WO2012142742A1 - 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法 - Google Patents

控制高压共轨燃油***的高压共轨管腔轨压的设备和方法 Download PDF

Info

Publication number
WO2012142742A1
WO2012142742A1 PCT/CN2011/072983 CN2011072983W WO2012142742A1 WO 2012142742 A1 WO2012142742 A1 WO 2012142742A1 CN 2011072983 W CN2011072983 W CN 2011072983W WO 2012142742 A1 WO2012142742 A1 WO 2012142742A1
Authority
WO
WIPO (PCT)
Prior art keywords
high pressure
fuel
common rail
pressure
pump chamber
Prior art date
Application number
PCT/CN2011/072983
Other languages
English (en)
French (fr)
Inventor
胡广地
孙少军
佟德辉
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to US14/112,915 priority Critical patent/US9624889B2/en
Priority to PCT/CN2011/072983 priority patent/WO2012142742A1/zh
Publication of WO2012142742A1 publication Critical patent/WO2012142742A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/50Arrangement of fuel distributors, e.g. with means for supplying equal portion of metered fuel to injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure

Definitions

  • Embodiments of the present invention generally relate to the field of engines and, more particularly, to an apparatus and method for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system. Background technique
  • the fuel pressure control in the existing engine high pressure common rail fuel system uses a PID (proportional-integral-derivative) type of control strategy, which requires a large amount of calibration work.
  • PID proportional-integral-derivative
  • the existing engine high pressure common rail fuel system control strategy under certain operating conditions of the engine, the actual measured value of the fuel pressure in the high pressure common rail cavity is compared with the target value of the fuel pressure.
  • the large deviation which leads to a large error between the actual fuel injection quantity and the fuel target injection quantity in the engine high pressure common rail fuel system, directly affects the power of the engine and the consistency of the injection of each cylinder.
  • the present invention provides apparatus and methods for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system to at least partially address the above problems.
  • an embodiment of the present invention provides an apparatus for controlling a rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system
  • the apparatus may include: a condition acquisition device configured to be configured to Obtaining operating conditions associated with the engine high pressure common rail fuel system; an oil quantity metering valve equivalent cross sectional area determining device coupled to the condition acquisition device, configured for use according to the acquired operating conditions, and according to the high pressure common rail lumen Rail pressure target value, using a linear physical model of the equivalent cross-sectional area of the oil metering valve to determine the oil An equivalent cross-sectional area of the metering valve; a signal generating device coupled to the equivalent cross-sectional area determining device of the oil metering valve, configured to generate an equivalent cross-sectional area based on the determined oil metering valve The drive signal of the equivalent cross-sectional area of the oil metering valve.
  • the operating conditions may include a lift of the high pressure fuel injection pump plunger and a measure of its linear velocity.
  • the operating conditions may include actual rail pressure measurements of the high pressure common rail lumen.
  • the linear physical model may be related to one or more of the following aspects of the engine high pressure common rail fuel system: the volume of the plunger pump chamber, the piston pump chamber fuel elastic modulus, the plunger at the equilibrium point Observed value of pump chamber fuel pressure, low pressure pump supply pressure, flow rate factor of flow metering unit, equivalent cross-sectional area of fuel metering valve, fuel density, check valve flow from plunger pump chamber to high pressure common rail chamber Coefficient, equivalent cross-sectional area of plunger pump chamber to high pressure common rail cavity check valve, rail pressure measurement of high pressure common rail cavity or rail pressure observation of high pressure common rail cavity at equilibrium point, plunger Cross section of pump chamber, line speed of plunger movement, fuel elastic modulus in high pressure common rail cavity, volume of high pressure common rail cavity, flow coefficient of injector, equivalent cross sectional area of injector, compressed air in cylinder pressure.
  • the linear physical model may be related to one or more of the following aspects of the engine high pressure common rail fuel system: volume of the plunger pump chamber, fuel modulus of the plunger pump chamber, column at equilibrium point Observed pumping chamber fuel pressure, low pressure oil pump oil supply pressure, flow metering unit flow coefficient, fuel density, plug pump chamber to high pressure common rail lumen check valve flow coefficient, plunger pump chamber to high pressure common rail Equivalent cross-sectional area of the tube check valve, rail pressure measurement of the high pressure common rail cavity or rail pressure observation of the high pressure common rail cavity at the equilibrium point, fuel elastic modulus in the high pressure common rail cavity, high pressure Common rail volume.
  • the volume of the plunger pump chamber may be related to the maximum volume of the plunger pump chamber and the plunger lift associated with the camshaft angle; the plunger movement linear velocity may be related to the high pressure fuel injection pump plunger lift , the camshaft angle is related to the camshaft speed; the observation of the fuel pressure of the plunger pump chamber at the equilibrium point can be compared with the high pressure common rail at the equilibrium point The measured value of the fuel pressure in the lumen, the equivalent cross-sectional area of the oil metering valve, the plunger lift of the high pressure fuel injection pump, and the linear velocity of the plunger movement are related.
  • an embodiment of the present invention provides an apparatus for observing fuel pressure, the apparatus comprising: a parameter acquisition device configured to acquire a plunger moving linear velocity, a lift of a high pressure fuel injection pump plunger Process, equivalent cross-sectional area of the oil metering valve and measured value of the rail pressure of the high pressure common rail cavity; fuel pressure observation value determining device coupled to the parameter obtaining device, configured to use the column based on the acquired measured value A linear model of the fuel pressure observation of the pump chamber and the observation of the high pressure common rail lumen pressure to determine an observation of the fuel pressure in the plunger pump chamber; and a communication device coupled to the fuel pressure observation determining device for configuration Observed values are provided for use in a linear physical model of the equivalent cross-sectional area of the fuel metering valve.
  • the fuel pressure observation value determining means is further configured to determine a high voltage based on the acquired measured value using a linear model of both the plunger pump chamber fuel pressure observation and the high pressure common rail lumen rail pressure observation The observed value of the rail pressure of the common rail.
  • an embodiment of the present invention provides a method for controlling a rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system
  • the reading method may include: acquiring a high pressure common rail fuel with an engine System-related operating conditions; According to the obtained working conditions, and according to the target value of the rail pressure of the high-pressure common rail cavity, the linear physical model of the equivalent cross-sectional area of the oil metering valve is used to determine the equivalent cross-section of the oil metering valve Area; based on the determined equivalent cross-sectional area of the oil metering valve, generates a drive signal for controlling the equivalent cross-sectional area of the oil metering valve.
  • the operating conditions may include a lift of the high pressure fuel injection pump plunger and a measure of its linear velocity.
  • the operating conditions may include actual rail pressure measurements of the high pressure common rail lumen.
  • the linear physical model may be related to one or more of the following aspects of the engine high pressure common rail fuel system: the volume of the plunger pump chamber, the piston pump chamber fuel elastic modulus, the plunger at the equilibrium point Pump chamber fuel pressure observation, low pressure Oil pump oil supply pressure, flow rate unit of flow metering unit, equivalent cross-sectional area of oil metering valve, fuel density, one-way valve flow coefficient of plunger pump chamber to high pressure common rail cavity, plunger pump chamber to high pressure Equivalent cross-sectional area of rail-to-tube check valve, rail pressure measurement of high-pressure common rail cavity or rail pressure observation of high-pressure common rail cavity at equilibrium point, piston pump cavity cross-sectional area, plunger movement Line speed, fuel elastic modulus in high pressure common rail cavity, high pressure common rail cavity volume, injector flow coefficient, injector equivalent cross sectional area, compressed air pressure in the cylinder.
  • the linear physical model may be related to one or more of the following aspects of the engine high pressure common rail fuel system: volume of the plunger pump chamber, fuel modulus of the plunger pump chamber, column at equilibrium point Observed pumping chamber fuel pressure, low pressure oil pump oil supply pressure, flow metering unit flow coefficient, fuel density, plug pump chamber to high pressure common rail lumen check valve flow coefficient, plunger pump chamber to high pressure common rail Equivalent cross-sectional area of the tube check valve, rail pressure measurement of the high pressure common rail cavity or rail pressure observation of the high pressure common rail cavity at the equilibrium point, fuel elastic modulus in the high pressure common rail cavity, high pressure Common rail volume.
  • the volume of the plunger pump chamber may be related to the maximum volume of the plunger pump chamber and the plunger lift associated with the camshaft angle; the plunger movement linear velocity may be related to the high pressure fuel injection pump plunger lift
  • the camshaft angle is related to the camshaft speed; in the balance, the observation of the fuel pressure of the plunger pump chamber can be compared with the measured value of the fuel pressure in the high pressure common rail cavity at the equilibrium point, and the equivalent of the oil metering valve Cross-sectional area, high pressure fuel injection pump plunger lift and plunger motion line speed are related.
  • an embodiment of the present invention provides a method for observing fuel pressure, the method comprising: obtaining a plunger moving linear velocity, a lift of a high pressure fuel injection pump plunger, and a fuel amount metering valve Equivalent cross-sectional area and measured value of the rail pressure of the high pressure common rail lumen; based on the acquired measured values, using a linear model of both the plunger pump chamber fuel pressure observation and the high pressure common rail lumen rail pressure observation An observation of the fuel pressure in the plunger pump chamber; and a linear physical model that provides observations for the equivalent cross-sectional area of the fuel metering valve.
  • the step of obtaining the measured value further comprises The observation of the high pressure common rail tube rail pressure is determined by a linear model of the piston pump chamber fuel pressure observation and the high pressure common rail tube rail pressure view 'j value.
  • the rail pressure of the high pressure common rail cavity can be better controlled so that it is close to its target value under any working condition.
  • the calibration of the electronic control unit can be reduced by providing a physical model of the relationship between the various devices in the engine high pressure common rail fuel system.
  • Figure 1 shows a schematic diagram of an engine high pressure common rail fuel system with a flow metering unit located in a low pressure circuit.
  • FIG. 2 shows a schematic block diagram of an apparatus for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system in accordance with an embodiment of the present invention.
  • Figure 3 shows a schematic block diagram of an apparatus for observing fuel pressure in accordance with an embodiment of the present invention.
  • FIG. 4 shows a schematic flow diagram of a method for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system in accordance with an embodiment of the present invention.
  • Figure 5 shows a schematic flow diagram of a method for observing fuel pressure in accordance with an embodiment of the present invention.
  • Figure 6 shows a graphical representation of a linear physical model of the equivalent cross-sectional area of a fuel metering valve in accordance with an embodiment of the present invention.
  • an apparatus and method for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system is presented.
  • an apparatus and method for observing fuel pressure is provided to work in conjunction with apparatus and methods for controlling rail pressure.
  • the term “parameter” means any value that indicates the physical quantity of the engine's (target or actual) physical state or operating condition. Moreover, in this context, “parameters” are used interchangeably with the physical quantities they represent. For example, “parameter indicating the speed of the camshaft” and “camshaft speed” have the same meaning herein. Moreover, in this paper, assuming that a corpse represents a certain physical quantity, it represents the derivative of P to time, that is, the rate of change over time; the observation value indicating the physical quantity P, that is, the filtered measurement value (the measured value contains noise) ).
  • the term “acquisition” is used to include various means currently known or developed in the future, such as measurement, reading, estimation, estimation, etc.; the term “measurement” as used herein includes or is currently known or Various means of development in the future, such as direct measurement, reading, calculation, estimation, and so on.
  • FIG. 1 a schematic diagram of an engine high pressure common rail fuel system 100 with a flow metering unit located in a low pressure circuit is shown. It should be understood that only the portion of the engine high pressure common rail fuel system 100 that is relevant to embodiments of the present invention is shown in FIG. 1, and that the engine high pressure common rail fuel system 100 may also include any number of other components.
  • the engine high pressure common rail fuel system 100 includes: a fuel tank 101, a fuel filter 102, a fuel low pressure oil pump 103, a fuel flow metering unit 1 16, which includes a fuel amount metering valve (for example, a solenoid valve), and is configured Used to control the amount of fuel flowing therethrough into the high pressure common rail lumen 1 17 by changing its equivalent cross-sectional area; a one-way valve 105 configured for use as a one-way fuel from the fuel flow metering unit to the plunger pump chamber 106
  • the high pressure fuel injection pump 1 13 includes a high pressure fuel injection pump plunger 115 and a plunger pump chamber 106.
  • the high pressure fuel injection pump plunger 1 15 reciprocates in the plunger pump chamber 106.
  • a vacuum is formed in the plunger pump chamber 106, thereby sucking the fuel through the check valve 105, and when the high pressure fuel injection pump plunger 115 moves upward, the plunger pump chamber 106 is inside.
  • the fuel is pressurized to form high pressure fuel, and is pressed into the high pressure common rail cavity 117 when the fuel pressure is greater than the fuel pressure in the high pressure common rail cavity 17;
  • the check valve 107 is configured to be used as a high pressure fuel from the plunger a one-way passage of the pump chamber 106 to the high pressure common rail chamber 1 17;
  • a high pressure common rail chamber 1 17 configured to store high pressure fuel;
  • an injector 1 1 1 that drives the injector 1 10 in the injector
  • the high pressure fuel stored in the high pressure common rail cavity 1 17 is injected into each cylinder; and an electronic control unit (ECU) 1 18 is configured for operating conditions (eg, rail pressure measurement value 109 of the high pressure common rail cavity)
  • ECU electronic control unit
  • the present invention focuses on characterizing and modeling the fuel flow rate and/or pressure of the oil metering valve, the high pressure fuel injection pump, the high pressure common rail cavity, and the injector, thereby achieving Effective control that cannot be achieved in the prior art.
  • embodiments of the present invention establish a linear model of the above physical quantities and use them to control the rail pressure in the high pressure common rail cavity 117.
  • Apparatus 200 for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system will now be described with reference to FIG.
  • control device 200 illustrated in Figure 2 can be put into practice as the electronic control unit 118 or portion thereof illustrated in Figure 1. Alternatively, control device 200 can also be implemented as a separate control device.
  • control device 200 includes condition acquisition device 202 configured to obtain operating conditions associated with an engine high pressure common rail fuel system.
  • the operating conditions may include a high pressure fuel injection pump plunger The measured value of the lift and its line speed (indicated by / ⁇ and "9" respectively).
  • the operating conditions may include actual rail pressure measurements (indicated by high pressure common rail).
  • condition acquisition device 202 can obtain operating conditions (e.g., direct measurements) associated with the engine high pressure common rail fuel system through actual measurements. Alternatively or additionally, the condition acquisition device 202 may obtain, by estimation, estimation or calculation, a condition indicative of an engine high pressure common rail fuel system (eg, a function of a camshaft rotation angle) based on operating conditions of other components. , A) can be calculated by the camshaft angle e.
  • operating conditions e.g., direct measurements
  • condition acquisition device 202 may obtain, by estimation, estimation or calculation, a condition indicative of an engine high pressure common rail fuel system (eg, a function of a camshaft rotation angle) based on operating conditions of other components. , A) can be calculated by the camshaft angle e.
  • A can be calculated by the camshaft angle e.
  • the scope of the invention is not limited in this respect.
  • the control device 200 may further include a fuel amount metering valve equivalent cross-sectional area determining device 204 coupled to the condition acquiring device 202, configured to be based on the acquired operating conditions ( A and ⁇ 9 and / or), and according to the rail pressure target value of the high pressure common rail cavity (indicated by the fact that it can be set in real time according to engine operating conditions), the linear physical model of the equivalent cross-sectional area of the oil metering valve is used. To determine the equivalent cross-sectional area of the fuel metering valve (indicated by ").
  • the oil quantity metering valve equivalent cross-sectional area determining means 204 uses a linear physical model characterizing the equivalent cross-sectional area of the oil quantity metering valve, with h and / acquired by the condition acquisition means. Or P r is the input, determine the equivalent cross-sectional area of the metering valve to meet the fuel quantity that P should have.
  • P r is the input
  • the linear physical model may be related to one or more aspects of the engine high pressure common rail fuel system.
  • face includes both the inherent properties of the engine's high-pressure common rail fuel system and the actual operation.
  • the working conditions for example, but not limited to: the volume of the plunger pump chamber, the fuel elastic modulus of the plunger pump chamber, the observation of the fuel pressure of the plunger pump chamber at the equilibrium point, the low pressure oil pump supply pressure, the flow metering unit
  • the linear physical model may be related to one or more of the following aspects of the engine high pressure common rail fuel system: volume of the plunger pump chamber, fuel modulus of the plunger pump chamber, column at equilibrium point Observed pumping chamber fuel pressure, low pressure oil pump oil supply pressure, flow metering unit flow coefficient, fuel density, plug pump chamber to high pressure common rail lumen check valve flow coefficient, plunger pump chamber to high pressure common rail Equivalent cross-sectional area of the tube check valve, rail pressure measurement of the high pressure common rail cavity or rail pressure observation of the high pressure common rail cavity at the equilibrium point, fuel elastic modulus in the high pressure common rail cavity, high pressure Common rail volume.
  • the volume of the plunger pump chamber may be related to the maximum volume of the plunger pump chamber and the plunger lift associated with the camshaft rotation angle; the plunger movement linear velocity may be related to the high pressure fuel injection pump plunger lift, camshaft rotation angle and cam
  • the shaft speed is related; the observed value of the fuel pressure in the plunger pump chamber at the equilibrium point can be compared with the measured value of the fuel pressure in the high pressure common rail chamber at the equilibrium point, the equivalent cross-sectional area of the oil metering valve, and the high pressure spray
  • the oil pump plunger lift is related to the plunger motion line speed.
  • various means can be utilized to establish a linear physical model of the equivalent cross-sectional area of the fuel metering valve. Only one of the embodiments will be described below.
  • the flow rate of the flow metering unit, the pressure of the plunger pump chamber, the flow rate of the plunger pump chamber into the high pressure common rail chamber, the rail pressure of the high pressure common rail chamber, and the flow rate of the injector injection into the cylinder are modeled.
  • the equivalent model cross-sectional area of the oil metering valve can be determined using the model design given.
  • the equivalent cross-sectional area of the flow metering valve of the flow metering unit is the control amount.
  • a (for the plunger lift, e is the camshaft angle.
  • the line speed for the plunger is a function of the speed of the diesel engine.
  • the mathematical model of the control system is to describe the internals of the system.
  • the mathematical model of the control system can take many forms, and the methods for establishing the mathematical model of the system can be different. Different model forms are applicable to different analysis methods.
  • no mathematical expression can accurately (absolutely) describe a system because, theoretically, any system is nonlinear, time-varying, and distributed, and there are random factors. The more complex the system, the more The more complicated.
  • the tangent method or the small deviation method is particularly suitable for a nonlinear characteristic function with continuous variation, the essence of which is to replace the nonlinear characteristic with a straight line in a small range.
  • the mathematical process is to take the linear term of its Taylor expansion.
  • the physical model can be linearly expanded near the equilibrium point of the fuel system to obtain a linearized physical model to simplify the calculation.
  • the incremental sign ⁇ can be omitted for a linearized physical model near the equilibrium point.
  • the observing apparatus 300 may include a parameter acquisition device 302 configured to acquire a plunger motion linear velocity, a high voltage.
  • the 304 can be further configured to determine an observation of the rail pressure of the high pressure common rail cavity using a linear model of both the plunger pump chamber fuel pressure observation and the high pressure common rail lumen rail pressure observation based on the acquired measurements.
  • the observing apparatus 300 can further include a communication device 306 coupled to the fuel pressure observation value determining device 304 configured to provide an observation (or A and both) of fuel pressure to the control device for a fuel metering valve, etc.
  • the linear physical model of the effective cross-sectional area is used.
  • the advantage of providing both A and both is the ability to improve the accuracy of a linear physical model of equivalent cross-sectional area.
  • the advantage of providing only the viewing angle is that there is no need to solve the problem and shorten the operation time.
  • the target value of the rail pressure of the high pressure common rail cavity is defined as ⁇ ⁇
  • the actual measured value of the rail pressure is P r .
  • the feedforward control term is related to ⁇ , and according to the linear physical model of the equivalent cross-sectional area of the oil metering valve. In order to calculate the individual coefficients, you need to know the sum. Of course, as mentioned above, it is also only necessary to know ⁇ ⁇ .
  • the linear physical model may include only feedforward control items, feedback control items, or a combination of both.
  • the invention is not limited herein.
  • the above is merely an embodiment of a push-wire physical model.
  • Various variations of the model are possible.
  • one or more of the above mentioned aspects may be disregarded in the physical model, and/or new aspects associated with the engine high pressure fuel system may be added.
  • those skilled in the art can, in conjunction with their specific needs and conditions, design a linear physical model that implements any suitable physical model to characterize the equivalent cross-sectional area of a fuel metering valve.
  • control apparatus 200 can further include a signal generating device 206 coupled to the fuel metering valve equivalent cross-sectional area determining device 204 configured to generate an equivalent cross-sectional area based on the determined fuel amount metering valve A drive signal for controlling the equivalent cross-sectional area of the fuel metering valve.
  • the method 400 for controlling the rail pressure of a high pressure common rail cavity of an engine high pressure common rail fuel system may include: obtaining a condition associated with an engine high pressure common rail fuel system (S402); Working condition, and according to the target value of the rail pressure of the high pressure common rail cavity, using the linear physical model of the equivalent cross sectional area of the oil metering valve to determine the equivalent cross sectional area of the oil metering valve (S404); based on the determined oil
  • the equivalent cross-sectional area of the metering valve generates a drive signal (S406) for controlling the equivalent cross-sectional area of the fuel metering valve.
  • the method 500 can include: obtaining a plunger motion linear velocity, a lift of the high pressure fuel injection pump plunger, an equivalent cross sectional area of the oil quantity metering valve, and a measured value of the rail pressure of the high pressure common rail lumen ( S502); based on the acquired measured value, using the plunger pump chamber fuel pressure A linear model of force observations and high pressure common rail lumen pressure observations to determine the observed value of the fuel pressure in the plunger pump chamber (S504); and provide observations for the equivalent cross-sectional area of the fuel metering valve The linear physics model is used (S506).
  • step 504 may further comprise determining a high pressure common rail lumen rail pressure observation using a linear model of both the plunger pump chamber fuel pressure observation and the high pressure common rail lumen rail pressure observation.
  • the methods 400 and 500 described with reference to Figures 4 and 5 can be implemented by a computer program product.
  • the computer program product can include at least one computer readable storage medium having computer readable program code portions stored thereon.
  • the computer readable code portion is executed by, for example, a processor, it is used to perform the steps of methods 400 and 500.
  • Embodiments of the invention may be implemented in hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read only memory.
  • Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
  • the apparatus of the present invention and its modules can be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, and the like. It can also be implemented by software executed by various types of processors, or by a combination of the above-described hardware circuits and software such as firmware. It should be noted that although several devices or sub-devices of the control device and the observing device are mentioned in the above detailed description, such division is merely not mandatory. Indeed, in accordance with embodiments of the present invention, the features and functions of the two or more devices described above may be embodied in one device. Conversely, the features and functions of one of the devices described above can be further divided into multiple devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

控制高压共轨燃油***的高压共轨管腔轨压的设备和方法 技术领域
本发明的实施方式总体上涉及发动机领域, 更具体地, 涉及一 种用于控制发动机高压共轨燃油***的高压共轨管腔的轨压的设备 和方法。 背景技术
现有发动机高压共轨燃油***中的燃油压力控制采用 PID (比例- 积分-微分)类型的控制策略, 这需要进行大量的标定工作。 此外, 采 用这种现有的发动机高压共轨燃油***控制策略, 在发动机工作的 某些工况条件下, 高压共轨管腔中燃油压力的实际测量值同燃油压 力的目标值之间有较大的偏差, 这就导致了发动机高压共轨燃油系 统中的燃油实际喷射量与燃油目标喷射量之间出现较大误差, 直接 影响了发动机的功率和各缸喷油的一致性。
因此, 开发先进的发动机高压共轨燃油***的燃油压力控制策 略对提高发动机性能和减少电子控制单元标定工作至关重要。 发明内容
鉴于本领域中不存在这样的精确控制策略, 本发明提供了用于 控制发动机高压共轨燃油***的高压共轨管腔的轨压的设备和方 法, 以至少部分解决上述问题。
根据本发明的一个方面, 本发明的实施方式提供了一种用于控 制发动机高压共轨燃油***的高压共轨管腔的轨压的设备, 该设备 可以包括: 工况获取装置, 配置用于获取与发动机高压共轨燃油系 统相关的工况; 油量计量阀等效横截面积确定装置, 其耦合至工况 获取装置, 配置用于根据获取的工况, 以及根据高压共轨管腔的轨 压目标值, 使用油量计量阀等效横截面积的线性物理模型来确定油 量计量阀的等效横截面积; 信号生成装置, 其耦合至油量计量阀等 效横截面积确定装置, 配置用于基于确定的油量计量阀的等效横截 面积, 生成用于控制油量计量阀的等效横截面积的驱动信号。
根据本发明的一些实施方式, 工况可以包括高压喷油泵柱塞的 升程及其线速度的测量值。
根据本发明的另外一些实施方式, 工况可以包括高压共轨管腔 的实际轨压测量值。
根据本发明的一些实施方式, 线性物理模型可以与发动机高压 共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、 柱塞泵 腔燃油弹性模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低压 油泵供油压力、 流量计量单元的流量系数、 油量计量阀的等效横截 面面积、 燃油密度、 柱塞泵腔到高压共轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向阀等效横截面面积、 高压共轨管腔的 轨压测量值或在平衡点时的高压共轨管腔的轨压观测值、 柱塞泵腔 横截面积、 柱塞运动线速度、 高压共轨管腔内燃油弹性模量、 高压 共轨管腔体积、 喷油器流量系数、 喷油器等效横截面面积、 气缸内 压缩空气的压力。
根据本发明的又一些实施方式, 线性物理模型可以与发动机高 压共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、 柱塞 泵腔燃油弹性模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低 压油泵供油压力、 流量计量单元的流量系数、 燃油密度、 柱塞泵腔 到高压共轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向 阀等效横截面面积、 高压共轨管腔的轨压测量值或在平衡点时的高 压共轨管腔的轨压观测值、 高压共轨管腔内燃油弹性模量、 高压共 轨管腔体积。
根据本发明的一些实施方式, 柱塞泵腔的体积可以与柱塞泵腔 的最大体积和同凸轮轴转角相关的柱塞升程相关; 柱塞运动线速度 可以与高压喷油泵柱塞升程、 凸轮轴转角和凸轮轴转速相关; 在平 衡点时的柱塞泵腔燃油压力的观测值可以与在平衡点时的高压共轨 管腔内燃油压力的测量值、 油量计量阀的等效横截面面积、 高压喷 油泵柱塞升程和柱塞运动线速度相关。
根据本发明的另一方面, 本发明的实施方式提供了一种用于观 测燃油压力的设备, 该设备包括: 参数获取装置, 配置用于获取柱 塞运动线速度、 高压喷油泵柱塞的升程、 油量计量阀的等效横截面 积和高压共轨管腔的轨压的测量值; 燃油压力观测值确定装置, 其 与参数获取装置耦合, 配置用于基于获取的测量值, 使用柱塞泵腔 燃油压力观测值和高压共轨管腔轨压观测值二者的线性模型来确定 柱塞泵腔燃油压力的观测值; 以及通信装置, 其与燃油压力观测值 确定装置耦合, 配置用于提供观测值, 以供油量计量阀等效横截面 积的线性物理模型使用。
根据本发明的实施方式, 燃油压力观测值确定装置进一步配置 用于基于获取的测量值, 使用柱塞泵腔燃油压力观测值和高压共轨 管腔轨压观测值二者的线性模型来确定高压共轨管腔轨压的观测 值。
根据本发明的又一方面, 本发明的实施方式提供了一种用于控 制发动机高压共轨燃油***的高压共轨管腔的轨压的方法, 读方法 可以包括: 获取与发动机高压共轨燃油***相关的工况; 根据获取 的工况, 以及根据高压共轨管腔的轨压目标值, 使用油量计量阀等 效横截面积的线性物理模型来确定油量计量阀的等效横截面积; 基 于确定的油量计量阀的等效横截面积, 生成用于控制油量计量阀的 等效横截面积的驱动信号。
根据本发明的一些实施方式, 工况可以包括高压喷油泵柱塞的 升程及其线速度的测量值。
根据本发明的一些实施方式, 工况可以包括高压共轨管腔的实 际轨压测量值。
根据本发明的一些实施方式, 线性物理模型可以与发动机高压 共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、 柱塞泵 腔燃油弹性模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低压 油泵供油压力、 流量计量单元的流量系数、 油量计量阀的等效横截 面面积、 燃油密度、 柱塞泵腔到高压共轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向阀等效横截面面积、 高压共轨管腔的 轨压测量值或在平衡点时的高压共轨管腔的轨压观测值、 柱塞泵腔 横截面积、 柱塞运动线速度、 高压共轨管腔内燃油弹性模量、 高压 共轨管腔体积、 喷油器流量系数、 喷油器等效横截面面积、 气缸内 压缩空气的压力。
根据本发明的又一些实施方式, 线性物理模型可以与发动机高 压共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、 柱塞 泵腔燃油弹性模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低 压油泵供油压力、 流量计量单元的流量系数、 燃油密度、 柱塞泵腔 到高压共轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向 阀等效横截面面积、 高压共轨管腔的轨压测量值或在平衡点时的高 压共轨管腔的轨压观测值、 高压共轨管腔内燃油弹性模量、 高压共 轨管腔体积。
根据本发明的一些实施方式, 柱塞泵腔的体积可以与柱塞泵腔 的最大体积和同凸轮轴转角相关的柱塞升程相关; 柱塞运动线速度 可以与高压喷油泵柱塞升程、 凸轮轴转角和凸轮轴转速相关; 在平 衡 , 时的柱塞泵腔燃油压力的观测值可以与在平衡点时的高压共轨 管腔内燃油压力的测量值、 油量计量阀的等效横截面面积、 高压喷 油泵柱塞升程和柱塞运动线速度相关。
根据本发明的另一方面, 本发明的实施方式提供了一种用于观 测燃油压力的方法, 该方法包括: 获取柱塞运动线速度、 高压喷油 泵柱塞的升程、 油量计量阀的等效横截面积和高压共轨管腔的轨压 的测量值; 基于获取的测量值, 使用柱塞泵腔燃油压力观测值和高 压共轨管腔轨压观测值二者的线性模型来确定柱塞泵腔燃油压力的 观测值; 以及提供观测值, 以供油量计量阀等效横截面积的线性物 理模型使用。
根据本发明的一些实施方式, 获取测量值的步骤进一步包括使 用柱塞泵腔燃油压力观测值和高压共轨管腔轨压观 'j值二者的线性 模型来确定高压共轨管腔轨压的观测值。
利用本发明实施方式提供的诸多线性物理模型, 可以更好地控 制高压共轨管腔的轨压, 以使其在任何工况奈件下都接近其目标值。 此外, 由于提供了发动机高压共轨燃油***中各设备之间关系的物 理模型, 能够减少电子控制单元的标定工作。 附图说明
通过参考附图阅读下文的详细描述, 本发明实施方式的上述以 及其他目的、 特征和优点将变得易于理解。 在附图中, 以示例性而 非限制性的方式示出了本发明的若干实施方式, 其中:
图 1 示出了流量计量单元位于低压油路的发动机高压共轨燃油 ***的示意图。
图 2 示出了根据本发明实施方式的、 用于控制发动机高压共轨 燃油***的高压共轨管腔的轨压的设备的示意框图。
图 3 示出了根据本发明实施方式的、 用于观测燃油压力的设备 的示意框图。
图 4 示出了根据本发明实施方式的、 用于控制发动机高压共轨 燃油***的高压共轨管腔的轨压的方法的示意流程图。
图 5 示出了根据本发明实施方式的、 用于观测燃油压力的方法 的示意流程图。
图 6 示出了根据本发明实施方式的、 油量计量阀等效横截面积 的线性物理模型的图示。
在附图中, 相同或对应的标号表示相同或对应的部分。 具体实施方式
下面将参考若干示例性实施方式来描述本发明的原理和精神。 好地理解进而实现本发明, 而并非以任何方式限制本发明的范围。 根据本发明的实施方式, 提出了一种用于控制发动机高压共轨 燃油***的高压共轨管腔的轨压的设备和方法。 此外, 还提供了一 种用于观测燃油压力的设备和方法, 以与控制轨压的设备和方法协 同工作。
另外, 在本文中, 所使用的术语 "参数 "表示任何能够指示发动机 的 ( 目标或实际) 物理状态或运行状况的物理量的值。 而且, 在本 文中, "参数 "与其所表示的物理量可以互换使用。 例如, "指示凸轮 轴转速的参数 "与"凸轮轴转速"在本文中具有等同的含义。 而且, 在 本文中, 假设尸表示某个特定的物理量, 则 表示 P对时间的导数, 即 随时间的变化率; 表示该物理量 P的观测值, 即, 经过滤波的 测量值 (测量值包含噪音) 。
此外, 在本文中, 所使用的术语 "获取 "包括目前已知或将来开发 的各种手段, 例如测量、 读取、估计、 估算, 等等; 所使用的术语 "测 量"包括目前已知或将来开发的各种手段, 例如直接测量、 读取、 计 算、 估算, 等等。
下面参考本发明的若干代表性实施方式, 详细阐释本发明的原 理和精神。
首先参考图 1, 如上文所述, 其示出了流量计量单元位于低压油 路的发动机高压共轨燃油*** 100的示意图。 应当理解, 图 1 中仅 仅示出了发动机高压共轨燃油*** 100 中与本发明的实施方式有关 的部分, 发动机高压共轨燃油*** 100 还可以包括任意数目的其他 部件。
如图 1所示, 发动机高压共轨燃油*** 100包括: 燃油箱 101、 燃油滤清器 102、 燃油低压油泵 103、 燃油流量计量单元 1 16, 其包 括油量计量阀 (例如电磁阀) , 配置用于通过改变其等效横截面积 来控制经由其流入高压共轨管腔 1 17的燃油量; 单向阀 105, 配置用 于作为从燃油流量计量单元到柱塞泵腔 106 的单向燃油通路; 高压 喷油泵 1 13 , 其包括高压喷油泵柱塞 115和柱塞泵腔 106 , 在凸轮轴 的带动下, 高压喷油泵柱塞 1 15在柱塞泵腔 106 内做往复运动, 当 高压喷油泵柱塞 1 15向下运动时, 柱塞泵腔 106 内形成真空, 由此 通过单向阀 105将燃油吸入, 而当高压喷油泵柱塞 115向上运动时, 柱塞泵腔 106 内的燃油受压形成高压燃油, 并在燃油压力大于高压 共轨管腔 1 17 内的燃油压力时将其压入高压共轨管腔 117; 单向阀 107, 配置用于作为高压燃油从柱塞泵腔 106到高压共轨管腔 1 17的 单向通路; 高压共轨管腔 1 17, 配置用于储存高压燃油; 喷油器 1 1 1 , 其在喷油器驱动电磁阀 1 10的驱动下将高压共轨管腔 1 17 中储存的 高压燃油喷入各气缸; 和电子控制单元 (ECU ) 1 18 , 配置用于基于 工况(例如, 高压共轨管腔的轨压测量值 109 )来提供控制燃油流量 计量单元的油量计量阀的开度 (即, 等效横截面积) 、 喷油器驱动 电磁阀 1 10 (即, 开闭)等的驱动信号(例如, 油量计量阀的驱动信 号 114和喷油器电磁阀驱动信号 108 ) 。
从图 1 中可见, 由于发动机高压共轨燃油*** 100 包括众多部 件, 工况复杂, 想要通过控制油量计量阀的等效横截面积来精确地 控制高压共轨管腔 1 17 中轨压是非常困难的。 因此, 为了解决这一 技术问题, 本发明关注于对油量计量阀、 高压喷油泵、 高压共轨管 腔、 喷油器的燃油流量和 /或压力进行表征和建模, 由此便能实现现 有技术中无法实现的有效控制。 为此, 如下文详述的, 本发明的实 施方式建立了上述物理量的线性模型, 并使用它们来控制高压共轨 管腔 1 17中的轨压。 下面参考图 2 来描述用于控制发动机高压共轨燃油***的高压 共轨管腔的轨压的设备 200。
本领域技术人员能够理解, 图 2所示的控制设备 200可以作为 图 1 中示出的电子控制单元 118或其部分而付诸实践。 备选地, 控 制设备 200也可以实现为单独的控制设备。
如图 2所示, 控制设备 200包括工况获取装置 202 , 配置用于获 取与发动机高压共轨燃油***相关的工况。
根据本发明的一些实施方式, 工况可以包括高压喷油泵柱塞的 升程及其线速度的测量值 (分别用/ ί和《9表示) 。
根据本发明的另一些实施方式, 工况可以包括高压共轨管腔的 实际轨压测量值 (用 表示) 。
应当理解, 上述工况仅是示例, 这些工况可以结合起来使用 (例 如, 包括; ί、 ·9和 三者) , 也可以包括未提及的任何其他工况, 本 发明在这些方面不受限制。
应当理解, 工况获取装置 202 可以通过实际测量来获取与发动 机高压共轨燃油***相关的工况(例如, 直接测量 )。 备选地或者 附加地, 工况获取装置 202可以根据其他部件的工况, 通过估计、 估算或计算来获取指示与发动机高压共轨燃油***相关的工况 (例 如, Α为凸轮轴转角 的函数, 可以通过凸轮轴转角 e来计算 A ) 。 本 发明的范围在此方面不受限制。
如图 2所示, 根据本发明的实施方式, 控制设备 200还可以包 括油量计量阀等效横截面积确定装置 204, 其耦合至工况获取装置 202 , 配置用于根据获取的工况 ( A和 ·9和 /或 ) , 以及根据高压共 轨管腔的轨压目标值 (用 表示, 其可以根据发动机工况实时设 定) , 使用油量计量阀等效横截面积的线性物理模型来确定油量计 量阀的等效横截面积 (用"表示) 。
可以看到, 根据本发明的实施方式, 油量计量阀等效横截面积 确定装置 204使用表征油量计量阀等效横截面积的线性物理模型, 以工况获取装置获取的 h和 和 /或 Pr为输入, 确定为了满足 P 所应 具有的油量计量阀等效横截面积。 实际上, 在本领域中, 尚无现有 技术尝试通过这种面向控制的线性物理模型来表征和控制油量计量 阀等效横截面积。 下面将详细介绍根据本发明实施方式的油量计量 阀等效横截面积的线性物理模型。 根据本发明的一些实施方式, 该线性物理模型可以与发动机高 压共轨燃油***以下一个或多个方面相关。 这里所称的 "方面" 既 包括发动机高压共轨燃油***的固有属性, 也包括运转过程中的实 时工况, 例如包括但不限于: 柱塞泵腔的体积、 柱塞泵腔燃油弹性 模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低压油泵供油压 力、 流量计量单元的流量系数、 油量计量阀的等效横截面面积、 燃 油密度、 柱塞泵腔到高压共轨管腔的单向阀流量系数、 柱塞泵腔到 高压共轨管腔单向阀等效横截面面积、 高压共轨管腔的轨压测量值 或在平衡点时的高压共轨管腔的轨压观测值、 柱塞泵腔横截面积、 柱塞运动线速度、 高压共轨管腔内燃油弹性模量、 高压共轨管腔体 积、 喷油器流量系数、 喷油器等效横截面面积、 气缸内压缩空气的 压力。
根据本发明的又一些实施方式, 线性物理模型可以与发动机高 压共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、 柱塞 泵腔燃油弹性模量、 在平衡点时的柱塞泵腔燃油压力的观测值、 低 压油泵供油压力、 流量计量单元的流量系数、 燃油密度、 柱塞泵腔 到高压共轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向 阀等效横截面面积、 高压共轨管腔的轨压测量值或在平衡点时的高 压共轨管腔的轨压观测值、 高压共轨管腔内燃油弹性模量、 高压共 轨管腔体积。
其中, 柱塞泵腔的体积可以与柱塞泵腔的最大体积和同凸轮轴 转角相关的柱塞升程相关; 柱塞运动线速度可以与高压喷油泵柱塞 升程、 凸轮轴转角和凸轮轴转速相关; 在平衡点时的柱塞泵腔燃油 压力的观测值可以与在平衡点时的高压共轨管腔内燃油压力的测量 值、 油量计量阀的等效横截面面积、 高压喷油泵柱塞升程和柱塞运 动线速度相关。 根据本发明的实施方式, 可以利用各种手段来建立油量计量阀 等效横截面积的线性物理模型。 下面仅描述其中的一种实施方式。
首先, 对流量计量单元的流量、 柱塞泵腔压力、 柱塞泵腔流入 高压共轨腔的流量、 高压共轨管腔的轨压和喷油器喷射到气缸的流 量进行建模。 如本领域技术人员所知, 为了考虑高压共轨燃油***主要的机 械、 液压和控制部件之间的物理关系, 同时又能够利用给出的模型 设计来确定油量计量阀的等效横截面积, 本文做如下假设: 1 ) 忽略 高压共轨***燃油泄漏; 2) 流量计量单元利用油量计量阀 (例如, 比例电磁阀)驱动; 3 )忽略温度和燃油压力变化对燃油密度的影响; 4) 燃油流量系数不随温度和压力变化而改变; 5) 燃油的弹性模量 不随温度而变化。 如本领域技术人员所知, 上述假设是建模时忽略 次要矛盾、 解决主要矛盾的常用方式。
1. 建模
1.1 流量计量单元
Figure imgf000012_0001
其中:
Qu; 流入柱塞泵腔的燃油流量
c": 流量计量单元流量系数 (常量)
u: 流量计量单元的流量计量阀等效横截面面积 为控制量
P: 燃油密度 (常量)
低压油泵供油压力 (常量)
PP: 柱塞泵腔燃油压力
1. 塞泵腔压力
其中:
柱塞泵腔流入高压共轨腔的流量
^ P:柱塞泵腔燃油弹性模量, βρ = 0ρ(Ρρ:)',其中 ep(pp)是 的多项式。
VP: 柱塞泵腔体积。 ^=U ^) , 其中 为柱塞泵腔横截面积,
A( 为柱塞升程, e为凸轮轴转角。
】0 : 燃油密度 (常量)
ΡΡ: 柱塞泵腔燃油压力
为柱塞运动线速度, 为柴油机转速的函数。 为
Figure imgf000013_0001
油泵凸轮轴转速。 高压共轨腔的流量
Figure imgf000013_0002
柱塞泵腔到高压共轨管腔单向阀流量系数 (常量) 柱塞泵腔到高压共轨管腔单向阀等效横截面面积 (常量)
1 ,4高压共轨管腔内燃油压力
= ( 1 4 ) 其中: ' 喷油器喷射到气缸的流量
^-: 高压共轨管腔内燃油弹性模量, 其中 e r〔pr)是 的 多项式
r: 高压共轨管腔体积 (常量)
高压共轨管腔内的燃油压力
1.5喷油器喷射到气缸的流量
Figure imgf000013_0003
其中:
喷油器流量系数 (常量)
A 喷油器等效横截面面积 (常量)
气缸内压缩空气压力(常量)
2. 模型线性化
如本领域技术人员所知, 控制***的数学模型是描述***内部 各物理量 (或变量) 之间关系的数学表达式、 图形表达式或数字表 达式, 即, 描述***性能的数学表达式 (或数字、 图形表达式) 。 控制***的数学模型可以有多种形式, 建立***数学模型的方法可 以不同, 不同的模型形式适用于不同的分析方法。 理论上, 没有一 个数学表达式能够准确 (绝对准确) 地描述一个***, 因为, 理论 上任何一个***都是非线性的、 时变的和分布参数的, 都存在随机 因素, ***越复杂, 情况也越复杂。
为了将非线性***线性化常用两种处理方法: 为忽略不计取常 值及切线法或小偏差法。 切线法或小偏差法特别适用于具有连续变 化的非线性特性函数, 其本质是在一个很小的范围内, 将非线性特 性用一段直线来代替。 数学上的处理是取其泰勒展开式的线性项。
设连续变化的非线性函数 取平衡状态 A 为工作点, 对应 当 = + 有 + 时, 设 = / ( 在( )点连续可微,则在 ( χ^ ) 点附近的泰勒级数展开式为:
, 、 , 、 :)、 f 、 1 f (t (Λ ) . . 、2 y = ,/ Λ = ί w + (― ~ )^0(χ― ^ο) + -( 2 χ ΰ(χ - χ 0 + - - '…
dx 2! ax 当增量 ( J— )很小时, 略去高次幂项, 则有:
Jo 。)
Figure imgf000014_0001
略去增量符号 Δ,便得函数在平衡点 A附近的线性化方程 m( ^ 是比例系数, 它是 W在 A点处的斜率) 。 对于多元函数, 情况是类 似的, 在此不再赘述。
据此, 在本发明中, 可以在该燃油***的平衡点附近对物理模 型做线性展开, 得出线性化后的物理模型, 以简化运算。 如本领域 技术人员所知, 针对在平衡点附近的线性化物理模型, 可以略去增 量符号 Δ。
2.1高压共轨燃油***的线性化物理模型 轨***模型进行线性化得
Pp ~ Pp 4- a2Pr + 3ι3 + h + a5u (2.1 )
Figure imgf000015_0001
Vp p(Pp*-Pr*)
Figure imgf000015_0002
PrCrAr
b、 -
Figure imgf000015_0003
上式中的系数 "1、 "2、 。3、 。4、 ^、 b、、 可以通过利用平衡点 的状态来获得。 由于柱塞泵腔中的燃油压力 不可直接测量,所以本发明设计 了一种用于观测燃油压力的设备, 下面参考图 3来描述该观测设备。
图 3示出了根据本发明实施方式的,用于观测燃油压力的设备 的示意图,如图 3所示,谅观测设备 300可以包括参数获取装置 302, 配置用于获取柱塞运动线速度 、 高压喷油泵柱塞的升程 、 油量计 量阀的等效横截面积 w和高压共轨管腔的轨压的测量值 ^ 和燃油压 力观测值确定装置 304, 其与参数获取装置 302耦合, 配置用于基于 获取的测量值, 使用柱塞泵腔燃油压力观测值和高压共轨管腔轨压 观测值二者的线性模型来确定柱塞泵腔燃油压力的观 ;Ι 'J值。
如本领域技术人员所知,可以采用各种手段来设计柱塞泵腔燃
!3 油压力观测值和高压共轨管腔轨压观测值二者的线性模型, 下面仅 给出其中的一个实施方式。
假设燃油柱塞泵中燃油压力的观测值为 , 高压共轨管腔中燃 油压力的观测值为 , 高压共轨管腔中燃油压力的测量值为 。 选择 适当的 L = [LP ], 使得
Pp = alPp + 2Pr + az & + 4h + a5u + Lp (Pr - Pr ) (2.3) Pr = t Pp + b2Pr + Lr(Pr - Pr) (2.4) 是稳定和收敛的。 由此公式 (2.3 ) 和 (2.4 ) 有解, 即, 可以 得到状态观测量 的值, 或 和 二者的值。
可见, 根据本发明的一些实施方式, 燃油压力观测值确定装置
304可以进一步配置用于基于获取的测量值,使用柱塞泵腔燃油压力 观测值和高压共轨管腔轨压观测值二者的线性模型来确定高压共轨 管腔轨压的观测值 。
另外, 观测设备 300还可以包括通信装置 306 , 其与燃油压力 观测值确定装置 304耦合, 配置用于向控制设备提供燃油压力的观 测值 (或 A和 二者) , 以供油量计量阀等效横截面积的线性物理 模型使用。
根据本发明的一些实施方式, 提供 A和 二者 (即, 该线性物 理模型可以使用两个值的观测值) 的优势在于能够提高等效横截面 积的线性物理模型的准确性。 而根据本发明的另一些实施方式, 仅 提供观领 'M直 的优势在于不需要求解出 , 缩短运算时间。
当然, 本领域技术人员可以理解, 以上只示出了估算柱塞泵腔 燃油压力的观测值 (或 和 二者)的一种实施方式, 本领域技术 人员可以基于本发明的思想对上述实施方式做出任何修改, 这些都 应落入本发明的保护范围。 备选地, 在发动机工况不改变的情况下, 并不是在每次确定油量计量阀等效横截面积时都需要重新计算柱塞 泵腔燃油压力的观测值 (或 和 二者), 而是可以将其记录下来, 重复使用, 以減少运算压力, 提高***实时性。 在确定了柱塞泵腔燃油压力的观测值 (或 和 二者)之后, 下面可以继续基于公式 (2.1 )和 (2,2) 来推导油量计量阀等效横截 面积的线性物理模型。
首先, 定义高压共轨管腔的轨压目标值为^ ^, 轨压实际测量 值为 Pr , 轨压实际测量值与目标值的误差为: e = Pr—P
P =e + R k = P、 e = R
由此, 油量计量阀等效横截面积的线性物理模型为
(2.5)
Figure imgf000017_0001
^ e - (GJ 4- ¾ +kd)e + (afi2 - 6】 2― kp)e― ki |e = 0, 则通过选择适当的 kp ki及 增益值, 可以确定
当 t∞时, e0。
从公式 (2,5) 可知, u的前馈控制项为:
UFF = ^- - b、a2 )Pr des - bta33 - b,a h] (2.6) 反馈控制项为:
1
U (2.7) 由此, 便得到了油量计量阀等效横截面积的线性物理模型。 如 图 6 所示, 其中图形化地示出了油量计量阀等效横截面积的线性物 理模型。
具体地, 从图 6可见, 根据油量计量阀等效横截面积的线性物 理模型, 前馈控制项与 ω、 和 相关。 其中为了计算各个系数, 需要知道 和 。 当然如上文所述, 也可以仅需知道 ρρ。
仍从图 6中可见, ^和 的值与 u、 h、 和 相关。
还从图 6中可见,反馈控制项与误差 e相关, 即, 与 Pf,rfei和 ^相 关。
如本领域技术人员所知,该线性物理模型可以仅包括前馈控制 项、 反馈控制项, 或者可以包括二者的组合。 本发明在此不受限制。 当然, 应当理解, 上文给出的仅是推导线性物理模型的一种实 施方式。 该模型的各种变形是可能的。 例如, 在某些工况奈件下, 在物理模型中可以不考虑上文提及的一个或多个方面, 和 /或增加与 发动机高压燃油***有关的新的方面。 实际上, 基于本发明给出的 如上启示和教导, 本领域技术人员可以结合其具体需求和条件, 设 计实现任何适当的物理模型来表征油量计量阀等效横截面积的线性 物理模型。 继续参考图 2, 控制设备 200 可以进一步包括信号生成装置 206 , 其耦合至油量计量阀等效横截面积确定装置 204, 配置用于基 于确定的油量计量阀的等效横截面积, 生成用于控制油量计量阀的 等效横截面积的驱动信号。 接下来, 参考图 4来描述根据本发明实施方式的、 用于控制发 动机高压共轨燃油***的高压共轨管腔的轨压的方法 400 的示意流 程图。
如图 4所示,该用于控制发动机高压共轨燃油***的高压共轨 管腔的轨压的方法 400 可以包括: 获取与发动机高压共轨燃油*** 相关的工况 (S402 ) ; 根据获取的工况, 以及根据高压共轨管腔的 轨压目标值, 使用油量计量阀等效横截面积的线性物理模型来确定 油量计量阀的等效横截面积 (S404 ) ; 基于确定的油量计量阀的等 效横截面积, 生成用于控制油量计量阀的等效横截面积的驱动信号 ( S406 ) 。 接着参考图 5来描述根据本发明实施方式的、用于观测燃油压 力的方法 500的示意流程图。
如图 5所示, 方法 500可以包括: 获取柱塞运动线速度、 高压 喷油泵柱塞的升程、 油量计量阀的等效横截面积和高压共轨管腔的 轨压的测量值 (S502 ) ; 基于获取的测量值, 使用柱塞泵腔燃油压 力观测值和高压共轨管腔轨压观测值二者的线性模型来确定柱塞泵 腔燃油压力的观测值 (S504 ) ; 以及提供观测值, 以供油量计量阀 等效横截面积的线性物理模型使用 (S506 ) 。
根据本发明的一些实施方式,步驟 504可以进一步包括使用柱 塞泵腔燃油压力观测值和高压共轨管腔轨压观测值二者的线性模型 来确定高压共轨管腔轨压的观测值。
可以理解,方法 400和 500中记载的步驟与上文参考图 2和图 3描述的控制设备 200和观测设备 300中的装置分别完全对应一致。 由此, 上文参考控制设备 200和观测设备 300的各个装置而描述的 操作、 功能和 /或特征同样适用于方法 400和 500的各个步骤。 而且, 方法 400和 500中记载的各个步骤可以按照不同的顺序执行和 /或并 行执行。
另外, 应当理解, 参考图 4和图 5描述的方法 400和 500可以 通过计算机程序产品来实现。 例如, 该计算机程序产品可以包括至 少一个计算机可读存储介质, 其具有存储于其上的计算机可读程序 代码部分。 当计算机可读代码部分由例如处理器执行时, 其用于执 行方法 400和 500的步骤。
本发明的实施方式可以通过硬件、软件或者软件和硬件的结合 来实现。 硬件部分可以利用专用逻辑来实现; 软件部分可以存储在 存储器中, 由适当的指令执行***, 例如微处理器或者专用设计硬 件来执行。 本领域的普通技术人员可以理解上述的设备和方法可以 使用计算机可执行指令和 /或包含在处理器控制代码中来实现, 例如 在诸如磁盘、 CD或 DVD-ROM的载体介质、诸如只读存储器(固件) 的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供 了这样的代码。 本发明的设备及其模块可以由诸如超大规模集成电 路或门阵列、 诸如逻辑芯片、 晶体管等的半导体、 或者诸如现场可 编程门阵列、 可编程逻辑设备等的可编程硬件设备的硬件电路实现, 也可以用由各种类型的处理器执行的软件实现, 也可以由上述硬件 电路和软件的结合例如固件来实现。 应当注意,尽管在上文详细描述中提及了控制设备和观测设备 的若干装置或子装置, 但是这种划分仅仅并非强制性的。 实际上, 根据本发明的实施方式, 上文描述的两个或更多装置的特征和功能 可以在一个装置中具体化。 反之, 上文描述的一个装置的特征和功 能可以进一步划分为由多个装置来具体化。
此外, 尽管在附图中以特定顺序描述了本发明方法的操作, 但 是, 这并非要求或者暗示必须按照访特定顺序来执行这些操作, 或 是必须执行全部所示的操作才能实现期望的结果。 相反, 流程图中 描绘的步骤可以改变执行顺序。 附加地或备选地, 可以省略某些步 骤, 将多个步驟合并为一个步骤执行, 和 /或将一个步骤分解为多个 步骤执行。
虽然已经参考若干具体实施方式描述了本发明, 但是应该理 解, 本发明并不限于所公开的具体实施方式。 本发明旨在涵盖所附 权利要求的精神和范围内所包括的各种修改和等同布置。 所附权 'J 要求的范围符合最宽泛的解释, 从而包含所有这样的修改及等同结 构和功能。

Claims

权 利 要 求 书
1. 一种用于控制发动机高压共轨燃油***的高压共轨管腔的轨 压的设备, 其特征在于, 所述设备包括:
工况获取装置,配置用于获取与所述发动机高压共轨燃油***相 关的工况;
油量计量阀等效横截面积确定装置, 其耦合至所述工况获取装 置, 配置用于根据获取的所述工况, 以及根据所述高压共轨管腔的 轨压目标值, 使用所述油量计量阀等效横截面积的线性物理模型来 确定所述油量计量阀的等效横截面积;
信号生成装置, 其耦合至所述油量计量阀等效横截面积确定装 置, 配置用于基于确定的所述油量计量阀的等效横截面积, 生成用 于控制所述油量计量阀的等效横截面积的驱动信号。
2. 如权利要求 1 的设备, 其特征在于, 所述工况包括所述高压 喷油泵柱塞的升程及其线速度的测量值。
3. 如权利要求 1 的设备, 其特征在于, 所述工况包括所述高压 共轨管腔的实际轨压测量值。
4. 如权利要求 2 的设备, 其特征在于, 所述线性物理模型与所 述发动机高压共轨燃油***以下一个或多个方面相关:
柱塞泵腔的体积、柱塞泵腔燃油弹性模量、在平衡点时的柱塞泵 腔燃油压力的观测值、 低压油泵供油压力、 流量计量单元的流量系 数、 油量计量阀的等效横截面面积、 燃油密度、 柱塞泵腔到高压共 轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向阀等效横 截面面积、 高压共轨管腔的轨压测量值或在平衡点时的高压共轨管 腔的轨压观测值、 柱塞泵腔横截面积、 柱塞运动线速度、 高压共轨 管腔内燃油弹性模量、 高压共轨管腔体积、 喷油器流量系数、 喷油 器等效横截面面积、 气缸内压缩空气的压力。
5. 如权利要求 3 的设备, 其特征在于, 所述线性物理模型与所 述发动机高压共轨燃油***以下一个或多个方面相关: 柱塞泵腔的体积、柱塞泵腔燃油弹性模量、在平衡点时的柱塞泵 腔燃油压力的观测值、 低压油泵供油压力、 流量计量单元的流量系 数、 燃油密度、 柱塞泵腔到高压共轨管腔的单向阀流量系数、 柱塞 泵腔到高压共轨管腔单向阀等效横截面面积、 高压共轨管腔的轨压 测量值或在平衡点时的高压共轨管腔的轨压观测值、 高压共轨管腔 内燃油弹性模量、 高压共轨管腔体积。
6. 如权利要求 4或 5的设备, 其特征在于, 柱塞泵腔的体积与 柱塞泵腔的最大体积和同凸轮轴转角相关的柱塞升程相关;
柱塞运动线速度与高压喷油泵柱塞升程、凸轮轴转角和凸轮轴转 速相关;
在平衡点时的柱塞泵腔燃油压力的观测值与在平衡点时的高压 共轨管腔内燃油压力的测量值、 油量计量阀的等效横截面面积、 高 压喷油泵柱塞升程和柱塞运动线速度相关。
7. 一种用于观测燃油压力的设备, 其特征在于, 所述设备包括: 参数获取装置, 配置用于获取柱塞运动线速度、 高压喷油泵柱塞 的升程、 油量计量阀的等效横截面积和高压共轨管腔的轨压的测量 值;
燃油压力观测值确定装置, 其与所述参数获取装置耦合, 配置用 于基于获取的测量值, 使用柱塞泵腔燃油压力观测值和高压共轨管 腔轨压观测值二者的线性模型来确定所述柱塞泵腔燃油压力的观测 值; 以及
通信装置, 其与所述燃油压力观测值确定装置耦合, 配置用于提 供所述观测值, 以供油量计量阀等效横截面积的线性物理模型使用。
8. 如权利要求 7 的设备, 其特征在于, 所述燃油压力观测值确 定装置进一步配置用于基于获取的测量值, 使用柱塞泵腔燃油压力 观测值和高压共轨管腔轨压观测值二者的线性模型来确定所述高压 共轨管腔轨压的观测值。
9. 一种用于控制发动机高压共轨燃油***的高压共轨管腔的轨 压的方法, 其特征在于, 所述方法包括: 获取与所述发动机高压共轨燃油***相关的工况; 根据获取的所述工况, 以及根据所述高压共轨管腔的轨压目标 值, 使用所述油量计量阀等效横截面积的线 ' 物理模型来确定所述 油量计量阀的等效横截面积;
基于确定的所述油量计量阀的等效横截面积,生成用于控制所述 油量计量阀的等效横截面积的驱动信号。
10. 如权利要求 9的方法, 其特征在于, 所述工况包括所述高压 喷油泵柱塞的升程及其线速度的测量值。
1 1. 如权利要求 9的方法, 其特征在于, 所述工况包括所述高压 共轨管腔的实际轨压测量值。
12. 如权利要求 10 的方法, 其特征在于, 所述线性物理模型与 所述发动机高压共轨燃油***以下一个或多个方面相关:
柱塞泵腔的体积、柱塞泵腔燃油弹性模量、在平衡点时的柱塞泵 腔燃油压力的观测值、 低压油泵供油压力、 流量计量单元的流量系 数、 油量计量阀的等效横截面面积、 燃油密度、 柱塞泵腔到高压共 轨管腔的单向阀流量系数、 柱塞泵腔到高压共轨管腔单向阀等效横 截面面积、 高压共轨管腔的轨压测量值或在平衡点时的高压共轨管 腔的轨压观测值、 柱塞泵腔横截面积、 柱塞运动线速度、 高压共轨 管腔内燃油弹性模量、 高压共轨管腔体积、 喷油器流量系数、 喷油 器等效横截面面积、 气缸内压縮空气的压力。
13. 如权利要求 1 1 的方法, 其特征在于, 所述线性物理模型与 所述发动机高压共轨燃油***以下一个或多个方面相关:
柱塞泵腔的体积、柱塞泵腔燃油弹性模量、在平衡点时的柱塞泵 腔燃油压力的观测值、 低压油泵供油压力、 流量计量单元的流量系 数、 燃油密度、 柱塞泵腔到高压共轨管腔的单向阀流量系数、 柱塞 泵腔到高压共轨管腔单向阀等效横截面面积、 高压共轨管腔的轨压 测量值或在平衡点时的高压共轨管腔的轨压观测值、 高压共轨管腔 内燃油弹性模量、 高压共轨管腔体积。
14. 如权利要求 12或 13的方法, 其特征在于, 柱塞泵腔的体积 与柱塞泵腔的最大体积和同凸轮轴转角相关的柱塞升程相关; 柱塞运动线速度与高压喷油泵柱塞升程、凸轮轴转角和凸轮轴转 速相关;
在平衡点时的柱塞泵腔燃油压力的观测值与在平衡点时的高压 共轨管腔内燃油压力的测量值、 油量计量阀的等效横截面面积、 高 压喷油泵柱塞升程和柱塞运动线速度相关。
15. 一种用于观测燃油压力的方法,其特征在于,所述方法包括: 获取柱塞运动线速度、 高压喷油泵柱塞的升程、 油量计量阀的等 效横截面积和高压共轨管腔的轨压的测量值;
基于获取的测量值,使用柱塞泵腔燃油压力观测值和高压共轨管 腔轨压观 ' j值二者的线性模型来确定所述柱塞泵腔燃油压力的观须 'J 值; 以及
提供所述观测值,以供油量计量阀等效横截面积的线性物理模型 使用。
16. 如权利要求 15 的方法, 其特征在于, 所述获取的测量值的 步骤进一步包括使用柱塞泵腔燃油压力观测值和高压共轨管腔轨压 观测值二者的线性模型来确定所述高压共轨管腔轨压的观测值。
PCT/CN2011/072983 2011-04-19 2011-04-19 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法 WO2012142742A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/112,915 US9624889B2 (en) 2011-04-19 2011-04-19 Apparatus and method for controlling rail pressure of high-pressure common-rail tube cavity of high-pressure common-rail fuel system of engine
PCT/CN2011/072983 WO2012142742A1 (zh) 2011-04-19 2011-04-19 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/072983 WO2012142742A1 (zh) 2011-04-19 2011-04-19 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法

Publications (1)

Publication Number Publication Date
WO2012142742A1 true WO2012142742A1 (zh) 2012-10-26

Family

ID=47041019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072983 WO2012142742A1 (zh) 2011-04-19 2011-04-19 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法

Country Status (2)

Country Link
US (1) US9624889B2 (zh)
WO (1) WO2012142742A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948706A (zh) * 2023-03-13 2023-04-11 松诺盟科技有限公司 非晶合金高压共轨管锻造工艺、共轨管与高压共轨***

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664157B2 (en) * 2011-04-19 2017-05-30 Weichai Power Co., Ltd. Device and method for controlling high-pressure common-rail system of diesel engine
US20150039752A1 (en) * 2013-07-30 2015-02-05 Edward Hague Advanced BACNet router
US9677496B2 (en) * 2014-07-16 2017-06-13 Cummins Inc. System and method of injector control for multipulse fuel injection
WO2016043744A1 (en) * 2014-09-18 2016-03-24 Micro Motion, Inc. Method and apparatus for determining differential density
US9689363B2 (en) 2015-01-29 2017-06-27 Robert Bosch Gmbh Gaseous fuel mixer
US9605623B2 (en) 2015-01-29 2017-03-28 Robert Bosch Gmbh Gaseous fuel mixer and method
US9869278B2 (en) 2015-01-30 2018-01-16 Robert Bosch Gmbh Gaseous fuel mixer and shutoff valve
US9611810B2 (en) 2015-02-03 2017-04-04 Robert Bosch Gmbh Gaseous fuel mixer with exhaust gas recirculation
US9863371B2 (en) 2015-08-31 2018-01-09 Robert Bosch Gmbh Gaseous fuel, EGR and air mixing device and insert
US9885310B2 (en) * 2016-01-20 2018-02-06 Ford Global Technologies, Llc System and methods for fuel pressure control
DE102016225435B3 (de) * 2016-12-19 2018-02-15 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Kraftstofferkennung
CN113047975B (zh) * 2021-03-23 2023-06-09 无锡威孚高科技集团股份有限公司 一种柴油机燃油***中电控泄压阀的控制方法
CN113339152B (zh) * 2021-06-18 2023-01-20 中国北方发动机研究所(天津) 一种高压共轨柴油机的轨压控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324440A (ja) * 2003-04-22 2004-11-18 Toyota Motor Corp ディーゼルエンジン制御装置
JP2005301764A (ja) * 2004-04-14 2005-10-27 Mazda Motor Corp 制御対象モデルを用いた制御装置
WO2009132897A1 (de) * 2008-04-30 2009-11-05 Continental Automotive Gmbh Verfahren zur bestimmung des raildruckes in einem common-rail-system und common-rail-einspritzsystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6715468B2 (en) * 2001-11-07 2004-04-06 Denso Corporation Fuel injection system
EP1318288B1 (en) * 2001-12-06 2017-09-06 Denso Corporation Fuel injection system for internal combustion engine
JP4101802B2 (ja) * 2002-06-20 2008-06-18 株式会社日立製作所 内燃機関の高圧燃料ポンプ制御装置
DE102007006865A1 (de) * 2007-02-12 2008-08-14 Siemens Ag Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004324440A (ja) * 2003-04-22 2004-11-18 Toyota Motor Corp ディーゼルエンジン制御装置
JP2005301764A (ja) * 2004-04-14 2005-10-27 Mazda Motor Corp 制御対象モデルを用いた制御装置
WO2009132897A1 (de) * 2008-04-30 2009-11-05 Continental Automotive Gmbh Verfahren zur bestimmung des raildruckes in einem common-rail-system und common-rail-einspritzsystem

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948706A (zh) * 2023-03-13 2023-04-11 松诺盟科技有限公司 非晶合金高压共轨管锻造工艺、共轨管与高压共轨***
CN115948706B (zh) * 2023-03-13 2023-05-12 松诺盟科技有限公司 非晶合金高压共轨管锻造工艺、共轨管与高压共轨***

Also Published As

Publication number Publication date
US20140034022A1 (en) 2014-02-06
US9624889B2 (en) 2017-04-18

Similar Documents

Publication Publication Date Title
WO2012142742A1 (zh) 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法
CN102140973B (zh) 控制高压共轨燃油***的高压共轨管腔轨压的设备和方法
Catania et al. Experimental analysis, modeling, and control of volumetric radial-piston pumps
CN102192033B (zh) 用于控制柴油发动机的高压共轨***的设备和方法
EP2510217A2 (en) Flow rate estimation for piezo-electric fuel injection
JP5321606B2 (ja) 燃料噴射制御装置
US9664157B2 (en) Device and method for controlling high-pressure common-rail system of diesel engine
CN103987947A (zh) 增压式发动机的控制装置
US20120283849A1 (en) Sensor system having time lag compensation
JP2010501050A (ja) レール圧力目標値の決定方法
JP2013514481A (ja) 噴射工程を測定するためのシステムおよび方法
Liu et al. Active disturbance rejection control of common rail pressure for gasoline direct injection engine
CN104090495A (zh) 大功率电控柴油机泵喷嘴供油***建模方法
KR101832637B1 (ko) 압전 서보-구동식 인젝터에서 밸브 개방 순간을 결정하는 방법
Fei et al. Optimal estimation of injection rate for high-pressure common rail system using the extended Kalman filter
CN111936733B (zh) 用于在泵操作期间测量燃料喷射的***和方法
CN202250432U (zh) 控制高压共轨管腔轨压的设备及观测燃油压力的设备
EP3390798A1 (en) Apparatus and method for controlling the amount of fuel injected into an internal combustion engine
Prinz et al. Mathematical modelling of a diesel common-rail system
Baur et al. Modeling and identification of a gasoline common rail injection system
WO2019199280A1 (en) Adaptive high pressure fuel pump system and method for predicting pumped mass
JP4055279B2 (ja) 蓄圧式燃料噴射制御装置
CN104504244B (zh) 喷油器喷射量估计方法
ES2243696T3 (es) Procedimiento de calculo de la masa de aire admitido en el cilindro de un motor de combustion interna que equipa a un vehiculo automovil y calculador de inyeccion para llevar a la practica el procedimiento.
JP5582052B2 (ja) 燃料噴射システム、燃料噴射制御装置およびコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14112915

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863873

Country of ref document: EP

Kind code of ref document: A1