminated body 10 having the same thickness as the conventional glass substrate, in the device manufacturing process, the glass with the conventional thickness is used. One of the purposes of using the support plate 31 is to make it possible to use manufacturing technology and manufacturing equipment suitable for the substrate.
 支持板31としては、例えば、ガラス板、樹脂板、SUS板などの金属板などが用いられる。支持板31は、デバイスの製造工程が熱処理を伴う場合、ガラス基板20との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板20と同一材料で形成されることがより好ましく、支持板31はガラス板であることが好ましい。特に、支持板31は、ガラス基板20のガラス基板と同じガラス材料からなるガラス板であることが好ましい。 As the support plate 31, for example, a metal plate such as a glass plate, a resin plate, or a SUS plate is used. When the device manufacturing process involves heat treatment, the support plate 31 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 20, and more preferably formed of the same material as the glass substrate 20. The support plate 31 is preferably a glass plate. In particular, the support plate 31 is preferably a glass plate made of the same glass material as that of the glass substrate 20.
 支持板31の厚さは、ガラス基板20よりも厚くてもよいし、薄くてもよい。好ましくは、無機絶縁膜付きガラス基板24の厚さ、樹脂層32の厚さ、および積層体10の厚さに基づいて、支持板31の厚さが選択される。例えば、現行のデバイスの製造工程が厚さ0.5mmの基板を処理するように設計されたものであって、無機絶縁膜付きガラス基板24の厚さと樹脂層32の厚さとの和が0.1mmの場合、支持板31の厚さを0.4mmとする。支持板31の厚さは、通常の場合、0.2~5.0mmであることが好ましい。 The thickness of the support plate 31 may be thicker or thinner than the glass substrate 20. Preferably, the thickness of the support plate 31 is selected based on the thickness of the glass substrate 24 with an inorganic insulating film, the thickness of the resin layer 32, and the thickness of the laminated body 10. For example, the current device manufacturing process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 24 with an inorganic insulating film and the thickness of the resin layer 32 is 0. In the case of 1 mm, the thickness of the support plate 31 is set to 0.4 mm. In general, the thickness of the support plate 31 is preferably 0.2 to 5.0 mm.
 支持板31がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス板の厚さは、デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support plate 31 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled after the device member is formed.
 ガラス基板20と支持板31との25~300℃における平均線膨張係数(以下、単に「平均線膨張係数」という)の差は、好ましくは500×10-7/℃以下であり、より好ましくは300×10-7/℃以下であり、さらに好ましくは200×10-7/℃以下である。差が大き過ぎると、デバイスの製造工程における加熱冷却時に、積層体10が激しく反ったり、無機絶縁膜付きガラス基板24と補強板30とが剥離したりする可能性がある。ガラス基板20の材料と支持板31の材料が同じ場合、このような問題が生じるのを抑制することができる。 The difference in average linear expansion coefficient between glass substrate 20 and support plate 31 at 25 to 300 ° C. (hereinafter simply referred to as “average linear expansion coefficient”) is preferably 500 × 10 −7 / ° C. or less, more preferably It is 300 × 10 −7 / ° C. or less, more preferably 200 × 10 −7 / ° C. or less. If the difference is too large, the laminated body 10 may be warped severely during heating and cooling in the device manufacturing process, or the glass substrate 24 with an inorganic insulating film and the reinforcing plate 30 may be peeled off. When the material of the glass substrate 20 and the material of the support plate 31 are the same, it can suppress that such a problem arises.
<樹脂層>
 樹脂層32は、支持板31上に固定されており、また、無機絶縁膜付きガラス基板24に剥離可能に密着されている。樹脂層32は、無機絶縁膜付きガラス基板24と支持板31とを分離する操作が行われるまで無機絶縁膜付きガラス基板24の位置ずれを防止すると共に、分離操作によって無機絶縁膜付きガラス基板24から容易に剥離し、無機絶縁膜付きガラス基板24などが分離操作によって破損するのを防止する。また、樹脂層32は支持板31に固定されており、分離操作において樹脂層32と支持板31が剥離するおそれはなく、分離操作によって樹脂層付き支持板(補強板30)が得られる。なお、分離操作により、樹脂層32と無機絶縁膜22の界面が剥離しやすいように、分離操作を始めるにあたり、その界面に剥離起点を設けて剥離を行うことが好ましい。
 樹脂層32の無機絶縁膜22と接する表面321は、無機絶縁膜22の表面221に剥離可能に密着している。本発明では、この樹脂層表面321の容易に剥離できる性質を剥離性という。
<Resin layer>
The resin layer 32 is fixed on the support plate 31 and is in close contact with the glass substrate 24 with an inorganic insulating film in a peelable manner. The resin layer 32 prevents the displacement of the glass substrate 24 with the inorganic insulating film until the operation of separating the glass substrate 24 with the inorganic insulating film and the support plate 31 is performed, and the glass substrate 24 with the inorganic insulating film by the separation operation. The glass substrate 24 with the inorganic insulating film is prevented from being damaged by the separation operation. Further, the resin layer 32 is fixed to the support plate 31, and there is no fear that the resin layer 32 and the support plate 31 are separated in the separation operation, and a support plate with a resin layer (reinforcing plate 30) is obtained by the separation operation. In order to facilitate the separation of the interface between the resin layer 32 and the inorganic insulating film 22 by the separation operation, it is preferable to perform separation by providing a separation starting point at the interface.
A surface 321 in contact with the inorganic insulating film 22 of the resin layer 32 is in close contact with the surface 221 of the inorganic insulating film 22 so as to be peeled off. In this invention, the property which can peel this resin layer surface 321 easily is called peelability.
 本発明において、上記固定と、(剥離可能な)密着は、剥離強度(すなわち、剥離に要する応力)に違いがあり、固定は密着に対し剥離強度が大きいことを意味する。また、剥離可能な密着とは、剥離可能であると同時に、固定されている面の剥離を生じさせることなく剥離可能であることも意味する。具体的には、本発明の積層体10において、無機絶縁膜付きガラス基板24と支持板31とを分離する操作を行った場合、密着された面で剥離し、固定された面では剥離しないことを意味する。したがって、積層体10を無機絶縁膜付きガラス基板24と支持板31とに分離する操作を行うと、積層体10は無機絶縁膜付きガラス基板24と樹脂層付き支持板(補強板30)の2つに分離される。 In the present invention, the above-mentioned fixing and (separable) adhesion have a difference in peeling strength (that is, stress required for peeling), and fixing means that the peeling strength is larger than the adhesion. Further, the peelable adhesion means that it can be peeled at the same time that it can be peeled without causing peeling of the fixed surface. Specifically, in the laminated body 10 of the present invention, when the operation of separating the glass substrate 24 with the inorganic insulating film and the support plate 31 is performed, it is peeled off at the closely contacted surface and not peeled off at the fixed surface. Means. Therefore, when an operation of separating the laminated body 10 into the glass substrate 24 with an inorganic insulating film and the support plate 31 is performed, the laminated body 10 is composed of the glass substrate 24 with an inorganic insulating film and the support plate with a resin layer (reinforcing plate 30). Separated into two.
 樹脂層32は、接着力や粘着力などの強い結合力で支持板31表面に固定されていることが好ましい。例えば、反応硬化性樹脂を支持板31表面で反応硬化させることにより、硬化した樹脂は支持板31表面に接着する。また、支持板31表面と樹脂層32間に強い結合力を生じさせる処理(例えば、カップリング剤を使用した処理)を施して支持板31表面と樹脂層32間の結合力を高めることができる。
 一方、樹脂層32は無機絶縁膜表面221に弱い結合力で結合させ、例えば固体分子間におけるファンデルワールス力に起因する結合力で結合させることが好ましい。無機絶縁膜22に接する前の樹脂層表面321は、非付着性の表面であることが好ましく、この非付着性の樹脂層表面321と無機絶縁膜表面221とを接触させることにより、両表面を弱い結合力で結合させることができる。すなわち、樹脂層表面321が非付着性であると無機絶縁膜表面221との界面における剥離性がより良好なものとなる。両表面は隙間なく接触し、この状態を本発明では密着という。
The resin layer 32 is preferably fixed to the surface of the support plate 31 with a strong bonding force such as an adhesive force or an adhesive force. For example, a reaction-curable resin is reacted and cured on the surface of the support plate 31 so that the cured resin adheres to the surface of the support plate 31. Moreover, the process (for example, process using a coupling agent) which produces strong bond strength between the support plate 31 surface and the resin layer 32 can be given, and the bond force between the support plate 31 surface and the resin layer 32 can be raised. .
On the other hand, the resin layer 32 is preferably bonded to the inorganic insulating film surface 221 with a weak bonding force, for example, with a bonding force resulting from van der Waals force between solid molecules. The resin layer surface 321 before coming into contact with the inorganic insulating film 22 is preferably a non-adhesive surface. By bringing the non-adhesive resin layer surface 321 and the inorganic insulating film surface 221 into contact with each other, both surfaces are made to contact each other. It can be combined with a weak binding force. That is, when the resin layer surface 321 is non-adhesive, the peelability at the interface with the inorganic insulating film surface 221 becomes better. Both surfaces are in contact with each other without any gap, and this state is referred to as close contact in the present invention.
 なお、通常の意味で非付着性ではない樹脂層の表面に非付着性を付与する表面処理によっても樹脂層表面を非付着性とすることができる。また、通常の意味で非付着性ではない樹脂層であっても、上記固定における結合力に対して充分低い結合力で密着しうる樹脂であれば(かつ、無機絶縁膜のガラス基板からの剥離、無機絶縁膜付きガラス基板や支持板の破損、などを生じることなく剥離可能であれば)、表面処理を施すことなく樹脂層の材料として使用できる。
 特に、無機絶縁膜に接する樹脂層表面が非付着性である場合は、剥離の際に樹脂層表面の破損でその一部が無機絶縁膜表面に残ることが少なく、また、無機絶縁膜の破損によりその材料の一部が樹脂層表面に残ることも少ない。
The surface of the resin layer can be made non-adhesive also by a surface treatment that imparts non-adhesiveness to the surface of the resin layer that is not non-adhesive in a normal sense. In addition, even a resin layer that is not non-adherent in a normal sense is a resin that can be adhered with a sufficiently low bonding force with respect to the fixing force (and the peeling of the inorganic insulating film from the glass substrate). If it can be peeled without causing damage to the glass substrate with an inorganic insulating film or the support plate), it can be used as a material for the resin layer without surface treatment.
In particular, if the surface of the resin layer that is in contact with the inorganic insulating film is non-adhesive, the resin layer surface is less likely to remain on the surface of the inorganic insulating film during peeling, and the inorganic insulating film is damaged. Therefore, a part of the material is hardly left on the surface of the resin layer.
 上記のように、樹脂層32の支持板31の表面に対する結合力は、樹脂層32の無機絶縁膜表面221に対する結合力よりも相対的に高い。このため、樹脂層32と支持板31との間の剥離強度は、樹脂層32と無機絶縁膜付きガラス基板24との間の剥離強度よりも高くなっている。樹脂層32と支持板31との間は、粘着や接着で結合していることが好ましい。ただしこれに限られるものではなく、樹脂層32の無機絶縁膜付きガラス基板24に対する結合力よりも相対的に高い限り、樹脂層32と支持板31との間は、他の結合力に起因する力によって結合していてもよい。 As described above, the bonding force of the resin layer 32 to the surface of the support plate 31 is relatively higher than the bonding force of the resin layer 32 to the inorganic insulating film surface 221. For this reason, the peel strength between the resin layer 32 and the support plate 31 is higher than the peel strength between the resin layer 32 and the glass substrate 24 with an inorganic insulating film. It is preferable that the resin layer 32 and the support plate 31 are bonded together by adhesion or adhesion. However, the present invention is not limited to this. As long as the bonding force of the resin layer 32 to the glass substrate 24 with the inorganic insulating film is relatively higher than that of the resin layer 32, the resin layer 32 and the support plate 31 are caused by other bonding forces. They may be joined by force.
 樹脂層32の大きさは、特に限定されない。樹脂層32の大きさは、ガラス基板20や支持板31よりも大きくてもよいし、小さくてもよい。 The size of the resin layer 32 is not particularly limited. The size of the resin layer 32 may be larger or smaller than the glass substrate 20 or the support plate 31.
 樹脂層32の厚さは、特に限定されないが、1~100μmであることが好ましく、5~30μmであることがより好ましく、7~20μmであることがさらに好ましい。樹脂層32の厚さがこのような範囲であると、樹脂層32と無機絶縁膜付きガラス基板24との密着が十分になるからである。また、樹脂層32と無機絶縁膜付きガラス基板24との間に気泡や異物が介在することがあっても、無機絶縁膜付きガラス基板24のゆがみ欠陥の発生を抑制することができるからである。また、樹脂層32の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではない。 The thickness of the resin layer 32 is not particularly limited, but is preferably 1 to 100 μm, more preferably 5 to 30 μm, and even more preferably 7 to 20 μm. This is because when the thickness of the resin layer 32 is within such a range, the resin layer 32 and the glass substrate 24 with an inorganic insulating film are sufficiently adhered. In addition, even if bubbles or foreign matter may be present between the resin layer 32 and the glass substrate 24 with the inorganic insulating film, it is possible to suppress the occurrence of distortion defects in the glass substrate 24 with the inorganic insulating film. . Further, if the thickness of the resin layer 32 is too thick, it takes time and materials to form the resin layer 32, which is not economical.
 なお、樹脂層32は2層以上からなっていてもよい。この場合「樹脂層32の厚さ」は全ての層の合計の厚さを意味するものとする。
 また、樹脂層32が2層以上からなる場合は、各々の層を形成する樹脂の種類が異なってもよい。
The resin layer 32 may be composed of two or more layers. In this case, “the thickness of the resin layer 32” means the total thickness of all the layers.
Moreover, when the resin layer 32 consists of two or more layers, the kind of resin which forms each layer may differ.
 樹脂層32は、ガラス転移点が室温(25℃程度)よりも低い、またはガラス転移点を有しない材料からなることが好ましい。より容易に無機絶縁膜付きガラス基板24と剥離することができ、同時に無機絶縁膜付きガラス基板24との密着も十分になるからである。 The resin layer 32 is preferably made of a material having a glass transition point lower than room temperature (about 25 ° C.) or having no glass transition point. This is because it can be more easily peeled off from the glass substrate 24 with an inorganic insulating film, and at the same time, the adhesion with the glass substrate 24 with an inorganic insulating film becomes sufficient.
 また、樹脂層32は、デバイスの製造工程において加熱処理されることが多いので、耐熱性を有していることが好ましい。 In addition, since the resin layer 32 is often heat-treated in the device manufacturing process, the resin layer 32 preferably has heat resistance.
 また、樹脂層32の弾性率が高すぎると無機絶縁膜付きガラス基板24との密着性が低くなる傾向にある。一方、樹脂層32の弾性率が低すぎると剥離性が低くなる。 Further, if the elastic modulus of the resin layer 32 is too high, the adhesion with the glass substrate 24 with an inorganic insulating film tends to be low. On the other hand, if the elastic modulus of the resin layer 32 is too low, the peelability is lowered.
 樹脂層32を形成する樹脂の種類は、特に限定されない。例えば、アクリル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂、またはシリコーン樹脂が挙げられる。いくつかの種類の樹脂を混合して用いることもできる。中でもシリコーン樹脂が好ましい。シリコーン樹脂は、耐熱性や剥離性に優れるためである。また、支持板31がガラス板である場合、ガラス板表面のシラノール基との縮合反応によって、ガラス板に固定し易いからである。シリコーン樹脂層は、支持板31と無機絶縁膜付きガラス基板24との間に介装されている状態では、例えば大気中200℃程度で1時間程度処理しても、剥離性がほぼ劣化しない点も好ましい。 The type of resin forming the resin layer 32 is not particularly limited. For example, acrylic resin, polyolefin resin, polyurethane resin, or silicone resin can be used. Several types of resins can be mixed and used. Of these, silicone resins are preferred. This is because the silicone resin is excellent in heat resistance and peelability. Further, when the support plate 31 is a glass plate, it is easy to fix to the glass plate by a condensation reaction with a silanol group on the surface of the glass plate. In the state where the silicone resin layer is interposed between the support plate 31 and the glass substrate 24 with the inorganic insulating film, the peelability is not substantially deteriorated even if it is treated in the atmosphere at about 200 ° C. for about 1 hour, for example. Is also preferable.
 樹脂層32は、シリコーン樹脂の中でも剥離紙用に使用されるシリコーン樹脂(硬化物)からなることが好ましい。剥離紙の剥離層のシリコーン樹脂は、剥離紙にコートした硬化性シリコーン樹脂組成物の層を硬化させて形成される。この硬化性シリコーン樹脂組成物を使用し、この硬化性シリコーン樹脂組成物を支持板31の表面で硬化させて形成した硬化シリコーン樹脂からなる樹脂層は、支持板31表面に接着するとともにその自由表面は優れた非付着性を有するので好ましい。また、柔軟性が高いので、樹脂層32と無機絶縁膜付きガラス基板24との間へ気泡や塵介などの異物が混入しても無機絶縁膜付きガラス基板24のゆがみ欠陥の発生を抑制することができる。 The resin layer 32 is preferably made of a silicone resin (cured product) used for release paper among silicone resins. The silicone resin of the release layer of the release paper is formed by curing a layer of the curable silicone resin composition coated on the release paper. A resin layer made of a cured silicone resin formed by curing the curable silicone resin composition on the surface of the support plate 31 using the curable silicone resin composition is adhered to the surface of the support plate 31 and its free surface. Is preferable because it has excellent non-adhesiveness. Moreover, since it is highly flexible, even if foreign matters such as bubbles and dust are mixed between the resin layer 32 and the glass substrate 24 with an inorganic insulating film, the occurrence of distortion defects in the glass substrate 24 with the inorganic insulating film is suppressed. be able to.
 このような剥離紙などの剥離層を形成するために使用される硬化性シリコーン樹脂組成物は、その硬化機構により縮合反応型シリコーン樹脂組成物、付加反応型シリコーン樹脂組成物、紫外線硬化型シリコーン樹脂組成物および電子線硬化型シリコーン樹脂組成物に分類されるが、いずれも使用することができる。これらの中でも付加反応型シリコーン樹脂組成物が好ましい。これは、硬化反応のしやすさ、硬化後の樹脂層表面321の非付着性の程度が良好で、耐熱性も高いからである。 The curable silicone resin composition used to form a release layer such as a release paper has a condensation reaction type silicone resin composition, an addition reaction type silicone resin composition, and an ultraviolet curable type silicone resin depending on its curing mechanism. Although classified into a composition and an electron beam curable silicone resin composition, both can be used. Among these, addition reaction type silicone resin compositions are preferred. This is because the curing reaction is easy, the degree of non-adhesion of the cured resin layer surface 321 is good, and the heat resistance is high.
 付加反応型シリコーン樹脂組成物は、主剤および架橋剤を含み、白金系触媒などの触媒の存在下で硬化する硬化性の組成物である。付加反応型シリコーン樹脂組成物の硬化は、加熱処理により促進される。付加反応型シリコーン樹脂組成物中の主剤は、ケイ素原子に結合したアルケニル基(ビニル基など)を有するオルガノポリシロキサン(すなわち、オルガノアルケニルポリシロキサン。なお、直鎖状が好ましい)であることが好ましく、アルケニル基などが架橋点となる。付加反応型シリコーン樹脂組成物中の架橋剤は、ケイ素原子に結合した水素原子(ハイドロシリル基)を有するオルガノポリシロキサン(すなわち、オルガノハイドロジェンポリシロキサン。なお、直鎖状が好ましい)であることが好ましく、ハイドロシリル基などが架橋点となる。
 付加反応型シリコーン樹脂組成物は、主剤と架橋剤の架橋点が付加反応をすることにより硬化する。
The addition reaction type silicone resin composition is a curable composition that contains a main agent and a crosslinking agent and cures in the presence of a catalyst such as a platinum-based catalyst. Curing of the addition reaction type silicone resin composition is accelerated by heat treatment. The main component in the addition reaction type silicone resin composition is preferably an organopolysiloxane having an alkenyl group (such as a vinyl group) bonded to a silicon atom (that is, an organoalkenylpolysiloxane, preferably a straight chain). An alkenyl group or the like serves as a crosslinking point. The crosslinking agent in the addition reaction type silicone resin composition is an organopolysiloxane having a hydrogen atom (hydrosilyl group) bonded to a silicon atom (that is, an organohydrogenpolysiloxane, preferably a straight chain). Is preferred, and a hydrosilyl group or the like serves as a crosslinking point.
The addition reaction type silicone resin composition is cured by an addition reaction between the crosslinking points of the main agent and the crosslinking agent.
 また、剥離紙などの剥離層を形成するために使用される硬化性シリコーン樹脂組成物は形態的に溶剤型、エマルジョン型および無溶剤型があり、いずれの型も使用可能である。これらの中でも無溶剤型が好ましい。生産性、安全性、環境特性の面が優れるからである。また、樹脂層32を形成する際の硬化時、すなわち、加熱硬化、紫外線硬化または電子線硬化の時に発泡を生じる溶剤を含まないため、樹脂層32中に気泡が残留しにくいからである。 Further, the curable silicone resin composition used for forming a release layer such as release paper has a solvent type, an emulsion type and a solventless type, and any type can be used. Among these, a solventless type is preferable. This is because productivity, safety, and environmental characteristics are excellent. In addition, it does not contain a solvent that causes foaming at the time of curing when forming the resin layer 32, that is, at the time of heat curing, ultraviolet curing, or electron beam curing, so that bubbles are unlikely to remain in the resin layer 32.
 また、剥離紙などの剥離層を形成するために使用される硬化性シリコーン樹脂組成物として、具体的には市販されている商品名または型番としてKNS-320A、KS-847(いずれも信越シリコーン社製)、TPR6700(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)、ビニルシリコーン「8500」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせ、ビニルシリコーン「11364」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせ、ビニルシリコーン「11365」(荒川化学工業社製)とメチルハイドロジェンポリシロキサン「12031」(荒川化学工業社製)との組み合わせなどが挙げられる。 In addition, as curable silicone resin compositions used for forming a release layer such as release paper, specifically, KNS-320A and KS-847 (both Shin-Etsu Silicone Co., Ltd.) are used as commercially available product names or model numbers. ), TPR6700 (made by Momentive Performance Materials Japan GK), a combination of vinyl silicone “8500” (made by Arakawa Chemical Industries) and methylhydrogenpolysiloxane “12031” (made by Arakawa Chemical Industries), Combination of vinyl silicone “11364” (Arakawa Chemical Industries) and methyl hydrogen polysiloxane “12031” (Arakawa Chemical Industries), vinyl silicone “11365” (Arakawa Chemical Industries) and methyl hydrogen polysiloxane "12031" (Arakawa Chemical Industries) Such as a combination of the like.
 なお、KNS-320A、KS-847およびTPR6700は、あらかじめ主剤と架橋剤とを含有している硬化性シリコーン樹脂組成物である。 KNS-320A, KS-847 and TPR6700 are curable silicone resin compositions containing a main agent and a crosslinking agent in advance.
 また、樹脂層32を形成するシリコーン樹脂(上記硬化性シリコーン樹脂組成物の硬化物)は、シリコーン樹脂層中の低分子量のシリコーン等の成分が無機絶縁膜付きガラス基板24に移行しにくい性質、すなわち低シリコーン移行性を有することが好ましい。 Further, the silicone resin forming the resin layer 32 (cured product of the curable silicone resin composition) has a property that components such as low molecular weight silicone in the silicone resin layer are difficult to migrate to the glass substrate 24 with an inorganic insulating film, That is, it preferably has low silicone migration.
(樹脂層の製造方法)
 樹脂層32を支持板31上に固定する方法は、特に限定されないが、例えば、支持板31表面上に樹脂層32となる硬化性樹脂組成物の層を形成し、次いで、該硬化性樹脂組成物を硬化して樹脂層32を形成する方法で支持板31上に固定された樹脂層32を形成する方法が好ましい。
 また、例えばフィルム状の樹脂を支持板31の表面に固定する方法で樹脂層32を形成することもできる。具体的には、支持板31の表面に、フィルムの表面に対する高い固定力(高い剥離強度)を付与するために、支持板31の表面に表面改質処理(プライミング処理)を行い、支持板31上に固定する方法が挙げられる。例えば、シランカップリング剤のような化学的に固定力を向上させる化学的方法(プライマー処理)、フレーム(火炎)処理のように表面活性基を増加させる物理的方法、サンドブラスト処理のように表面の粗度を増加させることにより引っかかりを増加させる機械的処理方法などが例示される。
(Method for producing resin layer)
The method for fixing the resin layer 32 on the support plate 31 is not particularly limited. For example, a layer of a curable resin composition that becomes the resin layer 32 is formed on the surface of the support plate 31 and then the curable resin composition is formed. A method of forming the resin layer 32 fixed on the support plate 31 by a method of forming a resin layer 32 by curing an object is preferable.
For example, the resin layer 32 can be formed by a method of fixing a film-like resin to the surface of the support plate 31. Specifically, in order to give the surface of the support plate 31 a high fixing force (high peel strength) with respect to the surface of the film, the surface of the support plate 31 is subjected to surface modification treatment (priming treatment). The method of fixing on top is mentioned. For example, chemical methods (primer treatment) that improve the fixing force chemically such as silane coupling agents, physical methods that increase surface active groups such as flame (flame) treatment, surface treatments such as sandblast treatment Examples thereof include a mechanical processing method for increasing the catch by increasing the roughness.
 支持板31表面上に樹脂層32となる硬化性樹脂組成物の層を形成し、次いで、該硬化性樹脂組成物を硬化して樹脂層32を形成する方法において、支持板31表面上に硬化性樹脂組成物の層を形成する方法としては、例えば硬化性樹脂組成物を支持板31上にコートする方法が挙げられる。コートする方法としては、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法などが挙げられる。このような方法の中から、樹脂組成物の種類に応じて適宜選択することができる。 In the method of forming a resin layer 32 by forming a layer of the curable resin composition to be the resin layer 32 on the surface of the support plate 31 and then curing the curable resin composition to cure the surface of the support plate 31. Examples of the method for forming the layer of the curable resin composition include a method of coating the curable resin composition on the support plate 31. Examples of the coating method include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating. From such a method, it can select suitably according to the kind of resin composition.
 また、樹脂層32となる硬化性樹脂組成物を支持板31上にコートする場合、その塗布量は1~100g/m2であることが好ましく、5~20g/m2であることがより好ましい。 When the curable resin composition to be the resin layer 32 is coated on the support plate 31, the coating amount is preferably 1 to 100 g / m 2 and more preferably 5 to 20 g / m 2. .
 例えば、付加反応型シリコーン樹脂組成物から樹脂層32を形成する場合、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンと触媒との混合物からなる硬化性樹脂組成物を、上記のスプレーコート法などの公知の方法により支持板31上に塗布し、その後に加熱硬化させる。加熱硬化条件は、触媒の配合量によっても異なるが、例えば、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンとの合計量100質量部に対して、白金系触媒を2質量部配合した場合、大気中で50℃~250℃、好ましくは100℃~200℃で反応させる。また、この場合の反応時間は5~60分間、好ましくは10~30分間とする。 For example, when the resin layer 32 is formed from an addition reaction type silicone resin composition, a curable resin composition composed of a mixture of an organoalkenylpolysiloxane, an organohydrogenpolysiloxane, and a catalyst is used for the known spray coating method. It is applied on the support plate 31 by the method described above, and then cured by heating. The heat curing conditions vary depending on the blending amount of the catalyst. For example, when 2 parts by mass of a platinum-based catalyst is blended with respect to 100 parts by mass of the total amount of the organoalkenylpolysiloxane and the organohydrogenpolysiloxane, The reaction is carried out at 50 ° C to 250 ° C, preferably 100 ° C to 200 ° C. In this case, the reaction time is 5 to 60 minutes, preferably 10 to 30 minutes.
 硬化性樹脂組成物を加熱硬化させることによって、硬化反応の際にシリコーン樹脂が支持板31と化学的に結合し、また、アンカー効果によってシリコーン樹脂層が支持板31と結合して、接着する。これらの作用によって、シリコーン樹脂層が支持板31に強固に固定される。なお、シリコーン樹脂以外の樹脂からなる樹脂層を硬化性樹脂組成物から形成する場合も、上記と同様の方法で支持板31に固定された樹脂層32を形成することができる。 By curing the curable resin composition by heating, the silicone resin is chemically bonded to the support plate 31 during the curing reaction, and the silicone resin layer is bonded to and bonded to the support plate 31 by an anchor effect. By these actions, the silicone resin layer is firmly fixed to the support plate 31. In addition, also when forming the resin layer which consists of resin other than a silicone resin from a curable resin composition, the resin layer 32 fixed to the support plate 31 by the method similar to the above can be formed.
<積層体および積層体の製造方法>
 本発明の積層体10は、上述したように、無機絶縁膜付きガラス基板24と支持板31とそれらの間に樹脂層32が存在する積層体である。
 本発明の積層体の製造方法は特に制限されないが、通常、無機絶縁膜付きガラス基板24と上述した方法によって作製された樹脂層付き支持板(補強板30)とを用意し、無機絶縁膜付きガラス基板24の無機絶縁膜の面と上記樹脂層付き支持板(補強板30)の樹脂層表面とを積層面として両者を積層する方法が好ましい。樹脂層32の積層面が非付着性を有している場合、通常の重ね合わせと加圧により、容易に剥離可能に密着させることができる。
 具体的には、例えば、常圧環境下で樹脂層32の非付着性表面に無機絶縁膜付きガラス基板24を重ねた後、ロールやプレスを用いて樹脂層32と無機絶縁膜付きガラス基板24とを圧着させる方法が挙げられる。ロールやプレスで圧着することにより樹脂層32と、無機絶縁膜付きガラス基板24と、がより密着するので好ましい。また、ロールまたはプレスによる圧着により、樹脂層32と無機絶縁膜付きガラス基板24との間に混入している気泡が比較的容易に除去されるので好ましい。
<Laminated body and manufacturing method of laminated body>
As described above, the laminate 10 of the present invention is a laminate in which the glass substrate 24 with an inorganic insulating film, the support plate 31, and the resin layer 32 exist between them.
Although the manufacturing method of the laminated body of this invention is not restrict | limited in particular, Usually, the glass substrate 24 with an inorganic insulating film and the support board with a resin layer (reinforcement board 30) produced by the method mentioned above are prepared, and an inorganic insulating film is provided. A method of laminating both of the surfaces of the inorganic insulating film of the glass substrate 24 and the resin layer surface of the support plate with the resin layer (reinforcing plate 30) as a laminated surface is preferable. When the laminated surface of the resin layer 32 has non-adhesiveness, the resin layer 32 can be easily and peelably adhered by normal superposition and pressure.
Specifically, for example, after the glass substrate 24 with an inorganic insulating film is stacked on the non-adhesive surface of the resin layer 32 under a normal pressure environment, the resin layer 32 and the glass substrate 24 with an inorganic insulating film are used using a roll or a press. And the method of pressure bonding. It is preferable because the resin layer 32 and the glass substrate 24 with the inorganic insulating film are more closely adhered by pressure bonding with a roll or a press. Further, it is preferable because air bubbles mixed between the resin layer 32 and the glass substrate 24 with the inorganic insulating film are removed relatively easily by pressure bonding with a roll or a press.
 真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が好ましく行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、無機絶縁膜付きガラス基板24のゆがみ欠陥につながりにくいという利点もある。 It is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method, since it is preferable to suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to cause distortion defects of the glass substrate 24 with an inorganic insulating film.
 樹脂層32を無機絶縁膜付きガラス基板24上に剥離可能に密着させる際には、樹脂層32および無機絶縁膜付きガラス基板24の互いに接触する側の面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。樹脂層32と無機絶縁膜付きガラス基板24との間に異物が混入しても、樹脂層32が変形するので無機絶縁膜付きガラス基板24の表面の平坦性に影響を与えることはないが、クリーン度が高いほどその平坦性は良好となるので好ましい。 When the resin layer 32 is detachably adhered to the glass substrate 24 with the inorganic insulating film, the surfaces of the resin layer 32 and the glass substrate 24 with the inorganic insulating film that are in contact with each other are sufficiently washed to provide a high degree of cleanliness. It is preferable to laminate in an environment. Even if a foreign substance is mixed between the resin layer 32 and the glass substrate 24 with the inorganic insulating film, the resin layer 32 is deformed, so that the flatness of the surface of the glass substrate 24 with the inorganic insulating film is not affected. The higher the degree of cleanness, the better the flatness.
 本発明の積層体10は、種々の用途に使用することができ、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、積層体10が高温条件(例えば、320℃以上)で曝される(例えば、1時間以上)場合が多い。
 ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、プラズマディスプレイパネル、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(MICRO ELECTRO MECHANICAL SYSTEMS)シャッターパネル等が含まれる。
The laminate 10 of the present invention can be used for various applications, for example, for manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface. Applications are listed. In this application, the laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 320 ° C. or higher).
Here, the display device panel includes an LCD, an OLED, an electronic paper, a plasma display panel, a field emission panel, a quantum dot LED panel, a MEMS (MICRO ELECTRO mechanical system) shutter panel, and the like.
<支持板付き表示装置用パネルおよび支持板付き表示装置用パネルの製造方法>
 本発明においては、上述した積層体を用いて、支持板付き表示装置用パネルが製造される。
 図2は、本発明に係る支持板付き表示装置用パネルの一例の模式的断面図である。
 支持板付き表示装置用パネル40は、上記積層体10と、表示装置用パネルの構成部材50から構成される。
<Manufacturing Method of Display Device Panel with Support Plate and Display Device Panel with Support Plate>
In this invention, the panel for display apparatuses with a support plate is manufactured using the laminated body mentioned above.
FIG. 2 is a schematic cross-sectional view of an example of a display device-equipped panel according to the present invention.
The display device-equipped panel 40 includes a laminate 10 and a display device panel component member 50.
(表示装置用パネルの構成部材)
 表示装置用パネルの構成部材50とは、例えば、ガラス基板を使用したLCD、OLED等の表示装置において、ガラス基板上に形成された部材やその一部をいう。例えば、LCD、OLED等の表示装置においては、基板の表面にTFTアレイ(以下、単に「アレイ」という。)、保護層、カラーフィルタ、液晶、ITOからなる透明電極等、各種回路パターン等の部材、またはこれらを組み合わせたものが形成される。上記アレイに使用される半導体材料は特に限定されず、例えばアモルファス・微結晶、多結晶等のシリコン、ZnO・IGZO等の金属酸化物、チオフェン誘導体・ペンタセン誘導体等の有機物などが挙げられる。また、例えば、OLEDからなる表示装置においては、基板上に形成された透明電極、ホール注入層、ホール輸送層、発光層、電子輸送層等が挙げられる。
(Components of display device panel)
The constituent member 50 of the display device panel refers to a member formed on the glass substrate or a part thereof in a display device such as an LCD or an OLED using a glass substrate. For example, in display devices such as LCDs and OLEDs, members such as TFT arrays (hereinafter simply referred to as “arrays”), protective layers, color filters, liquid crystals, transparent electrodes made of ITO, etc. on the surface of the substrate. Or a combination of these. The semiconductor material used for the array is not particularly limited, and examples thereof include silicon such as amorphous / microcrystal and polycrystal, metal oxides such as ZnO / IGZO, and organic substances such as thiophene derivatives / pentacene derivatives. Further, for example, in a display device made of OLED, a transparent electrode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like formed on a substrate can be used.
 上述した支持板付き表示装置用パネル40の製造方法は特に限定されず、表示装置用パネルの構成部材の種類に応じて従来公知の方法にて、積層体10の無機絶縁膜付きガラス基板24表面上に、表示装置用パネルの構成部材50を形成する。
 例えば、OLEDを製造する場合を例にとると、積層体10の無機絶縁膜付きガラス基板24の樹脂層32側とは反対側の表面上(ガラス基板20の第2主面202に該当)に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。これら構成部材の形成は、表示装置用パネルに必要な全構成部材の形成の一部であってもよい。その場合、その一部の構成部材を形成した無機絶縁膜付きガラス基板24を補強板30から分離した後、残りの構成部材を無機絶縁膜付きガラス基板24上に形成して表示装置用パネルを製造する。
The manufacturing method of the panel 40 for display devices with a support plate mentioned above is not specifically limited, The surface of the glass substrate 24 with the inorganic insulating film of the laminated body 10 by a conventionally well-known method according to the kind of structural member of the panel for display devices. The constituent member 50 of the display device panel is formed thereon.
For example, taking the case of manufacturing an OLED as an example, on the surface opposite to the resin layer 32 side of the glass substrate 24 with the inorganic insulating film of the laminate 10 (corresponding to the second main surface 202 of the glass substrate 20). In order to form an organic EL structure, a transparent electrode is formed, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. are deposited on the surface on which the transparent electrode is formed, and a back electrode is formed. Various layers are formed and processed, such as sealing with a sealing plate. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like. The formation of these constituent members may be part of the formation of all the constituent members necessary for the display device panel. In that case, after separating the glass substrate 24 with the inorganic insulating film on which some of the constituent members are formed from the reinforcing plate 30, the remaining constituent members are formed on the glass substrate 24 with the inorganic insulating film to form a display device panel. To manufacture.
<表示装置用パネルおよび表示装置用パネルの製造方法>
 本発明に係る表示装置用パネル60は、図2に示すように、無機絶縁膜付きガラス基板24と表示装置用パネルの構成部材50とから構成される。
 表示装置用パネル60は、支持板付き表示装置用パネル40から、無機絶縁膜22と樹脂層32の界面を剥離し、無機絶縁膜付きガラス基板24と補強板30とに分離して得ることができる。
 なお、分離された無機絶縁膜付きガラス基板24上の構成部材が表示装置用パネルに必要な全構成部材の形成の一部である場合には、その後残りの構成部材を無機絶縁膜付きガラス基板24上に形成して表示装置用パネル60を製造する。
<Display Device Panel and Display Device Panel Manufacturing Method>
As shown in FIG. 2, the display device panel 60 according to the present invention includes a glass substrate 24 with an inorganic insulating film and a constituent member 50 of the display device panel.
The display device panel 60 may be obtained by separating the interface between the inorganic insulating film 22 and the resin layer 32 from the display device panel 40 with a support plate and separating the glass substrate 24 with the inorganic insulating film 24 and the reinforcing plate 30. it can.
When the constituent members on the separated glass substrate 24 with the inorganic insulating film are a part of the formation of all the constituent members necessary for the display device panel, the remaining constituent members are then used as the glass substrate with the inorganic insulating film. The panel 60 for display devices is manufactured by forming on 24.
 無機絶縁膜22と樹脂層32の剥離性表面とを剥離する方法は、特に限定されない。しかし、まず、無機絶縁膜22と樹脂層32の界面に剥離起点を形成して剥離することが好ましい。具体的には、例えば、無機絶縁膜22と樹脂層32との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして剥離することが好ましい。 The method for peeling the inorganic insulating film 22 and the peelable surface of the resin layer 32 is not particularly limited. However, it is preferable to first peel off by forming a peeling start point at the interface between the inorganic insulating film 22 and the resin layer 32. Specifically, for example, a sharp blade-like object is inserted into the interface between the inorganic insulating film 22 and the resin layer 32 to give a trigger for peeling, and then a mixed fluid of water and compressed air is sprayed. Peeling is preferable.
 なお、支持板付き表示装置用パネル40から表示装置用パネル60を分離した後、必要に応じて、表示装置用パネル60中の無機絶縁膜付きガラス基板24の無機絶縁膜22上に、別途表示装置用パネルの構成部材を設けてもよい。
 また、分離された補強板30は、新たな無機絶縁膜付きガラス基板と積層して、本発明の積層体10を製造することができる。この新たな積層体10の製造方法としては、前述した本発明の製造方法が好ましい。
In addition, after separating the display device panel 60 from the display device panel with support plate 40, if necessary, a separate display is provided on the inorganic insulating film 22 of the glass substrate 24 with the inorganic insulating film in the display device panel 60. You may provide the structural member of the apparatus panel.
Moreover, the separated reinforcing plate 30 can be laminated with a new glass substrate with an inorganic insulating film to produce the laminate 10 of the present invention. As a manufacturing method of this new laminated body 10, the manufacturing method of this invention mentioned above is preferable.
<表示装置>
 また、このような表示装置用パネル60から表示装置を得ることができる。表示装置としてはLCD、OLEDが挙げられる。LCDとしてはTN型、STN型、FE型、TFT型、MIM型が挙げられる。
 ここで表示装置を得る操作は特に限定されず、例えば、従来公知の方法で表示装置を製造することができる。
<Display device>
Further, a display device can be obtained from such a display device panel 60. Examples of the display device include an LCD and an OLED. Examples of LCD include TN type, STN type, FE type, TFT type, and MIM type.
Here, the operation for obtaining the display device is not particularly limited. For example, the display device can be manufactured by a conventionally known method.
 以下に、実施例などにより本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。
 以下の実施例1~5、比較例1、4では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(縦720mm、横600mm、板厚0.3mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。また、支持板としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(縦720mm、横600mm、板厚0.4mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。
 また、実施例6および比較例2では、ガラス基板および支持板としてソーダライムガラスからなるガラス板(線膨張係数85×10-7/℃、旭硝子社製商品名「AS」)を使用した。実施例7および比較例3では、このソーダライムガラスからなるガラス板を450℃の硝酸カリウムの溶融塩中で1時間浸漬することによって化学強化処理し、得られた強化ガラス板をガラス基板および支持板として使用した。これらガラス基板の大きさと厚さは実施例1~5で使用したガラス基板と同一であり、これら支持板の大きさと厚さも実施例1~5で使用した支持板と同一である。
 なお、後述する実施例および比較例において、表面粗さ(Ra)は、原子間カ顕微鏡(セイコーインスツルメンツ社製、SPA300/SPI3800)を用いて測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In Examples 1 to 5 and Comparative Examples 1 and 4 below, a glass plate made of non-alkali borosilicate glass (length 720 mm, width 600 mm, plate thickness 0.3 mm, linear expansion coefficient 38 × 10 −7 / The product name “AN100” manufactured by Asahi Glass Co., Ltd. was used. Further, as the support plate, a glass plate made of alkali-free borosilicate glass (length 720 mm, width 600 mm, plate thickness 0.4 mm, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.
In Example 6 and Comparative Example 2, a glass plate made of soda lime glass (linear expansion coefficient 85 × 10 −7 / ° C., trade name “AS” manufactured by Asahi Glass Co., Ltd.) was used as the glass substrate and the support plate. In Example 7 and Comparative Example 3, this glass plate made of soda lime glass was chemically strengthened by immersing it in a molten salt of potassium nitrate at 450 ° C. for 1 hour, and the resulting tempered glass plate was a glass substrate and a support plate. Used as. The size and thickness of these glass substrates are the same as those used in Examples 1 to 5, and the size and thickness of these support plates are also the same as those used in Examples 1 to 5.
In Examples and Comparative Examples to be described later, the surface roughness (Ra) was measured using an atomic microscope (Seiko Instruments Inc., SPA300 / SPI3800).
(剥離性評価)
 後述する積層体の加熱後の無機絶縁膜付きガラス基板の剥離性は、後述する所定の条件で加熱処理後、無機絶縁膜付きガラス基板と樹脂層を剥離し、無機絶縁膜付きガラス基板の樹脂層と接触していた面上を目視にて観察することにより評価した。樹脂層の残渣がないものが良く、樹脂層の残渣があるものが悪い評価である。
(Peelability evaluation)
The peelability of the glass substrate with an inorganic insulating film after the heating of the laminate described later is determined by peeling the glass substrate with the inorganic insulating film and the resin layer after the heat treatment under a predetermined condition described later, and the resin of the glass substrate with the inorganic insulating film. Evaluation was made by visually observing the surface that was in contact with the layer. Those having no resin layer residue are good, and those having a resin layer residue are bad evaluations.
(清浄性評価)
 後述する所定の条件で加熱処理後、積層体から剥離された無機絶縁膜付きガラス基板をヘキサン中で超音波処理(5分間)し、その後、樹脂層と接触していた面上(無機絶縁膜面上)にセロハンテープ(商品名セロテープ(登録商標)、ニチバン製)を貼り付け、90°剥離を行い、その剥離強度を測定した。剥離強度が小さいほど、樹脂層の残渣が無機絶縁膜面上にあることを意味し、実用上、剥離強度が0.5N/25mm以上であることが好ましい。
(Cleanliness evaluation)
After heat treatment under the predetermined conditions described later, the glass substrate with the inorganic insulating film peeled off from the laminate was subjected to ultrasonic treatment (5 minutes) in hexane, and then on the surface that was in contact with the resin layer (inorganic insulating film) A cellophane tape (trade name Cellotape (registered trademark), manufactured by Nichiban Co., Ltd.) was attached to the surface, peeled at 90 °, and the peel strength was measured. The smaller the peel strength is, the more the resin layer residue is on the surface of the inorganic insulating film. Practically, the peel strength is preferably 0.5 N / 25 mm or more.
<実施例1>
 初めに、板厚0.4mmの支持板を純水洗浄した後、さらにUV洗浄して清浄化した。
 次に、支持板の第1主面上に、無溶剤付加反応型剥離紙用シリコーン(信越シリコーン社製、KNS-320A、粘度:0.40Pa・s、溶解パラメータ(SP値):7.3)100質量部と白金系触媒(信越シリコーン社製、CAT-PL-56)2質量部との混合液を、縦705mm、横595mmの大きさで長方形にスクリーン印刷機にて塗工した(塗工量30g/m2)。
 次に、これを180℃にて30分間大気中で加熱硬化して、支持板の第1主面に厚さ20μmのシリコーン樹脂層を形成した。
 なお、上記無溶剤付加反応型剥離紙用シリコーンは、ケイ素原子に結合したビニル基とメチル基とを有する直鎖状オルガノアルケニルポリシロキサン(主剤)と、ケイ素原子に結合した水素原子をメチル基とを有する直鎖状オルガノハイドロジェンポリシロキサン(架橋剤)とを含むものである。
<Example 1>
First, a support plate having a thickness of 0.4 mm was cleaned with pure water, and further cleaned by UV cleaning.
Next, a solvent-free addition reaction type release paper silicone (manufactured by Shin-Etsu Silicone Co., Ltd., KNS-320A, viscosity: 0.40 Pa · s, solubility parameter (SP value): 7.3 is provided on the first main surface of the support plate. ) A mixed solution of 100 parts by mass and 2 parts by mass of a platinum-based catalyst (CAT-PL-56, manufactured by Shin-Etsu Silicone Co., Ltd.) was applied in a rectangular shape with a size of 705 mm in length and 595 mm in width using a screen printing machine. Work rate 30 g / m 2 ).
Next, this was heat-cured at 180 ° C. for 30 minutes in the atmosphere to form a silicone resin layer having a thickness of 20 μm on the first main surface of the support plate.
The silicone for solvent-free addition reaction type release paper is composed of a linear organoalkenylpolysiloxane (main agent) having a vinyl group and a methyl group bonded to a silicon atom, and a hydrogen atom bonded to a silicon atom as a methyl group. And a straight-chain organohydrogenpolysiloxane (crosslinking agent).
 次に、板厚0.3mmのガラス基板のシリコーン樹脂と接触させる側の面(第1主面)を純水洗浄し、その後UV洗浄して清浄化した。さらに、清浄化した面に、マグネトロンスパッタリング法(加熱温度300℃、成膜圧力4mTorr、パワー密度3W/cm2)により、厚さ30nmのSiO2膜を形成し、無機絶縁膜付きガラス基板を得た。無機絶縁膜表面(無機絶縁膜のガラス基板側とは反対側の表面。以後、同様の意味。)の表面粗さ(Ra)は、0.8nmであった。また、XPS測定(アルバック・ファイ社製、 Quantera SXMを使用。以下同様)によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、ガラス基板のSiO2成膜面と、支持板のシリコーン樹脂層面とを、室温下で真空プレスにより張り合わせ、積層体Aを得た。
 得られた積層体Aにおいては、支持板とガラス基板は、シリコーン樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
Next, the surface (first main surface) of the glass substrate having a plate thickness of 0.3 mm that was brought into contact with the silicone resin was cleaned with pure water, and then cleaned by UV cleaning. Further, a SiO 2 film having a thickness of 30 nm is formed on the cleaned surface by a magnetron sputtering method (heating temperature 300 ° C., film forming pressure 4 mTorr, power density 3 W / cm 2 ) to obtain a glass substrate with an inorganic insulating film. It was. The surface roughness (Ra) of the surface of the inorganic insulating film (the surface opposite to the glass substrate side of the inorganic insulating film; hereinafter the same meaning) was 0.8 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement (manufactured by ULVAC-PHI, Quantera SXM, the same applies below) is below the detection limit (0.1 at. % Or less).
Thereafter, the SiO 2 film-forming surface of the glass substrate and the silicone resin layer surface of the support plate were bonded together by vacuum pressing at room temperature to obtain a laminate A.
In the obtained laminate A, the support plate and the glass substrate were in close contact with the silicone resin layer without generating bubbles, no distortion defects, and good smoothness.
(加熱後の剥離性評価)
 積層体Aに対して、大気酸素が0.1%以下の窒素雰囲気中にて、350℃で1時間加熱処理を施した。
 次に、剥離試験を行った。具体的には、まず、積層体Aにおけるガラス基板の第2主面を固定台上に固定した。一方、支持板の第2主面を吸着パッドで吸着した。次に、積層体Aが有する4つの角部のうちの1つであって無機絶縁膜付きガラス基板と樹脂層との界面に、厚さ0.4mmのナイフを挿入して、無機絶縁膜と樹脂層の界面を僅かに剥離し、剥離のきっかけを与えた。次に、吸着パッドを固定台から離れる方向へ移動させて無機絶縁膜と樹脂層の界面全体を剥離し、無機絶縁膜付きガラス基板と、樹脂層付き支持板とを分離した。
 分離された無機絶縁膜付きガラス基板の剥離面上(無機絶縁膜上)には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して上記清浄性評価を行ったところ、剥離強度は0.7N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、分離された無機絶縁膜付きガラス基板を、20重量%に希釈したレジスト剥離液(パーカーコーポレーション社製、主成分として水酸化カリウム20質量%を含む)に50℃10分浸漬し、水によるブラシ洗浄を行った後に、濃度が0.1モル/リットルである塩酸水溶液中に90℃で20時間浸漬し、水によるブラシ洗浄およびエアブローを行った。無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
(Evaluation of peelability after heating)
The laminate A was subjected to heat treatment at 350 ° C. for 1 hour in a nitrogen atmosphere with atmospheric oxygen of 0.1% or less.
Next, a peel test was performed. Specifically, first, the second main surface of the glass substrate in the laminate A was fixed on a fixed base. On the other hand, the second main surface of the support plate was adsorbed by an adsorption pad. Next, a knife having a thickness of 0.4 mm is inserted into the interface between the glass substrate with the inorganic insulating film and the resin layer, which is one of the four corners of the laminate A, and the inorganic insulating film The interface of the resin layer was slightly peeled to give a trigger for peeling. Next, the suction pad was moved in a direction away from the fixed base to peel off the entire interface between the inorganic insulating film and the resin layer, and the glass substrate with the inorganic insulating film and the support plate with the resin layer were separated.
There was no resin residue on the peeled surface (on the inorganic insulating film) of the separated glass substrate with the inorganic insulating film.
Moreover, when the said cleanliness evaluation was performed with respect to the isolate | separated glass substrate with an inorganic insulating film, peeling strength was 0.7 N / 25mm and it turned out that it has the outstanding surface cleanliness.
Thereafter, the separated glass substrate with an inorganic insulating film was immersed in a resist stripping solution diluted to 20% by weight (manufactured by Parker Corporation, containing 20% by mass of potassium hydroxide as a main component) at 50 ° C. for 10 minutes, and then with water After performing brush cleaning, it was immersed in an aqueous hydrochloric acid solution having a concentration of 0.1 mol / liter at 90 ° C. for 20 hours, and brush cleaning with water and air blowing were performed. When the peeling surface of the glass substrate with an inorganic insulating film was observed with an optical microscope, no cracks were observed.
 (実施例1b)
 マグネトロンスパッタリング法の代わりに熱CVD法(加熱温度400℃、反応圧力1Pa、反応ガスはテトラエトキシシランとオゾン/酸素、キャリアガスは窒素;2000sccm、オゾン/酸素比;3%)により厚さ100nmのSiO2膜を形成した以外は、実施例1と同様の手順に従って、積層体A’を得た。なお、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、2nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、0.5at%であった。
 その後、積層体A’に対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.8N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
 なお、無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子は、テトラエトキシシラン中の不純物に起因すると考えられる。
(Example 1b)
Instead of magnetron sputtering method, the thickness is 100 nm by thermal CVD method (heating temperature 400 ° C., reaction pressure 1 Pa, reaction gas is tetraethoxysilane and ozone / oxygen, carrier gas is nitrogen: 2000 sccm, ozone / oxygen ratio: 3%) A laminate A ′ was obtained according to the same procedure as in Example 1 except that the SiO 2 film was formed. The surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 2 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was 0.5 at%.
Then, peelability evaluation was performed on the laminate A ′ in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, the peel strength was 0.8 N / 25 mm, and it was found that the surface had excellent surface cleanliness.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
Note that it is considered that the atoms of alkali metal and alkaline earth metal on the surface of the inorganic insulating film are caused by impurities in tetraethoxysilane.
<実施例2>
 SiO2膜を形成する代わりに、ICP-CVD法(誘導結合型プラズマCVD)(加熱温度400℃、成膜圧力1Pa、RFパワー400W、DCパワー230V/0.5A/80W、ガス流量(100%SiH4:10sccm、N2:140sccm))により、厚さ100nmのSi34膜を形成した以外は、実施例1と同様の手順に従って、積層体Bを得た。なお、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、2nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Bに対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 2>
Instead of forming the SiO 2 film, ICP-CVD (inductively coupled plasma CVD) (heating temperature 400 ° C., film forming pressure 1 Pa, RF power 400 W, DC power 230 V / 0.5 A / 80 W, gas flow rate (100% SiH 4 : 10 sccm, N 2 : 140 sccm)), and a laminate B was obtained in the same manner as in Example 1 except that a 100 nm thick Si 3 N 4 film was formed. The surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 2 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Thereafter, the peelability of the laminate B was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
<実施例3>
 SiO2膜を形成する代わりに、マグネトロンスパッタリング法(加熱温度300℃、成膜圧力4mTorr、パワー密度3W/cm2)により、厚さ100nmのSiO2膜を形成し、その後、プラズマ窒化処理(加熱温度300℃、チャンバー内圧力100Pa、ガス流量(N2:100sccm、Ar:1000sccm、H2:10sccm))を行い、厚さ100nmのSiOab(a=1、b=1)膜を形成した以外は、実施例1と同様の手順に従って、積層体Cを得た。なお、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、1nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Cに対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して実施例1と同様に清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 3>
Instead of forming the SiO 2 film, magnetron sputtering (heating temperature 300 ° C., film formation pressure 4 mTorr, a power density of 3W / cm 2) by, forming a SiO 2 film having a thickness of 100 nm, then, plasma nitriding process (heat A temperature of 300 ° C., a pressure in the chamber of 100 Pa, a gas flow rate (N 2 : 100 sccm, Ar: 1000 sccm, H 2 : 10 sccm)) are formed, and a 100 nm thick SiO a N b (a = 1, b = 1) film is formed. A laminate C was obtained according to the same procedure as in Example 1 except that. In addition, the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 1 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Then, peelability evaluation was performed on the laminate C in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when the cleanliness evaluation was performed on the separated glass substrate with an inorganic insulating film in the same manner as in Example 1, the peel strength was 0.6 N / 25 mm and had excellent surface cleanliness. I understood.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
<実施例4>
 実施例1で使用したガラス基板表面にバッファードフッ酸(フッ酸6wt%:フッ化アンモニウム30wt%、残部は水、以下同様)を噴霧(約20秒間)して粗面化し、ガラス基板の粗面化した表面に実施例1で実施されたマグネトロンスパッタリング法により厚さ30nmのSiO2膜をガラス基板上に作製し、本無機絶縁膜付きガラス基板を実施例1で使用した無機絶縁膜付きガラス基板の代わりに用いて、実施例1と同じ手順により、積層体Dを得た。なお、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、25nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Dに対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、剥離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 4>
The surface of the glass substrate used in Example 1 was roughened by spraying buffered hydrofluoric acid (hydrofluoric acid 6 wt%: ammonium fluoride 30 wt%, the remainder being water, the same applies hereinafter) (for about 20 seconds) to roughen the glass substrate. An SiO 2 film having a thickness of 30 nm was formed on the glass substrate by the magnetron sputtering method performed in Example 1 on the surface, and the glass substrate with the inorganic insulating film used in Example 1 was used. Using the substrate instead of the substrate, a laminate D was obtained by the same procedure as in Example 1. The surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 25 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Thereafter, the peelability of the laminate D was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the glass substrate with the inorganic insulating film which peeled, it turned out that peeling strength is 0.6 N / 25mm and it has the outstanding surface cleanliness.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
<実施例5>
 SiO2膜を形成する代わりに、反応性スパッタリング法(アルミニウムターゲット、加熱無し、成膜圧力0.1Pa、ガス流量(O2:25sccm、Ar:25sccm))により厚さ50nmのAl23膜を形成した以外は、実施例1と同様の手順に従って、積層体Eを得た。なお、本実施例において、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、0.8nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Eに対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 5>
Instead of forming the SiO 2 film, an Al 2 O 3 film having a thickness of 50 nm is formed by a reactive sputtering method (aluminum target, no heating, film forming pressure 0.1 Pa, gas flow rate (O 2 : 25 sccm, Ar: 25 sccm)). A laminate E was obtained according to the same procedure as in Example 1 except that was formed. In this example, the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 0.8 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Thereafter, the peelability of the laminate E was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
<実施例6>
 支持板およびガラス基板としてソーダライムガラスからなるガラス板を使用する以外は実施例1と同様の方法により、積層体Fを得た。なお、本実施例において、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、0.8nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Fに対して実施例1と同様に剥離性評価を行った。分離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 6>
A laminate F was obtained in the same manner as in Example 1 except that a glass plate made of soda lime glass was used as the support plate and the glass substrate. In this example, the surface roughness (Ra) of the inorganic insulating film surface of the glass substrate with an inorganic insulating film was 0.8 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Thereafter, the peelability of the laminate F was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the separated glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
<実施例7>
 支持板およびガラス基板として、化学強化されたガラス板を使用する以外は実施例2と同様の方法により、積層体Gを得た。なお、無機絶縁膜付きガラス基板の無機絶縁膜表面の表面粗さ(Ra)は、0.8nmであった。また、XPS測定によって得られた無機絶縁膜表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、検出限界以下(0.1at%以下)であった。
 その後、積層体Gに対して実施例1と同様に剥離性評価を行った。剥離された無機絶縁膜付きガラス基板の剥離面上には、樹脂の残渣はなかった。
 また、分離された無機絶縁膜付きガラス基板に対して清浄性評価を行ったところ、剥離強度は0.6N/25mmであり、優れた面清浄性を有していることが分かった。
 その後、実施例1と同様の手順に従って、分離された無機絶縁膜付きガラス基板を、アルカリ、酸およびブラシ洗浄し、無機絶縁膜付きガラス基板の剥離面を光学顕微鏡で観察したところ、クラックは認められなかった。
<Example 7>
A laminate G was obtained by the same method as in Example 2 except that a chemically strengthened glass plate was used as the support plate and the glass substrate. The surface roughness (Ra) of the surface of the inorganic insulating film of the glass substrate with an inorganic insulating film was 0.8 nm. Further, the total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film obtained by XPS measurement was below the detection limit (0.1 at% or less).
Thereafter, the peelability of the laminate G was evaluated in the same manner as in Example 1. There was no resin residue on the peeled surface of the peeled glass substrate with an inorganic insulating film.
Moreover, when cleanliness evaluation was performed with respect to the separated glass substrate with an inorganic insulating film, it was found that the peel strength was 0.6 N / 25 mm, and the surface cleanliness was excellent.
Then, following the same procedure as in Example 1, the separated glass substrate with an inorganic insulating film was washed with alkali, acid, and brush, and the peeled surface of the glass substrate with an inorganic insulating film was observed with an optical microscope. I couldn't.
 なお、上記実施例1~7で使用された積層体A~Gに関しては、上記の剥離試験において、シリコーン樹脂層と支持板の間ではなく、シリコーン樹脂層と無機絶縁膜との間で剥離が生じていた。この点から、シリコーン樹脂層と支持板との間の密着力がシリコーン樹脂層と無機絶縁膜との間の密着力よりも大きい、言い換えると、シリコーン樹脂層と支持板との間の剥離強度が、シリコーン樹脂層と無機絶縁膜との間の剥離強度よりも高いことが確認された。 Regarding the laminates A to G used in Examples 1 to 7, peeling occurred between the silicone resin layer and the inorganic insulating film, not between the silicone resin layer and the support plate, in the above peeling test. It was. From this point, the adhesion force between the silicone resin layer and the support plate is larger than the adhesion force between the silicone resin layer and the inorganic insulating film, in other words, the peel strength between the silicone resin layer and the support plate is high. It was confirmed that the peel strength between the silicone resin layer and the inorganic insulating film was higher.
<比較例1>
 実施例1で使用した無機絶縁膜付きガラス基板の代わりに、無機絶縁膜のないガラス基板を使用した以外は、実施例1と同じ手順により、積層体Hを得た。積層体Hには、無機絶縁膜が含まれていない。なお、ガラス基板の樹脂層表面と接触させる側の面は、純水洗浄し、その後UV洗浄して清浄化した。また、清浄化されたガラス基板の表面粗さ(Ra)は、0.5nmであった。また、XPS測定によって得られたガラス基板表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、1.0at%であった。
<Comparative Example 1>
Instead of the glass substrate with an inorganic insulating film used in Example 1, a laminate H was obtained by the same procedure as in Example 1 except that a glass substrate without an inorganic insulating film was used. The laminate H does not include an inorganic insulating film. The surface of the glass substrate that is in contact with the resin layer surface was cleaned with pure water and then cleaned with UV. Moreover, the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.0 at%.
 次に、実施例1と同様の手順に従って、加熱処理を行った後剥離性評価を行い、積層体H中のガラス基板と、樹脂層を有する支持板とを分離した。
 分離されたガラス基板の樹脂層と接触していた面上には、樹脂層の樹脂の一部が付着し、支持板上の樹脂層表面の相当する部分に破損が確認された。
 また、分離されたガラス基板に対して清浄性評価を行ったところ、剥離強度は0.1N/25mmであり、表面上に付着した樹脂を十分に取り除くことができなかった。
 刃物で樹脂を除去した後にガラス基板の剥離面を光学顕微鏡で観察したところ、剥離面の一部にクラック発生が認められた。
Next, according to the same procedure as in Example 1, peelability was evaluated after heat treatment, and the glass substrate in the laminate H and the support plate having the resin layer were separated.
A part of the resin of the resin layer adhered to the surface of the separated glass substrate that had been in contact with the resin layer, and damage was confirmed at a corresponding portion of the surface of the resin layer on the support plate.
Moreover, when the cleanliness evaluation was performed on the separated glass substrate, the peel strength was 0.1 N / 25 mm, and the resin adhering to the surface could not be removed sufficiently.
When the peeled surface of the glass substrate was observed with an optical microscope after removing the resin with the blade, cracks were found on a part of the peeled surface.
<比較例2>
 支持板およびガラス基板として、実施例6と同じソーダライムガラスからなるガラス板を使用する以外は比較例1と同様の方法により、積層体Jを得た。積層体Jには、無機絶縁膜が含まれていない。なお、清浄化されたガラス基板の表面粗さ(Ra)は、0.5nmであった。また、XPS測定によって得られたガラス基板表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、1.5at%であった。
 次に、実施例1と同様の手順に従って、加熱処理を行った後剥離性評価を行い、積層体J中のガラス基板と、樹脂層を有する支持板とを分離した。
 分離されたガラス基板の樹脂層と接触していた面上には、樹脂層の樹脂の一部が付着し、支持板上の樹脂層表面の相当する部分に破損が確認された。
 また、分離されたガラス基板に対して清浄性評価を行ったところ、剥離強度は0.1N/25mmであり、表面上に付着した樹脂を十分に取り除くことができなかった。
<Comparative Example 2>
A laminate J was obtained in the same manner as in Comparative Example 1 except that the glass plate made of the same soda lime glass as in Example 6 was used as the support plate and the glass substrate. The laminate J does not include an inorganic insulating film. Note that the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.5 at%.
Next, according to the same procedure as in Example 1, peelability was evaluated after heat treatment, and the glass substrate in the laminate J and the support plate having the resin layer were separated.
A part of the resin of the resin layer adhered to the surface of the separated glass substrate that had been in contact with the resin layer, and damage was confirmed at a corresponding portion of the surface of the resin layer on the support plate.
Moreover, when the cleanliness evaluation was performed on the separated glass substrate, the peel strength was 0.1 N / 25 mm, and the resin adhering to the surface could not be removed sufficiently.
 <比較例3>
 支持板およびガラス基板として、実施例7と同じ化学強化されたガラス板を使用する以外は比較例1と同様の方法により、積層体Kを得た。積層体Kには、無機絶縁膜が含まれていない。なお、清浄化されたガラス基板の表面粗さ(Ra)は、0.5nmであった。また、XPS測定によって得られたガラス基板表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、1.5at%であった。
 次に、実施例1と同様の手順に従って、加熱処理を行った後剥離性評価を行い、積層体K中のガラス基板と、樹脂層を有する支持板とを分離した。
 分離されたガラス基板の樹脂層と接触していた面上には、樹脂層の樹脂の一部が付着し、支持基板上の樹脂層表面の相当する部分に破損が確認された。
 また、分離されたガラス基板に対して清浄性評価を行ったところ、剥離強度は0.1N/25mmであり、表面上に付着した樹脂を十分に取り除くことができなかった。
<Comparative Example 3>
A laminate K was obtained in the same manner as in Comparative Example 1 except that the same chemically strengthened glass plate as in Example 7 was used as the support plate and the glass substrate. The laminated body K does not include an inorganic insulating film. Note that the surface roughness (Ra) of the cleaned glass substrate was 0.5 nm. The total content of alkali metal and alkaline earth metal atoms on the surface of the glass substrate obtained by XPS measurement was 1.5 at%.
Next, according to the same procedure as in Example 1, peelability was evaluated after heat treatment, and the glass substrate in the laminate K and the support plate having the resin layer were separated.
A part of the resin of the resin layer adhered to the surface of the separated glass substrate that was in contact with the resin layer, and damage was confirmed at a corresponding portion of the resin layer surface on the support substrate.
Moreover, when the cleanliness evaluation was performed on the separated glass substrate, the peel strength was 0.1 N / 25 mm, and the resin adhering to the surface could not be removed sufficiently.
<比較例4>
 比較例1で使用したガラス基板表面にバッファードフッ酸を噴霧(約60秒間)して粗面化し、該粗面化ガラス基板を実施例1で使用した無機絶縁膜付きガラス基板の代わりに用いて、実施例1と同じ手順により、積層体Lを得た。積層体Lには、無機絶縁膜が含まれていない。なお、粗面化ガラス基板の樹脂層と接触させる側の面は、純水洗浄し、その後UV洗浄して清浄化した。
 得られた粗面化ガラス基板の清浄化された表面(粗面化された面)の表面粗さ(Ra)は、100nmであった。また、XPS測定によって得られた粗面化ガラス基板の清浄化された表面におけるアルカリ金属およびアルカリ土類金属の原子の合計含有量は、1.1at%であった。
<Comparative example 4>
The glass substrate surface used in Comparative Example 1 is roughened by spraying buffered hydrofluoric acid (about 60 seconds), and the roughened glass substrate is used in place of the glass substrate with an inorganic insulating film used in Example 1. Then, a laminate L was obtained by the same procedure as in Example 1. The laminate L does not include an inorganic insulating film. The surface of the roughened glass substrate that is in contact with the resin layer was cleaned with pure water and then cleaned with UV.
The surface roughness (Ra) of the cleaned surface (roughened surface) of the obtained roughened glass substrate was 100 nm. The total content of alkali metal and alkaline earth metal atoms on the cleaned surface of the roughened glass substrate obtained by XPS measurement was 1.1 at%.
 次に、実施例1と同様の手順に従って、加熱処理を行った後剥離性評価を行い、積層体L中のガラス基板と、樹脂層を有する支持板とを分離した。
 分離されたガラス基板の樹脂層と接触していた面上には、樹脂層の樹脂の一部が付着し、支持板上の樹脂層表面の相当する部分に破損が確認された。
Next, according to the same procedure as in Example 1, peelability was evaluated after heat treatment, and the glass substrate in the laminate L and the support plate having the resin layer were separated.
A part of the resin of the resin layer adhered to the surface of the separated glass substrate that had been in contact with the resin layer, and damage was confirmed at a corresponding portion of the surface of the resin layer on the support plate.
<実施例8>
 本例では、実施例3で得た積層体Cを用いてOLEDを製造する。
 透明電極を形成する工程、補助電極を形成する工程、ホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する工程、これらを封止する工程に供して、積層体Cのガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有する積層体C(以下、パネルCという。)が、本発明の支持体付き表示装置用パネルである。
 続いて、パネルCの封止体側を定盤に真空吸着させたうえで、パネルCのコーナー部のガラス基板と樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板の無機絶縁層と樹脂層の界面に剥離のきっかけを与える。そして、パネルCの支持板表面を24個の真空吸着パッドで吸着した上で、パネルCのコーナー部に近い吸着パッドから順に上昇させる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、樹脂層付き支持板を剥離することができる。
 続いて、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、縦41mm×横30mmの288個のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板とを組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 8>
In this example, an OLED is manufactured using the laminate C obtained in Example 3.
The glass substrate of the laminate C is subjected to a step of forming a transparent electrode, a step of forming an auxiliary electrode, a step of depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and the like, and a step of sealing them. An organic EL structure is formed thereon. A laminate C (hereinafter referred to as a panel C) having an organic EL structure on a glass substrate is a display-equipped panel for a support according to the present invention.
Subsequently, after the panel C sealing body side is vacuum-adsorbed to the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the resin layer at the corner of the panel C, and the glass substrate Triggers peeling at the interface between the inorganic insulating layer and the resin layer. And after adsorb | sucking the support plate surface of the panel C with 24 vacuum suction pads, it raises in an order from the suction pad near the corner part of the panel C. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate is left, and the support plate with a resin layer can be peeled off.
Subsequently, the separated glass substrate is cut using a laser cutter or a scribe-break method, and divided into 288 cells of 41 mm length × 30 mm width, and then the glass substrate on which the organic EL structure is formed and the counter substrate Are assembled, and a module forming process is performed to produce an OLED. The OLED obtained in this way does not have a problem in characteristics.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の範囲と精神を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2011年4月22日出願の日本特許出願2011-095632に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope and spirit of the invention.
This application is based on Japanese Patent Application No. 2011-095632 filed on Apr. 22, 2011, the contents of which are incorporated herein by reference.
10  積層体
20  ガラス基板
22  無機絶縁膜
24  無機絶縁膜付きガラス基板
201 ガラス基板の第1主面
202 ガラス基板の第2主面
221 無機絶縁膜表面
30  補強板(樹脂層付き支持板)
31  支持板
32  樹脂層
321 樹脂層表面
40  支持板付き表示装置用パネル
50  表示装置用パネルの構成部材
60  表示装置用パネル
DESCRIPTION OF SYMBOLS 10 Laminate 20 Glass substrate 22 Inorganic insulating film 24 Glass substrate 201 with inorganic insulating film 201 First main surface 202 of glass substrate Second main surface 221 of glass substrate Inorganic insulating film surface 30 Reinforcing plate (support plate with resin layer)
31 Support plate 32 Resin layer 321 Resin layer surface 40 Display device panel 50 with support plate Display device panel component 60 Display device panel

Claims (14)

  1.  支持板の層と、樹脂層と、無機絶縁膜付きガラス基板の層と、をこの順で備え、かつ前記無機絶縁膜付きガラス基板の無機絶縁膜と、前記樹脂層と、が接している積層体であって、
     前記無機絶縁膜付きガラス基板が、
     ガラス基板の片面にケイ素およびアルミニウムからなる群より選ばれる少なくとも一種を含む酸化物、窒化物または酸窒化物を含む無機絶縁膜を有し、
     前記無機絶縁膜の前記樹脂層に接した面のアルカリ金属およびアルカリ土類金属の原子の合計含有量が0.5at%以下であり、
     前記支持板の層と前記樹脂層の界面の剥離強度が、前記樹脂層と前記無機絶縁膜の界面の剥離強度よりも高い、
     積層体。
    A laminate in which a support plate layer, a resin layer, and a glass substrate layer with an inorganic insulating film are provided in this order, and the inorganic insulating film of the glass substrate with an inorganic insulating film and the resin layer are in contact with each other Body,
    The glass substrate with an inorganic insulating film is
    Having an inorganic insulating film containing an oxide, nitride or oxynitride containing at least one selected from the group consisting of silicon and aluminum on one side of a glass substrate;
    The total content of alkali metal and alkaline earth metal atoms on the surface of the inorganic insulating film in contact with the resin layer is 0.5 at% or less,
    The peel strength at the interface between the support plate layer and the resin layer is higher than the peel strength at the interface between the resin layer and the inorganic insulating film,
    Laminated body.
  2.  前記無機絶縁膜が、酸化ケイ素、窒化ケイ素、酸窒化ケイ素または酸化アルミニウムからなる膜である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the inorganic insulating film is a film made of silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide.
  3.  前記無機絶縁膜の前記樹脂層に接した面の表面粗さ(Ra)が30nm未満である、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein a surface roughness (Ra) of a surface of the inorganic insulating film in contact with the resin layer is less than 30 nm.
  4.  前記無機絶縁膜の厚さが5~5000nmである、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the inorganic insulating film has a thickness of 5 to 5000 nm.
  5.  前記ガラス基板の厚さが0.03~0.8mmである、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the glass substrate has a thickness of 0.03 to 0.8 mm.
  6.  前記樹脂層の樹脂がシリコーン樹脂である、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the resin of the resin layer is a silicone resin.
  7.  前記シリコーン樹脂が、オルガノアルケニルポリシロキサンとオルガノハイドロジェンポリシロキサンの反応硬化物である、請求項6に記載の積層体。 The laminate according to claim 6, wherein the silicone resin is a reaction cured product of an organoalkenylpolysiloxane and an organohydrogenpolysiloxane.
  8.  前記樹脂層の厚さが1~100μmである、請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the resin layer has a thickness of 1 to 100 µm.
  9.  前記支持板がガラス板である、請求項1~8のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the support plate is a glass plate.
  10.  支持板の層と、樹脂層と、無機絶縁膜付きガラス基板の層と、をこの順で備えた積層体を製造する方法であって、
     ガラス基板の片面にケイ素およびアルミニウムからなる群より選ばれる少なくとも一種を含む酸化物、窒化物または酸窒化物を含む無機絶縁膜を有し、前記無機絶縁膜の前記樹脂層に接する面のアルカリ金属およびアルカリ土類金属の原子の合計含有量が0.5at%以下である無機絶縁膜付きガラス基板を用意し、
     前記支持板の片面に固定された前記樹脂層を有しかつ当該樹脂層の露出した表面が非付着性を有する、樹脂層付き支持板を用意し、
     前記無機絶縁膜付きガラス基板の無機絶縁膜の面と、前記樹脂層付き支持板の樹脂層表面と、を積層面として、前記無機絶縁膜付きガラス基板と、前記樹脂層付き支持板と、を積層する積層体の製造方法。
    A method for producing a laminate comprising a support plate layer, a resin layer, and a glass substrate layer with an inorganic insulating film in this order,
    One surface of a glass substrate has an inorganic insulating film containing an oxide, nitride or oxynitride containing at least one selected from the group consisting of silicon and aluminum, and an alkali metal on the surface in contact with the resin layer of the inorganic insulating film And a glass substrate with an inorganic insulating film having a total content of atoms of alkaline earth metal of 0.5 at% or less,
    Preparing a support plate with a resin layer, having the resin layer fixed on one side of the support plate, and the exposed surface of the resin layer having non-adhesiveness,
    Using the surface of the inorganic insulating film of the glass substrate with the inorganic insulating film and the resin layer surface of the supporting plate with the resin layer as a laminated surface, the glass substrate with the inorganic insulating film and the supporting plate with the resin layer, A method for producing a laminate to be laminated.
  11.  前記樹脂層付き支持板が、オルガノアルケニルポリシロキサンと、オルガノハイドロジェンポリシロキサンと、を該支持板上で反応硬化して得られたシリコーン樹脂の層を有する支持板である、請求項10に記載の積層体の製造方法。 The said support plate with a resin layer is a support plate which has a layer of the silicone resin obtained by reaction-curing organoalkenyl polysiloxane and organohydrogen polysiloxane on this support plate. The manufacturing method of the laminated body.
  12.  請求項1~9のいずれか1項に記載の積層体と、前記積層体のガラス基板表面に設けられた表示装置用部材と、を有する、支持板付き表示装置用パネル。 A panel for a display device with a support plate, comprising: the laminate according to any one of claims 1 to 9; and a display device member provided on a glass substrate surface of the laminate.
  13.  請求項12に記載の支持板付き表示装置用パネルから、前記無機絶縁膜と前記樹脂層との界面を剥離面として樹脂層付き支持板を剥離除去して形成された表示装置用パネル。 A panel for a display device, which is formed by peeling and removing the support plate with a resin layer from the panel for a display device with a support plate according to claim 12, with the interface between the inorganic insulating film and the resin layer as a peeling surface.
  14.  請求項13に記載の表示装置用パネルを有する表示装置。 A display device comprising the display device panel according to claim 13.
PCT/JP2012/060377 2011-04-22 2012-04-17 Laminate, method for producing same, and use of same WO2012144499A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137027608A KR20140018937A (en) 2011-04-22 2012-04-17 Laminate, method for producing same, and use of same
JP2013511010A JPWO2012144499A1 (en) 2011-04-22 2012-04-17 Laminate, production method and use thereof
CN201280019767.8A CN103492173B (en) 2011-04-22 2012-04-17 Laminate, method for producing same, and use of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-095632 2011-04-22
JP2011095632 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144499A1 true WO2012144499A1 (en) 2012-10-26

Family

ID=47041605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060377 WO2012144499A1 (en) 2011-04-22 2012-04-17 Laminate, method for producing same, and use of same

Country Status (5)

Country Link
JP (1) JPWO2012144499A1 (en)
KR (1) KR20140018937A (en)
CN (1) CN103492173B (en)
TW (1) TW201249643A (en)
WO (1) WO2012144499A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179881A1 (en) * 2012-05-29 2013-12-05 旭硝子株式会社 Glass laminate and method for manufacturing electronic device
WO2014168118A1 (en) * 2013-04-09 2014-10-16 富士フイルム株式会社 Photoelectric conversion element and solar cell
CN104626684A (en) * 2013-11-11 2015-05-20 旭硝子株式会社 Glass laminated body and electronic device manufacturing method
WO2015113023A1 (en) * 2014-01-27 2015-07-30 Corning Incorporated Treatment of a surface modification layer for controlled bonding of thin sheets with carriers
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
WO2016017650A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
JP2018507290A (en) * 2015-02-03 2018-03-15 ダウ コーニング コーポレーションDow Corning Corporation Curable silicone formulations and related cured products, methods, articles, and devices
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
JPWO2018034290A1 (en) * 2016-08-18 2019-06-20 Agc株式会社 Laminate, method of manufacturing electronic device, method of manufacturing laminate
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
JP2020076975A (en) * 2018-11-07 2020-05-21 エルジー ディスプレイ カンパニー リミテッド Display device
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002030A1 (en) * 2013-07-01 2015-01-08 旭硝子株式会社 Separation origin production device and method
KR20160015513A (en) 2014-07-30 2016-02-15 (주)엘지하우시스 Low-emissivity coat, and functional building material including low-emissivity coat for windows

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
WO2008007622A1 (en) * 2006-07-12 2008-01-17 Asahi Glass Company, Limited Glass substrate with protective glass, process for producing display using glass substrate with protective glass, and silicone for release paper
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532918B2 (en) * 2007-03-12 2014-06-25 旭硝子株式会社 Method for manufacturing display device using glass substrate with protective glass
KR20110007134A (en) * 2008-04-17 2011-01-21 아사히 가라스 가부시키가이샤 Glass laminate, display panel with support, method for producing glass laminate and method for manufacturing display panel with support

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
WO2008007622A1 (en) * 2006-07-12 2008-01-17 Asahi Glass Company, Limited Glass substrate with protective glass, process for producing display using glass substrate with protective glass, and silicone for release paper
WO2011030716A1 (en) * 2009-09-08 2011-03-17 旭硝子株式会社 Glass/resin laminate, and electronic device using same

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
WO2013179881A1 (en) * 2012-05-29 2013-12-05 旭硝子株式会社 Glass laminate and method for manufacturing electronic device
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
WO2014168118A1 (en) * 2013-04-09 2014-10-16 富士フイルム株式会社 Photoelectric conversion element and solar cell
JP2014204075A (en) * 2013-04-09 2014-10-27 富士フイルム株式会社 Photoelectric conversion element and solar cell
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
CN104626684A (en) * 2013-11-11 2015-05-20 旭硝子株式会社 Glass laminated body and electronic device manufacturing method
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
WO2015113023A1 (en) * 2014-01-27 2015-07-30 Corning Incorporated Treatment of a surface modification layer for controlled bonding of thin sheets with carriers
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9726786B2 (en) 2014-05-12 2017-08-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
WO2016017650A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Glass laminate and support substrate equipped with inorganic film, method for manufacturing said glass laminate and said support substrate, and method for manufacturing electronic device
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
JP2018507290A (en) * 2015-02-03 2018-03-15 ダウ コーニング コーポレーションDow Corning Corporation Curable silicone formulations and related cured products, methods, articles, and devices
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10451773B2 (en) 2015-09-14 2019-10-22 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
JP2022001437A (en) * 2016-08-18 2022-01-06 Agc株式会社 Laminate, production method of electronic device, production method of laminate
US11609360B2 (en) 2016-08-18 2023-03-21 AGC Inc. Laminate, method for manufacturing electronic device, and method for manufacturing laminate
JP7303963B2 (en) 2016-08-18 2023-07-06 Agc株式会社 LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD
JPWO2018034290A1 (en) * 2016-08-18 2019-06-20 Agc株式会社 Laminate, method of manufacturing electronic device, method of manufacturing laminate
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures
US11063068B2 (en) 2018-11-07 2021-07-13 Lg Display Co., Ltd. Display apparatus
JP2020076975A (en) * 2018-11-07 2020-05-21 エルジー ディスプレイ カンパニー リミテッド Display device

Also Published As

Publication number Publication date
KR20140018937A (en) 2014-02-13
CN103492173A (en) 2014-01-01
JPWO2012144499A1 (en) 2014-07-28
CN103492173B (en) 2015-05-20
TW201249643A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
WO2012144499A1 (en) Laminate, method for producing same, and use of same
JP5924344B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
WO2015163134A1 (en) Glass laminate body, and method for manufacturing electronic device
JP6119567B2 (en) Method for manufacturing glass laminate and method for manufacturing electronic device
JP5887946B2 (en) Method for manufacturing electronic device and method for manufacturing glass laminate
JP5835214B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE
US20140166186A1 (en) Glass film laminate
WO2010079688A1 (en) Glass laminate and manufacturing method therefor
JP5842821B2 (en) LAMINATE, DISPLAY DEVICE PANEL WITH SUPPORT PLATE, DISPLAY DEVICE PANEL, AND DISPLAY DEVICE
JP7136275B2 (en) LAMINATED BODY, ELECTRONIC DEVICE MANUFACTURING METHOD, LAMINATED PRODUCTION METHOD
JP2013184346A (en) Glass laminate, and method for producing electronic device
JP6252490B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
JP7070425B2 (en) Manufacturing method for laminated boards and electronic devices
JP6673354B2 (en) Method for manufacturing carrier substrate, laminate, and electronic device
WO2011111611A1 (en) Method for eliminating resin film and method for producing laminate
WO2016017649A1 (en) Glass laminate, supporting substrate with inorganic layer, method for manufacturing electronic device, and method for producing supporting substrate with inorganic layer
JP2016210157A (en) Glass laminate and method for producing electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511010

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027608

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774796

Country of ref document: EP

Kind code of ref document: A1