WO2012133903A1 - Alignment device for exposure device - Google Patents

Alignment device for exposure device Download PDF

Info

Publication number
WO2012133903A1
WO2012133903A1 PCT/JP2012/059015 JP2012059015W WO2012133903A1 WO 2012133903 A1 WO2012133903 A1 WO 2012133903A1 JP 2012059015 W JP2012059015 W JP 2012059015W WO 2012133903 A1 WO2012133903 A1 WO 2012133903A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mask
substrate
wavelength
wavelength light
Prior art date
Application number
PCT/JP2012/059015
Other languages
French (fr)
Japanese (ja)
Inventor
畑中 誠
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2012133903A1 publication Critical patent/WO2012133903A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7046Strategy, e.g. mark, sensor or wavelength selection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7065Production of alignment light, e.g. light source, control of coherence, polarization, pulse length, wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7069Alignment mark illumination, e.g. darkfield, dual focus

Definitions

  • the present invention relates to an alignment apparatus for aligning a substrate and a mask in an exposure apparatus using a microlens array.
  • FIG. 4 is a schematic view showing an exposure apparatus using a microlens array.
  • a mask 2 on which a pattern to be exposed on the substrate 1 is formed is disposed above the substrate 1 to be exposed with an appropriate distance from the substrate 1.
  • a microlens array 3 in which microlenses 4 are two-dimensionally arranged is disposed between the substrate 1 and the mask 2, and exposure light is irradiated onto the mask 2 from above the mask 2. 2 is projected onto the substrate 1 by the microlens array 3, and the pattern formed on the mask 2 is transferred by the microlens array 3 as an erecting equal-magnification image to a resist or the like on the substrate surface. .
  • the microlens array 3 and the exposure light source and optical system above the microlens array 3 are usually fixedly arranged, and exposure is performed by moving the mask 2 and the substrate 1 integrally in a direction perpendicular to the paper surface. Light scans the substrate 1.
  • the alignment marks 5 and 6 are provided on the upper surface of the substrate 1 and the lower surface of the mask 2, respectively, and these alignment marks 5 and 6 are used as indices. It is necessary to synchronize the substrate 1 and the mask 2.
  • the alignment marks 5 and 6 are set to the same camera. Must be observed simultaneously. That is, if the alignment marks 5 and 6 are observed separately with different cameras, the relative positions of the alignment marks 5 and 6 cannot be guaranteed.
  • the mask and the substrate are close to each other at approximately 200 ⁇ m, and this distance is within the focal depth of the camera, so that the mask alignment mark and the substrate alignment mark can be observed simultaneously with the camera. It is.
  • the microlens array 3 since the microlens array 3 needs to be interposed between the substrate 1 and the mask 2, the distance between the substrate 1 and the mask 2, that is, alignment.
  • the interval between the marks 5 and 6 is about 5 mm. This interval of 5 mm cannot be observed simultaneously with a normal camera lens system.
  • an optical path difference is provided between the reflected light from the alignment mark 5 on the substrate 1 and the reflected light from the alignment mark 6 on the mask 2 to align the alignment mark 5 on the substrate 1 and the mask 2. It is also conceivable to correct the focus difference from the mark 6.
  • the gap G between the substrate 1 and the mask 2 is about 5 mm.
  • the light from the light source 20 is converged by the lens 21, reflected by the reflecting mirror 22, and incident on the beam splitter 17 through the lens 23.
  • the light from the beam splitter 17 enters the mask 2 via the lenses 18 and 19, is reflected by the alignment mark 6 of the mask 2, enters the substrate 1, and is reflected by the alignment mark 5 of the substrate 1. .
  • the light reflected by these alignment marks 5 and 6 is directed to the beam splitter 17, passes through the beam splitter 17, and then enters the beam splitter 14 through the lenses 16 and 15.
  • the reflected light from the alignment marks 5 and 6 is separated into light directed to the beam splitter 11 and light directed to the mirror 13 by the beam splitter 14, and the light directed to the mirror 13 is transmitted to the beam splitter 11 by the mirror 12. Head.
  • the beam splitter 11 transmits the light from the beam splitter 14 as it is, and the light from the mirror 12 is reflected toward the camera 10. In this way, the light that has passed through the mirrors 13 and 12 from the beam splitter 14 and the light that has reached directly from the beam splitter 14 are detected by the camera 10.
  • the total length of the optical path from the beam splitter 14 to the mirror 13, the optical path from the mirror 13 to the mirror 12, and the optical path from the mirror 12 to the beam splitter 11 is It is set to be longer by 80 mm than the length of the optical path.
  • the light traveling in the optical path and the light traveling on the image are both imaged on the CCD (charge coupled device) of the camera 10, and the alignment marks 5 and 6 can be simultaneously observed by the camera 10.
  • the focus difference (equivalent to 80 mm) of the patterns of the alignment marks 5 and 6 on the substrate 1 and the mask 2 can be corrected by dividing them into different optical paths.
  • the focus difference is corrected by another optical path as described above, there is a problem that the relative positions of both patterns of the alignment marks 5 and 6 are shifted when the optical axis shift occurs in each optical path. For this reason, this method reduces the alignment accuracy.
  • the alignment accuracy is lowered, the exposure pattern accuracy is also lowered, which becomes a fatal problem for the recent exposure of a high-definition liquid crystal panel.
  • An object of the present invention is to provide an alignment apparatus for an exposure apparatus.
  • An alignment apparatus of an exposure apparatus includes a first light source that emits long wavelength light, a second light source that emits short wavelength light having a shorter wavelength than the long wavelength light, and first and second of these.
  • a first optical system that collects long-wavelength light and short-wavelength light emitted from the light source in the same optical path, and irradiates the mask and the substrate perpendicularly to their surfaces with the collected light from the first optical system.
  • a second optical system a camera, a third optical system that guides reflected light reflected by the alignment marks of the mask and the substrate to the camera after returning the same optical path as the second optical system, And a filter which is provided in the optical system 3 and separates the long wavelength light and the short wavelength light and forms an image of the long wavelength light and the short wavelength light in different visual field regions of the sensor of the camera.
  • the wavelengths of the long wavelength light and the short wavelength light are in a range of 400 to 700 nm, and a difference in focal position due to a wavelength difference between the long wavelength light and the short wavelength light is This corresponds to the distance between the substrate and the mask.
  • the long wavelength light is red light having a wavelength of 670 nm
  • the short wavelength light is blue light having a wavelength of 405 nm.
  • the collective light of these lights is irradiated to the alignment marks of the substrate and the mask through the same optical path.
  • it Before being reflected and incident on the camera sensor, it is separated into blue light and red light by a filter, and an image by blue light and an image by red light are imaged in different field areas of the camera sensor, Due to the focus difference due to the wavelength, the alignment marks of the substrate and the mask having different distances from the sensor of the camera can be imaged simultaneously on the camera.
  • the distance between the alignment mark on the substrate and the alignment mark on the mask is preferably kept constant, preferably at a plurality of locations, so that the substrate and the mask can be aligned.
  • the imaging optical path is common, the relative position of the alignment pattern hardly changes even if the optical axis shift occurs, and extremely high alignment accuracy can be obtained.
  • FIG. 1 is a view showing an alignment apparatus of an exposure apparatus according to an embodiment of the present invention.
  • a first light source 27 that emits long wavelength light and a second light source 26 that emits short wavelength light are provided, and the long wavelength light from the first light source 27 is reflected by the reflecting mirror 29.
  • the short wavelength light from the second light source 26 gathers with the long wavelength light from the first light source 27 by the beam splitter 28 toward the beam splitter 28.
  • These collective lights are converged by the lens 30, reflected by the beam splitter 24, pass through the lens 25, and then travel toward the mask 2 and the substrate 1.
  • the collective light is incident on the mask 2 and the substrate 1 perpendicularly to the surface thereof, reflected by the alignment mark 6 of the mask 2 and the alignment mark 5 of the substrate 1, and returns to the same optical path as the incident optical path.
  • the reflected light passes through the beam splitter 24, enters the camera 20 through the lenses 23 and 22 and the filter 21. Therefore, the reflecting mirror 29 and the beam splitter 28 constitute a first optical system that collects the long wavelength light and the short wavelength light emitted from the first and second light sources 27 and 26 in the same optical path, and the lens 30.
  • the beam splitter 24 and the lens 25 constitute a second optical system that irradiates the collective light from the first optical system onto the mask 2 and the substrate 1 perpendicularly to the surfaces thereof.
  • the lens 25, the beam splitter 24, and the lens 23, the lens 22 constitutes a third optical system for guiding the reflected light reflected by the mask 2 and the alignment marks 6 and 5 on the substrate 1 to the camera 20 after returning the same optical path as the second optical system.
  • the filter 21 has a half of the light transmission region that transmits the long wavelength light and shields the short wavelength light, and the other half of the light transmission region transmits the short wavelength light and shields the long wavelength light. .
  • the reflected light that has passed through the filter 21 detects long wavelength light in the half of the light detection area of the CCD (charge coupled device) sensor of the camera 20 and detects short wavelength light in the remaining half of the area.
  • CCD charge coupled device
  • the first and second light sources laser light or lamp light transmitted through an interference filter can be used.
  • the long wavelength light emitted from the first light source 27 is, for example, red light having a wavelength of 670 nm
  • the short wavelength light emitted from the second light source 26 is, for example, blue light having a wavelength of 405 nm. Therefore, in the filter 21, half of the CCD visual field region (light detection region) transmits 405 nm light and reflects 670 nm light, and the other half transmits 670 nm light and reflects 405 nm light. It is.
  • red light having a wavelength of 670 nm is emitted from the first light source 27, and blue light having a wavelength of 405 nm is emitted from the second light source 26.
  • These lights gather at the beam splitter 28 and then travel on the same optical path to the camera 20. That is, as shown in FIG. 3, the collective light travels from the beam splitter 24 toward the mask 2 and the substrate 1 and enters the mask 2 and the substrate 1 perpendicularly to the surface thereof.
  • the reflected light of the collective light reflected by the alignment mark 6 of the mask 2 and the alignment mark 5 of the substrate 1 passes through the same beam path as the incident light, goes straight through the beam splitter 24, passes through the filter 21, and passes through the filter 21. Incident on the sensor.
  • the reflected light is filtered by the filter 21 so that long-wavelength light (for example, wavelength 670 nm) is incident on half of the camera viewing area, and short-wavelength light (for example, wavelength is incident on the remaining half of the camera viewing area). 405 nm) is incident.
  • the collective light passes through the optical system composed of the same lenses 25, 23, and 22.
  • the blue light (wavelength 405 nm) has a short focal length
  • the red light (wavelength 670 nm) is the focal point.
  • the distance is long. Therefore, if the optical constants of the lenses 25, 23, and 22 are set appropriately, the light reflected by the alignment mark 6 of the mask 2 out of the light incident on the sensor of the camera 20 has a blue light component of the camera 20.
  • the light that is focused by the sensor and reflected by the alignment mark 5 of the substrate 1 farther from the camera 20 can have the red light component focused by the sensor of the camera 20.
  • the gap G between the substrate 1 and the mask 2 is normally about 5 mm.
  • the gap G By absorbing 5 mm, the alignment marks 5 and 6 of both the substrate 1 and the mask 2 can be focused on the sensor of the camera 20.
  • the red light is incident on the half region 40a, and the cross pattern 41 of the alignment mark 5 on the substrate 1 is imaged, and the rest The blue light is incident on the half area 40b, and the four-point pattern 42 of the alignment mark 6 of the mask 2 is imaged.
  • substrate 1 and the pattern 42 on the mask 2 can be made to focus on a sensor, and can be observed simultaneously.
  • the positional relationship between the pattern 41 and the pattern 42 such as the distance between the pattern 41 and the pattern 42 is measured, and the relative position between the substrate 1 and the mask 2 is set so that the positional relationship is constant.
  • the relative positions of the patterns 41 and 42 are synchronized. Even if the relationship does not change or changes, it is a change to such an extent that a sufficiently high alignment accuracy can be obtained. In any case, a high alignment accuracy can be obtained.
  • the present invention basically uses the difference in the focal length between the long wavelength light and the short wavelength light to make the difference between the substrate 1 and the mask 2 of the exposure apparatus using the microlens array 3. Absorbs a large gap G. That is, the reflected light from the substrate 1 and the mask 2 is focused on the CCD of the camera by using a double focus by the long wavelength light and the short wavelength light.
  • the focus position can be further shifted by the lens design. That is, there is an aberration in the lens, and in a general lens design, the lens is designed in the direction of taking this aberration.
  • the lens may be designed in a direction in which the lens aberration is widened.
  • the wavelengths of the long wavelength light and the short wavelength light may be usually in the range of 400 to 700 nm. In this wavelength range, it can be detected by the CCD of the camera, and the focal position difference due to the wavelength difference between the long wavelength light and the short wavelength light is set to correspond to the distance between the substrate 1 and the mask 2. be able to.
  • the present invention since the imaging optical path of the alignment mark on the substrate and the alignment mark on the mask is common, the relative position of the pattern of both alignment marks hardly changes even if the optical axis shift occurs, and extremely high alignment accuracy can be obtained. it can. For this reason, the present invention is effective in improving the alignment accuracy of the alignment between the substrate and the mask of the exposure apparatus using the microlens array.
  • Substrate 2 Mask 3: Micro lens array 4: Micro lens 20: Camera 21: Filters 22, 23, 25, 30: Lens 24, 28: Beam splitter 29: Reflecting mirror 40: Light detection region (field region) 40a, 40b: Half area 41: Pattern of substrate alignment mark 42: Pattern of mask alignment mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Long wavelength light from a first light source and short wavelength light from a second light source are collected at a beam splitter, and this collected light is made to converge by a lens and is incident to a mask and substrate perpendicular to the surfaces thereof. Furthermore, this collected light is reflected by mask alignment marks and substrate alignment marks, returns along the light path of the incidence, passes through a filter, and is incident to a camera. The filter forms images of the long wavelength light and short wavelength light in the reflected light in different regions on a sensor in the camera. Thus, the camera can observe the patterns of the alignment marks that are focused on for both the mask and the substrate simultaneously. Therefore, even if the light path is offset from the optical axis, changes in the relative position of the patterns for the substrate alignment marks and mask alignment marks do not arise easily, and the alignment precision is high.

Description

露光装置のアライメント装置Alignment device for exposure equipment
 本発明は、マイクロレンズアレイを使用した露光装置において、基板とマスクとをアライメントするアライメント装置に関する。 The present invention relates to an alignment apparatus for aligning a substrate and a mask in an exposure apparatus using a microlens array.
 図4はマイクロレンズアレイを使用した露光装置を示す模式図である。露光対象の基板1の上方に、基板1に露光されるパターンが形成されたマスク2が、基板1に対して適長間隔をおいて配置されている。そして、この基板1とマスク2との間に、マイクロレンズ4を2次元的に配列したマイクロレンズアレイ3が配置されており、マスク2の上方から露光光がマスク2に対して照射され、マスク2を透過した露光光がマイクロレンズアレイ3により基板1上に投影され、マスク2に形成されたパターンが、マイクロレンズアレイ3により正立等倍像として、基板表面上のレジスト等に転写される。 FIG. 4 is a schematic view showing an exposure apparatus using a microlens array. A mask 2 on which a pattern to be exposed on the substrate 1 is formed is disposed above the substrate 1 to be exposed with an appropriate distance from the substrate 1. A microlens array 3 in which microlenses 4 are two-dimensionally arranged is disposed between the substrate 1 and the mask 2, and exposure light is irradiated onto the mask 2 from above the mask 2. 2 is projected onto the substrate 1 by the microlens array 3, and the pattern formed on the mask 2 is transferred by the microlens array 3 as an erecting equal-magnification image to a resist or the like on the substrate surface. .
 この場合に、通常、マイクロレンズアレイ3及びその上方の露光光源及び光学系は、固定配置されており、マスク2と基板1とを一体的に、紙面に垂直の方向に移動させることにより、露光光が基板1上をスキャンするようになっている。このように、基板1とマスク2とを一体的に移動させるために、基板1の上面及びマスク2の下面に、夫々、アライメントマーク5及び6を設け、これらのアライメントマーク5及び6を指標として、基板1とマスク2とを同期させる必要がある。 In this case, the microlens array 3 and the exposure light source and optical system above the microlens array 3 are usually fixedly arranged, and exposure is performed by moving the mask 2 and the substrate 1 integrally in a direction perpendicular to the paper surface. Light scans the substrate 1. Thus, in order to move the substrate 1 and the mask 2 integrally, the alignment marks 5 and 6 are provided on the upper surface of the substrate 1 and the lower surface of the mask 2, respectively, and these alignment marks 5 and 6 are used as indices. It is necessary to synchronize the substrate 1 and the mask 2.
特開2009-277900号公報JP 2009-277900 A
 しかしながら、アライメントマーク5,6により、基板1とマスク2とを同期させる場合、±1μm程度の高精度で基板1とマスク2とを同期させようとすると、両アライメントマーク5,6を同一のカメラにより同時に観察する必要がある。即ち、異なるカメラで別々にアライメントマーク5,6を観察すると、両アライメントマーク5,6の相対的な位置を保証できない。 However, when synchronizing the substrate 1 and the mask 2 with the alignment marks 5 and 6, if the substrate 1 and the mask 2 are to be synchronized with high accuracy of about ± 1 μm, the alignment marks 5 and 6 are set to the same camera. Must be observed simultaneously. That is, if the alignment marks 5 and 6 are observed separately with different cameras, the relative positions of the alignment marks 5 and 6 cannot be guaranteed.
 近接露光の場合は、マスクと基板とが200μm程度で近接しており、この間隔はカメラの焦点深度内に収まるので、マスクのアライメントマークと基板のアライメントマークとを同時にカメラで観察することが可能である。しかし、マイクロレンズアレイ3を使用した露光装置においては、基板1とマスク2との間にマイクロレンズアレイ3を介装する必要があるため、基板1とマスク2との間の距離、即ち、アライメントマーク5,6間の間隔は、5mm程度存在する。この5mmの間隔は、通常のカメラのレンズ系では、同時に観察することができない。 In the case of proximity exposure, the mask and the substrate are close to each other at approximately 200 μm, and this distance is within the focal depth of the camera, so that the mask alignment mark and the substrate alignment mark can be observed simultaneously with the camera. It is. However, in the exposure apparatus using the microlens array 3, since the microlens array 3 needs to be interposed between the substrate 1 and the mask 2, the distance between the substrate 1 and the mask 2, that is, alignment. The interval between the marks 5 and 6 is about 5 mm. This interval of 5 mm cannot be observed simultaneously with a normal camera lens system.
 なお、図5に示すように、基板1のアライメントマーク5からの反射光と、マスク2のアライメントマーク6からの反射光とで、光路差を設け、基板1のアライメントマーク5とマスク2のアライメントマーク6とのフォーカス差を補正することも考えられる。 As shown in FIG. 5, an optical path difference is provided between the reflected light from the alignment mark 5 on the substrate 1 and the reflected light from the alignment mark 6 on the mask 2 to align the alignment mark 5 on the substrate 1 and the mask 2. It is also conceivable to correct the focus difference from the mark 6.
 図4に示すように、基板1とマスク2との間のギャップGは約5mmである。この場合に、視野とアライメント精度とを考慮すると、レンズ倍率は4倍程度が必要である。よって、アライメントのパターンギャップG(=5mm)は、カメラ側でみると、5mm×4=80mmに相当する。この80mmのフォーカス差を補正する必要がある。 As shown in FIG. 4, the gap G between the substrate 1 and the mask 2 is about 5 mm. In this case, considering the visual field and alignment accuracy, the lens magnification needs to be about 4 times. Accordingly, the alignment pattern gap G (= 5 mm) corresponds to 5 mm × 4 2 = 80 mm when viewed from the camera side. It is necessary to correct this 80 mm focus difference.
 そこで、図5においては、光源20からの光をレンズ21で収束して反射鏡22により反射させ、レンズ23を介してビームスプリッタ17に入射させる。そして、ビームスプリッタ17からの光は、レンズ18及び19を経由してマスク2に入射し、マスク2のアライメントマーク6で反射すると共に、基板1に入射し、基板1のアライメントマーク5で反射する。これらのアライメントマーク5、6で反射した光は、ビームスプリッタ17に向かい、このビームスプリッタ17を透過した後、レンズ16,15を介して、ビームスプリッタ14に入射する。アライメントマーク5、6からの反射光は、ビームスプリッタ14で、ビームスプリッタ11に向かう光と、ミラー13に向かう光とに分離され、ミラー13に向かった光は、ミラー12により、ビームスプリッタ11に向かう。そして、ビームスプリッタ11にて、ビームスプリッタ14からの光はそのまま透過し、ミラー12からの光は反射して、カメラ10に向かう。このようにして、ビームスプリッタ14からミラー13,12を経由した光と、ビームスプリッタ14から直接到達した光とは、カメラ10により検出される。そして、ビームスプリッタ14からミラー13までの光路と、ミラー13からミラー12までの光路と、ミラー12からビームスプリッタ11までの光路との総長が、ビームスプリッタ14からビームスプリッタ11に直接入射する光の光路の長さよりも、80mmだけ長くなるように設定されている。従って、マスク2のアライメントマーク6からの反射光であってミラー12,13を経由した光路を進行した光と、基板1のアライメントマーク5からの反射光であってビームスプリッタ14から直接ビームスプリッタ11に入射した光路を進行した光とがいずれもカメラ10のCCD(電荷結合素子)に結像し、アライメントマーク5,6をカメラ10で同時に観察することができる。 Therefore, in FIG. 5, the light from the light source 20 is converged by the lens 21, reflected by the reflecting mirror 22, and incident on the beam splitter 17 through the lens 23. The light from the beam splitter 17 enters the mask 2 via the lenses 18 and 19, is reflected by the alignment mark 6 of the mask 2, enters the substrate 1, and is reflected by the alignment mark 5 of the substrate 1. . The light reflected by these alignment marks 5 and 6 is directed to the beam splitter 17, passes through the beam splitter 17, and then enters the beam splitter 14 through the lenses 16 and 15. The reflected light from the alignment marks 5 and 6 is separated into light directed to the beam splitter 11 and light directed to the mirror 13 by the beam splitter 14, and the light directed to the mirror 13 is transmitted to the beam splitter 11 by the mirror 12. Head. Then, the beam splitter 11 transmits the light from the beam splitter 14 as it is, and the light from the mirror 12 is reflected toward the camera 10. In this way, the light that has passed through the mirrors 13 and 12 from the beam splitter 14 and the light that has reached directly from the beam splitter 14 are detected by the camera 10. The total length of the optical path from the beam splitter 14 to the mirror 13, the optical path from the mirror 13 to the mirror 12, and the optical path from the mirror 12 to the beam splitter 11 is It is set to be longer by 80 mm than the length of the optical path. Accordingly, the reflected light from the alignment mark 6 of the mask 2 and traveling on the optical path via the mirrors 12 and 13 and the reflected light from the alignment mark 5 of the substrate 1 and directly from the beam splitter 14 to the beam splitter 11. The light traveling in the optical path and the light traveling on the image are both imaged on the CCD (charge coupled device) of the camera 10, and the alignment marks 5 and 6 can be simultaneously observed by the camera 10.
 これにより、基板1とマスク2のアライメントマーク5,6のパターンのフォーカス差(80mm相当)を、別光路に分けて補正することができる。しかしながら、このように、フォーカス差を別光路で補正すると、各光路での光軸ずれが生じた場合に、アライメントマーク5,6の両パターンの相対位置がずれてしまうという問題点がある。このため、この方法では、アライメント精度が低下する。アライメント精度が低下すると、露光パターン精度も低下し、近時の高精細液晶パネルの露光にとって、致命的な問題となる。 Thereby, the focus difference (equivalent to 80 mm) of the patterns of the alignment marks 5 and 6 on the substrate 1 and the mask 2 can be corrected by dividing them into different optical paths. However, when the focus difference is corrected by another optical path as described above, there is a problem that the relative positions of both patterns of the alignment marks 5 and 6 are shifted when the optical axis shift occurs in each optical path. For this reason, this method reduces the alignment accuracy. When the alignment accuracy is lowered, the exposure pattern accuracy is also lowered, which becomes a fatal problem for the recent exposure of a high-definition liquid crystal panel.
 本発明はかかる問題点に鑑みてなされたものであって、光路の光軸ずれが生じても、基板のアライメントマークとマスクのアライメントマークとのパターン相対位置の変化が生じにくく、アライメント精度が高い露光装置のアライメント装置を提供することを目的とする。 The present invention has been made in view of such a problem, and even if the optical axis of the optical path is shifted, the relative position of the pattern between the substrate alignment mark and the mask alignment mark hardly changes, and the alignment accuracy is high. An object of the present invention is to provide an alignment apparatus for an exposure apparatus.
 本発明に係る露光装置のアライメント装置は、長波長光を出射する第1の光源と、前記長波長光より短波長の短波長光を出射する第2の光源と、これらの第1及び第2の光源から出射された長波長光と短波長光とを同一光路に集合させる第1の光学系と、この第1の光学系からの集合光をマスク及び基板にそれらの面に垂直に照射する第2の光学系と、カメラと、前記マスク及び基板のアライメントマークで反射した反射光を前記第2の光学系と同一の光路を戻した後前記カメラまで導く第3の光学系と、前記第3の光学系に設けられ前記長波長光と前記短波長光とを分離した後長波長光と短波長光とを前記カメラのセンサの異なる視野領域に結像させるフィルタと、を有することを特徴とする。 An alignment apparatus of an exposure apparatus according to the present invention includes a first light source that emits long wavelength light, a second light source that emits short wavelength light having a shorter wavelength than the long wavelength light, and first and second of these. A first optical system that collects long-wavelength light and short-wavelength light emitted from the light source in the same optical path, and irradiates the mask and the substrate perpendicularly to their surfaces with the collected light from the first optical system. A second optical system, a camera, a third optical system that guides reflected light reflected by the alignment marks of the mask and the substrate to the camera after returning the same optical path as the second optical system, And a filter which is provided in the optical system 3 and separates the long wavelength light and the short wavelength light and forms an image of the long wavelength light and the short wavelength light in different visual field regions of the sensor of the camera. And
 この露光装置のアライメント装置において、例えば、前記長波長光及び前記短波長光の波長は、400乃至700nmの範囲にあり、前記長波長光と前記短波長光の波長差による焦点位置の差が、前記基板と前記マスクとの間の間隔に対応している。 In the alignment apparatus of the exposure apparatus, for example, the wavelengths of the long wavelength light and the short wavelength light are in a range of 400 to 700 nm, and a difference in focal position due to a wavelength difference between the long wavelength light and the short wavelength light is This corresponds to the distance between the substrate and the mask.
 この場合に、例えば、前記長波長光は波長が670nmの赤色光であり、前記短波長光は波長が405nmの青色光である。 In this case, for example, the long wavelength light is red light having a wavelength of 670 nm, and the short wavelength light is blue light having a wavelength of 405 nm.
 本発明によれば、例えば、波長が405nmの青色光と、波長が670nmの赤色光とを使用して、これらの光の集合光を、同一光路で、基板及びマスクのアライメントマークに照射して反射させ、カメラのセンサに入射する前に、フィルタにより青色光と赤色光とに分離し、青色光による像と、赤色光による像とを、カメラのセンサの異なる視野領域に結像させると、波長によるフォーカス差により、カメラのセンサに対する距離が異なる基板とマスクのアライメントマークを前記カメラに同時に結像させることができる。そこで、基板のアライメントマークと、マスクのアライメントマークとの間の距離を、好ましくは複数の箇所にて、一定に保持することにより、基板とマスクとのアライメントをとることができる。この場合に、結像光路は共通なので、光軸ずれが生じてもアライメントパターンの相対位置は変化しにくく、極めて高いアライメント精度を得ることができる。 According to the present invention, for example, using blue light having a wavelength of 405 nm and red light having a wavelength of 670 nm, the collective light of these lights is irradiated to the alignment marks of the substrate and the mask through the same optical path. Before being reflected and incident on the camera sensor, it is separated into blue light and red light by a filter, and an image by blue light and an image by red light are imaged in different field areas of the camera sensor, Due to the focus difference due to the wavelength, the alignment marks of the substrate and the mask having different distances from the sensor of the camera can be imaged simultaneously on the camera. Therefore, the distance between the alignment mark on the substrate and the alignment mark on the mask is preferably kept constant, preferably at a plurality of locations, so that the substrate and the mask can be aligned. In this case, since the imaging optical path is common, the relative position of the alignment pattern hardly changes even if the optical axis shift occurs, and extremely high alignment accuracy can be obtained.
本発明の実施形態に係る露光装置のアライメント装置を示す図である。It is a figure which shows the alignment apparatus of the exposure apparatus which concerns on embodiment of this invention. カメラのセンサに結像したアライメントマークのパターンの一例を示す図である。It is a figure which shows an example of the pattern of the alignment mark imaged on the sensor of the camera. 本実施形態の光路を示す図である。It is a figure which shows the optical path of this embodiment. マイクロレンズアレイを使用した露光装置を示す図である。It is a figure which shows the exposure apparatus which uses a micro lens array. 光路差を設けて基板とマスクとの間のギャップを吸収するアライメント装置を示す図である。It is a figure which shows the alignment apparatus which provides an optical path difference and absorbs the gap between a board | substrate and a mask.
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1は本発明の実施形態に係る露光装置のアライメント装置を示す図である。長波長光を出射する第1の光源27と、短波長光を出射する第2の光源26とが設けられており、第1の光源27からの長波長光は、反射鏡29で反射した後、ビームスプリッタ28に向かい、第2の光源26からの短波長光がこのビームスプリッタ28で、第1の光源27からの長波長光と集合する。そして、これらの集合光は、レンズ30で収束された後、ビームスプリッタ24にて反射して、レンズ25を経た後、マスク2及び基板1に向かう。この集合光は、マスク2及び基板1にその面に垂直に入射し、マスク2のアライメントマーク6及び基板1のアライメントマーク5で反射して、入射光路と同一の光路を戻ってくる。この反射光は、ビームスプリッタ24を通過し、レンズ23,22と、フィルタ21を経て、カメラ20に入射する。よって、反射鏡29及びビームスプリッタ28が、第1及び第2の光源27,26から出射した長波長光と短波長光とを同一光路に集合させる第1の光学系を構成し、レンズ30、ビームスプリッタ24、レンズ25が、この第1の光学系からの集合光をマスク2及び基板1にそれらの面に垂直に照射する第2の光学系を構成し、レンズ25、ビームスプリッタ24、レンズ23、レンズ22が、マスク2及び基板1のアライメントマーク6,5で反射した反射光を第2の光学系と同一の光路を戻した後カメラ20まで導く第3の光学系を構成する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a view showing an alignment apparatus of an exposure apparatus according to an embodiment of the present invention. A first light source 27 that emits long wavelength light and a second light source 26 that emits short wavelength light are provided, and the long wavelength light from the first light source 27 is reflected by the reflecting mirror 29. The short wavelength light from the second light source 26 gathers with the long wavelength light from the first light source 27 by the beam splitter 28 toward the beam splitter 28. These collective lights are converged by the lens 30, reflected by the beam splitter 24, pass through the lens 25, and then travel toward the mask 2 and the substrate 1. The collective light is incident on the mask 2 and the substrate 1 perpendicularly to the surface thereof, reflected by the alignment mark 6 of the mask 2 and the alignment mark 5 of the substrate 1, and returns to the same optical path as the incident optical path. The reflected light passes through the beam splitter 24, enters the camera 20 through the lenses 23 and 22 and the filter 21. Therefore, the reflecting mirror 29 and the beam splitter 28 constitute a first optical system that collects the long wavelength light and the short wavelength light emitted from the first and second light sources 27 and 26 in the same optical path, and the lens 30. The beam splitter 24 and the lens 25 constitute a second optical system that irradiates the collective light from the first optical system onto the mask 2 and the substrate 1 perpendicularly to the surfaces thereof. The lens 25, the beam splitter 24, and the lens 23, the lens 22 constitutes a third optical system for guiding the reflected light reflected by the mask 2 and the alignment marks 6 and 5 on the substrate 1 to the camera 20 after returning the same optical path as the second optical system.
 このフィルタ21は、その光透過域の半分が長波長光を透過すると共に短波長光を遮蔽し、光透過域の残りの半分が短波長光を透過すると共に長波長光を遮蔽するものである。そして、フィルタ21を経由した反射光は、カメラ20のCCD(電荷結合素子)センサの光検出領域の半分の領域に、長波長光が検出され、残りの半分の領域に短波長光が検出される。 The filter 21 has a half of the light transmission region that transmits the long wavelength light and shields the short wavelength light, and the other half of the light transmission region transmits the short wavelength light and shields the long wavelength light. . The reflected light that has passed through the filter 21 detects long wavelength light in the half of the light detection area of the CCD (charge coupled device) sensor of the camera 20 and detects short wavelength light in the remaining half of the area. The
 第1及び第2の光源としては、レーザ光又は干渉フィルタを透過したランプ光を使用することができる。そして、第1の光源27から出射する長波長光は、例えば、波長が670nmの赤色光であり、第2の光源26から出射する短波長光は、例えば、波長が405nmの青色光である。従って、フィルタ21は、CCD視野領域(光検出領域)の半分が、405nm光を透過し、670nm光を反射するものであり、残りの半分が、670nm光を透過し、405nm光を反射するものである。 As the first and second light sources, laser light or lamp light transmitted through an interference filter can be used. The long wavelength light emitted from the first light source 27 is, for example, red light having a wavelength of 670 nm, and the short wavelength light emitted from the second light source 26 is, for example, blue light having a wavelength of 405 nm. Therefore, in the filter 21, half of the CCD visual field region (light detection region) transmits 405 nm light and reflects 670 nm light, and the other half transmits 670 nm light and reflects 405 nm light. It is.
 次に、上述のごとく構成された本実施形態の動作について説明する。第1の光源27から例えば波長が670nmの赤色光を出射し、第2の光源26から例えば波長が405nmの青色光を出射する。これらの光は、ビームスプリッタ28で集合した後、カメラ20まで同一光路を進行する。即ち、集合光は、図3に示すように、ビームスプリッタ24からマスク2及び基板1に向かい、このマスク2及び基板1に対し、その面に垂直に入射する。 Next, the operation of the present embodiment configured as described above will be described. For example, red light having a wavelength of 670 nm is emitted from the first light source 27, and blue light having a wavelength of 405 nm is emitted from the second light source 26. These lights gather at the beam splitter 28 and then travel on the same optical path to the camera 20. That is, as shown in FIG. 3, the collective light travels from the beam splitter 24 toward the mask 2 and the substrate 1 and enters the mask 2 and the substrate 1 perpendicularly to the surface thereof.
 その後、マスク2のアライメントマーク6及び基板1のアライメントマーク5で反射した集合光の反射光は、入射光と同一光路をとおり、ビームスプリッタ24を直進して、フィルタ21を透過し、カメラ20のセンサに入射する。この反射光は、フィルタ21によりフィルタリングされて、カメラの視野領域の半分に長波長光(例えば、波長が670nm)が入射し、カメラの視野領域の残りの半分に短波長光(例えば、波長が405nm)が入射する。このとき、集合光は同一レンズ25,23,22からなる光学系を通過するので、このような同一レンズの場合、青色光(波長405nm)は焦点距離が短く、赤色光(波長670nm)は焦点距離が長い。よって、レンズ25、23,22の光学定数等を適切に設定すれば、カメラ20のセンサに入射する光のうち、マスク2のアライメントマーク6で反射した光は、青色光の成分がカメラ20のセンサで合焦点となり、カメラ20からより遠い基板1のアライメントマーク5で反射した光は、赤色光の成分がカメラ20のセンサで合焦点となるようにすることができる。基板1とマスク2との間のギャップGは通常5mm程度であるが、カメラ20に対する入射光のうち、赤色光と青色光とが異なる光路長を経てセンサに合焦点となるので、ギャップGの5mmを吸収して、基板1及びマスク2の双方のアライメントマーク5,6をカメラ20のセンサ上でフォーカスすることができる。 Thereafter, the reflected light of the collective light reflected by the alignment mark 6 of the mask 2 and the alignment mark 5 of the substrate 1 passes through the same beam path as the incident light, goes straight through the beam splitter 24, passes through the filter 21, and passes through the filter 21. Incident on the sensor. The reflected light is filtered by the filter 21 so that long-wavelength light (for example, wavelength 670 nm) is incident on half of the camera viewing area, and short-wavelength light (for example, wavelength is incident on the remaining half of the camera viewing area). 405 nm) is incident. At this time, the collective light passes through the optical system composed of the same lenses 25, 23, and 22. Therefore, in the case of such the same lens, the blue light (wavelength 405 nm) has a short focal length, and the red light (wavelength 670 nm) is the focal point. The distance is long. Therefore, if the optical constants of the lenses 25, 23, and 22 are set appropriately, the light reflected by the alignment mark 6 of the mask 2 out of the light incident on the sensor of the camera 20 has a blue light component of the camera 20. The light that is focused by the sensor and reflected by the alignment mark 5 of the substrate 1 farther from the camera 20 can have the red light component focused by the sensor of the camera 20. The gap G between the substrate 1 and the mask 2 is normally about 5 mm. However, since the red light and the blue light of the incident light to the camera 20 are focused on the sensor through different optical path lengths, the gap G By absorbing 5 mm, the alignment marks 5 and 6 of both the substrate 1 and the mask 2 can be focused on the sensor of the camera 20.
 この結果、図2にカメラの光検出領域(視野領域)40を示すように、その半分の領域40aに赤色光が入射して、基板1のアライメントマーク5の十字パターン41が結像し、残りの半分の領域40bに青色光が入射して、マスク2のアライメントマーク6の4点パターン42が結像する。これにより、カメラ20においては、基板1上のパターン41と、マスク2上のパターン42との双方をセンサにフォーカスさせて、同時に観察することができる。 As a result, as shown in the light detection region (field region) 40 of the camera in FIG. 2, the red light is incident on the half region 40a, and the cross pattern 41 of the alignment mark 5 on the substrate 1 is imaged, and the rest The blue light is incident on the half area 40b, and the four-point pattern 42 of the alignment mark 6 of the mask 2 is imaged. Thereby, in the camera 20, both the pattern 41 on the board | substrate 1 and the pattern 42 on the mask 2 can be made to focus on a sensor, and can be observed simultaneously.
 そこで、パターン41とパターン42との間の距離等のパターン41とパターン42との位置関係を計測し、この位置関係が一定になるように、基板1とマスク2との間の相対的な位置を制御することにより、基板1とマスク2とのアライメントをとることができる。この場合に、青色光と赤色光の結像光路は、共通であるので、光軸ずれが発生しても、基板1とマスク2とが同期していれば、パターン41,42の相対的位置関係は変化しないか、又は変化しても、十分に高いアライメント精度を得ることができる程度の変化であり、いずれにしても、高アライメント精度を得ることができる。 Therefore, the positional relationship between the pattern 41 and the pattern 42 such as the distance between the pattern 41 and the pattern 42 is measured, and the relative position between the substrate 1 and the mask 2 is set so that the positional relationship is constant. By controlling the above, it is possible to align the substrate 1 and the mask 2. In this case, since the imaging light paths of the blue light and the red light are common, even if the optical axis shift occurs, the relative positions of the patterns 41 and 42 as long as the substrate 1 and the mask 2 are synchronized. Even if the relationship does not change or changes, it is a change to such an extent that a sufficiently high alignment accuracy can be obtained. In any case, a high alignment accuracy can be obtained.
 以上のように、本発明は基本的には、長波長光と短波長光との焦点距離の相違を利用して、マイクロレンズアレイ3を使用した露光装置の基板1とマスク2との間の大きなギャップGを吸収する。即ち、長波長光と短波長光とによるダブル焦点を利用して、基板1とマスク2からの反射光をカメラのCCD上にフォーカスさせる。しかし、この波長の相違によるダブル焦点に加えて、レンズ設計によって、焦点位置を更にずらすこともできる。つまり、レンズには収差があり、一般的なレンズ設計ではこの収差をとる方向にレンズを設計するが、本発明においては、このレンズ収差を広げる方向にレンズを設計すればよい。 As described above, the present invention basically uses the difference in the focal length between the long wavelength light and the short wavelength light to make the difference between the substrate 1 and the mask 2 of the exposure apparatus using the microlens array 3. Absorbs a large gap G. That is, the reflected light from the substrate 1 and the mask 2 is focused on the CCD of the camera by using a double focus by the long wavelength light and the short wavelength light. However, in addition to the double focus due to the difference in wavelength, the focus position can be further shifted by the lens design. That is, there is an aberration in the lens, and in a general lens design, the lens is designed in the direction of taking this aberration. However, in the present invention, the lens may be designed in a direction in which the lens aberration is widened.
 また、長波長光及び短波長光の波長は、通常、400乃至700nmの範囲にあればよい。この波長範囲では、カメラのCCDにより検出することができ、しかも長波長光と短波長光の波長差による焦点位置の差が、基板1とマスク2との間の間隔に対応するように設定することができる。 Further, the wavelengths of the long wavelength light and the short wavelength light may be usually in the range of 400 to 700 nm. In this wavelength range, it can be detected by the CCD of the camera, and the focal position difference due to the wavelength difference between the long wavelength light and the short wavelength light is set to correspond to the distance between the substrate 1 and the mask 2. be able to.
 本発明は、基板のアライメントマークとマスクのアライメントマークとの結像光路は共通なので、光軸ずれが生じても両アライメントマークのパターンの相対位置は変化しにくく、極めて高いアライメント精度を得ることができる。このため、本発明は、マイクロレンズアレイを使用した露光装置の基板とマスクとのアライメントのアライメント精度の向上に有効である。 In the present invention, since the imaging optical path of the alignment mark on the substrate and the alignment mark on the mask is common, the relative position of the pattern of both alignment marks hardly changes even if the optical axis shift occurs, and extremely high alignment accuracy can be obtained. it can. For this reason, the present invention is effective in improving the alignment accuracy of the alignment between the substrate and the mask of the exposure apparatus using the microlens array.
1:基板
2:マスク
3:マイクロレンズアレイ
4:マイクロレンズ
20:カメラ
21:フィルタ
22,23,25、30:レンズ
24,28:ビームスプリッタ
29:反射鏡
40:光検出領域(視野領域)
40a、40b:半分の領域
41:基板アライメントマークのパターン
42:マスクアライメントマークのパターン
1: Substrate 2: Mask 3: Micro lens array 4: Micro lens 20: Camera 21: Filters 22, 23, 25, 30: Lens 24, 28: Beam splitter 29: Reflecting mirror 40: Light detection region (field region)
40a, 40b: Half area 41: Pattern of substrate alignment mark 42: Pattern of mask alignment mark

Claims (3)

  1. 長波長光を出射する第1の光源と、前記長波長光より短波長の短波長光を出射する第2の光源と、これらの第1及び第2の光源から出射された長波長光と短波長光とを同一光路に集合させる第1の光学系と、この第1の光学系からの集合光をマスク及び基板にそれらの面に垂直に照射する第2の光学系と、カメラと、前記マスク及び基板のアライメントマークで反射した反射光を前記第2の光学系と同一の光路を戻した後前記カメラまで導く第3の光学系と、前記第3の光学系に設けられ前記長波長光と前記短波長光とを分離した後長波長光と短波長光とを前記カメラのセンサの異なる視野領域に結像させるフィルタと、を有することを特徴とする露光装置のアライメント装置。 A first light source that emits long-wavelength light, a second light source that emits short-wavelength light having a shorter wavelength than the long-wavelength light, and the long-wavelength light and short light emitted from these first and second light sources A first optical system that collects the wavelength light in the same optical path, a second optical system that irradiates the collective light from the first optical system to the mask and the substrate perpendicularly to their surfaces, a camera, A third optical system for guiding the reflected light reflected by the mask and substrate alignment marks to the camera after returning the same optical path as the second optical system; and the long wavelength light provided in the third optical system. And a filter for separating the short-wavelength light and the long-wavelength light and the short-wavelength light into different field-of-view areas of the sensor of the camera.
  2. 前記長波長光及び前記短波長光の波長は、400乃至700nmの範囲にあり、前記長波長光と前記短波長光の波長差による焦点位置の差が、前記基板と前記マスクとの間の間隔に対応していることを特徴とする請求項1に記載の露光装置のアライメント装置。 The wavelengths of the long-wavelength light and the short-wavelength light are in a range of 400 to 700 nm, and a difference in focal position due to a wavelength difference between the long-wavelength light and the short-wavelength light is an interval between the substrate and the mask. The alignment apparatus for an exposure apparatus according to claim 1, wherein:
  3. 前記長波長光は波長が670nmの赤色光であり、前記短波長光は波長が405nmの青色光であることを特徴とする請求項2に記載の露光装置のアライメント装置。 3. The alignment apparatus for an exposure apparatus according to claim 2, wherein the long wavelength light is red light having a wavelength of 670 nm, and the short wavelength light is blue light having a wavelength of 405 nm.
PCT/JP2012/059015 2011-04-01 2012-04-02 Alignment device for exposure device WO2012133903A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-082179 2011-04-01
JP2011082179A JP2012216728A (en) 2011-04-01 2011-04-01 Alignment device for exposure equipment

Publications (1)

Publication Number Publication Date
WO2012133903A1 true WO2012133903A1 (en) 2012-10-04

Family

ID=46931589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059015 WO2012133903A1 (en) 2011-04-01 2012-04-02 Alignment device for exposure device

Country Status (3)

Country Link
JP (1) JP2012216728A (en)
TW (1) TWI542957B (en)
WO (1) WO2012133903A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014222292A (en) 2013-05-13 2014-11-27 株式会社ブイ・テクノロジー Exposure device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288201A (en) * 1995-04-20 1996-11-01 Sumitomo Heavy Ind Ltd Method and apparatus for alignment applied to proximity exposure
JPH0922864A (en) * 1995-07-07 1997-01-21 Sumitomo Heavy Ind Ltd Position detection method for semiconductor substrate and semiconductor substrate and photomask
JP2011039005A (en) * 2009-08-18 2011-02-24 Topcon Corp Measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441805A (en) * 1987-08-07 1989-02-14 Sumitomo Heavy Industries Position detecting apparatus of two bodies, which are separated by minute distance
JP2649391B2 (en) * 1988-02-10 1997-09-03 住友重機械工業株式会社 Bicolor illumination method and band light illumination method in dual focus detection device using chromatic aberration
JP2699282B2 (en) * 1989-02-27 1998-01-19 住友重機械工業株式会社 Dual focus detection device using chromatic aberration
JP2811127B2 (en) * 1991-05-13 1998-10-15 住友重機械工業株式会社 Chromatic aberration double focus device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288201A (en) * 1995-04-20 1996-11-01 Sumitomo Heavy Ind Ltd Method and apparatus for alignment applied to proximity exposure
JPH0922864A (en) * 1995-07-07 1997-01-21 Sumitomo Heavy Ind Ltd Position detection method for semiconductor substrate and semiconductor substrate and photomask
JP2011039005A (en) * 2009-08-18 2011-02-24 Topcon Corp Measurement device

Also Published As

Publication number Publication date
TWI542957B (en) 2016-07-21
TW201250407A (en) 2012-12-16
JP2012216728A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
KR101941323B1 (en) Alignment device and alignment mark for optical exposure device
US7433038B2 (en) Alignment of substrates for bonding
JP5424267B2 (en) Micro lens exposure system
JP5743958B2 (en) Measuring method, exposure method and apparatus
JP2012038927A5 (en)
JP5747306B2 (en) Alignment device for exposure equipment
KR102026107B1 (en) Light exposure device and method for manufacturing exposed material
JP2006184777A (en) Focus detector
JP2008203604A (en) Projection type video display device
WO2012133903A1 (en) Alignment device for exposure device
JP5895275B2 (en) Alignment mark and exposure apparatus
JP5874900B2 (en) Alignment device for exposure equipment
JP6002898B2 (en) Alignment device for exposure equipment
TW202235195A (en) Observation device and observation method performing the moving of the condensing position at high speed even if imaging region is larger
JP2006154258A (en) Automatic focusing apparatus
JP5895276B2 (en) Alignment mark and exposure apparatus
WO2006046430A1 (en) Focal point detection device
JP5288477B2 (en) Exposure equipment
JP6061912B2 (en) Measuring method, exposure method and apparatus
JP5953038B2 (en) Apparatus and method for measuring focal length of microlens array
KR20130143431A (en) Image forming optical system for imaging multiple surfaces of substrate
JP2004356156A (en) Method and equipment for aligning mask and wafer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765198

Country of ref document: EP

Kind code of ref document: A1