WO2012134070A2 - 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법 - Google Patents

가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법 Download PDF

Info

Publication number
WO2012134070A2
WO2012134070A2 PCT/KR2012/001659 KR2012001659W WO2012134070A2 WO 2012134070 A2 WO2012134070 A2 WO 2012134070A2 KR 2012001659 W KR2012001659 W KR 2012001659W WO 2012134070 A2 WO2012134070 A2 WO 2012134070A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
supply
suction
atomic layer
Prior art date
Application number
PCT/KR2012/001659
Other languages
English (en)
French (fr)
Other versions
WO2012134070A3 (ko
Inventor
전형탁
박태용
이재상
최동진
전희영
박진규
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201280016242.9A priority Critical patent/CN103649368B/zh
Publication of WO2012134070A2 publication Critical patent/WO2012134070A2/ko
Publication of WO2012134070A3 publication Critical patent/WO2012134070A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to an atomic layer deposition apparatus, and more particularly, to provide a gas injection apparatus capable of depositing an atomic layer at atmospheric pressure, an atomic layer deposition apparatus including the same, and an atomic layer deposition method using the apparatus.
  • a semiconductor device, a flat panel display device, and the like go through various manufacturing processes, and among them, a process of depositing a thin film required on a substrate such as a wafer or glass is inevitably performed.
  • a thin film deposition process sputtering, chemical vapor deposition (CVD), atomic layer deposition (ALD) and the like are mainly used.
  • atomic layer deposition method is a nanoscale thin film deposition technique using chemical adsorption and desorption of monoatomic layer. Each reactant is separated and supplied to the chamber in the form of a pulse to the surface of the reactant on the substrate surface. It is a new concept of thin film deposition technology using chemical adsorption and desorption by surface saturation reaction.
  • the conventional atomic layer deposition technique requires a vacuum during the deposition process, an additional apparatus for maintaining and managing the same is required, and the process time is long, resulting in a decrease in productivity.
  • the limited space to secure a vacuum has a problem that is not suitable for the display industry seeking a large area and enlargement.
  • An object of the present invention for solving the above problems is to provide a gas injection apparatus, an atomic layer deposition apparatus including the same, and an atomic layer deposition method using the apparatus to deposit an atomic layer at atmospheric pressure.
  • the present invention for achieving the above object has a first outer circumferential surface surrounding the hole through which gas is supplied, has a guide extending from an area in which a part of the first outer circumferential surface is opened, and the space formed by the guide is a gas outlet.
  • Gas supply pipe used;
  • a gas suction pipe connected to the guide and having a second outer circumferential surface surrounding the outer circumference of the first outer circumferential surface, and having a gas inlet of which a part of the second outer circumferential surface is opened.
  • the present invention for achieving the above object, includes at least two gas injectors that can perform the supply and suction of gas at the same time, the gas injection unit, the first outer peripheral surface and the inducing supply of the gas and the A gas supply pipe having a guide defining a gas outlet for discharging gas to the substrate, and a gas inlet connected to the guide and having a second outer circumferential surface surrounding the periphery of the first outer circumferential surface, wherein a part of the second outer circumferential surface is open;
  • an atomic layer deposition apparatus comprising a gas suction tube.
  • the present invention for achieving the above object, the step of supplying the source gas to the substrate through the first gas injection, and sucking; Supplying and sucking a purge gas to the substrate through a second gas injection unit having a first separation distance from the first gas injection unit; And supplying and sucking the reaction gas to the substrate through a third gas injection part having a second separation distance from the second gas injection part.
  • the deposition is performed at atmospheric pressure, a device and time for securing a separate vacuum are not required. Therefore, the productivity increase effect can be expected and can be applied to the display field because it is easy to enlarge.
  • various heat sources such as halogen lamps and lasers can be used.
  • the heat is only temporarily heated instead of the entire substrate. Thermal diffusion, reduced lifespan, and physical deformation can be prevented.
  • the deposition rate may be increased by using an atmospheric pressure plasma, a UV lamp, and a laser, and a metal thin film and a nitride film may also be deposited.
  • the continuous process can be performed, the pre- and post-treatment can be carried out together in a batch, and multiple source injection apparatuses can be installed to form a multi-component compound.
  • the type of heat source and the supplied thermal energy can be individually corresponded to the decomposition temperature of each source.
  • the gas injection device is installed alternately up and down, double-sided deposition may be possible.
  • FIG. 1 is a perspective view showing a gas injection device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II ′ of the gas injection device of FIG. 1.
  • FIG 3 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 5 is a graph of temperature versus position of a substrate surface when a part of the substrate surface is heated by using a halogen lamp on the substrate.
  • FIG. 6 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • normal pressure used in the present invention is a pressure when the pressure is not particularly reduced or increased, usually means a pressure of about 1 atmosphere, such as atmospheric pressure.
  • FIG. 1 is a perspective view showing a gas injection device 100 according to an embodiment of the present invention.
  • the guide has a first outer circumferential surface 111 that surrounds the hole 110 to which gas is supplied, and a guide 112 that extends from an area in which a portion of the first outer circumferential surface 111 is opened. And a second outer circumferential surface 120 connected to the gas supply pipe using the space formed by the 112 as the gas outlet 113 and the guide 112, and surrounding the outer circumference of the first outer circumferential surface 111. 2 provides a gas injection device 100 including a gas suction pipe having a gas suction port 121 in which a part of the outer circumferential surface 120 is opened.
  • An angle between the gas inlet 121 and the gas outlet 113 and the center of the gas injection device 100 may be 5 ° to 90 °.
  • gas may be supplied to the substrate by the gas outlet 113 of the gas injector 100.
  • the gas may be absorbed into the gas inlet 121 so that the gas supply efficiency for the gas deposited on the substrate is lower than that of the supplied gas.
  • the angle between the gas inlet 121 and the gas outlet 113 and the center of the gas injection device 100 is greater than 90 °, the gas inlet for sucking the surrounding gas on the substrate by the gas inlet 121 The efficiency is low.
  • the gas inlet 121 may be disposed at symmetrical positions with respect to the gas outlet 113.
  • the gas inlet 121 is disposed on both sides of the gas outlet 113 to suck the gas remaining on the substrate in the previous step, and then injects the gas of the present step onto the substrate through the gas outlet 113 and again. Since the gas remaining after the reaction on the substrate may be sucked, the gas inlet 121 may be disposed at positions symmetrical with respect to the gas outlet 113.
  • the present invention is not limited thereto, and the gas inlet 121 may be disposed at one side of the gas outlet 113.
  • the gas injection device 100 does not need a vacuum state because the gas supply and suction are performed at the same time, it can be carried out at normal pressure.
  • the gas injection device 100 further includes a gas valve tube 130 mounted in the gas supply pipe to adjust a gas flow rate.
  • the gas valve pipe 130 is rotatably mounted about a central axis of the gas supply pipe.
  • the gas valve tube 130 may include a hole 131 formed in the longitudinal direction of the gas valve tube 130.
  • the hole 131 of the gas valve tube 130 may be integrally formed in the longitudinal direction of the gas valve tube 130 or may be provided in a shape having a predetermined separation distance in the longitudinal direction of the gas valve tube 130. Therefore, it is necessary to adjust the gas injection method according to the reaction process, the gas can be adjusted by the pre-injection or point injection method according to the shape of the hole 131 of the gas valve tube 130.
  • the gas outlet 113 may be disposed along the longitudinal direction of the gas suction pipe to provide gas in a pre-injection or point injection manner, and may be manufactured in the form of a hole having a predetermined distance or in the form of an integrated slit. .
  • FIG. 2 is a cross-sectional view taken along line II ′ of the gas injection device of FIG. 1.
  • the gas valve tube 130 (a) is a gas supply is blocked state and (b) is a gas supply is open state. For example, if you want to complete the deposition process, the gas supply must be shut off. Therefore, the gas valve tube 130 shields the gas supply tube. This shuts off the gas supply.
  • the flow rate of the gas can also be adjusted.
  • FIG 3 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • the substrate 200 is positioned on the heater 210 and the first gas injection unit 140, the first gas injection unit 140, and the first separation distance e are located on the substrate 200. It is possible to provide an atomic layer deposition apparatus in which a second gas injection unit 150 having a) and a third gas injection unit 160 having a second separation distance f from the second gas injection unit 150 are disposed. have.
  • the first separation distance e and the second separation distance f may be adjusted in consideration of the time required for each reaction step.
  • the substrate 200 moves from the right side to the left side in the direction of the arrow, and the first gas injector 140 to the third gas injector 160 are fixed, and supply / suction the source gas and the purge. Supply / suction of gas and supply / suction of the reaction gas may be performed simultaneously.
  • the first gas injection unit 140 to the third gas injection unit 160 move, supply / suction of the source gas, and supply / suction of the purge gas. And supply / suction of the reaction gas may be performed at the same time.
  • the first gas injection unit 140 to the third gas injection unit 160 and the substrate 200 may move in opposite directions, or the movement in the opposite direction may reciprocate. When the substrate and the gas injection unit move at the same time, the shortening effect of the distance can be expected.
  • the source gas is supplied from the first gas injection unit 140 onto the substrate 200, and the purge gas is injected from the second gas injection unit 150 onto the substrate 200. Thereafter, a reaction gas is injected from the third gas injection unit 160 onto the substrate 200 to deposit an atomic layer.
  • the source gas may be a gas of any one of silane (Silane, SiH 4 ), disilane (Disilane, Si 2 H 6 ), and silicon tetrafluoride (SiF 4 ) including silicon.
  • the reaction gas may be oxygen (O 2 ) or ozone (O 3 ) gas.
  • the purge gas may use any one of argon (Ar), nitrogen (N 2 ), and helium (He), or a mixture of two or more.
  • the present invention is not limited thereto, and the number and type of the source gas, the purge gas, or the reactant gas may vary substantially.
  • the distance c between the gas injection parts and the substrate 200 is preferably within several mm. More preferably, the distance c between the gas injection parts and the substrate 200 is 0.1 mm to 5 mm. If the distance between the gas injection parts and the substrate 200 is less than 0.1 mm, the gas injection parts may directly contact the substrate. In addition, when the distance exceeds 5mm, there is a problem that the supply of the source gas and the like is not made smoothly.
  • FIG. 4 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • a substrate 200 is positioned on a cooling pad 220 and a halogen lamp 230 is disposed on the substrate 200.
  • a first gas injection unit 140, a second gas injection unit 150 having a first separation distance e from the first gas injection unit 140, and the second gas are disposed on the substrate 200.
  • the third gas injection unit 160 having the injection unit 150 and the second separation distance f may be disposed.
  • the first separation distance e and the second separation distance f may be adjusted in consideration of the time required for each reaction step.
  • the substrate 200 moves from right to left in the direction of the arrow.
  • the present invention is not limited thereto, and the substrate 200 may be fixed and the gas injection unit may move.
  • the gas injection unit and the substrate 200 may move in opposite directions, or the movement in the opposite direction may reciprocate. When the substrate and the gas injection unit move at the same time, the shortening effect of the distance can be expected.
  • the distance c between the gas injection parts and the substrate 200 is preferably within several mm. More preferably, the distance c between the gas injection parts and the substrate 200 is 0.1 mm to 5 mm.
  • the surface of the substrate 200 is heated using the halogen lamp 230 and the bottom surface of the substrate 200 is continuously cooled by the cooling pad 220. This prevents the temperature of the entire substrate 200 from rising due to the surface heating by the halogen lamp 230. Therefore, the heating of the substrate 200 may be performed on a specific portion of the substrate 200 where the supply and suction of the source gas is performed.
  • a source gas is supplied from the first gas injection unit 140 to a specific portion of the heated substrate 200, and a purge gas is injected from the second gas injection unit 150 onto the substrate 200. Thereafter, a reaction gas is injected from the third gas injection unit 160 onto the substrate 200 to deposit an atomic layer.
  • Supply / suction of a source gas, supply / suction of the purge gas, and supply / suction of the reaction gas may be performed at normal pressure on the substrate. This is because there is no need for vacuum because the gas supply / suction process is performed at the same time.
  • the cooling unit 231 of the halogen lamp 230 prevents heating of a portion outside the surface of the substrate 200, the cooling portion 231 may prevent the temperature of the entire substrate 200 from rising.
  • FIG 5 illustrates a case in which the cooling pad 220 is installed on the bottom surface of the substrate 200 and the halogen lamp 230 is used on the substrate 200 when the halogen lamp 230, which is a heating means, is installed on the substrate 200.
  • the halogen lamp 230 which is a heating means
  • FIG. 6 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • the substrate 200 is positioned on the cooling pad 220, and the heating means 240 is disposed on the substrate 200.
  • the heating means 240 may be a halogen lamp, UV lamp or laser. However, the present invention is not limited thereto, and any device capable of heating the surface of the substrate 200 may be used.
  • a first gas injector 140, a second gas injector 150 having a first separation distance e from the first gas injector 140, and the second gas are disposed on the substrate 200.
  • the third gas injection unit 160 having the injection unit 150 and the second separation distance f may be disposed. The first separation distance e and the second separation distance f may be adjusted in consideration of the time required for each reaction step.
  • the substrate 200 moves from right to left in the direction of the arrow.
  • the present invention is not limited thereto, and the substrate 200 may be fixed and the gas injection unit may move.
  • the gas injection unit and the substrate 200 may move in opposite directions, or the movement in the opposite direction may reciprocate.
  • the distance c between the gas injection parts and the substrate 200 is preferably within several mm. More preferably, the distance c between the gas injection parts and the substrate 200 is 0.1 mm to 5 mm.
  • FIG. 7 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • a substrate 200 is positioned on a cooling pad 220 and a halogen lamp 230 is disposed on the substrate 200.
  • a first gas injection unit 140, a second gas injection unit 150 having a first separation distance e from the first gas injection unit 140, and the second gas are disposed on the substrate 200.
  • the atmospheric pressure plasma generator 170 having the injection unit 150 and the second separation distance f may be disposed.
  • the first separation distance e and the second separation distance f may be adjusted in consideration of the time required for each reaction step. Since the atomic layer may be deposited at atmospheric pressure, the atmospheric pressure plasma generator 170 may be used when the reaction gas is injected onto the substrate 200.
  • the atmospheric pressure plasma generating device 170 is a shape of a cold plasma torch.
  • the substrate 200 moves from right to left in the direction of the arrow.
  • the present invention is not limited thereto, and the substrate 200 may be fixed and the gas injection unit may move.
  • the gas injection unit and the substrate 200 may move in opposite directions, or the movement in the opposite direction may reciprocate.
  • the distance c between the gas injection parts and the substrate 200 is preferably within several mm. More preferably, the distance c between the gas injection parts and the substrate 200 is 0.1 mm to 5 mm.
  • FIG. 8 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • a substrate 200 is positioned on a cooling pad 220 and a halogen lamp 230 is disposed on the substrate 200. Thereafter, a first gas injector 140, a second gas injector 150 having a first separation distance e from the first gas injector 140, and the second gas are disposed on the substrate 200.
  • the third gas injection unit 160 having the injection unit 150 and the second separation distance f may be disposed. The first separation distance e and the second separation distance f may be adjusted in consideration of the time required for each reaction step.
  • the UV lamp 250 may be disposed to react the remaining source gas in the next step of the third gas injection unit 160. However, the present invention is not limited thereto. Since the cooling unit 251 of the UV lamp 250 prevents heating a portion outside the surface of the substrate 200, the cooling unit 251 may prevent the temperature of the entire substrate 200 from rising.
  • the UV lamp 250 When the UV lamp 250 is used in the deposition process, there is a problem that the efficiency is lowered due to deposition on the surface of the lamp glass during deposition. However, in the case of the present invention, when the UV lamp 250 has a distance from the source, only the source heat-adsorbed on the surface of the substrate 200 is left while undergoing a sufficient suction process at each gas injection part, thereby avoiding lamp contamination. have.
  • the substrate 200 moves from right to left in the direction of the arrow.
  • the present invention is not limited thereto, and the substrate 200 may be fixed and the gas injection unit may move.
  • the gas injection unit and the substrate 200 may move in opposite directions, or the movement in the opposite direction may reciprocate.
  • the distance c between the gas injection parts and the substrate 200 is preferably within several mm. More preferably, the distance c between the gas injection parts and the substrate 200 is 0.1 mm to 5 mm.
  • FIG. 9 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.
  • an atomic layer deposition apparatus in which a substrate 200 is positioned on a cooling pad 220 and a gas injection unit, an atmospheric pressure plasma generator, and a heating unit are miniaturized into a single integrated module on the substrate 200.
  • Module 300 is disposed. As shown in FIG. 9, the surface of the substrate is heated, and the source gas 303, the purge gas 304, and the plasma gas 302 are sequentially injected and sucked onto the substrate 200. The sucked gas 305 is discharged through a predetermined path. Since the cooling unit 301 of the atomic layer deposition apparatus module 300 prevents heating of a portion outside the surface of the substrate 200, there is an advantage of preventing the temperature of the entire substrate 200 from rising.
  • the integrated module may be configured in a configuration according to necessity, and a plurality of these may be arranged to allow atomic cycle deposition of several cycles by one movement of the substrate or module.
  • the distance d between the atomic layer deposition apparatus module 300 and the substrate is preferably within several mm. More preferably, the distance d between the atomic layer deposition apparatus module 300 and the substrate is 0.1 mm to 2 mm. If the distance between the gas injection device and the substrate is less than 0.1 mm, the gas injection device may directly contact the substrate. In addition, when the interval exceeds 2mm, a problem may occur that the deposition efficiency of the atomic layer deposition apparatus module 300 is reduced.
  • first outer circumferential surface 112 guide
  • gas outlet 120 second outer peripheral surface
  • hole 140 first gas injection unit
  • atmospheric plasma generator 200 substrate
  • heater 220 cooling pad
  • halogen lamp 231 cooling unit
  • heating means 250 UV lamp
  • cooling unit 300 atomic layer deposition apparatus module
  • cooling unit 302 plasma gas
  • source gas 304 purge gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법을 제공한다. 가스 주입 장치는 하나의 관 형태로 구성되며, 중심부위로부터 가스가 기판으로 공급된다. 동시에 가스 공급관의 외주면을 따라 특정 부위에 형성된 가스 흡입구를 통해 공급된 가스의 흡입은 수행된다. 따라서, 기판과 근거리에 배치하는 경우, 가스의 공급과 흡입이 동시에 수행된다. 이를 통해 상압에서 증착이 이루어지므로 별도의 진공확보를 위한 장치 및 시간이 필요 없다. 또한 연속적인 공정이 가능하여 전, 후처리를 일괄 선상에서 함께 진행할 수 있으며, 소스 주입장치를 여러 개 설치하여 다원계 화합물의 형성도 가능할 수 있다. 이 경우 열원의 종류 및 공급되는 열에너지를 각 소스의 분해온도에 맞추어 개별 대응할 수 있다.

Description

가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법
본 발명은 원자층 증착장치에 관한 것으로, 보다 상세하게는 상압에서 원자층을 증착할 수 있는 가스 주입 장치와 이를 포함하는 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법을 제공하기 위한 것이다.
일반적으로 반도체 소자나 평판 디스플레이 장치 등의 제조에는 다양한 제조공정을 거치게 되며, 그 중에서 웨이퍼나 글래스 등의 기판 상에 필요한 박막을 증착시키는 공정이 필수적으로 진행된다. 이러한 박막 증착 공정에서는 스퍼터링법(Sputtering), 화학기상 증착법(CVD: Chemical Vapor Deposition), 원자층 증착법(ALD: Atomic Layer Deposition) 등이 주로 사용된다.
이 중에 원자층 증착(Atomic Layer Deposition)법은 단원자층의 화학적 흡착 및 탈착을 이용한 나노스케일의 박막 증착기술로서 각 반응물질들을 개별적으로 분리하여 펄스 형태로 챔버에 공급함으로써 기판 표면에 반응물질의 표면 포화(surface saturation) 반응에 의한 화학적 흡착과 탈착을 이용한 새로운 개념의 박막 증착기술이다.
종래의 원자층 증착기술은 증착공정 중에 진공상태를 필요로 하기 때문에 이를 유지, 관리하기 위한 부수적인 장치가 필요하고, 공정시간이 길어져 생산성의 저하를 초래하게 된다. 또한 진공을 확보할 수 있는 공간이 제한적이므로 대면적, 대형화를 추구하는 디스플레이산업에 적합하지 않은 문제를 안고 있다.
상술한 문제점을 해결하기 위한 본 발명의 목적은 상압에서 원자층을 증착할 수 있도록 가스 주입 장치, 이를 포함하는 원자층 증착장치 및 이 장치를 이용하는 원자층 증착방법을 제공하는데 있다.
상기 목적을 달성하기 위한 본 발명은, 가스가 공급되는 홀을 감싸는 제1 외주면을 가지고, 상기 제1 외주면의 일부가 오픈된 영역으로부터 신장된 가이드를 가지고, 상기 가이드가 형성하는 공간을 가스 배출구로 사용하는 가스 공급관; 및 상기 가이드에 연결되고, 상기 제1 외주면의 외곽을 감싸는 제2 외주면을 가지고, 상기 제2 외주면의 일부가 오픈된 가스 흡입구를 가지는 가스 흡입관을 포함하는 가스 주입 장치를 제공한다.
또한, 상기 목적을 달성하기 위한 본 발명은, 가스의 공급과 흡입을 동시에 수행할 수 있는 적어도 2개의 가스 주입부들을 포함하고, 상기 가스 주입부는, 상기 가스의 공급을 유도하는 제1 외주면과 상기 가스를 기판에 배출하는 가스 배출구를 정의하는 가이드를 가지는 가스 공급관 및 상기 가이드에 연결되고, 상기 제1 외주면의 외곽을 감싸는 제2 외주면을 가지고, 상기 제2 외주면의 일부가 오픈된 가스 흡입구를 가지는 가스 흡입관을 포함하는 것을 특징으로 하는 원자층 증착 장치를 제공한다.
또한, 상기 목적을 달성하기 위한 본 발명은, 제1 가스 주입부를 통해 소스 가스를 기판에 공급하고, 흡입하는 단계; 상기 제1 가스 주입부와 제1 이격 거리를 가지는 제2 가스 주입부를 통해 퍼지 가스를 상기 기판에 공급하고, 흡입하는 단계; 및 상기 제2 가스 주입부와 제2 이격 거리를 가지는 제3 가스 주입부를 통해 반응 가스를 상기 기판에 공급하고, 흡입하는 단계를 포함하는 원자층 증착방법을 제공한다.
상술한 바와 같이 본 발명에 따르면, 상압에서 증착이 이루어지므로 별도의 진공확보를 위한 장치 및 시간이 필요없다. 따라서 생산성의 증대효과를 기대할 수 있으며 대형화가 용이하기 때문에 디스플레이 분야에도 적용할 수 있다.
기판의 표면을 가열하는 방식으로 할로겐 램프, laser등 다양한 열원을 사용할 수 있는데, 이 경우 기판 전체를 가열하는 것이 아니라 소스가 주입되는 부위만 일시적으로 가열하는 방식이므로 온도 증가로 인한 다른 부수적인 문제점인 열확산, 수명감소, 물리적 변형 등을 방지할 수 있다. 또한 상압 플라즈마, UV 램프 및 laser등을 이용하여 증착률을 증대시킬 수 있으며, 금속 박막 및 질화막 등도 증착이 가능할 수 있다.
또한 연속적인 공정이 가능하여 전, 후처리를 일괄 선상에서 함께 진행할 수 있으며, 소스 주입장치를 여러 개 설치하여 다원계 화합물의 형성도 가능할 수 있다. 이 경우 열원의 종류 및 공급되는 열에너지를 각 소스의 분해온도에 맞추어 개별 대응할 수 있다는 장점이 있다. 가스 주입 장치를 위아래 번갈아 가며 설치할 경우 양면증착이 가능할 수 있다. 가스 주입 장치의 구성을 보면, 가스 공급관의 길이방향으로 가스 주입구가 있으며 가스 주입구의 측면에 흡입구가 존재하여 주입된 양과 비례하는 양 만큼의 주변 기체를 내보내도록 하여 증착 효율을 높일 수 있고, 가스 공급의 양은 가스 밸브관을 통하여 조절이 가능하다.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 가스 주입 장치를 도시한 사시도이다.
도 2는 도 1의 가스 주입 장치의 I-I'단면도이다.
도 3은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 4는 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 5는 기판 상에 할로겐 램프를 이용하여 기판 표면의 일부를 가열한 경우 기판 표면의 위치 대비 온도에 대한 그래프이다.
도 6는 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 7은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 8은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 9는 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
또한, 본 발명에서 사용하는 용어 "상압"은 특별히 압력을 줄이거나 높이지 않을 때의 압력으로, 보통 대기압과 같은 1기압 정도의 압력을 의미한다.
실시예
도 1은 본 발명의 일 실시예에 따른 가스 주입 장치(100)를 나타낸 사시도이다.
도 1을 참고하면, 가스가 공급되는 홀(110)을 감싸는 제1 외주면(111)을 가지고, 상기 제1 외주면(111)의 일부가 오픈된 영역으로부터 신장된 가이드(112)를 가지고, 상기 가이드(112)가 형성하는 공간을 가스 배출구(113)로 사용하는 가스 공급관 및 상기 가이드(112)에 연결되고, 상기 제1 외주면(111)의 외곽을 감싸는 제2 외주면(120)을 가지고, 상기 제2 외주면(120)의 일부가 오픈된 가스 흡입구(121)를 가지는 가스 흡입관을 포함하는 가스 주입 장치(100)를 제공한다.
상기 가스 흡입구(121)와 상기 가스 배출구(113)가 상기 가스 주입 장치(100)의 중심과 이루는 각도는 5˚ 내지 90˚일 수 있다. 상기 가스 흡입구(121)와 상기 가스 배출구(113)가 상기 가스 주입 장치(100)의 중심과 이루는 각도는 5˚보다 작을 경우 상기 가스 주입 장치(100)의 가스 배출구(113)로 기판에 가스를 공급하기 전에 가스 흡입구(121)로 흡수될 수 있어 공급된 가스 대비 기판에 증착되는 가스에 대한 가스 공급 효율이 낮게 된다. 또한, 상기 가스 흡입구(121)와 상기 가스 배출구(113)가 상기 가스 주입 장치(100)의 중심과 이루는 각도는 90˚보다 클 경우, 가스 흡입구(121)로 기판 상의 주변가스를 흡입하는 가스 흡입 효율이 낮게 된다.
상기 가스 흡입구(121)는 상기 가스 배출구(113)를 중심으로 상호 대칭된 위치에 배치될 수 있다. 상기 가스 흡입구(121)가 가스 배출구(113)의 양측에 배치됨으로써 전 단계의 공정에서 기판 상에 남은 가스를 흡입한 후 상기 가스 배출구(113)를 통해 본 단계의 가스를 기판 상에 주입시키고 다시 기판 상에 반응 후 남은 가스를 흡입할 수 있기 때문에 상기 가스 흡입구(121)는 상기 가스 배출구(113)를 중심으로 상호 대칭된 위치에 배치됨이 바람직하다. 다만, 이에 한정되지 않고 상기 가스 흡입구(121)는 상기 가스 배출구(113)를 중심으로 일 측에 배치될 수 있다.
상기 가스 주입 장치(100)은 가스의 공급과 흡입이 동시에 실시되므로 진공 상태가 필요 없고, 상압에서 실시될 수 있다.
가스 주입 장치(100)는 상기 가스 공급관 내에 장착되어 가스 유량을 조절하는 가스 밸브관(130)을 더 포함하고, 상기 가스 밸브관(130)은 가스 공급관의 중심축을 중심으로 회전 가능하게 장착되고, 상기 가스 밸브관(130)은 상기 가스 밸브관(130)의 길이 방향으로 형성된 홀(131)을 포함할 수 있다.
가스 밸브관(130)의 홀(131)은 상기 가스 밸브관(130)의 길이 방향으로 일체로 형성되거나, 상기 가스 밸브관의 길이 방향으로 일정한 이격 거리를 가진 형태로 구비될 수 있다. 따라서, 반응 공정에 따라 가스 분사 방식을 조절할 필요가 있는데, 가스 밸브관(130)의 홀(131)의 형태에 따라 가스를 선 분사 또는 점 분사 방식으로 조절할 수 있다.
또한, 가스를 선 분사 또는 점 분사방식으로 제공하기 위해 상기 가스 배출구(113)를 상기 가스 흡입관의 길이 방향을 따라 배치되고, 일정한 이격 거리를 가진 홀의 형태이거나 일체화된 슬릿의 형태로 제조할 수 있다.
도 2는 도 1의 가스 주입 장치의 I-I'단면도이다.
도 2를 참조하면, 가스 밸브관(130)의 작동형태에 따라 (a)는 가스 공급이 차단된 상태이고 (b)는 가스 공급이 오픈된 상태이다. 예컨대, 증착공정을 완료하고자 하는 경우, 가스 공급은 차단되어야 한다. 따라서, 가스 밸브관(130)은 가스 공급관을 차폐한다. 이를 통해 가스 공급은 차단된다.
나아가, 가스 밸브관의 작동형태에 따라 가스 배출구(113)의 일부를 차폐할 수 있기 때문에 가스의 유량 조절도 가능하다.
도 3은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 3을 참조하면, 히터(210) 상에 기판(200)이 위치되고 기판(200)상에 제1 가스 주입부(140), 상기 제1 가스 주입부(140)와 제1 이격 거리(e)를 가지는 제2 가스 주입부(150) 및 상기 제2 가스 주입부(150)와 제2 이격 거리(f)를 가지는 제3 가스 주입부(160)가 배치된 원자층 증착장치를 제공할 수 있다. 제1 이격 거리(e)와 제2 이격 거리(f)는 각각의 반응공정 단계에 필요한 시간을 고려하여 그 간격을 조절할 수 있다.
상기 기판(200)은 화살표 방향인 오른쪽에서 왼쪽으로 이동하고 상기 제1 가스 주입부(140) 내지 상기 제3 가스 주입부(160)는 고정된 상태에서, 상기 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입이 동시에 수행될 수 있다.
또는 상기 기판(200)은 고정된 상태에서, 상기 제1 가스 주입부(140) 내지 상기 제3 가스 주입부(160)는 이동하고, 상기 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입이 동시에 수행될 수 있다. 또한, 상기 제1 가스 주입부(140) 내지 상기 제3 가스 주입부(160) 및 상기 기판(200)이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복할 수 있다. 기판과 가스 주입부가 동시에 이동하게 되는 경우 거리의 단축효과를 기대할 수 있다.
다만, 본 발명이 이에 한정되는 것은 아니다.
제1 가스 주입부(140)로부터 소스 가스를 기판(200)상에 공급하고 제2 가스 주입부(150)로부터 퍼지 가스가 기판(200)상에 주입시킨다. 이후 제3 가스 주입부(160)로부터 반응 가스가 기판(200)상에 주입되어 원자층이 증착된다.
예를 들어, 실리콘 박막을 증착하기 위해서 상기 소스 가스는 실리콘을 포함하는 실란(Silane, SiH4), 디실란(Disilane, Si2H6) 및 사불화 실리콘(SiF4) 중 어느 하나의 가스를 사용하고, 상기 반응 가스는 산소(O2)나 오존(O3) 가스를 사용할 수 있다. 그리고 상기 퍼지 가스는 아르곤(Ar), 질소(N2) 및 헬륨(He) 중 어느 하나의 가스 또는 둘 이상 혼합된 가스를 사용할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 소스 가스, 퍼지 가스 또는 반응 가스의 수와 종류는 실질적으로 다양하게 변경될 수 있다.
이 경우 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 수mm 이내가 바람직하다. 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 0.1mm 내지 5mm 임이 보다 바람직하다. 만일, 가스 주입부들과 기판(200)의 간격이 0.1mm 미만인 경우, 가스 주입부가 기판에 직접 접촉할 우려가 있다. 또한, 간격이 5mm를 상회하는 경우, 소스 가스 등의 공급이 원활하게 이루어지지 못하는 문제가 발생한다.
도 4는 본 발명의 일 실시예에 따른 원자층 증착장치 일 단면도이다.
도 4를 참조하면, 쿨링패드(220)상에 기판(200)이 위치되고 상기 기판(200)상에 할로겐 램프(230)가 배치된다. 그 다음에 기판(200)상에 제1 가스 주입부(140), 상기 제1 가스 주입부(140)와 제1 이격 거리(e)를 가지는 제2 가스 주입부(150) 및 상기 제2 가스 주입부(150)와 제2 이격 거리(f)를 가지는 제3 가스 주입부(160)가 배치될 수 있다. 제1 이격 거리(e)와 제2 이격 거리(f)는 각각의 반응공정 단계에 필요한 시간을 고려하여 그 간격을 조절할 수 있다.
기판(200)은 화살표 방향인 오른쪽에서 왼쪽으로 이동한다. 다만, 이에 한정되지 않고 기판(200)은 고정되고 가스 주입부가 이동할 수 있다. 또한, 상기 가스 주입부 및 상기 기판(200)이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복할 수 있다. 기판과 가스 주입부가 동시에 이동하게 되는 경우 거리의 단축효과를 기대할 수 있다.
이 경우 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 수mm 이내가 바람직하다. 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 0.1mm 내지 5mm 임이 보다 바람직하다.
소스 가스의 공급 및 흡입 단계 이전에 할로겐 램프(230)를 이용하여 기판(200)의 표면을 가열하고 기판(200)의 바닥면은 쿨링패드(220)를 이용하여 기판(200)을 연속적으로 냉각시켜서 할로겐 램프(230)에 의한 표면가열에 의한 기판(200) 전체의 온도가 상승하는 것을 막는다. 따라서, 상기 기판(200)의 가열은 상기 소스 가스의 공급 및 흡입이 수행되는 기판(200)의 특정 부위에 대해 수행될 수 있다.
이어서, 가열된 기판(200)의 특정 부위에 제1 가스 주입부(140)로부터 소스 가스가 공급되고 제2 가스 주입부(150)로부터 퍼지 가스가 기판(200)상에 주입된다. 이후 제3 가스 주입부(160)로부터 반응 가스가 기판(200)상에 주입되어 원자층이 증착된다.
상기 기판 상에 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입은 상압에서 수행될 수 있다. 가스의 공급/흡입 과정이 동시에 수행되기 때문에 진공상태가 필요 없기 때문이다.
상기 할로겐 램프(230)의 쿨링부(231)는 기판(200)의 표면 외의 부분을 가열시키는 것을 방지하므로 기판(200) 전체의 온도가 상승하는 것을 막는 장점이 있다.
도 5는 기판(200)의 바닥면에 쿨링패드(220)가 설치되고 기판(200)상에 가열 수단인 할로겐 램프(230)가 설치된 경우에 기판(200) 상에 할로겐 램프(230)를 이용하여 기판(200) 표면의 일부를 가열했을 때 기판(200) 표면의 위치 대비 온도에 대한 그래프이다. 기판(200)의 가열은 상기 소스 가스의 공급 및 흡입이 수행되는 기판(200)의 특정 부위에 대해서만 수행된다.
이러한 기판의 표면을 가열하는 방식으로 인하여 여러 개의 소스를 사용하는 다원계 화합물의 경우 각 소스에 맞는 온도를 개별적으로 선택하여 사용할 수 있는 장점이 있다.
도 6은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 6을 참조하면, 쿨링패드(220)상에 기판(200)이 위치되고 상기 기판(200)상에 가열수단(240)이 배치된다. 상기 가열수단(240)은 할로겐 램프, UV 램프 또는 레이져일 수 있다. 다만, 이에 한정되지 않고 기판(200) 표면을 가열할 수 있는 장치는 모두 가능하다. 그 다음에 기판(200) 상에 제1 가스 주입부(140), 상기 제1 가스 주입부(140)와 제1 이격 거리(e)를 가지는 제2 가스 주입부(150) 및 상기 제2 가스 주입부(150)와 제2 이격 거리(f)를 가지는 제3 가스 주입부(160)가 배치될 수 있다. 제1 이격 거리(e)와 제2 이격 거리(f)는 각각의 반응공정 단계에 필요한 시간을 고려하여 그 간격을 조절할 수 있다.
기판(200)은 화살표 방향인 오른쪽에서 왼쪽으로 이동한다. 다만, 이에 한정되지 않고 기판(200)은 고정되고 가스 주입부가 이동할 수 있다. 또한, 상기 가스 주입부 및 상기 기판(200)이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복할 수 있다.
이 경우 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 수mm 이내가 바람직하다. 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 0.1mm 내지 5mm 임이 보다 바람직하다.
도 7은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 7을 참조하면, 쿨링패드(220)상에 기판(200)이 위치되고 상기 기판(200)상에 할로겐 램프(230)가 배치된다. 그 다음에 기판(200)상에 제1 가스 주입부(140), 상기 제1 가스 주입부(140)와 제1 이격 거리(e)를 가지는 제2 가스 주입부(150) 및 상기 제2 가스 주입부(150)와 제2 이격 거리(f)를 가지는 상압 플라즈마 발생장치(170)가 배치될 수 있다. 제1 이격 거리(e)와 제2 이격 거리(f)는 각각의 반응공정 단계에 필요한 시간을 고려하여 그 간격을 조절할 수 있다. 상압에서 원자층을 증착시킬 수 있으므로 반응가스를 기판(200) 상에 주입할 때 상압 플라즈마 발생장치(170)를 사용할 수 있게 된다. 상기 상압 플라즈마 발생장치(170)는 콜드 플라즈마 토치(cold plasma torch)를 형상화 한 것이다.
기판(200)은 화살표 방향인 오른쪽에서 왼쪽으로 이동한다. 다만, 이에 한정되지 않고 기판(200)은 고정되고 가스 주입부가 이동할 수 있다. 또한, 상기 가스 주입부 및 상기 기판(200)이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복할 수 있다.
이 경우 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 수mm 이내가 바람직하다. 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 0.1mm 내지 5mm 임이 보다 바람직하다.
도 8은 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 8을 참조하면, 쿨링패드(220)상에 기판(200)이 위치되고 상기 기판(200)상에 할로겐 램프(230)가 배치된다. 그 다음에 기판(200) 상에 제1 가스 주입부(140), 상기 제1 가스 주입부(140)와 제1 이격 거리(e)를 가지는 제2 가스 주입부(150) 및 상기 제2 가스 주입부(150)와 제2 이격 거리(f)를 가지는 제3 가스 주입부(160)가 배치될 수 있다. 제1 이격 거리(e)와 제2 이격 거리(f)는 각각의 반응공정 단계에 필요한 시간을 고려하여 그 간격을 조절할 수 있다. 상기 제3 가스 주입부(160)의 다음 단계에 잔존하는 소스 가스를 반응시키도록 UV 램프(250)가 배치될 수 있다. 다만, 이에 한정되는 것은 아니다. 상기 UV 램프(250)의 쿨링부(251)는 기판(200)의 표면 외의 부분을 가열시키는 것을 방지하므로 기판(200) 전체의 온도가 상승하는 것을 막는 장점이 있다.
상기 UV 램프(250)를 증착 공정에 사용하는 경우 증착 도중 램프 글라스 표면에 증착이 되어 효율이 떨어진다는 문제점이 있었다. 그러나, 본 발명의 경우 상기 UV 램프(250)가 소스와의 거리를 둔 경우 각각의 가스 주입부에서 충분한 흡입과정을 거치면서 기판(200) 표면에 열흡착된 소스만 남게 되므로 램프 오염을 피할 수 있다.
기판(200)은 화살표 방향인 오른쪽에서 왼쪽으로 이동한다. 다만, 이에 한정되지 않고 기판(200)은 고정되고 가스 주입부가 이동할 수 있다. 또한, 상기 가스 주입부 및 상기 기판(200)이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복할 수 있다.
이 경우 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 수mm 이내가 바람직하다. 상기 가스 주입부들과 상기 기판(200)의 간격(c)은 0.1mm 내지 5mm 임이 보다 바람직하다.
도 9는 본 발명의 일 실시예에 따른 원자층 증착장치의 일 단면도이다.
도 9를 참조하면, 쿨링패드(220)상에 기판(200)이 위치되고 상기 기판(200)상에 가스 주입부, 상압 플라즈마 발생장치 및 가열수단을 하나의 통합모듈로 소형화시킨 원자층 증착장치 모듈(300)이 배치되어 있다. 도 9와 같이 기판의 표면을 가열하고 소스 가스(303), 퍼지 가스(304) 및 플라즈마 가스(302)를 기판(200) 상에 차례로 주입하고 흡입한다. 흡입된 가스(305)는 일정 경로를 통하여 배출된다. 상기 원자층 증착장치 모듈(300)의 쿨링부(301)는 기판(200)의 표면 외의 부분을 가열시키는 것을 방지하므로 기판(200) 전체의 온도가 상승하는 것을 막는 장점이 있다.
이와 같이 필요에 따른 구성으로 통합모듈을 구성할 수 있으며, 이를 여러 개 배치하여 기판 혹은 모듈의 한번 이동으로 여러 사이클(cycle)의 원자층 증착이 이루어 질 수 있도록 한다.
이 경우 원자층 증착장치 모듈(300)과 기판의 간격(d)은 수mm 이내가 바람직하다. 원자층 증착장치 모듈(300)과 기판의 간격(d)은 0.1mm 내지 2mm 임이 보다 바람직하다. 만일, 가스주입장치와 기판의 간격이 0.1mm 미만인 경우, 가스주입장치가 기판에 직접 접촉할 우려가 있다. 또한, 간격이 2mm를 상회하는 경우, 상기 원자층 증착장치 모듈(300)의 증착 효율이 감소하는 문제가 발생할 수 있다.
[부호의 설명]
100: 가스 주입 장치 110: 홀
111: 제1 외주면 112: 가이드
113: 가스 배출구 120: 제2 외주면
121: 가스 흡입구 130: 가스 밸브관
131: 홀 140: 제1 가스 주입부
150: 제2 가스 주입부 160: 제3 가스 주입부
170: 상압 플라즈마 발생장치 200: 기판
210: 히터 220: 쿨링패드
230: 할로겐 램프 231: 쿨링부
240: 가열 수단 250: UV 램프
251: 쿨링부 300: 원자층 증착장치 모듈
301: 쿨링부 302: 플라즈마 가스
303: 소스 가스 304: 퍼지 가스
305: 흡입된 가스

Claims (19)

  1. 가스가 공급되는 홀을 감싸는 제1 외주면을 가지고, 상기 제1 외주면의 일부가 오픈된 영역으로부터 신장된 가이드를 가지고, 상기 가이드가 형성하는 공간을 가스 배출구로 사용하는 가스 공급관; 및
    상기 가이드에 연결되고, 상기 제1 외주면의 외곽을 감싸는 제2 외주면을 가지고, 상기 제2 외주면의 일부가 오픈된 가스 흡입구를 가지는 가스 흡입관을 포함하는 가스 주입 장치.
  2. 제1항에 있어서,
    상기 가스 공급관 내에 장착되어 가스 유량을 조절하는 가스 밸브관을 더 포함하고,
    상기 가스 밸브관은 가스 공급관의 중심축을 중심으로 회전 가능하게 장착되고, 상기 가스 밸브관은 상기 가스 밸브관의 길이 방향으로 형성된 홀을 포함하는 가스 주입 장치.
  3. 제2항에 있어서, 상기 가스 밸브관의 홀은 상기 가스 밸브관의 길이 방향으로 일체로 형성되거나, 상기 가스 밸브관의 길이 방향으로 일정한 이격 거리를 가진 형태로 구비되는 것을 특징으로 하는 가스 주입 장치.
  4. 제1항에 있어서, 상기 가스 흡입구는 상기 가스 배출구를 중심으로 상호 대칭된 위치에 배치되는 것을 특징으로 하는 가스 주입 장치.
  5. 제1항에 있어서, 상기 가스 흡입구와 상기 가스 배출구가 상기 가스 주입 장치의 중심과 이루는 각도는 5˚ 내지 90˚인 것을 특징으로 하는 가스 주입 장치.
  6. 제1항에 있어서, 상기 가스 배출구는 상기 가스 흡입관의 길이 방향을 따라 배치되고, 일정한 이격 거리를 가진 홀의 형태이거나 일체화된 슬릿의 형태인 것을 특징으로 하는 가스 주입 장치.
  7. 제1항에 있어서, 상기 가스의 공급과 상기 가스의 흡입은 상압에서 실시되는 것을 특징으로 하는 가스 주입 장치.
  8. 가스의 공급과 흡입을 동시에 수행할 수 있는 적어도 2개의 가스 주입부들을 포함하고,
    상기 가스 주입부는,
    상기 가스의 공급을 유도하는 제1 외주면과 상기 가스를 기판에 배출하는 가스 배출구를 정의하는 가이드를 가지는 가스 공급관; 및
    상기 가이드에 연결되고, 상기 제1 외주면의 외곽을 감싸는 제2 외주면을 가지고, 상기 제2 외주면의 일부가 오픈된 가스 흡입구를 가지는 가스 흡입관을 포함하는 것을 특징으로 하는 원자층 증착 장치.
  9. 제8항에 있어서, 상기 가스 주입부는 상기 기판과의 이격 거리가 0.1mm 내지 5mm인 것을 특징으로 하는 원자층 증착 장치.
  10. 제8항에 있어서, 상기 기판의 표면을 가열하기 위한 가열 수단을 더 포함하고, 상기 가열 수단은 상기 가스의 주입공정이 수행되는 이전 단계에서 상기 기판을 가열하는 것을 특징으로 하는 원자층 증착 장치.
  11. 제10항에 있어서, 상기 가열 수단은 할로겐 램프 또는 레이저인 것을 특징으로 하는 원자층 증착 장치.
  12. 제10항에 있어서, 상기 가열 수단은 상기 기판의 특정부위의 가열 이후에 상기 가열된 부위에 상기 가스의 주입공정이 수행되도록 배치되는 것을 특징으로 하는 원자층 증착 장치.
  13. 제1 가스 주입부를 통해 소스 가스를 기판에 공급하고, 흡입하는 단계;
    상기 제1 가스 주입부와 제1 이격 거리를 가지는 제2 가스 주입부를 통해 퍼지 가스를 상기 기판에 공급하고, 흡입하는 단계; 및
    상기 제2 가스 주입부와 제2 이격 거리를 가지는 제3 가스 주입부를 통해 반응 가스를 상기 기판에 공급하고, 흡입하는 단계를 포함하는 원자층 증착방법.
  14. 제13항에 있어서, 상기 소스 가스의 공급 및 흡입 단계 이전에,
    가열 수단을 이용하여 상기 기판을 가열하는 단계를 더 포함하는 것을 특징으로 하는 원자층 증착방법.
  15. 제14항에 있어서, 상기 기판의 가열은 상기 소스 가스의 공급 및 흡입이 수행되는 기판의 특정 부위에 대해 수행되는 것을 특징으로 하는 원자층 증착방법.
  16. 제13항에 있어서, 상기 기판 상에 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입은 상압에서 수행되는 것을 특징으로 하는 원자층 증착방법.
  17. 제13항에 있어서, 상기 기판은 이동하고, 상기 제1 가스 주입부 내지 상기 제3 가스 주입부는 고정된 상태에서, 상기 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입이 동시에 수행되는 것을 특징으로 하는 원자층 증착방법.
  18. 제13항에 있어서, 상기 기판은 고정된 상태에서, 상기 제1 가스 주입부 내지 상기 제3 가스 주입부는 이동하고, 상기 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입이 동시에 수행되는 것을 특징으로 하는 원자층 증착방법.
  19. 제13항에 있어서, 상기 제1 가스 주입부 내지 상기 제3 가스 주입부 및 상기 기판이 서로 반대방향으로 이동하거나, 상기 반대방향의 이동이 왕복되며, 상기 소스 가스의 공급/흡입, 상기 퍼지 가스의 공급/흡입 및 상기 반응 가스의 공급/흡입이 동시에 수행되는 것을 특징으로 하는 원자층 증착방법.
PCT/KR2012/001659 2011-03-31 2012-03-07 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법 WO2012134070A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280016242.9A CN103649368B (zh) 2011-03-31 2012-03-07 气体喷注装置、原子层沉积装置以及使用该原子层沉积装置的原子层沉积方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110029416A KR101311983B1 (ko) 2011-03-31 2011-03-31 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법
KR10-2011-0029416 2011-03-31

Publications (2)

Publication Number Publication Date
WO2012134070A2 true WO2012134070A2 (ko) 2012-10-04
WO2012134070A3 WO2012134070A3 (ko) 2012-11-29

Family

ID=46932043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001659 WO2012134070A2 (ko) 2011-03-31 2012-03-07 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법

Country Status (3)

Country Link
KR (1) KR101311983B1 (ko)
CN (1) CN103649368B (ko)
WO (1) WO2012134070A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866292A (zh) * 2012-12-13 2014-06-18 丽佳达普株式会社 原子层沉积装置
CN103866293A (zh) * 2012-12-13 2014-06-18 丽佳达普株式会社 原子层沉积装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101541155B1 (ko) * 2012-12-13 2015-08-06 엘아이지인베니아 주식회사 원자층 증착장치
KR101407068B1 (ko) * 2013-01-14 2014-06-13 한양대학교 산학협력단 고속 원거리 플라즈마 원자층 증착장치
KR101557483B1 (ko) * 2014-02-10 2015-10-07 엘아이지인베니아 주식회사 원자층 증착장치
KR20160072630A (ko) 2014-12-15 2016-06-23 인베니아 주식회사 원자층 증착장치
KR102007866B1 (ko) * 2015-05-07 2019-08-06 에이피시스템 주식회사 원자층 증착 장치 및 이를 이용한 원자층 증착 방법
KR101715223B1 (ko) * 2015-05-15 2017-03-14 고려대학교 산학협력단 국부 원자층 선택 박막 증착 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927482A (ja) * 1995-07-11 1997-01-28 Speedfam Co Ltd プラズマエッチング装置
US6022414A (en) * 1994-07-18 2000-02-08 Semiconductor Equipment Group, Llc Single body injector and method for delivering gases to a surface
JP2001230211A (ja) * 2000-02-17 2001-08-24 Sharp Corp 成膜装置
US20040035358A1 (en) * 2002-08-23 2004-02-26 Cem Basceri Reactors having gas distributors and methods for depositing materials onto micro-device workpieces
KR100805345B1 (ko) * 2006-11-10 2008-02-20 주식회사 비아트론 상압 금속도핑장치
JP2010092952A (ja) * 2008-10-06 2010-04-22 Ihi Corp 白色ledの製造装置と方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908738B2 (ja) * 2002-01-17 2012-04-04 サンデュー・テクノロジーズ・エルエルシー Ald方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022414A (en) * 1994-07-18 2000-02-08 Semiconductor Equipment Group, Llc Single body injector and method for delivering gases to a surface
JPH0927482A (ja) * 1995-07-11 1997-01-28 Speedfam Co Ltd プラズマエッチング装置
JP2001230211A (ja) * 2000-02-17 2001-08-24 Sharp Corp 成膜装置
US20040035358A1 (en) * 2002-08-23 2004-02-26 Cem Basceri Reactors having gas distributors and methods for depositing materials onto micro-device workpieces
KR100805345B1 (ko) * 2006-11-10 2008-02-20 주식회사 비아트론 상압 금속도핑장치
JP2010092952A (ja) * 2008-10-06 2010-04-22 Ihi Corp 白色ledの製造装置と方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866292A (zh) * 2012-12-13 2014-06-18 丽佳达普株式会社 原子层沉积装置
CN103866293A (zh) * 2012-12-13 2014-06-18 丽佳达普株式会社 原子层沉积装置

Also Published As

Publication number Publication date
CN103649368B (zh) 2016-03-02
KR20120111108A (ko) 2012-10-10
KR101311983B1 (ko) 2013-09-30
CN103649368A (zh) 2014-03-19
WO2012134070A3 (ko) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012134070A2 (ko) 가스 주입 장치, 원자층 증착장치 및 이 장치를 이용한 원자층 증착방법
WO2009102133A2 (ko) 배치형 원자층 증착 장치
US8002895B2 (en) Heat processing apparatus for semiconductor process
WO2013147481A1 (ko) 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비
WO2012096529A2 (ko) 반도체 제조에 사용되는 분사부재 및 그것을 갖는 플라즈마 처리 장치
TWI662993B (zh) 噴頭組件及處理腔室
WO2011129492A1 (ko) 가스 분사 유닛 및 이를 이용한 박막 증착 장치 및 방법
WO2011025214A2 (ko) 가스분사장치 및 이를 이용한 기판처리장치
WO2012036499A2 (ko) 박막 증착 장치
KR20040008334A (ko) 반도체 기판상에 소정의 물질을 증착하는 반도체 제조 장비
WO2015072691A1 (ko) 원자층증착 장치 및 방법
WO2013100462A1 (ko) 기판처리장치
WO2015156542A1 (ko) 가스 분사 장치 및 이를 포함하는 기판 처리 장치
WO2014157834A1 (ko) 기판처리장치
WO2013191414A1 (ko) 기판처리장치
WO2015041392A1 (ko) 히터 부재 및 그것을 갖는 기판 처리 장치
WO2014119971A1 (ko) 박막증착장치
WO2018190696A1 (ko) 원자층 증착을 위한 가스 공급 모듈
WO2017222350A1 (ko) 원자층 증착 장비 가스 모듈, 원자층 증착 장비 및 그를 이용한 원자층 증착 방법
WO2014109535A1 (ko) 고속 원거리 플라즈마 원자층 증착장치
WO2021025498A1 (ko) 가스 유입 장치 및 이를 이용한 기판 처리 장치
WO2016060429A1 (ko) 화학기상장치용 반응챔버
WO2012177064A2 (en) Deposition apparatus
WO2024010295A1 (ko) 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법
WO2024054056A1 (ko) 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765552

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765552

Country of ref document: EP

Kind code of ref document: A2