WO2012139433A1 - 一种无线参数配置和信号发送的方法及装置 - Google Patents

一种无线参数配置和信号发送的方法及装置 Download PDF

Info

Publication number
WO2012139433A1
WO2012139433A1 PCT/CN2012/071101 CN2012071101W WO2012139433A1 WO 2012139433 A1 WO2012139433 A1 WO 2012139433A1 CN 2012071101 W CN2012071101 W CN 2012071101W WO 2012139433 A1 WO2012139433 A1 WO 2012139433A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
sampling frequency
transmitting station
subcarrier spacing
mobile communication
Prior art date
Application number
PCT/CN2012/071101
Other languages
English (en)
French (fr)
Inventor
方惠英
郁光辉
夏树强
张峻峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012139433A1 publication Critical patent/WO2012139433A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of digital communications, and more particularly to a method and apparatus for wireless parameter configuration and signal transmission for LTE (Long Term Evolution) system indoors, hotspot coverage evolution. Background technique
  • the characteristics of the indoor and hotspot data services are that the users usually have fixed or very low-speed mobility, and the mobility requirements are not high; on the other hand, the data services are mainly Internet services, and the requirements for Quality of Service (QoS) are relatively simple, and Far less than the QoS requirements of carrier-class services.
  • QoS Quality of Service
  • the traditional cellular mobile communication system is mainly designed for high-speed mobile, seamlessly switched carrier-class service design. When it carries large-flow and low-speed IP (Internet Protocol) packet services, the efficiency is low and the cost is too high.
  • the main purpose of the present invention is to provide a method and apparatus for wireless parameter configuration and signal transmission, which are used to solve an application scenario for indoor and hotspot coverage in an existing protocol, because the wireless parameter selection and signal transmission method are not
  • the wireless data transmission suitable for this scenario leads to technical problems of high system cost and excessive system overhead.
  • a method for wireless parameter configuration and signaling comprising:
  • Step ⁇ the sending station configures the subcarrier spacing and the sampling frequency f. And a fast Fourier (FFT) point number N, wherein the transmitting station configures the subcarrier spacing to be an integer multiple of a subcarrier spacing ⁇ of the Long Term Evolution (LTE) mobile communication system;
  • FFT fast Fourier
  • Step ⁇ the number of available subcarriers in the sending station configuration
  • Step C The sending station sends data or pilot symbols on the configured available subcarriers.
  • the sending station configuration subcarrier spacing Af is an integer multiple of the LTE mobile communication system subcarrier spacing, specifically: the sending station configuration subcarrier spacing Af is 2 n times of the LTE mobile communication system subcarrier spacing, and n is greater than 0. The integer.
  • the transmitting station configuration subcarrier spacing Af is 16 times the subcarrier spacing of the LTE mobile communication system, and the Af is specifically 240 kHz. Further, the transmitting station configures a sampling frequency f.
  • the method is:
  • the transmitting station configures the sampling frequency f.
  • the transmitting station configures the sampling frequency f. 2 K times the sampling frequency of the WCDMA mobile communication system, k is an integer greater than 0; specifically, the transmitting station Configure the sampling frequency f. 8 times the sampling frequency for the WCDMA mobile communication system, f. Specifically, it is 30.72 MHz.
  • the method for configuring the FFT point number N by the sending station is:
  • Transmitter configuration FFT points N is greater than or equal to the sampling frequency f.
  • the transmitting station configures the FFT point number N to be greater than or equal to the sampling frequency f.
  • the transmitting station configures the number of available subcarriers in each orthogonal frequency division multiplexing (OFDM) symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner.
  • OFDM orthogonal frequency division multiplexing
  • the method for configuring the number of available subcarriers in each OFDM symbol in a fixed configuration manner is: when the system bandwidth is 20 MHz, the sampling frequency f of the transmitting station.
  • the subcarrier spacing Af of the transmitting station is configured to be 240 kHz
  • the number of FFT points N of the transmitting station is configured to be 128, and the number of available subcarriers N used is preferably any of 73, 75 or 71.
  • the configuration is 30.72 MHz
  • the subcarrier spacing Af of the transmitting station is configured to be 240 kHz
  • the configuration is 30.72 MHz
  • the subcarrier spacing Af of the transmitting station is configured to be 240 kHz
  • the number of FFT points N of the transmitting station is configured to be 128, and the number of available subcarriers N
  • Step dl The number of available subcarriers on the OFDM transmission symbol of the transmitting station and/or the broadcast channel is set by the system default configuration
  • Step d2 The sending station sends configuration information indicating the number of available subcarriers on the OFDM transmission symbol indicating the non-synchronization and the broadcast channel to the terminal;
  • Step d3 The terminal learns, according to the control information on the synchronization channel and/or the broadcast channel, the available subcarrier number configuration information on the non-synchronized and broadcast channel OFDM transmission symbols in the system.
  • the method for configuring the number of available subcarriers in each OFDM symbol in a semi-static configuration manner is: Step el: determining a system default configuration of the number of available subcarriers in the OFDM symbol; Step e2: The number of available subcarriers on the OFDM transmission symbol of the synchronization channel and/or the broadcast channel of the transmitting station adopts the default configuration of the system;
  • Step e3 The sending station sends an available subcarrier configuration indication as needed
  • Step e4 If the terminal receives the available subcarrier configuration indication of the sending station, determine, according to the available subcarrier configuration indication, the number of available subcarriers on the unsynchronized and broadcast channel OFDM transmission symbols in the system; if the terminal does not receive the transmission
  • the available subcarrier configuration indication of the station determines that the number of available subcarriers on the non-synchronized and broadcast channel OFDM transmission symbols in the system is the system default configuration.
  • the present invention further provides a device for wireless parameter configuration and signaling, the device comprising:
  • a configuration module is configured to configure a subcarrier spacing Af and a sampling frequency f for the transmitting station. , the number of FFT points N and the number of available subcarriers;
  • a sending module configured to send data or pilot symbols on the configured available subcarriers;
  • the subcarrier spacing Af is an integer multiple of an LTE mobile communication system subcarrier spacing ⁇ ; and the sampling frequency f. It is an integer multiple of the sampling frequency of the WCDMA mobile communication system.
  • the configuration module configures the subcarrier spacing Af to be 2 ⁇ times the LTE mobile communication system subcarrier spacing ⁇ , and ⁇ is an integer greater than 0; the configuration module configures the sampling frequency f. For a WCDMA mobile communication system sampling frequency of 2 k times, k is an integer greater than zero.
  • the configuration module configures the FFT point number N to be greater than or equal to the sampling frequency f.
  • the configuration module configures the number of available subcarriers in each OFDM symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner.
  • the present invention is directed to an indoor and hotspot coverage application scenario, and follows the principle of sharing a crystal oscillator of an LTE mobile communication system in selecting a subcarrier spacing, and configuring a subcarrier spacing as an LTE mobile communication system.
  • An integer multiple of the carrier spacing of the system is an integer multiple of the sampling frequency of the WCDMA mobile communication system, and the FFT points are configured to be a positive integer greater than or equal to the ratio of the sampling frequency to the subcarrier spacing, which reduces the fast Fourier transform algorithm (
  • the implementation cost of the Fast Fourier Transform Algorithm (FFT) greatly reduces the system cost of indoor and hotspot coverage applications, and also improves scheduling efficiency, reduces system overhead, and improves system throughput, thereby further satisfying the demand for data traffic.
  • FFT Fast Fourier Transform Algorithm
  • 1 is a schematic diagram showing the relationship between subcarrier spacing and subcarrier spacing of an LTE mobile communication system according to the present invention
  • FIG. 2 is a schematic diagram showing the relationship between the sampling frequency of the transmitting station and the sampling frequency of the WCDMA mobile communication system according to the present invention
  • FIG. 3 is a schematic diagram of available subcarriers of a method for a fixed station using a fixed available subcarrier according to the present invention
  • FIG. 5 is a schematic diagram of an implementation process of a semi-statically available subcarrier setting method according to the present invention.
  • FIG. 6 is a flow chart of implementing the wireless parameter configuration and signaling method of the present invention. detailed description
  • the present invention is directed to the characteristics of an LTE mobile communication system deployed in indoor and hotspot coverage, and reduces the cost of the system and the terminal hardware, facilitates efficient scheduling, and reduces system overhead from the perspective of reducing equipment cost and reducing system scheduling overhead.
  • Wireless parameter configuration and signaling method For the indoor and hotspot coverage channel environment, the delay spread of the channel is small, and the wireless parameter configuration and signal transmission method proposed by the present invention includes the following main technical features: (1) The transmitting station (or base station) configures the subcarrier spacing to be an integer multiple of the subcarrier spacing of the LTE mobile communication system;
  • the subcarrier spacing of the sending station is set to be 2 n times the subcarrier spacing of the LTE mobile communication system, and n is an integer greater than 0;
  • the sampling station configuration sampling frequency is an integer multiple of the sampling frequency of the WCDMA mobile communication system;
  • the sampling frequency of the transmitting station is configured to be a power of k of the sampling frequency of the WCDMA mobile communication system, and k is an integer greater than 0.
  • the number of FFT points N of the transmitting station is set to be greater than or equal to the sampling frequency f.
  • the number of FFT points N of the transmitting station is set to be greater than or equal to f.
  • the ratio of the ratio of f to the power of 1 is the smallest integer in the integer.
  • the number of available subcarriers in each OFDM (Orthogonal Frequency Division Multiplexing) symbol in the transmitting station is fixed configuration, dynamic configuration, or Semi-static configuration mode;
  • FIG. 3 is a schematic diagram of configuring a number of available subcarriers in each OFDM symbol by a sending station in a fixed configuration manner according to a preferred embodiment of the present invention.
  • the configuration is 30.72 MHz.
  • the subcarrier spacing of the transmitting station is configured to be 240 kHz, so the number of FFT points N of the transmitting station can be determined to be greater than or equal to f.
  • the available subcarriers comprise a DC carrier DC.
  • Subcarriers, the transmitting station leaves 5, 4 or 6 guard subcarriers respectively in the left and right frequency bands.
  • FIG. 4 is a schematic flowchart of a method for configuring a number of available subcarriers in each OFDM symbol by using a dynamic configuration mode in a preferred embodiment of the present invention, and the specific steps are as follows:
  • Step 401 The number of available subcarriers on the OFDM transmission symbol of the synchronization channel and/or the broadcast channel of the transmitting station adopts a system default configuration
  • Step 402 The sending station sends, to the terminal, configuration information of available subcarriers on the OFDM transmission symbols (non-synchronous and broadcast channel transmission symbols) indicating other channels;
  • Step 403 The terminal learns, according to the control information on the synchronization channel and/or the broadcast channel, configuration information of available subcarriers on the OFDM transmission symbols of other channels in the system.
  • FIG. 5 is a schematic flowchart of configuring a number of available subcarriers in each OFDM symbol by using a semi-static configuration manner in a preferred embodiment of the present invention, and the specific steps are as follows:
  • Step 501 Determine a system default configuration of the number of available subcarriers in the OFDM symbol.
  • Step 502 The number of available subcarriers on the OFDM transmission symbol of the synchronization station and/or the broadcast channel of the transmitting station adopts a system default configuration.
  • Step 503 The sending station sends an available subcarrier configuration indication as needed. If the station is other characters The available subcarriers on the number (unsynchronized and broadcast channel transmission symbols) adopt a non-system default configuration, and the transmitting station sends the available subcarrier configuration indication information to the terminal, where the available subcarrier configuration indication information includes the sending station as the terminal configuration. The number of available subcarriers on the OFDM transmission symbol. If the subcarriers on other symbols of the sending station adopt the default configuration, the sending station does not need to send the available subcarrier configuration indication information;
  • Step 504 The terminal determines, according to whether the available subcarrier indication information of the sending station is received, the configured number of available subcarriers of the system. If the terminal receives the available subcarrier configuration indication information of the sending station, determining, according to the available subcarrier configuration indication, the number of available subcarriers on the OFDM transmission symbol on the other channel in the system; if the terminal does not receive the available subcarrier of the transmitting station Configuration directive, the default system uses the default number of available subcarriers.
  • FIG. 6 is a flowchart of a method for wireless parameter configuration and signal transmission provided by the embodiment, where the method includes:
  • Step 601 The sending station configures the subcarrier spacing, the sampling frequency, and the FFT point.
  • Step 602 The number of available subcarriers configured by the sending station
  • the sending station configures the number of available subcarriers in each OFDM symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner.
  • Step 603 The sending station sends data or pilot symbols on the configured available subcarriers.
  • Example 2 The sending station sends data or pilot symbols on the configured available subcarriers.
  • Step 602 A the number of available subcarriers configured by the sending station
  • the sending station configures the number of available subcarriers in each OFDM symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner;
  • Step 603 A The sending station sends data or pilot symbols on the configured available subcarriers.
  • Step 601B the sending station configures the subcarrier spacing, the sampling frequency, and the number of FFT points.
  • the subcarrier spacing of the sending station is configured as LTE mobile.
  • the FFT point number N is configured to be greater than or equal to f. Mf , and N is greater than or equal to f. The smallest integer in the power of 2 of Mf.
  • Step 602 B The number of available subcarriers configured by the sending station
  • the sending station configures the number of available subcarriers in each OFDM symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner;
  • Step 603 B The sending station sends data or pilot symbols on the configured available subcarriers.
  • the present invention further provides a device for wireless parameter configuration and signaling, the device comprising:
  • a configuration module is configured to configure a subcarrier spacing Af and a sampling frequency f for the transmitting station. , the number of FFT points N and the number of available subcarriers;
  • a sending module configured to send data or pilot symbols on the configured available subcarriers;
  • the subcarrier spacing is an integer multiple of an LTE mobile communication system subcarrier spacing;
  • the sampling frequency f It is an integer multiple of the sampling frequency of the WCDMA mobile communication system.
  • the configuration module configures a subcarrier spacing to be 2 ⁇ times the subcarrier spacing of the LTE mobile communication system, and ⁇ is an integer greater than 0;
  • the configuration module configures a sampling frequency f.
  • k is an integer greater than zero.
  • the configuration module configures the FFT point number N to be greater than or equal to the sampling frequency f.
  • the configuration module configures the number of available subcarriers in each OFDM symbol in a fixed configuration manner, a dynamic configuration manner, or a semi-static configuration manner.
  • the function module or the functional unit included in the device is designed to implement the step process in the foregoing method embodiment, and the functions thereof can be directly from the step process of the foregoing method embodiment.
  • the function module or the execution unit that can be extracted or derived from the above method embodiment should be within the protection scope of the system embodiment of the present invention. To save space, no further details are provided herein.
  • the advantages of the present invention are that, for indoor and hotspot coverage application scenarios, the implementation cost of the system is reduced by properly configuring wireless parameters such as subcarrier spacing; the wireless parameter configuration is advantageous for efficient scheduling and reducing system overhead, and further improving the system. Throughput, to meet the needs of data traffic.
  • wireless parameters such as subcarrier spacing
  • the wireless parameter configuration is advantageous for efficient scheduling and reducing system overhead, and further improving the system.
  • Throughput to meet the needs of data traffic.
  • the present invention is directed to an indoor and hotspot coverage application scenario, by appropriately configuring radio parameters such as subcarrier spacing, reducing system implementation cost, improving scheduling efficiency and reducing system overhead through reasonable wireless parameter configuration, thereby improving system throughput to meet The demand for data traffic.
  • radio parameters such as subcarrier spacing, reducing system implementation cost, improving scheduling efficiency and reducing system overhead through reasonable wireless parameter configuration, thereby improving system throughput to meet The demand for data traffic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线参数配置和信号发送的方法及装置,用于解决针对室内、热点覆盖的应用场景,由于无线参数选择及信号发送方法不适合该场景的无线数据传输,导致***成本过高、开销过大的问题。本发明针对室内、热点覆盖的应用场景,在子载波间隔的选择上遵循共用LTE移动通信***晶振的原则,将子载波间隔配置为LTE移动通信***子载波间隔的整数倍,将采样频率为WCDMA移动通信***采样频率的整数倍,将FFT点数配置为大于或等于采样频率与子载波间隔的比值的正整数,降低了快速傅氏变换算法FFT的实现成本,降低了室内、热点覆盖应用的***成本,同时还能够提高调度效率,降低***开销,提高***的吞吐量。

Description

一种无线参数配置和信号发送的方法及装置 技术领域
本发明涉及数字通信领域, 特别是涉及 LTE ( Long Term Evolution, 长 期演进) ***室内、 热点覆盖演进的无线参数配置和信号发送的方法及装 置。 背景技术
随着移动互联网 (Mobile Internet )和智能手机的普及, 移动数据流量 需求飞速增长。 根据权威机构预测, 未来十年内 (2011-2020 年), 移动数 据业务量还将每年翻一番, 十年将增长一千倍。
运营商网络中数据业务比例逐渐增加, 影响了传统电信级业务, 但是, 由于数据业务按照流量计费, 其盈利增长速度和流量负载不成正比。 此外, 快速增长的数据业务对移动通信网络的传输能力提出了严峻挑战。 大部分 的移动数据业务主要发生在室内和热点环境, 体现为游牧 /本地无线接入场 景。 据统计, 目前移动数据业务量的近 70%发生在室内, 而且这一比例还 将继续增长, 预计到 2012年将会超过 80%。 运营商迫切需要高速率室内、 热点覆盖的解决方案。
室内和热点数据业务特征为用户通常为固定或者非常低速移动, 对移 动性要求不高;另一方面,数据业务主要为互联网业务,对服务质量( Quality of Serveice, QoS ) 的要求比较单一, 且远低于电信级业务对 QoS的要求。 传统的蜂窝移动通信***主要面向的是高速移动, 无缝切换的电信级业务 设计, 当其承载大流量低速 IP (互联网协议)数据包业务时, 效率偏低, 成本过高。
综上所述, 蜂窝移动运营商需要低成本, 适合游牧 /本地无线数据接入 的解决方案, 在降低设备成本的前提下进一步降低和优化原有***的开销, 以进一步提高***的吞吐量、 满足高速发展的数据用户的需求。 发明内容
有鉴于此, 本发明的主要目的在于提供一种无线参数配置和信号发送 的方法及装置, 用于解决现有协议中, 针对室内、 热点覆盖的应用场景, 由于无线参数选择及信号发送方法不适合该场景的无线数据传输, 导致系 统成本过高、 ***开销过大的技术问题。
为达到上述目的, 本发明的技术方案是这样实现的:
一种无线参数配置和信号发送的方法, 该方法包括:
步驟 Α、发送站配置子载波间隔 、采样频率 f。以及快速傅里叶( FFT ) 点数 N, 所述发送站配置子载波间隔 为长期演进(LTE )移动通信*** 子载波间隔 Δί的整数倍;
步驟 Β、 发送站配置可用子载波个数;
步驟 C、 发送站在配置的可用子载波上发送数据或导频符号。
进一步地, 所述发送站配置子载波间隔 Af为 LTE移动通信***子载波 间隔 的整数倍具体为:发送站配置子载波间隔 Af为 LTE移动通信***子 载波间隔 的 2n倍, n为大于 0的整数。
优选地, 所述发送站配置子载波间隔 Af为 LTE移动通信***子载波间 隔 的 16倍, Af具体为 240千赫兹。 进一步地, 所述发送站配置采样频率 f。的方法为:
发送站配置采样频率 f。为宽带码分多址移动通信***( WCDMA )移动 通信***采样频率的整数倍, 优选地, 发送站配置采样频率 f。为 WCDMA 移动通信***采样频率的 2k倍, k为大于 0的整数; 具体地, 所述发送站 配置采样频率 f。为 WCDMA移动通信***采样频率的 8倍, f。具体为 30.72 兆赫兹。 进一步地, 所述发送站配置 FFT点数 N的方法为:
发送站配置 FFT点数 N为大于或等于采样频率 f。与子载波间隔 Af的比 值的正整数。 优选地, 发送站配置 FFT点数 N为大于等于采样频率 f。与子 载波间隔 Af的比值的 2的幂次方倍的整数中的最小整数。 进一步地, 所述发送站配置可用子载波个数的方法为;
所述发送站采用固定配置方式、 动态配置方式或半静态配置方式配置 每个正交频分复用 (OFDM )符号中可用子载波个数。
所述采用固定配置方式配置每个 OFDM符号中可用子载波个数的方法 为: 当***带宽为 20兆赫兹, 发送站的采样频率 f。配置为 30.72兆赫兹, 发送站的子载波间隔 Af配置为 240千赫兹时,所述发送站的 FFT点数 N配 置为 128, 可用子载波个数 Nused优选为 73、 75或 71中的任一种。
所述采用动态配置方式配置每个 OFDM符号中可用子载波个数的方法 为:
步驟 dl、 发送站在同步信道和 /或广播信道的 OFDM发送符号上的可 用子载波个数采用***缺省配置;
步驟 d2、发送站发送指示非同步和广播信道 OFDM发送符号上的可用 子载波个数配置信息给终端;
步驟 d3、 终端根据同步信道和 /或广播信道上的控制信息获知***中非 同步和广播信道 OFDM发送符号上的可用子载波个数配置信息。
所述采用半静态配置方式配置每个 OFDM符号中可用子载波个数的方 法为: 步驟 el、 确定 OFDM符号中可用子载波个数的***缺省配置; 步驟 e2、发送站在同步信道和 /或广播信道的 OFDM发送符号上的可用 子载波个数采用所述***缺省配置;
步驟 e3、 发送站根据需要发送可用子载波配置指示;
步驟 e4、 若终端若接收到发送站的可用子载波配置指示, 则根据可用 子载波配置指示确定***中非同步和广播信道 OFDM发送符号上的可用子 载波个数配置; 若终端未接收到发送站的可用子载波配置指示, 则确定系 统中非同步和广播信道 OFDM发送符号上的可用子载波个数为所述***缺 省配置。
基于本发明实施例, 本发明还提出一种无线参数配置和信号发送的装 置, 该装置包括:
配置模块, 用于为发送站配置子载波间隔 Af、采样频率 f。、 FFT点数 N 及可用子载波个数;
发送模块, 用于在配置的可用子载波上发送数据或导频符号; 所述子载波间隔 Af为 LTE移动通信***子载波间隔 Δί的整数倍;所述 采样频率 f。为 WCDMA移动通信***采样频率的整数倍。
进一步地, 所述配置模块配置子载波间隔 Af为 LTE移动通信***子载 波间隔 Δί的 2η倍, η 为大于 0 的整数; 所述配置模块配置采样频率 f。为 WCDMA移动通信***采样频率的 2k倍, k为大于 0的整数。
进一步地, 所述配置模块配置 FFT点数 N为大于等于采样频率 f。与子 载波间隔 Af的比值的 2的幂次方倍的整数中的最小整数。
进一步地, 所述配置模块采用固定配置方式、 动态配置方式或半静态 配置方式配置每个 OFDM符号中可用子载波个数。
本发明针对室内、 热点覆盖的应用场景, 在子载波间隔的选择上遵循 共用 LTE移动通信***晶振的原则, 将子载波间隔配置为 LTE移动通信系 统子载波间隔的整数倍, 将采样频率为 WCDMA移动通信***采样频率的 整数倍, 将 FFT点数配置为大于或等于采样频率与子载波间隔的比值的正 整数, 降低了快速傅氏变换算法(Fast Fourier Transform Algorithm, FFT ) 的实现成本, 进而大大降低了室内、 热点覆盖应用的***成本, 同时还能 够提高调度效率, 降低***开销, 提高***的吞吐量, 从而进一步满足数 据业务量的需求。 附图说明
图 1是本发明所述子载波间隔与 LTE移动通信***子载波间隔的关系 示意图;
图 2是本发明所述的发送站的采样频率与 WCDMA移动通信***采样 频率的关系示意图;
图 3是本发明所述的发送站采用固定可用子载波方法的可用子载波示 意图;
图 4是本发明所述动态可用子载波设置方法的实现过程;
图 5是本发明所述半静态可用子载波设置方法的实现过程;
图 6是本发明所述无线参数配置和信号发送方法实现流程。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
本发明针对 LTE移动通信***在室内、热点覆盖部署应用场景的特点, 从降低设备成本、 降低***调度开销的角度出发, 提供一种能降低***和 终端硬件成本、 有利于高效调度并降低***开销的无线参数配置和信号发 送的方法。 针对室内、 热点覆盖信道环境, 信道的延迟扩展很小的特点, 本发明提出的无线参数配置和信号发送方法包含以下主要技术特征: ( 1 )发送站(或称基站)配置子载波间隔为 LTE移动通信***子载波 间隔的整数倍;
优选地, 本发明实施例中, 发送站的子载波间隔设置为 LTE移动通信 ***的子载波间隔的 2n倍, n为大于 0的整数;
图 1为本发明一优选实施例发送站的子载波间隔 102与 LTE移动通信 ***子载波间隔 101的关系示意图, 该实施例中发送站的子载波间隔 Af设 置为 LTE移动通信***子载波间隔 Δί的 2n倍, 即 Δί = 2η * Δί , 其中 Δί =15 千赫兹( kHz, ) n=4, 即发送站的子载波间隔为 Af = 24 * 15kHz=240kHz。 ( 2 )发送站配置采样频率为 WCDMA移动通信***采样频率的整数 倍;
优选地, 本发明实施例中, 发送站的采样频率配置为 WCDMA移动通 信***采样频率的 2的 k次幂倍, k为大于 0的整数。
图 2为本发明一优选实施例发送站的采样频率与 WCDMA移动通信系 统采样频率的关系示意图。 该实施例中, 发送站的采样频率 f。设置为 WCDMA 移动通信***采样频率的 3.84MHz 的整数倍, 优选设置为 WCDMA移动通信***采样频率的 2k倍, 其中 k=3 , 则发送站的采样频率 fc =30.72 兆赫兹(MHz )。 ( 3 )发送站的 FFT点数 N设置为大于或等于采样频率 f。与子载波间隔
Af的比值的正整数;
优选地,发送站的 FFT点数 N设置为大于等于 f。 f的比值的 1的幂次 方倍的整数中的最小整数。
( 4 )发送站中每个 OFDM (Orthogonal Frequency Division Multiplexing, 正交频分复用)符号中可用子载波个数采用固定配置方式、 动态配置方式或 半静态配置方式;
图 3 为本发明一优选实施例中发送站采用固定配置方式配置每个 OFDM符号中可用子载波个数的示意图。 以 20M带宽***为例, 发送站的 采样频率 f。配置为 30.72MHz, 对于 20M Hz的连续带宽***, 发送站的子 载波间隔 配置为 240kHz, 因此发送站的 FFT点数 N可确定为大于等于 f。Mf的 2的幂次方中的最小整数, 即采用 N=128的 FFT变换,可用子载波 个数 Nused优选为 73 (如图 3 ( a ) )、 75 (如图 3 ( b ) )或 71 (如图 3 ( c ) ) 中的一种。 所述可用子载波包含直流载波 DC。 对于 Nused=73、 75或 71的 可用子载波,发送站在左边频带和右边频带的可用子载波个数分别为 36个、 37个或 35个, 对于 Nused=73、 75或 71的可用子载波, 发送站在左边频带 和右边频带分别留有 5个、 4个或 6个保护子载波。
图 4 为本发明一优选实施例中发送站采用动态配置方式配置每个 OFDM符号中可用子载波个数的流程示意图, 具体步驟如下:
步驟 401、 发送站在同步信道和 /或广播信道的 OFDM发送符号上的可 用子载波个数采用***缺省配置;
步驟 402、 发送站发送指示其他信道的 OFDM发送符号 (非同步和广 播信道发送符号 )上的可用子载波个数配置信息给终端;
步驟 403、 终端根据同步信道和 /或广播信道上的控制信息获知***中 其他信道 OFDM发送符号上的可用子载波个数配置信息。
图 5 为本发明一优选实施例中发送站采用半静态配置方式配置每个 OFDM符号中可用子载波个数的流程示意图, 具体步驟如下:
步驟 501、 确定 OFDM符号中可用子载波个数的***缺省配置; 步驟 502、 发送站在同步信道和 /或广播信道的 OFDM发送符号上的可 用子载波个数采用***缺省配置;
步驟 503、发送站根据需要发送可用子载波配置指示。 若发送站其他符 号 (非同步和广播信道发送符号)上的可用子载波采用非***缺省配置, 则发送站发送可用子载波配置指示信息给终端, 所述可用子载波配置指示 信息中包含发送站为终端配置的 OFDM发送符号上可用子载波个数。 若发 送站其他符号上的子载波采用缺省配置, 则发送站不需发送可用子载波配 置指示信息;
步驟 504、终端根据是否接收到发送站的可用子载波指示信息来确定系 统的可用子载波个数配置。 终端若接收到发送站的可用子载波配置指示信 息, 则根据可用子载波配置指示确定***中其他信道上 OFDM发送符号上 的可用子载波个数配置; 若终端未接收到发送站的可用子载波配置指示, 默认***采用缺省的可用子载波个数配置。
实施例 1
图 6为该实施例提供的一种无线参数配置和信号发送的方法的流程图, 该方法包括:
步驟 601、 发送站配置子载波间隔、 采样频率以及 FFT点数; 该实施例中, 发送站的子载波间隔 设置为 LTE移动通信***的子载 波间隔 的整数倍, 优选地可配置为 2的 η次幂倍, η为大于 0的整数; 具体配置可如下: 当 Af =15kHz 时, 配置 n=4, 即发送站的子载波间隔为 Af = 24 *15kHz=240kHz。
步驟 602、 发送站配置可用子载波个数;
该实施例中, 发送站采用固定配置方式、 动态配置方式或半静态配置 方式配置每个 OFDM符号中可用子载波个数;
步驟 603、 发送站在配置的可用子载波上发送数据或导频符号。 实施例 2
该实施例提供的一种无线参数配置和信号发送的方法的流程如下: 步驟 601A、 发送站配置子载波间隔、 采样频率以及 FFT点数; 该实施例中, 发送站的采样频率 f。配置为 WCDMA移动通信***采样 频率的整数倍, 优选地可配置为 2的 k次幂倍, k为大于 0的整数; 具体配 置可如下: 当 WCDMA移动通信***采样频率为 3.84MHz, 配置 k=3 , 则 发送站的采样频率 f。 =3.84MHz *23=30.72 MHz。
步驟 602 A、 发送站配置可用子载波个数;
优选地, 发送站采用固定配置方式、 动态配置方式或半静态配置方式 配置每个 OFDM符号中可用子载波个数;
步驟 603 A、 发送站在配置的可用子载波上发送数据或导频符号。 实施例 3
该实施例提供的一种无线参数配置和信号发送的方法的流程如下: 步驟 601B、 发送站配置子载波间隔、 采样频率以及 FFT点数; 该实施例中, 发送站的子载波间隔 配置为 LTE移动通信***的子载 波间 隔 的 24 倍, =15kHz 时, 发送站的子载波间 隔为
Af = 24 *15kHz=240kHz。
该实施例中, 发送站的采样频率 f。配置为 WCDMA移动通信***采样 频率 3.84MHz的 23倍, 即发送站的采样频率 f。 =3.84MHz *23=30.72 MHz。
基于子载波间隔 和采样频率 f。的配置, 所述 FFT点数 N配置为大于 等于 f。Mf , 且 N为大于等于 f。Mf的 2的幂次方中的最小整数。
步驟 602 B、 发送站配置可用子载波个数;
优选地, 发送站采用固定配置方式、 动态配置方式或半静态配置方式 配置每个 OFDM符号中可用子载波个数;
步驟 603 B、 发送站在配置的可用子载波上发送数据或导频符号。 实施例 4
基于上述方法实施例, 本发明还提出一种无线参数配置和信号发送的 装置, 该装置包括:
配置模块, 用于为发送站配置子载波间隔 Af、采样频率 f。、 FFT点数 N 及可用子载波个数;
发送模块, 用于在配置的可用子载波上发送数据或导频符号; 所述子载波间隔 为 LTE移动通信***子载波间隔 的整数倍;所述 采样频率 f。为 WCDMA移动通信***采样频率的整数倍。
优选地, 所述配置模块配置子载波间隔 为 LTE移动通信***子载波 间隔 的 2η倍, η为大于 0的整数;
优选地, 所述配置模块配置采样频率 f。为 WCDMA移动通信***采样 频率的 2k倍, k为大于 0的整数。
优选地, 所述配置模块配置 FFT点数 N为大于等于采样频率 f。与子载 波间隔 的比值的 2的幂次方倍的整数中的最小整数。
优选地, 所述配置模块采用固定配置方式、 动态配置方式或半静态配 置方式配置每个 OFDM符号中可用子载波个数。
由于该装置实施例基于上述方法实施例, 因此该装置所包含的功能模 块或功能单元都是为实现上述方法实施例中的步驟流程而设, 其功能都可 直接从上述方法实施例的步驟流程中导出, 任何能从上述方法实施例中提 取或导出的功能模块或执行单元都应当属于本发明***实施例的保护范围 之内, 为节省篇幅, 此处不再赘述。
本发明的优点是针对室内、 热点覆盖的应用场景, 通过合理配置子载 波间隔等无线参数, 降低了***的实现成本; 所述的无线参数配置有利于 高效调度并降低***开销, 进一步提高***的吞吐量, 以满足数据业务量 的需求。 当然, 本发明还可有其它多种实施例, 在不背离本发明精神及其实质 的情况下, 熟悉本领域的技术人员当可根据本发明作出各种相应的改变和 变形, 但这些相应的改变和变形都应属于本发明所附的权利要求的保护范 围。 工业实用性
本发明针对室内、 热点覆盖的应用场景, 通过合理配置子载波间隔等 无线参数, 降低***的实现成本, 通过合理的无线参数配置提高调度效率 并降低***开销, 从而提高***的吞吐量, 以满足数据业务量的需求。

Claims

权利要求书
1、 一种无线参数配置和信号发送的方法, 该方法包括:
发送站配置子载波间隔 Af、 采样频率 f。以及快速傅里叶 FFT点数 N, 所述发送站配置子载波间隔 为长期演进 LTE移动通信***子载波间隔 Δί的整数倍;
发送站配置可用子载波个数;
发送站在配置的可用子载波上发送数据或导频符号。
2、 根据权利要求 1所述的方法, 其中, 所述发送站配置采样频率 f。的 方法为:
发送站配置采样频率 f。为宽带码分多址移动通信*** WCDMA移动通 信***采样频率的整数倍。
3、 根据权利要求 1所述的方法, 其中, 所述发送站配置子载波间隔 为 LTE移动通信***子载波间隔 的整数倍具体为:
发送站配置子载波间隔 为 LTE移动通信***子载波间隔 Δί的 2η倍, η为大于 0的整数。
4、 根据权利要求 3所述的方法, 其中, 所述发送站配置子载波间隔 为 LTE移动通信***子载波间隔 的 16倍, 具体为 240千赫兹。
5、 根据权利要求 2所述的方法, 其中, 所述发送站配置采样频率 f。为 WCDMA移动通信***采样频率的整数倍具体为:
发送站配置采样频率 f。为 WCDMA移动通信***采样频率的 2k倍, k 为大于 0的整数。
6、 根据权利要求 5所述的方法, 其中, 所述发送站配置采样频率 f。为 WCDMA移动通信***采样频率的 8倍, f。具体为 30.72兆赫兹。
7、 根据权利要求 1 所述的方法, 其中, 所述发送站配置 FFT点数 N 的方法为:
发送站配置 FFT点数 N为大于或等于采样频率 f。与子载波间隔 的比 值的正整数。
8、 根据权利要求 7所述的方法, 其中, 所述发送站配置 FFT点数 N 为大于或等于采样频率 fc与子载波间隔 的比值的正整数具体为:
发送站配置 FFT点数 N为大于等于采样频率 fc与子载波间隔 的比值 的 2的幂次方倍的整数中的最小整数。
9、 根据权利要求 1所述的方法, 其中, 所述发送站配置可用子载波个 数的方法为;
所述发送站采用固定配置方式、 动态配置方式或半静态配置方式配置 每个正交频分复用 OFDM符号中可用子载波个数。
10、 根据权利要求 9所述的方法, 其中, 所述发送站采用固定配置方 式配置每个 OFDM符号中可用子载波个数的方法为:
当***带宽为 20兆赫兹, 发送站的采样频率 f。配置为 30.72兆赫兹, 发送站的子载波间隔 配置为 240千赫兹时,所述发送站的 FFT点数 N配 置为 128, 可用子载波个数 Nused优选为 73、 75或 71中的任一种。
11、 根据权利要求 9所述的方法, 其中, 所述发送站采用动态配置方 式配置每个 OFDM符号中可用子载波个数的方法为:
发送站在同步信道和 /或广播信道的 OFDM发送符号上的可用子载波 个数采用***缺省配置;
发送站发送指示非同步和广播信道 OFDM发送符号上的可用子载波个 数配置信息给终端;
终端根据同步信道和 /或广播信道上的控制信息获知***中非同步和广 播信道 OFDM发送符号上的可用子载波个数配置信息。
12、 根据权利要求 9所述的方法, 其中, 所述发送站采用半静态配置 方式配置每个 OFDM符号中可用子载波个数的方法为:
确定 OFDM符号中可用子载波个数的***缺省配置;
发送站在同步信道和 /或广播信道的 OFDM发送符号上的可用子载波 个数采用所述***缺省配置;
发送站根据需要发送可用子载波配置指示;
若终端若接收到发送站的可用子载波配置指示, 则根据可用子载波配 置指示确定***中非同步和广播信道 OFDM发送符号上的可用子载波个数 配置; 若终端未接收到发送站的可用子载波配置指示, 则确定***中非同 步和广播信道 OFDM发送符号上的可用子载波个数为所述***缺省配置。
13、 一种无线参数配置和信号发送的装置, 该装置包括:
配置模块, 用于为发送站配置子载波间隔 Af、采样频率 f。、 FFT点数 N 及可用子载波个数;
发送模块, 用于在配置的可用子载波上发送数据或导频符号; 所述子载波间隔 配置为 LTE移动通信***子载波间隔 的整数倍; 所述采样频率 f。配置为 WCDMA移动通信***采样频率的整数倍。
14、 根据权利要求 13所述的装置, 其中, 所述配置模块配置子载波间 隔 为 LTE移动通信***子载波间隔 Δί的 2η倍, η为大于 0的整数;
所述配置模块配置采样频率 f。为 WCDMA移动通信***采样频率的 2k 倍, k为大于 0的整数。
15、根据权利要求 13或 14所述的装置, 其中, 所述配置模块配置 FFT 点数 N为大于等于采样频率 f。与子载波间隔 的比值的 2的幂次方倍的整 数中的最小整数。
16、 根据权利要求 13所述的装置, 其中, 所述配置模块采用固定配置 方式、 动态配置方式或半静态配置方式配置每个 OFDM符号中可用子载波 个数。
PCT/CN2012/071101 2011-04-11 2012-02-14 一种无线参数配置和信号发送的方法及装置 WO2012139433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110089904.2 2011-04-11
CN2011100899042A CN102740375A (zh) 2011-04-11 2011-04-11 一种无线参数配置和信号发送的方法及装置

Publications (1)

Publication Number Publication Date
WO2012139433A1 true WO2012139433A1 (zh) 2012-10-18

Family

ID=46994958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071101 WO2012139433A1 (zh) 2011-04-11 2012-02-14 一种无线参数配置和信号发送的方法及装置

Country Status (2)

Country Link
CN (1) CN102740375A (zh)
WO (1) WO2012139433A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283663A (zh) * 2014-10-24 2015-01-14 国家电网公司 一种230频段中fdd-lte窄带化及采样频率降低的方法
KR102063193B1 (ko) 2015-01-26 2020-01-07 후아웨이 테크놀러지 컴퍼니 리미티드 직교 주파수 분할 다중화(ofdm) 프레임 포맷을 통신하는 시스템 및 방법
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
CN109565484B (zh) * 2016-08-10 2021-02-09 华为技术有限公司 用于支持不同子载波间隔的新无线载波的公共同步信号
CN109565740B (zh) * 2016-08-10 2020-09-11 华为技术有限公司 信号传输方法、装置和***
CN107889236A (zh) 2016-09-29 2018-04-06 华为技术有限公司 参数确定方法、基站及用户设备
CN107888356B (zh) * 2016-09-30 2021-05-07 华为技术有限公司 设置符号的方法和装置
CN106455081B (zh) * 2016-10-31 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源配置方法及资源配置装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867425A (zh) * 2010-07-08 2010-10-20 华中科技大学 用于非连续ofdm动态频谱接入的可用子载波检测同步方法
CN101895492A (zh) * 2010-08-04 2010-11-24 电子科技大学 一种单载波频域均衡技术的过采样接收方法
CN101904125A (zh) * 2007-11-09 2010-12-01 中兴通讯美国公司 用于通信***的灵活的ofdm/ofdma帧结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904125A (zh) * 2007-11-09 2010-12-01 中兴通讯美国公司 用于通信***的灵活的ofdm/ofdma帧结构
CN101867425A (zh) * 2010-07-08 2010-10-20 华中科技大学 用于非连续ofdm动态频谱接入的可用子载波检测同步方法
CN101895492A (zh) * 2010-08-04 2010-11-24 电子科技大学 一种单载波频域均衡技术的过采样接收方法

Also Published As

Publication number Publication date
CN102740375A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
TWI721287B (zh) 用於管理頻寬部分中的探測參考信號(srs)傳輸的技術和裝置
WO2012139433A1 (zh) 一种无线参数配置和信号发送的方法及装置
US10660093B2 (en) Base station and method for controlling radio resources allocation
US9854580B2 (en) Efficient resource allocation
US9001918B2 (en) Communication method and apparatus in a wireless communication system supporting multiple OFDM parameters sets
US8964676B2 (en) Method and apparatus for transmitting system information in a mobile communication system
KR101079387B1 (ko) Ofdm 통신 환경에서 업링크 액세스 요청
TWI771343B (zh) 信息發送方法、信息接收方法、裝置及系統
JP2018510589A (ja) 動作帯域幅拡張のための波形設計のシステムおよび方法
WO2012139473A1 (zh) 一种无线帧参数配置和信号发送的方法及装置
CN104854801A (zh) 配置用户设备的无线帧的方法、用户设备、配置基站的无线帧的方法和基站
JP6828808B2 (ja) 5g無線通信システムにおける適応無線アクセス技術を実現するためのシステム及び方法
WO2013079034A1 (zh) 下行数据发送、接收方法及基站与用户终端
EP3381232A1 (en) Method and system for multi-protocol transmissions
WO2012119368A1 (zh) 一种导频的发送方法及***
EP2941831A1 (en) Methods and arrangements to compress identification
WO2017167264A1 (zh) 信息的传输方法及设备
CN104918305B (zh) 基于参数促进互通和网络选择
WO2012151948A1 (zh) 无线通信***中数据的发送方法和装置
US20200235971A1 (en) Intra-packet rate adaptation for high capacity
WO2013004149A1 (zh) 一种传输数据的方法和设备
WO2013033361A1 (en) Systems and methods for optimizing wireless transmission data rates
CN102790736B (zh) 一种基于正交频分复用技术的数据发送、接收方法及装置
WO2012155680A1 (zh) 一种通信***中转换间隔的配置方法及装置
CN102857463B (zh) 一种传输数据的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12770791

Country of ref document: EP

Kind code of ref document: A1