WO2012137539A1 - 紫外線センサ - Google Patents

紫外線センサ Download PDF

Info

Publication number
WO2012137539A1
WO2012137539A1 PCT/JP2012/053424 JP2012053424W WO2012137539A1 WO 2012137539 A1 WO2012137539 A1 WO 2012137539A1 JP 2012053424 W JP2012053424 W JP 2012053424W WO 2012137539 A1 WO2012137539 A1 WO 2012137539A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protective film
waves
ultraviolet
light
Prior art date
Application number
PCT/JP2012/053424
Other languages
English (en)
French (fr)
Inventor
裕徳 難波
聡 和賀
康男 早川
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2013508782A priority Critical patent/JPWO2012137539A1/ja
Publication of WO2012137539A1 publication Critical patent/WO2012137539A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/283Interference filters designed for the ultraviolet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type

Definitions

  • the present invention relates to an ultraviolet sensor, and more particularly to an ultraviolet sensor capable of being thinned and capable of reducing manufacturing costs.
  • an ultraviolet sensor that can be mounted on a portable electronic device such as a mobile phone so that the amount of ultraviolet light can be measured simply and the ultraviolet light countermeasure can be taken effectively.
  • Such an ultraviolet sensor is required to be small and thin in addition to having good light receiving sensitivity with respect to the amount of ultraviolet light irradiated.
  • FIG. 7 a cross-sectional view of the ultraviolet sensor 101 disclosed in Patent Document 1 is shown in FIG.
  • the ultraviolet sensor 101 shown in FIG. 7 is composed of a semiconductor substrate 111, an insulating oxide film 112, and an SOI substrate 110 having an SOI (Silicon On Insulator) layer 113 stacked on the oxide film 112.
  • SOI Silicon On Insulator
  • N-type diffusion regions 114 and P-type diffusion regions 115 are alternately formed to constitute a lateral type diode including a lateral PN junction region.
  • the diode formed on the SOI substrate 110 has light receiving sensitivity in a wide wavelength region, the light reaching the SOI layer 110 is limited to a wavelength equal to or less than a predetermined wavelength (that is, shielding incident light of a predetermined wavelength or more)
  • the filter film 130 in order to provide a predetermined distance between the filter film 130 and the SOI layer 113, it is necessary to form a frame (not shown) for supporting the filter film 130 on the outer periphery of the semiconductor substrate 111.
  • the frame is provided so as to surround the SOI layer 113, and the filter film 130 is formed on the frame so as to cover the SOI layer 113.
  • the distance between the SOI layer 113 and the filter film 130 is formed.
  • a recessed package and store the SOI substrate 110 therein.
  • An insertion portion for fixing the filter film 130 is formed in the vicinity of the opening of the concave package, and the filter film 130 can be fixed using an adhesive.
  • the space between the SOI layer 113 and the filter film 130 is provided by appropriately designing the height of the package or forming the position of the insertion portion at a predetermined position.
  • the conventional ultraviolet sensor 101 since it is necessary to prepare such a frame or package and provide a space between the SOI layer 113 and the filter film 130, it is difficult to miniaturize and thin the ultraviolet sensor 101. Furthermore, since the process of forming the frame and the process of preparing the package and adhering the filter film 130 are required, it is difficult to reduce the manufacturing cost.
  • the filter film 130 is generally laminated on a quartz substrate (not shown) having good light transmittance and adhered to a frame or a package.
  • the quartz substrate is required to have sufficient strength so as to prevent breakage and cracking in the manufacturing process and to ensure reliability in a drop test and the like.
  • the quartz substrate is formed to have a thickness of, for example, about 0.3 mm to 0.5 mm, which has been an obstacle to reducing the thickness of the ultraviolet sensor 101. Further, the quartz substrate is an expensive member, which has been an obstacle to cost reduction.
  • An object of the present invention is to solve the above-mentioned problems, and to provide an ultraviolet sensor which can realize thinning and reduce the manufacturing cost.
  • the ultraviolet sensor according to the present invention transmits a light receiving element that generates light by receiving light containing ultraviolet light, a protective film laminated on the light receiving surface side of the light receiving element, and UV-A waves and UV-B waves. And the filter film is laminated on the surface of the protective film.
  • the filter film without providing a space between it and the protective film, and it is possible to omit the quartz substrate and the like used as a support substrate for the filter film. Can be realized.
  • the process of forming the frame for supporting the filter membrane and adhering the filter membrane, or the process of preparing and assembling the package, etc. is not necessary, so that the manufacturing cost can be reduced. Furthermore, since the filter film can be formed without using an expensive quartz substrate, the manufacturing cost can be further reduced.
  • the protective film is preferably formed to have a film thickness of 98 nm to 117 nm, 194 nm to 217 nm, or 291 nm to 314 nm.
  • the reflectance of UV-B waves generated by the filter film and the protective film can be suppressed to 45% or less, and the reflectance of UV-A waves can be suppressed to 50% or less Therefore, it is possible to provide an ultraviolet sensor having better light receiving sensitivity for UV-A waves and UV-B waves.
  • the difference between the reflectances of the UV-B wave and the UV-A wave can be suppressed to 10% or less, it is possible to suppress the variation in light receiving sensitivity to the UV-A wave and the UV-B wave.
  • the protective film is preferably formed using silicon oxide.
  • the SOI layer can be well protected, and characteristic deterioration due to external environment (humidity, temperature, etc.) or mechanical damage can be prevented.
  • the light transmittance in the wavelength range of UV-A waves and UV-B waves is high and the refractive index is low, it is possible to improve the light reception sensitivity of the ultraviolet sensor.
  • the filter film is composed of a multilayer film in which low refractive index materials (refractive index 1.3 to 1.5) and high refractive index materials (refractive index 1.9 to 2.2) are alternately laminated. Is preferred. In this way, UV-A waves and UV-B waves are transmitted, and good filter characteristics for blocking UV-C waves (ultraviolet light having a wavelength of about 280 nm or less) and visible light (light having a wavelength of about 400 nm or more) are obtained. be able to.
  • the light receiving element preferably includes a semiconductor substrate, an oxide layer formed on the semiconductor substrate, and an SOI layer formed on the oxide layer. is there. In this way, it is possible to provide an ultraviolet sensor that has good light receiving sensitivity to UV-A waves and UV-B waves, and that can be miniaturized and thinned.
  • the filter film can be formed without providing a space between the protective film, and the quartz substrate etc. used as a support substrate for the filter film can be omitted. Thinning can be realized.
  • the process of forming the frame for supporting the filter membrane and adhering the filter membrane, or the process of preparing and assembling the package, etc. is not necessary, so that the manufacturing cost can be reduced. Furthermore, since the filter film can be formed without using an expensive quartz substrate, the manufacturing cost can be further reduced.
  • the ultraviolet ray sensor of the present invention it is possible to provide an ultraviolet ray sensor which can realize a reduction in thickness and can reduce the manufacturing cost.
  • FIG. 2 is a schematic cross-sectional view of the ultraviolet sensor cut along the line II-II in FIG. It is a schematic cross section which shows the structure of the filter film in an ultraviolet sensor. It is a graph which shows the relationship of reflectance and wavelength when a filter film
  • (A) A graph showing the relationship between the average reflectance of UV-A waves and the average reflectance of UV-B waves and the film thickness of the protective film,
  • FIG. 1 the model top view of the ultraviolet-ray sensor 1 in this embodiment is shown.
  • FIG. 2 shows a schematic cross-sectional view of the ultraviolet sensor 1 cut along the line II-II in FIG.
  • the protective film 20 and the filter film 30 are omitted.
  • the ultraviolet sensor 1 of the present embodiment is stacked on a semiconductor substrate 11, an oxide film 12 formed on the semiconductor substrate 11, an SOI layer 13 formed on the oxide film 12, and an SOI layer 13.
  • a filter film 30 which transmits UV-A waves and UV-B waves.
  • the SOI substrate 10 is composed of the semiconductor substrate 11, the oxide film 12 and the SOI layer 13, and the semiconductor substrate 11 and the SOI layer 13 are insulated by the oxide film 12.
  • the E + -shaped N + region 14 and the ⁇ -shaped P + region 15 are formed to face each other.
  • the comb teeth 14a of the N + region 14 and the comb teeth 15a of the P + region 15 are formed, respectively, and the comb teeth 14a and the comb teeth 15a are spaced apart from each other. It is arranged to be engaged.
  • the N + region 14 is a high concentration N type diffusion region formed by diffusing an N type impurity such as phosphorus (P) or arsenic (As) at a relatively high concentration in the SOI layer 13.
  • the P + region 15 is a high concentration P type diffusion region formed by diffusing a P type impurity such as boron (B) to a relatively high concentration.
  • a P ⁇ region 16 in which a P-type impurity is diffused to a relatively low concentration is formed between the opposing N + region 14 and the P + region 15.
  • a lateral PN junction is formed by the N + region 14, the P + region 15 and the P ⁇ region 16 to form a lateral photodiode.
  • a depletion layer (not shown) is formed in the P ⁇ region 16, and when light including ultraviolet light is irradiated in the vicinity of the depletion layer, electron-hole pairs are generated.
  • wiring electrode layers (not shown) formed of conductive materials such as aluminum (Al), titanium (Ti), tungsten (W), etc. in N + region 14 and P + region 15 ) Is connected.
  • the wiring electrode layer is drawn to the outside through contact holes (not shown) formed in the protective film 20 and the filter film 30, and an output current generated by the received light can be extracted.
  • the wiring electrode layer and the contact hole are formed so as not to overlap with the P ⁇ region 16 which is the light receiving region.
  • the ultraviolet sensor 1 is not limited to the configuration as shown in FIG. 1, and the configuration in which the comb teeth 14a of the N + region 14 and the comb teeth 15a of the P + region 15 are increased, or the comb teeth are not provided.
  • the N + region 14 and the P + region 15 formed in an I shape may be opposed to each other.
  • the SOI substrate 10 is not particularly limited in its configuration or manufacturing method.
  • the SOI substrate 10 for example, one manufactured by a bonding method or a SIMOX (Silicon Implanted Oxide) method can be used.
  • a protective film 20 is formed on the light receiving surface side of the SOI layer 13.
  • the protective film 20 is formed to protect the SOI layer 13 from external environment (humidity, temperature, etc.), mechanical damage in the manufacturing process, chemical damage such as chemicals, and the like.
  • the protective film 20 is preferably formed of an insulating material having a high light transmittance in the wavelength range of UV-A waves and UV-B waves and a low refractive index.
  • an insulating material such as silicon oxide (SiO 2 ) or NSG (Nondoped Silica Glass) can be used, and in this embodiment, it is formed using silicon oxide.
  • UV light refers to light having a wavelength shorter than visible light, and refers to light with a wavelength of 100 nm to 400 nm.
  • UV (Ultraviolet) is synonymous with an ultraviolet-ray.
  • UV-A wave the long wavelength ultraviolet light
  • UV-B wave the intermediate wavelength ultraviolet light
  • UV- C wave the short wavelength ultraviolet light
  • UV-C waves have stronger energy than UV-A waves and UV-B waves, and are considered to have strong bactericidal action, but most of the UV-C waves of sunlight are absorbed by the ozone layer It has never been reached the earth. Therefore, the ultraviolet sensor 1 has good light receiving sensitivity for UV-A waves and UV-B waves, and for light of other wavelengths (UV-C waves and wavelength regions of visible light or more) Is required not to be detected.
  • the thickness of the SOI layer is formed to be approximately 200 nm to 400 nm.
  • the lateral photodiode formed on the SOI substrate 10 has light receiving sensitivity over a wide wavelength range including ultraviolet light and visible light. Therefore, the UV-A wave and the UV-B wave are transmitted, and the filter film 30 having a filter characteristic capable of shielding the UV-C wave and the visible light is laminated on the surface of the protective film 20.
  • the ultraviolet sensor 1 can detect the UV-A wave and the UV-B wave transmitted through the filter film 30 and received in the light receiving area of the lateral photodiode.
  • the filter film 30 is laminated on the surface of the protective film 20.
  • the filter film 30 can be formed without providing a space between the filter film 30 and the protective film 20.
  • the manufacturing cost can be reduced. Furthermore, since the filter film 30 can be formed without using an expensive quartz substrate, the manufacturing cost can be further reduced.
  • FIG. 3 shows a schematic cross-sectional view of the filter film 30 in the present embodiment.
  • low refractive index material reffractive index 1.3 to 1.5
  • high refractive index material reffractive index 1.9 to 2.2
  • MgF 2 magnesium fluoride
  • SiO 2 silicon oxide
  • Al 2 O 3 aluminum oxide
  • the high refractive index material 32 may be tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), lanthanum oxide (La 2 O 3 ), or any one of the respective materials. A mixed material etc. can be used.
  • the filter film 30 is configured such that the high refractive index material 32 is disposed on the protective film 20 side, and the low refractive index material 31 is disposed on the light receiving surface side of the filter film 30.
  • the low refractive index material 31 and the high refractive index material 32 can be formed by a thin film method such as a vapor deposition method, and form a multilayer film in which 20 or more layers are alternately stacked.
  • the filter film 30 has a configuration in which 24 layers are stacked, and the total thickness thereof is about 2 ⁇ m.
  • FIG. 4 shows the relationship between the reflectance of the filter film 30 alone and the wavelength of light in the present embodiment, and the relationship between the reflectance and the wavelength of light when the filter film 30 is stacked on the protective film 20.
  • the film thickness of the protective film 20 at this time is formed to be about 344 nm.
  • the reflectance of the filter film 30 alone is about 10% in the wavelength range (280 nm to 400 nm) of the UV-A wave and the UV-B wave, and the UV-C wave (280 nm or less) and In the visible light region (400 nm or more), the reflectance is 90% or more. That is, it can be said that the filter film 30 has a good filter characteristic of transmitting only the UV-A wave and the UV-B wave.
  • the thickness of the SOI layer 13 is thin as described above, so that the near infrared region Light of a wavelength in the region is transmitted without being absorbed by the photodiode of the SOI layer 13. For this reason, light in the near infrared region transmitted through the filter film 30 is not detected, and the detection sensitivity of the ultraviolet sensor 1 is not affected. Therefore, the ultraviolet sensor 1 can have good light receiving sensitivity to UV-A waves and UV-B waves.
  • the reflectance of UV-B waves (280 nm to 320 nm) increases to about 50% to 65%, and the reflectance of UV-A waves (320 nm to 400 nm) is about 22% to 50%, and the wavelength dependence is Increase.
  • the difference between the reflectance of the UV-A wave and the reflectance of the UV-B wave is also large.
  • the detection sensitivity of the ultraviolet sensor 1 is lowered. Since the UV-B wave has stronger energy than the UV-A wave, it is not preferable that the detection sensitivity of the UV-B wave is lowered. Also, as shown in FIG. 4, when the difference in reflectance between UV-A and UV-B waves is large, or when the wavelength dependency of the reflectance is large, the variation in detection sensitivity is large depending on the wavelength of incident light. Therefore, the detection accuracy of the ultraviolet ray sensor 1 may be reduced.
  • FIG. 5A shows the relationship between the average reflectance of the UV-A wave and the UV-B wave and the film thickness of the protective film 20 for the ultraviolet sensor 1 in which the protective film 20 and the filter film 30 are stacked on the SOI substrate 10.
  • the reflectances of the UV-A wave and the UV-B wave change with periodicity.
  • the reflectance of UV-A waves changes periodically in the range of about 33% to 51%
  • the reflectance of UV-B waves changes in the range of about 38% to 60%.
  • FIG. 5 (b) is a graph showing the difference between the average reflectance of the UV-A wave and the average reflectance of the UV-B wave shown in FIG. 5 (a).
  • FIG. 5 (b) shows the value calculated by (average reflectance of UV-B waves)-(average reflectance of UV-A waves), and in the region where the difference in average reflectance in the graph is positive, And UV-B waves are greater than UV-A waves.
  • the difference in average reflectance largely fluctuates with the film thickness of the protective film 20.
  • the ultraviolet sensor 1 is required to have good detection sensitivity for UV-B waves having stronger energy and to have small variation in detection sensitivity between UV-A waves and UV-B waves. There is.
  • the average reflectance of the UV-B wave shown in FIG. 5A is low and the difference in the average reflectance shown in FIG. 5B is close to zero.
  • the thickness of the protective film 20 is changed variously in FIGS. 5A and 5B, the thickness and the configuration of the filter film 30 are not changed, and they are shown in FIGS. 3 and 4. It has a configuration and filter characteristics.
  • the protective film 20 is formed of silicon oxide (SiO 2 ) which is a low refractive material having a refractive index of about 1.35 to 1.48.
  • both the reflectance of the UV-A wave (ultraviolet light of wavelength 320 nm to 400 nm) and the UV-B wave (ultraviolet light of wavelength 280 nm to 320 nm) generated by the filter film 30 and the protective film 20 can be reduced. Is possible.
  • 311 nm is the central wavelength of the ultraviolet wavelength (280 nm to 350 nm).
  • the protective film 20 is more preferably formed to have a film thickness of 98 nm to 117 nm, 194 nm to 217 nm, or 291 nm to 314 nm.
  • the protective film 20 in this film thickness range, the reflectance of UV-B waves generated by the filter film 30 and the protective film 20 can be suppressed to 45% or less. Therefore, good light receiving sensitivity can be obtained for UV-B waves having stronger energy than UV-A waves.
  • the difference in reflectance between UV-A and UV-B waves can be suppressed to 10% or less, it is possible to suppress variations in light receiving sensitivity to UV-A waves and UV-B waves. .
  • FIG. 6 is a graph showing the relationship between the reflectance and the wavelength when the filter film 30 is stacked on the protective film 20 with different thicknesses.
  • the optical film thickness of the protective film 20 is 0.246 ⁇ ⁇ ⁇ 2 (actual film thickness about 102 nm), 0.246 ⁇ ⁇ ⁇ 4 (actual film thickness about 204 nm), 0.246 ⁇ ⁇ ⁇ 4 It shows the reflectance when it is formed on (the actual film thickness of about 306 nm).
  • any optical film thickness in the range of 0.246 ⁇ ⁇ ⁇ (2 ⁇ n ⁇ 0.3) to 0.246 ⁇ ⁇ ⁇ (2 ⁇ n + 0.3) ( ⁇ 311 nm, n is a natural number of 1 or more) And within the film thickness range of 98 nm to 117 nm, or 194 nm to 217 nm, or 291 nm to 314 nm. Further, as a comparison, the reflectance when the filter film 30 is laminated on the protective film 20 having an optical film thickness of 0.246 ⁇ ⁇ ⁇ 7 (actual film thickness of about 357 nm) is shown.
  • Each of the filter films 30 has the configuration and filter characteristics as shown in FIGS. 3 and 4.
  • the reflectance shows up to about 65% in the wavelength region of the UV-B wave
  • the average reflectance of the UV-B wave is as high as about 58%. Therefore, most of the incident UV-B wave light is reflected by the filter film 30 and the protective film 20, the amount of light received by the photodiode decreases, and the detection sensitivity decreases.
  • the wavelength dependency of the reflectance is large, and it can be seen that the reflectance changes from about 50% to 23%. In the case of such a characteristic, the variation in detection sensitivity becomes large depending on the wavelength of incident light, and there is a possibility that accurate measurement can not be performed.
  • the maximum reflectance in the wavelength region of the UV-B wave is All are suppressed to 50% or less, and the average reflectances are about 38%, 39%, and 42%, respectively (see FIG. 5A). Further, the reflectance in the wavelength region of the UV-A wave shows a flat characteristic with respect to the change of the wavelength, and the difference from the reflectance in the UV-B wave region is also suppressed small.
  • the filter film 30 is formed on the protective film 20 formed to have the above-mentioned film thickness, it is preferable that the UV-A wave and the UV-B wave are transmitted and the UV-C wave and the visible light are not transmitted. It can be said that it has filter characteristics.
  • the filter film 30 is laminated on the surface of the protective film 20 to realize the thinning of the ultraviolet sensor 1 and, by changing the film thickness of the protective film 20, the UV-A wave and the UV-B wave It has been shown that it is possible to provide an ultraviolet sensor 1 having good light receiving sensitivity and capable of suppressing variations in light receiving sensitivity to UV-A waves and UV-B waves.
  • UV sensor 10 SOI substrate 11 semiconductor substrate 12 oxide film 13 SOI layer 14 N + region 15 P + region 16 P- region 20 protective film 30 filter film 31 low refractive index material (refractive index 1.3 to 1.5) 32 High refractive index material (refractive index 1.9 to 2.2)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】本発明は、薄型化を実現できるとともに製造コストの低減が可能な紫外線センサを提供することを目的とする。 【解決手段】本発明の紫外線センサ1は、紫外線を含む光を受光して電流を発生させる受光素子2と、受光素子2の受光面側に積層された保護膜20と、UV-A波とUV-B波とを透過するフィルタ膜30とを有し、フィルタ膜30が保護膜20の表面に積層されていることを特徴とする。

Description

紫外線センサ
 本発明は、紫外線センサに関し、特に、薄型化が可能であるとともに製造コストの低減が可能な紫外線センサに関する。
 近年、オゾン層の破壊により地上に照射される紫外線量が増加していることが知られており、人体や環境に及ぼす紫外線の影響が懸念されている。このため、簡便に紫外線量を計測して効果的に紫外線対策を行うことができるように、携帯電話等の携帯用電子機器に搭載可能な紫外線センサが求められている。このような紫外線センサは、照射される紫外線量に対して良好な受光感度を有することに加えて、小型、薄型であることが要求されている。
 従来例の紫外線センサとして、例えば、特許文献1に開示されている紫外線センサ101の断面図を図7に示す。図7に示す紫外線センサ101は、半導体基板111と、絶縁性の酸化膜112と、酸化膜112の上に積層されたSOI(Silicon On Insulator)層113を有するSOI基板110から構成されている。SOI層113には、N型拡散領域114とP型拡散領域115とが交互に形成されており、ラテラルPN接合領域を含むラテラル型のダイオードを構成している。SOI層113の受光領域に紫外線が照射されると、紫外線量に応じた出力信号が発生して、これにより、紫外線量を検出することができる。
 また、SOI基板110に形成されたダイオードは、広い波長領域で受光感度を有するため、SOI層110に到達する光を所定以下の波長に限定する(すなわち所定以上の波長の入射光を遮蔽する)ことができるフィルタ膜130が配置されている。図7に示すように、従来例の紫外線センサ101では、SOI層113の受光面側に、SOI層113と所定の間隔を空けてフィルタ膜130が配置されている。これにより、所定範囲の波長を選択して紫外線量を検出することができる。
特開2008-258000号公報
 しかしながら、フィルタ膜130とSOI層113との間に所定の間隔を設けるために、半導体基板111の外周に、フィルタ膜130を支持するためのフレーム(図示しない)を形成する必要がある。フレームはSOI層113を囲むように設けられており、フレーム上にSOI層113を覆うようにフィルタ膜130が形成される。このフレームの高さを適切に形成することにより、SOI層113とフィルタ膜130との間隔を形成している。
 あるいは、凹型のパッケージを用意して、その内部にSOI基板110を収納することも可能である。凹型のパッケージの開口部付近には、フィルタ膜130を固定するための嵌入部が形成されて、接着剤を用いてフィルタ膜130を固定することができる。この場合、パッケージの高さを適切に設計して、あるいは嵌入部の位置を所定の位置に形成してSOI層113とフィルタ膜130との間隔が設けられている。
 従来の紫外線センサ101においては、このようなフレームあるいはパッケージを用意してSOI層113とフィルタ膜130との間隔を設ける必要があるため、紫外線センサ101の小型化、薄型化が困難であった。さらに、フレームを形成する工程や、パッケージを用意してフィルタ膜130を接着する工程が必要であることから、製造コストの低減が困難であった。
 また、フィルタ膜130は通常、良好な光透過性を有する石英基板(図示しない)上に積層されて、フレーム又はパッケージ等に接着される。この石英基板は、製造工程における破損や割れを防止するとともに落下試験等における信頼性を確保できるように、十分な強度を有することが求められている。石英基板は例えば0.3mm~0.5mm程度の厚みで形成されており、紫外線センサ101の薄型化の阻害要因となっていた。また、石英基板は高価な部材であり、コストダウンの妨げとなっていた。
 本発明は、上記課題を解決し、薄型化を実現できるとともに製造コストの低減が可能な紫外線センサを提供することを目的とする。
 本発明の紫外線センサは、紫外線を含む光を受光して電流を発生させる受光素子と、前記受光素子の受光面側に積層された保護膜と、UV-A波とUV-B波とを透過するフィルタ膜とを有し、前記フィルタ膜が前記保護膜の表面に積層されていることを特徴とする。
 これによれば、保護膜との間に間隔を設けることなくフィルタ膜を形成できるとともに、フィルタ膜の支持基板として用いられていた石英基板等を省く事が可能であることから、紫外線センサの薄型化が実現できる。
 また、フィルタ膜を支持するためのフレームを形成してフィルタ膜を接着する工程、あるいはパッケージを用意して組み立てる工程等が不要となることから、製造コストの低減を図ることができる。さらに、高価な石英基板を用いることなくフィルタ膜を形成することが可能であるため、製造コストをさらに低減することが可能である。
 したがって、本発明によれば、薄型化を実現できるとともに製造コストの低減が可能な紫外線センサを提供することができる。
 本発明の紫外線センサにおいて、前記保護膜は、屈折率が1.35~1.48の低屈折材料により形成されており、前記保護膜の光学膜厚が0.246×λ×(2×n-0.3)~0.246×λ×(2×n+0.3)(λ=311nm、nは1以上の自然数)であることが好適である。こうすれば、フィルタ膜と保護膜とで発生するUV-A波(波長約320nm~400nmの紫外線)及びUV-B波(波長約280nm~320nmの紫外線)の反射率の増大を抑制することが可能である。したがって、UV-A波及びUV-B波はフィルタ膜を透過して紫外線センサの受光面に受光されるため、良好な受光感度を有する紫外線センサを提供することができる。
 本発明の紫外線センサにおいて、前記保護膜は、98nm~117nm、または194nm~217nm、または291nm~314nmの膜厚で形成されていることが好ましい。こうすれば、フィルタ膜と保護膜とで発生するUV-B波の反射率を45%以下に抑制することができ、また、UV-A波の反射率を50%以下に抑制することができるため、UV-A波及びUV-B波についてより良好な受光感度を有する紫外線センサを提供することができる。また、UV-B波とUV-A波の反射率の差を10%以下に抑えることができるため、UV-A波とUV-B波に対する受光感度のばらつきを抑制することが可能となる。
 前記保護膜は酸化シリコンを用いて形成されていることが好ましい。こうすれば、SOI層を良好に保護することが可能であり、外部の環境(湿度、温度等)や機械的損傷等による特性劣化を防ぐことができる。また、UV-A波及びUV-B波の波長領域における光透過率が高く、屈折率が低い材料であるため紫外線センサの受光感度を向上させることが可能となる。
 前記フィルタ膜は、低屈折率材料(屈折率1.3~1.5)と高屈折率材料(屈折率1.9~2.2)とが交互に積層された多層膜で構成されていることが好適である。こうすれば、UV-A波及びUV-B波を透過させて、UV-C波(波長約280nm以下の紫外線)及び可視光(波長約400nm以上の光)を遮蔽する良好なフィルタ特性を得ることができる。
 本発明の紫外線センサにおいて、前記受光素子は、半導体基板と、前記半導体基板上に形成された酸化層と、前記酸化層上に形成されたSOI層とを有し構成されていることが好適である。こうすれば、UV-A波及びUV-B波に対して良好な受光感度を有し、小型化、及び薄型化が可能な紫外線センサを提供することができる。
 本発明によれば、保護膜との間に間隔を設けることなくフィルタ膜を形成できるとともに、フィルタ膜の支持基板として用いられていた石英基板等を省く事が可能であることから、紫外線センサの薄型化が実現できる。
 また、フィルタ膜を支持するためのフレームを形成してフィルタ膜を接着する工程、あるいはパッケージを用意して組み立てる工程等が不要となることから、製造コストの低減を図ることができる。さらに、高価な石英基板を用いることなくフィルタ膜を形成することが可能であるため、製造コストをさらに低減することが可能である。
 したがって、本発明の紫外線センサによれば、薄型化を実現できるとともに製造コストの低減が可能な紫外線センサを提供することができる。
本実施形態における紫外線センサの模式平面図である。 図1のII-II線に沿って切断した紫外線センサの模式断面図である。 紫外線センサにおけるフィルタ膜の構成を示す模式断面図である。 フィルタ膜単体、及び保護膜表面にフィルタ膜を積層したときの、反射率と波長の関係を示すグラフである。 (a)UV-A波の平均反射率及びUV-B波の平均反射率と保護膜の膜厚との関係を示すグラフ、(b)UV-A波の平均反射率とUV-B波の平均反射率との差を示すグラフである。 異なる厚さの保護膜表面にフィルタ膜を積層したときの、反射率と波長の関係を示すグラフである。 従来例の紫外線センサを示す断面図である。
 図1には、本実施形態における紫外線センサ1の模式平面図を示す。図2には、図1のII-II線に沿って切断した紫外線センサ1の模式断面図を示す。なお、図1は保護膜20及びフィルタ膜30を省略して示している。図2に示すように、本実施形態の紫外線センサ1は、半導体基板11、半導体基板11上に形成された酸化膜12、酸化膜12上に形成されたSOI層13、SOI層13に積層された保護膜20、及びUV-A波とUV-B波とを透過するフィルタ膜30とを有し構成されている。半導体基板11、酸化膜12、及びSOI層13からSOI基板10が構成されており、半導体基板11とSOI層13とは、酸化膜12によって絶縁されている。
 図1に示すように、SOI層13には、E字状に形成されたN+領域14とπ字状に形成されたP+領域15とが対向するように形成されている。N+領域14及びP+領域15には、それぞれN+領域14の櫛歯部14aとP+領域15の櫛歯部15aとが形成されており、櫛歯部14aと櫛歯部15aとは間隔を空けてかみ合わされるように配置されている。N+領域14は、SOI層13にリン(P)や砒素(As)等のN型不純物を比較的高濃度に拡散させて形成された高濃度N型拡散領域である。また、P+領域15はボロン(B)等のP型不純物を比較的高濃度に拡散させて形成された高濃度P型拡散領域である。そして、対向するN+領域14とP+領域15との間には、P型不純物が比較的低濃度に拡散されたP-領域16が形成されている。N+領域14、P+領域15及びP-領域16によってラテラルPN接合が形成されて、ラテラル型のフォトダイオードが形成されている。
 P-領域16には空乏層(図示しない)が形成されており、空乏層近傍に紫外線を含む光が照射されると、電子-正孔対が発生する。図1及び図2では省略しているが、N+領域14及びP+領域15には、アルミニウム(Al)、チタン(Ti)、タングステン(W)等の導電材料により形成された配線電極層(図示しない)が接続されている。配線電極層は、保護膜20及びフィルタ膜30に形成されたコンタクトホール(図示しない)を通して外部へと引き出されており、受光した光によって発生した出力電流を取り出すことができる。なお、受光面積を確保するために、配線電極層及びコンタクトホールは受光領域であるP-領域16と重ならないように形成されている。
 なお、紫外線センサ1は図1に示すような構成に限定されるものではなく、N+領域14の櫛歯部14a及びP+領域15の櫛歯部15aを増やした構成や、櫛歯部を設けずにI字状に形成したN+領域14とP+領域15とを対向させた構成であっても良い。また、SOI基板10は、その構成や製造方法について特に限定されるものではない。SOI基板10は、例えば貼り合わせ法やSIMOX(Silicon Implanted Oxide)法等によって作製したものを用いることができる。
 図2に示すように、SOI層13の受光面側には保護膜20が形成されている。保護膜20は、外部の環境(湿度、温度等)や製造工程における機械的損傷や化学薬品等の化学的損傷等からSOI層13を保護するために形成されている。また、保護膜20はUV-A波及びUV-B波の波長領域における光透過率が高く、屈折率の低い絶縁性の材料により形成されることが好ましい。例えば酸化シリコン(SiO2)やNSG(Nondoped Silica Glass)等の絶縁材料を用いることができ、本実施形態では酸化シリコンを用いて形成されている。
 なお、紫外線とは、可視光よりも短い波長を有する光であり、波長100nm~400nmの光を指す。また、UV(Ultraviolet)は紫外線と同義である。紫外線波長領域のうち、320nm~400nmの領域は長波長紫外線(UV-A波)、280nm~320nmの領域は中波長紫外線(UV-B波)、100nm~280nmの領域は短波長紫外線(UV-C波)と区分されている。これらの波長領域によって人体や環境に与える影響が異なっている。UV-A波は皮膚を黒化させ真皮に達して老化の原因になり、また、UV-A波に比べて強いエネルギーをもつUV-B波は、皮膚を炎症させ皮膚ガンを誘発する虞がある。UV-C波は、UV-A波及びUV-B波よりも強いエネルギーを有しており、強い殺菌作用があるとされているが、太陽光のUV-C波のほとんどがオゾン層で吸収されて地上に達することはない。したがって、紫外線センサ1は、UV-A波及びUV-B波について良好な受光感度を有し、かつ、それ以外の波長の光(UV-C波、及び可視光以上の波長領域)に対しては検出しないことが求められる。
 本実施形態において、SOI層の厚さは200nm~400nm程度に形成されている。この場合、SOI基板10に形成されたラテラル型フォトダイオードは、紫外線及び可視光を含む広い波長領域について受光感度を有する。そのため、UV-A波及びUV-B波を透過して、UV-C波及び可視光については遮蔽可能なフィルタ特性を有するフィルタ膜30を保護膜20の表面に積層している。これにより、紫外線センサ1は、フィルタ膜30を透過してラテラル型フォトダイオードの受光領域に受光されたUV-A波及びUV-B波を検出することが可能となる。
 図2に示すように、フィルタ膜30は保護膜20の表面に積層されている。これにより、保護膜20との間に間隔を設けることなくフィルタ膜30を形成できる。また、従来の紫外線センサ101においてフィルタ膜130の支持基板として用いられていた石英基板を省く事が可能である。したがって、紫外線センサ1の薄型化が実現できる。
 また、フィルタ膜30を支持するためのフレームを形成してフィルタを接着する工程や、パッケージを用意して組み立てる工程が不要であることから、製造コストの低減を図ることができる。さらに、高価な石英基板を用いることなくフィルタ膜30を形成することが可能であるため、製造コストをさらに低減することが可能である。
 図3には、本実施形態におけるフィルタ膜30の模式断面図を示す。図3に示すように、フィルタ膜30は、低屈折率材料(屈折率1.3~1.5)31と高屈折率材料(屈折率1.9~2.2)32とが交互に積層された多層膜で構成されている。低屈折率材料31として、フッ化マグネシウム(MgF2)、酸化シリコン(SiO2)や、酸化シリコン(SiO2)と酸化アルミニウム(Al23)の混合材等を用いることができる。また、高屈折率材料32には、酸化タンタル(Ta25)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化ランタン(La23)のいずれか一つまたは各材料の混合材等を用いる事ができる。フィルタ膜30は、保護膜20側に高屈折率材料32が配置されて、フィルタ膜30の受光面側に低屈折率材料31が配置されるように構成されている。
 低屈折率材料31及び高屈折率材料32は、蒸着法などの薄膜法により形成することができ、交互に20層以上積層された多層膜となっている。本実施形態においてフィルタ膜30は24層積層された構成であり、その合計厚みは約2μmである。
 図4には、本実施形態におけるフィルタ膜30単体の反射率と光の波長との関係、及びフィルタ膜30を保護膜20上に積層したときの反射率と光の波長の関係を示す。このときの保護膜20の膜厚は約344nmに形成されている。図4に示すように、フィルタ膜30単体の反射率は、UV-A波及びUV-B波の波長領域(280nm~400nm)において約10%程度であり、UV-C波(280nm以下)及び可視光領域(400nm以上)では90%以上の反射率を示している。すなわち、フィルタ膜30はUV-A波及びUV-B波のみを透過する良好なフィルタ特性を有しているといえる。また、波長750nm以上の近赤外領域でフィルタ膜30の反射率が低下しているが、SOI層13の厚さは上述のとおり200nm~400nm程度に薄く形成されていることにより、近赤外領域の波長の光はSOI層13のフォトダイオードに吸収されずに透過してしまう。このため、フィルタ膜30を透過した近赤外領域の光が検出されることはなく、紫外線センサ1の検出感度に影響を及ぼすことはない。したがって、紫外線センサ1はUV-A波及びUV-B波に対して良好な受光感度を有することが可能となる。
 しかし、保護膜20の表面にフィルタ膜30を積層した場合、保護膜20とフィルタ膜30との界面の反射の影響が付加されることにより反射率が変化してしまい、図4に示すように、UV-B波(280nm~320nm)の反射率は50%~65%程度まで増大し、UV-A波(320nm~400nm)での反射率は約22%~50%となり、波長依存性が増大する。また、UV-A波の反射率とUV-B波の反射率との差も大きくなっている。
 すなわち、入射したUV-B波の多くがフィルタ膜30及び保護膜20で反射されてフォトダイオードの受光領域に受光されず、紫外線センサ1の検出感度が低下してしまうことになる。UV-B波はUV-A波に比べてより強いエネルギーを持つことから、UV-B波の検出感度が低下することは好ましくない。また、図4に示すようにUV-A波とUV-B波との反射率の差が大きい場合、あるいは反射率の波長依存性が大きい場合、入射する光の波長により検出感度のばらつきが大きくなり紫外線センサ1の検出精度が低下してしまうおそれがある。
 このような課題を解決するため、フィルタ膜30の膜構成を最適化する方法を試みたが、上述のように複数の材料を用いた多層膜であるため、UV-B波の反射率の増大を抑制し、かつ、UV-A波及びUV-B波の波長領域における反射特性をフラット化することは非常に困難であった。そのため、フィルタ膜30と保護膜20との間隔を設けずにフィルタ膜30を積層して、良好な受光感度を実現することは困難であった。
 図5(a)には、SOI基板10に保護膜20及びフィルタ膜30を積層した紫外線センサ1について、UV-A波及びUV-B波の平均反射率と保護膜20の膜厚との関係を示す。図5(a)に示すように、保護膜20の膜厚を約75μm~370nmまで変化させると、UV-A波及びUV-B波の反射率が周期性を持って変化する。UV-A波は、約33%~51%の範囲で反射率が周期的に変化しており、UV-B波は約38%~60%の範囲で反射率が変化している。UV-B波の平均反射率は、光学波長0.246×λ×2×n(λ=311nm、nは1以上の自然数)で最小値を示すような周期性を有して変化していることが示されている。
 また、図5(b)には、図5(a)に示したUV-A波の平均反射率とUV-B波の平均反射率との差を示したグラフである。図5(b)は、(UV-B波の平均反射率)-(UV-A波の平均反射率)により算出した値を示しており、グラフ中の平均反射率の差が正の領域は、UV-B波の反射率がUV-A波よりも大きいことを示す。図5(b)に示すように、平均反射率の差は保護膜20の膜厚により大きく変動する。上述のように、紫外線センサ1において、より強いエネルギーを有するUV-B波について良好な検出感度を有するとともに、UV-A波とUV-B波との検出感度のばらつきが小さいことが求められている。したがって図5(a)に示す、UV-B波の平均反射率が低く、かつ図5(b)に示す平均反射率の差が0に近いことが好ましい。なお、図5(a)及び図5(b)において、保護膜20の厚さは種々に変化させているが、フィルタ膜30の膜厚、構成は変えずに、図3及び図4に示した構成、フィルタ特性を有するものを用いている。
 本実施形態の紫外線センサ1において、保護膜20は、屈折率が約1.35~1.48の低屈折材料である酸化シリコン(SiO2)から形成されている。このとき、保護膜20の光学膜厚が0.246×λ×(2×n-0.3)~0.246×λ×(2×n+0.3)(λ=311nm、nは1以上の自然数)であることが好適である。こうすれば、フィルタ膜30と保護膜20とで発生するUV-A波(波長約320nm~400nmの紫外線)及びUV-B波(波長約280nm~320nmの紫外線)の反射率をともに減少させることが可能である。また、この光学膜厚の範囲であれば、比較的大きい反射率を示すUV-B波についても、平均反射率を55%以下に抑制することが可能である。したがって、より多くのUV-A波及びUV-B波が、フィルタ膜30と保護膜20とを透過してフォトダイオードの受光領域で受光することができるため、良好な受光感度を有する紫外線センサ1を提供することができる。
 また、保護膜20の光学膜厚が0.246×λ×(2×n-0.2)~0.246×λ×(2×n+0.2)(λ=311nm、nは1以上の自然数)の範囲であることがより好ましい。この場合、UV-B波の平均反射率を50%以下に抑制することが可能であり、紫外線センサ1の受光感度を向上させることができる。
 なお、上記の光学膜厚範囲を示す式において、λ=311nmは紫外線波長(280nm~350nm)の中心波長である。
 本実施形態の紫外線センサ1において、保護膜20は、98nm~117nm、または194nm~217nm、または291nm~314nmの膜厚で形成されていることが、より好ましい。この膜厚範囲で保護膜20を形成することにより、フィルタ膜30と保護膜20とで発生するUV-B波の反射率を45%以下に抑制することができる。したがって、UV-A波に比べて強いエネルギーを有するUV-B波について良好な受光感度を得るができる。また、UV-A波とUV-B波の反射率の差を10%以下に抑えることができるため、UV-A波とUV-B波とに対する受光感度のばらつきを抑制することが可能となる。
 図6は、異なる厚さの保護膜20上にフィルタ膜30を積層したときの、反射率と波長の関係を示すグラフである。図6には、保護膜20の光学膜厚を0.246×λ×2(実膜厚約102nm)、0.246×λ×4(実膜厚約204nm)、0.246×λ×4(実膜厚約306nm)にそれぞれ形成したときの反射率を示す。いずれも0.246×λ×(2×n-0.3)~0.246×λ×(2×n+0.3)(λ=311nm、nは1以上の自然数)の範囲の光学膜厚であり、また、98nm~117nm、または194nm~217nm、または291nm~314nmの膜厚範囲内である。また、比較として光学膜厚0.246×λ×7(実膜厚約357nm)の保護膜20上にフィルタ膜30を積層したときの反射率を示す。なお、フィルタ膜30はいずれも、図3及び図4に示したような構成、フィルタ特性を有するものである。
 図6に示すように、保護膜20の光学膜厚を0.246×λ×7に形成した場合には、UV-B波の波長領域で最大約65%の反射率を示しており、また、図5(a)に示すようにUV-B波の平均反射率は約58%と高い値となっている。したがって、入射するUV-B波の光の多くがフィルタ膜30及び保護膜20で反射されてしまい、フォトダイオードに受光される光量が低下し検出感度が低下する。また、UV-A波の波長領域においては反射率の波長依存性が大きくなっており、反射率が約50%から23%まで変化していることがわかる。このような特性の場合、入射する光の波長によって検出感度のばらつきが大きくなり、正確な測定ができないおそれがある。
 これに対し、光学膜厚0.246×λ×2、0.246×λ×4、及び0.246×λ×6に形成した場合においては、UV-B波の波長領域における最大反射率はいずれも50%以下に抑制されており、平均反射率はそれぞれ約38%、39%、42%となっている(図5(a)参照)。また、UV-A波の波長領域における反射率は、波長の変化に対してフラットな特性を示しており、UV-B波領域における反射率との差も小さく抑えられている。
 また、UV-C波及び可視光の波長領域においては、ほぼ90%以上の反射率を示している。したがって、フィルタ膜30を、上記の膜厚で形成した保護膜20上に形成した場合には、UV-A波及びUV-B波を透過してUV-C波及び可視光は透過しない良好なフィルタ特性を有しているといえる。
 これにより、フィルタ膜30を保護膜20の表面に積層して、紫外線センサ1の薄型化を実現するとともに、保護膜20の膜厚を変化させることによって、UV-A波及びUV-B波について良好な受光感度を有し、また、UV-A波及びUV-B波に対する受光感度のばらつきを抑制することが可能な紫外線センサ1を提供することができることが示された。
 1 紫外線センサ
 10 SOI基板
 11 半導体基板
 12 酸化膜
 13 SOI層
 14 N+領域
 15 P+領域
 16 P-領域
 20 保護膜
 30 フィルタ膜
 31 低屈折率材料(屈折率1.3~1.5)
 32 高屈折率材料(屈折率1.9~2.2)

Claims (6)

  1.  紫外線を含む光を受光して電流を発生させる受光素子と、
     前記受光素子の受光面側に積層された保護膜と、
     UV-A波とUV-B波とを透過するフィルタ膜とを有し、
     前記フィルタ膜が前記保護膜の表面に積層されていることを特徴とする紫外線センサ。
  2.  前記保護膜は、屈折率が1.35~1.48の低屈折材料により形成されており、前記保護膜の光学膜厚が0.246×λ×(2×n-0.3)~0.246×λ×(2×n+0.3)(λ=311nm、nは1以上の自然数)であることを特徴とする請求項1に記載の紫外線センサ。
  3.  前記保護膜は、98nm~117nm、または194nm~217nm、または291nm~314nmの膜厚で形成されていることを特徴とする請求項1または請求項2に記載の紫外線センサ。
  4.  前記保護膜は、酸化シリコンを用いて形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の紫外線センサ。
  5.  前記フィルタ膜は、低屈折率材料(屈折率1.3~1.5)と高屈折率材料(屈折率1.9~2.2)とが交互に積層された多層膜で構成されていることを特徴とする請求項1から請求項4のいずれか1項に記載の紫外線センサ。
  6.  前記受光素子は、半導体基板と、前記半導体基板上に形成された酸化層と、前記酸化層上に形成されたSOI層とを有し構成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の紫外線センサ。
PCT/JP2012/053424 2011-04-06 2012-02-14 紫外線センサ WO2012137539A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013508782A JPWO2012137539A1 (ja) 2011-04-06 2012-02-14 紫外線センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-084256 2011-04-06
JP2011084256 2011-04-06

Publications (1)

Publication Number Publication Date
WO2012137539A1 true WO2012137539A1 (ja) 2012-10-11

Family

ID=46968943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053424 WO2012137539A1 (ja) 2011-04-06 2012-02-14 紫外線センサ

Country Status (2)

Country Link
JP (1) JPWO2012137539A1 (ja)
WO (1) WO2012137539A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170117421A1 (en) * 2015-10-23 2017-04-27 Lapis Semiconductor Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP2017208487A (ja) * 2016-05-19 2017-11-24 ラピスセミコンダクタ株式会社 半導体装置、及び半導体装置の製造方法
WO2018123705A1 (ja) * 2016-12-26 2018-07-05 旭硝子株式会社 紫外線透過フィルタ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341120A (ja) * 1992-06-04 1993-12-24 Asahi Optical Co Ltd 紫外線照射装置の多層膜フィルタ
JPH05341122A (ja) * 1992-06-04 1993-12-24 Asahi Optical Co Ltd 紫外線照射装置の多層膜フィルタ
JP2008251709A (ja) * 2007-03-29 2008-10-16 Oki Electric Ind Co Ltd 紫外線受光素子およびその製造方法、並びに紫外線量測定装置
JP2009176835A (ja) * 2008-01-22 2009-08-06 Oki Semiconductor Co Ltd 紫外線センサおよびその製造方法
JP2009258000A (ja) * 2008-04-18 2009-11-05 Oki Semiconductor Co Ltd 複合センサ及びこれを用いた炎センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411456B2 (ja) * 2007-06-07 2014-02-12 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341120A (ja) * 1992-06-04 1993-12-24 Asahi Optical Co Ltd 紫外線照射装置の多層膜フィルタ
JPH05341122A (ja) * 1992-06-04 1993-12-24 Asahi Optical Co Ltd 紫外線照射装置の多層膜フィルタ
JP2008251709A (ja) * 2007-03-29 2008-10-16 Oki Electric Ind Co Ltd 紫外線受光素子およびその製造方法、並びに紫外線量測定装置
JP2009176835A (ja) * 2008-01-22 2009-08-06 Oki Semiconductor Co Ltd 紫外線センサおよびその製造方法
JP2009258000A (ja) * 2008-04-18 2009-11-05 Oki Semiconductor Co Ltd 複合センサ及びこれを用いた炎センサ

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876126B2 (en) 2015-10-23 2018-01-23 Lapis Semiconductor Co., Ltd. Semiconductor device and semiconductor device manufacturing method
JP2017084875A (ja) * 2015-10-23 2017-05-18 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
CN107068782A (zh) * 2015-10-23 2017-08-18 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
US20170117421A1 (en) * 2015-10-23 2017-04-27 Lapis Semiconductor Co., Ltd. Semiconductor device and semiconductor device manufacturing method
CN107068782B (zh) * 2015-10-23 2021-06-04 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
JP2017208487A (ja) * 2016-05-19 2017-11-24 ラピスセミコンダクタ株式会社 半導体装置、及び半導体装置の製造方法
US9978783B2 (en) 2016-05-19 2018-05-22 Lapis Semiconductor Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US10559607B2 (en) 2016-05-19 2020-02-11 Lapis Semiconductor Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
CN107403845A (zh) * 2016-05-19 2017-11-28 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
CN107403845B (zh) * 2016-05-19 2021-07-23 拉碧斯半导体株式会社 半导体装置以及半导体装置的制造方法
WO2018123705A1 (ja) * 2016-12-26 2018-07-05 旭硝子株式会社 紫外線透過フィルタ
CN113050213A (zh) * 2016-12-26 2021-06-29 Agc株式会社 紫外线透射滤波器
JP2022000704A (ja) * 2016-12-26 2022-01-04 Agc株式会社 紫外線透過フィルタ
JP7136301B2 (ja) 2016-12-26 2022-09-13 Agc株式会社 紫外線透過フィルタ
CN113050213B (zh) * 2016-12-26 2022-10-21 Agc株式会社 紫外线透射滤波器

Also Published As

Publication number Publication date
JPWO2012137539A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
CN107532941B (zh) 光检测装置
US11835388B2 (en) Light detection device
JP5663900B2 (ja) 分光センサー装置及び電子機器
JP5862025B2 (ja) 光学センサー及び電子機器
JP5948007B2 (ja) 分光センサー及び分光フィルター
WO2012137539A1 (ja) 紫外線センサ
CN110462353B (zh) 光检测装置
CN107068782B (zh) 半导体装置以及半导体装置的制造方法
JP6112190B2 (ja) 分光センサー及びパルスオキシメーター
JP5614540B2 (ja) 分光センサー及び角度制限フィルター
JP5862754B2 (ja) 脈拍センサー及び脈拍計
JP5821400B2 (ja) 分光センサー及び角度制限フィルター
WO2024034202A1 (ja) 光検出装置及びアパーチャ部
JP5862753B2 (ja) 分光センサー装置及び電子機器
FI20215831A1 (en) A device for non-invasive monitoring
JP2013156325A (ja) 分光センサー及び角度制限フィルター
JP2015038632A (ja) 分光センサー及び角度制限フィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768451

Country of ref document: EP

Kind code of ref document: A1