WO2012137313A1 - Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system - Google Patents

Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system Download PDF

Info

Publication number
WO2012137313A1
WO2012137313A1 PCT/JP2011/058679 JP2011058679W WO2012137313A1 WO 2012137313 A1 WO2012137313 A1 WO 2012137313A1 JP 2011058679 W JP2011058679 W JP 2011058679W WO 2012137313 A1 WO2012137313 A1 WO 2012137313A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
battery module
cell
discharge capacity
unit cell
Prior art date
Application number
PCT/JP2011/058679
Other languages
French (fr)
Japanese (ja)
Inventor
千鶴 松本
俊晴 三輪
大介 勝又
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2011/058679 priority Critical patent/WO2012137313A1/en
Priority to JP2013508670A priority patent/JPWO2012137313A1/en
Publication of WO2012137313A1 publication Critical patent/WO2012137313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cell selection method, a cell selection system, a cell selection program, a battery module manufacturing method, and a battery module manufacturing system.
  • the unit cell has a property that the smaller the capacity, the faster the threshold voltage is reached from the start of charging. Therefore, when there is a large variation in performance among the cells constituting the battery module, there is a case where the charging of the battery module is terminated early with the arrival of the charge prohibition voltage in the single cell having a small capacity in the single cell group. appear.
  • SOC State of Charge
  • the lower the capacity the higher the SOC at the end of battery module charging, and the greater the capacity deterioration (decrease rate). That is, as the charging / discharging is repeated, the unit cells in the battery module vary more and more likely to promote the capacity deterioration of the battery module.
  • an object of the present invention is to provide a technique for configuring a battery module that suppresses a difference in performance between unit cells to be combined and has an excellent charge / discharge cycle life.
  • the cell selection method of the present invention that solves the above problems is a method of selecting a cell to be employed in a battery module, and among the plurality of cells that are candidates for adoption, the charge capacity, the discharge capacity of the cell, and A cell group in which at least one of the ratios of the discharge capacity to the charge capacity is within a predetermined range is selected as a cell group for one battery module.
  • the unit cell selection system includes a storage unit storing at least one value of a charge capacity, a discharge capacity, and a ratio of the discharge capacity to the charge capacity of each unit cell that is a candidate for use in the battery module,
  • the storage unit reads at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each of the candidate battery cells to be adopted, and sets a single battery group whose read values are within a predetermined range as one battery.
  • a calculation unit that is selected as a unit cell group for modules.
  • the cell selection program of the present invention includes a storage unit that stores at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity of each cell that is a candidate for use in the battery module.
  • the information processing device reads from the storage unit at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each candidate battery, and the read values are within a predetermined range. A process of selecting a battery group as a single battery group for one battery module is executed.
  • the battery module manufacturing method of the present invention among the plurality of single cells that are candidates for use in the battery module, at least one of the charge capacity of the single battery, the discharge capacity, and the ratio of the discharge capacity to the charge capacity is And a step of selecting a unit cell group within a predetermined range as a unit cell group for one battery module, and a step of incorporating a unit cell included in the selected unit cell group into the battery module.
  • the battery module manufacturing system of the present invention includes a storage device that stores a plurality of single cells that are candidates for use in the battery module, and a charge capacity, a discharge capacity, and a charge for each single cell stored in the storage device. At least one value of the ratio of the discharge capacity to the capacity is stored in the storage unit, and from the storage unit, at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity of each candidate battery to be adopted
  • a unit cell selection device that reads a value and selects a unit cell group in which the read values are within a predetermined range as a unit cell group for one cell module, and a unit cell that is included in the selected unit cell group from the storage device
  • a module assembly apparatus that extracts and incorporates the battery module.
  • a performance difference between unit cells to be combined can be suppressed, and a battery module having an excellent charge / discharge cycle life can be configured.
  • FIG. 1 shows the structural example of the single cell selection system of this embodiment. It is a flowchart which shows the battery module manufacturing procedure example 1 containing the cell selection method of this embodiment. It is a figure explaining the relationship between charge capacity, discharge capacity, and efficiency. It is a figure explaining the rank classification example 1 of the cell in this embodiment. It is a figure explaining the example 1 of the rank classification formula of the cell in this embodiment. It is a figure explaining the rank classification example 2 of the cell in this embodiment. It is a figure explaining the example 2 of the rank classification formula of the cell in this embodiment. It is a figure explaining the rank classification example 3 of the cell in this embodiment. It is a figure explaining the example 3 of the rank classification formula of the cell in this embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a unit cell selection system 1 according to the present embodiment.
  • a cell selection system 1 shown in FIG. 1 is a computer system for suppressing a performance difference between unit cells to be combined and configuring a battery module having an excellent charge / discharge cycle life.
  • FIG. 1 will be described assuming that cell selection is performed by a computer that is an information processing apparatus, the present invention is not limited to this mode. For example, it is of course possible that the person in charge of selecting a single cell when manufacturing the battery module executes the single cell selection method of the present embodiment.
  • FIG. 1 an example in which the unit cell selection system 1 is incorporated in the charge / discharge device 20 is shown.
  • the single cell selection system 1 can be assumed to be a server or a computer terminal possessed by a battery manufacturer or the like that actually executes the single cell selection method of the present embodiment and manufactures a battery module.
  • This single cell selection system 1 includes a storage unit 22, a calculation unit 23, and a user interface 24 that should naturally be provided as an information processing apparatus.
  • the storage unit 22 is composed of a non-volatile storage device such as a hard disk drive, and includes a program 27 for executing the unit cell selection method of the present embodiment, the charge capacity and discharge of each unit cell that is a candidate for use in the battery module.
  • a table 28 is stored that stores at least one of the capacity and the ratio of the discharge capacity to the charge capacity.
  • the calculation unit 23 is a calculation processing device such as a microprocessor.
  • the calculation unit 23 performs calculation based on the program 27 read from the storage unit 22.
  • the calculation unit 23 is based on the table 28 of the storage unit 22 and includes at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity (“efficiency” in the drawing) of each candidate cell.
  • a value is read, and a process of selecting a cell group in which the read values are within a predetermined range as a cell group for one battery module is executed.
  • the user interface 24 is an output device such as a liquid crystal display or a printer, or an input device such as a keyboard or a mouse.
  • the cell selection system 1 starts and executes the program 27 in response to an instruction from the user, for example, at the input device in the user interface 24, and outputs the processing result at the output device.
  • the charge / discharge device 20 incorporating the unit cell selection system 1 includes a charge / discharge measurement unit 21.
  • the charge / discharge measuring unit 21 has a function for setting each condition of voltage and current during charging / discharging of the unit cell, a current value for each elapsed time of charging / discharging of each unit cell, a function for measuring the voltage value, and a value obtained by these measurements.
  • a function for calculating a charge capacity and a discharge capacity based on the above is provided.
  • the charge / discharge measurement unit 21 transmits charge capacity and discharge capacity data to the unit cell selection system 1 via a predetermined interface.
  • the unit cell selection system 1 acquires the charge capacity and discharge capacity data obtained from the charge / discharge measurement unit 21 and stores the data in the table 28.
  • the cell selection system 1 calculates the ratio of the discharge capacity to the charge capacity from the charge capacity and discharge capacity data, and also stores this value in the table 28.
  • FIG. 2 is a flowchart showing a battery module manufacturing procedure example 1 including the unit cell selection method of the present embodiment.
  • Each step described below is a process performed by a person in charge of cell selection or the cell selection system 1 as an executing entity.
  • a person in charge of single cell selection or the like defines a rank classification method and the number of ranks (S100).
  • the “rank” is a rank of the unit cells divided for each predetermined threshold with respect to at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity.
  • the charging capacity, discharging capacity, and ratio of the discharging capacity to the charging capacity of the unit cell are classified based on only one value, classified based on two values, or 3 There are three classifications based on one value.
  • the number of ranks when two ranges are provided by dividing the range of each value into two with a predetermined threshold as a boundary, or when three ranks are provided in the same manner, four ranks are provided and four ranks are provided. You can define it freely according to the situation.
  • a charge / discharge test is performed in the charge / discharge measurement unit 21 of the charge / discharge device 20, and charge capacity data and discharge capacity for each single cell are measured. Data is acquired (S101).
  • the unit cell selection system 1 may execute the process in this step.
  • the rank classification of the single cells is performed based on the definition of rank classification and the like previously determined in step S100 (S102). Details of the rank classification processing will be described later.
  • the unit cell selection system 1 may also execute the processing in this step.
  • the person in charge inputs the rank classification result of each unit cell obtained in step S102 through the user interface 24 and stores it in the table 28 in the storage unit 22 of the unit cell selection system 1 (S103).
  • the unit cell selection system 1 may store the result of rank classification of each unit cell executed based on the charge capacity data and the discharge capacity data in the table 28 of the storage unit 22.
  • the cell group in which information is stored in the table 28 of the storage unit 22 for the corresponding rank is assigned to the same battery module. (S105). Thereafter, in the battery module manufacturing system or the like, the single cells are specified based on the information on the single cell group obtained in step S105, and the battery modules are assembled using the specified single cells (S106).
  • FIG. 3 is a diagram for explaining the relationship between the charge capacity, the discharge capacity, and the efficiency.
  • the horizontal axis represents the charge capacity
  • the vertical axis represents the discharge capacity
  • the efficiency for each combination of charge and discharge capacity is shown as a contour map.
  • FIG. 4 is a diagram illustrating a representative example of the rank classification process shown in step S102.
  • the horizontal axis represents the charge capacity and the vertical axis represents the discharge capacity, and the values of the charge capacity and discharge capacity of each unit cell acquired in step S101 are plotted.
  • the design value (assumed value when the unit cell is manufactured according to the manufacturing conditions) is shown. Variations between single cells are confirmed.
  • the judgment formula 1, judgment formula 2, and judgment formula 3 for classifying the regions on the graph are expressed as follows. Assumed.
  • Y represents the discharge capacity
  • X represents the charge capacity.
  • the slope “a1” of the judgment formula 1 and the judgment formula 2 is the same value
  • the slope “ ⁇ a1” of the judgment formula 3 uses a value orthogonal to the straight lines of the judgment formulas 1 and 2. This is not limited to this (for example, the slope “a1” of the judgment formula 1 and the slope “a1” of the judgment formula 2 can be set as different values).
  • the setting method of each rank area and the number of ranks eg, setting method of the judgment formula
  • Y1 of the determination method 1 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 1.
  • Y2 of the determination method 2 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 2.
  • Y3 of the determination method 3 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 3.
  • Cdischarge_cell (i) indicates the discharge capacity of the cell i acquired in step S101.
  • classification is made into four ranks using three judgment formulas, but the definition of the judgment formula and the number of ranks are not limited to this. 4 and 5, the charge capacity, discharge capacity, and efficiency are classified so as to be similar. For example, only the charge capacity, only the discharge capacity, only the charge capacity and efficiency, only the discharge capacity and efficiency, It is also possible to change the parameters used in the determination formula according to the performance requirements of the target battery module, such as using only the charge capacity and the discharge capacity.
  • unit cell 1 and “unit cell 2” shown in the graph of FIG. 10
  • the unit cells have greatly different discharge capacities, they are classified into different ranks. If the cells have the same capacity, they are classified into the same rank.
  • Fig. 14 shows an example of rank classification results.
  • the single cell selection system 1 selects the number of single cells necessary for manufacturing the battery module for each rank in the order of records in the table 28, for example.
  • the single cell selection system 1 sets the ID of the same battery module for each selected single cell in the table 28.
  • the unit cells having the same battery module ID in the table 28 may be incorporated into one battery module.
  • FIG. 15 illustrates a state in which the single battery 11 having the same battery module ID is incorporated in one battery module 10.
  • a storage device 35 that stores a plurality of single cells 11 that are candidates for use in a battery module, and each single cell stored in the storage device 35. 11 is stored in the storage unit 22 at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity, and the storage unit 22 stores the charge capacity and discharge capacity of each of the candidate cells 11 to be adopted.
  • the cell selection system 1 provided with the user interface 24 to take charge, and the storage device 3 includes the cells 11 included in the selected cell group. More extraction, assume the manufacturing system 32 including a module assembly device 36 incorporated in the battery module 10.
  • the charge / discharge device 30 is connected to the local area network 31.
  • the battery module manufacturing system 32 includes a network interface 25 such as a NIC (Network Interface Card) in order to connect to the local area network 31.
  • the charging / discharging measurement result for each unit cell is taken into the battery module manufacturing system 32 from the network interface 25 via the local area network 31 from the charging / discharging device 30.
  • the single cell selection system 1 incorporated in the battery module manufacturing system 32 reads the program 27 from the storage unit 22 and executes it. Thereby, the unit cell 11 to be incorporated in the battery module 10 is selected.
  • the unit cell selection process is performed in the process up to step S105 in the flow of FIG.
  • the storage device 35 for storing the single cells 11 can be assumed to be a conventional automatic warehouse system in which the location of each single cell is managed by a computer system.
  • an automatic picking device provided in a conventional automatic warehouse or the like can be assumed.
  • FIG. 17 is a flowchart showing a battery module manufacturing procedure example 2 including the unit cell selection method of the present embodiment. Also in this flow, the execution subject of each step is the person in charge of cell selection or the cell selection system 1.
  • the person in charge of cell selection etc. defines the rank classification method and the number of ranks (S200). Since this process is the same as step S100, a description thereof will be omitted. Subsequently, for each single cell that is a candidate for use in the battery module, for example, a charge / discharge test is performed in the charge / discharge measurement unit 21 of the charge / discharge device 20, and charge capacity data and discharge capacity for each single cell are measured. Data is acquired (S201). Since this process is the same as step S101, the description thereof is omitted.
  • the person in charge inputs the charge capacity data and the discharge capacity data acquired in step S201 through the user interface 24 and stores them in the table 28 in the storage unit 22 of the unit cell selection system 1 (S202).
  • the unit cell selection system 1 may obtain the charge capacity data and the discharge capacity data from the charge / discharge device 20 and store them in the table 28 of the storage unit 22.
  • the unit cell selection system 1 determines whether or not a preset unit cell combination execution condition is satisfied (S203). Examples of the satisfaction condition include the charge capacity data, the number of discharge capacity data, and a data acquisition period. If the condition is not satisfied (S203: No), the process returns to step S201, and the acquisition process of the charge capacity data and the discharge capacity data is repeated.
  • the unit cell selection system 1 uses the charge capacity data and the discharge capacity data stored in the storage unit 22 in the step S202, and determines the predetermined unit. Based on the battery combination method, a combination of single cells is determined (S204).
  • FIG. 18 shows an example of the unit cell combination result determined in step S204.
  • the resulting data structure is similar to that shown in FIG. Further, the battery module manufacturing system 32 obtains the result of step S204 from the unit cell selection system 1 and assembles the battery module (S205).
  • the battery module assembly process is the same as in steps S106A and S106B.
  • Equation 1 is used as an equation for calculating the similarity index in order to combine cells having similar charge capacities and discharge capacities.
  • Cdist_cells (i-ii) is the similarity index value of the cell i and the cell ii
  • Ccharge_cell (i) is the charge capacity of the cell i and the cell ii, respectively
  • Cdischarge_cell (i) and Cdisharge_cell (ii) indicate the discharge capacities of the cell i and the cell ii, respectively.
  • Cdist_cells (i-ii) of all the single cells is calculated, and single cells having a small value are regarded as the same battery module.
  • the similarity index value may be calculated using the standardized charge capacity and discharge capacity.
  • Norm (Ccharge_cell (i)) and Norm (Ccharge_cell (ii)) are the standardized charge capacities of cell i and cell ii, respectively
  • Ave (Ccharge_all_) is the average value of the charge capacities of all target data
  • Std (Ccharge_all) is the standard deviation of the charge capacity of all target data
  • Norm (Cdischarge_cell (i)) and Norm (Cdischarge_cell (ii)) are the standardized discharge capacities of cell i and cell ii, respectively.
  • Ave (Cdischarge_all_) represents the average value of the discharge capacities of all target data
  • Std (Cdischarge_all) represents the standard deviation of the discharge capacities of all target data.
  • the similarity index value may be calculated using the charge capacity, the discharge capacity, and the efficiency.
  • Norm Ceffect_cell (i)
  • Norm Ceffect_cell (ii)
  • Ave Ceffect_all
  • Std Ceffect_all
  • the calculation method of the similarity index value using the equations 1 to 3 described above is a typical example, and the calculation method is not limited to this.
  • the parameters used for the calculation also depend on the performance requirements of the target battery module, such as only charge capacity, only discharge capacity, only charge capacity and efficiency, only discharge capacity and efficiency, only charge capacity and discharge capacity, charge capacity and discharge capacity and efficiency, etc. It is possible to create a judgment formula.
  • the present embodiment it is possible to suppress the performance difference between the unit cells to be combined and to configure a battery module having an excellent charge / discharge cycle life.
  • At least the following will be made clear by the description in this specification. That is, in the unit cell selection method, at least one value of the unit cell charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity is classified for each predetermined threshold, and each cell is ranked.
  • the single battery groups having the same rank may be selected as a single battery group for the single battery module.
  • the unit cell selection method for each unit cell included in the adoption candidate, at least one of a charge capacity of each unit cell, a discharge capacity, and a ratio of the discharge capacity to the charge capacity is applied to a predetermined formula. Then, the similarity between the single cells may be calculated, and the single cell group having a high similarity may be selected as a single cell group for one battery module.
  • At least one of a charge capacity and a discharge capacity of each unit cell included in the candidate for adoption is measured, and a charge capacity, a discharge capacity, and a discharge capacity with respect to the charge capacity of each unit cell.
  • a cell group in which at least one of the ratios is within a predetermined range may be selected as a cell group for one cell module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To provide a technique for configuring a cell module in which performance differences among the combined unit cells are minimized and an excellent charge-discharge cycle life is maintained. [Solution] From among a plurality of unit cells (11) which are potential candidates to be employed by a cell module (10), a unit cell group for which the charge capacity, the discharge capacity, and/or the ratio of the discharge capacity to the charge capacity of the unit cells (11) is within a predetermined range is selected as a unit cell group for a single cell module.

Description

単電池選定方法、単電池選定システム、単電池選定プログラム、電池モジュール製造方法、および電池モジュール製造システムSingle cell selection method, single cell selection system, single cell selection program, battery module manufacturing method, and battery module manufacturing system
 本発明は、単電池選定方法、単電池選定システム、単電池選定プログラム、電池モジュール製造方法、および電池モジュール製造システムに関する。 The present invention relates to a cell selection method, a cell selection system, a cell selection program, a battery module manufacturing method, and a battery module manufacturing system.
 高電圧、大容量の電池性能要求を満たすため、複数個の単電池を接続して電池モジュールとして使用することが従来より行われている。一般に電池モジュールでは、満充電電圧より高電圧側に、充電を禁止する充電禁止電圧(=閾値電圧)を設定し、単電池ごとの電圧を監視している。前記単電池には、容量が小さいほど、充電開始から早く閾値電圧に到達するという性質がある。従って、電池モジュールを構成する単電池間で性能のばらつきが大きいと、単電池群のうち容量が小さい単電池での充電禁止電圧到達に伴って、電池モジュールの充電も早期に終了するというケースが発生する。 In order to satisfy battery performance requirements of high voltage and large capacity, it has been conventionally performed to connect a plurality of single cells and use them as a battery module. In general, in a battery module, a charging prohibition voltage (= threshold voltage) for prohibiting charging is set on a higher voltage side than a full charge voltage, and the voltage of each unit cell is monitored. The unit cell has a property that the smaller the capacity, the faster the threshold voltage is reached from the start of charging. Therefore, when there is a large variation in performance among the cells constituting the battery module, there is a case where the charging of the battery module is terminated early with the arrival of the charge prohibition voltage in the single cell having a small capacity in the single cell group. appear.
 そこで、充放電サイクルや保管時の寿命が長い組電池パック及び組電池パックの製造方法を提供するとの課題の下、電池モジュール内の単電池の性能を同等に保つための手法として、「複数の単電池が同ランクの自己放電速度を有する組合せ」ごとに電池モジュールを製造する手法(特許文献1参照)などが提案されている。 Therefore, under the problem of providing an assembled battery pack with a long charge / discharge cycle and storage life and a method for manufacturing the assembled battery pack, as a technique for maintaining the same performance of the single cells in the battery module, A method of manufacturing a battery module for each “combination in which single cells have the same self-discharge rate” (see Patent Document 1) has been proposed.
特開2010-86862号公報JP 2010-86862 A
 ところで、実際に製造された単電池の中には、自己放電速度は等しいが、充放電容量が異なる単電池が存在する。ここで、充電終了時の単電池ごとの充電状態(満充電容量を100%とした際の容量:SOC(State of Charge))と単電池の劣化速度には関係があり、SOCが高いほど電池の劣化が促進される。 By the way, among the actually manufactured cells, there are cells having the same self-discharge speed but different charge / discharge capacities. Here, the state of charge for each cell at the end of charging (capacity when the full charge capacity is 100%: SOC (State of Charge)) is related to the deterioration rate of the cell, and the higher the SOC, the battery Degradation is promoted.
 従って、従来のケースでは、容量が低い単電池ほど、電池モジュール充電終了時のSOCが高くなり、その結果、容量の劣化(低下率)が大きくなる。つまり、充放電を繰り返すほど、電池モジュール内の単電池はばらつきが大きくなっていき、電池モジュールの容量劣化が促進される可能性が高い。 Therefore, in the conventional case, the lower the capacity, the higher the SOC at the end of battery module charging, and the greater the capacity deterioration (decrease rate). That is, as the charging / discharging is repeated, the unit cells in the battery module vary more and more likely to promote the capacity deterioration of the battery module.
 そのため、特許文献1が示す技術のように、電池モジュールに組込む単電池を、その自己放電速度のみに基づいて決めた場合、電池容量の差によって生じる上記の電池モジュール劣化を考慮できない可能性がある。例えば、単電池同士を比較した場合、充電容量が等しくても放電容量が異なる単電池や、充電容量に対する放電容量の比率(効率)が等しくても充電容量、あるいは放電容量が異なる電池が存在する。これらは、単電池製造時の性能のばらつきに起因しており、上記性能劣化に影響を及ぼす可能性が高い。そのため、繰り返し充放電を実施した際の単電池ひいては電池モジュールの性能劣化が大きくなるケースの発生が考えられる。 Therefore, as in the technique shown in Patent Document 1, when a single battery to be incorporated into a battery module is determined based only on its self-discharge speed, the above-described battery module deterioration caused by the difference in battery capacity may not be considered. . For example, when comparing single cells, there are single cells having different charge capacities even if the charge capacities are equal, and batteries having different charge capacities or discharge capacities even if the ratio (efficiency) of the discharge capacities to the charge capacities is equal. . These are caused by variations in performance at the time of manufacturing the cell, and are highly likely to affect the performance deterioration. For this reason, there may be a case where the performance deterioration of the single cell and the battery module when repeated charging / discharging is increased.
 そこで本発明の目的は、組み合わせる単電池間の性能差を抑制し、充放電サイクル寿命に優れた電池モジュールを構成する技術を提供することにある。 Therefore, an object of the present invention is to provide a technique for configuring a battery module that suppresses a difference in performance between unit cells to be combined and has an excellent charge / discharge cycle life.
 上記課題を解決する本発明の単電池選定方法は、電池モジュールに採用する単電池を選定する方法であって、採用候補である複数の単電池のうち、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が、互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定するものである。 The cell selection method of the present invention that solves the above problems is a method of selecting a cell to be employed in a battery module, and among the plurality of cells that are candidates for adoption, the charge capacity, the discharge capacity of the cell, and A cell group in which at least one of the ratios of the discharge capacity to the charge capacity is within a predetermined range is selected as a cell group for one battery module.
 また、本発明の単電池選定システムは、電池モジュールへの採用候補たる各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を格納した記憶部と、前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する演算部と、を備える。 The unit cell selection system according to the present invention includes a storage unit storing at least one value of a charge capacity, a discharge capacity, and a ratio of the discharge capacity to the charge capacity of each unit cell that is a candidate for use in the battery module, The storage unit reads at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each of the candidate battery cells to be adopted, and sets a single battery group whose read values are within a predetermined range as one battery. A calculation unit that is selected as a unit cell group for modules.
 また、本発明の単電池選定プログラムは、電池モジュールへの採用候補たる各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を格納した記憶部を備えた情報処理装置に、前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する処理を実行させるものである。 Further, the cell selection program of the present invention includes a storage unit that stores at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity of each cell that is a candidate for use in the battery module. The information processing device reads from the storage unit at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each candidate battery, and the read values are within a predetermined range. A process of selecting a battery group as a single battery group for one battery module is executed.
 また、本発明の電池モジュール製造方法は、電池モジュールへの採用候補である複数の単電池のうち、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が、互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する工程と、当該選定した単電池群に含まれる単電池を電池モジュールに組み込む工程とを含む。 In the battery module manufacturing method of the present invention, among the plurality of single cells that are candidates for use in the battery module, at least one of the charge capacity of the single battery, the discharge capacity, and the ratio of the discharge capacity to the charge capacity is And a step of selecting a unit cell group within a predetermined range as a unit cell group for one battery module, and a step of incorporating a unit cell included in the selected unit cell group into the battery module.
 また、本発明の電池モジュール製造システムは、電池モジュールへの採用候補である複数の単電池を格納する格納装置と、前記格納装置に格納された各単電池に関する、充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を記憶部に記憶し、前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する単電池選定装置と、前記選定した単電池群に含まれる単電池を前記格納装置より抽出し、電池モジュールに組み込むモジュール組み立て装置と、を含む。 The battery module manufacturing system of the present invention includes a storage device that stores a plurality of single cells that are candidates for use in the battery module, and a charge capacity, a discharge capacity, and a charge for each single cell stored in the storage device. At least one value of the ratio of the discharge capacity to the capacity is stored in the storage unit, and from the storage unit, at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity of each candidate battery to be adopted A unit cell selection device that reads a value and selects a unit cell group in which the read values are within a predetermined range as a unit cell group for one cell module, and a unit cell that is included in the selected unit cell group from the storage device And a module assembly apparatus that extracts and incorporates the battery module.
 本発明によれば、組み合わせる単電池間の性能差を抑制し、充放電サイクル寿命に優れた電池モジュールを構成することが可能となる。 According to the present invention, a performance difference between unit cells to be combined can be suppressed, and a battery module having an excellent charge / discharge cycle life can be configured.
本実施形態の単電池選定システムの構成例を示す図である。It is a figure which shows the structural example of the single cell selection system of this embodiment. 本実施形態の単電池選定方法を含む電池モジュール製造手順例1を示すフロー図である。It is a flowchart which shows the battery module manufacturing procedure example 1 containing the cell selection method of this embodiment. 充電容量、放電容量、効率の関係を説明する図である。It is a figure explaining the relationship between charge capacity, discharge capacity, and efficiency. 本実施形態における単電池のランク分類例1を説明する図である。It is a figure explaining the rank classification example 1 of the cell in this embodiment. 本実施形態における単電池のランク分類式の例1を説明する図である。It is a figure explaining the example 1 of the rank classification formula of the cell in this embodiment. 本実施形態における単電池のランク分類例2を説明する図である。It is a figure explaining the rank classification example 2 of the cell in this embodiment. 本実施形態における単電池のランク分類式の例2を説明する図である。It is a figure explaining the example 2 of the rank classification formula of the cell in this embodiment. 本実施形態における単電池のランク分類例3を説明する図である。It is a figure explaining the rank classification example 3 of the cell in this embodiment. 本実施形態における単電池のランク分類式の例3を説明する図である。It is a figure explaining the example 3 of the rank classification formula of the cell in this embodiment. 本実施形態における単電池のランク分類例4を説明する図である。It is a figure explaining the rank classification example 4 of the cell in this embodiment. 本実施形態における単電池のランク分類式の例4を説明する図である。It is a figure explaining the example 4 of the rank classification formula of the cell in this embodiment. 本実施形態における単電池のランク分類例5を説明する図である。It is a figure explaining the rank classification example 5 of the cell in this embodiment. 本実施形態における単電池のランク分類式の例5を説明する図である。It is a figure explaining the example 5 of the rank classification formula of the cell in this embodiment. 本実施形態における単電池選定結果の例を示す図である。It is a figure which shows the example of the cell selection result in this embodiment. 電池モジュールの一例を説明する図である。It is a figure explaining an example of a battery module. 本実施形態の電池モジュール製造システムの構成例を示す図である。It is a figure which shows the structural example of the battery module manufacturing system of this embodiment. 本実施形態の単電池選定方法を含む電池モジュール製造手順例2を示すフロー図である。It is a flowchart which shows the battery module manufacturing procedure example 2 including the cell selection method of this embodiment. 本実施形態における単電池選定結果の例を示す図である。It is a figure which shows the example of the cell selection result in this embodiment.
 以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態の単電池選定システム1の構成例を示す図である。図1に示す単電池選定システム1は、組み合わせる単電池間の性能差を抑制し、充放電サイクル寿命に優れた電池モジュールを構成することを可能とするためのコンピュータシステムである。図1に関しては、単電池選定を情報処理装置たるコンピュータで実行するものとして説明するが、この形態に限定されない。例えば、電池モジュール製造に際して単電池選定を行う担当者が本実施形態の単電池選定方法を実行するとしても勿論良い。また、図1に示す例では、単電池選定システム1が充放電装置20に組み込まれている例を示している。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a unit cell selection system 1 according to the present embodiment. A cell selection system 1 shown in FIG. 1 is a computer system for suppressing a performance difference between unit cells to be combined and configuring a battery module having an excellent charge / discharge cycle life. Although FIG. 1 will be described assuming that cell selection is performed by a computer that is an information processing apparatus, the present invention is not limited to this mode. For example, it is of course possible that the person in charge of selecting a single cell when manufacturing the battery module executes the single cell selection method of the present embodiment. In the example shown in FIG. 1, an example in which the unit cell selection system 1 is incorporated in the charge / discharge device 20 is shown.
 前記単電池選定システム1は、本実施形態の単電池選定方法を実際に実行して電池モジュール製造を行う電池メーカーなどが所持するサーバやコンピュータ端末等を想定できる。この単電池選定システム1は、情報処理装置として当然備えるべき、記憶部22、演算部23、およびユーザインターフェイス24を備えている。 The single cell selection system 1 can be assumed to be a server or a computer terminal possessed by a battery manufacturer or the like that actually executes the single cell selection method of the present embodiment and manufactures a battery module. This single cell selection system 1 includes a storage unit 22, a calculation unit 23, and a user interface 24 that should naturally be provided as an information processing apparatus.
 記憶部22はハードディスクドライブ等の不揮発性記憶装置から構成されており、本実施形態の単電池選定方法を実行するためのプログラム27と、電池モジュールへの採用候補たる各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を格納しているテーブル28を記憶している。 The storage unit 22 is composed of a non-volatile storage device such as a hard disk drive, and includes a program 27 for executing the unit cell selection method of the present embodiment, the charge capacity and discharge of each unit cell that is a candidate for use in the battery module. A table 28 is stored that stores at least one of the capacity and the ratio of the discharge capacity to the charge capacity.
 また、演算部23は、マイクロプロセッサなどの演算処理装置である。この演算部23は記憶部22から読み出したプログラム27に基づき計算を行う。この演算部23は、記憶部22の前記テーブル28より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率(図では“効率”とした)の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する処理を実行する。 The calculation unit 23 is a calculation processing device such as a microprocessor. The calculation unit 23 performs calculation based on the program 27 read from the storage unit 22. The calculation unit 23 is based on the table 28 of the storage unit 22 and includes at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity (“efficiency” in the drawing) of each candidate cell. A value is read, and a process of selecting a cell group in which the read values are within a predetermined range as a cell group for one battery module is executed.
 また、ユーザインターフェイス24は、液晶ディスプレイやプリンタなどの出力装置や、キーボードやマウスなどの入力装置である。単電池選定システム1は、ユーザインターフェイス24における入力装置において、例えばユーザからの指示を受けて前記プログラム27の起動、実行を行い、出力装置において処理結果を出力する。 The user interface 24 is an output device such as a liquid crystal display or a printer, or an input device such as a keyboard or a mouse. The cell selection system 1 starts and executes the program 27 in response to an instruction from the user, for example, at the input device in the user interface 24, and outputs the processing result at the output device.
 なお、単電池選定システム1を組み込んだ充放電装置20は、充放電測定部21を備えている。充放電測定部21は、単電池の充放電時における電圧、電流の各条件の設定機能、各単電池の充放電経過時間ごとの電流値、電圧値の測定機能、およびこれら計測により得た値に基づいて充電容量、放電容量を算出する機能などを備えている。また、好ましくは、この充放電測定部21が充電容量、放電容量のデータを所定のインターフェイスを介して単電池選定システム1に送信するものとする。この場合、単電池選定システム1は充放電測定部21から得た充電容量、放電容量のデータを取得し、前記テーブル28に格納することとなる。また単電池選定システム1は、充電容量、放電容量のデータから、充電容量に対する放電容量の比率を算定し、この値も前記テーブル28に格納する。 Note that the charge / discharge device 20 incorporating the unit cell selection system 1 includes a charge / discharge measurement unit 21. The charge / discharge measuring unit 21 has a function for setting each condition of voltage and current during charging / discharging of the unit cell, a current value for each elapsed time of charging / discharging of each unit cell, a function for measuring the voltage value, and a value obtained by these measurements. A function for calculating a charge capacity and a discharge capacity based on the above is provided. Preferably, the charge / discharge measurement unit 21 transmits charge capacity and discharge capacity data to the unit cell selection system 1 via a predetermined interface. In this case, the unit cell selection system 1 acquires the charge capacity and discharge capacity data obtained from the charge / discharge measurement unit 21 and stores the data in the table 28. The cell selection system 1 calculates the ratio of the discharge capacity to the charge capacity from the charge capacity and discharge capacity data, and also stores this value in the table 28.
 続いて、本実施形態の単電池選定方法の処理手順について説明する。図2は本実施形態の単電池選定方法を含む電池モジュール製造手順例1を示すフロー図である。以下に述べる各ステップについては、単電池選定を行う担当者ないし前記単電池選定システム1が実行主体となって行われる処理である。まず、単電池選定の担当者等が、ランク分類方法とランク数の定義を行う(S100)。ここでの「ランク」とは、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値について、所定閾値毎に区分した単電池のランクである。従って、ランクの分類方法の例としては、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率のうち、1つの値のみに基づいた分類、2つの値に基づいた分類、或いは3つの値に基づいた分類の3つがあげられる。ランク数としては、各値の範囲を所定の閾値を境界に2分割して2つのランクを設ける場合、或いは同様に3分割して3つのランクを設ける場合、4分割して4つのランクを設ける場合、など状況に応じて自在に定義出来る。 Subsequently, a processing procedure of the cell selection method of the present embodiment will be described. FIG. 2 is a flowchart showing a battery module manufacturing procedure example 1 including the unit cell selection method of the present embodiment. Each step described below is a process performed by a person in charge of cell selection or the cell selection system 1 as an executing entity. First, a person in charge of single cell selection or the like defines a rank classification method and the number of ranks (S100). Here, the “rank” is a rank of the unit cells divided for each predetermined threshold with respect to at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity. Accordingly, as an example of the rank classification method, the charging capacity, discharging capacity, and ratio of the discharging capacity to the charging capacity of the unit cell are classified based on only one value, classified based on two values, or 3 There are three classifications based on one value. As for the number of ranks, when two ranges are provided by dividing the range of each value into two with a predetermined threshold as a boundary, or when three ranks are provided in the same manner, four ranks are provided and four ranks are provided. You can define it freely according to the situation.
 続いて、電池モジュールへの採用候補となっている各単電池について、例えば、前記充放電装置20の充放電測定部21にて充放電試験を実施し、単電池ごとの充電容量データ、放電容量データを取得する(S101)。このステップでの処理については、前記単電池選定システム1が実行するとしてもよい。 Subsequently, for each single cell that is a candidate for use in the battery module, for example, a charge / discharge test is performed in the charge / discharge measurement unit 21 of the charge / discharge device 20, and charge capacity data and discharge capacity for each single cell are measured. Data is acquired (S101). The unit cell selection system 1 may execute the process in this step.
 また、前記ステップS101で取得した充電容量データ、放電容量データを用い、前記ステップS100で予め定めておいたランク分類等の定義に基づき、単電池のランク分類を行う(S102)。ランク分類処理の詳細については後述する。当該ステップでの処理についても、前記単電池選定システム1が実行するとしてよい。 In addition, using the charge capacity data and the discharge capacity data acquired in step S101, the rank classification of the single cells is performed based on the definition of rank classification and the like previously determined in step S100 (S102). Details of the rank classification processing will be described later. The unit cell selection system 1 may also execute the processing in this step.
 次に、前記担当者は、前記ステップS102で得た各単電池のランク分類結果を、ユーザインターフェイス24で入力し、前記単電池選定システム1の記憶部22におけるテーブル28に保存する(S103)。或いは、前記単電池選定システム1が、前記充電容量データ、放電容量データに基づいて実行した各単電池のランク分類の結果を、記憶部22のテーブル28に格納するとしてもよい。 Next, the person in charge inputs the rank classification result of each unit cell obtained in step S102 through the user interface 24 and stores it in the table 28 in the storage unit 22 of the unit cell selection system 1 (S103). Alternatively, the unit cell selection system 1 may store the result of rank classification of each unit cell executed based on the charge capacity data and the discharge capacity data in the table 28 of the storage unit 22.
 続いて、記憶部22に保存された各単電池のランク分類結果に基づいて、所定ランクに属する単電池が、電池モジュールの組立に必要な数だけ存在するかを判定する(S104)。例えば、単電池選定システム1は、記憶部22のテーブル28において、各単電池に関するレコードよりランクの値を読み出し、ランク毎に単電池総数をカウントする。このカウント値が所定数(=電池モジュール組み立てに必要な数)に達しているか判定する。 Subsequently, based on the rank classification result of each unit cell stored in the storage unit 22, it is determined whether or not there are as many cells as the required rank for assembling the battery module (S 104). For example, the unit cell selection system 1 reads the rank value from the record relating to each unit cell in the table 28 of the storage unit 22 and counts the total number of unit cells for each rank. It is determined whether this count value has reached a predetermined number (= the number necessary for battery module assembly).
 こうした判定により、あるランクの単電池が、電池モジュールの組立に必要な数だけ存在しなかった場合(S104:No)、フローは前記ステップS101に戻り、新たな単電池に関してランク分類の処理を実行し、ランク分類結果の保存を繰り返す。 As a result of the determination, if the number of cells of a certain rank does not exist as many as necessary for assembling the battery module (S104: No), the flow returns to step S101, and rank classification processing is performed for the new cell. And repeatedly save the rank classification result.
 一方、あるランクの単電池が、電池モジュールの組立に必要な数だけ存在した場合(S104:Yes)、該当ランクについて記憶部22のテーブル28に情報が保存された単電池群を同一の電池モジュールに組み込む単電池群として特定する(S105)。その後、電池モジュール製造システム等で、前記ステップS105で得た単電池群の情報に基づいた単電池の特定、特定した単電池を用いた電池モジュール組立を行うこととなる(S106)。 On the other hand, when there are as many cells as required for assembling the battery module (S104: Yes), the cell group in which information is stored in the table 28 of the storage unit 22 for the corresponding rank is assigned to the same battery module. (S105). Thereafter, in the battery module manufacturing system or the like, the single cells are specified based on the information on the single cell group obtained in step S105, and the battery modules are assembled using the specified single cells (S106).
 ここで、充電容量、放電容量、効率の関係について説明しておく。図3は、充電容量、放電容量、効率の関係を説明する図である。この図にて示すグラフでは、横軸に充電容量、縦軸に放電容量をとり、各充放電容量の組合せに対する効率を等高線マップとして示している。この結果から、充電容量に対する放電容量の比率すなわち効率は、グラフ右下から左上に向かい高くなっていくこと、また、同じ効率を示す充電容量と放電容量の組合せは、Y=a1X+b1(ただしa1>1)の直線上にプロットされることが分かる。充電容量、放電容量、効率が同じ範囲にある、すなわち類似する単電池同士を分類する方法として、例えば図4および図5に示す方法が考えられる。 Here, the relationship between charge capacity, discharge capacity, and efficiency will be described. FIG. 3 is a diagram for explaining the relationship between the charge capacity, the discharge capacity, and the efficiency. In the graph shown in this figure, the horizontal axis represents the charge capacity, the vertical axis represents the discharge capacity, and the efficiency for each combination of charge and discharge capacity is shown as a contour map. From this result, the ratio of the discharge capacity to the charge capacity, that is, the efficiency increases from the lower right to the upper left of the graph, and the combination of the charge capacity and the discharge capacity showing the same efficiency is Y = a1X + b1 (however, It can be seen that it is plotted on the straight line a1> 1). As a method for classifying similar cells that have the same charge capacity, discharge capacity, and efficiency, that is, methods shown in FIGS. 4 and 5, for example, can be considered.
 図4は、前記ステップS102で示したランク分類処理の代表例を説明する図である。この図は、横軸が充電容量、縦軸が放電容量のグラフであって、前記ステップS101で取得した各単電池の充電容量、放電容量の値をプロットしたものである。実際に製造された単電池についてその充電容量、放電容量の値をプロットすると、図4のグラフで示すように、設計値(製造条件通りに単電池が製造された場合の想定値)に対して単電池間でのばらつきが確認される。 FIG. 4 is a diagram illustrating a representative example of the rank classification process shown in step S102. In this figure, the horizontal axis represents the charge capacity and the vertical axis represents the discharge capacity, and the values of the charge capacity and discharge capacity of each unit cell acquired in step S101 are plotted. When the values of the charge capacity and discharge capacity of the actually manufactured unit cell are plotted, as shown in the graph of FIG. 4, the design value (assumed value when the unit cell is manufactured according to the manufacturing conditions) is shown. Variations between single cells are confirmed.
 そこで図4の例では、充電容量、放電容量、および効率が類似する単電池を4つのランクに分類するため、前記グラフ上の領域を区分する判定式1、判定式2、および判定式3を想定している。ここで、Yは放電容量、Xは充電容量を示す。この例では、判定式1および判定式2の傾き“a1”は同一の値としており、判定式3の傾き“-a1”は、判定式1および2の直線に直行する値を用いているがこの限りではない(例えば、判定式1の傾き“a1”と判定式2の傾き“a1”を別の値として設定することも可能)。また、各ランク領域やランク数の設定方法(例:判定式の設定方法)は、例えば、充放電の良品規格範囲を等分するように設定することも可能であるし、顧客要求に従って設定することも可能である。 Therefore, in the example of FIG. 4, in order to classify cells having similar charge capacity, discharge capacity, and efficiency into four ranks, the judgment formula 1, judgment formula 2, and judgment formula 3 for classifying the regions on the graph are expressed as follows. Assumed. Here, Y represents the discharge capacity, and X represents the charge capacity. In this example, the slope “a1” of the judgment formula 1 and the judgment formula 2 is the same value, and the slope “−a1” of the judgment formula 3 uses a value orthogonal to the straight lines of the judgment formulas 1 and 2. This is not limited to this (for example, the slope “a1” of the judgment formula 1 and the slope “a1” of the judgment formula 2 can be set as different values). In addition, the setting method of each rank area and the number of ranks (eg, setting method of the judgment formula) can be set so as to equally divide the non-defective product standard range of charge / discharge, or set according to customer requirements. It is also possible.
 図4に示す判定式1、2を用いてAからDの4つのランクに分類するために、図5で示す判定方法を用いる。ここで、判定方法1のY1は、ステップS101で取得した充電容量を判定式1のXに代入して得られた結果を示している。また、判定方法2のY2は、ステップS101で取得した充電容量を判定式2のXに代入して得られた結果を示している。また、判定方法3のY3は、ステップS101で取得した充電容量を判定式3のXに代入して得られた結果を示している。また、Cdischarge_cell(i)は、ステップS101で取得した単電池iの放電容量を示す。 In order to classify into four ranks A to D using the determination formulas 1 and 2 shown in FIG. 4, the determination method shown in FIG. 5 is used. Here, Y1 of the determination method 1 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 1. Further, Y2 of the determination method 2 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 2. Further, Y3 of the determination method 3 indicates a result obtained by substituting the charge capacity acquired in step S101 into X of the determination formula 3. Cdischarge_cell (i) indicates the discharge capacity of the cell i acquired in step S101.
 この結果、例えば、図4のグラフ中に示す「単電池1」と「単電池2」について示すように、充電容量が同じ電池であっても放電容量、および、効率が大きく異なる電池は別のランクに分類される。一方、「単電池4」と「単電池5」のように、充電容量、放電容量が異なっても、効率が等しい単電池が同じランクに分類される。 As a result, for example, as shown for the “unit cell 1” and “unit cell 2” shown in the graph of FIG. 4, even if the batteries have the same charge capacity, the batteries having greatly different discharge capacities and efficiencies are different. Classified into ranks. On the other hand, like “unit cell 4” and “unit cell 5”, even if the charge capacity and the discharge capacity are different, the unit cells having the same efficiency are classified into the same rank.
 図4、5の例では、3つの判定式を用いて、4つのランクに分類しているが、判定式の定義、および、ランク数はこの限りではない。また、図4、5の例では、充電容量、放電容量、効率が類似するように分類しているが、例えば、充電容量のみ、放電容量のみ、充電容量と効率のみ、放電容量と効率のみ、充電容量と放電容量のみを用いるなど、対象電池モジュールの性能要求に応じて判定式に用いるパラメータを変更することも可能である。 In the examples of FIGS. 4 and 5, classification is made into four ranks using three judgment formulas, but the definition of the judgment formula and the number of ranks are not limited to this. 4 and 5, the charge capacity, discharge capacity, and efficiency are classified so as to be similar. For example, only the charge capacity, only the discharge capacity, only the charge capacity and efficiency, only the discharge capacity and efficiency, It is also possible to change the parameters used in the determination formula according to the performance requirements of the target battery module, such as using only the charge capacity and the discharge capacity.
 例えば、同じ4つのランクに分類する方法として、図4以外に、充電容量と放電容量に着目した場合、図6に示す2つの判定式(判定式1:X=CQD、判定式2:Y=DQD)と、図7に示す判定方法を用いて分類することが可能である。この場合、図6のグラフ中に示す「単電池1」と「単電池2」について示すように、充電容量が同じ単電池であっても放電容量が大きく異なる単電池は別のランクに分類される。一方、「単電池4」と「単電池5」のように、充電容量、放電容量が異なっても所定範囲に収まっている場合、同じランクに分類される。 For example, as a method of classifying into the same four ranks, when attention is paid to the charge capacity and the discharge capacity in addition to FIG. 4, the two determination formulas shown in FIG. 6 (determination formula 1: X = C QD , determination formula 2: Y = D QD ) and the determination method shown in FIG. In this case, as shown for “single cell 1” and “single cell 2” shown in the graph of FIG. 6, the single cells having the same charge capacity but different in discharge capacity are classified into different ranks. The On the other hand, when the charge capacity and the discharge capacity are different, such as “unit cell 4” and “unit cell 5”, they are classified into the same rank.
 また、充電容量のみに着目した場合には、図8に示す3つの判定式(判定式1:X=CQ1、判定式2:X=CQD、判定式3:X=CQ2)と、図9に示す判定方法を用いて分類することが可能である。この場合、図8のグラフ中に示す「単電池1」と「単電池2」について示すように、充電容量が同じ単電池であれば同じランクに分類される。あるいは、放電容量のみに着目した場合には、図10に示す3つの判定式(判定式1:Y=DQ1、判定式2:Y=DQD、判定式3:Y=DQ2)と、図11に示す判定方法を用いて分類することが可能である。この場合、図10のグラフ中に示す「単電池1」と「単電池2」について示すように、充電容量が同じあっても放電容量が大きく異なる単電池であれば異なるランクに分類され、放電容量が同じ単電池であれば同じランクに分類される。 When attention is paid only to the charging capacity, three judgment formulas (judgment formula 1: X = C Q1 , judgment formula 2: X = C QD , judgment formula 3: X = C Q2 ) shown in FIG. It is possible to classify using the determination method shown in FIG. In this case, as shown for “cell 1” and “cell 2” shown in the graph of FIG. 8, if the cells have the same charge capacity, they are classified into the same rank. Alternatively, when attention is paid only to the discharge capacity, three judgment formulas (judgment formula 1: Y = D Q1 , judgment formula 2: Y = D QD , judgment formula 3: Y = D Q2 ) shown in FIG. It is possible to classify using the determination method shown in FIG. In this case, as shown for “unit cell 1” and “unit cell 2” shown in the graph of FIG. 10, even if the charge capacity is the same, if the unit cells have greatly different discharge capacities, they are classified into different ranks. If the cells have the same capacity, they are classified into the same rank.
 さらに、効率のみに着目した場合には、図12に示す3つの判定式(判定式1:Y=a1X+b1、判定式2:Y=a1X+b2、判定式3:Y=a1X+b3)と、図13に示す判定方法を用いて分類することも可能である。前記各判定式のYは、前記ステップS101で取得した充電容量を判定式のXに代入して得られた結果を示している。この場合、図12のグラフ中に示す「単電池1」と「単電池2」について示すように、充電容量が同じあっても放電容量が大きく異なる単電池であれば異なるランクに分類される。 Furthermore, when focusing only on the efficiency, the three judgment formulas shown in FIG. 12 (judgment formula 1: Y = a1X + b1, judgment formula 2: Y = a1X + b2, judgment formula 3: Y = a1X + b3) It is also possible to classify using the determination method shown in FIG. Y in each determination formula indicates a result obtained by substituting the charge capacity acquired in step S101 for X in the determination formula. In this case, as shown for “unit cell 1” and “unit cell 2” shown in the graph of FIG. 12, even if the charge capacity is the same, if the unit cells have greatly different discharge capacities, they are classified into different ranks.
 図14にランク分類結果の例を示す。単電池選定に当たって各単電池をランク分けした結果、図14に示すように、製造時に定義された各単電池のセルIDごとに、ランク分類の結果が例えば“A”~“D”まで得られる。このランク分類結果は、記憶部22の前記テーブル28に格納される。単電池選定システム1は、このテーブル28の例えばレコード順に、各ランク毎に電池モジュール製造に必要な数の単電池を選定する。また、単電池選定システム1は、前記テーブル28において、前記選定した単電池毎に同じ電池モジュールのIDを設定することとなる。電池モジュール製造に際しては、前記テーブル28において同じ電池モジュールIDが付された単電池を、1つの電池モジュールに組み込めばよい。図15に、同じ電池モジュールIDが付された単電池11を、1つの電池モジュール10に組み込んだ状態を例示した。 Fig. 14 shows an example of rank classification results. As a result of ranking each unit cell in selecting the unit cell, as shown in FIG. 14, for each cell ID defined at the time of manufacture, the result of rank classification is obtained from “A” to “D”, for example. . The rank classification result is stored in the table 28 of the storage unit 22. The single cell selection system 1 selects the number of single cells necessary for manufacturing the battery module for each rank in the order of records in the table 28, for example. In addition, the single cell selection system 1 sets the ID of the same battery module for each selected single cell in the table 28. When the battery module is manufactured, the unit cells having the same battery module ID in the table 28 may be incorporated into one battery module. FIG. 15 illustrates a state in which the single battery 11 having the same battery module ID is incorporated in one battery module 10.
 電池モジュール製造を実行する装置としては、例えば図16に示すように、電池モジュールへの採用候補である複数の単電池11を格納する格納装置35と、前記格納装置35に格納された各単電池11に関する、充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を記憶部22に記憶し、前記記憶部22より、採用候補の各単電池11の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する演算部23、データ入出力を担うユーザインターフェイス24を備えた単電池選定システム1と、前記選定した単電池群に含まれる単電池11を前記格納装置35より抽出し、電池モジュール10に組み込むモジュール組み立て装置36とを含む製造システム32を想定できる。 As an apparatus for executing battery module manufacture, for example, as shown in FIG. 16, a storage device 35 that stores a plurality of single cells 11 that are candidates for use in a battery module, and each single cell stored in the storage device 35. 11 is stored in the storage unit 22 at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity, and the storage unit 22 stores the charge capacity and discharge capacity of each of the candidate cells 11 to be adopted. , And at least one value of the ratio of the discharge capacity to the charge capacity, and a calculation unit 23 for selecting a single battery group whose read values are within a predetermined range as a single battery group for one battery module, data input / output The cell selection system 1 provided with the user interface 24 to take charge, and the storage device 3 includes the cells 11 included in the selected cell group. More extraction, assume the manufacturing system 32 including a module assembly device 36 incorporated in the battery module 10.
 また、充放電装置30は、ローカルエリアネットワーク31に接続している。また電池モジュール製造システム32は、ローカルエリアネットワーク31に接続するため、NIC(Network Interface Card)などのネットワークインターフェース25を備える。単電池毎の充放電測定結果は、充放電装置30からローカルエリアネットワーク31を介して、ネットワークインターフェース25から電池モジュール製造システム32に取り込まれる。当該電池モジュール製造システム32に組み込まれた前記単電池選定システム1は、前記プログラム27を記憶部22から読み出して実行する。これにより、電池モジュール10に組み込むべき単電池11が選定される。図2のフローにおけるステップS105までの処理でこの単電池選定の処理がなされることになる。 Further, the charge / discharge device 30 is connected to the local area network 31. Further, the battery module manufacturing system 32 includes a network interface 25 such as a NIC (Network Interface Card) in order to connect to the local area network 31. The charging / discharging measurement result for each unit cell is taken into the battery module manufacturing system 32 from the network interface 25 via the local area network 31 from the charging / discharging device 30. The single cell selection system 1 incorporated in the battery module manufacturing system 32 reads the program 27 from the storage unit 22 and executes it. Thereby, the unit cell 11 to be incorporated in the battery module 10 is selected. The unit cell selection process is performed in the process up to step S105 in the flow of FIG.
 前記電池モジュール製造システム32のモジュール組み立て装置36は、図2のフローに示すように、前記単電池の選定結果である単電池11のID=単電池セルIDの情報を、単電池選定システム1から取得し(S106A)、該当単電池を格納装置35から自動ピッキングして、予め用意した電池モジュール10に対して組み込み処理を実行する(S106B)。単電池11を格納する格納装置35は、各単電池の所在をコンピュータシステムで管理する従来の自動倉庫システムを想定できる。またこうした格納装置35からの単電池11の自動ピッキングを行う機構としては、従来の自動倉庫等に備わる自動ピッキング装置を想定できる。 As shown in the flow of FIG. 2, the module assembling apparatus 36 of the battery module manufacturing system 32 uses the unit cell selection system 1 to obtain information about the unit cell 11 ID = unit cell ID as the unit cell selection result. It is acquired (S106A), the corresponding single cell is automatically picked from the storage device 35, and the assembling process is executed for the battery module 10 prepared in advance (S106B). The storage device 35 for storing the single cells 11 can be assumed to be a conventional automatic warehouse system in which the location of each single cell is managed by a computer system. In addition, as a mechanism for automatically picking the cells 11 from the storage device 35, an automatic picking device provided in a conventional automatic warehouse or the like can be assumed.
 続いて、単電池選定に際して上述のようにランク数を予め設定したランク分けをせず、単電池間毎の類似度によって単電池選定を行う例について説明する。この場合、各単電池の充電容量データ、放電容量データを所定の数式に適用して各単電池間の類似性評価指標値を算定する。図17は、本実施形態の単電池選定方法を含む電池モジュール製造手順例2を示すフロー図である。本フローにおいても、各ステップの実行主体は単電池選定の担当者ないし単電池選定システム1となる。 Subsequently, an example will be described in which cell selection is performed according to the degree of similarity between cells without performing rank classification in which the number of ranks is set in advance as described above for cell selection. In this case, the similarity evaluation index value between the single cells is calculated by applying the charge capacity data and discharge capacity data of each single cell to a predetermined formula. FIG. 17 is a flowchart showing a battery module manufacturing procedure example 2 including the unit cell selection method of the present embodiment. Also in this flow, the execution subject of each step is the person in charge of cell selection or the cell selection system 1.
 この場合、まず、単電池選定の担当者等が、ランク分類方法とランク数の定義を行う(S200)。この処理は前記ステップS100と同様であるので説明は省略する。続いて、電池モジュールへの採用候補となっている各単電池について、例えば、前記充放電装置20の充放電測定部21にて充放電試験を実施し、単電池ごとの充電容量データ、放電容量データを取得する(S201)。この処理も前記ステップS101と同様であるので説明は省略する。 In this case, first, the person in charge of cell selection etc. defines the rank classification method and the number of ranks (S200). Since this process is the same as step S100, a description thereof will be omitted. Subsequently, for each single cell that is a candidate for use in the battery module, for example, a charge / discharge test is performed in the charge / discharge measurement unit 21 of the charge / discharge device 20, and charge capacity data and discharge capacity for each single cell are measured. Data is acquired (S201). Since this process is the same as step S101, the description thereof is omitted.
 続いて、前記担当者は、前記ステップS201で取得した充電容量データ、放電容量データを、ユーザインターフェイス24で入力し、前記単電池選定システム1の記憶部22におけるテーブル28に保存する(S202)。或いは、前記単電池選定システム1が、前記充電容量データ、放電容量データを充放電装置20から得て、記憶部22のテーブル28に格納するとしてもよい。 Subsequently, the person in charge inputs the charge capacity data and the discharge capacity data acquired in step S201 through the user interface 24 and stores them in the table 28 in the storage unit 22 of the unit cell selection system 1 (S202). Alternatively, the unit cell selection system 1 may obtain the charge capacity data and the discharge capacity data from the charge / discharge device 20 and store them in the table 28 of the storage unit 22.
 次に、前記単電池選定システム1は、予め設定した単電池組合せ実施条件を満たすかどうか判定する(S203)。この充足条件として、例えば、前記充電容量データ、放電容量データのデータ数、データ取得期間などが挙げられる。条件を満たさない場合(S203:No)、処理をステップS201に戻し、充電容量データ、放電容量データの取得処理を繰り返す。 Next, the unit cell selection system 1 determines whether or not a preset unit cell combination execution condition is satisfied (S203). Examples of the satisfaction condition include the charge capacity data, the number of discharge capacity data, and a data acquisition period. If the condition is not satisfied (S203: No), the process returns to step S201, and the acquisition process of the charge capacity data and the discharge capacity data is repeated.
 また、前記条件を満たした場合(S203:Yes)、前記単電池選定システム1は、前記ステップS202で記憶部22に保存した、充電容量データ、放電容量データを用いて、予め定めておいた単電池組合せ方法に基づき、単電池の組合せを決定する(S204)。図18において、前記ステップS204で決定された単電池の組み合わせ結果の例を示す。結果として得られるデータ構造は、図14で示したものと同様である。また、電池モジュール製造システム32は、前記ステップS204の結果を単電池選定システム1から得て、電池モジュール組立を行う(S205)。この電池モジュール組み立ての処理については、前記ステップS106A、S106Bと同様である。 If the condition is satisfied (S203: Yes), the unit cell selection system 1 uses the charge capacity data and the discharge capacity data stored in the storage unit 22 in the step S202, and determines the predetermined unit. Based on the battery combination method, a combination of single cells is determined (S204). FIG. 18 shows an example of the unit cell combination result determined in step S204. The resulting data structure is similar to that shown in FIG. Further, the battery module manufacturing system 32 obtains the result of step S204 from the unit cell selection system 1 and assembles the battery module (S205). The battery module assembly process is the same as in steps S106A and S106B.
 ここで、前記ステップS204で述べた単電池の組合せに関する代表的な方法について説明する。充電容量、放電容量が類似する単電池同士を組合せるために類似性指標を算定する式として、例えば式1を用いる。 
Figure JPOXMLDOC01-appb-I000001
Here, a typical method related to the combination of unit cells described in step S204 will be described. For example, Equation 1 is used as an equation for calculating the similarity index in order to combine cells having similar charge capacities and discharge capacities.
Figure JPOXMLDOC01-appb-I000001
 ここで、Cdist_cells(i-ii)は、単電池iと単電池iiの類似性指標値を、Ccharge_cell(i)、Ccharge_cell(ii)は、それぞれ単電池iと単電池iiの充電容量を、Cdischarge_cell(i)、Cdisharge_cell(ii)は、それぞれ単電池iと単電池iiの放電容量を示す。全ての単電池同士のCdist_cells(i-ii)を算出し、この値が小さい単電池同士を同一の電池モジュールとする。なお、式2で示すように、規格化した充電容量と放電容量を用いて類似性指標値の算出を行っても良い。 Here, Cdist_cells (i-ii) is the similarity index value of the cell i and the cell ii, Ccharge_cell (i), Ccharge_cell (ii) is the charge capacity of the cell i and the cell ii, respectively, Cdischarge_cell (i) and Cdisharge_cell (ii) indicate the discharge capacities of the cell i and the cell ii, respectively. Cdist_cells (i-ii) of all the single cells is calculated, and single cells having a small value are regarded as the same battery module. In addition, as shown in Formula 2, the similarity index value may be calculated using the standardized charge capacity and discharge capacity.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 ここで、Norm(Ccharge_cell(i))、Norm(Ccharge_cell(ii))は、それぞれ単電池iと単電池iiの規格化充電容量を、Ave(Ccharge_all )は、全対象データの充電容量の平均値を、Std(Ccharge_all )は、全対象データの充電容量の標準偏差を、Norm(Cdischarge_cell(i) )、Norm(Cdischarge_cell(ii))は、それぞれ単電池iと単電池iiの規格化放電容量を、Ave(Cdischarge_all )は、全対象データの放電容量の平均値を、Std(Cdischarge_all )は、全対象データの放電容量の標準偏差を示す。 Here, Norm (Ccharge_cell (i)) and Norm (Ccharge_cell (ii)) are the standardized charge capacities of cell i and cell ii, respectively, and Ave (Ccharge_all_) is the average value of the charge capacities of all target data Std (Ccharge_all) is the standard deviation of the charge capacity of all target data, Norm (Cdischarge_cell (i)) and Norm (Cdischarge_cell (ii)) are the standardized discharge capacities of cell i and cell ii, respectively. Ave (Cdischarge_all_) represents the average value of the discharge capacities of all target data, and Std (Cdischarge_all) represents the standard deviation of the discharge capacities of all target data.
 さらに、式3で示すように、充電容量、放電容量、効率を用いて類似性指標値を算出してもよい。 Furthermore, as shown in Expression 3, the similarity index value may be calculated using the charge capacity, the discharge capacity, and the efficiency.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 ここで、Norm(Ceffect_cell(i) )、Norm(Ceffect_cell(ii))は、それぞれ単電池iと単電池iiの規格化効率を、Ave(Ceffect_all )は、全対象データの効率の平均値を、Std(Ceffect_all )は、全対象データの効率の標準偏差を示す。 Here, Norm (Ceffect_cell (i)), Norm (Ceffect_cell (ii)) is the normalized efficiency of cell i and cell ii, respectively, and Ave (Ceffect_all) is the average efficiency of all target data, Std (Ceffect_all) indicates the standard deviation of the efficiency of all target data.
 以上で述べた式1から式3を用いた類似性指標値の算出方法は代表的な例であり、算出方法はこの限りではない。計算に用いるパラメータも、充電容量のみ、放電容量のみ、充電容量と効率のみ、放電容量と効率のみ、充電容量と放電容量のみ、充電容量と放電容量と効率など、対象電池モジュールの性能要求に応じて判定式を作成することが可能である。 The calculation method of the similarity index value using the equations 1 to 3 described above is a typical example, and the calculation method is not limited to this. The parameters used for the calculation also depend on the performance requirements of the target battery module, such as only charge capacity, only discharge capacity, only charge capacity and efficiency, only discharge capacity and efficiency, only charge capacity and discharge capacity, charge capacity and discharge capacity and efficiency, etc. It is possible to create a judgment formula.
 以上、実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 As mentioned above, although embodiment was described, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
 こうした本実施形態によれば、組み合わせる単電池間の性能差を抑制し、充放電サイクル寿命に優れた電池モジュールを構成することが可能となる。 According to the present embodiment, it is possible to suppress the performance difference between the unit cells to be combined and to configure a battery module having an excellent charge / discharge cycle life.
 本明細書の記載により、少なくとも次のことが明らかにされる。すなわち、前記単電池選定方法において、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値について、所定閾値毎に区分して各単電池のランク分けを行い、互いに同一ランクにある単電池群を1つの電池モジュール向け単電池群として選定するとしてもよい。 記載 At least the following will be made clear by the description in this specification. That is, in the unit cell selection method, at least one value of the unit cell charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity is classified for each predetermined threshold, and each cell is ranked. The single battery groups having the same rank may be selected as a single battery group for the single battery module.
 また、前記単電池選定方法において、前記採用候補に含まれる単電池間ごとに、各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を所定式に適用して、単電池間毎の類似度を算定し、当該類似度が高い単電池群を1つの電池モジュール向け単電池群として選定するとしてもよい。 Further, in the unit cell selection method, for each unit cell included in the adoption candidate, at least one of a charge capacity of each unit cell, a discharge capacity, and a ratio of the discharge capacity to the charge capacity is applied to a predetermined formula. Then, the similarity between the single cells may be calculated, and the single cell group having a high similarity may be selected as a single cell group for one battery module.
 また、前記記載の単電池選定方法において、前記採用候補に含まれる各単電池の充電容量および放電容量の少なくともいずれかを測定し、各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定するとしてもよい。 Further, in the unit cell selection method described above, at least one of a charge capacity and a discharge capacity of each unit cell included in the candidate for adoption is measured, and a charge capacity, a discharge capacity, and a discharge capacity with respect to the charge capacity of each unit cell. A cell group in which at least one of the ratios is within a predetermined range may be selected as a cell group for one cell module.
1 単電池選定システム
10 電池モジュール
11 単電池
20、30 充放電装置
21 充放電測定部
22 記憶部
23 演算部
24 ユーザインターフェイス
25 ネットワークインターフェース
27 プログラム
28 テーブル
31 ローカルエリアネットワーク
32 電池モジュール製造システム
35 格納装置
36 モジュール組み立て装置
DESCRIPTION OF SYMBOLS 1 Single cell selection system 10 Battery module 11 Single battery 20, 30 Charging / discharging apparatus 21 Charging / discharging measuring part 22 Storage part 23 Calculation part 24 User interface 25 Network interface 27 Program 28 Table 31 Local area network 32 Battery module manufacturing system 35 Storage apparatus 36 Module assembly equipment

Claims (8)

  1.  電池モジュールに採用する単電池を選定する方法であって、採用候補である複数の単電池のうち、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が、互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する単電池選定方法。 A method of selecting a unit cell to be used for a battery module, and among a plurality of unit cells that are candidates for adoption, at least one of a charge capacity of the unit cell, a discharge capacity, and a ratio of the discharge capacity to the charge capacity is A cell selection method for selecting cell groups within a predetermined range as a cell group for one battery module.
  2.  単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値について、所定閾値毎に区分して各単電池のランク分けを行い、互いに同一ランクにある単電池群を1つの電池モジュール向け単電池群として選定する請求項1に記載の単電池選定方法。 For at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each cell, each cell is ranked according to a predetermined threshold, and the cell groups that are in the same rank The unit cell selection method according to claim 1, wherein the unit cell is selected as a unit cell group for one battery module.
  3.  前記採用候補に含まれる単電池間ごとに、各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を所定式に適用して、単電池間毎の類似度を算定し、当該類似度が高い単電池群を1つの電池モジュール向け単電池群として選定する請求項1に記載の単電池選定方法。 Applying at least one of the charge capacity, discharge capacity, and the ratio of the discharge capacity to the charge capacity for each unit cell included in the adoption candidate to the predetermined formula, the similarity for each unit cell The unit cell selection method according to claim 1, wherein the unit cell group having a high degree of similarity is selected as a unit cell group for one battery module.
  4.  前記採用候補に含まれる各単電池の充電容量および放電容量の少なくともいずれかを測定し、各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する請求項1に記載の単電池選定方法。 Measure at least one of the charge capacity and discharge capacity of each unit cell included in the candidate for adoption, and at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each unit cell is predetermined to each other The unit cell selection method according to claim 1, wherein the unit cell group in the range is selected as a unit cell group for one battery module.
  5.  電池モジュールへの採用候補たる各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を格納した記憶部と、
     前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する演算部と、
     を備える単電池選定システム。
    A storage unit that stores at least one value of a charge capacity, a discharge capacity, and a ratio of the discharge capacity to the charge capacity of each single cell that is a candidate for use in the battery module;
    The storage unit reads at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each of the candidate cells to be adopted, and sets a single cell group whose read values are within a predetermined range from each other. An arithmetic unit to be selected as a single battery group for the battery module;
    A cell selection system comprising:
  6.  電池モジュールへの採用候補たる各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を格納した記憶部を備えた情報処理装置に、前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する処理を実行させる単電池選定プログラム。 Adopted from the storage unit to the information processing apparatus having a storage unit storing at least one of the charge capacity, discharge capacity, and ratio of the discharge capacity to the charge capacity of each single cell that is a candidate for use in the battery module Read at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity of each candidate unit cell, and the unit cell group for one battery module is a unit cell group in which the read values are within a predetermined range. A cell selection program for executing the process of selecting as.
  7.  電池モジュールへの採用候補である複数の単電池のうち、単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値が、互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する工程と、当該選定した単電池群に含まれる単電池を電池モジュールに組み込む工程とを含む電池モジュール製造方法。 Among a plurality of unit cells that are candidates for use in a battery module, one unit cell group in which at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity is within a predetermined range. A battery module manufacturing method including a step of selecting a single battery group for one battery module and a step of incorporating a single battery included in the selected single battery group into the battery module.
  8.  電池モジュールへの採用候補である複数の単電池を格納する格納装置と、
     前記格納装置に格納された各単電池に関する、充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を記憶部に記憶し、前記記憶部より、採用候補の各単電池の充電容量、放電容量、および充電容量に対する放電容量の比率の少なくともいずれかの値を読み出し、読み出した値が互いに所定範囲にある単電池群を1つの電池モジュール向け単電池群として選定する単電池選定装置と、
     前記選定した単電池群に含まれる単電池を前記格納装置より抽出し、電池モジュールに組み込むモジュール組み立て装置と、
     を含む電池モジュール製造システム。
    A storage device for storing a plurality of single cells that are candidates for use in a battery module;
    The storage unit stores at least one of the charge capacity, the discharge capacity, and the ratio of the discharge capacity to the charge capacity for each single battery stored in the storage device. A cell that reads at least one of a charge capacity, a discharge capacity, and a ratio of the discharge capacity to the charge capacity, and selects a single battery group whose read values are within a predetermined range as a single battery group for one battery module A selection device;
    A module assembly device that extracts cells contained in the selected cell group from the storage device and incorporates them into a battery module;
    Battery module manufacturing system including
PCT/JP2011/058679 2011-04-06 2011-04-06 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system WO2012137313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/058679 WO2012137313A1 (en) 2011-04-06 2011-04-06 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system
JP2013508670A JPWO2012137313A1 (en) 2011-04-06 2011-04-06 Single cell selection method, single cell selection system, single cell selection program, battery module manufacturing method, and battery module manufacturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058679 WO2012137313A1 (en) 2011-04-06 2011-04-06 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system

Publications (1)

Publication Number Publication Date
WO2012137313A1 true WO2012137313A1 (en) 2012-10-11

Family

ID=46968751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058679 WO2012137313A1 (en) 2011-04-06 2011-04-06 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system

Country Status (2)

Country Link
JP (1) JPWO2012137313A1 (en)
WO (1) WO2012137313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088255A (en) * 2013-10-29 2015-05-07 株式会社豊田自動織機 Battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004184A (en) * 2007-06-20 2009-01-08 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010009840A (en) * 2008-06-25 2010-01-14 Panasonic Corp Battery pack and battery system equipped with it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484228B (en) * 2009-09-01 2016-10-19 波士顿电力公司 Large-sized battery system and the method for assembling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004184A (en) * 2007-06-20 2009-01-08 Panasonic Ev Energy Co Ltd Manufacturing method of battery pack, and battery pack
JP2009016162A (en) * 2007-07-04 2009-01-22 Panasonic Ev Energy Co Ltd Battery pack and its manufacturing method
JP2010009840A (en) * 2008-06-25 2010-01-14 Panasonic Corp Battery pack and battery system equipped with it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088255A (en) * 2013-10-29 2015-05-07 株式会社豊田自動織機 Battery

Also Published As

Publication number Publication date
JPWO2012137313A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
CN105158699B (en) The detection method and device of cell health state
JP5739788B2 (en) Charging / discharging planning system and charging / discharging planning method
US20160195589A1 (en) Degradation diagnosis system and degradation diagnosis method for secondary battery
CN108680868B (en) Battery pack cycle test consistency analysis method
US10345382B2 (en) Method and terminal for displaying battery power
CN108574317A (en) Charge-discharge controller and accumulating system
WO2015041093A1 (en) Device and method for evaluating performance of storage cell
US11099240B2 (en) Device and method for evaluating energy storage device and evaluation system
JP7300878B2 (en) BATTERY EVALUATION SYSTEM, BATTERY EVALUATION METHOD AND PROGRAM
WO2016208251A1 (en) Energy storage system
CN113887601A (en) Retired power battery recombination method based on cluster sorting
WO2023284453A1 (en) Cumulative consumption-based rechargeable battery life prediction method and apparatus, electronic device, and readable storage medium
CN108061863A (en) Method and device for detecting battery, computer readable storage medium and battery management system
CN104040366A (en) Method and device for determining charge state of electric energy store
JP2016102674A (en) Battery pack abnormality determination device
CN108051755A (en) Battery internal resistance acquisition method and device, battery management system and computer storage readable medium
CN103412264A (en) Method for evaluating consistency of single cells in storage battery pack
CN113687255A (en) Method and device for diagnosing state of battery cell and storage medium
CN105717455A (en) Selection method for single battery SOC (State of Charge) and capacity estimation algorithm of battery pack
US20230118313A1 (en) Deterioration degree determination device for secondary battery
CN114444370A (en) Method and device for predicting accumulated loss life of rechargeable battery by considering operation conditions, electronic equipment and readable storage medium
WO2021061267A1 (en) Techniques for software implemented gas-gauging
WO2012137313A1 (en) Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system
CN113447840A (en) Lithium ion battery sorting method and device
TWI687701B (en) Method for determining state of charge and electronic device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508670

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862857

Country of ref document: EP

Kind code of ref document: A1