WO2012133813A1 - Hexafluoropropylene-(vinyl acetate) copolymer - Google Patents

Hexafluoropropylene-(vinyl acetate) copolymer Download PDF

Info

Publication number
WO2012133813A1
WO2012133813A1 PCT/JP2012/058667 JP2012058667W WO2012133813A1 WO 2012133813 A1 WO2012133813 A1 WO 2012133813A1 JP 2012058667 W JP2012058667 W JP 2012058667W WO 2012133813 A1 WO2012133813 A1 WO 2012133813A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
hfp
vac
vinyl acetate
polymerization
Prior art date
Application number
PCT/JP2012/058667
Other languages
French (fr)
Japanese (ja)
Inventor
裕俊 吉田
裕司 今堀
真由美 飯田
剣吾 伊藤
田中 義人
井本 克彦
琢磨 川部
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2012133813A1 publication Critical patent/WO2012133813A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate

Definitions

  • the present invention relates to a hexafluoropropylene-vinyl acetate copolymer.
  • HFP hexafluoropropylene
  • VAc vinyl acetate
  • Example 1 of Patent Document 3 HFP and VAc are solution-polymerized in toluene. As a result, the number average molecular weight of the obtained HFP-VAc copolymer is as low as 2400.
  • Example 16 of Patent Document 4 HFP and VAc are produced by a bulk polymerization method.
  • the obtained HFP-VAc copolymer had an intrinsic viscosity of 1.08 dl / g and a VAc content of 75%.
  • the HFP-VAc copolymer known so far has a number average molecular weight of up to 10,000.
  • An object of the present invention is to provide an HFP-VAc copolymer having a large molecular weight and improved physical properties as a coating film forming component or a molding material.
  • the present invention relates to a binary copolymer of 5 to 95 mol% hexafluoropropylene (HFP) structural units and 95 to 5 mol% vinyl acetate (VAc) structural units, and has a number average molecular weight of 20000 or more. -Relates to the VAc copolymer.
  • HFP hexafluoropropylene
  • VAc vinyl acetate
  • the “binary copolymer” means a copolymer composed only of structural units derived from two types of monomers. Accordingly, a binary copolymer of 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units means a copolymer consisting of only 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units. Means coalescence.
  • Such a high molecular weight HFP-VAc copolymer is not particularly limited, but can be produced, for example, by radical polymerization of HFP and VAc by an emulsion polymerization method.
  • the present invention is also a film comprising the above HFP-VAc copolymer.
  • an HFP-VAc copolymer having a large molecular weight and improved physical properties as a coating film forming component or a molding material.
  • FIG. 3 is an IR chart of the fluorinated copolymer produced in Example 1.
  • the HFP-VAc copolymer of the present invention is a binary copolymer of 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units, and has a number average molecular weight of 20000 or more.
  • the HFP-VAc copolymer of the present invention is preferably a binary copolymer of 5 to 50 mol% of HFP structural units and 95 to 50 mol% of VAc structural units.
  • the HFP-VAc copolymer of the present invention can be produced, for example, by emulsion polymerization.
  • Emulsion polymerization can be performed in the presence of a hydrocarbon-based emulsifier or in the absence of an emulsifier.
  • the simple term “emulsifier” includes not only hydrocarbon emulsifiers but also fluorine emulsifiers and other emulsifiers. That is, the “emulsifier” includes all compounds generally called emulsifiers. Therefore, “emulsion polymerization is carried out in the absence of an emulsifier” means that the emulsion polymerization is carried out without using any compound generally classified as an emulsifier.
  • hydrocarbon-based emulsifier examples include formula (1): (Wherein R 1 and R 2 are the same or different and both are non-fluorinated saturated hydrocarbon groups having 4 to 12 carbon atoms; M is an alkali metal, ammonium salt or amine salt) can give.
  • the alkali metal salt of dialkylsulfosuccinic acid contained in the formula (1) is known as an emulsifier for emulsion polymerization, and WO 2002/010237 pamphlet describes a monomer containing a fluoroolefin as a nonionic emulsifier and an anion.
  • An alkali metal salt of dialkylsulfosuccinic acid may be added to an aqueous dispersion of a fluororesin obtained by emulsion polymerization using a functional emulsifier in order to improve mechanical stability and thermal stability. It is disclosed.
  • the compound (1) include sodium dioctylsulfosuccinate, sodium didecylsulfosuccinate, sodium dihexylsulfosuccinate, sodium diisobutylsulfosuccinate, sodium diamylsulfosuccinate, ammonium dioctylsulfosuccinate and the like.
  • hydrocarbon emulsifiers other than compound (1) examples include anionic emulsifiers such as alkylbenzene sulfonates, higher fatty acid salts, alkyl sulfate esters, alkyl sulfonates, and alkyl ether sulfates.
  • CH 3 (CH 2 ) n SO 3 M, CH 3 (CH 2 ) m SO 4 M, CH 3 (CH 2 ) o COOM, H (CH 2 ) p COO (CH 2 CH 2 O ) Q H, (NaSO 3 ) CH ((CH 2 ) r CH 3 ) ((CH 2 ) s CH 3 ) (wherein M is a monovalent cation; n is an integer from 2 to 16; m is from 2 to Examples include hydrocarbon emulsifiers such as integers of 16; o is an integer of 2 to 16, p is an integer of 2 to 40, q is an integer of 2 to 45, and r + s 10 to 20).
  • sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium decyl sulfate, sodium decyl sulfonate, sodium tetradecyl sulfate, sodium tetradecane sulfonate, etc. is inexpensive and has good water solubility and surfactant activity of the emulsifier.
  • sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium decyl sulfate, sodium decyl sulfonate, sodium tetradecyl sulfate, sodium tetradecane sulfonate, etc. is preferred.
  • the amount of the hydrocarbon-based emulsifier used may be appropriately selected depending on the type of the emulsifier. Of these, 400 to 3000 ppm is preferable. When the amount of the emulsifier used is less than 10 ppm, the surface activity tends to decrease and the number of generated particles tends to decrease.
  • the emulsion polymerization proceeds sufficiently stably, but a fluorine-based emulsifier and a non-fluorine-based nonionic emulsifier may be used in combination as long as the amount is small.
  • the emulsion polymerization of HFP and VAc proceeds even without the presence of an emulsifier.
  • the particle size of the emulsion produced by using the emulsifier is small and the stability is improved.
  • the polymerization temperature is not particularly limited, and an optimum temperature is adopted according to the kind of the polymerization initiator. However, if it is too high, the monomer density in the gas phase portion may easily decrease, or a branching reaction of the copolymer may occur, and the desired copolymer may not be obtained.
  • the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C.
  • the monomer may be supplied continuously or sequentially.
  • oil-soluble peroxides can also be used. These typical oil-soluble initiators such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP) These peroxycarbonates have a risk of explosion and the like, are expensive, and have a problem that scales easily adhere to the wall of the polymerization tank during the polymerization reaction. In order to further reduce the compression set of the fluoropolymer, it is preferable to use a water-soluble radical polymerization initiator.
  • IPP isopropyl peroxydicarbonate
  • NPP di-n-propyl peroxydicarbonate
  • water-soluble radical polymerization initiator In order to further reduce the compression set of the fluoropolymer, it is preferable to use a water-soluble radical polymerization initiator.
  • water-soluble radical polymerization initiator examples include persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium salt, and the like. Particularly, ammonium persulfate and potassium persulfate are used. preferable.
  • the addition amount of the polymerization initiator is not particularly limited, but it is added all at once in the initial stage of polymerization, sequentially or continuously, such that the polymerization rate is not significantly reduced (for example, several ppm to water concentration). do it.
  • the upper limit is a range in which the heat of polymerization reaction can be removed from the surface of the apparatus.
  • a molecular weight modifier or the like may be further added.
  • the molecular weight modifier may be added all at once in the initial stage, or may be added continuously or dividedly.
  • the molecular weight regulator examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride, cyclohexane, mono Examples thereof include iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, diiodomethane, 1,2-diiodomethane, 1,3-diiodopropane and the like.
  • a buffering agent or the like may be added as appropriate, but the amount is preferably used within a range not impairing the effects of the present invention.
  • the polymerization pressure may be appropriately selected within the range of 0.1 to 10 MPa, and further 0.2 to 8 MPa. Within this range, the pressure may be low (0.1 to 1 MPa) or high (1 to 10 MPa).
  • the stirring means for example, an anchor blade, a turbine blade, an inclined blade, or the like can be used. However, stirring with a large blade called a full zone or max blend is preferable from the viewpoint of good monomer diffusion and polymer dispersion stability.
  • the stirring device may be a horizontal stirring device or a vertical stirring device.
  • the polymerization solution may become acidic, so that sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate in the system
  • Inorganic salts such as sodium phosphate, metal oxides, hydrotalcites
  • organic amines such as diethylamine, dibutylamine, and triethylamine
  • hydrogen fluoride and hydrogen chloride eliminated by adding basic anion exchange resin You may neutralize acidic substances, such as.
  • the emulsion polymerization of HFP and VAc is radical polymerization, and the copolymerization ratio can be selected in the range of 5/95 to 95/5 in terms of HFP / VAc (mole% ratio).
  • the number average molecular weight of the HFP-VAc copolymer of the present invention is 20000 or more, and in particular, a relatively high molecular weight copolymer that could not be obtained by the conventional solution polymerization method or bulk polymerization method can be provided.
  • the number average molecular weight is more preferably 30000 or more.
  • the upper limit is increased, it may not be dissolved or swelled in tetrahydrofuran (THF), and measurement may not be possible.
  • the HFP-VAc copolymer of the present invention preferably has a glass transition temperature of 20 to 70 ° C. More preferably, it is 30 to 60 ° C.
  • the HFP-VAc copolymer of the present invention preferably has a fluorine content of 6 to 74% by mass. More preferably, it is 6 to 48% by mass.
  • the HFP-VAc copolymer of the present invention has a high fluorine content, is particularly excellent in water and oil repellency, and can be expected to improve characteristics such as transparency and low refractive index.
  • the HFP-VAc copolymer of the present invention has the above properties, it is useful as various coating film forming components and molding materials.
  • the HFP-VAc copolymer of the present invention can be formed into a film by heat pressing.
  • a polymer molded body such as a film (excluding a cast film from a polymer solution), a sheet, or a block can be molded only from a high molecular weight body.
  • the technical significance of the present invention is that it has been found that the HFP-VAc copolymer can be formed into a molded body as described above by enabling the HFP-VAc copolymer to have a high molecular weight.
  • a film comprising the HFP-VAc copolymer of the present invention is also one aspect of the present invention.
  • Fluorine content is measured using an automatic sample combustion apparatus (AQF-100 manufactured by Mitsubishi Chemical Corporation, built-in ion chromatography (ICS-1500 Ion Chromatography System manufactured by DIONEX)).
  • Particle diameter Measurement is performed using a laser light scattering particle diameter measuring apparatus (trade name ELS-3000, manufactured by Otsuka Electronics Co., Ltd.).
  • the elastic modulus sample film is cut into 5 mm ⁇ 30 mm, and measured using a Tensilon universal testing machine manufactured by Orientec Co., Ltd. at a crosshead speed of 50 mm / min.
  • the refractive index is a value measured using an Abbe refractometer at 25 ° C. with sodium D line as a light source.
  • the refractometer used was an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd.
  • Example 1 In a 0.5 L stainless steel autoclave, 250 g of pure water, 0.28 g of neocol P (76.4 mass% isopropyl alcohol solution of sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (with respect to 856 ppm of polymerization water), vinyl acetate ( VAc) 1.4 g was added and cooled to 5 ° C. Thereafter, the atmosphere was replaced with nitrogen, 35 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 60 ° C.
  • neocol P 76.4 mass% isopropyl alcohol solution of sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • VAc vinyl acetate
  • HFP hexafluoropropylene
  • the obtained HFP / VAc copolymer had a glass transition temperature of 50 ° C., a fluorine content of 35.8% by mass, and a particle size of 53 nm.
  • An IR chart is shown in FIG.
  • Example 2 A 2 L stainless steel autoclave is charged with 731 g of pure water, 1.48 g of Neocol P (sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (1620 ppm of polymerization water) and 23.2 g of vinyl acetate (VAc) at 5 ° C. Cooled down. Thereafter, the atmosphere was replaced with nitrogen, 85 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 35 ° C. With stirring, 10.4 g of a 3.4 mass% aqueous solution of ammonium persulfate (APS) and 0.35 g of Rongalite were added to initiate the reaction. The stirring speed was 400 rpm.
  • Neocol P sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • VAc vinyl acetate
  • the obtained HFP / VAc copolymer had a glass transition temperature of 37.4 ° C., a fluorine content of 13.1% by mass, and a number average molecular weight of 128,000.
  • Example 3 A 3 L stainless steel autoclave is charged with 1000 g of pure water, 1.62 g of Neocor P (sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (1620 ppm of polymerization water), and 23.2 g of vinyl acetate (VAc) at 5 ° C. Cooled down. Thereafter, the atmosphere was replaced with nitrogen, 132 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 60 ° C. Under stirring, 10 g of a 5.0 mass% aqueous solution of ammonium persulfate (APS) was added to initiate the reaction. The stirring speed was 400 rpm.
  • Neocor P sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • VAc vinyl acetate
  • HFP hexafluoropropy
  • the obtained HFP / VAc copolymer had a glass transition temperature of 42.6 ° C., a fluorine content of 29.7% by mass, and a number average molecular weight of 34,000.
  • Example 4 The HFP / VAc copolymer obtained in Example 1 was heat-pressed to produce a film having a thickness of 250 ⁇ m. It was 779 MPa when the elasticity modulus was investigated about the obtained film. Further, the obtained HFP / VAc copolymer was dissolved in acetone and cast to prepare a film having a thickness of 50.4 ⁇ m. When the transparency and refractive index of the obtained film were examined, the transparency was 93.04% and the refractive index was 1.4188.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a hexafluoropropylene-(vinyl acetate) copolymer (an HFP-VAc copolymer) which has a high molecular weight and improved physical properties for use as a component for forming coating films or a molding material. A hexafluoropropylene-(vinyl acetate) copolymer which is a binary copolymer comprising 5-95 mol% of a hexafluoropropylene structural unit and 95-5 mol% of a vinyl acetate structural unit and has a number average molecular weight of 20000 or more.

Description

ヘキサフルオロプロピレン-酢酸ビニル共重合体Hexafluoropropylene-vinyl acetate copolymer
本発明は、ヘキサフルオロプロピレン-酢酸ビニル共重合体に関する。 The present invention relates to a hexafluoropropylene-vinyl acetate copolymer.
従来、ヘキサフルオロプロピレン(HFP)は酢酸ビニル(VAc)との重合反応性が悪いと考えられており、HFPの共単量体として例示されている文献はあるものの(特許文献1~2)、具体的にHFPとVAcとの共重合体を製造した先行技術は限られている(特許文献3~4)。 Conventionally, hexafluoropropylene (HFP) is considered to have poor polymerization reactivity with vinyl acetate (VAc), although there are documents exemplified as HFP comonomers (Patent Documents 1 and 2), Specifically, prior arts for producing a copolymer of HFP and VAc are limited (Patent Documents 3 to 4).
特許文献3の実施例1では、トルエン中でHFPとVAcを溶液重合しており、その結果、得られるHFP-VAc共重合体の数平均分子量は2400と低いものである。 In Example 1 of Patent Document 3, HFP and VAc are solution-polymerized in toluene. As a result, the number average molecular weight of the obtained HFP-VAc copolymer is as low as 2400.
特許文献4の実施例16では、HFPとVAcを塊重合法により製造している。得られたHFP-VAc共重合体の固有粘度は1.08dl/gであり、VAc含有量は75%であった。 In Example 16 of Patent Document 4, HFP and VAc are produced by a bulk polymerization method. The obtained HFP-VAc copolymer had an intrinsic viscosity of 1.08 dl / g and a VAc content of 75%.
特表2006-500102号公報Special table 2006-500102 特表2007-515208号公報Special table 2007-515208 米国特許第7332545号明細書US Pat. No. 7,332,545 特許第2625028号明細書Japanese Patent No. 2625028
このようにこれまで知られているHFP-VAc共重合体は、数平均分子量が大きくても10000までのものであった。 Thus, the HFP-VAc copolymer known so far has a number average molecular weight of up to 10,000.
本発明は、分子量が大きく、塗膜形成成分や成形材料として物性が高められたHFP-VAc共重合体を提供することを目的とする。 An object of the present invention is to provide an HFP-VAc copolymer having a large molecular weight and improved physical properties as a coating film forming component or a molding material.
すなわち本発明は、ヘキサフルオロプロピレン(HFP)構造単位5~95モル%および酢酸ビニル(VAc)構造単位95~5モル%の2元共重合体であって、数平均分子量が20000以上であるHFP-VAc共重合体に関する。 That is, the present invention relates to a binary copolymer of 5 to 95 mol% hexafluoropropylene (HFP) structural units and 95 to 5 mol% vinyl acetate (VAc) structural units, and has a number average molecular weight of 20000 or more. -Relates to the VAc copolymer.
本明細書において、「2元共重合体」とは、2種類の単量体に由来する構造単位のみからなる共重合体を意味する。従って、HFP構造単位5~95モル%およびVAc構造単位95~5モル%の2元共重合体とは、HFP構造単位5~95モル%およびVAc構造単位95~5モル%のみからなる共重合体を意味する。 In the present specification, the “binary copolymer” means a copolymer composed only of structural units derived from two types of monomers. Accordingly, a binary copolymer of 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units means a copolymer consisting of only 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units. Means coalescence.
かかる高分子量のHFP-VAc共重合体は、特に限定されるものではないが、たとえばHFPとVAcとを乳化重合法によりラジカル重合することにより製造することができる。 Such a high molecular weight HFP-VAc copolymer is not particularly limited, but can be produced, for example, by radical polymerization of HFP and VAc by an emulsion polymerization method.
本発明はまた、上記HFP-VAc共重合体からなるフィルムでもある。 The present invention is also a film comprising the above HFP-VAc copolymer.
本発明によれば、分子量が大きく、塗膜形成成分や成形材料として物性が高められたHFP-VAc共重合体を提供できる。 According to the present invention, it is possible to provide an HFP-VAc copolymer having a large molecular weight and improved physical properties as a coating film forming component or a molding material.
実施例1で製造した含フッ素共重合体のIRチャートである。3 is an IR chart of the fluorinated copolymer produced in Example 1. FIG.
本発明のHFP-VAc共重合体は、HFP構造単位5~95モル%およびVAc構造単位95~5モル%の2元共重合体であって、数平均分子量が20000以上のものである。 The HFP-VAc copolymer of the present invention is a binary copolymer of 5 to 95 mol% of HFP structural units and 95 to 5 mol% of VAc structural units, and has a number average molecular weight of 20000 or more.
本発明のHFP-VAc共重合体は、HFP構造単位5~50モル%およびVAc構造単位95~50モル%の2元共重合体であることが好ましい。 The HFP-VAc copolymer of the present invention is preferably a binary copolymer of 5 to 50 mol% of HFP structural units and 95 to 50 mol% of VAc structural units.
本発明のHFP-VAc共重合体は、たとえば乳化重合により製造することができる。 The HFP-VAc copolymer of the present invention can be produced, for example, by emulsion polymerization.
乳化重合は、炭化水素系乳化剤の存在下、または乳化剤の不存在下で行うことができる。 Emulsion polymerization can be performed in the presence of a hydrocarbon-based emulsifier or in the absence of an emulsifier.
本明細書において、単に「乳化剤」という場合、炭化水素系乳化剤だけでなく、フッ素系乳化剤やその他の乳化剤をも含むものとする。すなわち、「乳化剤」には、一般に乳化剤と称されるあらゆる化合物が含まれる。従って、「乳化重合を乳化剤の不存在下で行う」とは、乳化重合を、一般に乳化剤に分類される化合物を一切使用せずに行うことを意味する。 In the present specification, the simple term “emulsifier” includes not only hydrocarbon emulsifiers but also fluorine emulsifiers and other emulsifiers. That is, the “emulsifier” includes all compounds generally called emulsifiers. Therefore, “emulsion polymerization is carried out in the absence of an emulsifier” means that the emulsion polymerization is carried out without using any compound generally classified as an emulsifier.
炭化水素系乳化剤としては、たとえば式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは同じかまたは異なり、いずれも炭素数4~12の非フッ素系飽和炭化水素基;Mはアルカリ金属、アンモニウム塩またはアミン塩)で示される化合物(1)があげられる。
Examples of the hydrocarbon-based emulsifier include formula (1):
Figure JPOXMLDOC01-appb-C000001
(Wherein R 1 and R 2 are the same or different and both are non-fluorinated saturated hydrocarbon groups having 4 to 12 carbon atoms; M is an alkali metal, ammonium salt or amine salt) can give.
式(1)に含まれるジアルキルスルホコハク酸のアルカリ金属塩は乳化重合用の乳化剤として知られており、国際公開第2002/010237号パンフレットには、フルオロオレフィンを含む単量体をノニオン性乳化剤とアニオン性乳化剤を併用して乳化重合して得られたフッ素樹脂の水性分散液に、機械的安定性や熱的安定性の改善のためにジアルキルスルホコハク酸のアルカリ金属塩を添加してもよいことが開示されている。 The alkali metal salt of dialkylsulfosuccinic acid contained in the formula (1) is known as an emulsifier for emulsion polymerization, and WO 2002/010237 pamphlet describes a monomer containing a fluoroolefin as a nonionic emulsifier and an anion. An alkali metal salt of dialkylsulfosuccinic acid may be added to an aqueous dispersion of a fluororesin obtained by emulsion polymerization using a functional emulsifier in order to improve mechanical stability and thermal stability. It is disclosed.
化合物(1)の具体例としては、たとえばジオクチルスルホコハク酸ナトリウム、ジデシルスルホコハク酸ナトリウム、ジヘキシルスルホコハク酸ナトリウム、ジイソブチルスルホコハク酸ナトリウム、ジアミルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸アンモニウムなどがあげられる。 Specific examples of the compound (1) include sodium dioctylsulfosuccinate, sodium didecylsulfosuccinate, sodium dihexylsulfosuccinate, sodium diisobutylsulfosuccinate, sodium diamylsulfosuccinate, ammonium dioctylsulfosuccinate and the like.
化合物(1)以外の炭化水素系乳化剤としては、たとえばアルキルベンゼンスルホン酸塩、高級脂肪酸塩、アルキル硫酸エステル塩、アルキルスルホン酸塩、アルキルエーテル硫酸塩等のアニオン性乳化剤などがあげられる。 Examples of hydrocarbon emulsifiers other than compound (1) include anionic emulsifiers such as alkylbenzene sulfonates, higher fatty acid salts, alkyl sulfate esters, alkyl sulfonates, and alkyl ether sulfates.
具体的には、たとえばCH(CHSOM、CH(CHSOM、CH(CHCOOM、H(CHCOO(CHCHO)H、(NaSO)CH((CHCH)((CHCH)(式中、Mは1価のカチオン;nは2~16の整数;mは2~16の整数;oは2~16の整数;pは2~40の整数;qは2~45の整数;r+s=10~20)などの炭化水素系乳化剤などがあげられる。なかでも、安価であることや乳化剤の水溶性や界面活性作用が良好であることから、ドデシル硫酸ナトリウム、ドデシルスルホン酸ナトリウム、デシル硫酸ナトリウム、デシルスルホン酸ナトリウム、テトラデシル硫酸ナトリウム、テトラデカンスルホン酸ナトリウムなどが好ましい。 Specifically, for example, CH 3 (CH 2 ) n SO 3 M, CH 3 (CH 2 ) m SO 4 M, CH 3 (CH 2 ) o COOM, H (CH 2 ) p COO (CH 2 CH 2 O ) Q H, (NaSO 3 ) CH ((CH 2 ) r CH 3 ) ((CH 2 ) s CH 3 ) (wherein M is a monovalent cation; n is an integer from 2 to 16; m is from 2 to Examples include hydrocarbon emulsifiers such as integers of 16; o is an integer of 2 to 16, p is an integer of 2 to 40, q is an integer of 2 to 45, and r + s = 10 to 20). Among them, because it is inexpensive and has good water solubility and surfactant activity of the emulsifier, sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium decyl sulfate, sodium decyl sulfonate, sodium tetradecyl sulfate, sodium tetradecane sulfonate, etc. Is preferred.
炭化水素系乳化剤の使用量は乳化剤の種類によって適宜選定すればよいが、たとえば水の全量に対し、10~10000ppmが好ましく、200~5000ppmがより好ましい。なかでも、400~3000ppm、が好ましい。前記乳化剤の使用量が、10ppm未満であると、界面活性能が小さくなり発生粒子数が少なくなる傾向にある。 The amount of the hydrocarbon-based emulsifier used may be appropriately selected depending on the type of the emulsifier. Of these, 400 to 3000 ppm is preferable. When the amount of the emulsifier used is less than 10 ppm, the surface activity tends to decrease and the number of generated particles tends to decrease.
また、炭化水素系乳化剤は単独で使用しても十分に乳化重合が安定して進むが、少量であればフッ素系の乳化剤、非フッ素系ノニオン性乳化剤を併用してもよい。 In addition, even when the hydrocarbon-based emulsifier is used alone, the emulsion polymerization proceeds sufficiently stably, but a fluorine-based emulsifier and a non-fluorine-based nonionic emulsifier may be used in combination as long as the amount is small.
HFPとVAcの乳化重合は、乳化剤を存在させなくても進む。ただし、乳化剤を使用した方が生成したエマルションの粒径が小さく、安定性が良好になる。 The emulsion polymerization of HFP and VAc proceeds even without the presence of an emulsifier. However, the particle size of the emulsion produced by using the emulsifier is small and the stability is improved.
重合温度は特に制限はなく、重合開始剤の種類にしたがって最適な温度が採用される。ただ、高くなりすぎると気相部分でのモノマー密度が容易に低下したり、共重合体の分岐反応が生じたりし、目的とする共重合体が得られないことがある。好ましくは40~120℃、さらに好ましくは50~100℃とする。 The polymerization temperature is not particularly limited, and an optimum temperature is adopted according to the kind of the polymerization initiator. However, if it is too high, the monomer density in the gas phase portion may easily decrease, or a branching reaction of the copolymer may occur, and the desired copolymer may not be obtained. The temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C.
単量体は、連続的に供給しても逐次的に供給してもよい。 The monomer may be supplied continuously or sequentially.
重合開始剤としては、油溶性の過酸化物も使用できるが、これらの代表的な油溶性開始剤であるジイソプロピルパーオキシジカーボネート(IPP)やジ-n-プロピルパーオキシジカーボネート(NPP)などのパーオキシカーボネート類は爆発などの危険性があるうえ、高価であり、しかも重合反応中に重合槽の壁面などにスケールの付着を生じやすいという問題がある。フルオロポリマーの圧縮永久歪みをよりいっそう低下させるためには、水溶性ラジカル重合開始剤を使用することが好ましい。水溶性ラジカル重合開始剤としては、たとえば過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩などが好ましくあげられ、特に過硫酸アンモニウム、過硫酸カリウムが好ましい。 As the polymerization initiator, oil-soluble peroxides can also be used. These typical oil-soluble initiators such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP) These peroxycarbonates have a risk of explosion and the like, are expensive, and have a problem that scales easily adhere to the wall of the polymerization tank during the polymerization reaction. In order to further reduce the compression set of the fluoropolymer, it is preferable to use a water-soluble radical polymerization initiator. Preferred examples of the water-soluble radical polymerization initiator include persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium salt, and the like. Particularly, ammonium persulfate and potassium persulfate are used. preferable.
重合開始剤の添加量は特に限定されないが、重合速度が著しく低下しない程度の量(たとえば数ppm対水濃度)以上を、重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は装置面から重合反応熱を除熱できる範囲である。 The addition amount of the polymerization initiator is not particularly limited, but it is added all at once in the initial stage of polymerization, sequentially or continuously, such that the polymerization rate is not significantly reduced (for example, several ppm to water concentration). do it. The upper limit is a range in which the heat of polymerization reaction can be removed from the surface of the apparatus.
本発明の製造方法において、さらに分子量調整剤などを添加してもよい。分子量調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい。 In the production method of the present invention, a molecular weight modifier or the like may be further added. The molecular weight modifier may be added all at once in the initial stage, or may be added continuously or dividedly.
分子量調整剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素、シクロヘキサン、モノヨードメタン、1-ヨードメタン、1-ヨードプロパン、ヨウ化イソプロピル、ジヨードメタン、1,2-ジヨードメタン、1,3-ジヨードプロパンなどがあげられる。 Examples of the molecular weight regulator include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride, cyclohexane, mono Examples thereof include iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, diiodomethane, 1,2-diiodomethane, 1,3-diiodopropane and the like.
そのほか緩衝剤などを適宜添加してもよいが、その量は本発明の効果を損なわない範囲で用いることが好ましい。 In addition, a buffering agent or the like may be added as appropriate, but the amount is preferably used within a range not impairing the effects of the present invention.
重合圧力は0.1~10MPa、さらには0.2~8MPaの範囲で適宜選択すればよく、この範囲内であれば、低圧(0.1~1MPa)でも高圧(1~10MPa)でもよい。 The polymerization pressure may be appropriately selected within the range of 0.1 to 10 MPa, and further 0.2 to 8 MPa. Within this range, the pressure may be low (0.1 to 1 MPa) or high (1 to 10 MPa).
攪拌手段としては、たとえばアンカー翼、タービン翼、傾斜翼なども使用できるが、モノマーの拡散とポリマーの分散安定性が良好な点からフルゾーンやマックスブレンドと呼ばれる大型翼による攪拌が好ましい。攪拌装置としては横型攪拌装置でも縦型攪拌装置でもよい。 As the stirring means, for example, an anchor blade, a turbine blade, an inclined blade, or the like can be used. However, stirring with a large blade called a full zone or max blend is preferable from the viewpoint of good monomer diffusion and polymer dispersion stability. The stirring device may be a horizontal stirring device or a vertical stirring device.
また、重合中に単量体または重合体からフッ化水素などの酸性物質が脱離して重合溶液が酸性になることがあるので、系内に炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸カリウム、リン酸ナトリウム、金属酸化物、ハイドロタルサイト類などの無機塩類;ジエチルアミン、ジブチルアミン、トリエチルアミンなどの有機アミン類;塩基性陰イオン交換樹脂を添加して、脱離したフッ化水素や塩化水素などの酸性物質を中和してもよい。 In addition, since an acidic substance such as hydrogen fluoride may be eliminated from the monomer or polymer during the polymerization, the polymerization solution may become acidic, so that sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate in the system Inorganic salts such as sodium phosphate, metal oxides, hydrotalcites; organic amines such as diethylamine, dibutylamine, and triethylamine; hydrogen fluoride and hydrogen chloride eliminated by adding basic anion exchange resin You may neutralize acidic substances, such as.
HFPとVAcの乳化重合はラジカル重合であり、共重合割合は、HFP/VAc(モル%比)で5/95~95/5の範囲で選択できる。 The emulsion polymerization of HFP and VAc is radical polymerization, and the copolymerization ratio can be selected in the range of 5/95 to 95/5 in terms of HFP / VAc (mole% ratio).
本発明のHFP-VAc共重合体の数平均分子量は、20000以上であり、特に、従来の溶液重合法や塊重合法では得られなかった比較的高分子量の共重合体を提供できる。 The number average molecular weight of the HFP-VAc copolymer of the present invention is 20000 or more, and in particular, a relatively high molecular weight copolymer that could not be obtained by the conventional solution polymerization method or bulk polymerization method can be provided.
数平均分子量については、更に好ましくは30000以上である。上限については大きくなるとテトラハイドロフラン(THF)に溶解しなくなったり膨潤するに止まり、測定できない場合があるが、そのような高分子量のもの、たとえば数平均分子量が1000000程度のものも製造できる。 The number average molecular weight is more preferably 30000 or more. When the upper limit is increased, it may not be dissolved or swelled in tetrahydrofuran (THF), and measurement may not be possible.
本発明のHFP-VAc共重合体は、ガラス転移温度が20~70℃であることが好ましい。より好ましくは30~60℃である。 The HFP-VAc copolymer of the present invention preferably has a glass transition temperature of 20 to 70 ° C. More preferably, it is 30 to 60 ° C.
本発明のHFP-VAc共重合体は、フッ素含有量が6~74質量%であることが好ましい。より好ましくは6~48質量%である。 The HFP-VAc copolymer of the present invention preferably has a fluorine content of 6 to 74% by mass. More preferably, it is 6 to 48% by mass.
本発明のHFP-VAc共重合体は、フッ素含有量が高く、撥水撥油性に特に優れるほか、透明性、低屈折率などといった特性の向上も期待できる。 The HFP-VAc copolymer of the present invention has a high fluorine content, is particularly excellent in water and oil repellency, and can be expected to improve characteristics such as transparency and low refractive index.
本発明のHFP-VAc共重合体は、上記のような特性を有するので、種々の塗膜形成成分や成形材料として有用である。
例えば、本発明のHFP-VAc共重合体をヒートプレスすることにより、フィルムに成形することができる。一般に、フィルム(高分子溶液からのキャストフィルムを除く)やシート、ブロックなどの高分子成形体は高分子量体からでないと成形することができない。本発明の技術的意義は、HFP-VAc共重合体の高分子量化を可能にしたことにより、HFP-VAc共重合体を上記のような成形体へと成形できる可能性を見いだしたことにある。
本発明のHFP-VAc共重合体からなるフィルムもまた、本発明の1つである。
Since the HFP-VAc copolymer of the present invention has the above properties, it is useful as various coating film forming components and molding materials.
For example, the HFP-VAc copolymer of the present invention can be formed into a film by heat pressing. Generally, a polymer molded body such as a film (excluding a cast film from a polymer solution), a sheet, or a block can be molded only from a high molecular weight body. The technical significance of the present invention is that it has been found that the HFP-VAc copolymer can be formed into a molded body as described above by enabling the HFP-VAc copolymer to have a high molecular weight. .
A film comprising the HFP-VAc copolymer of the present invention is also one aspect of the present invention.
以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
本明細書に記載された物性は以下の測定方法で測定したものである。 The physical properties described in this specification are measured by the following measuring methods.
(1)NMR分析
測定装置:NMR測定装置:JEOL社製
H-NMR測定条件:270MHz(テトラメチルシラン=0ppm)
(1) NMR analyzer / measurement apparatus: NMR measurement apparatus: manufactured by JEOL
1 H-NMR measurement conditions: 270 MHz (tetramethylsilane = 0 ppm)
(2)元素分析(フッ素含有量(質量%)の測定)
測定装置:自動試料燃焼装置(三菱化学(株)製 AQF-100。イオンクロマト(DIONEX社製 ICS-1500 Ion Chromatography System)内蔵)
試料:3mg
(2) Elemental analysis (measurement of fluorine content (% by mass))
Measuring device: Automatic sample combustion device (AQF-100, manufactured by Mitsubishi Chemical Corporation).
Sample: 3mg
(3)IR分析
フーリエ変換赤外分光光度計:株式会社パーキンエルマージャパン製
Perkin Elmer precisely Spectrum 100
FT-IR Spectrometer
1回反射
IRE:ゲルマニウム
入射角:45度
(3) IR analysis Fourier transform infrared spectrophotometer: Perkin Elmer Precision Spectrum 100 manufactured by PerkinElmer Japan Co., Ltd.
FT-IR Spectrometer
Single reflection IRE: Germanium incident angle: 45 degrees
(4)分子量
測定装置:昭和電工(株)製Shodex GPC-104
測定条件:溶離液としてはテトラヒドロフランを使用し、分子量の標準サンプルとしては分子量既知のポリスチレンを使用する。
(4) Molecular weight measuring device: Shodex GPC-104 manufactured by Showa Denko KK
Measurement conditions: Tetrahydrofuran is used as an eluent, and polystyrene having a known molecular weight is used as a standard sample of molecular weight.
(5)ガラス転移温度
ASTM E1356-98に従い、METLER TOLEDO製のDSC測定装置を使用してセカンドランにおける熱吸収から中点法によってガラス転移温度および結晶融点を決定した。
測定条件
昇温速度:20℃/min
試料量:10mg
ヒートサイクル:-50℃~150℃、昇温、冷却、昇温
(5) Glass transition temperature According to ASTM E1356-98, the glass transition temperature and the crystalline melting point were determined by the midpoint method from the heat absorption in the second run using a DSC measuring apparatus manufactured by METTLER TOLEDO.
Measurement condition heating rate: 20 ° C / min
Sample amount: 10mg
Heat cycle: -50 ° C to 150 ° C, temperature rise, cooling, temperature rise
(6)フッ素含有量
自動試料燃焼装置(三菱化学(株)製 AQF-100。イオンクロマト(DIONEX社製 ICS-1500 Ion Chromatography System)内蔵)を用いて測定する。
(6) Fluorine content is measured using an automatic sample combustion apparatus (AQF-100 manufactured by Mitsubishi Chemical Corporation, built-in ion chromatography (ICS-1500 Ion Chromatography System manufactured by DIONEX)).
(7)粒子径
レーザー光散乱粒径測定装置(大塚電子(株)製、商品名ELS-3000)を用いて測定する。
(7) Particle diameter Measurement is performed using a laser light scattering particle diameter measuring apparatus (trade name ELS-3000, manufactured by Otsuka Electronics Co., Ltd.).
(8)弾性率
試料フィルムを5mm×30mmに切りとり、オリエンテック(株)製のテンシロン万能試験機を用い、クロスヘッドスピード50mm/minにて測定する。
(8) The elastic modulus sample film is cut into 5 mm × 30 mm, and measured using a Tensilon universal testing machine manufactured by Orientec Co., Ltd. at a crosshead speed of 50 mm / min.
(9)透明性
分光光度計((株)日立製作所製のU-4100(商品名))を用いて波長550nmにおける約50μm厚のフィルムの透過率を測定した値を採用する。
(9) A value obtained by measuring the transmittance of a film having a thickness of about 50 μm at a wavelength of 550 nm using a transparent spectrophotometer (U-4100 (trade name) manufactured by Hitachi, Ltd.) is adopted.
(10)屈折率
屈折率は、ナトリウムD線を光源として25℃においてアッベの屈折率計を用いて測定した値を屈折率とする。使用した屈折率計は、(株)アタゴ光学機器製作所製のアッベ屈折率計。
(10) Refractive index The refractive index is a value measured using an Abbe refractometer at 25 ° C. with sodium D line as a light source. The refractometer used was an Abbe refractometer manufactured by Atago Optical Instruments Co., Ltd.
実施例1
0.5Lステンレス製オートクレーブに純水250g、ネオコールP(ジオクチルスルホコハク酸ナトリウムの76.4質量%イソプロピルアルコール溶液:第一工業製薬(株)製)0.28g(対重合水856ppm)、酢酸ビニル(VAc)1.4gを入れ、5℃に冷却した。その後、窒素置換し、ヘキサフルオロプロピレン(HFP)35gを加え、槽内を60℃まで昇温した。これに撹拌下、過硫酸アンモニウム(APS)の0.2質量%水溶液2.5gを加え、反応を開始した。反応開始時に酢酸ビニルの追加を開始し、7時間かけて18.9gの酢酸ビニルを追加した。撹拌速度は700rpmであった。
Example 1
In a 0.5 L stainless steel autoclave, 250 g of pure water, 0.28 g of neocol P (76.4 mass% isopropyl alcohol solution of sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (with respect to 856 ppm of polymerization water), vinyl acetate ( VAc) 1.4 g was added and cooled to 5 ° C. Thereafter, the atmosphere was replaced with nitrogen, 35 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 60 ° C. With stirring, 2.5 g of a 0.2 mass% aqueous solution of ammonium persulfate (APS) was added to initiate the reaction. Addition of vinyl acetate was started at the start of the reaction, and 18.9 g of vinyl acetate was added over 7 hours. The stirring speed was 700 rpm.
反応開始から1時間後に、過硫酸アンモニウム(APS)の2.0質量%水溶液2.5gを加えた。さらに反応開始から7時間後に過硫酸アンモニウム(APS)の2.0質量%水溶液2.5gを加え、酢酸ビニルの供給を停止した。反応開始から20時間後に、槽内を常温常圧に戻して重合を停止し、HFP/VAc共重合体のエマルション308g(固形分濃度12.0質量%)を得た。また、重合後のエマルションには沈降は生じていなかった。 One hour after the start of the reaction, 2.5 g of a 2.0 mass% aqueous solution of ammonium persulfate (APS) was added. Further, 7 hours after the start of the reaction, 2.5 g of a 2.0 mass% aqueous solution of ammonium persulfate (APS) was added to stop the supply of vinyl acetate. Twenty hours after the start of the reaction, the inside of the tank was returned to room temperature and normal pressure to stop the polymerization, thereby obtaining 308 g of HFP / VAc copolymer emulsion (solid content concentration: 12.0% by mass). In addition, no precipitation occurred in the emulsion after polymerization.
得られたHFP/VAc共重合体のガラス転移温度は50℃、フッ素含有量は35.8質量%であり、粒子径は53nmであった。元素分析より求めた共重合割合(モル%比)はHFP/酢酸ビニル=33.8/66.2であった。また、IRチャートを図1に示す。 The obtained HFP / VAc copolymer had a glass transition temperature of 50 ° C., a fluorine content of 35.8% by mass, and a particle size of 53 nm. The copolymerization ratio (mole% ratio) determined by elemental analysis was HFP / vinyl acetate = 33.8 / 66.2. An IR chart is shown in FIG.
数平均分子量:127000
H-NMR(270MHz, acetone-d6):6.3~4.7ppm(CH);3.2~2.3ppm(CH);2.3~1.4ppm(CH
Number average molecular weight: 127,000
1 H-NMR (270 MHz, acetone-d6): 6.3 to 4.7 ppm (CH); 3.2 to 2.3 ppm (CH 2 ); 2.3 to 1.4 ppm (CH 3 )
実施例2
2Lステンレス製オートクレーブに純水731g、ネオコールP(ジオクチルスルホコハク酸ナトリウム:第一工業製薬(株)製)1.48g(対重合水1620ppm)、酢酸ビニル(VAc)23.2gを入れ、5℃に冷却した。その後、窒素置換し、ヘキサフルオロプロピレン(HFP)85gを加え、槽内を35℃まで昇温した。これに撹拌下、過硫酸アンモニウム(APS)の3.4質量%水溶液10.4gとロンガリット0.35gを加え、反応を開始した。撹拌速度は400rpmであった。
Example 2
A 2 L stainless steel autoclave is charged with 731 g of pure water, 1.48 g of Neocol P (sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (1620 ppm of polymerization water) and 23.2 g of vinyl acetate (VAc) at 5 ° C. Cooled down. Thereafter, the atmosphere was replaced with nitrogen, 85 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 35 ° C. With stirring, 10.4 g of a 3.4 mass% aqueous solution of ammonium persulfate (APS) and 0.35 g of Rongalite were added to initiate the reaction. The stirring speed was 400 rpm.
反応開始から9時間後に、過硫酸アンモニウム(APS)0.35gを加えた。反応開始から23時間後に、槽内を常温常圧に戻して重合を停止し、HFP/VAc共重合体のエマルション810g(固形分濃度6.6質量%)を得た。また、重合後のエマルションには沈降は生じていなかった。 Nine hours after the start of the reaction, 0.35 g of ammonium persulfate (APS) was added. After 23 hours from the start of the reaction, the inside of the tank was returned to room temperature and normal pressure to stop the polymerization, thereby obtaining 810 g of HFP / VAc copolymer emulsion (solid content concentration: 6.6% by mass). In addition, no precipitation occurred in the emulsion after polymerization.
得られたHFP/VAc共重合体のガラス転移温度は37.4℃、フッ素含有量は13.1質量%、数平均分子量は128000であった。元素分析より求めた共重合割合(モル%比)はHFP/酢酸ビニル=10.7/89.3であった。 The obtained HFP / VAc copolymer had a glass transition temperature of 37.4 ° C., a fluorine content of 13.1% by mass, and a number average molecular weight of 128,000. The copolymerization ratio (mole% ratio) determined by elemental analysis was HFP / vinyl acetate = 10.7 / 89.3.
実施例3
3Lステンレス製オートクレーブに純水1000g、ネオコールP(ジオクチルスルホコハク酸ナトリウム:第一工業製薬(株)製)1.62g(対重合水1620ppm)、酢酸ビニル(VAc)23.2gを入れ、5℃に冷却した。その後、窒素置換し、ヘキサフルオロプロピレン(HFP)132gを加え、槽内を60℃まで昇温した。これに撹拌下、過硫酸アンモニウム(APS)の5.0質量%水溶液10gを加え、反応を開始した。撹拌速度は400rpmであった。
Example 3
A 3 L stainless steel autoclave is charged with 1000 g of pure water, 1.62 g of Neocor P (sodium dioctylsulfosuccinate: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (1620 ppm of polymerization water), and 23.2 g of vinyl acetate (VAc) at 5 ° C. Cooled down. Thereafter, the atmosphere was replaced with nitrogen, 132 g of hexafluoropropylene (HFP) was added, and the temperature in the tank was raised to 60 ° C. Under stirring, 10 g of a 5.0 mass% aqueous solution of ammonium persulfate (APS) was added to initiate the reaction. The stirring speed was 400 rpm.
反応開始から1時間後に、酢酸ビニルの追加を開始し、24時間かけて47.2gの酢酸ビニルを追加した。反応開始から23時間後に過硫酸アンモニウム(APS)0.1gを加えた。反応開始から25時間後に、槽内を常温常圧に戻して重合を停止し、HFP/VAc共重合体のエマルション1102g(固形分濃度10質量%)を得た。また、重合後のエマルションには沈降は生じていなかった。 One hour after the start of the reaction, addition of vinyl acetate was started, and 47.2 g of vinyl acetate was added over 24 hours. 23 hours after the start of the reaction, 0.1 g of ammonium persulfate (APS) was added. 25 hours after the start of the reaction, the inside of the tank was returned to room temperature and normal pressure to stop the polymerization, and 1102 g of HFP / VAc copolymer emulsion (solid content concentration 10% by mass) was obtained. In addition, no precipitation occurred in the emulsion after polymerization.
得られたHFP/VAc共重合体のガラス転移温度は42.6℃、フッ素含有量は29.7質量%、数平均分子量は34000であった。元素分析より求めた共重合割合(モル%比)はHFP/酢酸ビニル=26.9/73.1であった。 The obtained HFP / VAc copolymer had a glass transition temperature of 42.6 ° C., a fluorine content of 29.7% by mass, and a number average molecular weight of 34,000. The copolymerization ratio (mole% ratio) determined by elemental analysis was HFP / vinyl acetate = 26.9 / 73.1.
実施例4
実施例1で得られたHFP/VAc共重合体をヒートプレスして厚さ250μmのフィルムを作製した。得られたフィルムについて、弾性率を調べたところ、779MPaであった。また、得られたHFP/VAc共重合体をアセトンに溶解させ、キャストすることで厚さ50.4μmのフィルムを作製した。得られたフィルムについて透明性、屈折率を調べたところ、透明性は93.04%、屈折率は1.4188であった。
Example 4
The HFP / VAc copolymer obtained in Example 1 was heat-pressed to produce a film having a thickness of 250 μm. It was 779 MPa when the elasticity modulus was investigated about the obtained film. Further, the obtained HFP / VAc copolymer was dissolved in acetone and cast to prepare a film having a thickness of 50.4 μm. When the transparency and refractive index of the obtained film were examined, the transparency was 93.04% and the refractive index was 1.4188.

Claims (2)

  1. ヘキサフルオロプロピレン構造単位5~95モル%および酢酸ビニル構造単位95~5モル%の2元共重合体であって、数平均分子量が20000以上であるヘキサフルオロプロピレン-酢酸ビニル共重合体。 A binary copolymer of 5 to 95 mol% hexafluoropropylene structural units and 95 to 5 mol% vinyl acetate structural units, and having a number average molecular weight of 20000 or more.
  2. 請求項1記載のヘキサフルオロプロピレン-酢酸ビニル共重合体からなるフィルム。 A film comprising the hexafluoropropylene-vinyl acetate copolymer according to claim 1.
PCT/JP2012/058667 2011-03-31 2012-03-30 Hexafluoropropylene-(vinyl acetate) copolymer WO2012133813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080656 2011-03-31
JP2011080656 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133813A1 true WO2012133813A1 (en) 2012-10-04

Family

ID=46931507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058667 WO2012133813A1 (en) 2011-03-31 2012-03-30 Hexafluoropropylene-(vinyl acetate) copolymer

Country Status (2)

Country Link
JP (1) JP5413479B2 (en)
WO (1) WO2012133813A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531603A (en) * 1998-12-02 2002-09-24 ソルヴェイ Process for preparing halogenated copolymers, resulting halogenated copolymers and their use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053470A (en) * 1990-10-09 1991-10-01 Allied-Signal Inc. Copolymers of hexafluoroisobutylene with vinyl esters and vinyl alcohol
WO2000055130A2 (en) * 1999-03-16 2000-09-21 E.I. Du Pont De Nemours And Company Fluoropolymer low reflecting layers for plastic lenses and devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002531603A (en) * 1998-12-02 2002-09-24 ソルヴェイ Process for preparing halogenated copolymers, resulting halogenated copolymers and their use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALEXANDRU D. ASANDEI ET AL.: "Vinyl Acetate Copolymers with Vinylidene Fluoride and Hexafluoropropene by UV Mediated Perioxide", PMSE PREPRINTS, vol. 100, 2009, pages 524 - 525 *

Also Published As

Publication number Publication date
JP5413479B2 (en) 2014-02-12
JP2012214791A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
US7989566B2 (en) Process for producing fluoropolymers
JP5198772B2 (en) Aqueous emulsion polymerization of functionalized fluoromonomers
JP2012067324A (en) Low-crystallinity vinylidene fluoride hexafluoropropylene copolymer
JP2010509442A (en) Aqueous polymerization of fluorinated monomers using a polymerization agent containing a fluoropolyether acid or salt and a short chain fluorosurfactant
JP5292367B2 (en) Low reflection fluoropolymer layer for plastic lenses and devices
CN103842389B (en) The manufacture method of Fluorine containing olefine/vinyl alcohol copolymer and by the composition that comprises this copolymer film forming that is shaped
JPWO2008001895A1 (en) Method for producing fluorine-containing elastomer
US20170015771A1 (en) Vinylidene fluoride copolymer and preparation method therefor
JP5598476B2 (en) Method for producing fluoropolymer
JP5673541B2 (en) Method for producing fluoropolymer
JP2022159273A (en) display protective film
US10730979B2 (en) Functionalised fluorinated copolymers
WO2004065436A1 (en) Method for producing vulcanizable fluorine-containing elastomer
JP5413479B2 (en) Hexafluoropropylene-vinyl acetate copolymer
JPH0453808A (en) Fluorocopolymer
JP5284280B2 (en) Vinylidene fluoride copolymer composition having improved low temperature impact properties
WO2011122661A1 (en) 2, 3, 3, 3- tetrafluoropropene homopolymer
JPH02302411A (en) New fluorine-containing copolymer
JP6939320B2 (en) A method for producing a fluoropolymer having a crosslinkable group, a method for producing a curable composition, a fluoropolymer having a crosslinkable group and a curable composition.
JP2014132098A (en) Method for producing fluorine-containing copolymer
GB2517481A (en) Method of making peroxide fluoropolymers using non-fluorindated emulsifiers
JPWO2013051669A1 (en) Composition comprising fluorine-containing olefin / vinyl alcohol copolymer and alkoxysilane compound, cured product formed from the composition, and film comprising the cured product
JPWO2009145117A1 (en) Method for producing fluoropolymer
JP2014227421A (en) Method for producing aqueous dispersion of perfluoro rubber
RU2814921C2 (en) Method for producing fluorine-containing polymer, water dispersion liquid and composition of fluorine-containing polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763071

Country of ref document: EP

Kind code of ref document: A1