WO2012138050A2 - Ground radiator using capacitor and ground antenna - Google Patents

Ground radiator using capacitor and ground antenna Download PDF

Info

Publication number
WO2012138050A2
WO2012138050A2 PCT/KR2012/001027 KR2012001027W WO2012138050A2 WO 2012138050 A2 WO2012138050 A2 WO 2012138050A2 KR 2012001027 W KR2012001027 W KR 2012001027W WO 2012138050 A2 WO2012138050 A2 WO 2012138050A2
Authority
WO
WIPO (PCT)
Prior art keywords
ground
antenna
radiator
circuit
substrate
Prior art date
Application number
PCT/KR2012/001027
Other languages
French (fr)
Korean (ko)
Other versions
WO2012138050A3 (en
Inventor
장현민
최형철
이동렬
류양
이형진
유재규
Original Assignee
라디나 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110031913A external-priority patent/KR101740061B1/en
Priority claimed from KR1020110113754A external-priority patent/KR101862870B1/en
Application filed by 라디나 주식회사 filed Critical 라디나 주식회사
Priority to CN201280016814.3A priority Critical patent/CN103460505B/en
Publication of WO2012138050A2 publication Critical patent/WO2012138050A2/en
Publication of WO2012138050A3 publication Critical patent/WO2012138050A3/en
Priority to US14/047,008 priority patent/US9570800B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to a ground radiator constituting the ground radiating antenna, and more particularly, to a ground radiator that can significantly simplify the structure of the ground radiating antenna.
  • An antenna is a device that receives an RF signal from the inside of a terminal or transmits a signal inside the terminal to an outside, and is an essential device for wireless communication.
  • the mobile communication terminal becomes smaller and lighter, it is required to further slim the antenna.
  • a better performance antenna is required.
  • Proposed by this necessity is an antenna using the ground radiation of the terminal itself. That is, when the antenna is configured using the ground of the terminal itself as part of the radiator, the size of the radiator occupying the largest space in the antenna can be reduced, which can greatly contribute to miniaturization of the antenna.
  • European Patent No. 1962372 is a prior art relating to a ground radiation antenna using the ground of the terminal itself as a radiator.
  • This patent is a technology for designing an antenna using the ground of the terminal when the body of the terminal is composed of two sub-bodies separated from each other like a folder type, and each body is connected by an electrical element such as an FPCB. Presenting.
  • a capacitor for tuning the resonance frequency is inserted between the two sub bodies on a conductor for inductive coupling.
  • such an antenna can be used only for a terminal having two sub-bodies (for example, a foldable terminal), and the structure is simple because the length of the conductor for inductive coupling is fixed. Without this, there is a problem in that the range of applicable devices is also limited.
  • the ground radiation antenna 10 according to the related art has a radiation structure 11 to assist ground radiation as shown in FIG. 1.
  • the radiating structure 11 is a complex structure consisting of a dielectric and a conductive wire, which requires a high cost and a complicated manufacturing process.
  • the ground radiation antenna is composed of an inductor and a capacitor for impedance matching and radiation performance control in addition to the radiation structure 11 (12a, 12b, 12c).
  • the ground radiation antenna according to the prior art uses the ground as a radiator, it still has to have a separate radiation structure of a complex structure, there is a problem that the cost is accompanied to implement such a radiation structure.
  • the radiator structure of the antenna becomes more complicated, there is a limit in making the terminal slimmer.
  • the ground radiation antenna according to the prior art does not understand the essential phenomena of the ground radiation, there is a problem that not only increases the cost, but also the manufacturing process is complicated by using an unnecessarily complicated structure to realize the ground radiation.
  • the present invention eliminates the radiating structure having a complicated structure and implements the ground radiator with only simpler components, thereby simplifying the manufacturing process, making the antenna slimmer, and significantly reducing the manufacturing cost of the ground radiating antenna. There is a purpose.
  • the present invention utilizes the capacitance of the capacitor and the inductance of the ground to provide a ground radiator with a significantly simplified structure.
  • the present invention provides a ground radiator, which operates using only a capacitive element, without a separate radiating structure.
  • the present invention provides a ground radiator having excellent radiation performance even when one surface of the mobile communication terminal is covered with a conductive material by separating at least a portion of the radiator component circuit from the ground substrate by a predetermined distance.
  • FIG. 1 is a block diagram showing a ground radiation antenna according to the prior art.
  • FIG. 2 shows an embodiment of a ground radiator according to the invention.
  • FIG 3 shows an embodiment of a ground radiator according to the invention.
  • FIG. 4 shows an embodiment of a ground radiator according to the invention.
  • Figure 5 shows the current distribution according to the frequency fed to the ground radiator.
  • FIG. 6 illustrates an embodiment of a ground antenna in which the ground radiator according to the present invention is integrated with a power feeding circuit.
  • FIG 7 shows an antenna using an antenna radiator according to the present invention.
  • FIG. 8 illustrates an embodiment of a ground antenna in which the ground radiator and the power supply circuit are separately configured according to the present invention.
  • FIG 9 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • FIG. 10 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • 11 is an embodiment using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • FIG. 12 is an embodiment using an antenna radiator according to the present invention, in which a dielectric part is provided in a part of a clearance region.
  • FIG. 13 is an embodiment of an antenna using an antenna radiator according to the present invention, in which part of the radiator configuration circuit is implemented on a plane different from ground.
  • FIG. 14 is an embodiment of the antenna using the antenna radiator according to the present invention, a part of the radiator is implemented by protruding out of the clearance region.
  • FIG. 15 is a graph comparing performance of the antenna shown in FIG. 7 and the antenna shown in FIG. 9.
  • FIG. 16 is a diagram illustrating an inside of a mobile communication terminal in which a radiator configuration circuit of a ground radiation antenna according to the present invention is installed.
  • FIG 17 shows an embodiment of a ground radiation antenna according to the present invention.
  • FIG. 18 shows an embodiment of a ground radiation antenna according to the present invention.
  • FIG 19 shows an embodiment of a ground radiation antenna according to the present invention.
  • FIG. 20 shows an embodiment of a ground radiation antenna according to the present invention.
  • FIG. 21 shows an embodiment of a ground radiation antenna according to the present invention.
  • the antenna radiator according to the present invention comprises an antenna radiator for radiating an RF signal using the ground of the device, comprising a ground formed on a substrate of the device, a capacitor and a conductive line directly connecting the ground and the capacitor, A portion of the capacitor or the conductive line is preferably spaced apart from the ground plane.
  • the ground radiation antenna according to the present invention is formed of a conductive line, at least one end of both ends of the conductive line is connected to the ground substrate, at least a portion of the conductive line protrudes from the ground substrate on a plane different from the ground substrate It is preferably formed of a radiator component circuit and a conductive line to be formed, including a feed point receiving an RF signal to be radiated, and at least a part of the feeder circuit formed on a substrate.
  • the present invention has been derived from the conventional ground radiation antenna while focusing on the essential principle of the ground radiation structure to cause the ground radiation during the study to implement a ground radiator having a simpler structure and excellent radiation performance.
  • an effort was made to improve radiation performance by separately implementing a radiation structure for ground radiation and changing the shape or structure of the radiation structure. That is, an effort has been made to implement a radiator by combining a capacitor, an inductor, a structure having an inductance component and a capacitance component.
  • the applicant has found that by using the inductance component of the ground, it is possible to make a ground radiation structure having excellent radiation performance by connecting only a capacitor to the ground, without a separate complicated structure.
  • an inductor having an inductance property In order to function as a radiating structure of an antenna, in addition to a capacitor having a capacitance property, an inductor having an inductance property must exist to generate resonance. It has been found that only the capacitor and ground can perform the function of the radiating structure.
  • the ground radiators according to the related art do not use the inductance component of the ground efficiently, and try to cause resonance by constructing complicated structures having not only the capacitance component but also the inductance component.
  • the present invention by effectively using the inductance of the ground itself, it is possible to induce resonance by only a simple structure connecting the capacitor and the ground.
  • the inductance component of the ground means an inductance including both the inductance of the ground and the conductive wire.
  • the capacitor may be a capacitor having a structure formed on the ground substrate, but it is more preferable to use a chip capacitor.
  • FIG. 2 shows an embodiment of a ground radiator according to the invention.
  • the ground radiator according to the first exemplary embodiment of the present invention includes a ground region 20, a first line 22 connecting the ground region 20 and the capacitor 23, and a capacitor ( 23 and a second line 24 connecting the ground region 20 and the capacitor 23.
  • the first line 22, the second line 24, and the capacitor 23 are formed in the clearance area 200, and the clearance refers to an area where a part of ground is removed from the terminal ground.
  • the resonant frequency can be controlled using the capacitance of the capacitor 23, it is possible to provide an antenna having easy broadband control and a wide band characteristic.
  • FIG 3 shows an embodiment of a ground radiator according to the invention.
  • the ground radiator according to the second embodiment of the present invention includes a ground region 30, a first line 32 connecting the ground region 30 and the capacitor 33, and a capacitor ( 33 and a second feed line 34 connecting the ground region 30 and the capacitor 33.
  • the present embodiment relates to a form constituting the ground radiator without forming a clearance in the ground substrate.
  • FIG. 4 shows an embodiment of a ground radiator according to the invention.
  • the ground radiator according to the third embodiment of the present invention may include a ground region 50, a first line 42 connecting the ground region 40 and the first capacitor 43; And a second line 44 connecting the first capacitor 43 and the ground region 40 and the first capacitor 43.
  • the connection of the capacitor 43 and the ground 40 includes a first current. Loop 410 may be formed.
  • the ground radiator according to the third exemplary embodiment of the present invention may include a ground region 40, a third line 46 connecting the ground region 40 and the second capacitor 47, and a second capacitor 47. And a fourth feed line 48 connecting the ground region 40 and the second capacitor 47, and such a connection between the second capacitor 47 and the ground 40 includes a second current loop 420. ) Can be formed.
  • the ground radiator according to the third embodiment of the present invention includes a third current loop 430 flowing through the first capacitor 43 and the second capacitor 47. Can be formed.
  • an antenna having multiple bands can be configured.
  • Figure 5 shows the current distribution according to the frequency fed to the ground radiator.
  • FIG. 5 (a) shows the current distribution when the lowest frequency is fed
  • FIG. 5 (b) shows the current distribution when the middle frequency is fed
  • 5C shows the current distribution when the highest frequency is fed. Referring to FIG. 5, the lower the frequency, the wider the distribution of current.
  • the branch can act as an antenna radiator.
  • the antenna includes not only an antenna radiator for radiating an RF signal but also a feeding circuit for feeding a signal to radiate.
  • a feeding circuit for feeding a signal to radiate.
  • FIG. 6 illustrates an embodiment of a ground antenna in which the ground radiator according to the present invention is integrated with a power feeding circuit.
  • the ground radiation antenna using the antenna radiator according to the present invention includes a power supply unit 620, a ground 60, a first line 61, and a first feed line 62 having a feed point 62 and a feed line 68. It comprises two lines 64a, a capacitive element 63, and a third line 64b.
  • the feeder 620, the first line 61, the capacitive element 63, and the second line 64a operate as a feed circuit that excites the antenna radiation to radiate the RF signal through the antenna radiator.
  • the first line 61, the capacitive element 63, and the second line 64a operate as a constituent circuit of the antenna radiator for actually radiating an RF signal.
  • the first line 61, the capacitive element 63, and the second line 64a are not only part of the power feeding circuit of the antenna, but also part of the radiator component circuit.
  • the third line 64b is added to facilitate impedance matching.
  • the capacitive element is preferably an integrated circuit element such as a chip capacitor, but a structurally formed capacitive element may be used in addition to the chip capacitor.
  • the capacitive element may be configured by one capacitor or may be configured by connecting two or more capacitors.
  • a matching element for impedance matching may be inserted into the power supply unit 620 of FIG. 6.
  • the antenna radiator refers to a place where the radiation of the RF signal is mainly performed
  • the power supply circuit means a circuit for applying the RF signal to drive the ground antenna as an antenna. Therefore, the power supply circuit does not mean that radiation of the RF signal does not occur at all. However, since most of the radiation is made through the ground radiator is referred to as the ground radiator. The same is true in other embodiments of the present invention.
  • the radiator according to the present invention it is possible to implement a simpler and more radiation-efficient antenna without separately configuring a radiating structure of a complex structure.
  • FIG 7 shows an antenna using an antenna radiator according to the present invention.
  • an antenna using an antenna radiator includes a feed unit 720 including a feed point 72 and a feed line 780, a feed point 72, a ground 70, and a first Line 71, first element 73, second line 72a, second element 75, third line 72b, capacitive element 77, fourth line 74a, fifth line And 74b.
  • the ground 70 provides a reference potential inside a communication device such as a mobile communication terminal.
  • the terminal ground is preferably formed on a substrate to which circuit elements necessary for operation of the terminal are coupled.
  • the ground 70 has a function as a ground radiator of the antenna, in addition to providing a reference potential, which is the same in other embodiments of the present invention below.
  • the power feeding unit 720, the first line 71, the first element 73, the second line 72a, the second element 75, the third line 72b are connected via an antenna radiator. It acts as a feeder circuit that excites the antenna radiation to produce the RF signal radiation.
  • the fourth line 74a, the capacitive element 77, and the fifth line 74b actually operate as an antenna radiator constituting circuit for causing the RF signal to be radiated.
  • the power supply unit 720, the first line 71, the first element 73, the second line 72a, the second element 75, the third line 72b is a power supply circuit
  • the fourth line 74a, the capacitive element 77, and the fifth line 74b operate as radiator components of an antenna that emits an RF signal according to the feeding of the power feeding circuit.
  • the first element 73 may be an inductive element, a capacitive element, or a simple conductor.
  • the second element 75 may be an inductive element, a capacitive element, or a simple conductor.
  • the first element 73 when the first element 73 is a capacitive element, the first line 71, the first element 73, the second line 72a, the second element 75, and the third line 72b In addition to the power supply circuit, it operates as a radiator component circuit, and the antenna according to the present embodiment may have multi-band characteristics.
  • FIG. 8 illustrates an embodiment of a ground antenna in which the ground radiator and the power supply circuit are separately configured according to the present invention.
  • the ground radiation antenna using the antenna radiator according to the present invention includes a power supply unit 820, a ground 80, a first line 81, and a first line consisting of a feed point 82 and a feed line 88. It comprises a second line 84a, a first capacitive element 83, a third line 84b, a fourth line 86a, a second capacitive element 85, and a fifth line 86b.
  • the feed section 820, the first line 81, the second line 84a, and the first capacitive element 83 excite the antenna radiation to radiate the RF signal through the antenna radiator. It operates as a feeder circuit.
  • the first line 81, the capacitive element 83, and the second line 84a actually operate as a constituent circuit of the antenna radiator for causing the RF signal to be radiated.
  • the first line 81, the capacitive element 83, and the second line 84a are not only part of the power feeding circuit of the antenna, but also part of the antenna radiator component circuit.
  • the third line 84b is added to facilitate impedance matching.
  • the fourth line 86a, the second capacitive element 85, and the fifth line 86b operate as a constituent circuit of another antenna radiator.
  • first radiator configuration circuit that operates as an antenna radiator and a power feeding circuit
  • second radiator configuration circuit that operates only as an antenna radiator
  • the antenna according to the present embodiment adds a radiator configuration circuit to the antenna according to FIG. 6. That is, as in the present embodiment, the antenna radiator configuration circuit may be implemented separately from the power supply circuit.
  • FIG 9 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • the embodiment according to FIG. 9 basically has the same form as the antenna shown in FIG. 7. However, the dielectric having a certain height is located in the clearance region of the antenna shown in FIG. Therefore, the top view of the antenna according to FIG. 9 from the top has the same shape as that of FIG. 7.
  • the antenna radiator may have improved antenna radiation characteristics. In other words, when there is a material such as a conductor on the bottom, it is possible to reduce the radiation performance of the antenna, it is because it is possible to prevent the radiation performance is reduced by separating the interference material and the radiator component circuit by a certain distance.
  • the antenna has a constant height parallel to the ground plane, but the heights of the left and right sides of the dielectric are different (to have a slanted shape), The height of the outer surface may be different (to have a slanted shape), and the height distribution of the dielectric may be equally applied to other embodiments below.
  • the radiator component circuit and the power feeding circuit are implemented on the dielectric
  • the radiator component circuit and the power feeding circuit may be implemented without the dielectric (that is, with air as the dielectric) so that the radiator component circuit and the power feeding circuit are not in the same plane as the ground. This use of air as the dielectric may be applied in other embodiments below.
  • FIG. 10 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • the embodiment according to FIG. 10 is basically similar in shape to the antenna shown in FIG. 7, but has a different form in that the feed circuit is connected to the inner side of the clearance instead of the left or right side of the clearance. On the other hand, it has the same characteristics as FIG. 9 in that a dielectric having a constant height is located in the clearance region.
  • 11 is an embodiment using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
  • the embodiment according to FIG. 11 basically has the same form as the antenna shown in FIG. 6. However, the dielectric having a constant height is positioned in the clearance region of the antenna shown in FIG. 6. Therefore, the top view of the antenna according to FIG. 11 from the top has the same shape as that of FIG. 6. As shown in FIG. 11, when the radiator component circuit and the power feeding circuit of the antenna are separated from the ground by a predetermined height, the antenna radiator may have improved antenna radiation characteristics.
  • FIG. 12 is an embodiment using an antenna radiator according to the present invention, in which a dielectric part is provided in a part of a clearance region.
  • 12 (a), 12 (b) and 12 (c) have basically the same shape as the antenna shown in FIG. However, the dielectric having a certain height is located in a part of the clearance region of the antenna shown in FIG. 9. That is, in the antenna shown in FIG. 12A, a dielectric is not located in a part of the right side of the clearance, and a dielectric is located in other areas.
  • the conductive line formed on the surface of the dielectric and the conductive line formed on the ground or the clearance may be connected to conductive pins penetrating through the dielectric, as shown in FIG. May be connected. 12 (b) and 12 (c) show other embodiments in which a dielectric is removed from a part of the clearance.
  • FIG. 13 is an embodiment of an antenna using an antenna radiator according to the present invention, in which part of the radiator configuration circuit is implemented on a plane different from ground. In other words, it is to improve antenna performance by separating a part of the radiator component circuit by a certain distance from the ground plane.
  • FIG. 13 only a part of the radiator component circuit is implemented in a plane different from the ground, but the entire radiator component may be implemented in a plane different from the ground.
  • the antenna 14 is an embodiment of the antenna using the antenna radiator according to the present invention, a part of the radiator is implemented by protruding out of the clearance region. That is, the antenna performance is improved by separating a part of the radiator component circuit by a certain distance from the ground.
  • FIG. 14 only a part of the radiator component circuit is implemented by protruding out of the clearance, but the entire radiator component may be implemented in a plane different from the ground.
  • the protruding radiator configuration circuit may be formed on the case surface of the mobile communication terminal.
  • FIG. 15 is a graph comparing performance of the antenna shown in FIG. 7 and the antenna shown in FIG. 9. As shown in FIG. 15, it can be seen that the antenna performance is improved when the radiator constituting circuit or the power feeding circuit is spaced apart without being configured on the same plane as the ground.
  • FIG. 16 is a diagram illustrating an inside of a mobile communication terminal in which a radiator configuration circuit of a ground radiation antenna according to the present invention is installed.
  • a part 161 of the radiator constituting circuit has a shape protruding from a plane of the PCB 162 forming a ground with a predetermined space therebetween. That is, the portion 161 of the radiator constituting circuit is not formed in the PCB 162 plane, but protrudes from the PCB plane in a vertical direction or a direction forming a constant angle.
  • the portion 161 of the radiator constituent circuit preferably projects in the opposite direction of the LCD panel 163 located parallel to the PCB 162.
  • FIG 17 shows an embodiment of a ground radiation antenna according to the present invention.
  • the ground radiation antenna according to the present invention includes a power supply circuit 171 and a radiator component circuit 172.
  • the LCD panel is located toward the lower surface of the PCB substrate.
  • a part of the power supply circuit 171 is formed on the PCB substrate, and the other part connects the power supply circuit 171 formed on the PCB substrate with the radiator component circuit 172.
  • the power supply circuit 171 includes a power supply point 1711 for receiving an RF signal to radiate.
  • the power supply circuit 171 may have a concentrated circuit element (inductive element or capacitive element) 1712.
  • the lumped circuit element 1712 may be formed at various positions on the power feeding circuit 171 and may be formed by a combination of a plurality of lumped circuit elements.
  • a portion 1713 of the PCB ground substrate may be removed to have a form in which the power supply circuit 171 formed on the PCB substrate and the outside are open.
  • the radiator component circuit 172 may have a lumped circuit element (inductive element or capacitive element) 1722.
  • the lumped circuit element 1722 may be formed at various positions on the radiator constituting circuit 172, or may be a combination of a plurality of lumped circuit elements.
  • the lumped circuit element 1722 may be connected to a portion of the radiator component circuit 172 formed on the PCB substrate.
  • FIG. 18 shows an embodiment of a ground radiation antenna according to the present invention.
  • the ground radiation antenna includes a power supply circuit 181 and a radiator configuration circuit 182.
  • the LCD panel is located toward the lower surface of the PCB substrate.
  • the power supply circuit 181 is formed on the PCB substrate.
  • the power supply circuit 181 includes a power supply point 1811 for receiving an RF signal to radiate.
  • the power supply circuit 181 may have an integrated circuit element (inductive element or capacitive element) 1812.
  • the lumped circuit element 1812 may be formed at various positions on the power feeding circuit 181, or may be formed by a combination of a plurality of lumped circuit elements.
  • a part of the radiator component circuit 182 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate. Both ends of the radiator component circuit 183 are connected to the PCB ground substrate.
  • the radiator component circuit 182 may have a lumped circuit element (inductive element or capacitive element) 1822.
  • the lumped circuit element 1822 may be formed at various positions on the radiator constituting circuit 182, or may be a combination of a plurality of lumped circuit elements.
  • the lumped circuit element 1822 may be connected to a portion of the radiator component circuit 182 formed on the PCB substrate.
  • the PCB ground substrate surrounds the power supply circuit 181 so that the power supply circuit 181 is not exposed to the outside unlike FIG. 18A. It may be.
  • FIG 19 shows an embodiment of a ground radiation antenna according to the present invention.
  • a radiator component circuit 192 is formed on an upper surface of a PCB substrate, and a power supply circuit 191 is formed on a lower surface of the PCB substrate.
  • the LCD panel is located toward the lower surface of the PCB substrate.
  • the power supply circuit 191 is formed on the lower surface of the PCB substrate.
  • the power supply circuit 191 includes a power supply point 1911 for receiving an RF signal to radiate.
  • the power supply circuit 191 may have a concentrated circuit element (inductive element or capacitive element) 1912.
  • the lumped circuit element 1912 may be formed at various positions on the power supply circuit 191, and may be formed of a combination of a plurality of lumped circuit elements.
  • a part of the radiator component circuit 192 is formed on the upper surface of the PCB substrate, the other part has a shape protruding with a space from the upper surface of the PCB substrate. Both ends of the radiator component circuit 192 are connected to the PCB ground substrate. In this case, both ends or one end of the radiator component circuit 192 may be provided with a connection portion 1923 for connecting to the lower surface of the PCB substrate.
  • the radiator constituent circuit 192 may have a lumped circuit element (inductive element or capacitive element) 1922.
  • the lumped circuit element 1922 may be formed at various positions on the radiator constituting circuit 192, or may be a combination of a plurality of lumped circuit elements.
  • the lumped circuit element 1922 may be connected to a portion of the radiator component circuit 192 formed on the PCB substrate.
  • FIG. 20 shows an embodiment of a ground radiation antenna according to the present invention.
  • the ground radiation antenna according to the present invention includes a power supply circuit 201 and a radiator component circuit 202.
  • the LCD panel is located toward the lower surface of the PCB substrate.
  • the power supply circuit 201 is formed on the PCB substrate.
  • the power supply circuit 201 includes a power supply point 2011 for receiving an RF signal to radiate.
  • the power supply circuit 201 may have a lumped circuit element (inductive element or capacitive element) 2012.
  • the lumped circuit element 2012 may be formed at various positions on the power supply circuit 201 and may be formed by a combination of a plurality of lumped circuit elements.
  • a part of the radiator component circuit 202 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate.
  • One end of the radiator component circuit 203 is connected to the PCB ground substrate, but the other end is not connected to the PCB ground substrate.
  • the radiator component circuit 202 may have a lumped circuit element (inductive element or capacitive element) 2022.
  • the lumped circuit element 2022 may be formed at various positions on the radiator constituent circuit 202, or may be a combination of a plurality of lumped circuit elements.
  • the lumped circuit element 2022 may be connected to a portion of the radiator component circuit 202 formed on the PCB substrate.
  • the ground radiation antenna according to the present invention includes a power supply circuit 211 and a radiator component circuit 212. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
  • a part of the power supply circuit 211 is formed on the PCB substrate, and the other part connects the power supply circuit 211 formed on the PCB substrate with the radiator component circuit 212.
  • the power supply circuit 211 includes a power supply point 2111 for receiving an RF signal to radiate.
  • the power supply circuit 21 may have an integrated circuit element (inductive element or capacitive element) 2112.
  • the lumped circuit element 2112 may be formed at various positions on the power supply circuit 211, and may be formed of a combination of a plurality of lumped circuit elements.
  • a part of the radiator component circuit 212 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate.
  • One end of the radiator component circuit 213 is connected to the PCB ground substrate, and the other end is not connected to the PCB ground substrate.
  • the radiator construction circuit 212 may have a lumped circuit element (inductive element or capacitive element) 2122.
  • the lumped circuit element 2122 may be formed at various positions on the radiator constituting circuit 212, or may be a combination of a plurality of lumped circuit elements.
  • the lumped circuit element 2122 may be connected to a portion of the radiator component circuit 212 formed on the PCB substrate.
  • the ground radiation antenna according to the present embodiment may have a dual band characteristic.
  • the ground radiating antenna according to the present invention requires at least one end to be connected to a PCB ground substrate, and requires a radiator component circuit projecting upwardly (as opposed to a conductive element such as an LCD) with a space from the PCB ground substrate. Therefore, there is a need for a method of assembling such a radiator constituting circuit more easily.
  • a conductive line pattern 225 is formed on one side cover 221 of the mobile communication terminal, and a power supply circuit 223 and columnar connection lines 224a and 224b are formed on the other side 222. ), And when one cover 221 and the other surface 222 cover of the mobile communication terminal is combined, it is preferable to assemble in such a way that the radiator component circuits are connected and completed.
  • the structure is remarkably simple and has good radiation efficiency without forming a complicated radiating structure.
  • the antenna can be implemented.
  • the antenna according to the present invention can be used in a mobile communication terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

The present invention provides a ground radiation antenna which has a simple manufacturing process and remarkably reduces manufacturing costs by providing a capacitor circuit with a simple structure and a feeder circuit. Additionally, the ground radiation antenna has excellent radiation performance even when one side of a mobile communication terminal is covered with conductive materials such as an LED panel and the like.

Description

[규칙 제26조에 의한 보정 29.02.2012] 캐패시터를 이용한 그라운드 방사체 및 그라운드 안테나[Revision 29.02.2012 by Rule 26] Ground radiator and ground antenna using capacitor
본 발명은 그라운드 방사 안테나를 구성하는 그라운드 방사체에 관한 것으로, 보다 상세하게는 그라운드 방사 안테나의 구조를 현저히 단순화 시킬 수 있는 그라운드 방사체에 관한 것이다.The present invention relates to a ground radiator constituting the ground radiating antenna, and more particularly, to a ground radiator that can significantly simplify the structure of the ground radiating antenna.
안테나는 공중의 RF 신호를 단말기 내부로 수신하거나, 단말기 내부의 신호를 외부로 송신하는 장치로서, 무선통신에 필수적으로 사용하는 장치이다. 최근, 이동통신 단말기가 소형화 및 경량화되면서, 안테나 또한 보다 슬림화 될 것이 요구되고 있다. 또한, 무선을 통해 송수신되는 데이터량이 많아지면서, 보다 더 좋은 성능의 안테나가 필요하게 되었다. An antenna is a device that receives an RF signal from the inside of a terminal or transmits a signal inside the terminal to an outside, and is an essential device for wireless communication. In recent years, as the mobile communication terminal becomes smaller and lighter, it is required to further slim the antenna. In addition, as the amount of data transmitted and received via the wireless increases, a better performance antenna is required.
이러한 필요성에 의해 제안된 것이 단말기 자체의 그라운드 방사를 이용한 안테나이다. 즉, 단말기 자체의 그라운드를 방사체의 일부로 이용하여 안테나를 구성하게 되면, 안테나에 있어서 가장 큰 공간을 차지하는 방사체의 크기를 줄일 수 있어, 안테나의 소형화에 크게 기여할 수 있다. Proposed by this necessity is an antenna using the ground radiation of the terminal itself. That is, when the antenna is configured using the ground of the terminal itself as part of the radiator, the size of the radiator occupying the largest space in the antenna can be reduced, which can greatly contribute to miniaturization of the antenna.
이와 같이, 단말기 자체의 그라운드를 방사체로 이용한 그라운드 방사 안테나에 관한 선행기술로는 유럽특허 제1962372호가 있다. 이 특허는 폴더 타입과 같이 단말기의 몸체가 서로 분리되는 두개의 서브 몸체로 이루어지고, 각 몸체가 FPCB와 같은 전기적 소자로 연결되어 있는 형태를 가질 때, 단말기의 그라운드를 이용하여 안테나를 설계하는 기술을 제시하고 있다. As described above, European Patent No. 1962372 is a prior art relating to a ground radiation antenna using the ground of the terminal itself as a radiator. This patent is a technology for designing an antenna using the ground of the terminal when the body of the terminal is composed of two sub-bodies separated from each other like a folder type, and each body is connected by an electrical element such as an FPCB. Presenting.
상기 특허에 따르면, 단말기 몸체가 두개의 서브 몸체로 구분되는 폴더형 단말기에 있어서, 두 서브 몸체 사이에 인덕티브 커플링을 위한 도전체상에 공진 주파수를 튜닝하기 위한 캐패시터를 삽입하고 있다. According to the patent, in a clamshell terminal in which the terminal body is divided into two sub bodies, a capacitor for tuning the resonance frequency is inserted between the two sub bodies on a conductor for inductive coupling.
따라서, 상기와 같은 안테나는 반드시 두개의 서브 몸체를 가지는 형태의 단말기(예를 들어, 폴더형 단말기)에만 사용할 수 있으며, 인덕티브 커플링을 위한 도전체의 길이가 일정하게 정해져 있으므로, 구조가 간단하지 않고, 적용할 수 있는 디바이스의 범위도 제한되는 문제점이 있었다.Therefore, such an antenna can be used only for a terminal having two sub-bodies (for example, a foldable terminal), and the structure is simple because the length of the conductor for inductive coupling is fixed. Without this, there is a problem in that the range of applicable devices is also limited.
도 1 은 종래 기술에 따른 그라운드 방사 안테나를 나타낸 일실시예 구성도이다. 도 1 을 참조하면, 종래기술에 따른 그라운드 방사 안테나(10)는 도 1 과 같이 그라운드 방사를 돕기 위한 방사 구조체(11)를 구비하였다. 즉, 방사 구조체(11)는 유전체와 도선으로 이루어진 복잡한 구조물로서, 이를 제작하기 위해서는 많은 비용과 복잡한 제조 공정을 필요로 하였다. 또한, 그라운드 방사 안테나는 방사 구조체(11) 이외에 임피던스 매칭과 방사 성능 제어를 위한 인덕터 및 캐패시터 등으로 구성되었다(12a, 12b, 12c). 1 is a block diagram showing a ground radiation antenna according to the prior art. Referring to FIG. 1, the ground radiation antenna 10 according to the related art has a radiation structure 11 to assist ground radiation as shown in FIG. 1. In other words, the radiating structure 11 is a complex structure consisting of a dielectric and a conductive wire, which requires a high cost and a complicated manufacturing process. In addition, the ground radiation antenna is composed of an inductor and a capacitor for impedance matching and radiation performance control in addition to the radiation structure 11 (12a, 12b, 12c).
따라서, 종래 기술에 따른 그라운드 방사 안테나는 그라운드를 방사체로 이용하기는 하지만, 여전히 복잡한 구조의 방사 구조체를 별도로 가지고 있어야 하고, 이러한 방사 구조체를 구현하기 위해, 많은 비용이 수반되는 문제점이 있었다. 또한, 안테나의 방사체 구조가 복잡해짐에 따라, 단말기를 보다 슬림화 하는 데에도 한계가 있었다.Therefore, although the ground radiation antenna according to the prior art uses the ground as a radiator, it still has to have a separate radiation structure of a complex structure, there is a problem that the cost is accompanied to implement such a radiation structure. In addition, as the radiator structure of the antenna becomes more complicated, there is a limit in making the terminal slimmer.
특히, 종래 기술에 의한 그라운드 방사 안테나는 그라운드 방사의 본질적인 현상을 이해하지 못하고, 그라운드 방사를 실현하기 위해 불필요하게 복잡한 구조를 사용함으로 인해 비용이 증가될 뿐 아니라, 제조 공정이 복잡해지는 문제가 있었다. In particular, the ground radiation antenna according to the prior art does not understand the essential phenomena of the ground radiation, there is a problem that not only increases the cost, but also the manufacturing process is complicated by using an unnecessarily complicated structure to realize the ground radiation.
본 발명은 복잡한 구조를 가지는 방사 구조체를 제거하고, 보다 간단한 구성요소만으로 그라운드 방사체를 구현함으로써, 제조 공정을 보다 단순화하고, 안테나를 보다 슬림화할 뿐 아니라, 그라운드 방사 안테나의 제조 비용을 현저히 감소시키는데 그 목적이 있다.The present invention eliminates the radiating structure having a complicated structure and implements the ground radiator with only simpler components, thereby simplifying the manufacturing process, making the antenna slimmer, and significantly reducing the manufacturing cost of the ground radiating antenna. There is a purpose.
본 발명은 캐패시터의 캐패시턴스와 그라운드의 인덕턴스를 이용하여, 구조를 현저히 단순화시킨 그라운드 방사체를 제공한다. The present invention utilizes the capacitance of the capacitor and the inductance of the ground to provide a ground radiator with a significantly simplified structure.
또한, 본 발명은 그라운드 방사체에 있어서, 별도의 방사 구조체 없이, 캐패시티브한 엘리먼트만을 이용하여 작동하는 그라운드 방사체를 제공한다.In addition, the present invention provides a ground radiator, which operates using only a capacitive element, without a separate radiating structure.
또한, 본 발명은 방사체 구성회로의 적어도 일부를 그라운드 기판으로부터 일정한 거리 이격시킴으로써, 이동통신 단말기의 일면이 도전성 물질로 덮혀있는 경우에도 우수한 방사성능을 가지는 그라운드 방사체를 제공한다.In addition, the present invention provides a ground radiator having excellent radiation performance even when one surface of the mobile communication terminal is covered with a conductive material by separating at least a portion of the radiator component circuit from the ground substrate by a predetermined distance.
본 발명에 따르면, 그라운드 방사가 가능한 안테나의 구조를 현저히 단순화하면서도 방사 성능이 우수한 안테나를 제공하는 효과가 있다. According to the present invention, there is an effect of providing an antenna excellent in radiation performance while significantly simplifying the structure of the antenna capable of ground radiation.
또한, 본 발명에 따르면, 방사체의 구조를 현저히 단순화 함으로써, 제조 비용을 최소화하고, 제조 공정을 용이하도록 하는 효과가 있다. In addition, according to the present invention, by significantly simplifying the structure of the radiator, there is an effect of minimizing the manufacturing cost, and to facilitate the manufacturing process.
또한, 본 발명에 따르면, 이동통신 단말기의 일면이 LCD 와 같은 도전성 물질로 덮혀있는 경우에도 우수한 방사 성능을 가지는 안테나를 제공하는 효과가 있다.In addition, according to the present invention, there is an effect of providing an antenna having excellent radiation performance even when one surface of the mobile communication terminal is covered with a conductive material such as LCD.
도 1 은 종래 기술에 따른 그라운드 방사 안테나를 나타낸 일실시예 구성도이다.1 is a block diagram showing a ground radiation antenna according to the prior art.
도 2 는 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다. 2 shows an embodiment of a ground radiator according to the invention.
도 3 은 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다.3 shows an embodiment of a ground radiator according to the invention.
도 4 는 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다.4 shows an embodiment of a ground radiator according to the invention.
도 5 는 그라운드 방사체에 급전되는 주파수에 따른 전류 분포를 나타낸 것이다.Figure 5 shows the current distribution according to the frequency fed to the ground radiator.
도 6 은 본 발명에 따른 그라운드 방사체가 급전회로와 일체로 구성된 그라운드 안테나의 실시예를 나타낸 것이다.6 illustrates an embodiment of a ground antenna in which the ground radiator according to the present invention is integrated with a power feeding circuit.
도 7 은 본 발명에 따른 안테나 방사체를 이용한 안테나를 나타낸 것이다.7 shows an antenna using an antenna radiator according to the present invention.
도 8 는 본 발명에 따른 그라운드 방사체와 급전회로가 별도로 구성된 그라운드 안테나의 일실시예를 나타낸 것이다.8 illustrates an embodiment of a ground antenna in which the ground radiator and the power supply circuit are separately configured according to the present invention.
도 9 는 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다. 9 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 10 은 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다. 10 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 11 은 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다.11 is an embodiment using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 12 는 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역의 일부에 유전체를 구비한 실시예이다. 12 is an embodiment using an antenna radiator according to the present invention, in which a dielectric part is provided in a part of a clearance region.
도 13 은 본 발명에 따른 안테나 방사체를 이용한 안테나의 실시예로서, 방사체 구성회로의 일부를 그라운드와 다른 평면에 구현한 것이다.FIG. 13 is an embodiment of an antenna using an antenna radiator according to the present invention, in which part of the radiator configuration circuit is implemented on a plane different from ground.
도 14 는 본 발명에 따른 안테나 방사체를 이용한 안테나의 실시예로서, 방사체의 일부를 클리어런스 영역 밖으로 돌출시켜 구현한 것이다.14 is an embodiment of the antenna using the antenna radiator according to the present invention, a part of the radiator is implemented by protruding out of the clearance region.
도 15 는 도 7 에 도시된 안테나와 도 9 에 도시된 안테나의 성능을 비교한 그래프이다.FIG. 15 is a graph comparing performance of the antenna shown in FIG. 7 and the antenna shown in FIG. 9.
도 16 은 본 발명에 따른 그라운드 방사 안테나의 방사체 구성 회로가 설치된 이동통신 단말기의 내부를 나타낸 것이다.16 is a diagram illustrating an inside of a mobile communication terminal in which a radiator configuration circuit of a ground radiation antenna according to the present invention is installed.
도 17 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다.17 shows an embodiment of a ground radiation antenna according to the present invention.
도 18 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 18 shows an embodiment of a ground radiation antenna according to the present invention.
도 19 는 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 19 shows an embodiment of a ground radiation antenna according to the present invention.
도 20 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 20 shows an embodiment of a ground radiation antenna according to the present invention.
도 21 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다.21 shows an embodiment of a ground radiation antenna according to the present invention.
도 22 는 본 발명에 따른 그라운드 방사 안테나의 조립 방법을 나타낸 것이다. 22 shows a method of assembling the ground radiation antenna according to the present invention.
본 발명에 따른 안테나 방사체는 디바이스의 그라운드를 이용하여 RF 신호를 방사하는 안테나의 방사체에 있어서, 디바이스의 기판에 형성된 그라운드와, 캐패시터 및 상기 그라운드와 캐패시터를 직접 연결하는 도전 선로를 포함하여 이루어지되, 상기 캐패시터 또는 상기 도전선로의 일부는 상기 그라운드 평면으로부터 이격되어 형성되는 것이 바람직하다.The antenna radiator according to the present invention comprises an antenna radiator for radiating an RF signal using the ground of the device, comprising a ground formed on a substrate of the device, a capacitor and a conductive line directly connecting the ground and the capacitor, A portion of the capacitor or the conductive line is preferably spaced apart from the ground plane.
또한 본 발명에 따른 그라운드 방사 안테나는 도전성 선로로 형성되되, 상기 도전성 선로의 양단 중 적어도 일단이 그라운드 기판에 연결되고, 상기 도전성 선로의 적어도 일부가 그라운드 기판으로부터 돌출되어 상기 그라운드 기판과 다른 평면상에 형성되는 방사체 구성회로 및 도전성 선로로 형성되되, 방사할 RF 신호를 입력받는 급전점을 포함하며, 적어도 일부가 기판에 형성되는 급전회로로 형성되는 것이 바람직하다.In addition, the ground radiation antenna according to the present invention is formed of a conductive line, at least one end of both ends of the conductive line is connected to the ground substrate, at least a portion of the conductive line protrudes from the ground substrate on a plane different from the ground substrate It is preferably formed of a radiator component circuit and a conductive line to be formed, including a feed point receiving an RF signal to be radiated, and at least a part of the feeder circuit formed on a substrate.
본 발명은 종래의 그라운드 방사 안테나로부터 보다 구조가 간단하면서도 우수한 방사 성능을 가지는 그라운드 방사체를 구현하기 위해 연구를 거듭하던 중, 그라운드 방사가 일어나도록 하는 그라운드 방사 구조체의 본질적인 원리에 착안함으로써 도출된 것이다. The present invention has been derived from the conventional ground radiation antenna while focusing on the essential principle of the ground radiation structure to cause the ground radiation during the study to implement a ground radiator having a simpler structure and excellent radiation performance.
종래 기술에 따르면, 그라운드 방사를 위한 방사 구조체를 별도로 구현하고, 그 방사 구조체의 형상이나 구조를 변경함으로써 방사 성능을 향상시키고자 노력하였다. 즉, 인덕턴스 성분 및 캐패시턴스 성분을 함께 가지는 구조체 및 캐패시터와 인덕터를 조합함으로써 방사체를 구현하고자 노력하였다. According to the prior art, an effort was made to improve radiation performance by separately implementing a radiation structure for ground radiation and changing the shape or structure of the radiation structure. That is, an effort has been made to implement a radiator by combining a capacitor, an inductor, a structure having an inductance component and a capacitance component.
그러나, 본 출원인은 그라운드의 인덕턴스 성분을 이용하면, 별도의 복잡한 구조체 없이도, 그라운드에 캐패시터만을 연결함으로써 방사성능이 우수한 그라운드 방사 구조체를 만들 수 있다는 것을 알게 되었다. However, the applicant has found that by using the inductance component of the ground, it is possible to make a ground radiation structure having excellent radiation performance by connecting only a capacitor to the ground, without a separate complicated structure.
안테나의 방사 구조체로서 기능하기 위해서는, 캐패시턴스 성질을 가지는 캐패시터 뿐 아니라, 인덕턴스 성질을 가지는 인덕터가 존재하여 공진을 일으켜야 하는데, 이러한 공진 현상에 필요한 인덕턴스는 그라운드가 제공하므로, 인덕턴스 제공을 위한 별도의 구조체 없이 캐패시터와 그라운드 만으로 방사 구조체의 기능을 수행할 수 있다는 것을 알게 되었다.In order to function as a radiating structure of an antenna, in addition to a capacitor having a capacitance property, an inductor having an inductance property must exist to generate resonance. It has been found that only the capacitor and ground can perform the function of the radiating structure.
그러나, 종래 기술에 따른 그라운드 방사체들은 그라운드가 가지는 인덕턴스 성분을 효율적으로 이용하지 못하고, 캐패시턴스 성분 뿐 아니라 인덕턴스 성분도 함께 가지는 복잡한 구조체들을 구성하여 공진을 일으키려고 노력하였다. However, the ground radiators according to the related art do not use the inductance component of the ground efficiently, and try to cause resonance by constructing complicated structures having not only the capacitance component but also the inductance component.
본 발명에 따르면, 그라운드 자체의 인덕턴스를 효율적으로 이용함으로써, 캐패시터와 그라운드를 연결하는 간단한 구조만으로 공진을 유도할 수 있도록 하였다.According to the present invention, by effectively using the inductance of the ground itself, it is possible to induce resonance by only a simple structure connecting the capacitor and the ground.
여기서, 그라운드 자체의 인덕턴스만을 이용한다고 하였으나, 보다 명확하게는 대부분의 인덕턴스 성분이 그라운드에 있다는 것을 의미한다. 예를 들어, 캐패시터와 그라운드를 연결하는 선로에도 인덕턴스 성분이 존재할 수 있기 때문이다. 따라서, 본 발명에서 그라운드의 인덕턴스 성분이라 함은 그라운드와 도선의 인덕턴스를 모두 포함하는 인덕턴스를 의미한다.Here, although only the inductance of the ground itself is used, more specifically, it means that most of the inductance component is in the ground. For example, an inductance component may exist in a line connecting the capacitor and the ground. Therefore, in the present invention, the inductance component of the ground means an inductance including both the inductance of the ground and the conductive wire.
여기서, 캐패시터는 그라운드 기판 위에 구조적으로 형성된 형태의 캐패시터도 가능하지만, 칩 캐패시터를 사용하는 것이 보다 바람직하다. Here, the capacitor may be a capacitor having a structure formed on the ground substrate, but it is more preferable to use a chip capacitor.
도 2 는 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다. 2 shows an embodiment of a ground radiator according to the invention.
도 2 에 도시된 바와 같이, 본 발명의 제 1 실시예에 따른 그라운드 방사체는 그라운드 영역(20)과, 그라운드 영역(20)과 캐패시터(23)를 연결하는 제 1 선로(22)와, 캐패시터(23)와, 그라운드 영역(20)과 캐패시터(23)를 연결하는 제 2 선로(24)로 이루어진다.As shown in FIG. 2, the ground radiator according to the first exemplary embodiment of the present invention includes a ground region 20, a first line 22 connecting the ground region 20 and the capacitor 23, and a capacitor ( 23 and a second line 24 connecting the ground region 20 and the capacitor 23.
이때, 제 1 선로(22), 제 2 선로(24) 및 캐패시터(23)는 클리어런스 영역(200)에 형성되는데, 클리어런스란 단말기 그라운드에서 그라운드의 일부가 제거된 영역을 의미한다.In this case, the first line 22, the second line 24, and the capacitor 23 are formed in the clearance area 200, and the clearance refers to an area where a part of ground is removed from the terminal ground.
상기와 같은 본 발명에 따르면, 공진주파수는 캐패시터(23)의 캐패시턴스를 이용하여 제어할 수 있으므로, 공진 주파수 제어가 용이하면서도 광대역 특성을 가지는 안테나를 제공할 수 있다. According to the present invention as described above, since the resonant frequency can be controlled using the capacitance of the capacitor 23, it is possible to provide an antenna having easy broadband control and a wide band characteristic.
도 3 은 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다.3 shows an embodiment of a ground radiator according to the invention.
도 3 에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 그라운드 방사체는 그라운드 영역(30)과, 그라운드 영역(30)과 캐패시터(33)를 연결하는 제 1 선로(32)와, 캐패시터(33)와, 그라운드 영역(30)과 캐패시터(33)를 연결하는 제 2 급전선로(34)로 이루어진다. As shown in FIG. 3, the ground radiator according to the second embodiment of the present invention includes a ground region 30, a first line 32 connecting the ground region 30 and the capacitor 33, and a capacitor ( 33 and a second feed line 34 connecting the ground region 30 and the capacitor 33.
본 실시예는 그라운드 기판에 클리어런스를 형성하지 않고, 그라운드 방사체를 구성하는 형태에 관한 것이다. The present embodiment relates to a form constituting the ground radiator without forming a clearance in the ground substrate.
도 4 는 본 발명에 따른 그라운드 방사체의 실시예를 나타낸 것이다.4 shows an embodiment of a ground radiator according to the invention.
도 4 에 도시된 바와 같이, 본 발명의 제 3 실시예에 따른 그라운드 방사체는 그라운드 영역(50)과, 그라운드 영역(40)과 제 1 캐패시터(43)를 연결하는 제 1 선로(42)와, 제 1 캐패시터(43)와, 그라운드 영역(40)과 제 1 캐패시터(43)를 연결하는 제 2 선로(44)를 포함하며, 이와 같은 캐패시터(43)와 그라운드(40)의 연결은 제 1 전류 루프(410)를 형성할 수 있다. As shown in FIG. 4, the ground radiator according to the third embodiment of the present invention may include a ground region 50, a first line 42 connecting the ground region 40 and the first capacitor 43; And a second line 44 connecting the first capacitor 43 and the ground region 40 and the first capacitor 43. The connection of the capacitor 43 and the ground 40 includes a first current. Loop 410 may be formed.
또한, 본 발명의 제 3 실시예에 따른 그라운드 방사체는 그라운드 영역(40)과, 그라운드 영역(40)과 제 2 캐패시터(47)를 연결하는 제 3 선로(46)와, 제 2 캐패시터(47)와, 그라운드 영역(40)과 제 2 캐패시터(47)를 연결하는 제 4 급전선로(48)를 포함하며, 이와 같은 제 2 캐패시터(47)와 그라운드(40)의 연결은 제 2 전류 루프(420)를 형성할 수 있다. In addition, the ground radiator according to the third exemplary embodiment of the present invention may include a ground region 40, a third line 46 connecting the ground region 40 and the second capacitor 47, and a second capacitor 47. And a fourth feed line 48 connecting the ground region 40 and the second capacitor 47, and such a connection between the second capacitor 47 and the ground 40 includes a second current loop 420. ) Can be formed.
나아가, 본 발명의 제 3 실시예에 따른 그라운드 방사체에는 상기 제 1 전류 루프 및 제 2 전류 루프 이외에 제 1 캐패시터(43)와 제 2 캐패시터(47)를 통해 흐르는 제 3 의 전류루프(430)가 형성될 수 있다.Furthermore, in addition to the first current loop and the second current loop, the ground radiator according to the third embodiment of the present invention includes a third current loop 430 flowing through the first capacitor 43 and the second capacitor 47. Can be formed.
상기와 같은 다중의 전류 루프들에 의해 다중 대역에서 공진이 발생하게 되므로, 다중 대역을 가지는 안테나를 구성할 수 있다. Since resonance occurs in multiple bands by the multiple current loops as described above, an antenna having multiple bands can be configured.
도 5 는 그라운드 방사체에 급전되는 주파수에 따른 전류 분포를 나타낸 것이다.Figure 5 shows the current distribution according to the frequency fed to the ground radiator.
도 5 (a) 는 가장 낮은 주파수를 급전한 경우에 전류 분포를 나타낸 것이며, 도 5 (b)는 중간 주파수를 급전한 경우에 전류 분포를 나타낸 것이다. 또한, 도 5 (c) 는 가장 높은 주파수를 급전한 경우에 전류 분포를 나타낸 것이다. 도 5 을 참조하면, 주파수가 낮을수록 전류의 분포가 넓게 퍼지는 것을 알 수 있다. FIG. 5 (a) shows the current distribution when the lowest frequency is fed, and FIG. 5 (b) shows the current distribution when the middle frequency is fed. 5C shows the current distribution when the highest frequency is fed. Referring to FIG. 5, the lower the frequency, the wider the distribution of current.
도 5 을 참조하면, 캐패시터의 캐패시턴스가 고정되어 있다고 할지라도, 주파수에 따라 전류 분포가 달라짐으로써, 결국 그라운드가 제공하는 인덕턴스가 주파수에 따라 달라지게 되고, 넓은 대역에서 공진이 발생하므로, 광대역 특성을 가지는 안테나 방사체로 동작할 수 있음을 알 수 있다. Referring to FIG. 5, even though the capacitance of the capacitor is fixed, the current distribution varies according to frequency, so that the inductance provided by the ground varies depending on the frequency, and resonance occurs in a wide band. It can be seen that the branch can act as an antenna radiator.
안테나는 RF 신호 방사를 위한 안테나 방사체 뿐 아니라, 방사할 신호를 급전하는 급전회로로 이루어지는데, 이하에서는 본 발명에 따른 그라운드 방사체와 급전회를 결합하여 구성된 안테나의 실시예들을 설명한다.The antenna includes not only an antenna radiator for radiating an RF signal but also a feeding circuit for feeding a signal to radiate. Hereinafter, embodiments of an antenna configured by combining a ground radiator and a feeding circuit according to the present invention will be described.
도 6 은 본 발명에 따른 그라운드 방사체가 급전회로와 일체로 구성된 그라운드 안테나의 실시예를 나타낸 것이다.6 illustrates an embodiment of a ground antenna in which the ground radiator according to the present invention is integrated with a power feeding circuit.
도 6 을 참조하면, 본 발명의 안테나 방사체를 이용한 그라운드 방사 안테나는, 급전점(62)과 급전선로(68)로 이루어지는 급전부(620), 그라운드(60), 제 1 선로(61), 제 2 선로(64a), 용량성 소자(63), 제 3 선로(64b)를 포함하여 이루어진다. Referring to FIG. 6, the ground radiation antenna using the antenna radiator according to the present invention includes a power supply unit 620, a ground 60, a first line 61, and a first feed line 62 having a feed point 62 and a feed line 68. It comprises two lines 64a, a capacitive element 63, and a third line 64b.
급전부(620), 제 1 선로(61), 용량성 소자(63), 제 2 선로(64a)는 안테나 방사체를 통해 RF 신호의 방사가 이루어지도록 안테나 방사를 여기시키는 급전회로로 동작한다. 또한, 제 1 선로(61), 용량성 소자(63), 제 2 선로(64a)는 실제로 RF 신호가 방사되도록 하는 안테나 방사체의 구성회로로서 동작한다.The feeder 620, the first line 61, the capacitive element 63, and the second line 64a operate as a feed circuit that excites the antenna radiation to radiate the RF signal through the antenna radiator. In addition, the first line 61, the capacitive element 63, and the second line 64a operate as a constituent circuit of the antenna radiator for actually radiating an RF signal.
즉, 본 실시예에 따른 안테나에서, 제 1 선로(61), 용량성 소자(63), 제 2 선로(64a)는 안테나의 급전회로의 일부일 뿐 아니라, 방사체 구성회로의 일부이기도 하다. That is, in the antenna according to the present embodiment, the first line 61, the capacitive element 63, and the second line 64a are not only part of the power feeding circuit of the antenna, but also part of the radiator component circuit.
한편, 제 3 선로(64b)는 임피던스 매칭을 용이하기 위해 부가된 것이다.On the other hand, the third line 64b is added to facilitate impedance matching.
본 실시예에서, 용량성 소자는 칩 캐패시터와 같은 집중회로 소자인 것이 바람직하나, 칩 캐패시터 이외에 구조적으로 형성된 용량성 소자를 사용할 수도 있다. 또한, 용량성 소자는 하나의 캐패시터로 구성되거나, 혹은 두개 이상의 캐패시터를 연결하여 구성할 수도 있다.In the present embodiment, the capacitive element is preferably an integrated circuit element such as a chip capacitor, but a structurally formed capacitive element may be used in addition to the chip capacitor. In addition, the capacitive element may be configured by one capacitor or may be configured by connecting two or more capacitors.
또한, 도 6 의 급전부(620)에 임피던스 매칭을 위한 매칭 소자를 삽입하는 것도 가능하다. In addition, a matching element for impedance matching may be inserted into the power supply unit 620 of FIG. 6.
여기서, 안테나 방사체란 RF 신호의 방사가 주로 이루어지는 곳을 지칭하는 것이며, 급전회로는 그라운드 안테나를 안테나로서 구동시키기 위해 RF 신호를 인가하기 위한 회로를 의미한다. 따라서, 급전회로라 하여 RF 신호의 방사가 전혀 일어나지 않는다는 것을 의미하는 것은 아니다. 다만, 대부분의 방사가 그라운드 방사체를 통해 이루어지므로 이를 그라운드 방사체로 지칭하는 것이다. 이는 본 발명의 다른 실시예에서도 동일하다. Here, the antenna radiator refers to a place where the radiation of the RF signal is mainly performed, the power supply circuit means a circuit for applying the RF signal to drive the ground antenna as an antenna. Therefore, the power supply circuit does not mean that radiation of the RF signal does not occur at all. However, since most of the radiation is made through the ground radiator is referred to as the ground radiator. The same is true in other embodiments of the present invention.
본 실시예에서와 같이, 본 발명에 따른 방사체를 이용하면, 별도로 복잡한 구조의 방사 구조체를 구성하지 않고도, 보다 간단하면서도 방사 효율이 좋은 안테나를 구현할 수 있게 된다.As in this embodiment, using the radiator according to the present invention, it is possible to implement a simpler and more radiation-efficient antenna without separately configuring a radiating structure of a complex structure.
도 7 은 본 발명에 따른 안테나 방사체를 이용한 안테나를 나타낸 것이다.7 shows an antenna using an antenna radiator according to the present invention.
도 7 을 참조하면, 본 발명에 따른 안테나 방사체를 이용한 안테나는, 급전점(72)과 급전선로(780)로 이루어진 급전부(720)와, 급전점(72), 그라운드(70), 제 1 선로(71), 제 1 엘리먼트(73), 제 2 선로(72a), 제 2 엘리먼트(75), 제 3 선로(72b), 용량성 소자(77), 제 4 선로(74a), 제 5 선로(74b)를 포함하여 이루어진다. Referring to FIG. 7, an antenna using an antenna radiator according to the present invention includes a feed unit 720 including a feed point 72 and a feed line 780, a feed point 72, a ground 70, and a first Line 71, first element 73, second line 72a, second element 75, third line 72b, capacitive element 77, fourth line 74a, fifth line And 74b.
그라운드(70)는 이동통신 단말기 등 통신기기 내부에 기준 전위를 제공하는데, 일반적으로 단말기 그라운드는 단말기 동작을 위해 필요한 회로 소자들이 결합되는 기판에 형성되는 것이 바람직하다. 본 발명에 있어서, 그라운드(70)는 기준 전위를 제공하는 이외에, 안테나의 그라운드 방사체로서의 기능을 가지며, 이하 본 발명의 다른 실시예에서도 같다. The ground 70 provides a reference potential inside a communication device such as a mobile communication terminal. In general, the terminal ground is preferably formed on a substrate to which circuit elements necessary for operation of the terminal are coupled. In the present invention, the ground 70 has a function as a ground radiator of the antenna, in addition to providing a reference potential, which is the same in other embodiments of the present invention below.
본 실시예에서, 급전부(720), 제 1 선로(71), 제 1 엘리먼트(73), 제 2 선로(72a), 제 2 엘리먼트(75), 제 3 선로(72b)는 안테나 방사체를 통해 RF 신호의 방사가 이루어지도록 안테나 방사를 여기시키는 급전회로로 동작한다. 또한, 제 4 선로(74a), 용량성 소자(77), 제 5 선로(74b)는 실제로 RF 신호가 방사되도록 하는 안테나 방사체 구성회로로서 동작한다. In the present embodiment, the power feeding unit 720, the first line 71, the first element 73, the second line 72a, the second element 75, the third line 72b are connected via an antenna radiator. It acts as a feeder circuit that excites the antenna radiation to produce the RF signal radiation. In addition, the fourth line 74a, the capacitive element 77, and the fifth line 74b actually operate as an antenna radiator constituting circuit for causing the RF signal to be radiated.
즉, 본 실시예에서, 급전부(720), 제 1 선로(71), 제 1 엘리먼트(73), 제 2 선로(72a), 제 2 엘리먼트(75), 제 3 선로(72b)는 급전회로로서 동작하며, 제 4 선로(74a), 용량성 소자(77), 제 5 선로(74b)는 급전회로의 급전에 따라 RF 신호를 방사하는 안테나의 방사체 구성요소로서 동작한다. That is, in this embodiment, the power supply unit 720, the first line 71, the first element 73, the second line 72a, the second element 75, the third line 72b is a power supply circuit The fourth line 74a, the capacitive element 77, and the fifth line 74b operate as radiator components of an antenna that emits an RF signal according to the feeding of the power feeding circuit.
본 실시예에 있어서, 제 1 엘리먼트(73)는 유도성 소자이거나, 용량성 소자이거나, 또는 단순한 도선일 수 있다. 또한, 제 2 엘리먼트(75)는 유도성 소자이거나 용량성 소자이거나, 단순한 도선일 수 있다. In the present embodiment, the first element 73 may be an inductive element, a capacitive element, or a simple conductor. In addition, the second element 75 may be an inductive element, a capacitive element, or a simple conductor.
이때, 제 1 엘리먼트(73)가 용량성 소자인 경우, 제 1 선로(71), 제 1 엘리먼트(73), 제 2 선로(72a), 제 2 엘리먼트(75), 제 3 선로(72b)는 급전회로로서 뿐 아니라, 방사체 구성회로로서 동작하게 되며, 본 실시예에 따른 안테나는 다중대역 특성을 가질 수 있다. At this time, when the first element 73 is a capacitive element, the first line 71, the first element 73, the second line 72a, the second element 75, and the third line 72b In addition to the power supply circuit, it operates as a radiator component circuit, and the antenna according to the present embodiment may have multi-band characteristics.
도 8 는 본 발명에 따른 그라운드 방사체와 급전회로가 별도로 구성된 그라운드 안테나의 일실시예를 나타낸 것이다.8 illustrates an embodiment of a ground antenna in which the ground radiator and the power supply circuit are separately configured according to the present invention.
도 8 을 참조하면, 본 발명의 안테나 방사체를 이용한 그라운드 방사 안테나는, 급전점(82)과 급전선로(88)로 이루어지는 급전부(820), 그라운드(80), 제 1 선로(81), 제 2 선로(84a), 제 1 용량성 소자(83), 제 3 선로(84b), 제 4 선로(86a), 제 2 용량성 소자(85) 및 제 5 선로(86b)를 포함하여 이루어진다.Referring to FIG. 8, the ground radiation antenna using the antenna radiator according to the present invention includes a power supply unit 820, a ground 80, a first line 81, and a first line consisting of a feed point 82 and a feed line 88. It comprises a second line 84a, a first capacitive element 83, a third line 84b, a fourth line 86a, a second capacitive element 85, and a fifth line 86b.
본 실시예에서, 급전부(820), 제 1 선로(81), 제 2 선로(84a), 제 1 용량성 소자(83)는 안테나 방사체를 통해 RF 신호의 방사가 이루어지도록 안테나 방사를 여기시키는 급전회로로 동작한다. 또한, 제 1 선로(81), 용량성 소자(83), 제 2 선로(84a)는 실제로 RF 신호가 방사되도록 하는 안테나 방사체의 구성회로로서 동작한다.In this embodiment, the feed section 820, the first line 81, the second line 84a, and the first capacitive element 83 excite the antenna radiation to radiate the RF signal through the antenna radiator. It operates as a feeder circuit. In addition, the first line 81, the capacitive element 83, and the second line 84a actually operate as a constituent circuit of the antenna radiator for causing the RF signal to be radiated.
즉, 본 실시예에 따른 안테나에서, 제 1 선로(81), 용량성 소자(83), 제 2 선로(84a)는 안테나의 급전회로의 일부일 뿐 아니라, 안테나 방사체 구성회로의 일부이기도 하다. That is, in the antenna according to the present embodiment, the first line 81, the capacitive element 83, and the second line 84a are not only part of the power feeding circuit of the antenna, but also part of the antenna radiator component circuit.
한편, 제 3 선로(84b)는 임피던스 매칭을 용이하기 위해 부가된 것이다.On the other hand, the third line 84b is added to facilitate impedance matching.
또한, 제 4 선로(86a), 제 2 용량성 소자(85) 및 제 5 선로(86b)는 또 하나의 안테나 방사체의 구성회로로서 동작한다. In addition, the fourth line 86a, the second capacitive element 85, and the fifth line 86b operate as a constituent circuit of another antenna radiator.
따라서, 본 실시예에는 안테나 방사체 및 급전회로로서 동작하는 제 1 방사체 구성회로와, 안테나 방사체로만 동작하는 제 2 방사체 구성회로가 존재하게 된다. Therefore, in the present embodiment, there is a first radiator configuration circuit that operates as an antenna radiator and a power feeding circuit, and a second radiator configuration circuit that operates only as an antenna radiator.
본 실시예에 따른 안테나는 도 6 에 따른 안테나에 방사체 구성회로를 추가한 것이다. 즉, 본 실시예와 같이, 급전회로와 분리하여 안테나 방사체 구성회로를 구현할 수도 있다. The antenna according to the present embodiment adds a radiator configuration circuit to the antenna according to FIG. 6. That is, as in the present embodiment, the antenna radiator configuration circuit may be implemented separately from the power supply circuit.
도 9 는 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다. 9 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 9 에 따른 실시예는, 기본적으로 도 7 에 도시된 안테나와 동일한 형태를 가진다. 다만, 도 7 에 도시된 안테나의 클리어런스 영역에 일정한 높이를 가지는 유전체가 위치하도록 한 것이다. 따라서, 도 9 에 따른 안테나를 위쪽에서 내려다본 평면도는 도 7 과 동일한 형태를 가지게 된다. 도 9 와 같이, 안테나의 방사체 구성회로와 급전회로를 그라운드로부터 일정한 높이 만큼 이격키게 되면, 향상된 안테나 방사 특성을 가질 수 있다. 즉, 밑면에 도체와 같은 물질이 있는 경우, 안테나의 방사 성능을 저하 시킬 수 있으므로, 이러한 방해 물질과 방사체 구성회로를 일정한 거리만큼 이격시킴으로써, 방사 성능이 저하되는 것을 막을 수 있기 때문이다.The embodiment according to FIG. 9 basically has the same form as the antenna shown in FIG. 7. However, the dielectric having a certain height is located in the clearance region of the antenna shown in FIG. Therefore, the top view of the antenna according to FIG. 9 from the top has the same shape as that of FIG. 7. As shown in FIG. 9, when the radiator component circuit and the power feeding circuit of the antenna are separated from the ground by a predetermined height, the antenna radiator may have improved antenna radiation characteristics. In other words, when there is a material such as a conductor on the bottom, it is possible to reduce the radiation performance of the antenna, it is because it is possible to prevent the radiation performance is reduced by separating the interference material and the radiator component circuit by a certain distance.
한편, 도 9 에 따른 실시예에 있어서는 유전체가 그라운드 면과 평행하게 일정한 높이를 가지는 안테나를 도시하였으나, 유전체의 좌측면과 우측면의 높이가 다르도록(기울어진 형태를 가지도록) 하거나, 내측면과 외측면의 높이가 서로 다르게(기울어진 형태를 가지도록) 할 수도 있으며, 이러한 유전체의 높이 배분은 이하 다른 실시예에서도 동일하게 적용될 수 있다. Meanwhile, in the embodiment according to FIG. 9, the antenna has a constant height parallel to the ground plane, but the heights of the left and right sides of the dielectric are different (to have a slanted shape), The height of the outer surface may be different (to have a slanted shape), and the height distribution of the dielectric may be equally applied to other embodiments below.
또한, 도 9 에 따른 실시예에서는 방사체 구성회로 및 급전 회로가 유전체 위에 구현되었으나, 유전체 없이(즉, 공기를 유전체로 하여) 방사체 구성회로 및 급전회로가 그라운드와 동일한 평면에 있지 않도록 구현할 수도 있으며, 이와 같이 공기를 유전체로 사용하는 것은 이하 다른 실시예에서도 적용될 수 있다.In addition, in the embodiment according to FIG. 9, although the radiator component circuit and the power feeding circuit are implemented on the dielectric, the radiator component circuit and the power feeding circuit may be implemented without the dielectric (that is, with air as the dielectric) so that the radiator component circuit and the power feeding circuit are not in the same plane as the ground. This use of air as the dielectric may be applied in other embodiments below.
도 10 은 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다. 10 illustrates an antenna using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 10 에 따른 실시예는, 기본적으로 도 7 에 도시된 안테나와 형태가 유사하지만, 급전회로가 클리어런스의 좌측면이나 우측면에 연결되는 대신 클리어런스의 내측면에 연결되었다는 점에서 다른 형태를 가진다. 한편, 클리어런스 영역에 일정한 높이를 가지는 유전체가 위치한다는 점에서 도 9 와 동일한 특징을 가진다.The embodiment according to FIG. 10 is basically similar in shape to the antenna shown in FIG. 7, but has a different form in that the feed circuit is connected to the inner side of the clearance instead of the left or right side of the clearance. On the other hand, it has the same characteristics as FIG. 9 in that a dielectric having a constant height is located in the clearance region.
도 11 은 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역에 유전체를 구비한 실시예이다.11 is an embodiment using an antenna radiator according to the present invention, in which a dielectric is provided in a clearance region.
도 11 에 따른 실시예는, 기본적으로 도 6 에 도시된 안테나와 동일한 형태를 가진다. 다만, 도 6 에 도시된 안테나의 클리어런스 영역에 일정한 높이를 가지는 유전체가 위치하도록 한 것이다. 따라서, 도 11 에 따른 안테나를 위쪽에서 내려다본 평면도는 도 6 과 동일한 형태를 가지게 된다. 도 11 와 같이, 안테나의 방사체 구성회로와 급전회로를 그라운드로부터 일정한 높이 만큼 이격시키게 되면, 향상된 안테나 방사 특성을 가질 수 있다. The embodiment according to FIG. 11 basically has the same form as the antenna shown in FIG. 6. However, the dielectric having a constant height is positioned in the clearance region of the antenna shown in FIG. 6. Therefore, the top view of the antenna according to FIG. 11 from the top has the same shape as that of FIG. 6. As shown in FIG. 11, when the radiator component circuit and the power feeding circuit of the antenna are separated from the ground by a predetermined height, the antenna radiator may have improved antenna radiation characteristics.
도 12 는 본 발명에 따른 안테나 방사체를 이용한 안테나로서, 클리어런스 영역의 일부에 유전체를 구비한 실시예이다. 12 is an embodiment using an antenna radiator according to the present invention, in which a dielectric part is provided in a part of a clearance region.
도 12(a), 12(b), 12(c) 에 따른 실시예는, 기본적으로 도 9 에 도시된 안테나와 동일한 형태를 가진다. 다만, 도 9 에 도시된 안테나의 클리어런스 영역의 일부에 일정한 높이를 가지는 유전체가 위치하도록 한 것이다. 즉, 도 12(a) 에 도시된 안테나는 클리어런스의 우측 일부에는 유전체가 위치하지 않으며, 그 이외의 영역에는 유전체가 위치한다. 또한, 유전체의 표면에 형성된 도전 선로와 그라운드 혹은 클리어런스에 형성된 도전 선로는, 도 12(a) 에 도시된 바와 같이, 유전체를 관통하는 도전 핀으로 연결될 수 있으며, 유전체 옆면을 따라 형성되는 도전 선로로 연결될 수도 있다. 한편, 도 12(b) 및 도 12(c) 는 클리어런스의 일부에 유전체가 제거된 또 다른 실시예들을 나타낸 것이다. 12 (a), 12 (b) and 12 (c) have basically the same shape as the antenna shown in FIG. However, the dielectric having a certain height is located in a part of the clearance region of the antenna shown in FIG. 9. That is, in the antenna shown in FIG. 12A, a dielectric is not located in a part of the right side of the clearance, and a dielectric is located in other areas. In addition, the conductive line formed on the surface of the dielectric and the conductive line formed on the ground or the clearance may be connected to conductive pins penetrating through the dielectric, as shown in FIG. May be connected. 12 (b) and 12 (c) show other embodiments in which a dielectric is removed from a part of the clearance.
도 13 은 본 발명에 따른 안테나 방사체를 이용한 안테나의 실시예로서, 방사체 구성회로의 일부를 그라운드와 다른 평면에 구현한 것이다. 즉, 방사체 구성회로의 일부를 그라운드 평면으로부터 일정한 거리 만큼 이격시킴으로서, 안테나 성능을 향상시키기 위한 것이다. 도 13 에서는 방사체 구성회로의 일부만을 그라운드와 다른 평면에 구현하였으나, 방사체 구성요소 전체를 그라운드와 다른 평면에 구현할 수도 있다.FIG. 13 is an embodiment of an antenna using an antenna radiator according to the present invention, in which part of the radiator configuration circuit is implemented on a plane different from ground. In other words, it is to improve antenna performance by separating a part of the radiator component circuit by a certain distance from the ground plane. In FIG. 13, only a part of the radiator component circuit is implemented in a plane different from the ground, but the entire radiator component may be implemented in a plane different from the ground.
도 14 는 본 발명에 따른 안테나 방사체를 이용한 안테나의 실시예로서, 방사체의 일부를 클리어런스 영역 밖으로 돌출시켜 구현한 것이다. 즉, 방사체 구성회로의 일부를 그라운드로부터 일정한 거리 만큼 이격시킴으로서, 안테나 성능을 향상시키기 위한 것이다. 도 14 에서는 방사체 구성회로의 일부만을 클리어런스 밖으로 돌출시켜 구현하였으나, 방사체 구성요소 전체를 그라운드와 다른 평면에 구현할 수도 있다. 도 14 와 같이 안테나 방사체의 일부를 클리어런스 영역 밖으로 돌출시키는 경우, 돌출된 방사체 구성회로를 이동통신 단말기의 케이스 표면에 형성할 수 있다. 14 is an embodiment of the antenna using the antenna radiator according to the present invention, a part of the radiator is implemented by protruding out of the clearance region. That is, the antenna performance is improved by separating a part of the radiator component circuit by a certain distance from the ground. In FIG. 14, only a part of the radiator component circuit is implemented by protruding out of the clearance, but the entire radiator component may be implemented in a plane different from the ground. When a part of the antenna radiator protrudes out of the clearance region as shown in FIG. 14, the protruding radiator configuration circuit may be formed on the case surface of the mobile communication terminal.
도 15 는 도 7 에 도시된 안테나와 도 9 에 도시된 안테나의 성능을 비교한 그래프이다. 도 15 에 도시된 바와 같이, 방사체 구성회로나 급전회로를 그라운드와 동일한 평면에 구성하지 않고 이격시켜 구성하면, 안테나 성능이 향상된다는 것을 알 수 있다. FIG. 15 is a graph comparing performance of the antenna shown in FIG. 7 and the antenna shown in FIG. 9. As shown in FIG. 15, it can be seen that the antenna performance is improved when the radiator constituting circuit or the power feeding circuit is spaced apart without being configured on the same plane as the ground.
도 16 은 본 발명에 따른 그라운드 방사 안테나의 방사체 구성 회로가 설치된 이동통신 단말기의 내부를 나타낸 것이다.16 is a diagram illustrating an inside of a mobile communication terminal in which a radiator configuration circuit of a ground radiation antenna according to the present invention is installed.
도 16 에 도시된 바와 같이, 방사체 구성 회로의 일부(161)는 그라운드를 형성하는 PCB(162) 의 평면으로부터 일정한 공간을 사이에 두고 돌출한 형상을 가진다. 즉, 방사체 구성 회로의 일부(161)는 PCB(162) 평면 내에 형성되지 아니하고, PCB 평면으로부터 연직 방향 혹은 일정한 각도를 이루는 방향으로 돌출되도록 한다. 또한, 방사체 구성 회로의 일부(161)는 PCB(162)와 평행하게 위치한 LCD 패널(163)의 반대 방향으로 돌출되는 것이 바람직하다.As shown in FIG. 16, a part 161 of the radiator constituting circuit has a shape protruding from a plane of the PCB 162 forming a ground with a predetermined space therebetween. That is, the portion 161 of the radiator constituting circuit is not formed in the PCB 162 plane, but protrudes from the PCB plane in a vertical direction or a direction forming a constant angle. In addition, the portion 161 of the radiator constituent circuit preferably projects in the opposite direction of the LCD panel 163 located parallel to the PCB 162.
도 17 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다.17 shows an embodiment of a ground radiation antenna according to the present invention.
도 17 에 도시된 바와 같이, 본 발명에 따른 그라운드 방사 안테나는 급전회로(171)와, 방사체 구성회로(172)를 포함하여 이루어진다. 이때, PCB 기판의 하면쪽으로 LCD 패널이 위치한다. As shown in FIG. 17, the ground radiation antenna according to the present invention includes a power supply circuit 171 and a radiator component circuit 172. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
본 실시예에 있어서, 급전회로(171)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판상에 형성된 급전회로(171)를 방사체 구성회로(172)와 연결한다. 급전회로(171)는 방사할 RF 신호를 입력받기 위한 급전점(1711)을 구비한다. 또한, 도 2 에 도시된 바와 같이, 급전회로(171)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1712)를 가질 수 있다. 이때, 집중회로 소자(1712)는 급전회로(171) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. In this embodiment, a part of the power supply circuit 171 is formed on the PCB substrate, and the other part connects the power supply circuit 171 formed on the PCB substrate with the radiator component circuit 172. The power supply circuit 171 includes a power supply point 1711 for receiving an RF signal to radiate. In addition, as illustrated in FIG. 2, the power supply circuit 171 may have a concentrated circuit element (inductive element or capacitive element) 1712. In this case, the lumped circuit element 1712 may be formed at various positions on the power feeding circuit 171 and may be formed by a combination of a plurality of lumped circuit elements.
PCB 그라운드 기판의 일부(1713)가 제거되어 PCB 기판에 형성된 급전회로(171)와 외부가 오픈된 형태를 가지는 형태도 가능할 수 있다.A portion 1713 of the PCB ground substrate may be removed to have a form in which the power supply circuit 171 formed on the PCB substrate and the outside are open.
본 실시예에 있어서, 방사체 구성회로(172)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판으로부터 공간을 가지고 돌출된 형상을 가진다. 방사체 구성회로(173)의 양단부는 모두 PCB 그라운드 기판에 연결된다. 또한, 도 2 에 도시된 바와 같이, 방사체 구성회로(172)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1722)를 가질 수 있다. 이때, 집중회로 소자(1722)는 방사체 구성회로(172) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. 다만, 도 2 에 도시된 바와 같이, 구현의 편의를 위해, 집중회로 소자(1722)는 방사체 구성회로(172) 중 PCB 기판상에 형성된 부분에 연결하는 것이 바람직하다. In this embodiment, a part of the radiator component circuit 172 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate. Both ends of the radiator component circuit 173 are connected to the PCB ground substrate. In addition, as shown in FIG. 2, the radiator component circuit 172 may have a lumped circuit element (inductive element or capacitive element) 1722. In this case, the lumped circuit element 1722 may be formed at various positions on the radiator constituting circuit 172, or may be a combination of a plurality of lumped circuit elements. However, as shown in FIG. 2, for convenience of implementation, the lumped circuit element 1722 may be connected to a portion of the radiator component circuit 172 formed on the PCB substrate.
도 18 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 18 shows an embodiment of a ground radiation antenna according to the present invention.
도 18(a) 에 도시된 바와 같이, 본 발명에 따른 그라운드 방사 안테나는 급전회로(181)와, 방사체 구성회로(182)를 포함하여 이루어진다. 이때, PCB 기판의 하면쪽으로 LCD 패널이 위치한다. As shown in FIG. 18A, the ground radiation antenna according to the present invention includes a power supply circuit 181 and a radiator configuration circuit 182. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
본 실시예에 있어서, 급전회로(181)는 PCB 기판상에 형성된다. 급전회로(181)는 방사할 RF 신호를 입력받기 위한 급전점(1811)을 구비한다. 또한, 도 18(a) 에 도시된 바와 같이, 급전회로(181)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1812)를 가질 수 있다. 이때, 집중회로 소자(1812)는 급전회로(181) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. In this embodiment, the power supply circuit 181 is formed on the PCB substrate. The power supply circuit 181 includes a power supply point 1811 for receiving an RF signal to radiate. In addition, as illustrated in FIG. 18A, the power supply circuit 181 may have an integrated circuit element (inductive element or capacitive element) 1812. In this case, the lumped circuit element 1812 may be formed at various positions on the power feeding circuit 181, or may be formed by a combination of a plurality of lumped circuit elements.
본 실시예에 있어서, 방사체 구성회로(182)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판으로부터 공간을 가지고 돌출된 형상을 가진다. 방사체 구성회로(183)의 양단부는 모두 PCB 그라운드 기판에 연결된다. 또한, 도 3(a) 에 도시된 바와 같이, 방사체 구성회로(182)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1822)를 가질 수 있다. 이때, 집중회로 소자(1822)는 방사체 구성회로(182) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. 다만, 도 18(a) 에 도시된 바와 같이, 구현의 편의를 위해, 집중회로 소자(1822)는 방사체 구성회로(182) 중 PCB 기판상에 형성된 부분에 연결하는 것이 바람직하다. In this embodiment, a part of the radiator component circuit 182 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate. Both ends of the radiator component circuit 183 are connected to the PCB ground substrate. Also, as shown in FIG. 3A, the radiator component circuit 182 may have a lumped circuit element (inductive element or capacitive element) 1822. In this case, the lumped circuit element 1822 may be formed at various positions on the radiator constituting circuit 182, or may be a combination of a plurality of lumped circuit elements. However, as shown in FIG. 18A, for convenience of implementation, the lumped circuit element 1822 may be connected to a portion of the radiator component circuit 182 formed on the PCB substrate.
또한, 도 18(b) 에 도시된 바와 같이, PCB 그라운드 기판이 급전회로(181)를 둘러싸도록 함으로써, 급전회로(181)가 도 18(a) 와 달리 외부로 노출되지 않는 형태를 가지도록 할 수도 있다. In addition, as shown in FIG. 18B, the PCB ground substrate surrounds the power supply circuit 181 so that the power supply circuit 181 is not exposed to the outside unlike FIG. 18A. It may be.
도 19 는 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 19 shows an embodiment of a ground radiation antenna according to the present invention.
도 19 에 도시된 바와 같이, 본 발명에 따른 그라운드 방사 안테나는 PCB 기판의 상면에 방사체 구성회로(192)가 형성되고, PCB 기판의 하면에는 급전회로(191)가 형성된다. 이때, PCB 기판의 하면쪽으로 LCD 패널이 위치한다. As shown in FIG. 19, in the ground radiation antenna according to the present invention, a radiator component circuit 192 is formed on an upper surface of a PCB substrate, and a power supply circuit 191 is formed on a lower surface of the PCB substrate. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
본 실시예에 있어서, 급전회로(191)는 PCB 기판의 하면에 형성된다. 급전회로(191)는 방사할 RF 신호를 입력받기 위한 급전점(1911)을 구비한다. 또한, 도 19 에 도시된 바와 같이, 급전회로(191)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1912)를 가질 수 있다. 이때, 집중회로 소자(1912)는 급전회로(191) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. In this embodiment, the power supply circuit 191 is formed on the lower surface of the PCB substrate. The power supply circuit 191 includes a power supply point 1911 for receiving an RF signal to radiate. In addition, as illustrated in FIG. 19, the power supply circuit 191 may have a concentrated circuit element (inductive element or capacitive element) 1912. In this case, the lumped circuit element 1912 may be formed at various positions on the power supply circuit 191, and may be formed of a combination of a plurality of lumped circuit elements.
본 실시예에 있어서, 방사체 구성회로(192)의 일부는 PCB 기판의 상면에 형성되며, 나머지 일부는 PCB 기판의 상면으로부터 공간을 가지고 돌출된 형상을 가진다. 방사체 구성회로(192)의 양단부는 모두 PCB 그라운드 기판에 연결된다. 이때, 방사체 구성회로(192)의 양단 또는 일단은 PCB 기판의 하면과 연결하기 위한 연결부(1923)를 구비할 수 있다. In this embodiment, a part of the radiator component circuit 192 is formed on the upper surface of the PCB substrate, the other part has a shape protruding with a space from the upper surface of the PCB substrate. Both ends of the radiator component circuit 192 are connected to the PCB ground substrate. In this case, both ends or one end of the radiator component circuit 192 may be provided with a connection portion 1923 for connecting to the lower surface of the PCB substrate.
또한, 도 19 에 도시된 바와 같이, 방사체 구성회로(192)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(1922)를 가질 수 있다. 이때, 집중회로 소자(1922)는 방사체 구성회로(192) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. 다만, 도 19 에 도시된 바와 같이, 구현의 편의를 위해, 집중회로 소자(1922)는 방사체 구성회로(192) 중 PCB 기판상에 형성된 부분에 연결하는 것이 바람직하다. Further, as shown in FIG. 19, the radiator constituent circuit 192 may have a lumped circuit element (inductive element or capacitive element) 1922. In this case, the lumped circuit element 1922 may be formed at various positions on the radiator constituting circuit 192, or may be a combination of a plurality of lumped circuit elements. However, as shown in FIG. 19, for convenience of implementation, the lumped circuit element 1922 may be connected to a portion of the radiator component circuit 192 formed on the PCB substrate.
도 20 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 20 shows an embodiment of a ground radiation antenna according to the present invention.
도 20 에 도시된 바와 같이, 본 발명에 따른 그라운드 방사 안테나는 급전회로(201)와, 방사체 구성회로(202)를 포함하여 이루어진다. 이때, PCB 기판의 하면쪽으로 LCD 패널이 위치한다. As shown in FIG. 20, the ground radiation antenna according to the present invention includes a power supply circuit 201 and a radiator component circuit 202. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
본 실시예에 있어서, 급전회로(201)는 PCB 기판상에 형성된다. 급전회로(201)는 방사할 RF 신호를 입력받기 위한 급전점(2011)을 구비한다. 또한, 도 5 에 도시된 바와 같이, 급전회로(201)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(2012)를 가질 수 있다. 이때, 집중회로 소자(2012)는 급전회로(201) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. In this embodiment, the power supply circuit 201 is formed on the PCB substrate. The power supply circuit 201 includes a power supply point 2011 for receiving an RF signal to radiate. In addition, as shown in FIG. 5, the power supply circuit 201 may have a lumped circuit element (inductive element or capacitive element) 2012. In this case, the lumped circuit element 2012 may be formed at various positions on the power supply circuit 201 and may be formed by a combination of a plurality of lumped circuit elements.
본 실시예에 있어서, 방사체 구성회로(202)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판으로부터 공간을 가지고 돌출된 형상을 가진다. 방사체 구성회로(203)의 일단은 PCB 그라운드 기판에 연결되나, 타단은 PCB 그라운드 기판과 연결되지 않는다. In this embodiment, a part of the radiator component circuit 202 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate. One end of the radiator component circuit 203 is connected to the PCB ground substrate, but the other end is not connected to the PCB ground substrate.
도 20 에 도시된 바와 같이, 방사체 구성회로(202)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(2022)를 가질 수 있다. 이때, 집중회로 소자(2022)는 방사체 구성회로(202) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. 다만, 도 20 에 도시된 바와 같이, 구현의 편의를 위해, 집중회로 소자(2022)는 방사체 구성회로(202) 중 PCB 기판상에 형성된 부분에 연결하는 것이 바람직하다. As shown in FIG. 20, the radiator component circuit 202 may have a lumped circuit element (inductive element or capacitive element) 2022. In this case, the lumped circuit element 2022 may be formed at various positions on the radiator constituent circuit 202, or may be a combination of a plurality of lumped circuit elements. However, as shown in FIG. 20, for convenience of implementation, the lumped circuit element 2022 may be connected to a portion of the radiator component circuit 202 formed on the PCB substrate.
도 21 은 본 발명에 따른 그라운드 방사 안테나의 실시예를 나타낸 것이다. 도 21 에 도시된 바와 같이, 본 발명에 따른 그라운드 방사 안테나는 급전회로(211)와, 방사체 구성회로(212)를 포함하여 이루어진다. 이때, PCB 기판의 하면쪽으로 LCD 패널이 위치한다. 21 shows an embodiment of a ground radiation antenna according to the present invention. As shown in FIG. 21, the ground radiation antenna according to the present invention includes a power supply circuit 211 and a radiator component circuit 212. At this time, the LCD panel is located toward the lower surface of the PCB substrate.
본 실시예에 있어서, 급전회로(211)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판상에 형성된 급전회로(211)를 방사체 구성회로(212)와 연결한다. 급전회로(211)는 방사할 RF 신호를 입력받기 위한 급전점(2111)을 구비한다. 또한, 도 2 에 도시된 바와 같이, 급전회로(21)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(2112)를 가질 수 있다. 이때, 집중회로 소자(2112)는 급전회로(211) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. In this embodiment, a part of the power supply circuit 211 is formed on the PCB substrate, and the other part connects the power supply circuit 211 formed on the PCB substrate with the radiator component circuit 212. The power supply circuit 211 includes a power supply point 2111 for receiving an RF signal to radiate. In addition, as shown in FIG. 2, the power supply circuit 21 may have an integrated circuit element (inductive element or capacitive element) 2112. In this case, the lumped circuit element 2112 may be formed at various positions on the power supply circuit 211, and may be formed of a combination of a plurality of lumped circuit elements.
본 실시예에 있어서, 방사체 구성회로(212)의 일부는 PCB 기판상에 형성되며, 나머지 일부는 PCB 기판으로부터 공간을 가지고 돌출된 형상을 가진다. 방사체 구성회로(213)의 일단부는 PCB 그라운드 기판에 연결되며, 타단부는 PCB 그라운드 기판과 연결되지 않는다. In this embodiment, a part of the radiator component circuit 212 is formed on the PCB substrate, and the other part has a shape protruding with a space from the PCB substrate. One end of the radiator component circuit 213 is connected to the PCB ground substrate, and the other end is not connected to the PCB ground substrate.
또한, 도 21 에 도시된 바와 같이, 방사체 구성회로(212)는 집중회로 소자(유도성 소자 혹은 용량성 소자)(2122)를 가질 수 있다. 이때, 집중회로 소자(2122)는 방사체 구성회로(212) 상의 다양한 위치에 형성될 수 있으며, 다수의 집중회로 소자의 조합으로 이루어질 수도 있다. 다만, 도 6 에 도시된 바와 같이, 구현의 편의를 위해, 집중회로 소자(2122)는 방사체 구성회로(212) 중 PCB 기판상에 형성된 부분에 연결하는 것이 바람직하다. In addition, as shown in FIG. 21, the radiator construction circuit 212 may have a lumped circuit element (inductive element or capacitive element) 2122. In this case, the lumped circuit element 2122 may be formed at various positions on the radiator constituting circuit 212, or may be a combination of a plurality of lumped circuit elements. However, as shown in FIG. 6, for convenience of implementation, the lumped circuit element 2122 may be connected to a portion of the radiator component circuit 212 formed on the PCB substrate.
본 실시예에 따른 그라운드 방사 안테나는 이중대역 특성을 가질 수 있다. The ground radiation antenna according to the present embodiment may have a dual band characteristic.
도 22 는 본 발명에 따른 그라운드 방사 안테나의 조립 방법을 나타낸 것이다. 22 shows a method of assembling the ground radiation antenna according to the present invention.
본 발명에 따른 그라운드 방사 안테나는 적어도 일단이 PCB 그라운드 기판에 연결되며, PCB 그라운드 기판으로부터 공간을 가지고 위쪽으로(LCD 등 도전성 소자 반대편으로) 돌출된 방사체 구성회로를 필요로 한다. 따라서, 이러한 방사체 구성회로를 보다 용이하게 조립하는 방법이 필요하게 된다. The ground radiating antenna according to the present invention requires at least one end to be connected to a PCB ground substrate, and requires a radiator component circuit projecting upwardly (as opposed to a conductive element such as an LCD) with a space from the PCB ground substrate. Therefore, there is a need for a method of assembling such a radiator constituting circuit more easily.
먼저, 본 발명에 따른 방사체 구성회로를 조립하는 방법으로는, "ㄷ" 자 형태의 도전선로를 제조한 후 이를 세워서 PCB 그라운드에 연결시키는 방법이 있다. 그러나, "ㄷ" 자 형태의 도전선로를 만드는 경우 생산성이 떨어질 우려가 있다. First, as a method of assembling the radiator component circuit according to the present invention, there is a method of manufacturing a "c" shaped conductive line and then standing it up and connecting it to the PCB ground. However, when the "c" shaped conductive line is made, there is a concern that the productivity may decrease.
따라서, 도 22 에 도시한 바와 같이, 이동통신 단말기의 일면 덮개(221) 쪽에 도전선로 패턴(225)을 형성하고, 타면(222)에 급전회로(223) 및 기둥 형상의 연결선로(224a, 224b)를 형성한 후, 이동통신 단말기의 일면 덮개(221)와 타면(222) 덮개를 결합하였을 때, 방사체 구성회로가 비로소 연결되어 완성되는 방식으로 조립하는 것이 바람직하다. Accordingly, as shown in FIG. 22, a conductive line pattern 225 is formed on one side cover 221 of the mobile communication terminal, and a power supply circuit 223 and columnar connection lines 224a and 224b are formed on the other side 222. ), And when one cover 221 and the other surface 222 cover of the mobile communication terminal is combined, it is preferable to assemble in such a way that the radiator component circuits are connected and completed.
상기와 같이, 본 발명에 따른 방사체를 이용하여 안테나를 구성하면, 방사체를 급전회로와 일체화시켜 구성하든 혹은 별도로 구성하든, 복잡한 구조의 방사 구조체를 구성하지 않고도 그 구조가 현저히 간단하면서도 방사 효율이 좋은 안테나를 구현할 수 있게 된다.As described above, when the antenna is constructed using the radiator according to the present invention, whether the radiator is integrated with the power supply circuit or separately configured, the structure is remarkably simple and has good radiation efficiency without forming a complicated radiating structure. The antenna can be implemented.
상기 실시예 이외에도, 본 발명에 따른 방사체와 여러가지 형태의 급전회로들을 결합함으로써, 다양한 형태의 그라운드 방사 안테나를 구현할 수 있다. In addition to the above embodiment, by combining the radiator according to the present invention and various types of feed circuits, it is possible to implement a variety of ground radiation antenna.
본 발명에 따른 안테나는 이동통신 단말기에 사용될 수 있다.The antenna according to the present invention can be used in a mobile communication terminal.

Claims (16)

  1. 디바이스의 그라운드를 이용하여 RF 신호를 방사하는 안테나의 방사체에 있어서, A radiator of an antenna that radiates an RF signal using ground of a device,
    디바이스의 기판에 형성된 그라운드; Ground formed in the substrate of the device;
    캐패시터; 및Capacitors; And
    상기 그라운드와 캐패시터를 직접 연결하는 도전 선로A conductive line directly connecting the ground and the capacitor
    를 포함하여 이루어지되,Including but not limited to,
    상기 캐패시터 또는 상기 도전선로의 일부는 상기 그라운드 평면으로부터 이격되어 형성되는 안테나 방사체.And a part of the capacitor or the conductive line is spaced apart from the ground plane.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 이격된 캐패시터 또는 도전선로의 일부와 그라운드 평면과의 사이에는 유전체가 구비된 것을 특징으로 하는 안테나 방사체.And a dielectric provided between a part of the spaced capacitor or the conductive line and the ground plane.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 유전체는 공기인 것을 특징으로 하는 안테나 방사체.And the dielectric is air.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 그라운드 평면으로부터 이격되어 형성된 캐패시터 또는 도전선로의 일부는 상기 유전체의 표면에 형성되는 것을 특징으로 하는 안테나 방사체.And a portion of the capacitor or conductive line formed spaced apart from the ground plane is formed on the surface of the dielectric.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 유전체의 상면은 그라운드 평면에 대하여 기울기를 가지는 것을 특징으로 하는 안테나 방사체.And the top surface of the dielectric has an inclination with respect to the ground plane.
  6. 제 1 항에 있어서,The method of claim 1,
    그라운드에 의해 제공되는 인덕턴스와 상기 캐패시터 사이에 공진을 일으키는 것을 특징으로 하는 안테나 방사체.And a resonance between the inductance provided by the ground and the capacitor.
  7. 디바이스의 그라운드를 이용하여 RF 신호를 방사하는 안테나의 방사체에 있어서, A radiator of an antenna that radiates an RF signal using ground of a device,
    디바이스의 기판에 형성된 그라운드; Ground formed in the substrate of the device;
    캐패시터; 및Capacitors; And
    상기 그라운드와 캐패시터를 직접 연결하는 도전 선로A conductive line directly connecting the ground and the capacitor
    를 포함하여 이루어지되,Including but not limited to,
    상기 도전선로의 일부는 상기 그라운드 평면에 존재하되, 그라운드 영역 밖으로 돌출된 것을 특징으로 하는 안테나 방사체.A portion of the conductive line is present in the ground plane, characterized in that protruding out of the ground area.
  8. 도전성 선로로 형성되되, 상기 도전성 선로의 양단 중 적어도 일단이 그라운드 기판에 연결되고, 상기 도전성 선로의 적어도 일부가 그라운드 기판으로부터 돌출되어 상기 그라운드 기판과 다른 평면상에 형성되는 방사체 구성회로; 및A radiator component circuit formed of a conductive line, wherein at least one of both ends of the conductive line is connected to a ground substrate, and at least a portion of the conductive line protrudes from the ground substrate to be formed on a plane different from the ground substrate; And
    도전성 선로로 형성되되, 방사할 RF 신호를 입력받는 급전점을 포함하며, 적어도 일부가 기판에 형성되는 급전회로A feeder circuit formed of a conductive line and including a feed point receiving an RF signal to be radiated, and at least part of which is formed on a substrate
    를 포함하여 이루어지는 그라운드 방사 안테나.Ground radiation antenna comprising a.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 방사체 구성회로는 그라운드 기판으로부터 수직한 방향으로 돌출된 것을 특징으로 하는 그라운드 방사 안테나.And the radiator component circuit protrudes in a direction perpendicular to the ground substrate.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 급전회로의 일단은 급전점을 형성하고, 타단은 상기 방사체 구성회로와 연결되는 것을 특징으로 하는 그라운드 방사 안테나.One end of the feed circuit forms a feed point, the other end is ground radiation antenna, characterized in that connected to the radiator component circuit.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 급전회로는 상기 그라운드 기판으로 둘러싸인 것을 특징으로 하는 그라운드 방사 안테나.And the power supply circuit is surrounded by the ground substrate.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 급전회로는 삼면이 상기 그라운드 기판으로 둘러싸이고, 한면은 외부로 오픈된 것을 특징으로 하는 그라운드 방사 안테나. The power supply circuit is a ground radiation antenna, characterized in that three sides are surrounded by the ground substrate, one side is opened to the outside.
  13. 제 8 항에 있어서, The method of claim 8,
    상기 방사체 구성회로는 집중회로 소자를 포함하는 것을 특징으로 하는 그라운드 방사 안테나. And the radiator component circuit comprises a lumped circuit element.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 집중회로 소자는 기판상에 형성되는 것을 특징으로 하는 그라운드 방사 안테나. And the lumped circuit element is formed on a substrate.
  15. 제 8 항에 있어서,The method of claim 8,
    상기 그라운드 기판으로부터 돌출된 방향은 이동통신 단말기의 도전성 패널의 반대 방향인 것을 특징으로 하는 그라운드 방사 안테나.And a direction protruding from the ground substrate is opposite to the conductive panel of the mobile communication terminal.
  16. 제 8 항에 있어서, The method of claim 8,
    상기 방사체 구성회로의 돌출된 일부는 이동통신 단말기의 상부 덮개에 형성되는 것을 특징으로 하는 그라운드 방사 안테나.The protruding portion of the radiator component circuit is a ground radiation antenna, characterized in that formed on the upper cover of the mobile communication terminal.
PCT/KR2012/001027 2010-04-09 2012-02-10 Ground radiator using capacitor and ground antenna WO2012138050A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280016814.3A CN103460505B (en) 2011-04-06 2012-02-10 Make ground connection radiant body and the grounded antenna of electricity container
US14/047,008 US9570800B2 (en) 2010-04-09 2013-10-06 Ground antenna and ground radiator using capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0031913 2011-04-06
KR1020110031913A KR101740061B1 (en) 2010-04-09 2011-04-06 Ground radiator using capacitor
KR1020110113754A KR101862870B1 (en) 2011-04-06 2011-11-03 Ground radiation antenna
KR10-2011-0113754 2011-11-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/047,008 Continuation US9570800B2 (en) 2010-04-09 2013-10-06 Ground antenna and ground radiator using capacitor

Publications (2)

Publication Number Publication Date
WO2012138050A2 true WO2012138050A2 (en) 2012-10-11
WO2012138050A3 WO2012138050A3 (en) 2012-11-29

Family

ID=46969633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001027 WO2012138050A2 (en) 2010-04-09 2012-02-10 Ground radiator using capacitor and ground antenna

Country Status (1)

Country Link
WO (1) WO2012138050A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441329A (en) * 2013-08-21 2013-12-11 刘扬 LCD metal plate radiating antenna of smartphone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065638A (en) * 2003-07-24 2006-06-14 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Tuning improvements in "inverted-l" planar antennas
KR20080112502A (en) * 2007-06-21 2008-12-26 (주)케이티에프테크놀로지스 Multiband antenna and mobile therminal having thereof
KR20100063414A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Multiband antenna apparatus
KR20110019666A (en) * 2009-08-20 2011-02-28 라디나 주식회사 Inverted f antenna using branch capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060065638A (en) * 2003-07-24 2006-06-14 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Tuning improvements in "inverted-l" planar antennas
KR20080112502A (en) * 2007-06-21 2008-12-26 (주)케이티에프테크놀로지스 Multiband antenna and mobile therminal having thereof
KR20100063414A (en) * 2008-12-03 2010-06-11 삼성전자주식회사 Multiband antenna apparatus
KR20110019666A (en) * 2009-08-20 2011-02-28 라디나 주식회사 Inverted f antenna using branch capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441329A (en) * 2013-08-21 2013-12-11 刘扬 LCD metal plate radiating antenna of smartphone
CN103441329B (en) * 2013-08-21 2017-03-01 深圳汉阳天线设计有限公司 Smart mobile phone LCD metallic plate active antenna

Also Published As

Publication number Publication date
WO2012138050A3 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2020027568A1 (en) Electronic device comprising antenna array
WO2018182109A1 (en) Multiband base station antenna
WO2015041422A1 (en) Antenna apparatus and electronic device having same
WO2017146394A1 (en) Flexible printed circuit board
WO2021162262A1 (en) Antenna and electronic device comprising same
WO2020189935A1 (en) Antenna and electronic device including the same
WO2020231077A1 (en) Base station antenna radiator having function for suppressing unwanted resonances
WO2021040366A1 (en) Multi-band patch antenna
WO2018182091A1 (en) Ring-shaped antenna and earphone module having same
WO2020045963A1 (en) Electronic device comprising antenna array
WO2010076982A2 (en) Infinite wavelength antenna device
WO2013180479A1 (en) Antenna and communication device comprising same
WO2013065893A1 (en) Slotted augmented antenna
WO2017138745A1 (en) Flexible circuit board
WO2020190091A1 (en) Antenna structure comprising transmission line for transitioning and feeding between multiple frequency bands and electronic device comprising same
WO2020246795A1 (en) Electronic device for tuning antenna
WO2016035994A1 (en) Resonant frequency tunable antenna
EP3304872A1 (en) Display device
WO2019017594A1 (en) Wireless communication chip having embedded antenna, embedded antenna for wireless communication chip, and method for manufacturing wireless communication chip having embedded antenna
WO2009154417A2 (en) Multiband antenna for portable terminal unit and portable terminal unit equipped with the same
WO2012138050A2 (en) Ground radiator using capacitor and ground antenna
WO2020141692A1 (en) Antenna using conductive side member and electronic device including same
WO2021091166A1 (en) Printed circuit board and electronic apparatus including same
WO2022035109A1 (en) Antenna device
WO2022145794A1 (en) Antenna and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768066

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768066

Country of ref document: EP

Kind code of ref document: A2