WO2012141279A1 - 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置 - Google Patents

回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置 Download PDF

Info

Publication number
WO2012141279A1
WO2012141279A1 PCT/JP2012/060097 JP2012060097W WO2012141279A1 WO 2012141279 A1 WO2012141279 A1 WO 2012141279A1 JP 2012060097 W JP2012060097 W JP 2012060097W WO 2012141279 A1 WO2012141279 A1 WO 2012141279A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotary
ultrasonic flaw
substrate
flaw detector
Prior art date
Application number
PCT/JP2012/060097
Other languages
English (en)
French (fr)
Inventor
正司 柴田
洋一 藤懸
邦彦 幡原
石原 道章
宗健 三井
Original Assignee
新日本製鐵株式會社
住友金属テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式會社, 住友金属テクノロジー株式会社 filed Critical 新日本製鐵株式會社
Priority to KR1020137030275A priority Critical patent/KR101553761B1/ko
Priority to US14/111,781 priority patent/US9360458B2/en
Priority to EP12771565.4A priority patent/EP2700938B1/en
Priority to RU2013145557/28A priority patent/RU2544304C1/ru
Priority to CN201280018653.1A priority patent/CN103477219B/zh
Priority to JP2013509972A priority patent/JP5649199B2/ja
Publication of WO2012141279A1 publication Critical patent/WO2012141279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Definitions

  • the present invention relates to a rotary transformer for a rotary ultrasonic flaw detector and a rotary ultrasonic flaw detector using the same.
  • the present invention relates to a rotary transformer for a rotary ultrasonic flaw detector excellent in transmission efficiency even when transmitting a signal used in ultrasonic flaw detection, and a rotary ultrasonic flaw detector using the same.
  • a rotary ultrasonic flaw detector that performs flaw detection while rotating an ultrasonic probe along the circumferential direction of a tubular or rod-like inspection material.
  • a general rotary ultrasonic flaw detector includes an ultrasonic probe 1 that transmits / receives ultrasonic waves to / from an inspection material S, and an inspection material to which the ultrasonic probe 1 is attached.
  • the probe holder 2 that rotates in the circumferential direction of S and the transmission and reception of ultrasonic waves from the ultrasonic probe 1 are controlled, and the inspection of the inspection object S is performed based on the echoes received by the ultrasonic probe 1.
  • An ultrasonic flaw detector 3 is provided, and a signal transmission unit 4 that performs signal transmission between the ultrasonic probe 1 and the ultrasonic flaw detector 3 is provided.
  • the rotary ultrasonic flaw detector having the above-described configuration, by moving the inspection material S straight in the axial direction and rotating the probe holder 2 and eventually the ultrasonic probe 1 (about 50 rpm to 2000 rpm), The trajectory of the ultrasonic probe 1 is spiral on the outer surface of the inspection material S, and the entire cross section of the inspection material S can be detected at high speed.
  • the signal transmission unit 4 as a method of transmitting a signal in a frequency band (1 to 10 MHz) generally used in ultrasonic flaw detection, (1) a method using a slip ring, (2) a capacitor coupling (3) A method using a rotary transformer is known. Hereinafter, these methods will be described sequentially.
  • a fixed side electrode 41A and a rotation side electrode 42A are provided in the signal transmission unit 4 (see FIG. 1).
  • a brush 43 is interposed between the fixed side electrode 41A and the rotation side electrode 42A.
  • the stationary electrode 41A is electrically connected to the ultrasonic flaw detector 3 (see FIG. 1).
  • the rotation-side electrode 42A is electrically connected to the ultrasonic probe 1 (see FIG. 1) and rotates integrally with the ultrasonic probe 1 (probe holder 2) (see FIG. 1). .
  • the signal transmission unit 4 (see FIG. 1) is provided with a fixed side electrode 41B and a rotation side electrode 42B.
  • a dielectric 44 such as air or water is held between the fixed electrode 41B and the rotating electrode 42B.
  • the stationary electrode 41B is electrically connected to the ultrasonic flaw detector 3 (see FIG. 1).
  • the rotation-side electrode 42B is electrically connected to the ultrasonic probe 1 and rotates integrally with the ultrasonic probe 1 (probe holder 2) (see FIG. 1).
  • a signal is transmitted between the ultrasonic probe 1 and the ultrasonic flaw detector 3 by forming a capacitor by holding the dielectric 44 between the fixed side electrode 41B and the rotation side electrode 42B. Is done.
  • the dielectric 44 since the dielectric constant of air is small, it is necessary to make the distance between the electrodes minute (about 0.1 to 0.5 mm), and the maintainability is poor. There is.
  • the distance between the electrodes can be increased (about 2 mm), but it is necessary to keep the water uniform.
  • a plurality of fixed-side electrodes 41C and rotating-side electrodes 42C are provided. It is necessary to arrange in the longitudinal direction of the material S to be inspected. For this reason, there exists a problem that the signal transmission part 4 becomes long in the longitudinal direction of the to-be-inspected material S, and leads to the enlargement of an ultrasonic flaw detector.
  • the diameter of the material to be inspected S is increased, the diameter of the signal transmission unit 4 is also increased, and it becomes more difficult to hold the water W.
  • a method using a rotary transformer (for example, see Patent Document 3)
  • a fixed coil 45 and a rotating coil 46 are provided in the signal transmission unit 4 (see FIG. 1).
  • the stationary coil 45 is electrically connected to the ultrasonic flaw detector 3 (see FIG. 1).
  • the rotation side coil 46 is electrically connected to the ultrasonic probe 1 and rotates integrally with the ultrasonic probe 1 (probe holder 2) (see FIG. 1).
  • Signal transmission between the ultrasonic probe 1 and the ultrasonic flaw detector 3 is performed by electromagnetic induction generated between the stationary coil 45 and the rotating coil 46.
  • the conventional rotary transformer proposed for the signal transmission unit 4 of the rotary ultrasonic flaw detector has a fixed side as described above when multi-channel signal transmission is performed (when a plurality of ultrasonic probes 1 are provided).
  • the plurality of fixed-side coils 45 and the rotation-side coil 46 are arranged in the longitudinal direction of the material to be inspected S.
  • the size of the ultrasonic flaw detector is increased.
  • the rotary transformer includes a flat plate-like fixed body having a coil disposed on one surface side, and a flat plate-shaped rotary body having a coil disposed on one surface side, the fixed body and 2.
  • a flat plate type rotary transformer that is arranged so that the coil placement surfaces of the rotating bodies face each other and performs signal transmission between the facing coils (see, for example, Patent Documents 4 and 5).
  • the above-mentioned flat plate type rotary transformer is applied to the signal transmission part of the rotary ultrasonic flaw detector, it is considered that the enlargement of the ultrasonic flaw detector can be suppressed even when multi-channel signal transmission is performed. .
  • the signal transmission unit is inspected. It is thought that it becomes shorter in the longitudinal direction of the material, and the enlargement of the ultrasonic flaw detector can be suppressed.
  • a fixed body and a rotating body constituting a conventional flat plate type rotary transformer have grooves formed on a flat base material made of a ferromagnetic material such as soft ferrite in order to increase signal transmission efficiency.
  • the coil is arranged in the groove.
  • a base material made of a conductor such as aluminum may be used instead of the base material made of a ferromagnetic material. In any case, the coil and the base material are in direct contact with each other.
  • the present invention has been made to solve the above-described problems of the prior art, and even when transmitting a signal used in ultrasonic flaw detection, a rotary ultrasonic wave having excellent transmission efficiency. It is an object of the present invention to provide a rotary transformer for a flaw detector and a rotary ultrasonic flaw detector using the same.
  • the present invention includes a flat plate-like fixed body having a coil disposed on one surface side, and a flat plate-shaped rotating body having a coil disposed on one surface side, A rotary transformer for a rotary ultrasonic flaw detector, which is arranged so that the coil arrangement surfaces of the fixed body and the rotating body are opposed to each other, and performs signal transmission in a frequency band of 1 to 10 MHz between the opposed coils,
  • the fixed body includes a substrate on which a plurality of one-turn coils are concentrically formed, and a holding member that holds the substrate, and the rotating body has the same number of 1-turn coils as the one-turn coils formed on the fixed body.
  • Between the holding member and the air Or and relative magnetic permeability of an insulating material is equal material approximately 1 to provide a rotary-type ultrasonic inspection device for a rotary transformer, characterized in that interposed.
  • a fixed body and a rotating body included in a rotary transformer for a rotary ultrasonic flaw detector according to the present invention include a substrate on which a coil is formed and a holding member that holds the substrate, and the substrate and the holding member. Between them, air or a material (for example, plastic such as bakelite) that is an insulator and has a relative magnetic permeability substantially equal to 1 is interposed. In other words, the coil and the holding member are not in direct contact with each other, and a substance that hardly induces an electromagnetic field is interposed between the coil and the holding member.
  • a material for example, plastic such as bakelite
  • the holding member is made of a ferromagnetic material such as soft ferrite or a conductor such as aluminum, the electromagnetic field induced by the coil is not easily attenuated by the holding member, causing a reduction in transmission efficiency. hard.
  • the transmission efficiency is improved in proportion to the number of turns of the coil.
  • the frequency band (1 to 10 MHz) generally used for ultrasonic flaw detection when the number of turns of the coil increases and the coil wire length increases, the stray capacitance between the coil wires increases and the impedance increases. Since the signal source that drives the coil is considered to be a constant voltage power source instantaneously, when the impedance increases as described above, the current flowing through the coil is attenuated, and the coil formed on the fixed body and the rotating body are formed. The transmission efficiency with the coil is extremely reduced.
  • a plurality of one-turn coils are formed on the fixed body and the rotary body provided in the rotary transformer for the rotary ultrasonic flaw detector according to the present invention.
  • the one-turn coil by using the one-turn coil, the stray capacitance between the coil wires becomes zero, so that the transmission efficiency is not lowered.
  • the plurality of one-turn coils formed on the substrate included in each of the fixed body and the rotating body are formed concentrically at intervals equivalent to the coil width.
  • a distance between the holding member and the substrate included in each of the fixed body and the rotating body is a one-turn coil formed on the fixed body and a one-turn coil formed on the rotating body.
  • the gap is 5 to 10 times.
  • the electromagnetic field induced by the coil may be attenuated by the holding member and cause a reduction in transmission efficiency. If the separation distance exceeds 10 times the gap between the two coils, the influence of attenuation of the electromagnetic field on the holding member will be reduced, so even if the separation distance is increased excessively, the thickness of the rotary transformer only increases. is there.
  • the present invention provides a plurality of ultrasonic waves that are electrically connected to the rotary transformer and a plurality of one-turn coils formed on the rotary body and rotate integrally with the rotary body.
  • the present invention is also provided as a rotary ultrasonic flaw detector comprising a probe and an ultrasonic flaw detector electrically connected to a plurality of one-turn coils formed on the fixed body.
  • the rotary ultrasonic flaw detector according to the present invention can efficiently perform multi-channel signal transmission while suppressing an increase in size of the device.
  • the transmission efficiency is excellent. Further, according to the rotary ultrasonic flaw detector according to the present invention, it is possible to efficiently perform multi-channel signal transmission while suppressing an increase in the size of the device.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a general rotary ultrasonic flaw detector.
  • FIG. 2 is an explanatory diagram for explaining a method of transmitting a signal used in ultrasonic flaw detection using a slip ring.
  • FIG. 3 is an explanatory diagram for explaining a method of transmitting a signal used in ultrasonic flaw detection using capacitor coupling.
  • FIG. 4 is an explanatory diagram for explaining a method of transmitting signals used in ultrasonic flaw detection by multi-channel using capacitor coupling.
  • FIG. 5 is an explanatory diagram for explaining a method of transmitting a signal used in ultrasonic flaw detection using a rotary transformer.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a rotary ultrasonic flaw detector according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a schematic configuration of a fixed body provided in a rotary transformer for a rotary ultrasonic flaw detector according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a schematic configuration of a rotating body provided in a rotary transformer for a rotary ultrasonic flaw detector according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the results of an evaluation test of the rotary ultrasonic flaw detector shown in FIG.
  • FIG. 10 is a graph showing the results of another evaluation test of the rotary ultrasonic flaw detector shown in FIG. FIG.
  • FIG. 11 shows an example of a received waveform observed in still another evaluation test of the rotary ultrasonic flaw detector shown in FIG.
  • FIG. 12 is a graph showing the height of interference echoes (surface echoes) observed in still another evaluation test of the rotary ultrasonic flaw detector shown in FIG.
  • FIG. 6 is a schematic diagram showing a schematic configuration of a rotary ultrasonic flaw detector according to an embodiment of the present invention.
  • FIG. 6A is a diagram illustrating the overall configuration of the apparatus
  • FIG. 6B is a diagram illustrating an electrical connection relationship for one ultrasonic probe.
  • the rotary ultrasonic flaw detector 100 according to the present embodiment includes a plurality of ultrasonic probes 1 that transmit and receive ultrasonic waves to the material to be inspected S, and the ultrasonic probe 1.
  • the probe holder 2 that is attached and rotates in the circumferential direction of the inspection object S and the transmission and reception of ultrasonic waves from the ultrasonic probe 1 are controlled, and the inspection is performed based on echoes received by the ultrasonic probe 1.
  • An ultrasonic flaw detector 3 that performs flaw detection of the material S, and a rotary transformer for a rotary ultrasonic flaw detector that performs signal transmission between the ultrasonic probe 1 and the ultrasonic flaw detector 3 (hereinafter simply referred to as a rotary transformer). 5).
  • the inspection object S is inserted through the probe holder 2 and the center hole of the rotary transformer 5.
  • the rotary transformer 5 includes a flat plate-like fixed body 51 in which a coil is disposed on one surface side, and a flat plate-shaped rotary body 52 in which a coil is disposed on one surface side.
  • the coils 52 are arranged so that the coil arrangement surfaces of the bodies 52 face each other, and the signal transmission in the frequency band of 1 to 10 MHz is performed between the opposed coils.
  • the rotary ultrasonic flaw detector 100 includes a pair of rotary transformers 5 (a transmission rotary transformer 5A and a reception rotary transformer 5B).
  • FIG. 7 is a schematic diagram showing a schematic configuration of the fixed body 51 provided in the rotary transformer 5.
  • FIG. 7A is a plan view
  • FIG. 7B is an AA cross-sectional view shown in FIG.
  • the fixed body 51 includes a substrate 512 in which a plurality (four in the example shown in FIG. 7) of one-turn coils 511 are formed concentrically, and a holding member 513 that holds the substrate 512. To do.
  • the holding member 513 holds the surface of the substrate 512 opposite to the coil forming surface.
  • the holding member 513 of this embodiment is formed from aluminum.
  • the holding member 513 is formed in a U-shaped cross section so that the portion of the substrate 512 where the coil 511 is formed and the holding member 513 are separated in the thickness direction of the substrate 512. Air is interposed between the substrate 512 and the holding member 513.
  • a plurality of one-turn coils 511 formed on the substrate 512 included in the fixed body 51 are formed concentrically with a distance D equivalent to the coil width C.
  • FIG. 8 is a schematic diagram illustrating a schematic configuration of the rotating body 52 included in the rotary transformer 5.
  • 8A is a plan view
  • FIG. 8B is a BB cross-sectional view shown in FIG. 8A.
  • the rotating body 52 also includes a substrate 522 in which a plurality of (four in the example shown in FIG. 8) one-turn coils 521 are formed concentrically, and a holding member 523 that holds the substrate 522. To do.
  • the holding member 523 holds the surface of the substrate 522 opposite to the coil forming surface.
  • the holding member 523 is made of aluminum.
  • the holding member 523 is formed in a U-shaped cross section so that the portion of the substrate 522 where the coil 521 is formed and the holding member 523 are separated in the thickness direction of the substrate 522. Air is interposed between the substrate 522 and the holding member 523.
  • a plurality of one-turn coils 521 formed on the substrate 522 included in the rotating body 52 are formed concentrically with an interval D equivalent to the coil width C.
  • the ultrasonic probe 1 of the present embodiment is a transmission / reception separation type ultrasonic probe including a transmission transducer 11 and a reception transducer 12.
  • the ultrasonic probe 1 is electrically connected to a one-turn coil 521 formed on the rotating body 52 and is configured to rotate integrally with the rotating body 52.
  • the transmission transducer 11 of the ultrasonic probe 1 is electrically connected to the one-turn coil 521 formed on the rotating body 52 of the transmission rotary transformer 5A
  • the reception transducer 12 is for reception. It is electrically connected to a one-turn coil 521 formed on the rotary body 52 of the rotary transformer 5B.
  • the rotating body 52 of the transmitting rotary transformer 5A and the rotating body 52 of the receiving rotary transformer 5B are configured to rotate integrally with the probe holder 2, and the probe holder 2 is driven in a predetermined manner.
  • the ultrasonic probe 1, the rotating body 52 of the transmission rotary transformer 5A, and the rotating body 52 of the receiving rotary transformer 5B are rotated in the circumferential direction of the inspection material S by rotating in the circumferential direction of the inspection material S by the source. Rotate in unison.
  • the ultrasonic flaw detector 3 is electrically connected to a one-turn coil 511 formed on the fixed body 51.
  • the ultrasonic flaw detector 3 includes a one-turn coil 511 formed on the fixed body 51 of the transmitting rotary transformer 5A and a one-turn coil 511 formed on the fixed body 51 of the receiving rotary transformer 5B. Electrically connected.
  • one ultrasonic probe 1 has a pair of one-turn coils 521 (one one-turn coil 521 formed on the rotating body 52 of the transmitting rotary transformer 5A and the receiving rotary transformer.
  • the other ultrasonic probe 1 is another pair of 1-turn coils 521. Will be electrically connected.
  • the ultrasonic flaw detector 3 is fixed to a pair of one-turn coils 511 (one one-turn coil 511 formed on the fixed body 51 of the transmitting rotary transformer 5A and the receiving rotary transformer 5B.
  • one one-turn coil 511 formed on the body 51 is electrically connected.
  • other one-turn coils 511 are also electrically connected. Will be connected.
  • the transmission / reception separation type ultrasonic probe 1 including the transmission transducer 11 and the reception transducer 12 is used.
  • the present invention is not limited to this. It is also possible to use a transmission / reception integrated ultrasonic probe in which two transducers serve both for transmission and reception.
  • the rotary transformer 5 it is not necessary to use a pair of rotary transformers 5 (transmission rotary transformer 5A and reception rotary transformer 5B), and a single rotary transformer 5 may be used.
  • the inspection object S is caused to advance straight in the axial direction, and the probe holder 2 and eventually.
  • the ultrasonic probe 1 is rotated.
  • a signal for transmitting ultrasonic waves from the transmission vibrator 11 is output from the ultrasonic flaw detector 3 and transmitted to the transmission vibrator 11 via the one-turn coils 511 and 521 of the transmission rotary transformer 5A.
  • the ultrasonic wave U transmitted from the transmission vibrator 11 is incident on the material to be inspected S through the water W as the contact medium, and the echo is detected by the reception vibrator 12.
  • the echo detected by the receiving transducer 12 is converted into an electric signal and input to the ultrasonic flaw detector 3 via the one-turn coils 521 and 511 of the receiving rotary transformer 5B.
  • the ultrasonic flaw detector 3 performs flaw detection on the inspection object S based on the input signal. Since the trajectory of the ultrasonic probe 1 is spiral on the outer surface of the inspection material S, it is possible to detect the entire cross section of the inspection material S.
  • the thickness of the water W interposed between the ultrasonic probe 1 and the material S to be inspected was set to 0.5 mm, and the flaw detection was performed using a flat bottom hole having a diameter of 5.6 mm as a flaw at a flaw detection frequency of 5 MHz.
  • the coils 511 and 521 are 1-turn coils having a coil width of 5 mm, and the interval between adjacent coils is 5 mm.
  • the one-turn coil 511 (diameter: about 1200 mm) disposed on the outermost side among the plurality of one-turn coils 511 and the ultrasonic flaw detector 3 were electrically connected.
  • the one-turn coil 521 (diameter: about 1200 mm) disposed on the outermost side among the plurality of one-turn coils 521 and the ultrasonic probe 1 were electrically connected.
  • FIG. 9 is a graph showing the results of the evaluation test. As shown in FIG. 9, when the substrate 512 (or 522) and the holding member 513 (or 523) are separated (if air is interposed between the substrate and the holding member), the separation distance is zero. It was found that the height of the flaw echo was larger than in the case where nothing was interposed between the substrate and the holding member. This is because air that does not easily induce an electromagnetic field is interposed between the substrate (coil) and the holding member, so that the holding member is formed of aluminum as a conductor as in this embodiment. This is also because the electromagnetic field induced by the coil is not easily attenuated by the holding member, and it is difficult to cause a decrease in transmission efficiency.
  • the influence of electromagnetic induction between the coil 511 and the holding member (aluminum) and between the coil 521 and the holding member (aluminum) is reduced, and the transmission efficiency is reduced due to electromagnetic induction between the coil 511 and the coil 521. It is thought that it is because it is hard to cause.
  • the distance between the substrate and the holding member is about 10 to 20 mm (the gap between the coil 511 provided on the fixed body 51 and the coil 521 provided on the rotating body 52 is 2 mm). It was found that the height of the flaw echo observed was about 5 to 10 times, and the flaw echo height did not change even when the separation distance was further increased. That is, it has been found that even if the separation distance is further increased, the effect of suppressing the attenuation of the electromagnetic field induced by the coil at the holding member is poor. For this reason, the distance between the substrate 512 (or 522) and the holding member 513 (or 523) is 5 to 5 of the gap between the coil 511 disposed on the fixed body 51 and the coil 521 disposed on the rotating body 52. It is preferably about 10 times.
  • the receiving rotary transformer 5B is removed and the receiving transducer 12 of the ultrasonic probe 1 and the ultrasonic flaw detector 3 are directly electrically connected.
  • the number of turns of the coils formed on the fixed body 51 and the rotating body 52 of the transmitting rotary transformer 5A was appropriately changed, and a test for evaluating the echo height from the flaw observed by the ultrasonic flaw detector 3 was performed.
  • the gap between the coil disposed on the fixed body 51 of the transmitting rotary transformer 5A and the coil disposed on the rotating body 52 is set to 2 mm, and the substrate 512 (or 522) and the holding member 513 ( Or 523) is 20 mm, the thickness of the water W interposed between the ultrasonic probe 1 and the material to be inspected S is 0.5 mm, and a flat bottom hole having a diameter of 5.6 mm at a flaw detection frequency of 5 MHz. Detected flaws. Three types of coils, a 1-turn coil, a 3-turn coil, and a 5-turn coil, were used as coils disposed in the transmission rotary transformer 5A.
  • the coil width was 5 mm and the interval between adjacent coils was 5 mm.
  • the coil width was 1 mm, the coil was wound three turns with a gap of 2 mm, and the interval between adjacent coils was 5 mm.
  • the coil width was set to 0.5 mm, the coil was wound for 5 turns with a gap of 0.5 mm, and the interval between adjacent coils was set to 5 mm.
  • a coil (diameter: about 1200 mm) disposed on the outermost side of the fixed body 51 and an ultrasonic flaw detector for each of the one-turn coil, the three-turn coil, and the five-turn coil. 3 was electrically connected.
  • the coil (diameter: about 1200 mm) disposed on the outermost side of the rotating body 52 and the ultrasonic probe 1 were electrically connected.
  • FIG. 10 is a graph showing the results of the evaluation test.
  • the data plotted at the position where the number of turns is 0 is obtained by removing both the transmission rotary transformer 5A and the reception rotary transformer 5B and transmitting the transmission transducer 11 and the reception transducer of the ultrasonic probe 1.
  • 12 shows the result of evaluating the echo height from a flaw observed with the ultrasonic flaw detector 3 in a state where the ultrasonic flaw detector 12 and the ultrasonic flaw detector 3 are directly electrically connected. As shown in FIG. 10, it was found that when the number of turns of the coil was increased, the flaw echo height was reduced.
  • the fixed body 51 and the rotating body 52 provided in the rotary transformer 5 according to the present embodiment are provided with a plurality of one-turn coils 511 and 521.
  • the intervals between the plurality of 1-turn coils 511 and 521 formed on the fixed body 51 and the rotary body 52 are set for both the transmission rotary transformer 5A and the reception rotary transformer 5B.
  • a test for evaluating the height of the interference echo between adjacent coils observed with the ultrasonic flaw detector 3 was performed as appropriate.
  • the gap between the coil 511 disposed on the fixed body 51 and the coil 521 disposed on the rotating body 52 is set to 2 mm for both the transmitting rotary transformer 5A and the receiving rotary transformer 5B.
  • the separation distance between the substrate 512 (or 522) and the holding member 513 (or 523) is 20 mm
  • the thickness of the water W interposed between the ultrasonic probe 1 and the material S to be inspected is 0.5 mm
  • the flaw detection A flaw detection was performed using a flat bottom hole with a frequency of 5 MHz and a diameter of 5.6 mm as a scratch.
  • Coils 511 and 521 are one-turn coils having a coil width of 5 mm, and the interval between adjacent coils was changed in the range of 0.5 to 15 mm.
  • the one-turn coil 511 (diameter: about 1200 mm) arranged on the outermost side among the plurality of one-turn coils 511 and the adjacent one-turn coil 511 and ultrasonic waves
  • the flaw detector 3 was electrically connected.
  • the one-turn coil 521 (diameter: about 1200 mm) disposed on the outermost side among the plurality of one-turn coils 521, the one-turn coil 521 adjacent thereto, and the two ultrasonic probes 1 are electrically connected. Connected. The echo received by the ultrasonic probe 1 electrically connected to the outermost one-turn coil 521 was observed with the ultrasonic flaw detector 3.
  • FIG. 11 shows an example of a received waveform observed in the evaluation test.
  • FIG. 11A shows an example of a received waveform when the interval between adjacent one-turn coils is 5 mm
  • FIG. 11B shows the received waveform when the interval between adjacent one-turn coils is 0.5 mm.
  • the echo indicated by the symbol T is a transmission echo
  • the echo indicated by the symbol S is a surface echo
  • the echoes indicated by the symbols F1 and F2 are flaw echoes
  • the echoes indicated by the symbols B1 and B2 are bottom echoes.
  • the ultrasonic probe 1 of the present embodiment is a transmission / reception separation type ultrasonic probe including a transmission transducer 11 and a reception transducer 12, a surface echo (reflected on the surface of the material S to be inspected).
  • the echo) S is usually hardly received by the receiving transducer 12.
  • a plurality of one-turn coils are arranged to transmit a plurality of different signals, it is considered that the height of the surface echo S increases due to interference (crosstalk) between the signals.
  • FIG. 11A when the interval between adjacent one-turn coils is set to 5 mm, which is equal to the coil width, there is little interference between the signals, and the height of the surface echo S is small.
  • FIG. 11A when the interval between adjacent one-turn coils is set to 5 mm, which is equal to the coil width, there is little interference between the signals, and the height of the surface echo S is small.
  • FIG. 11A when the interval between adjacent one-turn coils is set to 5 mm, which is equal to the coil width,
  • FIG. 12 is a graph showing the height of the interference echo (surface echo S) observed in the evaluation test.
  • the height of the interference echo is reduced, that is, crosstalk between signals transmitted by each one-turn coil is reduced. I understood that I could do it.
  • a plurality of one-turn coils 511 formed on the substrate 512 included in the fixed body 51 and a plurality of substrates formed on the substrate 522 included in the rotating body 52 are used as a preferable configuration.
  • the one-turn coil 521 is formed concentrically with an interval equivalent to the coil width.

Landscapes

  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 本発明に係る回転型超音波探傷装置用回転トランス5は、一方の面側にコイルが配設された平板状の固定体51と、一方の面側にコイルが配設された平板状の回転体52とを備え、固定体及び回転体それぞれのコイル配設面側が対向するように配置されて、対向するコイル間で1~10MHzの周波数帯の信号伝送を行う。固定体は、複数の1ターンコイル511が同心円状に形成された基板512と、該基板を保持する保持部材513とを具備し、回転体は、固定体に形成された1ターンコイルと同数の1ターンコイル521が同心円状に形成された基板522と、該基板を保持する保持部材523とを具備する。固定体が具備する基板と保持部材との間、及び、回転体が具備する基板と保持部材との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料Mが介在する。

Description

回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置
 本発明は、回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置に関する。特に、本発明は、超音波探傷で使用される信号を伝送する際であってもその伝送効率に優れた回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置に関する。
 従来より、超音波探触子を管状又は棒状の被検査材の周方向に沿って回転させながら探傷を行う回転型超音波探傷装置が知られている。
 図1に示すように、一般的な回転型超音波探傷装置は、被検査材Sに対して超音波を送受信する超音波探触子1と、超音波探触子1が取り付けられ被検査材Sの周方向に回転する探触子ホルダー2と、超音波探触子1からの超音波の送受信を制御すると共に、超音波探触子1で受信したエコーに基づき被検査材Sの探傷を行う超音波探傷器3と、超音波探触子1と超音波探傷器3との間の信号伝送を行う信号伝送部4とを備えている。
 上記の構成を有する回転型超音波探傷装置において、被検査材Sを軸方向に直進させると共に、探触子ホルダー2、ひいては超音波探触子1を回転させる(50rpm~2000rpm程度)ことで、超音波探触子1の軌跡は被検査材Sの外表面上でスパイラル状になり、被検査材Sの全断面を高速で探傷することが可能である。
 ここで、信号伝送部4において、超音波探傷で一般的に使用される周波数帯(1~10MHz)の信号を伝送する方法としては、(1)スリップリングを用いる方法、(2)コンデンサカップリングを用いる方法、(3)回転トランスを用いる方法、が知られている。以下、順次これらの方法について説明する。
 (1)スリップリングを用いる方法(例えば、特許文献1参照)
 この方法では、図2に示すように、信号伝送部4(図1参照)に、固定側電極41Aと回転側電極42Aとを設ける。固定側電極41Aと回転側電極42Aとの間に、ブラシ43を介在させる。固定側電極41Aは、超音波探傷器3(図1参照)と電気的に接続される。一方、回転側電極42Aは、超音波探触子1(図1参照)と電気的に接続され、超音波探触子1(探触子ホルダー2)(図1参照)と一体的に回転する。
 そして、固定側電極41Aと回転側電極42Aとがブラシ43を介して接触することにより、超音波探触子1と超音波探傷器3との間の信号伝送が行われる。
 この方法は、接触式であるため、高速回転に不適であり、保守性も極めて悪いという問題がある。
 (2)コンデンサカップリングを用いる方法(例えば、特許文献2参照)
 この方法では、図3に示すように、信号伝送部4(図1参照)に、固定側電極41Bと回転側電極42Bとを設ける。固定側電極41Bと回転側電極42Bとの間に、空気や水などの誘電体44を保持させる。固定側電極41Bは、超音波探傷器3(図1参照)と電気的に接続される。一方、回転側電極42Bは、超音波探触子1と電気的に接続され、超音波探触子1(探触子ホルダー2)(図1参照)と一体的に回転する。
 上記のように、固定側電極41Bと回転側電極42Bとの間に誘電体44を保持させてコンデンサを形成することにより、超音波探触子1と超音波探傷器3との間の信号伝送が行われる。
 この方法において、誘電体44として空気を用いる場合には、空気の誘電率が小さいため、電極間距離を微小(0.1~0.5mm程度)にする必要があり、保守性が悪いという問題がある。
 一方、コンデンサカップリングを用いる方法において、誘電体44として水を用いる場合には、電極間距離を大きくできる(2mm程度)ものの、水を均一に保持する必要がある。
 多チャンネルの信号伝送を行う場合(超音波探触子1を複数備える場合)、図4に示すように、水Wを均一に保持するには、複数の固定側電極41C及び回転側電極42Cを被検査材Sの長手方向に配列する必要がある。このため、信号伝送部4が被検査材Sの長手方向に長くなり、超音波探傷装置の大型化に繋がるという問題がある。また、被検査材Sの径が大きくなると、信号伝送部4の径も大きくなり、より一層水Wの保持が困難になる。
 (3)回転トランスを用いる方法(例えば、特許文献3参照)
 この方法では、図5に示すように、信号伝送部4(図1参照)に、固定側コイル45と回転側コイル46とを設ける。固定側コイル45は、超音波探傷器3(図1参照)と電気的に接続される。一方、回転側コイル46は、超音波探触子1と電気的に接続され、超音波探触子1(探触子ホルダー2)(図1参照)と一体的に回転する。
 そして、固定側コイル45と回転側コイル46との間に生じる電磁誘導により、超音波探触子1と超音波探傷器3との間の信号伝送が行われる。
 この方法では、コイル間は空気Aを介在させればよい上、前述したコンデンサカップリングを用いる方法と異なり、コイル間距離も大きくできるという利点がある。
 しかしながら、従来、回転型超音波探傷装置の信号伝送部4用として提案されている回転トランスは、多チャンネルの信号伝送を行う場合(超音波探触子1を複数備える場合)、前述した固定側電極41C及び回転側電極42Cと同様に、複数の固定側コイル45及び回転側コイル46を被検査材Sの長手方向に配列する形態であるため、信号伝送部4が被検査材Sの長手方向に長くなり、超音波探傷装置の大型化に繋がるという問題がある。
 ここで、回転トランスとしては、一方の面側にコイルが配設された平板状の固定体と、一方の面側にコイルが配設された平板状の回転体とを備え、前記固定体及び前記回転体それぞれのコイル配設面側が対向するように配置され、対向するコイル間で信号伝送を行う平板型回転トランスが知られている(例えば、特許文献4、5参照)。
 回転型超音波探傷装置の信号伝送部用として、上記の平板型回転トランスを適用すれば、多チャンネルの信号伝送を行う場合であっても、超音波探傷装置の大型化を抑制できると考えられる。つまり、平板型回転トランスを構成する固定体及び回転体のそれぞれに複数のコイルを配設し、平板型回転トランスの中心孔に被検査材を挿通させる構成とすれば、信号伝送部が被検査材の長手方向に短くなり、超音波探傷装置の大型化を抑制できると考えられる。
日本国特開平6-94685号公報 日本国特開平7-12783号公報 日本国特開平6-242081号公報 日本国特開平7-201612号公報 日本国特開平7-37736号公報
 従来の平板型回転トランスを構成する固定体及び回転体は、一般的に、信号の伝送効率を高めるためにソフトフェライトのような強磁性体からなる平板状の基材に溝が形成され、この溝内にコイルが配設された構成とされている。或いは、強磁性体からなる基材の代わりに、アルミニウムなどの導電体からなる基材が用いられる場合もある。いずれにせよ、コイルと基材とが直接接触する構成である。
 しかしながら、このような平板型回転トランスを用いて、超音波探傷で一般的に使用される、1~10MHz程度の周波数帯で且つ100~500V程度の電圧を有する信号を伝送する際には、基材を構成する強磁性体内でのヒステリシス損や、基材を構成する導電体内での渦電流損の影響を受けて、伝送効率が低下するという問題がある。
 本発明は、上記のような従来技術の問題点を解決するためになされたものであり、超音波探傷で使用される信号を伝送する際であってもその伝送効率に優れた回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置を提供することを課題とする。
 前記課題を解決するため、本発明は、一方の面側にコイルが配設された平板状の固定体と、一方の面側にコイルが配設された平板状の回転体とを備え、前記固定体及び前記回転体それぞれのコイル配設面側が対向するように配置され、対向するコイル間で1~10MHzの周波数帯の信号伝送を行う回転型超音波探傷装置用回転トランスであって、前記固定体は、複数の1ターンコイルが同心円状に形成された基板と、該基板を保持する保持部材とを具備し、前記回転体は、前記固定体に形成された1ターンコイルと同数の1ターンコイルが同心円状に形成された基板と、該基板を保持する保持部材とを具備し、前記固定体が具備する前記基板と前記保持部材との間、及び、前記回転体が具備する前記基板と前記保持部材との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料が介在することを特徴とする回転型超音波探傷装置用回転トランスを提供する。
 本発明に係る回転型超音波探傷装置用回転トランスが備える固定体及び回転体は、コイルが形成された基板と、該基板を保持する保持部材とを具備し、前記基板と前記保持部材との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料(例えば、ベークライト等のプラスチック)が介在する。換言すれば、コイルと保持部材とが直接接触せずに、コイルと保持部材との間に、電磁場を誘起し難い物質が介在することになる。このため、たとえ、保持部材がソフトフェライトのような強磁性体やアルミニウムなどの導電体から形成されていたとしても、コイルで誘起される電磁場が保持部材で減衰し難く、伝送効率の低下を引き起こし難い。
 ここで、一般的には、コイルのターン数に比例して伝送効率が向上する。しかしながら、超音波探傷で一般的に使用される周波数帯(1~10MHz)においては、コイルのターン数が増えてコイル線長が大きくなると、コイル線間浮遊容量が大きくなり、インピーダンスが増大する。コイルを駆動する信号源は瞬時的には定電圧電源と考えられるため、上記のようにインピーダンスが増大すると、コイルに流れる電流は減衰し、固定体に形成されたコイルと回転体に形成されたコイルとの間での伝送効率は極端に低下する。
 従って、本発明に係る回転型超音波探傷装置用回転トランスが備える固定体及び回転体には、複数の1ターンコイルが形成されている。このように、1ターンコイルを用いることにより、コイル線間浮遊容量が0になるため、伝送効率の低下が生じない。 
 以上のように、本発明によれば、超音波探傷で使用される信号を伝送する際であっても、その伝送効率に優れた回転型超音波探傷装置用回転トランスを得ることが可能である。
 ここで、複数のコイルを配設して複数の異なる信号を伝送する場合、各信号間の干渉(クロストーク)が問題となる場合がある。これを避けるため、従来は、電磁場遮蔽のためのシールド用電極を設けていた(例えば、特許文献5参照)。しかしながら、超音波探傷で一般的に使用される周波数帯(1~10MHz)においては、コイルに近接してシールド用電極を設けると、コイルと電極間の線間浮遊容量により、伝送効率が低下するという問題がある。
 従って、前記固定体及び前記回転体のそれぞれが具備する前記基板に形成された複数の1ターンコイルは、コイル幅と同等の間隔を隔てて同心円状に形成されることが好ましい。
 斯かる好ましい構成によれば、各1ターンコイルで伝送される信号間のクロストークを低減することが可能である。
 好ましくは、前記固定体及び前記回転体のそれぞれが具備する前記基板と前記保持部材との離間距離は、前記固定体に形成された1ターンコイルと前記回転体に形成された1ターンコイルとのギャップの5~10倍とされる。
 基板と保持部材との離間距離が両コイルのギャップの5倍未満であると、コイルで誘起される電磁場が保持部材で減衰して伝送効率の低下を引き起こすおそれがある一方、基板と保持部材との離間距離が両コイルのギャップの10倍を超えると、保持部材での電磁場の減衰の影響は少なくなるため、離間距離をむやみに大きくしても回転トランスの厚みが大きくなってしまうだけだからである。
 また、前記課題を解決するため、本発明は、前記回転トランスと、前記回転体に形成された複数の1ターンコイルと電気的に接続され、前記回転体と一体的に回転する複数の超音波探触子と、前記固定体に形成された複数の1ターンコイルと電気的に接続された超音波探傷器とを備えることを特徴とする回転型超音波探傷装置としても提供される。
 本発明に係る回転型超音波探傷装置によれば、装置の大型化を抑制しつつ多チャンネルの信号伝送を効率良く行うことが可能である。
 本発明に係る回転型超音波探傷装置用回転トランスによれば、超音波探傷で使用される信号を伝送する際であってもその伝送効率に優れるという効果を奏する。また、本発明に係る回転型超音波探傷装置によれば、装置の大型化を抑制しつつ多チャンネルの信号伝送を効率良く行うことが可能である。
図1は、一般的な回転型超音波探傷装置の概略構成を示す模式図である。 図2は、超音波探傷で使用される信号をスリップリングを用いて伝送する方法を説明する説明図である。 図3は、超音波探傷で使用される信号をコンデンサカップリングを用いて伝送する方法を説明する説明図である。 図4は、超音波探傷で使用される信号をコンデンサカップリングを用いて多チャンネルで伝送する方法を説明する説明図である。 図5は、超音波探傷で使用される信号を回転トランスを用いて伝送する方法を説明する説明図である。 図6は、本発明の一実施形態に係る回転型超音波探傷装置の概略構成を示す模式図である。 図7は、本発明の一実施形態に係る回転型超音波探傷装置用回転トランスが備える固定体の概略構成を示す模式図である。 図8は、本発明の一実施形態に係る回転型超音波探傷装置用回転トランスが備える回転体の概略構成を示す模式図である。 図9は、図6に示す回転型超音波探傷装置の評価試験の結果を示すグラフである。 図10は、図6に示す回転型超音波探傷装置の他の評価試験の結果を示すグラフである。 図11は、図6に示す回転型超音波探傷装置のさらに他の評価試験において観察された受信波形の例を示す。 図12は、図6に示す回転型超音波探傷装置のさらに他の評価試験において観察された干渉エコー(表面エコー)の高さを示すグラフである。
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
 図6は、本発明の一実施形態に係る回転型超音波探傷装置の概略構成を示す模式図である。図6(a)は装置の全体構成を示す図であり、図6(b)は1つの超音波探触子についての電気的な接続関係を説明する図である。
 図6に示すように、本実施形態に係る回転型超音波探傷装置100は、被検査材Sに対して超音波を送受信する複数の超音波探触子1と、超音波探触子1が取り付けられ被検査材Sの周方向に回転する探触子ホルダー2と、超音波探触子1からの超音波の送受信を制御すると共に、超音波探触子1で受信したエコーに基づき被検査材Sの探傷を行う超音波探傷器3と、超音波探触子1と超音波探傷器3との間の信号伝送を行う回転型超音波探傷装置用回転トランス(以下、単に回転トランスという場合がある)5とを備えている。被検査材Sは、探触子ホルダー2及び回転トランス5の中心孔に挿通される。
 回転トランス5は、一方の面側にコイルが配設された平板状の固定体51と、一方の面側にコイルが配設された平板状の回転体52とを備え、固定体51及び回転体52それぞれのコイル配設面側が対向するように配置され、対向するコイル間で1~10MHzの周波数帯の信号伝送を行う構成である。本実施形態に係る回転型超音波探傷装置100は、一対の回転トランス5(送信用回転トランス5A及び受信用回転トランス5B)を備えている。
 図7は、回転トランス5が備える固定体51の概略構成を示す模式図である。図7(a)は平面図であり、図7(b)は図7(a)に示すAA断面図である。
 図7に示すように、固定体51は、複数(図7に示す例では4つ)の1ターンコイル511が同心円状に形成された基板512と、基板512を保持する保持部材513とを具備する。保持部材513は、基板512のコイル形成面と反対側の面を保持するものである。本実施形態の保持部材513は、アルミニウムから形成されている。
 固定体51が具備する基板512と保持部材513との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料(例えば、ベークライト等のプラスチック)Mが介在している。図7に示す例では、基板512のコイル511が形成されている部位と保持部材513とが基板512の厚み方向に離間するように、保持部材513が断面コの字状に形成されており、基板512と保持部材513との間には空気が介在している。
 本実施形態では、好ましい構成として、固定体51が具備する基板512に形成された複数の1ターンコイル511が、コイル幅Cと同等の間隔Dを隔てて同心円状に形成されている。
 図8は、回転トランス5が備える回転体52の概略構成を示す模式図である。図8(a)は平面図であり、図8(b)は図8(a)に示すBB断面図である。
 図8に示すように、回転体52も、複数(図8に示す例では4つ)の1ターンコイル521が同心円状に形成された基板522と、基板522を保持する保持部材523とを具備する。保持部材523は、基板522のコイル形成面と反対側の面を保持するものである。保持部材523は、アルミニウムから形成されている。
 回転体52が具備する基板522と保持部材523との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料(例えば、ベークライト等のプラスチック)Mが介在している。図8に示す例では、基板522のコイル521が形成されている部位と保持部材523とが基板522の厚み方向に離間するように、保持部材523が断面コの字状に形成されており、基板522と保持部材523との間には空気が介在している。
 本実施形態では、好ましい構成として、回転体52が具備する基板522に形成された複数の1ターンコイル521が、コイル幅Cと同等の間隔Dを隔てて同心円状に形成されている。
 図6に示すように、本実施形態の超音波探触子1は、送信用振動子11及び受信用振動子12を備えた送受信分離型の超音波探触子とされている。超音波探触子1は、回転体52に形成された1ターンコイル521と電気的に接続され、回転体52と一体的に回転するように構成されている。具体的には、超音波探触子1の送信用振動子11が送信用回転トランス5Aの回転体52に形成された1ターンコイル521と電気的に接続され、受信用振動子12が受信用回転トランス5Bの回転体52に形成された1ターンコイル521と電気的に接続されている。そして、送信用回転トランス5Aの回転体52及び受信用回転トランス5Bの回転体52は、探触子ホルダー2と一体的に回転するように構成されており、探触子ホルダー2が所定の駆動源によって被検査材Sの周方向に回転することにより、超音波探触子1、送信用回転トランス5Aの回転体52及び受信用回転トランス5Bの回転体52は、被検査材Sの周方向に一体的に回転する。
 図6に示すように、超音波探傷器3は、固定体51に形成された1ターンコイル511と電気的に接続されている。本実施形態では、超音波探傷器3は、送信用回転トランス5Aの固定体51に形成された1ターンコイル511と、受信用回転トランス5Bの固定体51に形成された1ターンコイル511とに電気的に接続されている。
 なお、図6(b)では、1つの超音波探触子1が一対の1ターンコイル521(送信用回転トランス5Aの回転体52に形成された1つの1ターンコイル521と、受信用回転トランス5Bの回転体52に形成された1つの1ターンコイル521)に電気的に接続されている例を示しているが、他の超音波探触子1については、他の対の1ターンコイル521と電気的に接続されることになる。また、図6(b)では、超音波探傷器3が一対の1ターンコイル511(送信用回転トランス5Aの固定体51に形成された1つの1ターンコイル511と、受信用回転トランス5Bの固定体51に形成された1つの1ターンコイル511)に電気的に接続されている例を示しているが、超音波探触子1の数に応じて、他の対の1ターンコイル511とも電気的に接続されることになる。
 また、本実施形態では、送信用振動子11及び受信用振動子12を備えた送受信分離型の超音波探触子1を用いる例について説明したが、本発明はこれに限るものではなく、1つの振動子が送信用と受信用を兼ねる送受信一体型の超音波探触子を用いることも可能である。この場合、回転トランス5としては、一対の回転トランス5(送信用回転トランス5A及び受信用回転トランス5B)を用いる必要が無く、単一の回転トランス5を用いればよい。
 以上に説明した構成を有する回転型超音波探傷装置100を用いて被検査材Sの超音波探傷を行う際には、被検査材Sを軸方向に直進させると共に、探触子ホルダー2、ひいては超音波探触子1を回転させる。このとき、送信用振動子11から超音波を送信させるための信号が超音波探傷器3から出力され、送信用回転トランス5Aの1ターンコイル511、521を介して、送信用振動子11に伝わる。これにより送信用振動子11から送信された超音波Uは、接触媒体としての水Wを介して被検査材Sに入射し、そのエコーが受信用振動子12で検出される。受信用振動子12で検出されたエコーは、電気信号に変換され、受信用回転トランス5Bの1ターンコイル521、511を介して、超音波探傷器3に入力される。超音波探傷器3は、この入力された信号に基づき被検査材Sの探傷を行う。超音波探触子1の軌跡は被検査材Sの外表面上でスパイラル状になるため、被検査材Sの全断面を探傷することが可能である。
 以下、本実施形態に係る回転型超音波探傷装置100について行った評価試験について説明する。
 <基板と保持部材との離間距離に関する評価試験>
 本実施形態に係る回転型超音波探傷装置100において、送信用回転トランス5A及び受信用回転トランス5Bの双方について、固定体51が具備する基板512と保持部材513との離間距離、及び、回転体52が具備する基板522と保持部材523との離間距離を適宜変更し、超音波探傷器3で観察されるきずからのエコー高さを評価する試験を行った。
 具体的には、送信用回転トランス5A及び受信用回転トランス5Bの双方について、固定体51に配設されたコイル511と回転体52に配設されたコイル521とのギャップを2mmに設定し、超音波探触子1と被検査材Sとの間に介在する水Wの厚みを0.5mmとし、探傷周波数5MHzで直径5.6mmの平底穴をきずとして探傷した。コイル511、521は、コイル幅5mmの1ターンコイルで、隣接するコイルの間隔は5mmとした。なお、きずエコーを観察する際には、複数の1ターンコイル511のうち最も外側に配設された1ターンコイル511(直径:約1200mm)と超音波探傷器3とを電気的に接続した。また、複数の1ターンコイル521のうち最も外側に配設された1ターンコイル521(直径:約1200mm)と超音波探触子1とを電気的に接続した。
 図9は、上記評価試験の結果を示すグラフである。
 図9に示すように、基板512(又は522)と保持部材513(又は523)とを離間させれば(基板と保持部材との間に空気を介在させれば)、離間距離が0の場合(基板と保持部材との間に何も介在しない場合)に比べて、きずエコー高さが大きくなることが分かった。これは、基板(コイル)と保持部材との間に電磁場を誘起し難い空気が介在することになるため、たとえ、本実施形態のように保持部材が導電体であるアルミニウムから形成されていたとしても、コイルで誘起される電磁場が保持部材で減衰し難く、伝送効率の低下を引き起こし難いからだと考えられる。より具体的には、コイル511と保持部材(アルミニウム)及びコイル521と保持部材(アルミニウム)との間の電磁誘導による影響が小さくなり、コイル511とコイル521との電磁誘導による伝送の効率の低下を引き起こし難いからだと考えられる。
 また、図9に示すように、基板と保持部材との離間距離がおよそ10~20mm程度(固定体51に配設されたコイル511と回転体52に配設されたコイル521とのギャップ2mmの5~10倍程度)のとき、観察されるきずエコー高さはピークとなり、これ以上離間距離を大きくしてもきずエコー高さに変化が無いことが分かった。つまり、これ以上離間距離を大きくしても、コイルで誘起される電磁場の保持部材での減衰を抑制する効果に乏しいということが分かった。このため、基板512(又は522)と保持部材513(又は523)との離間距離は、固定体51に配設されたコイル511と回転体52に配設されたコイル521とのギャップの5~10倍程度にするのが好ましい。
 <コイルのターン数に関する評価試験>
 本実施形態に係る回転型超音波探傷装置100において、受信用回転トランス5Bを取り外して、超音波探触子1の受信用振動子12と超音波探傷器3とを直接電気的に接続した状態で、送信用回転トランス5Aの固定体51及び回転体52に形成するコイルのターン数を適宜変更し、超音波探傷器3で観察されるきずからのエコー高さを評価する試験を行った。
 具体的には、送信用回転トランス5Aの固定体51に配設されたコイルと回転体52に配設されたコイルとのギャップを2mmに設定し、基板512(又は522)と保持部材513(又は523)との離間距離を20mmとし、超音波探触子1と被検査材Sとの間に介在する水Wの厚みを0.5mmとし、探傷周波数5MHzで直径5.6mmの平底穴をきずとして探傷した。送信用回転トランス5Aに配設するコイルとしては、1ターンコイル、3ターンコイル及び5ターンコイルの3種類のコイルを用いた。1ターンコイルを用いる場合、コイル幅を5mmとし、隣接するコイルの間隔は5mmとした。3ターンコイルを用いる場合、コイル幅を1mmとして隙間2mmで3ターン巻回し、隣接するコイルの間隔は5mmとした。5ターンコイルを用いる場合、コイル幅を0.5mmとして隙間0.5mmで5ターン巻回し、隣接するコイルの間隔は5mmとした。なお、きずエコーを観察する際には、1ターンコイル、3ターンコイル及び5ターンコイルのいずれについても、固定体51の最も外側に配設されたコイル(直径:約1200mm)と超音波探傷器3とを電気的に接続した。また、回転体52の最も外側に配設されたコイル(直径:約1200mm)と超音波探触子1とを電気的に接続した。
 図10は、上記評価試験の結果を示すグラフである。なお、図10において、ターン数0の位置にプロットしたデータは、送信用回転トランス5A及び受信用回転トランス5Bの双方を取り外し、超音波探触子1の送信用振動子11及び受信用振動子12と超音波探傷器3とを直接電気的に接続した状態で、超音波探傷器3で観察されるきずからのエコー高さを評価した結果を示す。
 図10に示すように、コイルのターン数を増加させると、きずエコー高さが小さくなることが分かった。これは、コイルのターン数が増えてコイル線長が大きくなると、コイル線間浮遊容量が大きくなり、インピーダンスが増大するため、コイルに流れる電流が減衰し、固定体51に形成されたコイルと回転体52に形成されたコイルとの間での伝送効率が低下するからだと考えられる。
 以上の結果に基づき、前述のように、本実施形態に係る回転トランス5が備える固定体51及び回転体52には、複数の1ターンコイル511、521が配設されている。
 <コイル間隔に関する評価試験>
 本実施形態に係る回転型超音波探傷装置100において、送信用回転トランス5A及び受信用回転トランス5Bの双方について、固定体51及び回転体52に形成する複数の1ターンコイル511、521の間隔を適宜変更し、超音波探傷器3で観察される、隣接するコイル間の干渉エコーの高さを評価する試験を行った。
 具体的には、送信用回転トランス5A及び受信用回転トランス5Bの双方について、固定体51に配設されたコイル511と回転体52に配設されたコイル521とのギャップを2mmに設定し、基板512(又は522)と保持部材513(又は523)との離間距離を20mmとし、超音波探触子1と被検査材Sとの間に介在する水Wの厚みを0.5mmとし、探傷周波数5MHzで直径5.6mmの平底穴をきずとして探傷した。コイル511、521は、コイル幅5mmの1ターンコイルで、隣接するコイルの間隔を0.5~15mmの範囲で変更した。なお、きずからのエコーを観察する際には、複数の1ターンコイル511のうち最も外側に配設された1ターンコイル511(直径:約1200mm)及びこれに隣接する1ターンコイル511と超音波探傷器3とを電気的に接続した。また、複数の1ターンコイル521のうち最も外側に配設された1ターンコイル521(直径:約1200mm)及びこれに隣接する1ターンコイル521と2つの超音波探触子1とを電気的に接続した。そして、最も外側に配設された1ターンコイル521と電気的に接続されている超音波探触子1で受信したエコーを超音波探傷器3で観察した。
 図11は、上記評価試験において観察された受信波形の例を示す。図11(a)は、隣接する1ターンコイルの間隔を5mmとした場合の受信波形の例を、図11(b)は、隣接する1ターンコイルの間隔を0.5mmとした場合の受信波形の例を示す。なお、図11において符号Tで示すエコーは送信エコー、符号Sで示すエコーは表面エコー、符号F1、F2で示すエコーはきずエコー、符号B1、B2で示すエコーは底面エコーである。
 本実施形態の超音波探触子1は、送信用振動子11及び受信用振動子12を備えた送受信分離型の超音波探触子であるため、表面エコー(被検査材Sの表面で反射したエコー)Sは受信用振動子12でほとんど受信されないのが通常である。しかしながら、複数の1ターンコイルを配設して複数の異なる信号を伝送する場合、各信号間の干渉(クロストーク)が生じることで、表面エコーSの高さが大きくなると考えられる。図11(a)に示すように、隣接する1ターンコイルの間隔をコイル幅と同等の5mmとした場合には、各信号間の干渉が少なく、表面エコーSの高さは小さい。一方、図11(b)に示すように、隣接する1ターンコイルの間隔を0.5mmとした場合には、各信号間の干渉により、表面エコーSの高さは大きくなる。また、図示しないが、隣接する1ターンコイルの間隔をコイル幅より大きくしても、表面エコーSの高さが大きい受信波形となった。これらの結果より、隣接する1ターンコイルの間隔には、表面エコーの高さを低減する上での最適値が存在することが分かった。
 図12は、上記評価試験において観察された干渉エコー(表面エコーS)の高さを示すグラフである。
 図12に示すように、隣接する1ターンコイルの間隔をコイル幅と同等の5mmにすることにより、干渉エコーの高さを低減、すなわち各1ターンコイルで伝送される信号間のクロストークを低減できることが分かった。
 以上の結果に基づき、本実施形態では、好ましい構成として、固定体51が具備する基板512に形成された複数の1ターンコイル511、及び、回転体52が具備する基板522に形成された複数の1ターンコイル521が、コイル幅と同等の間隔を隔てて同心円状に形成されている。
1・・・超音波探触子
2・・・探触子ホルダー
3・・・超音波探傷器
5・・・回転トランス
5A・・・送信用回転トランス
5B・・・受信用回転トランス
11・・・送信用振動子
12・・・受信用振動子
51・・・固定体
52・・・回転体
100・・・回転型超音波探傷装置
511・・・1ターンコイル
512・・・基板
513・・・保持部材
521・・・1ターンコイル
522・・・基板
523・・・保持部材
M・・・空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料
S・・・被検査材 

Claims (4)

  1.  一方の面側にコイルが配設された平板状の固定体と、一方の面側にコイルが配設された平板状の回転体とを備え、前記固定体及び前記回転体それぞれのコイル配設面側が対向するように配置され、対向するコイル間で1~10MHzの周波数帯の信号伝送を行う回転型超音波探傷装置用回転トランスであって、
     前記固定体は、複数の1ターンコイルが同心円状に形成された基板と、該基板を保持する保持部材とを具備し、
     前記回転体は、前記固定体に形成された1ターンコイルと同数の1ターンコイルが同心円状に形成された基板と、該基板を保持する保持部材とを具備し、
     前記固定体が具備する前記基板と前記保持部材との間、及び、前記回転体が具備する前記基板と前記保持部材との間には、空気、又は絶縁体で且つ比透磁率がほぼ1に等しい材料が介在することを特徴とする回転型超音波探傷装置用回転トランス。
  2.  前記固定体及び前記回転体のそれぞれが具備する前記基板に形成された複数の1ターンコイルは、コイル幅と同等の間隔を隔てて同心円状に形成されていることを特徴とする請求項1に記載の回転型超音波探傷装置用回転トランス。
  3.  前記固定体及び前記回転体のそれぞれが具備する前記基板と前記保持部材との離間距離は、前記固定体に形成された1ターンコイルと前記回転体に形成された1ターンコイルとのギャップの5~10倍であることを特徴とする請求項1又は2に記載の回転型超音波探傷装置用回転トランス。
  4.  請求項1から3の何れかに記載の回転型超音波探傷装置用回転トランスと、
     前記回転体に形成された複数の1ターンコイルと電気的に接続され、前記回転体と一体的に回転する複数の超音波探触子と、
     前記固定体に形成された複数の1ターンコイルと電気的に接続された超音波探傷器とを備えることを特徴とする回転型超音波探傷装置。
PCT/JP2012/060097 2011-04-15 2012-04-13 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置 WO2012141279A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137030275A KR101553761B1 (ko) 2011-04-15 2012-04-13 회전형 초음파 탐상 장치용 회전 트랜스 및 이를 이용한 회전형 초음파 탐상 장치
US14/111,781 US9360458B2 (en) 2011-04-15 2012-04-13 Rotary transformer for rotary ultrasonic testing apparatus and rotary ultrasonic testing apparatus using the same
EP12771565.4A EP2700938B1 (en) 2011-04-15 2012-04-13 Rotary transformer and rotary ultrasonic flaw detection device using the same
RU2013145557/28A RU2544304C1 (ru) 2011-04-15 2012-04-13 Вращающийся трансформатор для устройства вращательной ультразвуковой дефектоскопии и устройство вращательной ультразвуковой дефектоскопии, в котором он используется
CN201280018653.1A CN103477219B (zh) 2011-04-15 2012-04-13 旋转型超声波探伤装置用旋转变压器及采用了该旋转变压器的旋转型超声波探伤装置
JP2013509972A JP5649199B2 (ja) 2011-04-15 2012-04-13 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011091299 2011-04-15
JP2011-091299 2011-04-15

Publications (1)

Publication Number Publication Date
WO2012141279A1 true WO2012141279A1 (ja) 2012-10-18

Family

ID=47009439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060097 WO2012141279A1 (ja) 2011-04-15 2012-04-13 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置

Country Status (7)

Country Link
US (1) US9360458B2 (ja)
EP (1) EP2700938B1 (ja)
JP (1) JP5649199B2 (ja)
KR (1) KR101553761B1 (ja)
CN (1) CN103477219B (ja)
RU (1) RU2544304C1 (ja)
WO (1) WO2012141279A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399088A (zh) * 2013-07-26 2013-11-20 北京波易达成像技术有限公司 一种旋转式多通道超声波发射接收装置及方法
WO2020079836A1 (ja) * 2018-10-19 2020-04-23 三菱電機株式会社 超音波探傷装置用の回転トランス及び超音波探傷装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105261B3 (de) * 2014-04-14 2015-02-19 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
CN105869853B (zh) * 2015-01-23 2018-09-04 台达电子工业股份有限公司 一种磁芯元件及变压器
EP3211414B1 (en) * 2016-02-29 2018-11-21 KONE Corporation Ultrasonic monitoring of a rope of a hoisting apparatus
JP6675260B2 (ja) * 2016-04-27 2020-04-01 東京エレクトロン株式会社 変圧器、プラズマ処理装置、及び、プラズマ処理方法
CN108008018B (zh) * 2017-12-21 2024-01-12 江苏赛福探伤设备制造有限公司 用于管材探伤的超声波探伤设备
KR102267073B1 (ko) * 2019-11-11 2021-06-21 재단법인 파동에너지 극한제어 연구단 능동형 초음파 전달 구조체
US20230344315A1 (en) * 2022-04-22 2023-10-26 Borgwarner Inc. Only-stationary-side compensation network

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848200A (ja) * 1981-09-18 1983-03-22 マークテック株式会社 回転トランス機構
JPH0694685A (ja) 1992-09-11 1994-04-08 Mitsubishi Heavy Ind Ltd 薄肉管内挿型超音波検査装置
JPH06242081A (ja) 1993-02-22 1994-09-02 Mitsubishi Electric Corp 超音波探傷装置
JPH0712783A (ja) 1993-06-29 1995-01-17 Tokimec Inc 超音波探傷装置の信号伝達機構
JPH0737736A (ja) 1993-07-20 1995-02-07 Sharp Corp 回転トランス
JPH07201612A (ja) 1994-01-10 1995-08-04 Mitsubishi Electric Corp 回転トランス及びその製造方法
JP2002345822A (ja) * 2001-05-28 2002-12-03 Matsushita Electric Ind Co Ltd 超音波振動子駆動モータとそのモータを使用した超音波診断装置
JP2004344247A (ja) * 2003-05-20 2004-12-09 Micro Sonic Kk 電気信号伝達機構、超音波探触子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978651A (en) * 1957-12-30 1961-04-04 Sarkes Tarzian Vernier tuning circuit for high frequency tuner
SU389455A1 (ru) * 1971-06-09 1973-07-05 УСТРОЙСТВО дл УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ТЕЛ
SU411370A1 (ja) * 1971-07-12 1974-01-15
NL8702531A (nl) * 1987-10-23 1989-05-16 Philips Nv Roterende transformator.
JPH01212131A (ja) * 1988-02-19 1989-08-25 Nippon Syst Kenkyusho:Kk 分割コイル型同軸カプラを用いた伝送装置
JP3123147B2 (ja) * 1991-10-09 2001-01-09 ソニー株式会社 ロータリートランスの製造方法
DE69305819T2 (de) * 1992-09-09 1997-05-15 Matsushita Electric Ind Co Ltd Drehtransformator
US5594176A (en) * 1994-04-05 1997-01-14 Gas Research Institute Scan assembly and method for transferring power and data across a rotary interface
FR2791137B1 (fr) * 1999-03-16 2001-08-03 Framatome Sa Procede et dispositif de controle ultrasonore d'un element de forme allongee et utilisation
JP2002301081A (ja) * 2001-04-06 2002-10-15 Matsushita Electric Ind Co Ltd 超音波振動子駆動モータとそのモータを使用した超音波診断装置
FR2833706B1 (fr) * 2001-12-13 2004-07-23 Setval Controle non destructif a capteurs ultrasonores, de produits de metallurgie
US20030233880A1 (en) * 2002-06-25 2003-12-25 Siverling David E. Ultrasonic tubular inspection apparatus having fluid interface and system and method incorporating same
JP4665077B2 (ja) 2005-10-31 2011-04-06 多摩川精機株式会社 アブソリュート位置検出装置
US7997139B2 (en) * 2007-12-03 2011-08-16 Fbs, Inc. Guided wave pipeline inspection system and method with enhanced natural focusing techniques
RU2010154391A (ru) * 2008-06-02 2012-07-20 Конинклейке Филипс Электроникс Н.В. (Nl) Вращающийся силовой трансформатор для использования в схеме высоковольтного генератора для индуктивной передачи двух или более независимо управляемых напряжений питания к клеммам подачи питания нагрузки
JP5184420B2 (ja) * 2009-03-31 2013-04-17 愛三工業株式会社 レゾルバ
US8710829B2 (en) * 2009-06-19 2014-04-29 Minebea Co., Ltd. Sheet coil type resolver
JP5275944B2 (ja) * 2009-08-20 2013-08-28 ミネベア株式会社 シートコイル型レゾルバ
SE537050C2 (sv) 2011-06-30 2014-12-16 Atlas Copco Ind Tech Ab Transformator innefattande en kontaktlös signalanslutning

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848200A (ja) * 1981-09-18 1983-03-22 マークテック株式会社 回転トランス機構
JPH0694685A (ja) 1992-09-11 1994-04-08 Mitsubishi Heavy Ind Ltd 薄肉管内挿型超音波検査装置
JPH06242081A (ja) 1993-02-22 1994-09-02 Mitsubishi Electric Corp 超音波探傷装置
JPH0712783A (ja) 1993-06-29 1995-01-17 Tokimec Inc 超音波探傷装置の信号伝達機構
JPH0737736A (ja) 1993-07-20 1995-02-07 Sharp Corp 回転トランス
JPH07201612A (ja) 1994-01-10 1995-08-04 Mitsubishi Electric Corp 回転トランス及びその製造方法
JP2002345822A (ja) * 2001-05-28 2002-12-03 Matsushita Electric Ind Co Ltd 超音波振動子駆動モータとそのモータを使用した超音波診断装置
JP2004344247A (ja) * 2003-05-20 2004-12-09 Micro Sonic Kk 電気信号伝達機構、超音波探触子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700938A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399088A (zh) * 2013-07-26 2013-11-20 北京波易达成像技术有限公司 一种旋转式多通道超声波发射接收装置及方法
WO2020079836A1 (ja) * 2018-10-19 2020-04-23 三菱電機株式会社 超音波探傷装置用の回転トランス及び超音波探傷装置

Also Published As

Publication number Publication date
KR101553761B1 (ko) 2015-09-16
CN103477219B (zh) 2016-03-02
EP2700938A4 (en) 2015-04-15
CN103477219A (zh) 2013-12-25
US20140102202A1 (en) 2014-04-17
RU2544304C1 (ru) 2015-03-20
JPWO2012141279A1 (ja) 2014-07-28
US9360458B2 (en) 2016-06-07
KR20130143136A (ko) 2013-12-30
EP2700938A1 (en) 2014-02-26
JP5649199B2 (ja) 2015-01-07
EP2700938B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP5649199B2 (ja) 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置
CN108508085B (zh) 一种扭转模态磁致伸缩传感器、管道检测***及方法
CN108562642B (zh) 纵向模态超声导波的电磁换能装置、管道检测***及方法
CN108037181B (zh) 一种高压电缆铅封涡流探伤装置及方法
CN109444270B (zh) 一种电磁超声与脉冲涡流复合检测传感器
CN109781838B (zh) 一种基于v形线圈激励的涡流-超声检测探头
JP6189870B2 (ja) 貫通コイル構成、貫通コイル構成を有する試験装置、及び試験方法
CN102967658B (zh) 一种用于钢棒表面自动化检测的电磁超声换能器
CN110603442B (zh) 用于腐蚀映射的电磁声换能器(emat)
EP3430387B1 (en) Guided wave testing
CN103336062B (zh) 一种用于检测钢轨轨头踏面缺陷的电磁超声换能器
JP2639264B2 (ja) 鋼体の探傷装置
EP2866027A1 (en) Eddy current sensor with linear drive conductor
CN109115867B (zh) 平面旋转涡流检测传感器及检测方法
CN212693676U (zh) 周期性磁体柔性电磁超声探头
CN112147235B (zh) 一种用于管道导波混频检测的电磁超声激励装置
CN112415088B (zh) 一种内穿式横向脉冲涡流检测探头及其使用方法
CN113176342A (zh) 一种内插式电磁超声螺旋导波换能器及其工作方法
CN103207239A (zh) 一种一体化可调节磁致伸缩纵向导波探头
US3714817A (en) Acoustical transducer with rotary pulse coupler
CN103217481A (zh) 一种应用磁致伸缩的磁声成像探头
JP2013090237A (ja) 電磁超音波探触子および電磁超音波探傷装置
CN102175196B (zh) 一种用于电磁超声测厚探头的耦合匹配装置
JPS6255100B2 (ja)
EP2399140A1 (en) A sensor and process for detecting an electric pulse caused by a partial discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013509972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137030275

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013145557

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14111781

Country of ref document: US