WO2012133484A1 - Method for manufacturing roll for reducing, and roll for reducing - Google Patents

Method for manufacturing roll for reducing, and roll for reducing Download PDF

Info

Publication number
WO2012133484A1
WO2012133484A1 PCT/JP2012/058058 JP2012058058W WO2012133484A1 WO 2012133484 A1 WO2012133484 A1 WO 2012133484A1 JP 2012058058 W JP2012058058 W JP 2012058058W WO 2012133484 A1 WO2012133484 A1 WO 2012133484A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
ridge
steel pipe
radius
curvature
Prior art date
Application number
PCT/JP2012/058058
Other languages
French (fr)
Japanese (ja)
Inventor
龍太郎 尾形
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to CN201280013630.1A priority Critical patent/CN103459056B/en
Priority to BR112013023809-7A priority patent/BR112013023809B1/en
Priority to MX2013011178A priority patent/MX338263B/en
Priority to US14/008,587 priority patent/US20140013815A1/en
Priority to EP12765966.2A priority patent/EP2692453B1/en
Publication of WO2012133484A1 publication Critical patent/WO2012133484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/024Rolls for bars, rods, rounds, tubes, wire or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/14Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49544Roller making

Definitions

  • the present invention relates to a method for producing a drawing roll and a drawing roll, and more particularly to a method for producing a drawing roll and a drawing roll used in a three-roll type drawing mill for drawing a steel pipe.
  • a drawing mill typified by a sizer or stretch reducer draws a steel pipe to a predetermined outer diameter.
  • a three-roll type drawing mill is mainly known. Three-roll drawing mills are described in, for example, International Publication No. 2005/070574 and International Publication No. 2005/092531.
  • a drawing mill usually includes a plurality of stands arranged along a pass line.
  • Each stand includes a plurality of drawing rolls having grooves that form a hole mold (caliber).
  • the three rolls of each stand are arranged at equal intervals around the pass line, and are offset by 60 ° around the pass line from the three rolls included in the previous stage stand. .
  • a roll included in each stand of a drawing mill has an elliptical arc-shaped groove in a transverse section (a section in a direction perpendicular to a pass line, that is, a section including a roll axis).
  • a transverse section a section in a direction perpendicular to a pass line, that is, a section including a roll axis.
  • the surface layer portion of the steel pipe being rolled may protrude from the groove of the roll, and so-called biting flaws may occur. Furthermore, if the load acting on the steel pipe portion in contact with the vicinity of the groove edge in the steel pipe to be rolled is increased, edge flaws are likely to occur in the steel pipe portion. Specifically, linear wrinkles are likely to occur in the longitudinal direction of the steel pipe.
  • An object of the present invention is to provide a method for producing a drawing roll that can suppress the occurrence of biting wrinkles and edge wrinkles.
  • a method for producing a drawing roll according to an embodiment of the present invention is used in a three-roll type drawing mill for drawing and rolling a steel pipe, and is adjacent to the caliber part having a bow-shaped groove in a cross section. It is a manufacturing method of the roll for drawing rolling provided with the flange part to perform.
  • the method for producing a drawing roll includes the steps of preparing a drawing roll, rotating the drawing roll around the roll axis, and cutting a ridge formed at an adjacent portion between the caliber portion and the flange portion. And a step of rounding the ridge.
  • the average radius of curvature measured at a pitch of 0.5 mm in the ridge region in the range of 3.0 mm in the roll axis direction around the top of the ridge is 2.5 mm to
  • the difference between the maximum value and the minimum value of the curvature radius is set to 3.0 mm or less.
  • a drawing roll that can suppress the occurrence of biting flaws and edge flaws can be produced.
  • the roll for reduction rolling is used for a three-roll type reduction rolling mill for drawing and rolling a steel pipe.
  • the drawing roll includes a caliber portion having a groove having an arcuate cross section and a flange portion adjacent to the caliber portion.
  • the average curvature radius measured at 0.5 mm pitch is 2.5 mm to 3 mm. 0.0 mm, and the difference between the maximum value and the minimum value of the radius of curvature is 1.0 mm or less.
  • the roll for drawing rolling according to the present embodiment can suppress the occurrence of biting wrinkles and edge wrinkles.
  • FIG. 1 is a side view of a three-roll drawing mill.
  • FIG. 2 is a front view of the stand in FIG.
  • FIG. 3 is a front view of a stand in front of the stand shown in FIG.
  • FIG. 4 is a schematic diagram of steel pipe drawing using the three-roll drawing mill shown in FIG.
  • FIG. 5 is a front view of the drawing roll in FIG.
  • FIG. 6 is an enlarged view of the vicinity of the ridge portion of the drawing roll in FIG.
  • FIG. 7 is a schematic view of a lathe used for manufacturing the drawing roll shown in FIG.
  • FIG. 8 is an enlarged view of the vicinity of a ridge portion of a drawing roll drawn by the lathe shown in FIG. FIG.
  • FIG. 9 is a schematic diagram for explaining a method for measuring the radius of curvature of the ridge shown in FIG.
  • FIG. 10 is a diagram illustrating an example of a method for measuring the curvature radius of the ridge portion illustrated in FIG. 8.
  • FIG. 11 is a cross-sectional view of the room temperature curable resin in FIG.
  • FIG. 12 is a diagram showing measurement results of the shape and curvature radius of the roll used in the example.
  • FIG. 1 is a side view of a drawing mill 1 according to the present embodiment.
  • the drawing mill 1 is a three-roll type.
  • a drawing mill 1 includes a plurality of stands ST1 to STm (m is a natural number) arranged along a pass line RA.
  • the drawing mill 1 is, for example, a stretch reducer, and the number of stands m is about 20-30.
  • FIG. 2 is a front view of the stand STi (i is a natural number of m or less) of the drawing mill 1 shown in FIG. 1, and FIG. 3 is a front view of the stand STi-1.
  • each stand STi includes three drawing rolls (hereinafter simply referred to as rolls) 11.
  • the three rolls 11 are arranged at equal intervals around the pass line RA. Accordingly, the three rolls 11 are arranged around the pass line RA every 120 °.
  • the roll 11 has a groove 20 whose cross section (cross section in the roll axis direction) has an arcuate shape.
  • the grooves 20 of the three rolls 11 form a hole type PA.
  • the three rolls 11 included in the stand STi are arranged so as to be shifted by 60 ° around the pass line RA from the three rolls 11 included in the stand STi-1 in the previous stage.
  • each stand STi The three rolls of each stand STi are connected to each other by a bevel gear (not shown). When one of the three rolls 11 is rotated by a motor (not shown), all the rolls 11 are rotated.
  • the cross-sectional area of the hole-shaped PA formed by the three rolls 11 of each stand STi is smaller as the stand of the latter stage. Therefore, the cross-sectional area of the hole type PA formed by the stand ST1 is the largest, and the cross-sectional area of the hole type PA formed by the last stand STm is the smallest.
  • the steel pipe is drawn and rolled along the pass line RA from the stand ST1 through the stand STm, and becomes a steel pipe having a predetermined outer diameter and thickness.
  • the roll 11 included in the stand STi has a shape shown in FIG. Referring to FIG. 5, the roll 11 includes a caliber portion 50 and a pair of flange portions 51.
  • the caliber portion 50 has a columnar shape, and has a groove 20 having an arcuate shape in cross section on the surface.
  • the flange portion 51 has a disk shape and is arranged coaxially with the caliber portion 50.
  • the flange portion 51 has a truncated cone shape whose width decreases as the distance from the caliber portion 50 increases.
  • the caliber portion 50 and the flange portion 51 are integrally formed.
  • the transverse shape of the groove 20 that is, the shape of the groove 20 in the cross section in the roll axial direction X of the roll 11 is an arcuate shape.
  • the groove 20 is an arc having a radius Ra1.
  • the line segment DB connecting the groove bottom (center of the groove 20 in the roll axis direction) GB and the pass line RA is shorter than the radius Ra1. Therefore, the transverse shape of the groove 20 is an elliptical arc shape with the line segment DB as the short semi-axis. Since the transverse shape of the groove 20 is an elliptical arc, the rolling reduction per stand can be increased to some extent.
  • FIG. 6 is an enlarged view of the vicinity of the ridge 52 shown in FIG. With reference to FIG. 6, the ridge 52 extends in the circumferential direction of the roll 11. The ridge portion 52 is rounded.
  • the above-mentioned drawing mill 1 manufactures a thin steel pipe by drawing rolling.
  • the thickness of the thin steel pipe is, for example, 2.0 to 3.0 mm, and the outer diameter is, for example, 30.0 to 100.0 mm.
  • biting wrinkles and edge wrinkles are likely to occur.
  • the edge wrinkle here means a linear wrinkle formed along the longitudinal direction on the surface of the steel pipe as a result of the surface layer portion of the steel pipe being removed by the ridges of the roll.
  • a thin steel pipe is likely to cause bites and edge wrinkles because the wall thickness is thin, so that the portion of the steel pipe that is rolling is in contact with the portion near the edge of the groove 20 (hereinafter referred to as the metal portion) in the roll axis direction. It is presumed that it is easy to flow into X.
  • the manufacturing method of the roll 11 is explained in full detail.
  • FIG. 7 is a schematic diagram of a lathe machine 60.
  • a lathe machine 60 includes a bed 601, a headstock 602, a carriage 603, a tailstock 604, and a control device 605.
  • the spindle stock 602 and the tailstock 604 include a chuck (not shown).
  • the roll 11 is rotatably attached to the lathe machine 60 by chucks of the headstock 602 and the tailstock 604.
  • the headstock 602 further includes a motor (not shown).
  • the roll 11 is rotated around the roll axis by the motor.
  • the carriage 603 is disposed on the bed 601.
  • the carriage 603 can be moved in the roll axis direction by a motor (not shown).
  • the carriage 603 includes a cutting tool 606.
  • the cutting tool 606 can be moved in a direction perpendicular to the roll axis (the radial direction of the roll 11) by a servo motor (not shown).
  • the control device 605 controls the rotation speed of the roll 11.
  • the control device 605 further controls movement of the carriage 603 in the roll axis direction and movement of the cutting tool 606 in the radial direction of the roll 11.
  • the control device 605 may include a storage device that stores shape data of the grooves 20 and the ridges 52. In this case, the control device 605 controls the movement of the carriage 603 and the cutting tool 606 based on the shape data.
  • the groove 20 is formed by a lathe.
  • the ridge 52 is cut. Specifically, instead of the cutting tool 606, an R cutting tool 607 having a concave cutting edge and a predetermined curvature is attached to the carriage 603. While rotating the roll 11, the R cutting tool 607 is brought into contact with the ridge 52, and the ridge 52 is chamfered. At this time, the ridge 52 is cut so that the radius of curvature of the ridge 52 satisfies the following conditions.
  • FIG. 8 shows an enlarged view of the ridge 52.
  • the ridge 52 has a convex shape in the roll radial direction Y and is rounded.
  • the point having the highest height in the Y direction is defined as the summit T52.
  • an area RA52 in the range of 3.0 mm in the X-axis direction with the top T52 as the center is specified.
  • this region is defined as a ridge region RA52.
  • the ridge region RA52 includes a range of 1.5 mm from the top T52 to the left side (cariba portion 50 side) in the drawing and a range of 1.5 mm from the top T52 to the right side (flange portion 51 side).
  • the radius of curvature is obtained at a pitch of 0.5 mm in the roll axis direction X.
  • points P1 to Pn (n is a natural number) on the surface of the ridge region RA52 are specified at a pitch of 0.5 mm in the roll axis direction X.
  • the radius of curvature Rt at the point Pt (t is a natural number smaller than n) is obtained as follows. Two points (point Pt-1 and point Pt + 1) adjacent to the point Pt are specified. Next, a circle CRt passing through the three specified points (point Pt-1, point Pt, and point Pt + 1) is obtained. The calculated radius of the circle CRt is defined as the curvature radius Rt at the point Pt.
  • the radii of curvature R1 to Rn (mm) at the points P1 to Pn satisfy the following expressions (1) and (2).
  • Rmax is the maximum value of the measured radius of curvature
  • Rmin is the minimum value of the measured radius of curvature.
  • the average radius of curvature measured at 0.5 mm pitch in the roll axis direction X in the ridge region RA52 is 2.5 to 3.0 mm, and the maximum and minimum values of the measured radius of curvature are The difference is 1.0 mm or less.
  • the radius of curvature of each of the above points P1 to Pn is measured as follows. After the ridge 52 is cut by the lathe 60, the room temperature curing resin 70 is brought into contact with an arbitrary portion of the ridge 52 and cured as shown in FIG. Next, the surface shape of the cured room temperature curable resin 70 is measured using a three-dimensional shape measuring machine. Specifically, with reference to FIG. 11, the cross-sectional shape of room-temperature-curing resin 70 is measured when it is cut by a plane including the roll axis and extending in the roll radial direction. In the cross section of FIG. 11, the region RA ⁇ b> 72 where the ridge 52 is molded has the same shape as the ridge 52.
  • the shape of the ridge 52 can be obtained by measuring the shape of the region 72. Based on the obtained shape of the ridge 52, the curvature radius Rn is obtained at a pitch of 0.5 mm in the roll axis direction X as described above.
  • the shape may be measured by a measuring method other than the three-dimensional shape measuring machine.
  • the curvature radius Rn is obtained by the method described above. Then, based on the calculated curvature radius Rn, it is determined whether or not the ridge portion 52 satisfies the expressions (1) and (2). When the formula (1) or the formula (2) is not satisfied, the R cutting tool is adjusted and the ridge portion 52 is cut again.
  • the roll 11 manufactured by the above-described manufacturing method is attached to the drawing mill 1 to perform drawing rolling. In this case, the occurrence of bites and edge wrinkles of the thin steel pipe is particularly suppressed.
  • the roll 11 manufactured by the above method is attached to a stand STi having an outer diameter processing degree of 5.7 to 6.3%.
  • the outer diameter processing degree is defined by Expression (3).
  • Degree of outer diameter processing (%) [ ⁇ (Cross sectional area of hole type of stand STi-1) ⁇ (Cross sectional area of hole type of stand STi-1) ⁇ / (Cross sectional area of hole type of stand STi-1)] ⁇ 100 (3) In this case, the occurrence of biting wrinkles and edge wrinkles is effectively suppressed.
  • the drawing roll 11 according to the present embodiment is particularly suitable for manufacturing a thin steel pipe having an outer diameter of 30.0 to 100.0 mm and a wall thickness of 2.0 to 3.0 mm.
  • the roll 11 can suppress the occurrence of biting flaws and edge wrinkles to some extent even when manufacturing a steel pipe other than the above-described outer diameter and wall thickness.
  • the roll 11 is applied to at least one stand STi among the plurality of stands ST1 to STm, the above effect can be obtained to some extent.
  • the roll 11 exhibits a remarkable effect when applied to the stand STi whose outer diameter processing degree defined by the expression (3) is within the above-described range.
  • the transverse shape of the groove 20 is an arc having a radius Ra1.
  • the shape of the groove 20 is not limited to this.
  • the transverse shape of the groove 20 may be an arc having a radius Ra1 at the groove bottom portion and an arc shape having a radius Ra2 (Ra2> Ra1) at the groove edge portion.
  • the groove edge portion may be linear.
  • the cross shape of the groove 20 may be an arcuate shape.
  • the ridge 52 is cut by the lathe machine 60 and the R cutting tool 607, but the ridge 52 may be cut by another known method.
  • the groove 20 and the ridge 52 may be continuously cut by the control device 605 of the lathe machine 60.
  • the operator may adjust the installation position of the R bit 607 and cut the ridge 52.
  • a plurality of rolls having ridges with different shapes were prepared. Then, the occurrence rate of biting wrinkles and edge wrinkles when drawn and rolled using each roll was investigated.
  • the ridge shape was measured for each set (A set to C set) of rolls. Each set had three rolls 11. In each set, an arbitrary one of the ridges 52 of the roll 11 was molded using a room temperature curable resin (Technobit). The radius of curvature of the ridge region RA52 was obtained at a pitch of 0.5 mm by the above-described method using the room temperature curable resin that was molded.
  • FIG. 12 shows the shape and the radius of curvature of the ridges 52 of each set obtained by the above-mentioned die cutting.
  • the “R shape” column in the table shows the ridge shape of A set to C set in a graph.
  • the vertical axis (Y coordinate) of each graph indicates the distance in the radial direction of the roll.
  • the horizontal axis (X coordinate) of the graph indicates the distance in the roll axis direction X.
  • the dotted line in the figure shows the ridge shape when the radius of curvature is 2.5 mm.
  • the solid line in the figure indicates the actual shape of each set of rolls 11.
  • the radius of curvature obtained at a pitch of 0.5 mm in the roll axis direction X of the ridge shape shown in the “R shape” column is shown in a graph.
  • the vertical axis of each graph represents the radius of curvature (mm).
  • the horizontal axis (X coordinate) indicates the coordinate in the roll axis direction X.
  • “T52” on the horizontal axis indicates the position of the top T52 of the ridge 52.
  • T52-1.5 mm indicates a position moved 1.5 mm from the top T52 to the left side (cariba portion side) in the figure, and “T52 + 1.5 mm” is 1 from the top T52 to the right side (flange portion side) in the figure. Indicates the position moved 5 mm. In short, the range between “T52 ⁇ 1.5 mm” and “T52 + 1.5 mm” indicates the ridge region RA52.
  • the set B satisfied Expression (1) and Expression (2).
  • the F1 value of A set exceeded 3.0 mm
  • the F2 value exceeded 1.0 mm. That is, the A set did not satisfy the expressions (1) and (2).
  • the C set had an F1 value exceeding 3.0 mm and an F2 value exceeding 1.0 mm. Therefore, neither C set nor formula (1) and formula (2) was satisfied.
  • the hot steel pipe from the No. 3 stand was visually observed to determine whether or not the steel pipe had bite or edge flaws. Then, the soot generation rate (%) was obtained based on the equation (5).
  • Table 1 shows the survey results.
  • F1 value of the roll of B set satisfy
  • F2 value satisfy
  • the roll of C set did not satisfy the expressions (1) and (2). Therefore, the soot generation rate was high and was 30.0%. Moreover, the roll of A set did not satisfy

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

Provided is a method for manufacturing a roll for reducing, wherein the occurrence of fin flaws and edge flaws can be suppressed. A roll for reducing used in a three-roll reducing mill is prepared. Next, while the roll for reducing is being rotated about a roll axis, a ridge part (52) formed in an adjacent section between a caliber part and a flange part is cut to round the ridge part (52). In the step for rounding the ridge part (52), in a ridge part region (RA52) within a range of 3.0 mm in a roll axis direction with the top of the ridge part (52) as the center, the average of curvature radii measured at 0.5 mm pitch is set to 2.5-3.0 mm, and the difference between the maximum value and the small value of the curvature radii is set to 1.0 mm or less.

Description

絞り圧延用ロールの製造方法、及び、絞り圧延用ロールMethod for producing drawing roll and drawing roll
 この発明は、絞り圧延用ロールの製造方法及び絞り圧延用ロールに関し、さらに詳しくは、鋼管を絞り圧延する3ロール式絞り圧延機に用いられる絞り圧延用ロールの製造方法及び絞り圧延用ロールに関する。 The present invention relates to a method for producing a drawing roll and a drawing roll, and more particularly to a method for producing a drawing roll and a drawing roll used in a three-roll type drawing mill for drawing a steel pipe.
 サイザやストレッチデューサに代表される絞り圧延機は、鋼管を所定の外径寸法に絞り圧延する。絞り圧延機としては、主として、3ロール式絞り圧延機が知られている。3ロール式絞り圧延機は、たとえば、国際公開第2005/070574号及び国際公開第2005/092531号に記載されている。 A drawing mill typified by a sizer or stretch reducer draws a steel pipe to a predetermined outer diameter. As the drawing mill, a three-roll type drawing mill is mainly known. Three-roll drawing mills are described in, for example, International Publication No. 2005/070574 and International Publication No. 2005/092531.
 絞り圧延機は、通常、パスラインに沿って配列された複数のスタンドを備える。各スタンドは、孔型(カリバ)を形成する溝を有する複数の絞り圧延用ロールを含む。3ロール式絞り圧延機では、各スタンドの3個のロールがパスライン周りに等間隔に配置され、かつ、前段のスタンドに含まれる3個のロールからパスライン周りに60°ずれて配置される。 A drawing mill usually includes a plurality of stands arranged along a pass line. Each stand includes a plurality of drawing rolls having grooves that form a hole mold (caliber). In the three-roll drawing mill, the three rolls of each stand are arranged at equal intervals around the pass line, and are offset by 60 ° around the pass line from the three rolls included in the previous stage stand. .
 一般的に、絞り圧延機の各スタンドに含まれるロールは、横断面(パスラインと垂直な方向の断面、つまり、ロール軸を含む断面)で楕円弧状の溝を有する。このようなロールを利用することにより、1スタンド当たりの圧下率をある程度大きくすることができる。 Generally, a roll included in each stand of a drawing mill has an elliptical arc-shaped groove in a transverse section (a section in a direction perpendicular to a pass line, that is, a section including a roll axis). By using such a roll, the rolling reduction per stand can be increased to some extent.
 しかしながら、圧延中の鋼管の表層部分がロールの溝からはみ出て、いわゆる噛み出し疵が発生する場合がある。さらに、絞り圧延される鋼管のうち、溝の縁近傍に接触する鋼管部分に作用する負荷が増大すれば、当該鋼管部分にエッジ疵が発生しやすくなる。具体的には、鋼管の長手方向に線状の疵が発生しやすくなる。 However, the surface layer portion of the steel pipe being rolled may protrude from the groove of the roll, and so-called biting flaws may occur. Furthermore, if the load acting on the steel pipe portion in contact with the vicinity of the groove edge in the steel pipe to be rolled is increased, edge flaws are likely to occur in the steel pipe portion. Specifically, linear wrinkles are likely to occur in the longitudinal direction of the steel pipe.
 このような噛み出し疵やエッジ疵を防止する技術が、特開平11-197714号公報及び特開平11-57816号公報に提案されている。 Techniques for preventing such biting and edge wrinkles have been proposed in Japanese Patent Application Laid-Open Nos. 11-197714 and 11-57816.
 これらの公報では、絞り圧延機に利用されるカリバロールにおいて、カリバとフランジとを境とする稜部に丸みを持たせる。そのため、絞り圧延中の鋼管のフランジ側での噛み出しが緩和されると記載されている。 In these gazettes, in the caliber rolls used in the drawing mill, the ridges with the boundary between the caliber and the flange are rounded. Therefore, it is described that biting on the flange side of the steel pipe during drawing rolling is alleviated.
 しかしながら、これらの公報に記載されているように、ロールの稜部に単に丸みを持たせるだけでは、噛み出し疵やエッジ疵の発生は抑制されない。 However, as described in these publications, the occurrence of biting wrinkles and edge wrinkles is not suppressed by simply rounding the ridges of the roll.
 本発明の目的は、噛み出し疵やエッジ疵の発生を抑制できる絞り圧延用ロールの製造方法を提供することである。 An object of the present invention is to provide a method for producing a drawing roll that can suppress the occurrence of biting wrinkles and edge wrinkles.
 本発明の実施の形態による絞り圧延用ロールの製造方法は、鋼管を絞り圧延する3ロール式絞り圧延機に用いられ、横断面で弓状をなす溝を有するカリバ部と、前記カリバ部に隣接するフランジ部とを備える絞り圧延用ロールの製造方法である。絞り圧延用ロールの製造方法は、絞り圧延用ロールを準備する工程と、絞り圧延用ロールをロール軸まわりに回転し、カリバ部とフランジ部との隣接部分に形成される稜部を切削して稜部に丸みをもたせる工程とを備える。稜部に丸みを持たせる工程では、稜部の頂上を中心としたロール軸方向に3.0mmの範囲の稜部領域において、0.5mmピッチで測定された曲率半径の平均を2.5mm~3.0mmとし、かつ、曲率半径の最大値と最小値との差分を1.0mm以下にする。 A method for producing a drawing roll according to an embodiment of the present invention is used in a three-roll type drawing mill for drawing and rolling a steel pipe, and is adjacent to the caliber part having a bow-shaped groove in a cross section. It is a manufacturing method of the roll for drawing rolling provided with the flange part to perform. The method for producing a drawing roll includes the steps of preparing a drawing roll, rotating the drawing roll around the roll axis, and cutting a ridge formed at an adjacent portion between the caliber portion and the flange portion. And a step of rounding the ridge. In the step of rounding the ridge, the average radius of curvature measured at a pitch of 0.5 mm in the ridge region in the range of 3.0 mm in the roll axis direction around the top of the ridge is 2.5 mm to The difference between the maximum value and the minimum value of the curvature radius is set to 3.0 mm or less.
 本実施の形態による絞り圧延用ロールの製造方法では、噛み出し疵やエッジ疵の発生を抑制できる絞り圧延用ロールを製造できる。 In the method for producing a drawing roll according to the present embodiment, a drawing roll that can suppress the occurrence of biting flaws and edge flaws can be produced.
 本実施の形態による絞り圧延用ロールは、鋼管を絞り圧延する3ロール式絞り圧延機に用いられる。絞り圧延用ロールは、横断面で弓状をなす溝を有するカリバ部と、カリバ部に隣接するフランジ部とを備える。カリバ部とフランジ部との隣接部分に形成される稜部の頂上を中心としたロール軸方向に3.0mmの範囲において、0.5mmピッチで測定された曲率半径の平均は2.5mm~3.0mmであり、かつ、曲率半径の最大値と最小値との差分は1.0mm以下である。 The roll for reduction rolling according to the present embodiment is used for a three-roll type reduction rolling mill for drawing and rolling a steel pipe. The drawing roll includes a caliber portion having a groove having an arcuate cross section and a flange portion adjacent to the caliber portion. In the range of 3.0 mm in the roll axis direction centered on the top of the ridge formed in the adjacent portion of the caliber portion and the flange portion, the average curvature radius measured at 0.5 mm pitch is 2.5 mm to 3 mm. 0.0 mm, and the difference between the maximum value and the minimum value of the radius of curvature is 1.0 mm or less.
 本実施の形態による絞り圧延用ロールは、噛み出し疵やエッジ疵の発生を抑制できる。 The roll for drawing rolling according to the present embodiment can suppress the occurrence of biting wrinkles and edge wrinkles.
図1は、3ロール式絞り圧延機の側面図である。FIG. 1 is a side view of a three-roll drawing mill. 図2は、図1中のスタンドの正面図である。FIG. 2 is a front view of the stand in FIG. 図3は、図2に示すスタンドの前段のスタンドの正面図である。FIG. 3 is a front view of a stand in front of the stand shown in FIG. 図4は、図1に示す3ロール式絞り圧延機を用いた鋼管の絞り圧延の模式図である。FIG. 4 is a schematic diagram of steel pipe drawing using the three-roll drawing mill shown in FIG. 図5は、図1中の絞り圧延用ロールの正面図である。FIG. 5 is a front view of the drawing roll in FIG. 図6は、図5中の絞り圧延用ロールの稜部近傍の拡大図である。FIG. 6 is an enlarged view of the vicinity of the ridge portion of the drawing roll in FIG. 図7は、図5に示す絞り圧延用ロールの製造に利用される旋盤機の模式図である。FIG. 7 is a schematic view of a lathe used for manufacturing the drawing roll shown in FIG. 図8は、図7に示す旋盤機により切削される絞り圧延用ロールの稜部近傍の拡大図である。FIG. 8 is an enlarged view of the vicinity of a ridge portion of a drawing roll drawn by the lathe shown in FIG. 図9は、図8に示す稜部の曲率半径の測定方法を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a method for measuring the radius of curvature of the ridge shown in FIG. 図10は、図8に示す稜部の曲率半径の測定方法の一例を示す図である。FIG. 10 is a diagram illustrating an example of a method for measuring the curvature radius of the ridge portion illustrated in FIG. 8. 図11は、図10中の常温硬化樹脂の断面図である。FIG. 11 is a cross-sectional view of the room temperature curable resin in FIG. 図12は、実施例で用いられるロールの形状及び曲率半径の測定結果を示す図である。FIG. 12 is a diagram showing measurement results of the shape and curvature radius of the roll used in the example.
 以下、本発明の実施の形態について図面を用いて詳しく説明する。図中同一又は相当する部分には、同一符号を付してその説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, the same or corresponding parts are denoted by the same reference numerals and description thereof is omitted.
 [絞り圧延機の構成]
 図1は、本実施の形態による絞り圧延機1の側面図である。絞り圧延機1は、3ロール式である。図1を参照して、絞り圧延機1は、パスラインRAに沿って配列された複数のスタンドST1~STm(mは自然数)を備える。絞り圧延機1はたとえば、ストレッチレデューサであり、スタンド数mは20~30程度である。
[Configuration of drawing mill]
FIG. 1 is a side view of a drawing mill 1 according to the present embodiment. The drawing mill 1 is a three-roll type. Referring to FIG. 1, a drawing mill 1 includes a plurality of stands ST1 to STm (m is a natural number) arranged along a pass line RA. The drawing mill 1 is, for example, a stretch reducer, and the number of stands m is about 20-30.
 図2は、図1に示す絞り圧延機1のスタンドSTi(iはm以下の自然数)の正面図であり、図3は、スタンドSTi-1の正面図である。 FIG. 2 is a front view of the stand STi (i is a natural number of m or less) of the drawing mill 1 shown in FIG. 1, and FIG. 3 is a front view of the stand STi-1.
 図2を参照して、各スタンドSTiは、3個の絞り圧延用ロール(以下、単にロールという)11を含む。3個のロール11は、パスラインRA周りに互いに等間隔に配置される。したがって、3個のロール11は、パスラインRA周りに120°おきに配置される。ロール11は、横断面(ロール軸方向の断面)が弓状をなす溝20を有する。3つのロール11の溝20は、孔型PAを形成する。 Referring to FIG. 2, each stand STi includes three drawing rolls (hereinafter simply referred to as rolls) 11. The three rolls 11 are arranged at equal intervals around the pass line RA. Accordingly, the three rolls 11 are arranged around the pass line RA every 120 °. The roll 11 has a groove 20 whose cross section (cross section in the roll axis direction) has an arcuate shape. The grooves 20 of the three rolls 11 form a hole type PA.
 図2及び図3に示すとおり、スタンドSTiに含まれる3個のロール11は、前段のスタンドSTi-1に含まれる3個のロール11からパスラインRA周りに60°ずれて配置される。 2 and 3, the three rolls 11 included in the stand STi are arranged so as to be shifted by 60 ° around the pass line RA from the three rolls 11 included in the stand STi-1 in the previous stage.
 各スタンドSTiの3個のロールは、図示しないベベルギアにより互いに接続される。3個のロール11のうちの1つが、図示しないモータで回転することにより、全てのロール11が回転する。 The three rolls of each stand STi are connected to each other by a bevel gear (not shown). When one of the three rolls 11 is rotated by a motor (not shown), all the rolls 11 are rotated.
 各スタンドSTiの3個のロール11により形成される孔型PAの断面積は、後段のスタンドのものほど小さくなる。したがって、スタンドST1で形成される孔型PAの断面積が最も大きく、最後尾のスタンドSTmで形成される孔型PAの断面積が最も小さい。図4に示すとおり、鋼管は、パスラインRAに沿ってスタンドST1からスタンドSTmを通って絞り圧延され、所定の外径及び肉厚を有する鋼管となる。 The cross-sectional area of the hole-shaped PA formed by the three rolls 11 of each stand STi is smaller as the stand of the latter stage. Therefore, the cross-sectional area of the hole type PA formed by the stand ST1 is the largest, and the cross-sectional area of the hole type PA formed by the last stand STm is the smallest. As shown in FIG. 4, the steel pipe is drawn and rolled along the pass line RA from the stand ST1 through the stand STm, and becomes a steel pipe having a predetermined outer diameter and thickness.
 スタンドSTiに含まれるロール11は、図5に示す形状を有する。図5を参照して、ロール11は、カリバ部50と、一対のフランジ部51とを備える。カリバ部50は円柱状であり、横断面で弓状をなす溝20を表面に有する。フランジ部51は、円板状であり、カリバ部50と同軸に配置される。フランジ部51は、カリバ部50から離れるにしたがって幅が小さくなる、円錐台状である。カリバ部50とフランジ部51とは、一体的に形成される。 The roll 11 included in the stand STi has a shape shown in FIG. Referring to FIG. 5, the roll 11 includes a caliber portion 50 and a pair of flange portions 51. The caliber portion 50 has a columnar shape, and has a groove 20 having an arcuate shape in cross section on the surface. The flange portion 51 has a disk shape and is arranged coaxially with the caliber portion 50. The flange portion 51 has a truncated cone shape whose width decreases as the distance from the caliber portion 50 increases. The caliber portion 50 and the flange portion 51 are integrally formed.
 上述のとおり、溝20の横断形状、つまり、ロール11のロール軸方向Xの断面における溝20の形状は弓状である。本例では、溝20は、半径Ra1の円弧である。溝20の溝底(溝20のロール軸方向の中央)GBとパスラインRAとを結ぶ線分DBは、半径Ra1よりも短い。したがって、溝20の横断形状は、線分DBを短半軸とする楕円弧状である。溝20の横断形状が楕円弧状であるため、1スタンド当たりの圧下率をある程度大きくすることができる。 As described above, the transverse shape of the groove 20, that is, the shape of the groove 20 in the cross section in the roll axial direction X of the roll 11 is an arcuate shape. In this example, the groove 20 is an arc having a radius Ra1. The line segment DB connecting the groove bottom (center of the groove 20 in the roll axis direction) GB and the pass line RA is shorter than the radius Ra1. Therefore, the transverse shape of the groove 20 is an elliptical arc shape with the line segment DB as the short semi-axis. Since the transverse shape of the groove 20 is an elliptical arc, the rolling reduction per stand can be increased to some extent.
 カリバ部50とフランジ部51との隣接部分には、稜部52が形成される。図6は、図5に示す稜部52近傍部分の拡大図である。図6を参照して、稜部52は、ロール11の円周方向に延びる。そして、稜部52は丸みを帯びている。 A ridge 52 is formed in an adjacent portion between the caliber portion 50 and the flange portion 51. FIG. 6 is an enlarged view of the vicinity of the ridge 52 shown in FIG. With reference to FIG. 6, the ridge 52 extends in the circumferential direction of the roll 11. The ridge portion 52 is rounded.
 上述の絞り圧延機1は、絞り圧延により薄肉の鋼管を製造する。薄肉の鋼管の肉厚はたとえば、2.0~3.0mmであり、外径はたとえば、30.0~100.0mmである。このような薄肉の鋼管を製造する場合、噛み出し疵やエッジ疵が発生しやすい。ここでいうエッジ疵とは、鋼管の表層部分がロールの稜部によりえぐられ、その結果、鋼管の表面に長手方向に沿って形成される線状の疵を意味する。薄肉の鋼管で噛み出し疵やエッジ疵が発生しやすいのは、肉厚が薄いため、圧延中の鋼管のうち溝20の縁近傍部分に接触する部分(以下、メタル部分という)がロール軸方向Xに流動しやすいためと推定される。 The above-mentioned drawing mill 1 manufactures a thin steel pipe by drawing rolling. The thickness of the thin steel pipe is, for example, 2.0 to 3.0 mm, and the outer diameter is, for example, 30.0 to 100.0 mm. When such a thin steel pipe is manufactured, biting wrinkles and edge wrinkles are likely to occur. The edge wrinkle here means a linear wrinkle formed along the longitudinal direction on the surface of the steel pipe as a result of the surface layer portion of the steel pipe being removed by the ridges of the roll. A thin steel pipe is likely to cause bites and edge wrinkles because the wall thickness is thin, so that the portion of the steel pipe that is rolling is in contact with the portion near the edge of the groove 20 (hereinafter referred to as the metal portion) in the roll axis direction. It is presumed that it is easy to flow into X.
 以下の製造方法に基づいてロール11を製造することにより、特に薄肉の鋼管を製造する場合に噛み出し疵やエッジ疵の発生が抑制される。以下、ロール11の製造方法について詳述する。 By producing the roll 11 based on the following production method, the occurrence of biting and edge wrinkles is suppressed particularly when a thin steel pipe is produced. Hereinafter, the manufacturing method of the roll 11 is explained in full detail.
 [製造方法]
 ロール11は、周知の方法で作製する。具体的には、準備されたロール11を周知の旋盤機に配置する。図7は、旋盤機60の模式図である。図7を参照して、旋盤機60は、ベッド601と、主軸台602と、往復台603と、心押台604と、制御装置605とを備える。
[Production method]
The roll 11 is produced by a known method. Specifically, the prepared roll 11 is placed on a known lathe machine. FIG. 7 is a schematic diagram of a lathe machine 60. Referring to FIG. 7, a lathe machine 60 includes a bed 601, a headstock 602, a carriage 603, a tailstock 604, and a control device 605.
 主軸台602及び心押台604は、図示しないチャックを備える。主軸台602及び心押台604のチャックにより、ロール11が旋盤機60に回転可能に取り付けられる。 The spindle stock 602 and the tailstock 604 include a chuck (not shown). The roll 11 is rotatably attached to the lathe machine 60 by chucks of the headstock 602 and the tailstock 604.
 主軸台602はさらに、図示しないモータを備える。モータにより、ロール11がロール軸回りを回転する。 The headstock 602 further includes a motor (not shown). The roll 11 is rotated around the roll axis by the motor.
 往復台603は、ベッド601上に配置される。往復台603は、図示しないモータにより、ロール軸方向に移動できる。往復台603はバイト606を備える。バイト606は、図示しないサーボモータにより、ロール軸と垂直な方向(ロール11の径方向)に移動できる。 The carriage 603 is disposed on the bed 601. The carriage 603 can be moved in the roll axis direction by a motor (not shown). The carriage 603 includes a cutting tool 606. The cutting tool 606 can be moved in a direction perpendicular to the roll axis (the radial direction of the roll 11) by a servo motor (not shown).
 制御装置605は、ロール11の回転速度を制御する。制御装置605はさらに、往復台603のロール軸方向への移動と、バイト606のロール11の径方向への移動とを制御する。制御装置605は、溝20及び稜部52の形状データを記憶する記憶装置を備えてもよい。この場合、制御装置605は、形状データに基づいて、往復台603及びバイト606の移動を制御する。 The control device 605 controls the rotation speed of the roll 11. The control device 605 further controls movement of the carriage 603 in the roll axis direction and movement of the cutting tool 606 in the radial direction of the roll 11. The control device 605 may include a storage device that stores shape data of the grooves 20 and the ridges 52. In this case, the control device 605 controls the movement of the carriage 603 and the cutting tool 606 based on the shape data.
 ロール11を旋盤機60に取り付けた後、旋盤により溝20を形成する。 After attaching the roll 11 to the lathe machine 60, the groove 20 is formed by a lathe.
 次に、稜部52を切削する。具体的には、バイト606に変えて、刃先が凹状であり、所定の曲率を有するRバイト607を往復台603に取り付ける。ロール11を回転しながら、Rバイト607を稜部52に接触させ、稜部52をR面取りする。このとき、稜部52の曲率半径が、以下の条件を満たすように、稜部52を切削する。 Next, the ridge 52 is cut. Specifically, instead of the cutting tool 606, an R cutting tool 607 having a concave cutting edge and a predetermined curvature is attached to the carriage 603. While rotating the roll 11, the R cutting tool 607 is brought into contact with the ridge 52, and the ridge 52 is chamfered. At this time, the ridge 52 is cut so that the radius of curvature of the ridge 52 satisfies the following conditions.
 図8に稜部52の拡大図を示す。図8を参照して、稜部52は、ロール径方向Yに凸の形状を有し、丸みを帯びている。 FIG. 8 shows an enlarged view of the ridge 52. Referring to FIG. 8, the ridge 52 has a convex shape in the roll radial direction Y and is rounded.
 稜部52のうち、Y方向への高さが最も高い地点を頂上T52と定義する。稜部52のうち、頂上T52を中心とした、X軸方向に3.0mmの範囲の領域RA52を特定する。以下、この領域を稜部領域RA52と定義する。稜部領域RA52は、頂上T52から図中左側(カリバ部50側)に1.5mmの範囲と、頂上T52から右側(フランジ部51側)に1.5mmの範囲とを含む。 Of the ridges 52, the point having the highest height in the Y direction is defined as the summit T52. Among the ridges 52, an area RA52 in the range of 3.0 mm in the X-axis direction with the top T52 as the center is specified. Hereinafter, this region is defined as a ridge region RA52. The ridge region RA52 includes a range of 1.5 mm from the top T52 to the left side (cariba portion 50 side) in the drawing and a range of 1.5 mm from the top T52 to the right side (flange portion 51 side).
 特定された稜部領域RA52において、ロール軸方向Xに0.5mmピッチで、曲率半径を求める。具体的には、図9に示すように、ロール軸方向Xに0.5mmピッチで、稜部領域RA52の表面上の点P1~Pn(nは自然数)を特定する。 In the specified ridge region RA52, the radius of curvature is obtained at a pitch of 0.5 mm in the roll axis direction X. Specifically, as shown in FIG. 9, points P1 to Pn (n is a natural number) on the surface of the ridge region RA52 are specified at a pitch of 0.5 mm in the roll axis direction X.
 点Pt(tはnよりも小さい自然数)での曲率半径Rtを以下のとおり求める。点Ptと隣り合う2点(点Pt-1及び点Pt+1)を特定する。次に、特定された3点(点Pt-1、点Pt及び点Pt+1)を通る円CRtを求める。求めた円CRtの半径を、点Ptでの曲率半径Rtと定義する。 The radius of curvature Rt at the point Pt (t is a natural number smaller than n) is obtained as follows. Two points (point Pt-1 and point Pt + 1) adjacent to the point Pt are specified. Next, a circle CRt passing through the three specified points (point Pt-1, point Pt, and point Pt + 1) is obtained. The calculated radius of the circle CRt is defined as the curvature radius Rt at the point Pt.
 稜部領域RA52において、各点P1~Pnでの曲率半径R1~Rn(mm)は、以下の式(1)及び式(2)を満たす。
 2.5≦(R1+R2+…+Rn)/n≦3.0 (1)
 Rmax-Rmin≦1.0 (2)
 ここで、Rmaxは測定された曲率半径の最大値であり、Rminは測定された曲率半径の最小値である。
In the ridge region RA52, the radii of curvature R1 to Rn (mm) at the points P1 to Pn satisfy the following expressions (1) and (2).
2.5 ≦ (R1 + R2 +... + Rn) /n≦3.0 (1)
Rmax−Rmin ≦ 1.0 (2)
Here, Rmax is the maximum value of the measured radius of curvature, and Rmin is the minimum value of the measured radius of curvature.
 要するに、稜部領域RA52でロール軸方向Xに0.5mmピッチで測定された曲率半径の平均は、2.5~3.0mmであり、かつ、測定された曲率半径の最大値と最小値との差分は1.0mm以下である。 In short, the average radius of curvature measured at 0.5 mm pitch in the roll axis direction X in the ridge region RA52 is 2.5 to 3.0 mm, and the maximum and minimum values of the measured radius of curvature are The difference is 1.0 mm or less.
 式(1)及び式(2)を満たすことにより、特に、30.0~100.0mmの外径と、2.0~3.0mmの肉厚とを有する薄肉の鋼管を圧延するときに、噛み出し疵やエッジ疵の発生を抑制できる。その理由は定かではないが、以下の理由が推定される。 By satisfying the formulas (1) and (2), particularly when rolling a thin steel pipe having an outer diameter of 30.0 to 100.0 mm and a wall thickness of 2.0 to 3.0 mm, Occurrence of biting and edge wrinkles can be suppressed. The reason is not clear, but the following reason is presumed.
 F1=(R1+R2+…+Rn)/nと定義した場合、F1値が3.0mmを超えると、メタル部分は、稜部52で拘束されず、ロール軸方向Xに流動しやすくなる。そのため、噛み出し疵が発生しやすくなる。 When defined as F1 = (R1 + R2 +... + Rn) / n, when the F1 value exceeds 3.0 mm, the metal portion is not restrained by the ridge portion 52 and easily flows in the roll axis direction X. As a result, biting wrinkles are likely to occur.
 一方、F1値が2.5mm未満である場合、溝20の縁近傍に接触するメタル部分は、稜部52で過剰に拘束される。そのため、メタル部分が稜部52にえぐられ、エッジ疵が発生しやすくなる。 On the other hand, when the F1 value is less than 2.5 mm, the metal portion that contacts the vicinity of the edge of the groove 20 is excessively restrained by the ridge 52. For this reason, the metal portion is scooped by the ridge 52, and edge wrinkles are likely to occur.
 F2=Rmax-Rminと定義した場合、F2値が1.0mmを超えると、噛み出し疵及びエッジ疵が発生する。その理由は定かではないが、以下の理由が推定される。薄肉の鋼管を絞り圧延する場合、溝20の縁近傍に接触するメタル部分の流動は大きい。F2値が1.0mmを超える場合、稜部52の表面に微小ではあるが凹凸が存在する。そのため、F2値が1.0mm未満の場合と比較して、メタル部分が凹凸により不均一に流動しやすくなる。不均一な流動により、鋼管のメタル部分は不均一に変形し、その結果、噛み出し疵やエッジ疵が発生しやすいと推定される。 When F2 = Rmax−Rmin is defined, if the F2 value exceeds 1.0 mm, biting wrinkles and edge wrinkles occur. The reason is not clear, but the following reason is presumed. When a thin steel pipe is drawn and rolled, the flow of the metal part contacting the vicinity of the edge of the groove 20 is large. When the F2 value exceeds 1.0 mm, the surface of the ridge 52 has minute but unevenness. Therefore, compared to the case where the F2 value is less than 1.0 mm, the metal portion tends to flow unevenly due to the unevenness. Due to the non-uniform flow, the metal portion of the steel pipe is deformed non-uniformly, and as a result, it is presumed that biting and edge wrinkles are likely to occur.
 上述の各点P1~Pnの曲率半径は、たとえば、以下のように測定する。稜部52を旋盤機60により切削した後、図10に示すとおり、稜部52の任意の箇所に常温硬化樹脂70を接触させて硬化させ、稜部52の形状を型取りする。次に、三次元形状測定機を用いて、硬化した常温硬化樹脂70の表面形状を測定する。具体的には、図11を参照して、ロール軸を含みロール径方向に延びる面で切断したときの常温硬化樹脂70の断面形状を測定する。図11の断面のうち、稜部52が型取りされた領域RA72は、稜部52と同じ形状を有する。そのため、領域72の形状を測定することにより、稜部52の形状を求めることができる。求められた稜部52の形状に基づいて、上述のとおり、ロール軸方向Xに0.5mmピッチで曲率半径Rnを求める。なお、形状の測定は、3次元形状測定機以外の他の測定方法により測定されてもよい。 For example, the radius of curvature of each of the above points P1 to Pn is measured as follows. After the ridge 52 is cut by the lathe 60, the room temperature curing resin 70 is brought into contact with an arbitrary portion of the ridge 52 and cured as shown in FIG. Next, the surface shape of the cured room temperature curable resin 70 is measured using a three-dimensional shape measuring machine. Specifically, with reference to FIG. 11, the cross-sectional shape of room-temperature-curing resin 70 is measured when it is cut by a plane including the roll axis and extending in the roll radial direction. In the cross section of FIG. 11, the region RA <b> 72 where the ridge 52 is molded has the same shape as the ridge 52. Therefore, the shape of the ridge 52 can be obtained by measuring the shape of the region 72. Based on the obtained shape of the ridge 52, the curvature radius Rn is obtained at a pitch of 0.5 mm in the roll axis direction X as described above. The shape may be measured by a measuring method other than the three-dimensional shape measuring machine.
 旋盤機60を用いて稜部52を切削した後、上述の方法により曲率半径Rnを求める。そして、求めた曲率半径Rnに基づいて、稜部52が式(1)及び式(2)を満たすか否か判断する。式(1)又は式(2)を満たさない場合、Rバイトを調整して、再び稜部52を切削する。 After cutting the ridge 52 using the lathe machine 60, the curvature radius Rn is obtained by the method described above. Then, based on the calculated curvature radius Rn, it is determined whether or not the ridge portion 52 satisfies the expressions (1) and (2). When the formula (1) or the formula (2) is not satisfied, the R cutting tool is adjusted and the ridge portion 52 is cut again.
 以上の工程を必要に応じて繰り返し、式(1)及び式(2)を満たすロール11を製造する。 The above process is repeated as needed, and the roll 11 which satisfy | fills Formula (1) and Formula (2) is manufactured.
 上述の製造方法により製造されたロール11を、絞り圧延機1に取り付け、絞り圧延を実施する。この場合、特に薄肉の鋼管の噛み出し疵やエッジ疵の発生が抑制される。 The roll 11 manufactured by the above-described manufacturing method is attached to the drawing mill 1 to perform drawing rolling. In this case, the occurrence of bites and edge wrinkles of the thin steel pipe is particularly suppressed.
 好ましくは、上記方法により製造されたロール11は、外径加工度が5.7~6.3%のスタンドSTiに取り付ける。ここでいう外径加工度とは、式(3)で定義される。
 外径加工度(%)=[{(スタンドSTi-1の孔型の断面積)-(スタンドSTiの孔型の断面積)}/(スタンドSTi-1の孔型の断面積)]×100 (3)
 この場合、噛み出し疵及びエッジ疵の発生が、有効に抑制される。
Preferably, the roll 11 manufactured by the above method is attached to a stand STi having an outer diameter processing degree of 5.7 to 6.3%. Here, the outer diameter processing degree is defined by Expression (3).
Degree of outer diameter processing (%) = [{(Cross sectional area of hole type of stand STi-1) − (Cross sectional area of hole type of stand STi-1)} / (Cross sectional area of hole type of stand STi-1)] × 100 (3)
In this case, the occurrence of biting wrinkles and edge wrinkles is effectively suppressed.
 本実施の形態による絞り圧延用ロール11は、特に、30.0~100.0mmの外径と、2.0~3.0mmの肉厚とを有する薄肉の鋼管を製造する場合に適する。しかしながら、ロール11は、上述の外径寸法及び肉厚寸法以外の鋼管を製造する場合であっても、噛み出し疵及びエッジ疵の発生をある程度抑制できる。 The drawing roll 11 according to the present embodiment is particularly suitable for manufacturing a thin steel pipe having an outer diameter of 30.0 to 100.0 mm and a wall thickness of 2.0 to 3.0 mm. However, the roll 11 can suppress the occurrence of biting flaws and edge wrinkles to some extent even when manufacturing a steel pipe other than the above-described outer diameter and wall thickness.
 ロール11は、複数のスタンドST1~STmのうち、少なくとも1つのスタンドSTiに適用されれば、上記効果がある程度得られる。ロール11は、式(3)で定義される外径加工度が上述の範囲内のスタンドSTiに適用されれば、顕著な効果を発揮する。 If the roll 11 is applied to at least one stand STi among the plurality of stands ST1 to STm, the above effect can be obtained to some extent. The roll 11 exhibits a remarkable effect when applied to the stand STi whose outer diameter processing degree defined by the expression (3) is within the above-described range.
 上述の実施の形態では、溝20の横断形状は、半径Ra1の円弧である。しかしながら、溝20の形状は、これに限定されない。たとえば、溝20の横断形状は、溝底部分で半径Ra1の円弧であり、かつ、溝縁部分で半径Ra2(Ra2>Ra1)の弓状であってもよい。また、溝縁部分が直線状であってもよい。溝20の横断形状は、弓状であれば足りる。 In the above-described embodiment, the transverse shape of the groove 20 is an arc having a radius Ra1. However, the shape of the groove 20 is not limited to this. For example, the transverse shape of the groove 20 may be an arc having a radius Ra1 at the groove bottom portion and an arc shape having a radius Ra2 (Ra2> Ra1) at the groove edge portion. Further, the groove edge portion may be linear. The cross shape of the groove 20 may be an arcuate shape.
 上述の実施の形態では、旋盤機60及びRバイト607により稜部52の切削を行ったが、他の周知の方法により稜部52を切削してもよい。 In the above-described embodiment, the ridge 52 is cut by the lathe machine 60 and the R cutting tool 607, but the ridge 52 may be cut by another known method.
 また、上述の実施の形態では、旋盤機60の制御装置605により、溝20及び稜部52の切削を連続的に実施してもよい。 Further, in the above-described embodiment, the groove 20 and the ridge 52 may be continuously cut by the control device 605 of the lathe machine 60.
 さらに、制御装置605を利用せずに、作業者がRバイト607の設置位置を調整し、稜部52を切削してもよい。 Furthermore, without using the control device 605, the operator may adjust the installation position of the R bit 607 and cut the ridge 52.
 異なる形状の稜部を有する複数のロールを準備した。そして、各ロールを利用して絞り圧延したときの噛み出し疵及びエッジ疵の発生率を調査した。 A plurality of rolls having ridges with different shapes were prepared. Then, the occurrence rate of biting wrinkles and edge wrinkles when drawn and rolled using each roll was investigated.
 [調査方法]
 26個のスタンドを備えるストレッチレデューサ(3ロール式)を用いた。また、図12に示すAセット~Cセットのロールを準備した。
[Investigation method]
A stretch reducer (3 roll type) having 26 stands was used. Also, rolls of A set to C set shown in FIG. 12 were prepared.
 各セット(Aセット~Cセット)のロールに対して、稜部形状を測定した。各セットは、3個のロール11を有した。各セットにおいて、ロール11の稜部52の任意の1箇所を常温硬化樹脂(テクノビット)を用いて型取りした。型取りされた常温硬化樹脂を利用して、上述の方法により、稜部領域RA52の曲率半径を0.5mmピッチで求めた。 The ridge shape was measured for each set (A set to C set) of rolls. Each set had three rolls 11. In each set, an arbitrary one of the ridges 52 of the roll 11 was molded using a room temperature curable resin (Technobit). The radius of curvature of the ridge region RA52 was obtained at a pitch of 0.5 mm by the above-described method using the room temperature curable resin that was molded.
 図12は、上記型取りにより得られた、各セットの稜部52の形状及び曲率半径を示す。図12を参照して、表中の「R形状」欄には、Aセット~Cセットの稜部形状をグラフで示す。各グラフの縦軸(Y座標)は、ロールの径方向の距離を示す。グラフの横軸(X座標)は、ロール軸方向Xの距離を示す。図中の点線は、曲率半径が2.5mmの場合の稜部形状を示す。図中の実線は、各セットのロール11の実際の形状を示す。 FIG. 12 shows the shape and the radius of curvature of the ridges 52 of each set obtained by the above-mentioned die cutting. Referring to FIG. 12, the “R shape” column in the table shows the ridge shape of A set to C set in a graph. The vertical axis (Y coordinate) of each graph indicates the distance in the radial direction of the roll. The horizontal axis (X coordinate) of the graph indicates the distance in the roll axis direction X. The dotted line in the figure shows the ridge shape when the radius of curvature is 2.5 mm. The solid line in the figure indicates the actual shape of each set of rolls 11.
 図12の表中の「曲率半径」欄には、「R形状」欄で示された稜部形状のロール軸方向Xに0.5mmピッチで求めた曲率半径をグラフで示す。各グラフの縦軸は、曲率半径(mm)を示す。横軸(X座標)は、ロール軸方向Xの座標を示す。具体的には、横軸の「T52」は、稜部52の頂上T52の位置を示す。「T52-1.5mm」は、頂上T52から図中左側(カリバ部側)に1.5mm移動した位置を示し、「T52+1.5mm」は、頂上T52から図中右側(フランジ部側)に1.5mm移動した位置を示す。要するに、「T52-1.5mm」と「T52+1.5mm」との間の範囲は、稜部領域RA52を示す。 In the “curvature radius” column in the table of FIG. 12, the radius of curvature obtained at a pitch of 0.5 mm in the roll axis direction X of the ridge shape shown in the “R shape” column is shown in a graph. The vertical axis of each graph represents the radius of curvature (mm). The horizontal axis (X coordinate) indicates the coordinate in the roll axis direction X. Specifically, “T52” on the horizontal axis indicates the position of the top T52 of the ridge 52. “T52-1.5 mm” indicates a position moved 1.5 mm from the top T52 to the left side (cariba portion side) in the figure, and “T52 + 1.5 mm” is 1 from the top T52 to the right side (flange portion side) in the figure. Indicates the position moved 5 mm. In short, the range between “T52−1.5 mm” and “T52 + 1.5 mm” indicates the ridge region RA52.
 各セットにおいて、測定された曲率半径に基づいて、F1値及びF2値を求めた。求めた結果を表1に示す。 In each set, F1 value and F2 value were obtained based on the measured radius of curvature. Table 1 shows the obtained results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、Bセットは、式(1)及び式(2)を満たした。一方、AセットのF1値は、3.0mmを超え、F2値が1.0mmを超えた。つまり、Aセットは式(1)及び式(2)を満たさなかった。Cセットは、F1値が3.0mmを超え、かつ、F2値が1.0mmを超えた。したがって、Cセットも式(1)及び式(2)のいずれも満たさなかった。 Referring to Table 1, the set B satisfied Expression (1) and Expression (2). On the other hand, the F1 value of A set exceeded 3.0 mm, and the F2 value exceeded 1.0 mm. That is, the A set did not satisfy the expressions (1) and (2). The C set had an F1 value exceeding 3.0 mm and an F2 value exceeding 1.0 mm. Therefore, neither C set nor formula (1) and formula (2) was satisfied.
 Aセットのロールを3番スタンドに取り付けた。そして、Aセットのロールを取り付けたストレッチレデューサを利用して、JIS規格のXSTCに相当する材質の鋼管20本を熱間で絞り圧延して、外径31.8mm、肉厚2.5mmの薄肉の鋼管を製造した。このとき、絞り圧延全体での外径加工度は、71%であった。
 ここでいう、絞り圧延全体での外径加工度は、以下の式(4)で求めた。
 全体での外径加工度(%)=[{(絞り圧延前の鋼管の外径)-(絞り圧延後の鋼管の外径)}/(絞り圧延前の鋼管の外径)]×100 (4)
A set of rolls was attached to No. 3 stand. Then, using a stretch reducer with an A set roll attached, 20 steel pipes made of a material corresponding to JIS standard XSTC are hot drawn and rolled to a thin wall having an outer diameter of 31.8 mm and a wall thickness of 2.5 mm. The steel pipe was manufactured. At this time, the outer diameter processing degree in the whole drawing rolling was 71%.
The outside diameter working degree in the whole drawing rolling here was calculated | required by the following formula | equation (4).
Overall outer diameter processing ratio (%) = [{(outer diameter of steel pipe before drawing) − (outer diameter of steel pipe after drawing)} / (outer diameter of steel pipe before drawing)] × 100 ( 4)
 圧延中、3番スタンドから出た熱間の鋼管を目視観察し、鋼管に噛み出し疵又はエッジ疵が発生しているか否かを判断した。そして、式(5)に基づいて、疵発生率(%)を求めた。
 疵発生率(%)=(噛み出し疵又はエッジ疵が確認された鋼管本数/絞り圧延した鋼管の総本数)×100 (5)
During rolling, the hot steel pipe from the No. 3 stand was visually observed to determine whether or not the steel pipe had bite or edge flaws. Then, the soot generation rate (%) was obtained based on the equation (5).
Crack generation rate (%) = (Number of steel pipes with biting or edge cracks / total number of steel pipes drawn and drawn) × 100 (5)
 Aセットでの絞り圧延を終了した後、3番スタンドのロールをAセットからBセットに取り替えた。他のスタンドのロールは取り替えなかった。Bセットのロールを3番スタンドに取り付けた後、Aセットの場合と同様に、鋼管20本に対して絞り圧延を実施した。このとき、鋼管の材質、絞り圧延全体での外径加工度は、Aセットの場合と同じであった。 ¡After finishing the rolling with A set, the roll of No. 3 stand was changed from A set to B set. The rolls of the other stands were not replaced. After the B set roll was attached to the No. 3 stand, as in the case of the A set, 20 steel pipes were drawn. At this time, the material of the steel pipe and the outer diameter processing degree in the whole drawing rolling were the same as in the case of the A set.
 Aセットの場合と同様に、3番スタンドから出た熱間の鋼管を目視観察し、鋼管に噛み出し疵又はエッジ疵が発生しているか否かを判断した。そして、式(5)に基づいて、疵発生率(%)を求めた。 As in the case of A set, the hot steel pipe from the No. 3 stand was visually observed to determine whether or not the steel pipe had bite or edge flaws. Then, the soot generation rate (%) was obtained based on the equation (5).
 Bセットでの絞り圧延を終了した後、3番スタンドのロールをBセットからCセットに取り替えた。そして、Aセット、Bセットと同じ条件で圧延を実施し、式(5)に基づいて、疵発生率を求めた。 後 After finishing the rolling with B set, the roll of No. 3 stand was changed from B set to C set. And rolling was implemented on the same conditions as A set and B set, and the wrinkle generation rate was calculated | required based on Formula (5).
 [調査結果]
 表1に調査結果を示す。表1を参照して、BセットのロールのF1値は式(1)を満たし、かつ、F2値は式(2)を満たした。そのため、Bセットのロールを使用した絞り圧延では、疵発生率が0%であった。
[Investigation result]
Table 1 shows the survey results. With reference to Table 1, F1 value of the roll of B set satisfy | filled Formula (1), and F2 value satisfy | filled Formula (2). Therefore, the wrinkle generation rate was 0% in the drawing rolling using the B set roll.
 一方、Cセットのロールは、式(1)及び式(2)を満たさなかった。そのため、疵発生率が高く、30.0%であった。また、Aセットのロールは、式(1)及び式(2)を満たさなかった。そのため、疵発生率は、20.0%であった。 On the other hand, the roll of C set did not satisfy the expressions (1) and (2). Therefore, the soot generation rate was high and was 30.0%. Moreover, the roll of A set did not satisfy | fill Formula (1) and Formula (2). Therefore, the soot generation rate was 20.0%.
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 As mentioned above, although embodiment of this invention was described, embodiment mentioned above is only the illustration for implementing this invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

Claims (2)

  1.  鋼管を絞り圧延する3ロール式絞り圧延機に用いられ、横断面で弓状をなす溝を有するカリバ部と、前記カリバ部に隣接するフランジ部とを備える絞り圧延用ロールの製造方法であって、
     前記絞り圧延用ロールを準備する工程と、
     前記絞り圧延用ロールをロール軸まわりに回転し、前記カリバ部と前記フランジ部との隣接部分に形成される稜部を切削して前記稜部に丸みをもたせる工程とを備え、
     前記稜部に丸みをもたせる工程では、
     前記稜部の頂上を中心とした前記ロール軸方向に3.0mmの範囲の稜部領域において、0.5mmピッチで測定された曲率半径の平均を2.5mm~3.0mmとし、かつ、前記曲率半径の最大値と最小値との差分を1.0mm以下にする、絞り圧延用ロールの製造方法。
    A method for producing a drawing roll, which is used in a three-roll drawing mill for drawing a steel pipe and includes a caliber portion having a groove having an arcuate cross section and a flange portion adjacent to the caliber portion. ,
    Preparing the drawing roll, and
    Rotating the drawing roll around a roll axis, cutting a ridge formed in an adjacent portion of the caliber portion and the flange portion, and rounding the ridge portion,
    In the step of rounding the ridge,
    In the ridge region in the range of 3.0 mm in the roll axis direction around the top of the ridge, the average radius of curvature measured at a pitch of 0.5 mm is 2.5 mm to 3.0 mm, and The manufacturing method of the roll for drawing rolling which makes the difference of the maximum value and minimum value of a curvature radius 1.0 mm or less.
  2.  鋼管を絞り圧延する3ロール式絞り圧延機に用いられる絞り圧延用ロールであって、
     横断面で弓状をなす溝を有するカリバ部と、
     前記カリバ部に隣接するフランジ部とを備え、
     前記カリバ部と前記フランジ部との隣接部分に形成される稜部の頂上を中心としたロール軸方向に3.0mmの範囲において、0.5mmピッチで測定された曲率半径の平均が2.5mm~3.0mmであり、かつ、前記曲率半径の最大値と最小値との差分が1.0mm以下である、絞り圧延用ロール。
    A drawing roll used in a three-roll drawing mill for drawing and rolling a steel pipe,
    A caliber portion having a cross-sectionally arched groove;
    A flange portion adjacent to the caliber portion,
    The average radius of curvature measured at a pitch of 0.5 mm is 2.5 mm in the range of 3.0 mm in the roll axis direction around the top of the ridge formed in the adjacent part of the caliber part and the flange part. A drawing roll having a diameter of ˜3.0 mm and a difference between a maximum value and a minimum value of the radius of curvature of 1.0 mm or less.
PCT/JP2012/058058 2011-03-31 2012-03-28 Method for manufacturing roll for reducing, and roll for reducing WO2012133484A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280013630.1A CN103459056B (en) 2011-03-31 2012-03-28 Method for manufacturing roll for reducing rolling, and roll for reducing rolling
BR112013023809-7A BR112013023809B1 (en) 2011-03-31 2012-03-28 METHOD FOR MANUFACTURING CYLINDER FOR REDUCING LAMINATION AND CYLINDER FOR REDUCING LAMINATION
MX2013011178A MX338263B (en) 2011-03-31 2012-03-28 Method for manufacturing roll for reducing, and roll for reducing.
US14/008,587 US20140013815A1 (en) 2011-03-31 2012-03-28 Method for manufacturing roll for reducing rolling, and roll for reducing rolling
EP12765966.2A EP2692453B1 (en) 2011-03-31 2012-03-28 Method for manufacturing roll for reducing, and roll for reducing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-079759 2011-03-31
JP2011079759A JP5003833B1 (en) 2011-03-31 2011-03-31 Method for producing drawing roll and drawing roll

Publications (1)

Publication Number Publication Date
WO2012133484A1 true WO2012133484A1 (en) 2012-10-04

Family

ID=46794004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058058 WO2012133484A1 (en) 2011-03-31 2012-03-28 Method for manufacturing roll for reducing, and roll for reducing

Country Status (7)

Country Link
US (1) US20140013815A1 (en)
EP (1) EP2692453B1 (en)
JP (1) JP5003833B1 (en)
CN (1) CN103459056B (en)
BR (1) BR112013023809B1 (en)
MX (1) MX338263B (en)
WO (1) WO2012133484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341514A (en) * 2013-07-05 2013-10-09 中北大学 Roller extrusion deflashing forming device of curve rotary appearance cylinder part

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007951B (en) * 2019-05-31 2022-08-16 宝山钢铁股份有限公司 Method for forming round pipe hole pattern of high-frequency straight welded pipe
CN114273571B (en) * 2021-12-01 2024-03-22 中北大学 Roller extrusion forming die for cylindrical part with internal grid ribs
CN116078810B (en) * 2023-02-17 2023-11-07 科城精铜(广州)有限公司 Rolling device and method for improving tensile strength of copper rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188905A (en) * 1984-10-05 1986-05-07 Nippon Steel Corp Draw-rolling method
JPH1157816A (en) 1997-08-12 1999-03-02 Kawasaki Steel Corp Press rolling method for tubes
JPH11197714A (en) 1998-01-20 1999-07-27 Kawasaki Steel Corp Reducing method of tube
WO2005070574A1 (en) 2004-01-21 2005-08-04 Sumitomo Metal Industries, Ltd. Tube reducing apparatus and roll for tube reducing apparatus
WO2005092531A1 (en) 2004-03-29 2005-10-06 Sumitomo Metal Industries, Ltd. Tube manufacturing method and apparatus for fixed diameter rolling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2333916C2 (en) * 1973-07-04 1986-01-09 Kocks Technik Gmbh & Co, 4010 Hilden Calibration of the rolls of a reducing mill for tubes
CN1006606B (en) * 1987-07-22 1990-01-31 东北重型机械学院 Roller for pipe-hot rolling mill with 3 rollers
DE19539408C2 (en) * 1995-10-11 2003-03-20 Sms Demag Ag Caliber contour of the roll of a tube rolling mill
CN2356765Y (en) * 1998-12-30 2000-01-05 宝山钢铁(集团)公司 Roll of three-roll reducing mill
JP4441912B2 (en) * 2005-03-28 2010-03-31 住友金属工業株式会社 Mandrel mill rolling method
JP5212768B2 (en) * 2007-01-11 2013-06-19 新日鐵住金株式会社 Method for determining reference position of rolling stand and perforated rolling roll
JP5093119B2 (en) * 2007-02-08 2012-12-05 住友金属工業株式会社 Perforated roll for drawing mill and drawing mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188905A (en) * 1984-10-05 1986-05-07 Nippon Steel Corp Draw-rolling method
JPH1157816A (en) 1997-08-12 1999-03-02 Kawasaki Steel Corp Press rolling method for tubes
JPH11197714A (en) 1998-01-20 1999-07-27 Kawasaki Steel Corp Reducing method of tube
WO2005070574A1 (en) 2004-01-21 2005-08-04 Sumitomo Metal Industries, Ltd. Tube reducing apparatus and roll for tube reducing apparatus
WO2005092531A1 (en) 2004-03-29 2005-10-06 Sumitomo Metal Industries, Ltd. Tube manufacturing method and apparatus for fixed diameter rolling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692453A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341514A (en) * 2013-07-05 2013-10-09 中北大学 Roller extrusion deflashing forming device of curve rotary appearance cylinder part

Also Published As

Publication number Publication date
CN103459056B (en) 2015-03-04
CN103459056A (en) 2013-12-18
EP2692453A4 (en) 2014-11-19
JP5003833B1 (en) 2012-08-15
BR112013023809B1 (en) 2019-04-02
EP2692453A1 (en) 2014-02-05
MX338263B (en) 2016-04-11
JP2012213786A (en) 2012-11-08
MX2013011178A (en) 2013-12-06
EP2692453B1 (en) 2015-12-30
US20140013815A1 (en) 2014-01-16
BR112013023809A2 (en) 2016-12-13

Similar Documents

Publication Publication Date Title
JP4453657B2 (en) Cold-finished seamless steel pipe
WO2012133484A1 (en) Method for manufacturing roll for reducing, and roll for reducing
JP5855529B2 (en) Hot rolling method for ring material
US8166789B2 (en) Pipe or tube reducing mill and roll for reducing mill
KR101277383B1 (en) Form rolling die
JP4192970B2 (en) Cold rolling method for metal tubes
JP4130924B2 (en) Hot rolling method for strip
JP4888252B2 (en) Seamless pipe cold rolling method
JP7180586B2 (en) Method for manufacturing seamless steel pipe
JP5849895B2 (en) Drawing rolling device and roll for drawing rolling device
CN103624403A (en) Roughening processing method for surface of roller
JP2007111756A (en) Tapered tube manufacturing method
JP2017039164A (en) Roller cutting method and roller stand
JP6380562B2 (en) Manufacturing method of plug
US9381555B2 (en) Method of cold rolling a seamless pipe
JP3606825B2 (en) Precision rolling method for steel bars and wire rods
JP2012223791A (en) Method of manufacturing steel pipe excellent in dimensional accuracy
JP4284918B2 (en) Method of manufacturing base material for drawing
JP2720742B2 (en) External cutting method of mandrel bar
JPH09159776A (en) Manufacture for zirconium alloy-made thimble tube for pressurized water reactor control rod guide tube
JP4418617B2 (en) Metal tube rolling method
JP2014166649A (en) Method for manufacturing seamless steel pipe
JP2001246405A (en) Method for cutting grooved rolling roll
JPS58199602A (en) Cold rolling method of hexagonal system metallic pipe
JP2007061908A (en) Method for hot-rolling bar material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/011178

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14008587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012765966

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013023809

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013023809

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130917