WO2012133473A1 - Wavelength dispersion pre-compensation optical communication system - Google Patents

Wavelength dispersion pre-compensation optical communication system Download PDF

Info

Publication number
WO2012133473A1
WO2012133473A1 PCT/JP2012/058043 JP2012058043W WO2012133473A1 WO 2012133473 A1 WO2012133473 A1 WO 2012133473A1 JP 2012058043 W JP2012058043 W JP 2012058043W WO 2012133473 A1 WO2012133473 A1 WO 2012133473A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatic dispersion
transmission
optical communication
delay amount
signal
Prior art date
Application number
PCT/JP2012/058043
Other languages
French (fr)
Japanese (ja)
Inventor
弘法 村木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2012133473A1 publication Critical patent/WO2012133473A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Definitions

  • the present invention relates to an optical communication system that compensates for chromatic dispersion in advance.
  • the spectrum width of a signal widens, and the chromatic dispersion received varies depending on the wavelength difference. Specifically, the propagation speed on the long wavelength side is slow and the propagation speed on the short wavelength side is high, centering on the zero dispersion wavelength. As a result, the transmitted signal is greatly distorted in the fiber transmission path, leading to waveform deterioration. This is due to the material dispersion and structural dispersion of the optical fiber. For example, it is affected by various factors such as fiber characteristics, environmental temperature, and transmission distance. It is a big factor that restricts. Various techniques have been proposed to avoid waveform degradation due to chromatic dispersion.
  • a method using a dispersion shifted fiber (DSF) or a dispersion compensation fiber (DCF) has been proposed.
  • the DSF is obtained by shifting the zero dispersion wavelength to the 1.55 ⁇ m band, and is suitable for optical communication using a 1.55 ⁇ m band optical signal by using the DSF for the transmission line.
  • the DCF is a dispersion compensating fiber having reverse characteristics to the optical fiber transmission line.
  • the chromatic dispersion of the DSF is opposite in sign to the chromatic dispersion of the transmission line. Therefore, chromatic dispersion compensation can be realized by connecting a DCF having an appropriate length that cancels out the chromatic dispersion amount of the transmission line in series in the transmission line.
  • the related technology not only requires a number of DCFs to appropriately compensate for the amount of chromatic dispersion, but also requires a huge amount of system construction and management, and lacks system expandability and flexibility.
  • the DCF is not only high in cost, but also increases in size when it is a module, and is greatly affected by insertion loss and environmental temperature when it is connected in multiple stages. For this reason, when performing optical transmission, it has been difficult to obtain sufficient chromatic dispersion compensation performance with the above-described related technology, and there has been a problem that flexible network design rich in expandability cannot be performed.
  • Various methods have been proposed to solve this problem.
  • Patent Document 1 estimates the chromatic dispersion effect caused by an optical fiber depending on the distance propagated by the optical fiber and the type of optical fiber, and corrects the transmission signal to reduce the interference power caused by chromatic dispersion and frequency-dependent circuit characteristics. The technology to the effect is described. Patent Document 2 describes the following technique.
  • Patent Document 3 in an optical transmission system in which chromatic dispersion compensation is performed using a chromatic dispersion compensation device, the wavelength of the transmitter 10 is varied based on wavelength control information to optimize the chromatic dispersion compensation amount for each channel. The technology to the effect is described.
  • Patent Document 4 describes a technique for obtaining an optical fiber communication system capable of compensating for chromatic dispersion in an optical fiber transmission line at high speed and with high precision.
  • Patent Document 5 also describes an optical fiber communication technique capable of compensating for chromatic dispersion in an optical fiber transmission line at high speed and with high precision. This is a more specific configuration by adding an OSC (monitoring optical interface) for chromatic dispersion control to the technique of the above-mentioned Patent Document 4.
  • OSC monitoring optical interface
  • Patent Document 6 discloses a technology that can be easily mounted on an optical communication terminal or a regenerative repeater in an ultra-high-speed optical transmission system, and can precisely adjust the chromatic dispersion of an optical fiber transmission line by a simple and versatile control method. Are listed. In this document, when optimal equalization control of chromatic dispersion at the receiving side is performed, switching between coarse and wide range search or fine and narrow range adjustment is performed according to the alarm state. The technology is described.
  • Patent Document 1 has a problem that it is necessary to grasp the transmission line characteristics of the optical fiber transmission line in advance.
  • Patent Document 2 has a problem that it is necessary to prepare a reference waveform that has not undergone waveform deterioration.
  • Patent Document 3 it is necessary to prepare an expensive chromatic dispersion compensation device.
  • the technologies of Patent Documents 4 and 5 require a large-capacity lookup table, a digital FIR filter with a long tap number, and a high-speed analog transversal filter as a precoder for chromatic dispersion equalization. There is a problem of growing.
  • Patent Document 6 equalizes chromatic dispersion on the reception side, and is not a technique for performing equalization in advance on the transmission side.
  • An object of the present invention is to provide a chromatic dispersion precompensated optical communication system capable of accurately and automatically compensating for chromatic dispersion in an optical fiber transmission line.
  • the chromatic dispersion pre-compensation optical communication transmitting / receiving apparatus includes: a decomposing unit that decomposes a signal to be transmitted for each frequency component; a calculating unit that calculates a delay amount to be added to each of the frequency components; Delay means for delaying each frequency component; and synthesis transmission means for synthesizing the delayed signals and sending the synthesized signals to a transmission line.
  • the chromatic dispersion pre-compensation optical communication transmission / reception method of the present invention decomposes a signal to be transmitted for each frequency component, calculates a delay amount to be added to each frequency component, and delays each frequency component based on the delay amount. Are combined, and the combined signal is sent to the transmission line.
  • the present invention has the following effects.
  • the present invention can provide a chromatic dispersion precompensation optical communication system capable of accurately and automatically compensating for chromatic dispersion in an optical fiber transmission line.
  • FIG. 1 shows the configuration of the chromatic dispersion precompensation optical communication system of the first embodiment.
  • Each of the transmission side node 101a and the reception side node 101b is an optical communication node, has a function and a port for transferring frames to each other, and is connected via communication paths 101c and 101d.
  • other devices for transmitting and receiving signals are connected to the nodes 101a and 101b via ports 102a and 102b.
  • the transmitting side node 101a transmits a signal to be transmitted to the receiving side node 101b (and its subordinates) among the signals received from other devices connected to the apparatus to the communication path 101c.
  • the receiving side node 101b receives the signal transmitted from the transmitting side node 101a via the communication path 101c, and transmits it to the corresponding other device connected to the apparatus.
  • the transmitting side node 101a has a port 102a for receiving a signal input from another connected device.
  • the transmission side node 101a has a Maper 103a that adds an error correction code (for example, FEC: Forward Error Correction) to the received signal and performs mapping processing on an OTN (Optical Transport Network) or the like.
  • OTN is a high-speed signal frame standardized by ITU-T (International Telecommunication Union Telecommunication Standardization Sector).
  • the transmission-side node 101a includes a Fourier transform circuit 105a that converts a time-domain signal into a frequency-domain signal, and a coefficient multiplier circuit 106a that multiplies the frequency-domain signal by a coefficient that performs chromatic dispersion compensation. Further, the transmission-side node 101a includes an inverse Fourier transform circuit 107a that converts a frequency domain signal into a time domain signal. In addition, the transmission side node 101a performs mapping processing to an OTN (Optical Transport Network) suitable for optical fiber communication and the like, and also performs E / O (Electrical / An optical converter circuit 108a.
  • OTN Optical Transport Network
  • the transmission side node 101a has a monitoring information reception INF (Interface) 109a that is an interface for receiving the number of bit errors (number of bit errors per unit time) transmitted from the reception side node. Further, the transmission side node 101a includes an optimization circuit 1010a that detects an optimum value based on the notified error information, and a coefficient calculation circuit 1011a that calculates a chromatic dispersion compensation coefficient based on the optimum value.
  • the reception-side node 101b includes an O / E circuit 105b that performs processing for converting an optical signal received from the optical fiber transmission path into an electrical signal and demodulation processing for the received signal.
  • the receiving node 101b performs demapping and error correction processing on the received data (for example, OTN), and converts it into a signal (for example, Ethernet (registered trademark)) suitable for communication with a device connected to the port 102b. , And a Demapper 103b that transmits a signal to the port 102b.
  • the receiving side node 101b is a monitoring circuit 107b that monitors bit error information of the port 102b and the Demapper 103b connected to other devices, and a monitoring that is an interface for transmitting the obtained bit error information to the transmitting side node 101a.
  • An information transmission INF 106b is included.
  • FIG. 1 is a block diagram showing the configuration of a system according to the first embodiment.
  • a chromatic dispersion pre-compensation optical communication system in the case of transmitting an optical signal from the transmission side node 101a to the reception side node 101b will be described.
  • the Maper 103a When a transmission signal is input from the port 102a, the signal is input to the Maper 103a. At this time, the input signal may be an optical signal or an electric signal.
  • an optical signal is converted into an electric signal, and an electric signal is directly transmitted to Mapper.
  • Mapper 103a an error correction code (for example, FEC) is added to the input client signal. It is mapped to OTN or the like, which is an optical signal frame standardized in 709, and then transmitted to the Fourier transform circuit 105a.
  • the Fourier transform circuit 105a converts the input signal from a time domain signal to a frequency domain signal.
  • the frequency domain signal includes both data on amplitude components and data on phase components in the frequency domain.
  • the monitoring information reception INF 109a it is assumed that the information on the number of bit errors fed back from the receiving side node 101b is received by the monitoring information reception INF 109a.
  • the communication path 101d may be directly connected to the receiving side node 101b, or may constitute a management network as shown in FIG.
  • control is performed by the optimization circuit 1010a so that an optimum coefficient for compensating chromatic dispersion is calculated and set by the coefficient arithmetic circuit 1011a.
  • the theory of a transfer function representing the chromatic dispersion of an optical fiber transmission line and the theory of calculating a coefficient having an inverse characteristic from the transfer function are generally widely known. However, it is not easy to measure the chromatic dispersion of an actual optical fiber transmission line accurately and in real time to obtain the true value of chromatic dispersion.
  • optimal chromatic dispersion compensation is sequentially performed based on transmission quality information such as an error rate and the number of error corrections in error correction processing included in the monitoring information fed back from the opposite optical communication apparatus.
  • the coefficient is obtained by the optimization circuit 1010a. A control method for obtaining the optimum value will be described later.
  • the coefficient multiplication circuit 106a multiplies the frequency domain signal transmitted from the Fourier transform circuit 105a by the chromatic dispersion correction coefficient set by the coefficient calculation circuit 1011a, thereby arriving at the receiving side node by the optical frequency. Compensate for the time difference. This process is called pre-equalization.
  • Pre-equalization corresponds to giving the inverse characteristic of the waveform degradation received by the communication channel 101c, and is for adaptively equalizing the waveform degradation received by the communication channel 101c.
  • the pre-equalized signal is transmitted to the inverse Fourier transform circuit 107a and converted from a frequency domain signal to a time domain signal.
  • the overlap-save method, the overlap-add method, or the like may be used for a series of processes including the conversion to the frequency domain by the Fourier transform circuit 105a, the process by the coefficient multiplication circuit 106a, and the process by the inverse Fourier transform circuit 107a. .
  • a method using the overlap-add method will be described later.
  • the signal converted into the time domain is sent to an E / O circuit (modulation circuit) 108a.
  • the E / O circuit (modulation circuit) 108a performs modulation processing on the signal by the set method and transmits the signal to the communication path 101c.
  • Examples of the modulation process include BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), and QAM (Quadrature Amplitude Modulation).
  • the modulation process such as QPSK includes an encoding process for converting an electric signal into a signal to be carried on an optical signal and a modulation process (for example, an LN modulator) for modulating light from a laser.
  • FIG. 3 shows an outline of a series of processes such as Fourier transform, coefficient multiplication, and inverse Fourier transform when the overlap-add method is used.
  • the rectangle which is inclined obliquely shown in the lower part of FIG. 3 indicates that processing for compensating for different arrival times depending on frequency components due to chromatic dispersion has been performed. Assuming that the sign of the chromatic dispersion coefficient is positive, it is predicted that the high frequency component will arrive first, and signal processing is performed so that the transmission timing of the high frequency component is delayed.
  • the Fourier transform circuit 105a determines a section for Fourier transform so that the Fourier transform sections 301a, 301b, and 301c overlap each other.
  • the signals in the Fourier transform sections 301a and 301b are subjected to Fourier transform processing from the time domain signal to the frequency domain signal by the Fourier transform circuit 105a.
  • the converted frequency domain signals 304a and 304b are multiplied by a coefficient for correcting chromatic dispersion in the coefficient multiplication circuit 106a.
  • a coefficient for correcting chromatic dispersion is set by the coefficient calculation circuit 1011a.
  • the frequency domain signals 304a and 304b are subjected to inverse Fourier transform processing by the inverse Fourier transform circuit 107a.
  • the obtained signals 308a and 308b after inverse Fourier transform are subjected to removal processing at both ends of the signal, and a pre-equalized transmission signal is obtained based on these signals.
  • the receiving side node 101b in FIG. 1 receives a signal from the communication path 101c.
  • the O / E circuit 105b converts the received optical signal into an electrical signal, and performs a demodulation process on the modulation performed by the E / O circuit 108a.
  • the Demapper 103b performs demapping processing and error correction processing on the signal transmitted from the O / E circuit 105b.
  • the signal is converted into a format suitable for communication with a device connected to the port 102b (for example, Ethernet) and output to the port 102b.
  • the monitoring circuit 107b monitors the number of bit errors in the Demapper 103b, and the observed information is transmitted to the monitoring information reception INF 109a of the transmission side node via the monitoring information transmission INF 106b. If there is an error between the chromatic dispersion compensation amount given in advance at the transmission side node and the chromatic dispersion amount possessed by the communication channel 101c, a large amount of bit errors are observed in the Demapper 103b, and the information is immediately sent to the optimization circuit 1010a. Is fed back.
  • FIGS. 4A and 4B show an operation example of the optimization circuit 1010a
  • FIG. 5 shows a flowchart of the operation.
  • the vertical axis in FIG. 4 represents the number of bit error corrections (number of bit errors) per unit time in error correction processing of an error correction code (for example, FEC), and the horizontal axis represents chromatic dispersion.
  • 4A and 4B show characteristics in which the number of bit errors continuously changes in accordance with the amount of chromatic dispersion compensation. It is known that when a sufficient number of bit errors are generated or when a number of bit errors for a long period that allows a sufficient number of bit errors to be observed, the characteristics generally change parabolically.
  • the optimization circuit 1010a starts training from the initial set value ⁇ t (0) toward ⁇ t (n + 1) or ⁇ t (n ⁇ 1).
  • steps 512-514 the direction in which chromatic dispersion is scanned is determined.
  • step 505 the total number of bit errors in ⁇ t (i) and the total number of bit errors in ⁇ t (i + flag) during the convergence determination time ⁇ T are compared. At this time, if the total number of bit errors of ⁇ t (i + flag) is smaller than the total number of bit errors of ⁇ t (i), step 505 is performed again through step 504.
  • ⁇ t (i) is the value of ⁇ t (i + flag) used in the previous step.
  • the process proceeds to step 506.
  • the total bit error count determination time at this time is ⁇ T
  • the processing after step 506 is processing related to tracking. Usually, the optical fiber is subjected to various external factors (for example, temperature change) even after being laid.
  • the optimum value selection by fine adjustment that is continued after the optimum value selection (coarse adjustment) by training is performed by tracking.
  • a change step ⁇ D2 of chromatic dispersion in tracking is set. This process may be performed simultaneously with step 501, and ⁇ D2 set at this time is preferably smaller than ⁇ D1 set in step 501.
  • steps 510 and 511 the total number of bit errors in each of ⁇ t (ii ⁇ 1), ⁇ t (ii), and ⁇ t (ii + 1) is compared.
  • ⁇ t (ii) when step 510 is performed again is the chromatic dispersion in which the total number of bit errors is the smallest among ⁇ t (ii ⁇ 1), ⁇ t (ii), and ⁇ t (ii + 1) performed immediately before. Is set to a value.
  • the operation at this time is shown in FIG. In this way, by constantly feeding back the number of bit errors of the receiving side node to the transmitting side node, the control works so as to minimize the number of bit errors in the receiving side node, and as a result, the wavelength dispersion is always compensated.
  • a communication system can be constructed.
  • the above optimization operation is performed by sequentially changing the chromatic dispersion compensation amount in a predetermined step in order from the initial setting value ⁇ t (0) and acquiring the number of bit errors at that time within a certain range.
  • This is a method for estimating the chromatic dispersion compensation amount that minimizes the number of bit errors.
  • the method for estimating the minimum number of bit errors is not limited to this method, and the following method can also be adopted. That is, as described above, it is known that the number of bit errors with respect to the amount of chromatic dispersion compensation generally changes continuously in a parabolic manner in a situation where a sufficient number of bit errors has occurred.
  • the relationship between the amount of chromatic dispersion compensation and the number of bit errors can be expressed by a function such as a quadratic function.
  • the quadratic function is estimated from some chromatic dispersion compensation amounts and the number of bit errors corresponding thereto, and the minimum value of the number of bit errors and the chromatic dispersion compensation amount in that case are calculated backward from the estimated quadratic function. Methods can also be employed. Alternatively, the following method can also be adopted.
  • an n-order polynomial is estimated from a chromatic dispersion compensation amount and the number of bit errors corresponding thereto using a method such as Lagrange interpolation, and the minimum value of the number of bit errors and the wavelength in that case are estimated from the estimated polynomial.
  • the dispersion compensation amount is calculated backward (FIG. 10).
  • the interpolation method is not limited to the Lagrangian interpolation method.
  • the above optimization operations may be combined. That is, at the initial stage of training for transmission start, the optimum chromatic dispersion compensation amount is quickly obtained by the method of performing polynomial estimation shown in FIG. 10, and then the chromatic dispersion compensation amount is trained and tracked by the method shown in FIGS.
  • the first embodiment is configured as described above, the following effects can be obtained. That is, it is possible to provide a chromatic dispersion precompensation optical communication system capable of accurately and automatically compensating for chromatic dispersion of an optical fiber transmission line while suppressing circuit scale and power consumption.
  • chromatic dispersion compensation is performed by digital signal processing after converting a signal into an electrical signal, a DCF required for related technology is not required, and a flexible network design is possible.
  • the bit error number information is fed back to the transmitting side node, and the chromatic dispersion compensation amount is adaptively controlled based on the feedback information.
  • the optical reception module can be reduced in size. Also, since the received signal at the receiving side node becomes a signal after chromatic dispersion compensation, it becomes easy to compare the optical waveform at the receiving side node with the optical waveform at the transmitting side node.
  • FIG. 8 is a flowchart (2) of the optimization circuit of the second embodiment of the present invention.
  • ⁇ D1 is a training dispersion step width
  • ⁇ D2 is a tracking dispersion step width
  • flag is a training scanning direction flag
  • t (i) and t (ii) are chromatic dispersion compensation amounts
  • ErrorTh is shifted from tracking to training.
  • Error threshold for This embodiment is different from the flow of FIG. 5 in that a flow for returning to training again according to a predetermined condition after transition to tracking is added in the first embodiment. This assumes that the chromatic dispersion amount is greatly shifted due to path switching or the like in the operating state.
  • FIG. 1 is a training dispersion step width
  • ⁇ D2 is a tracking dispersion step width
  • flag is a training scanning direction flag
  • t (i) and t (ii) are chromatic dispersion compensation amounts
  • ErrorTh is shifted from tracking to training.
  • Error threshold for This embodiment is different from the flow of FIG. 5 in that a flow for returning to training again according
  • the total number of bit errors (Error0) of the previous determination time ⁇ T and the error1 of the latest determination time ⁇ T are compared (step 814). If the difference is equal to or greater than a certain value (ErrorTh), initialization is performed (step 816, 817) Re-enter the training state. In other words, the state immediately before step 512 is restored.
  • an error occurs between the chromatic dispersion compensation amount given in advance by the transmission side node and the chromatic dispersion amount possessed by the communication path 101c, and a situation occurs in which a large amount of bit errors occur in the Demapper 103b. If this happens, it operates as follows. That is, the optimal value search is performed again from the fine adjustment state by tracking to the coarse adjustment stage again by training. This makes it possible to follow a large change in the wavelength dispersion characteristics of the optical fiber. (Third embodiment) In the first embodiment, the amount of chromatic dispersion is adjusted by detecting the number of bit errors at the receiving side node and feeding it back to the transmitting side node.
  • a method is described in which the chromatic dispersion compensation amount is adjusted by directly detecting the chromatic dispersion amount at the receiving side node and feeding back to the transmitting side node instead of detecting the number of bit errors.
  • a basic configuration of this embodiment is shown in FIG. An operation when an optical signal is transmitted from the transmission side node 701a to the reception side node 701b in FIG. 7 will be described.
  • the description will be divided into two steps: roughly measuring the chromatic dispersion of the transmission line and conducting the main signal. First, steps for measuring the approximate chromatic dispersion of the transmission line will be described.
  • the E / O circuit 708a of the transmission side node 701a transmits optical pulse waves having a plurality of wavelengths toward the 701b at the same time.
  • the optical pulse transmitted from the transmission side node 701a is received by the dispersion measuring device 705b of the reception side node 701b.
  • the dispersion measuring device 705b a difference in time required for propagation of the two pulses incident on the transmission side node 701a is measured. Since an equation for calculating approximate chromatic dispersion of a transmission line using a propagation time difference between optical signals of different wavelengths is generally known, description thereof is omitted in this section. In this way, the approximate chromatic dispersion amount of the transmission line for the desired wavelength can be calculated.
  • This value is monitored by the monitoring circuit 707b and appropriately fed back from the monitoring information transmission INF 706b to the transmission side node 101a.
  • the fed back information is received by the monitoring information reception INF 709a, and the chromatic dispersion is more accurately compensated by the coefficient calculation circuit 7011a based on the information, that is, the approximate chromatic dispersion amount of the transmission path.
  • a coefficient is calculated.
  • the E / O circuit 708a switches from the step of measuring chromatic dispersion to the step of conducting the main signal. Next, the step of conducting the main signal will be described.
  • the E / O circuit 708a it is not necessary to output pulses of a plurality of wavelengths by the E / O circuit 708a as in the above-described step. Further, there is no need to measure chromatic dispersion with the dispersion measuring device 705b.
  • the signal input from the port 702a is transmitted to the receiving side node through the mapper 703a, the Fourier transform circuit 705a, the coefficient multiplication circuit 706a, the inverse Fourier transform circuit 707a, and the E / O circuit 708a. Note that the basic operation of these blocks in this step is the same as in the first embodiment, and is omitted in this section. For the same reason, the operations of the O / E circuit 704b and the Demapper 703b are also omitted.
  • the number of bit errors detected by the Demapper 703b is transmitted to the monitoring circuit 707b, and the number of bit errors is constantly monitored by the monitoring circuit 707b.
  • the operation when a large error occurs between the chromatic dispersion compensation amount given in advance by the transmission side node and the chromatic dispersion amount possessed by the communication channel 101c, and a large number of bit errors are observed in the Demapper 103b will be described.
  • the process proceeds to the E / O circuit 708a via the dispersion measuring device 705b, the monitoring information transmission INF 706b, and the monitoring information reception INF 709a.
  • a switching instruction is transmitted.
  • the E / O circuit 708a and the dispersion measuring device 705b re-shift from the step of conducting the main signal to the step of measuring chromatic dispersion. After the chromatic dispersion measurement, the process shifts again to the step of conducting the main signal.
  • the third embodiment a technique for directly detecting the chromatic dispersion amount at the reception side node, adjusting the chromatic dispersion compensation amount by feeding back to the transmission side node, and conducting the main signal after the adjustment is completed. It was described. However, the tracking operation described in the first embodiment may be performed after the main signal is turned on after the adjustment is completed.
  • FIG. 9 is a diagram of a chromatic dispersion precompensated optical communication system according to a fourth embodiment of the present invention.
  • the chromatic dispersion precompensation optical communication transmitting / receiving apparatus 901 of the fourth embodiment includes a decomposition unit 902 that decomposes a signal to be transmitted for each frequency component, a calculation unit 903 that calculates a delay amount to be added to each of the frequency components, Have Further, the chromatic dispersion pre-compensation optical communication transmitting / receiving apparatus 901 combines a delay unit 904 that delays each frequency component based on the delay amount, and a combined transmission unit that combines the delayed signals and sends the combined signals to a transmission line. 905.
  • the fourth embodiment described above it is possible to provide a chromatic dispersion pre-compensation optical communication system capable of accurately and automatically compensating for the chromatic dispersion of the optical fiber transmission line.
  • the number of error correction bits (number of bit errors) per unit time in error correction processing is used as transmission quality information, but the present invention is not limited to this.
  • a BER Bit Error rate
  • FER Frame Error rate
  • CRC Cyclic Redundancy Check
  • a dedicated device is assumed, but the following may be used. That is, for example, a personal computer device that performs various data processing is loaded with a board or a card that performs processing corresponding to this example, and each processing is executed on the computer device side. In this way, a configuration may be adopted in which software for executing the processing is installed in a personal computer device and executed.
  • the program installed in the data processing device such as the personal computer device may be distributed via various recording (storage) media such as an optical disk and a memory card, or distributed via communication means such as the Internet. Also good.
  • (Appendix 1) Decomposition means for decomposing the signal to be transmitted for each frequency component; Calculating means for calculating a delay amount to be added to each of the frequency components; Delay means for delaying each frequency component based on the delay amount; A combined transmission means for combining the delayed signals and sending the combined signals to the transmission line as a combined transmission signal; A chromatic dispersion precompensated optical communication transmitter / receiver comprising: (Appendix 2) A transmission evaluation value receiving means for receiving a transmission evaluation value returned from the receiving side that has received each of the combined transmission signals; The calculation means calculates a delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value, The delay means delays each of the frequency components by the delay amount group of a predetermined plurality of combinations, The
  • the chromatic dispersion precompensated optical communication transmitter / receiver according to supplementary note 1, wherein: (Appendix 3) The transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
  • the delay amount group is changed by a predetermined amount until the number of bit errors is minimized, Reducing the predetermined amount after the number of bit errors is minimized;
  • the delay amount group is a best value of the transmission evaluation value in a predetermined function that approximates a relationship of the transmission evaluation value to the chromatic dispersion
  • the chromatic dispersion precompensated optical communication transmitter / receiver according to any one of appendix 2 to appendix 5, wherein (Appendix 7)
  • the predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
  • the delay amount group is changed until the delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
  • the chromatic dispersion precompensated optical communication transmitting / receiving apparatus according to any one of appendix 2 to appendix 7, wherein (Appendix 9)
  • the chromatic dispersion precompensation optical communication transmitter / receiver according to any one of appendices 1 to 8, and a chromatic dispersion precompensation optical communication transmitter / receiver on a receiving side installed opposite to the chromatic dispersion precompensation optical communication transmitter / receiver, Prepared,
  • the chromatic dispersion pre-compensation optical communication system wherein the reception-side chromatic dispersion pre-compensation optical communication transceiver receives each of the combined transmission signals and returns a transmission evaluation value.
  • (Appendix 11) Receiving a transmission evaluation value returned from the receiving side that received each of the combined transmission signals; Calculate an optimal delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value, Each of the frequency components is delayed by a predetermined plurality of combinations of the delay amount groups, Combining each delayed frequency component for each of the plurality of combinations and sending it to a transmission line as a combined transmission signal;
  • the chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 10, wherein: (Appendix 12)
  • the transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
  • the chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 11, wherein: (Appendix 13) Changing the delay amount group until the number of bit errors is minimized;
  • the chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 12, wherein: (Appendix 14) The delay amount group is changed by a predetermined amount until the number of bit errors is minimized, Reducing the predetermined amount after the number of bit errors is minimized; 14.
  • the chromatic dispersion precompensated optical communication transmitting / receiving method according to appendix 12 or appendix 13.
  • the delay amount group is a best function of the transmission evaluation value in a predetermined function that approximates the relationship of the transmission evaluation value to the chromatic dispersion amount of the transmission line corresponding to each of the delay amount groups of the predetermined plurality of combinations. Calculated as a delay amount group corresponding to the chromatic dispersion amount giving the value 15.
  • the chromatic dispersion precompensated optical communication transmission / reception method according to any one of appendix 11 to appendix 14, wherein: (Appendix 16)
  • the predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
  • the chromatic dispersion precompensated optical communication transmission / reception method characterized by: (Appendix 17) The delay amount group is changed by a constant amount until delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
  • the chromatic dispersion precompensated optical communication transmitting / receiving method according to any one of Supplementary Note 11 to Supplementary Note 16, wherein: This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-067671 for which it applied on March 25, 2011, and takes in those the indications of all here.
  • the present invention relates to an optical communication system that compensates for chromatic dispersion in advance, and has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

The purpose of the present invention is to provide a wavelength dispersion pre-compensation optical communication system that can precisely and automatically compensate for wavelength dispersion of optical fiber transmission paths. A wavelength dispersion pre-compensation optical communication transceiver apparatus of the present invention comprises: a decomposing means for decomposing a signal, which is to be transmitted, into frequency components; a calculating means for calculating a delay amount to be added to each of the frequency components; a delaying means for delaying each of the frequency components on the basis of the delay amount; and a combining/transmitting means for combining the delayed signals and sending out the combined signals to a transmission path.

Description

波長分散予補償光通信システムChromatic dispersion precompensation optical communication system
 本発明は、波長分散を予め補償する光通信システムに関する。 The present invention relates to an optical communication system that compensates for chromatic dispersion in advance.
 近年、通信の分野においては、高速・大容量伝送が可能な光ファイバを用いた光通信システムが主流となり、その利用範囲は飛躍的に広がっている。光通信システムでは、急速な通信容量の需要増加に対応するため、伝送速度の高速化あるいは波長の多重化が進んでいる。このような高速光伝送路においては光ファイバ伝送路が持つ累積波長分散による受信信号の波形劣化が大きな問題となっている。
 波長分散とは光信号の到達時間に差が生じる現象であり、波長依存性のあることが知られている。光通信システムでは、ファイバ伝送路に適した形の変調処理を行う際、信号のスペクトラム幅が広がり、その波長の違いによって受ける波長分散が異なる。具体的には、零分散波長を中心に長波長側の伝搬速度が遅くなり、短波長側の伝搬速度が速くなる性質である。その結果、送信した信号はファイバ伝送路中において大きく歪み、波形劣化に繋がってしまう。
 これは光ファイバが持つ材料分散や構造分散に起因するものであり、例えばファイバの特性、環境温度、伝送距離などの様々な要因を受けてしまうため、結果として光通信システムにおいて伝送距離や伝送速度に制限を与える大きな要因となっている。
 波長分散による波形劣化を回避するために様々な技術提案されてきた。その一つに、分散シフトファイバ(DSF:Dispersion Shift Fiber)や分散補償ファイバ(DCF:Dispersion Compensation Fiber)を用いた方法が提案されている。DSFは零分散波長を1.55μm帯にシフトしたものであり、伝送路にDSFを用いることで1.55μm帯の光信号を用いて光通信する場合に適する。他方、DCFは光ファイバ伝送路と逆特性を持つ分散補償ファイバである。このDSFの波長分散は伝送路の波長分散と符号が逆である。そのため、伝送路の波長分散量を相殺するような適切な長さのDCFを伝送路中に直列に接続することによって波長分散補償が実現できる。
 しかしながら関連する技術では、波長分散量を適切に補償するためにいくつものDCFが必要となるだけでなく、システムの構築ならびに管理コストが膨大となり、また、システムの拡張性、柔軟性に欠けてしまう。加えて、DCFはコストが高いだけでなくモジュールにした場合のサイズが大きくなってしまい、多段接続した際の挿入損失や環境温度に大きく影響を受けてしまう。このため光伝送を行う場合には、上述の関連する技術では充分な波長分散補償性能を得ることが難しく、また、拡張性に富んだ柔軟なネットワーク設計を行えないという問題が生じていた。
 この問題を解決するために、様々な方法が提案されている。たとえば特許文献1には光ファイバで伝搬する距離と光ファイバの種類によって、光ファイバにより生じる波長分散効果を推定し、送信信号を補正して波長分散や周波数依存の回路特性により生じる干渉電力を低減させる旨の技術が記載されている。また特許文献2には次のような技術が記載されている。即ち受信信号の波形劣化量(アイ開口度)を検出して、その波形劣化量を第1及び第2の波形劣化補償手段の補償特性を制御することで複数段階に補償することにより、受信装置で補償可能な波形劣化の範囲を拡大するという技術である。また、特許文献3には波長分散補償デバイスで波長分散補償を行っている光伝送システムにおいて、波長制御情報に基づいて送信機10の波長を変動させチャンネル毎に波長分散補償量の最適化を行なう旨の技術が記載されている。また、特許文献4は光ファイバ伝送路の波長分散を高速かつ精密に補償できる光ファイバ通信システムを得る技術が記載されている。これは、受信側の誤り訂正回路で観測したビット誤りを送信側にフィードバックし最適化手段にてビット誤り訂正数が最少になるように波長分散量を掃引し、最適な波長分散量に調整する技術である。また、特許文献5にも光ファイバ伝送路の波長分散を高速かつ精密に補償できる光ファイバ通信技術が記載されている。これは先の特許文献4の技術に波長分散制御の為のOSC(監視光インタフェース)を追加し、より具体的構成としたものである。また、特許文献6は超高速光伝送システムにおける光通信端局や再生中継器に実装が容易で、かつ汎用性の高い簡単な制御手法によって光ファイバ伝送路の波長分散を精密に調整できる技術が記載されている。この文献には受信側に於ける波長分散の最適等化制御の際に、アラームの状態に応じて、粗くて広い範囲のサーチを行うか、細かく狭い範囲での調整を行うかの切り替えをする技術が記載されている。
In recent years, in the field of communication, optical communication systems using optical fibers capable of high-speed and large-capacity transmission have become mainstream, and the range of use has expanded dramatically. In an optical communication system, in order to cope with a rapid increase in demand for communication capacity, transmission speed is increased or wavelength multiplexing is advanced. In such a high-speed optical transmission line, the waveform deterioration of the received signal due to the accumulated chromatic dispersion of the optical fiber transmission line is a serious problem.
Chromatic dispersion is a phenomenon that causes a difference in the arrival time of an optical signal, and is known to have wavelength dependence. In an optical communication system, when performing a modulation process suitable for a fiber transmission line, the spectrum width of a signal widens, and the chromatic dispersion received varies depending on the wavelength difference. Specifically, the propagation speed on the long wavelength side is slow and the propagation speed on the short wavelength side is high, centering on the zero dispersion wavelength. As a result, the transmitted signal is greatly distorted in the fiber transmission path, leading to waveform deterioration.
This is due to the material dispersion and structural dispersion of the optical fiber. For example, it is affected by various factors such as fiber characteristics, environmental temperature, and transmission distance. It is a big factor that restricts.
Various techniques have been proposed to avoid waveform degradation due to chromatic dispersion. For example, a method using a dispersion shifted fiber (DSF) or a dispersion compensation fiber (DCF) has been proposed. The DSF is obtained by shifting the zero dispersion wavelength to the 1.55 μm band, and is suitable for optical communication using a 1.55 μm band optical signal by using the DSF for the transmission line. On the other hand, the DCF is a dispersion compensating fiber having reverse characteristics to the optical fiber transmission line. The chromatic dispersion of the DSF is opposite in sign to the chromatic dispersion of the transmission line. Therefore, chromatic dispersion compensation can be realized by connecting a DCF having an appropriate length that cancels out the chromatic dispersion amount of the transmission line in series in the transmission line.
However, the related technology not only requires a number of DCFs to appropriately compensate for the amount of chromatic dispersion, but also requires a huge amount of system construction and management, and lacks system expandability and flexibility. . In addition, the DCF is not only high in cost, but also increases in size when it is a module, and is greatly affected by insertion loss and environmental temperature when it is connected in multiple stages. For this reason, when performing optical transmission, it has been difficult to obtain sufficient chromatic dispersion compensation performance with the above-described related technology, and there has been a problem that flexible network design rich in expandability cannot be performed.
Various methods have been proposed to solve this problem. For example, Patent Document 1 estimates the chromatic dispersion effect caused by an optical fiber depending on the distance propagated by the optical fiber and the type of optical fiber, and corrects the transmission signal to reduce the interference power caused by chromatic dispersion and frequency-dependent circuit characteristics. The technology to the effect is described. Patent Document 2 describes the following technique. That is, by detecting the waveform degradation amount (eye opening degree) of the received signal and compensating the waveform degradation amount in a plurality of stages by controlling the compensation characteristics of the first and second waveform degradation compensation means, the receiving apparatus This technique expands the range of waveform degradation that can be compensated for by the Further, in Patent Document 3, in an optical transmission system in which chromatic dispersion compensation is performed using a chromatic dispersion compensation device, the wavelength of the transmitter 10 is varied based on wavelength control information to optimize the chromatic dispersion compensation amount for each channel. The technology to the effect is described. Patent Document 4 describes a technique for obtaining an optical fiber communication system capable of compensating for chromatic dispersion in an optical fiber transmission line at high speed and with high precision. This is because the bit error observed by the error correction circuit on the receiving side is fed back to the transmitting side, and the chromatic dispersion amount is swept so that the number of bit error correction is minimized by the optimization means, and adjusted to the optimum chromatic dispersion amount. Technology. Patent Document 5 also describes an optical fiber communication technique capable of compensating for chromatic dispersion in an optical fiber transmission line at high speed and with high precision. This is a more specific configuration by adding an OSC (monitoring optical interface) for chromatic dispersion control to the technique of the above-mentioned Patent Document 4. Patent Document 6 discloses a technology that can be easily mounted on an optical communication terminal or a regenerative repeater in an ultra-high-speed optical transmission system, and can precisely adjust the chromatic dispersion of an optical fiber transmission line by a simple and versatile control method. Are listed. In this document, when optimal equalization control of chromatic dispersion at the receiving side is performed, switching between coarse and wide range search or fine and narrow range adjustment is performed according to the alarm state. The technology is described.
特開2010−57138号公報JP 2010-57138 A 特開2004−80701号公報JP 2004-80701 A 特開2005−341392号公報JP 2005-341392 A 特開2007−259281号公報JP 2007-259281 A 特開2010−34830号公報JP 2010-34830 A 特開2003−224523号公報JP 2003-224523 A
 しかし、特許文献1の技術では光ファイバ伝送路の伝送路特性を事前に把握しておく必要があるという問題がある。また特許文献2では波形劣化を受けていない基準波形を準備しておく必要があるという問題がある。また特許文献3では高価な波長分散補償デバイスを用意する必要がある。また、特許文献4、5の技術では波長分散等化の為のプリコーダとして、大容量のルックアップテーブルやタップ数の長いデジタルFIRフィルタや高速アナログトランスバーサルフィルタを要し、回路規模、消費電力が大きくなるという問題がある。また、特許文献6は受信側にて波長分散を等化するものであり、送信側で予め等化を行う技術ではない。
 また、一般的にDCF等を用いるシステムでは、波長分散量を適切に補償するためにいくつものDCFが必要となるだけでなく、システムの構築ならびに管理コストが膨大となり、また、システムの拡張性、柔軟性に欠けてしまう。
 加えて、DCFはコストが高いだけでなくモジュールにした場合のサイズが大きくなってしまい、多段接続した際の挿入損失や環境温度に大きく影響を受けてしまう。このため光伝送を行う場合には、上述の関連する技術では充分な波長分散補償性能を得ることが難しく、また、拡張性に富んだ柔軟なネットワーク設計を行えないという問題が生じていた。
(発明の目的)
 本発明は、光ファイバ伝送路の波長分散を精密かつ自動に補償することのできる、波長分散予補償光通信システムを提供することを目的とする。
However, the technique of Patent Document 1 has a problem that it is necessary to grasp the transmission line characteristics of the optical fiber transmission line in advance. Further, Patent Document 2 has a problem that it is necessary to prepare a reference waveform that has not undergone waveform deterioration. In Patent Document 3, it is necessary to prepare an expensive chromatic dispersion compensation device. In addition, the technologies of Patent Documents 4 and 5 require a large-capacity lookup table, a digital FIR filter with a long tap number, and a high-speed analog transversal filter as a precoder for chromatic dispersion equalization. There is a problem of growing. Further, Patent Document 6 equalizes chromatic dispersion on the reception side, and is not a technique for performing equalization in advance on the transmission side.
In general, in a system using a DCF or the like, not only a number of DCFs are required to appropriately compensate for the amount of chromatic dispersion, but the construction and management costs of the system become enormous. It lacks flexibility.
In addition, the DCF is not only high in cost, but also increases in size when it is a module, and is greatly affected by insertion loss and environmental temperature when it is connected in multiple stages. For this reason, when performing optical transmission, it has been difficult to obtain sufficient chromatic dispersion compensation performance with the above-described related technology, and there has been a problem that flexible network design rich in expandability cannot be performed.
(Object of invention)
An object of the present invention is to provide a chromatic dispersion precompensated optical communication system capable of accurately and automatically compensating for chromatic dispersion in an optical fiber transmission line.
 本発明の波長分散予補償光通信送受信装置は、送信すべき信号を周波数成分毎に分解する分解手段と、前記周波数成分各々に加えるべき遅延量を算出する算出手段と、前記遅延量に基づき前記各周波数成分を遅延させる遅延手段と、遅延させた信号を合成し、該合成した信号を伝送路に送出する合成送信手段と、を有する。
 本発明の波長分散予補償光通信送受信方法は、送信すべき信号を周波数成分毎に分解し、前記周波数成分各々に加えるべき遅延量を算出し、前記遅延量に基づき前記各周波数成分を遅延させた後に合成し、該合成した信号を伝送路に送出する。
The chromatic dispersion pre-compensation optical communication transmitting / receiving apparatus according to the present invention includes: a decomposing unit that decomposes a signal to be transmitted for each frequency component; a calculating unit that calculates a delay amount to be added to each of the frequency components; Delay means for delaying each frequency component; and synthesis transmission means for synthesizing the delayed signals and sending the synthesized signals to a transmission line.
The chromatic dispersion pre-compensation optical communication transmission / reception method of the present invention decomposes a signal to be transmitted for each frequency component, calculates a delay amount to be added to each frequency component, and delays each frequency component based on the delay amount. Are combined, and the combined signal is sent to the transmission line.
 以上説明したように、本発明においては、以下に記載するような効果を奏する。
 本発明は、光ファイバ伝送路の波長分散を精密かつ自動に補償することのできる、波長分散予補償光通信システムを提供することができる。
As described above, the present invention has the following effects.
The present invention can provide a chromatic dispersion precompensation optical communication system capable of accurately and automatically compensating for chromatic dispersion in an optical fiber transmission line.
第1の実施形態の波長分散予補償光通信システムを示す図である。It is a figure which shows the chromatic dispersion pre-compensation optical communication system of 1st Embodiment. 第1の実施形態の波長分散予補償光通信システムを用いた管理ネットワークを示す図である。It is a figure which shows the management network using the wavelength dispersion pre-compensation optical communication system of 1st Embodiment. 第1の実施形態のoverlap−add法を用いた場合の信号処理の概要Overview of signal processing when using overlap-add method of the first embodiment 第1の実施形態の最適化回路(トレーニング)の動作の説明の図である。It is a figure of description of operation | movement of the optimization circuit (training) of 1st Embodiment. 第1の実施形態の最適化回路の動作のフローチャートである。It is a flowchart of operation | movement of the optimization circuit of 1st Embodiment. 第1の実施形態の最適化回路(トラッキング)の動作の説明の図である。It is a figure of description of operation | movement of the optimization circuit (tracking) of 1st Embodiment. 第2の実施形態の波長分散予補償光通信システムを示す図である。It is a figure which shows the chromatic dispersion pre-compensation optical communication system of 2nd Embodiment. 第2の実施形態の最適化回路の動作のフローチャート(2)である。It is a flowchart (2) of operation | movement of the optimization circuit of 2nd Embodiment. 第3の実施形態の波長分散予補償光通信システムを示す図である。It is a figure which shows the chromatic dispersion pre-compensation optical communication system of 3rd Embodiment. 多項式を用いる場合の説明図である。It is explanatory drawing in the case of using a polynomial.
(第1の実施形態)
 図1に第1の実施形態の波長分散予補償光通信システムの構成を示す。
 送信側ノード101aと受信側ノード101bはそれぞれ光通信ノードであり、互いにフレームを転送する機能及びポートを有し、通信路101c、101dを介して接続されている。図示しないが、ノード101a、101bには信号を送受信する他の機器がポート102a、102bを介して接続されている。
 送信側ノード101aは、装置に接続された他の機器から受信した信号のうち、受信側ノード101b(及びその配下)へ送信すべき信号を通信路101cへ送信する。その逆に、受信側ノード101bは、送信側ノード101aより送信された信号を通信路101cを経て受信し、装置に接続された対応する他の機器へ送信する。
 図1に示される通り、送信側ノード101aは、接続された他の機器より入力された信号を受信するポート102aを有する。更に送信側ノード101aは、受信した信号に対し、誤り訂正符号(たとえばFEC:Forward Error Correction)を付加し、OTN(Optical Transport Network)等にマッピング処理を行うMapper103aを有する。OTNはITU−T(International Telecommunication Union Telecommunication Standardization Sector)で規格化されている高速信号用フレームである。
 また送信側ノード101aは、時間領域の信号を周波数領域の信号へと変換するフーリエ変換回路105a、周波数領域の信号に対して波長分散補償を行う係数を乗算する係数乗算回路106aを有する。更に送信側ノード101aは、周波数領域の信号を時間領域の信号へと変換する逆フーリエ変換回路107aを有する。
 また送信側ノード101aは、光ファイバ通信を行うのに適したOTN(Optical Transport Network)等へのマッピング処理を行うとともに、変調及び電気信号を光信号に変換する処理を行うE/O(Electrical/Optical Converter)回路108aを有する。
 また送信側ノード101aは、受信側ノードより送信されたビット誤り数(単位時間当たりのビット誤り数)を受信するインタフェースである監視情報受信INF(Interface)109aを有する。更に送信側ノード101aは、通知された誤り情報を基に最適値を検出する最適化回路1010a、最適値を基に波長分散補償係数を算出する係数演算回路1011aを有する。
 受信側ノード101bは、光ファイバ伝送路より受信された光信号を電気信号に変換する処理及び受信した信号に対し復調処理を行うO/E回路105bを有する。更に受信側ノード101bは、受信したデータ(たとえばOTN)にデマッピングと誤り訂正処理を行い、ポート102bに接続された機器と通信するのに適した信号(たとえばEthernet(登録商標))に変換し、ポート102bへ信号を送信するDemapper103bを有する。更に、受信側ノード101bは、他の機器と接続されるポート102b、Demapper103bのビット誤り情報を監視する監視回路107b、得られたビット誤り情報を送信側ノード101aへ送信するためのインタフェースである監視情報送信INF106bを有する。
 なお、光通信ノード101a、101bには他にも信号を送受信する送受信部を備え、他の機器が接続されていてもよい。また、通信路101dは図2に示されるような管理ネットワーク200を構成する一要素になっていてもよい。
(動作の説明)
 次に第1の実施形態の動作を説明する。図1は第1の実施形態によるシステムの構成を示すブロック図である。例えば、送信側ノード101aから受信側ノード101bに光信号を送信する場合の波長分散予補償光通信システムについて述べる。
 送信信号がポート102aより入力されると、その信号はMapper103aに入力される。この際、入力された信号は光信号でも電気信号でもよく、ポート102aにおいて、光信号の場合は電気信号に変換し、電気信号の場合はそのままMapperへと信号を送信するものとする。
 Mapper103aでは、入力されたクライアント信号に対して誤り訂正符号(たとえばFEC)を付加し、例えばITU−TのG.709で規格化されている光信号用フレームであるOTN等にマッピングし、その後フーリエ変換回路105aに送信する。フーリエ変換回路105aでは入力された信号を時間領域の信号から周波数領域の信号へと変換する。周波数領域の信号とは、周波数領域における振幅成分についてのデータと位相成分についてのデータの双方を含んでいるものとする。
 一方で、受信側ノード101bよりフィードバックされたビット誤り数の情報は監視情報受信INF109aにより受信されているものとする。このとき、通信路101dは受信側ノード101bと直接接続されていても良いし、図2に示されるような管理ネットワークを構成しているものでもよい。得られたビット誤り数の情報を基に、波長分散を補償するのに最適な係数が係数演算回路1011aにて算出され設定されるよう、最適化回路1010aにより制御が行われる。光ファイバ伝送路の波長分散を表す伝達関数の理論、及び伝達関数から逆特性をもつ係数を算出する理論自体は一般的に広く知られている。しかし、実際の光ファイバ伝送路の波長分散を正確かつリアルタイムに測定して波長分散の真の値を得るのは容易ではない。そこで、本実施の形態では対向する光通信装置からフィードバックされた監視情報に含まれる誤り率や誤り訂正処理に於ける誤り訂正数等の伝送品質情報を基に、逐次的に最適な波長分散補償係数を最適化回路1010aにて求めている。その最適な値を求める為の制御の方法は後述する。
 係数乗算回路106aでは、フーリエ変換回路105aにより送信された周波数領域の信号に対し、係数演算回路1011aより設定された波長分散の補正係数を乗算することによって、光の周波数による受信側ノードでの到着時間差を補償する。この処理を予等化という。予等化は通信路101cで受ける波形劣化の逆特性を与えていることに相当し、通信路101cによって受ける波形劣化を適応的に等化するためのものである。
 予等化された信号は、逆フーリエ変換回路107aに送信され、周波数領域から時間領域への信号へと変換される。なお、フーリエ変換回路105aによる周波数領域への変換~係数乗算回路106aによる処理~逆フーリエ変換回路107aによる処理という、一連の処理に関しては、overlap−save法やoverlap−add法などを用いても良い。overlap−add法を用いた方法については後述する。
 その後、時間領域に変換された信号は、E/O回路(変調回路)108aに送られる。E/O回路(変調回路)108aは設定された方式で信号に対して変調処理を行い、通信路101cへと送信する。変調処理の例としてはBPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、QAM(Quadrature Amplitude Modulation)がある。
 なお、本実施の形態では、QPSK等の変調処理は、電気信号を光信号に乗せる信号に変換する符号化処理とレーザーからの光を変調する変調処理(例えばLN変調器等)を含む。しかし、符号化処理をフーリエ変換回路105aの直前に行い、その後、光の変調処理を行うものとしてもよい。さらに、符号化処理と光の変調処理をフーリエ変換回路105aの前に行うものとしてもよい。
 overlap−add法を用いた場合のフーリエ変換、係数乗算、逆フーリエ変換という、一連の処理の概要を図3に示す。図3の下方に示される斜めに傾いている矩形は、波長分散により、周波数成分によって到来時間がそれぞれ異なることを補償するための処理がなされたことを示す。波長分散係数の符号を正と仮定し、高周波成分が先に到来することを予測し、高周波成分の送信タイミングが遅くなるように信号処理がなされている。
 図3について詳細に説明する。overlap−add法を用いた場合、フーリエ変換回路105aにおいて、フーリエ変換区間301a、301b、301cが互いにオーバーラップするようにフーリエ変換する区間が決定される。フーリエ変換区間301a、301bの信号は、フーリエ変換回路105aにて時間領域の信号から周波数領域の信号へとフーリエ変換処理される。
 変換された周波数領域信号304a、304bは、係数乗算回路106aにおいて波長分散を補正する係数が乗算される。波長分散を補正する係数は係数演算回路1011aより設定される。その後、周波数領域信号304a、304bは逆フーリエ変換回路107aにて逆フーリエ変換処理される。
 得られた逆フーリエ変換後の信号308a、308bは信号の両端の除去処理が行われ、これらの信号を基に予等化送信信号が得られる。
 図1の受信側ノード101bでは、通信路101cより信号を受信する。O/E回路105bは、受信した光信号を電気信号へと変換するとともに、E/O回路108aで施された変調に対し復調処理を行う。Demapper103bは、O/E回路105bより送信された信号に対してデマッピング処理と誤り訂正処理を行う。
 その後、信号はポート102bに接続された機器と通信するのに適した形式(たとえばEthernet)に変換され、ポート102bに出力される。このとき監視回路107bでは、Demapper103bでのビット誤り数を監視しており、観測された情報は監視情報送信INF106bを経て送信側ノードの監視情報受信INF109aへと送信される。
 送信側ノードで予め与えられた波長分散補償量と通信路101cが持つ波長分散量と間に誤差があった場合、Demapper103bでは大量のビット誤りが観測され、その情報は即座に最適化回路1010aへとフィードバックされる。
 次に、最適化回路1010aの動作に関して述べる。
 図4(a)、4(b)に最適化回路1010aの動作例を、図5に動作のフローチャートを示す。図4の縦軸は誤り訂正符号(たとえばFEC)の誤り訂正処理における単位時間当たりのビット誤り訂正数(ビット誤り数)を、横軸は波長分散をそれぞれ示している。図4(a)、4(b)は、波長分散補償量に応じてビット誤り数が連続的に変化する特性を示している。十分なビット誤り数が発生している状況、または十分なビット誤り数をカウントできる程度の長い期間のビット誤り数を観測した場合、一般にその特性は放物線状に変化することが知られている。最適化回路1010aは、初期設定値Δt(0)からΔt(n+1)またはΔt(n−1)に向かってトレーニングを開始する。
 なお、図5のステップ501において、トレーニングにおける波長分散の変化ステップΔD1=Δt(n+1)−Δt(n)は任意に設定することができる。例えばΔD1を大きい値にした場合、Δt(0)からΔt(n)に向かって大きな波長分散変化ステップ幅で波長分散をスキャンしていることになる。
 ステップ512−514において、波長分散をスキャンする方向が定まる。たとえば、Δt(i−1)の総ビット誤り数がΔt(i+1)の総ビット誤り数より多かった場合、以後のステップにおいて図4(a)のようにスキャンが進むことになる。その反対に、Δt(i−1)の総ビット誤り数がΔt(i+1)の総ビット誤り数より少なかった場合、以後のステップにおいて図4(b)のようにスキャンが進む。
 ステップ505において、収束判定時間ΔT間におけるΔt(i)における総ビット誤り数とΔt(i+flag)の総ビット誤り数が比較される。このとき、Δt(i+flag)の総ビット誤り数がΔt(i)の総ビット誤り数より少なかった場合、ステップ504を経て再びステップ505が実施される。このときのΔt(i)は前のステップで用いたΔt(i+flag)の値になっている。その反対に、Δt(i+flag)の総ビット誤り数がΔt(i)の総ビット誤り数より多かった場合、ステップ506に移行する。このときの総ビット誤り数の判定時間をΔTとすると、ΔTに満たない時間であってもΔt(i+flag)の総ビット誤り数がΔt(i)よりも多くなった場合はステップ506へと移行してもよい。
 ステップ506以降の処理はトラッキングに関する処理である。通常、光ファイバは敷設された後も様々な外的要因(たとえば温度変化)を受ける。このため、ファイバの波長分散特性は変化してしまう可能性がある。この問題を回避すべく、トレーニングによる最適値選択(粗調整)後も継続した微調整による最適値選択をトラッキングによって行う。
 ステップ506では、トラッキングにおける波長分散の変化ステップΔD2を設定する。この処理は、ステップ501と同時に行ってもよく、このとき設定されるΔD2はステップ501にて設定されるΔD1よりも小さい値が好ましい。ステップ510、511にて、Δt(ii−1)、Δt(ii)、Δt(ii+1)のそれぞれにおける総ビット誤り数の比較が行われる。そして、再びステップ510が実施される際のΔt(ii)は、直前に実施されたΔt(ii−1)、Δt(ii)、Δt(ii+1)のうち最も総ビット誤り数が少なかった波長分散値に設定されている。このときの動作を図6に示す。
 このように、受信側ノードのビット誤り数を送信側ノードに常にフィードバックすることにより、受信側ノードにおけるビット誤り数が最少化されるように制御が働き、結果として波長分散が常に補償された光通信システムを構築できる。
 なお、上記の最適化の動作は、初期設定値Δt(0)から順に所定のステップにて波長分散補償量を逐次変化させてその時のビット誤り数を取得するという動作を一定範囲にて行っていき、最少のビット誤り数となる波長分散補償量を推定する方法である。しかし、最少のビット誤り数を推定する方法はこの方法に限られず、以下のような方法も採用しうる。即ち、上述のように、十分なビット誤り数が発生している状況では、波長分散補償量に対するビット誤り数は一般的に放物線状に連続的に変化することが知られている。そこで波長分散補償量とビット誤り数との関係が二次関数等の関数で表せると仮定する。何点かの波長分散補償量とそれに対するビット誤り数とから、その二次関数を推定し、推定した二次関数からビット誤り数の最少値とその場合の波長分散補償量を逆算する、という方法も採用しうる。或いは次のような方法も採用しうる。即ち何点かの波長分散補償量とそれに対するビット誤り数とから、ラグランジェ補間法等の手法を用いてn次多項式を推定し、推定した多項式からビット誤り数の最少値とその場合の波長分散補償量を逆算する、という方法である(図10)。なお補間法として上記ラグランジェ補間法に限られるものではない。
 更には、上記の最適化の動作は、組み合わせて構成させても良い。即ち、送信開始のトレーニング初期には図10に示す多項式推定を行う方法で素早く最適な波長分散補償量を求め、その後、図4~図6に示す方法で波長分散補償量のトレーニング及びトラッキングを行う、としても良い。
(効果の説明)
 第1の実施形態では、上述したように構成されているので、以下に記載の効果を奏する。
 即ち、光ファイバ伝送路の波長分散を回路規模、消費電力を抑えつつ精密かつ自動に補償することのできる、波長分散予補償光通信システムを提供することができる。
 また、信号を電気信号へ変換させた上でデジタル信号処理による波長分散補償を行うため、関連する技術で必要となるDCFを必要とせず、柔軟なネットワーク設計が可能となる。
 また、受信側ノードにて観測したビット誤り数が最少となるように、ビット誤り数の情報を送信側ノードへフィードバックし、それに基づいて波長分散補償量を適応制御するため、予めファイバ伝送路の波長分散を測定したり、基準波形を必要とすることがない。
 また、ビット誤り数に関する情報を常にフィードバックすることで、環境の変化によるファイバ特性(波長分散量)の変化にも高速かつ精密に追従することができる。
 更に、波長分散補償を送信側にて行なっているので下記の効果が得られる。
即ち、受信側で処理していた等化処理を送信側で行うため光受信モジュールの小型化ができる。
 また、受信側ノードに於ける受信信号が波長分散補償後の信号になるため、受信側ノードでの光波形と送信側ノードの光波形の比較が容易となる。
 また、受信側ノードにて位相同期をとるためには、関連技術では波長分散補償処理を行った後に位相同期処理を行う必要があった。しかし、本実施形態では受信した波形ではすでに波長分散が補償されているため、位相同期をとることがより容易となる。
(第2の実施形態)
 次に、本発明を実施するための第2の実施形態について説明する。
 図8は本発明の第2の実施形態の最適化回路のフローチャート(2)である。
 図8で、ΔD1はトレーニング用分散ステップ幅、ΔD2はトラッキング用分散ステップ幅、flagはトレーニング走査方向フラグ、t(i)、t(ii)は波長分散補償量、ErrorThはトラッキングからトレーニングへ移行するためのエラー閾値、である。
 本実施形態は、第1の実施形態において、トラッキング移行後に所定の条件により再びトレーニングに戻るフローが追加されている点で図5のフローと異なっている。これは運用状態で、経路切り替え等で波長分散量が大きくシフトしたとき等を想定している。
 図8にて、トラッキング移行後のトラッキング用ΔD2の設定を行い(ステップ506)、ii=iと初期化し、トラッキング以降最初の判定時間ΔT時間の総ビット誤り数をError0=t(ii)として、その値を保持しておく。次に、次の判定時間ΔT周期毎の総ビット誤り数をError1=t(ii)として保持する(ステップ813)。なお、フロー上、初回はError0=Error1となる。次に、Error0とError1とを比較し、Error1とError0との差が一定の値(ErrorTh)以下ならError1=Error0と置き、第1の実施形態で説明したトラッキング動作を行う。トラッキングの為の総ビット誤り数の比較を行った後(ステップ508~511)、最新の判定時間ΔT周期毎の総ビット誤り数をError1=t(ii)として保持する(ステップ813)。
 前の判定時間ΔTの総ビット誤り数(Error0)と、最新の判定時間ΔTのError1とを比較し(ステップ814)その差が一定の値(ErrorTh)以上なら、初期化を行った後(ステップ816,817)トレーニング状態に再移行する。即ちステップ512の直前の状態に戻る。
 本第2の実施形態では、送信側ノードで予め与えられた波長分散補償量と通信路101cが持つ波長分散量との間に誤差が生じ、Demapper103bで大量のビット誤りが発生する状況等が生じた場合、次の様に動作する。即ち、トラッキングによる微調整の状態から、再度トレーニングによる粗調整の段階に戻って最適値の検索をやり直す。これにより、光ファイバの波長分散特性の大きな変化にも追従することが可能になる。
(第3の実施形態)
 先の第1の実施形態においては、受信側ノードにてビット誤り数を検出し、送信側ノードへフィードバックさせることで波長分散量を調節していた。本第3の実施形態では、ビット誤り数を検出する代わりに波長分散量を受信側ノードにて直接検出し、送信側ノードにフィードバックすることで波長分散補償量を調節する方法について記載する。本実施例の基本的な構成を図7に示す。
 図7の送信側ノード701aから受信側ノード701bへ光信号を送信する場合の動作について述べる。本実施形態では、大きく分けて伝送路の大凡の波長分散を測定するステップと主信号を導通させるステップにわけて説明する。
 始めに伝送路の大凡の波長分散を測定するステップについて説明する。送信側ノード701aのE/O回路708aは複数の波長の光パルス波を同時に701bに向けて送信する。送信側ノード701aより送信された光パルスは、受信側ノード701bの分散測定器705bにて受信される。分散測定器705bでは、送信側ノード701aにて入射された2つのパルスが伝搬に要する時間の差が測定される。異なる波長の光信号における伝搬時間差を利用した、伝送路の大凡の波長分散を算出する式は一般に広く知られているため、本項では説明を省略する。
 このようにして、所望の波長に対する伝送路の大凡の波長分散量を算出することができる。この値は監視回路707bにて監視され、適宜、監視情報送信INF706bより送信側ノード101aへフィードバックされる。送信側ノード101aでは、フィードバックされた情報を監視情報受信INF709aにて受信し、その情報、即ち伝送路の大凡の波長分散量を基に係数演算回路7011aにて、波長分散を更に正確に補償する為の係数が算出される。このとき、E/O回路708aでは、波長分散を測定するステップの動作から主信号を導通させるステップの動作に切り替える。
 次に、主信号を導通させるステップを説明する。なお、本ステップでは前述のステップのようにE/O回路708aにて複数の波長のパルスを出力させる必要は無い。また、分散測定器705bにて波長分散を測定する必要もない。ポート702aより入力された信号は、Mapper703a、フーリエ変換回路705a、係数乗算回路706a、逆フーリエ変換回路707a、E/O回路708aを通り受信側ノードへと送信される。
 なお、本ステップにおけるこれらのブロックの基本的動作は第1の実施形態と同様であるため、本項では割愛する。また、同様の理由にてO/E回路704b、Demapper703bの動作も割愛する。Demapper703bにて検出されたビット誤り数は、監視回路707bへと送信され、監視回路707bにおいてビット誤り数が常時監視されている。
 最後に、送信側ノードで予め与えられた波長分散補償量と、通信路101cが持つ波長分散量と間に大きな誤差が生じ、Demapper103bで大量のビット誤りが観測された場合の動作について述べる。以下のような動作を行うことで、外的要因(たとえば温度)による光ファイバの波長分散特性の変化にも追従することが可能になる。
 監視回路707bにて単位時間あたりの総ビット誤り数が設定した任意の値(閾値)を超えると、分散測定器705bおよび監視情報送信INF706b、監視情報受信INF709aを経てE/O回路708aへとステップ切り替え指示が送信される。これを受け、E/O回路708a及び分散測定器705bは、主信号を導通させるステップから波長分散を測定するステップに再移行する。波長分散測定後は、再度、主信号を導通させるステップへと移行する。
 以上のような構成により、上記のような動作を行うことで、関連する技術で必要となるDCFを必要とせず波長分散を補償できる柔軟なネットワークの構成が可能となる。
 なお、本第3の実施形態においては、波長分散量を受信側ノードにて直接検出し、送信側ノードにフィードバックすることで波長分散補償量を調節し、調節完了後に主信号を導通させる技術について記載されていた。しかし、調節完了後に主信号を導通させた後に、第1の実施形態で説明した、トラッキング動作を行うとしても良い。これにより、回路規模、消費電力を抑えつつより高精度に、環境の変化によるファイバ特性(波長分散量)の変化にも高速かつ精密に追従することができる波長分散予補償光通信システムを提供することが出来る。
 (第4の実施形態)
 次に、本発明を実施するための第4の実施形態について説明する。
 図9は本発明の第4の実施形態の波長分散予補償光通信システムの図である。
 第4の実施形態の波長分散予補償光通信送受信装置901は、送信すべき信号を周波数成分毎に分解する分解手段902と、前記周波数成分各々に加えるべき遅延量を算出する算出手段903と、を有する。更に波長分散予補償光通信送受信装置901は、前記遅延量に基づき前記各周波数成分を遅延させる遅延手段904と、遅延させた信号を合成し、該合成した信号を伝送路に送出する合成送信手段905と、を有する。
 以上説明した第4の実施形態によって、光ファイバ伝送路の波長分散を精密かつ自動に補償することのできる、波長分散予補償光通信システムを提供することができる。
 なお、ここまで説明した各実施の形態では、伝送品質情報として誤り訂正処理に於ける単位時間当たりの誤り訂正ビット数(ビット誤り数)を用いるとしているが、これに限るものではない。例えば、送信信号に既知の系列を挿入し受信側で正しい系列との比較を行って得られるBER(Bit Error rate)も用い得る。またフレームのCRC(Cyclic Redundancy Check)チェックを行って得られるFER(Frame Error rate)等も用い得る。
 また、ここまで説明した各実施の形態では、専用の装置を想定したが、次のようなものでもよい。即ち例えば各種データ処理を行うパーソナルコンピュータ装置に、本例に相当する処理を行うボードやカードなどを装着し、各処理を、コンピュータ装置側で実行させる。このようにして、その処理を実行するソフトウェアをパーソナルコンピュータ装置に実装させて実行する構成としても良い。
 そのパーソナルコンピュータ装置などのデータ処理装置に実装されるプログラムについては、光ディスク,メモリカードなどの各種記録(記憶)媒体を介して配付しても良く、或いはインターネットなどの通信手段を介して配付しても良い。
 以上の実施形態は各々他の実施形態と組み合わせることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上に述べた実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 送信すべき信号を周波数成分毎に分解する分解手段と、
前記周波数成分各々に加えるべき遅延量を算出する算出手段と、
前記遅延量に基づき前記各周波数成分を遅延させる遅延手段と、
遅延させた信号を合成し、該合成した信号を伝送路に合成送信信号として送出する合成送信手段と、
を有することを特徴とする波長分散予補償光通信送受信装置。
(付記2)
 前記合成送信信号の各々を受信した受信側から返送された伝送評価値を受信する伝送評価値受信手段を更に有し、
 前記算出手段は前記伝送評価値から前記周波数成分各々に加えるべき遅延量の組合せである遅延量群を算出し、
 前記遅延手段は前記周波数成分の各々を所定の複数の組み合わせの前記遅延量群で遅延させ、
 前記合成送信手段は前記遅延させた前記各周波数成分を前記複数の組み合わせの各々につき合成して合成送信信号として伝送路に送出する、
ことを特徴とする付記1記載の波長分散予補償光通信送受信装置。
(付記3)
 前記伝送評価値は前記合成送信信号の各々を受信した前記受信側に於けるビット誤り数である、
ことを特徴とする付記2に記載の波長分散予補償光通信送受信装置。
(付記4)
 前記ビット誤り数が最小となるまで、前記遅延量群を変化させる、
 ことを特徴とする付記3に記載の波長分散予補償光通信送受信装置。
(付記5)
 前記ビット誤り数が最小となるまで、前記遅延量群を所定の量で変化させ、
前記ビット誤り数が最小となった後に、前記所定の量を減少させる、
 ことを特徴とする付記3または付記4に記載の波長分散予補償光通信送受信装置。
(付記6)
 前記遅延量群は、前記所定の複数の組み合わせの遅延量群の各々に対応する前記伝送路の波長分散量に対する前記伝送評価値の関係を近似する所定の関数において、前記伝送評価値の最良値を与える波長分散量に対応する遅延量の組み合わせとして算出される
ことを特徴とする付記2乃至付記5のいずれかに記載の波長分散予補償光通信送受信装置。
(付記7)
 前記所定の関数は2次関数であり、前記所定の複数の組み合わせの数は3である、
ことを特徴とする付記6に記載の波長分散予補償光通信送受信装置。
(付記8)
 前記合成送信信号の各々を受信した前記受信側における遅延分散が最小となるまで前記遅延量群を変化させる、
 ことを特徴とする付記2乃至付記7のいずれかに記載の波長分散予補償光通信送受信装置。
(付記9)
 付記1乃至8のいずれかに記載の波長分散予補償光通信送受信機と、前記波長分散予補償光通信送受信機と対向して設置される受信側の波長分散予補償光通信送受信機と、を備え、
前記受信側の波長分散予補償光通信送受信機は前記合成送信信号の各々を受信し伝送評価値を返送する、ことを特徴とする波長分散予補償光通信システム。
(付記10)
 送信すべき信号を周波数成分毎に分解し、
前記周波数成分各々に加えるべき遅延量を算出し、
前記遅延量に基づき前記各周波数成分を遅延させた後に合成し、
該合成した信号を合成送信信号として伝送路に送出する
ことを特徴とする波長分散予補償光通信送受信方法。
(付記11)
 前記合成送信信号の各々を受信した受信側から返送された伝送評価値を受信し、
 前記伝送評価値から前記周波数成分各々に加えるべき遅延量の組合せである最適な遅延量群を算出し、
 前記周波数成分の各々を所定の複数の組み合わせの前記遅延量群で遅延させ、
 前記遅延させた前記各周波数成分を前記複数の組み合わせの各々につき合成して合成送信信号として伝送路に送出する、
ことを特徴とする付記10に記載の波長分散予補償光通信送受信方法。
(付記12)
 前記伝送評価値は前記合成送信信号の各々を受信した前記受信側に於けるビット誤り数である、
ことを特徴とする付記11に記載の波長分散予補償光通信送受信方法。
(付記13)
 前記ビット誤り数が最小となるまで、前記遅延量群を変化させる、
 ことを特徴とする付記12に記載の波長分散予補償光通信送受信方法。
(付記14)
 前記ビット誤り数が最小となるまで、前記遅延量群を所定の量で変化させ、
前記ビット誤り数が最小となった後に、前記所定の量を減少させる、
 ことを特徴とする付記12または付記13に記載の波長分散予補償光通信送受信方法。
(付記15)
 前記遅延量群は、前記所定の複数の組み合わせの前記遅延量群の各々に対応する前記伝送路の波長分散量に対する前記伝送評価値の関係を近似する所定の関数において、前記伝送評価値の最良値を与える波長分散量に対応する遅延量群として算出される
ことを特徴とする付記11乃至付記14の何れかに記載の波長分散予補償光通信送受信方法。
(付記16)
 前記所定の関数は2次関数であり、前記所定の複数の組み合わせの数は3である、
ことを特徴とする付記15に記載の波長分散予補償光通信送受信方法。
(付記17)
 前記合成送信信号の各々を受信した前記受信側における遅延分散が最小となるまで前記遅延量群を一定の量で変化させる、
 ことを特徴とする付記11乃至付記16の何れかに記載の波長分散予補償光通信送受信方法。
 この出願は、2011年3月25日に出願された日本出願特願2011−067701を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(First embodiment)
FIG. 1 shows the configuration of the chromatic dispersion precompensation optical communication system of the first embodiment.
Each of the transmission side node 101a and the reception side node 101b is an optical communication node, has a function and a port for transferring frames to each other, and is connected via communication paths 101c and 101d. Although not shown, other devices for transmitting and receiving signals are connected to the nodes 101a and 101b via ports 102a and 102b.
The transmitting side node 101a transmits a signal to be transmitted to the receiving side node 101b (and its subordinates) among the signals received from other devices connected to the apparatus to the communication path 101c. On the contrary, the receiving side node 101b receives the signal transmitted from the transmitting side node 101a via the communication path 101c, and transmits it to the corresponding other device connected to the apparatus.
As shown in FIG. 1, the transmitting side node 101a has a port 102a for receiving a signal input from another connected device. Furthermore, the transmission side node 101a has a Maper 103a that adds an error correction code (for example, FEC: Forward Error Correction) to the received signal and performs mapping processing on an OTN (Optical Transport Network) or the like. OTN is a high-speed signal frame standardized by ITU-T (International Telecommunication Union Telecommunication Standardization Sector).
The transmission-side node 101a includes a Fourier transform circuit 105a that converts a time-domain signal into a frequency-domain signal, and a coefficient multiplier circuit 106a that multiplies the frequency-domain signal by a coefficient that performs chromatic dispersion compensation. Further, the transmission-side node 101a includes an inverse Fourier transform circuit 107a that converts a frequency domain signal into a time domain signal.
In addition, the transmission side node 101a performs mapping processing to an OTN (Optical Transport Network) suitable for optical fiber communication and the like, and also performs E / O (Electrical / An optical converter circuit 108a.
The transmission side node 101a has a monitoring information reception INF (Interface) 109a that is an interface for receiving the number of bit errors (number of bit errors per unit time) transmitted from the reception side node. Further, the transmission side node 101a includes an optimization circuit 1010a that detects an optimum value based on the notified error information, and a coefficient calculation circuit 1011a that calculates a chromatic dispersion compensation coefficient based on the optimum value.
The reception-side node 101b includes an O / E circuit 105b that performs processing for converting an optical signal received from the optical fiber transmission path into an electrical signal and demodulation processing for the received signal. Further, the receiving node 101b performs demapping and error correction processing on the received data (for example, OTN), and converts it into a signal (for example, Ethernet (registered trademark)) suitable for communication with a device connected to the port 102b. , And a Demapper 103b that transmits a signal to the port 102b. Further, the receiving side node 101b is a monitoring circuit 107b that monitors bit error information of the port 102b and the Demapper 103b connected to other devices, and a monitoring that is an interface for transmitting the obtained bit error information to the transmitting side node 101a. An information transmission INF 106b is included.
Note that the optical communication nodes 101a and 101b may further include a transmission / reception unit that transmits and receives signals, and other devices may be connected thereto. Further, the communication path 101d may be an element constituting the management network 200 as shown in FIG.
(Description of operation)
Next, the operation of the first embodiment will be described. FIG. 1 is a block diagram showing the configuration of a system according to the first embodiment. For example, a chromatic dispersion pre-compensation optical communication system in the case of transmitting an optical signal from the transmission side node 101a to the reception side node 101b will be described.
When a transmission signal is input from the port 102a, the signal is input to the Maper 103a. At this time, the input signal may be an optical signal or an electric signal. In the port 102a, an optical signal is converted into an electric signal, and an electric signal is directly transmitted to Mapper.
In Mapper 103a, an error correction code (for example, FEC) is added to the input client signal. It is mapped to OTN or the like, which is an optical signal frame standardized in 709, and then transmitted to the Fourier transform circuit 105a. The Fourier transform circuit 105a converts the input signal from a time domain signal to a frequency domain signal. The frequency domain signal includes both data on amplitude components and data on phase components in the frequency domain.
On the other hand, it is assumed that the information on the number of bit errors fed back from the receiving side node 101b is received by the monitoring information reception INF 109a. At this time, the communication path 101d may be directly connected to the receiving side node 101b, or may constitute a management network as shown in FIG. Based on the obtained information on the number of bit errors, control is performed by the optimization circuit 1010a so that an optimum coefficient for compensating chromatic dispersion is calculated and set by the coefficient arithmetic circuit 1011a. The theory of a transfer function representing the chromatic dispersion of an optical fiber transmission line and the theory of calculating a coefficient having an inverse characteristic from the transfer function are generally widely known. However, it is not easy to measure the chromatic dispersion of an actual optical fiber transmission line accurately and in real time to obtain the true value of chromatic dispersion. Therefore, in this embodiment, optimal chromatic dispersion compensation is sequentially performed based on transmission quality information such as an error rate and the number of error corrections in error correction processing included in the monitoring information fed back from the opposite optical communication apparatus. The coefficient is obtained by the optimization circuit 1010a. A control method for obtaining the optimum value will be described later.
The coefficient multiplication circuit 106a multiplies the frequency domain signal transmitted from the Fourier transform circuit 105a by the chromatic dispersion correction coefficient set by the coefficient calculation circuit 1011a, thereby arriving at the receiving side node by the optical frequency. Compensate for the time difference. This process is called pre-equalization. Pre-equalization corresponds to giving the inverse characteristic of the waveform degradation received by the communication channel 101c, and is for adaptively equalizing the waveform degradation received by the communication channel 101c.
The pre-equalized signal is transmitted to the inverse Fourier transform circuit 107a and converted from a frequency domain signal to a time domain signal. Note that the overlap-save method, the overlap-add method, or the like may be used for a series of processes including the conversion to the frequency domain by the Fourier transform circuit 105a, the process by the coefficient multiplication circuit 106a, and the process by the inverse Fourier transform circuit 107a. . A method using the overlap-add method will be described later.
Thereafter, the signal converted into the time domain is sent to an E / O circuit (modulation circuit) 108a. The E / O circuit (modulation circuit) 108a performs modulation processing on the signal by the set method and transmits the signal to the communication path 101c. Examples of the modulation process include BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), and QAM (Quadrature Amplitude Modulation).
In the present embodiment, the modulation process such as QPSK includes an encoding process for converting an electric signal into a signal to be carried on an optical signal and a modulation process (for example, an LN modulator) for modulating light from a laser. However, the encoding process may be performed immediately before the Fourier transform circuit 105a, and then the light modulation process may be performed. Further, the encoding process and the light modulation process may be performed before the Fourier transform circuit 105a.
FIG. 3 shows an outline of a series of processes such as Fourier transform, coefficient multiplication, and inverse Fourier transform when the overlap-add method is used. The rectangle which is inclined obliquely shown in the lower part of FIG. 3 indicates that processing for compensating for different arrival times depending on frequency components due to chromatic dispersion has been performed. Assuming that the sign of the chromatic dispersion coefficient is positive, it is predicted that the high frequency component will arrive first, and signal processing is performed so that the transmission timing of the high frequency component is delayed.
FIG. 3 will be described in detail. When the overlap-add method is used, the Fourier transform circuit 105a determines a section for Fourier transform so that the Fourier transform sections 301a, 301b, and 301c overlap each other. The signals in the Fourier transform sections 301a and 301b are subjected to Fourier transform processing from the time domain signal to the frequency domain signal by the Fourier transform circuit 105a.
The converted frequency domain signals 304a and 304b are multiplied by a coefficient for correcting chromatic dispersion in the coefficient multiplication circuit 106a. A coefficient for correcting chromatic dispersion is set by the coefficient calculation circuit 1011a. Thereafter, the frequency domain signals 304a and 304b are subjected to inverse Fourier transform processing by the inverse Fourier transform circuit 107a.
The obtained signals 308a and 308b after inverse Fourier transform are subjected to removal processing at both ends of the signal, and a pre-equalized transmission signal is obtained based on these signals.
The receiving side node 101b in FIG. 1 receives a signal from the communication path 101c. The O / E circuit 105b converts the received optical signal into an electrical signal, and performs a demodulation process on the modulation performed by the E / O circuit 108a. The Demapper 103b performs demapping processing and error correction processing on the signal transmitted from the O / E circuit 105b.
Thereafter, the signal is converted into a format suitable for communication with a device connected to the port 102b (for example, Ethernet) and output to the port 102b. At this time, the monitoring circuit 107b monitors the number of bit errors in the Demapper 103b, and the observed information is transmitted to the monitoring information reception INF 109a of the transmission side node via the monitoring information transmission INF 106b.
If there is an error between the chromatic dispersion compensation amount given in advance at the transmission side node and the chromatic dispersion amount possessed by the communication channel 101c, a large amount of bit errors are observed in the Demapper 103b, and the information is immediately sent to the optimization circuit 1010a. Is fed back.
Next, the operation of the optimization circuit 1010a will be described.
FIGS. 4A and 4B show an operation example of the optimization circuit 1010a, and FIG. 5 shows a flowchart of the operation. The vertical axis in FIG. 4 represents the number of bit error corrections (number of bit errors) per unit time in error correction processing of an error correction code (for example, FEC), and the horizontal axis represents chromatic dispersion. 4A and 4B show characteristics in which the number of bit errors continuously changes in accordance with the amount of chromatic dispersion compensation. It is known that when a sufficient number of bit errors are generated or when a number of bit errors for a long period that allows a sufficient number of bit errors to be observed, the characteristics generally change parabolically. The optimization circuit 1010a starts training from the initial set value Δt (0) toward Δt (n + 1) or Δt (n−1).
In step 501 of FIG. 5, the chromatic dispersion change step ΔD1 = Δt (n + 1) −Δt (n) in training can be arbitrarily set. For example, when ΔD1 is increased, chromatic dispersion is scanned with a large chromatic dispersion change step width from Δt (0) to Δt (n).
In steps 512-514, the direction in which chromatic dispersion is scanned is determined. For example, when the total number of bit errors of Δt (i−1) is larger than the total number of bit errors of Δt (i + 1), the scan proceeds in the subsequent steps as shown in FIG. On the other hand, when the total number of bit errors of Δt (i−1) is smaller than the total number of bit errors of Δt (i + 1), scanning proceeds as shown in FIG.
In step 505, the total number of bit errors in Δt (i) and the total number of bit errors in Δt (i + flag) during the convergence determination time ΔT are compared. At this time, if the total number of bit errors of Δt (i + flag) is smaller than the total number of bit errors of Δt (i), step 505 is performed again through step 504. At this time, Δt (i) is the value of Δt (i + flag) used in the previous step. On the other hand, if the total number of bit errors of Δt (i + flag) is larger than the total number of bit errors of Δt (i), the process proceeds to step 506. Assuming that the total bit error count determination time at this time is ΔT, if the total bit error count of Δt (i + flag) is larger than Δt (i) even if the time is less than ΔT, the process proceeds to step 506. May be.
The processing after step 506 is processing related to tracking. Usually, the optical fiber is subjected to various external factors (for example, temperature change) even after being laid. For this reason, the wavelength dispersion characteristic of the fiber may change. In order to avoid this problem, the optimum value selection by fine adjustment that is continued after the optimum value selection (coarse adjustment) by training is performed by tracking.
In step 506, a change step ΔD2 of chromatic dispersion in tracking is set. This process may be performed simultaneously with step 501, and ΔD2 set at this time is preferably smaller than ΔD1 set in step 501. In steps 510 and 511, the total number of bit errors in each of Δt (ii−1), Δt (ii), and Δt (ii + 1) is compared. Then, Δt (ii) when step 510 is performed again is the chromatic dispersion in which the total number of bit errors is the smallest among Δt (ii−1), Δt (ii), and Δt (ii + 1) performed immediately before. Is set to a value. The operation at this time is shown in FIG.
In this way, by constantly feeding back the number of bit errors of the receiving side node to the transmitting side node, the control works so as to minimize the number of bit errors in the receiving side node, and as a result, the wavelength dispersion is always compensated. A communication system can be constructed.
The above optimization operation is performed by sequentially changing the chromatic dispersion compensation amount in a predetermined step in order from the initial setting value Δt (0) and acquiring the number of bit errors at that time within a certain range. This is a method for estimating the chromatic dispersion compensation amount that minimizes the number of bit errors. However, the method for estimating the minimum number of bit errors is not limited to this method, and the following method can also be adopted. That is, as described above, it is known that the number of bit errors with respect to the amount of chromatic dispersion compensation generally changes continuously in a parabolic manner in a situation where a sufficient number of bit errors has occurred. Therefore, it is assumed that the relationship between the amount of chromatic dispersion compensation and the number of bit errors can be expressed by a function such as a quadratic function. The quadratic function is estimated from some chromatic dispersion compensation amounts and the number of bit errors corresponding thereto, and the minimum value of the number of bit errors and the chromatic dispersion compensation amount in that case are calculated backward from the estimated quadratic function. Methods can also be employed. Alternatively, the following method can also be adopted. That is, an n-order polynomial is estimated from a chromatic dispersion compensation amount and the number of bit errors corresponding thereto using a method such as Lagrange interpolation, and the minimum value of the number of bit errors and the wavelength in that case are estimated from the estimated polynomial. In this method, the dispersion compensation amount is calculated backward (FIG. 10). The interpolation method is not limited to the Lagrangian interpolation method.
Furthermore, the above optimization operations may be combined. That is, at the initial stage of training for transmission start, the optimum chromatic dispersion compensation amount is quickly obtained by the method of performing polynomial estimation shown in FIG. 10, and then the chromatic dispersion compensation amount is trained and tracked by the method shown in FIGS. , Or as good.
(Explanation of effect)
Since the first embodiment is configured as described above, the following effects can be obtained.
That is, it is possible to provide a chromatic dispersion precompensation optical communication system capable of accurately and automatically compensating for chromatic dispersion of an optical fiber transmission line while suppressing circuit scale and power consumption.
In addition, since chromatic dispersion compensation is performed by digital signal processing after converting a signal into an electrical signal, a DCF required for related technology is not required, and a flexible network design is possible.
In order to minimize the number of bit errors observed at the receiving side node, the bit error number information is fed back to the transmitting side node, and the chromatic dispersion compensation amount is adaptively controlled based on the feedback information. There is no need to measure chromatic dispersion or require a reference waveform.
In addition, by constantly feeding back information on the number of bit errors, it is possible to quickly and accurately follow changes in fiber characteristics (amount of chromatic dispersion) due to environmental changes.
Further, since the chromatic dispersion compensation is performed on the transmission side, the following effects can be obtained.
That is, since the equalization processing that has been processed on the reception side is performed on the transmission side, the optical reception module can be reduced in size.
Also, since the received signal at the receiving side node becomes a signal after chromatic dispersion compensation, it becomes easy to compare the optical waveform at the receiving side node with the optical waveform at the transmitting side node.
In addition, in order to achieve phase synchronization at the receiving side node, it is necessary to perform phase synchronization processing after performing chromatic dispersion compensation processing in the related art. However, in this embodiment, since the chromatic dispersion is already compensated for the received waveform, it is easier to achieve phase synchronization.
(Second Embodiment)
Next, a second embodiment for carrying out the present invention will be described.
FIG. 8 is a flowchart (2) of the optimization circuit of the second embodiment of the present invention.
In FIG. 8, ΔD1 is a training dispersion step width, ΔD2 is a tracking dispersion step width, flag is a training scanning direction flag, t (i) and t (ii) are chromatic dispersion compensation amounts, and ErrorTh is shifted from tracking to training. Error threshold for
This embodiment is different from the flow of FIG. 5 in that a flow for returning to training again according to a predetermined condition after transition to tracking is added in the first embodiment. This assumes that the chromatic dispersion amount is greatly shifted due to path switching or the like in the operating state.
In FIG. 8, the tracking ΔD2 after the transition to tracking is set (step 506), initialized to ii = i, and the total number of bit errors in the first determination time ΔT time after tracking is set to Error0 = t (ii). Keep that value. Next, the total number of bit errors for each next determination time period ΔT is held as Error1 = t (ii) (step 813). In the flow, the first time is Error0 = Error1. Next, Error 0 and Error 1 are compared, and if the difference between Error 1 and Error 0 is equal to or smaller than a certain value (ErrorTh), Error 1 = Error 0 is set, and the tracking operation described in the first embodiment is performed. After comparing the total number of bit errors for tracking (steps 508 to 511), the total number of bit errors for each latest determination time ΔT period is held as Error1 = t (ii) (step 813).
The total number of bit errors (Error0) of the previous determination time ΔT and the error1 of the latest determination time ΔT are compared (step 814). If the difference is equal to or greater than a certain value (ErrorTh), initialization is performed (step 816, 817) Re-enter the training state. In other words, the state immediately before step 512 is restored.
In the second embodiment, an error occurs between the chromatic dispersion compensation amount given in advance by the transmission side node and the chromatic dispersion amount possessed by the communication path 101c, and a situation occurs in which a large amount of bit errors occur in the Demapper 103b. If this happens, it operates as follows. That is, the optimal value search is performed again from the fine adjustment state by tracking to the coarse adjustment stage again by training. This makes it possible to follow a large change in the wavelength dispersion characteristics of the optical fiber.
(Third embodiment)
In the first embodiment, the amount of chromatic dispersion is adjusted by detecting the number of bit errors at the receiving side node and feeding it back to the transmitting side node. In the third embodiment, a method is described in which the chromatic dispersion compensation amount is adjusted by directly detecting the chromatic dispersion amount at the receiving side node and feeding back to the transmitting side node instead of detecting the number of bit errors. A basic configuration of this embodiment is shown in FIG.
An operation when an optical signal is transmitted from the transmission side node 701a to the reception side node 701b in FIG. 7 will be described. In the present embodiment, the description will be divided into two steps: roughly measuring the chromatic dispersion of the transmission line and conducting the main signal.
First, steps for measuring the approximate chromatic dispersion of the transmission line will be described. The E / O circuit 708a of the transmission side node 701a transmits optical pulse waves having a plurality of wavelengths toward the 701b at the same time. The optical pulse transmitted from the transmission side node 701a is received by the dispersion measuring device 705b of the reception side node 701b. In the dispersion measuring device 705b, a difference in time required for propagation of the two pulses incident on the transmission side node 701a is measured. Since an equation for calculating approximate chromatic dispersion of a transmission line using a propagation time difference between optical signals of different wavelengths is generally known, description thereof is omitted in this section.
In this way, the approximate chromatic dispersion amount of the transmission line for the desired wavelength can be calculated. This value is monitored by the monitoring circuit 707b and appropriately fed back from the monitoring information transmission INF 706b to the transmission side node 101a. In the transmission side node 101a, the fed back information is received by the monitoring information reception INF 709a, and the chromatic dispersion is more accurately compensated by the coefficient calculation circuit 7011a based on the information, that is, the approximate chromatic dispersion amount of the transmission path. A coefficient is calculated. At this time, the E / O circuit 708a switches from the step of measuring chromatic dispersion to the step of conducting the main signal.
Next, the step of conducting the main signal will be described. In this step, it is not necessary to output pulses of a plurality of wavelengths by the E / O circuit 708a as in the above-described step. Further, there is no need to measure chromatic dispersion with the dispersion measuring device 705b. The signal input from the port 702a is transmitted to the receiving side node through the mapper 703a, the Fourier transform circuit 705a, the coefficient multiplication circuit 706a, the inverse Fourier transform circuit 707a, and the E / O circuit 708a.
Note that the basic operation of these blocks in this step is the same as in the first embodiment, and is omitted in this section. For the same reason, the operations of the O / E circuit 704b and the Demapper 703b are also omitted. The number of bit errors detected by the Demapper 703b is transmitted to the monitoring circuit 707b, and the number of bit errors is constantly monitored by the monitoring circuit 707b.
Finally, the operation when a large error occurs between the chromatic dispersion compensation amount given in advance by the transmission side node and the chromatic dispersion amount possessed by the communication channel 101c, and a large number of bit errors are observed in the Demapper 103b will be described. By performing the following operation, it is possible to follow changes in the chromatic dispersion characteristics of the optical fiber due to external factors (for example, temperature).
When the total number of bit errors per unit time exceeds the set value (threshold value) in the monitoring circuit 707b, the process proceeds to the E / O circuit 708a via the dispersion measuring device 705b, the monitoring information transmission INF 706b, and the monitoring information reception INF 709a. A switching instruction is transmitted. In response, the E / O circuit 708a and the dispersion measuring device 705b re-shift from the step of conducting the main signal to the step of measuring chromatic dispersion. After the chromatic dispersion measurement, the process shifts again to the step of conducting the main signal.
With the above-described configuration, by performing the above-described operation, a flexible network configuration that can compensate for chromatic dispersion without requiring a DCF that is required in the related technology becomes possible.
In the third embodiment, a technique for directly detecting the chromatic dispersion amount at the reception side node, adjusting the chromatic dispersion compensation amount by feeding back to the transmission side node, and conducting the main signal after the adjustment is completed. It was described. However, the tracking operation described in the first embodiment may be performed after the main signal is turned on after the adjustment is completed. This provides a chromatic dispersion precompensation optical communication system capable of following a change in fiber characteristics (amount of chromatic dispersion) due to a change in environment with high accuracy and high speed while suppressing circuit scale and power consumption. I can do it.
(Fourth embodiment)
Next, a fourth embodiment for carrying out the present invention will be described.
FIG. 9 is a diagram of a chromatic dispersion precompensated optical communication system according to a fourth embodiment of the present invention.
The chromatic dispersion precompensation optical communication transmitting / receiving apparatus 901 of the fourth embodiment includes a decomposition unit 902 that decomposes a signal to be transmitted for each frequency component, a calculation unit 903 that calculates a delay amount to be added to each of the frequency components, Have Further, the chromatic dispersion pre-compensation optical communication transmitting / receiving apparatus 901 combines a delay unit 904 that delays each frequency component based on the delay amount, and a combined transmission unit that combines the delayed signals and sends the combined signals to a transmission line. 905.
According to the fourth embodiment described above, it is possible to provide a chromatic dispersion pre-compensation optical communication system capable of accurately and automatically compensating for the chromatic dispersion of the optical fiber transmission line.
In each of the embodiments described so far, the number of error correction bits (number of bit errors) per unit time in error correction processing is used as transmission quality information, but the present invention is not limited to this. For example, a BER (Bit Error rate) obtained by inserting a known sequence into a transmission signal and comparing it with a correct sequence on the receiving side can also be used. Also, FER (Frame Error rate) obtained by performing CRC (Cyclic Redundancy Check) check, etc. can be used.
In each embodiment described so far, a dedicated device is assumed, but the following may be used. That is, for example, a personal computer device that performs various data processing is loaded with a board or a card that performs processing corresponding to this example, and each processing is executed on the computer device side. In this way, a configuration may be adopted in which software for executing the processing is installed in a personal computer device and executed.
The program installed in the data processing device such as the personal computer device may be distributed via various recording (storage) media such as an optical disk and a memory card, or distributed via communication means such as the Internet. Also good.
Each of the above embodiments can be combined with other embodiments.
While the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
Some or all of the embodiments described above can be described as in the following supplementary notes, but are not limited thereto.
(Appendix 1)
Decomposition means for decomposing the signal to be transmitted for each frequency component;
Calculating means for calculating a delay amount to be added to each of the frequency components;
Delay means for delaying each frequency component based on the delay amount;
A combined transmission means for combining the delayed signals and sending the combined signals to the transmission line as a combined transmission signal;
A chromatic dispersion precompensated optical communication transmitter / receiver comprising:
(Appendix 2)
A transmission evaluation value receiving means for receiving a transmission evaluation value returned from the receiving side that has received each of the combined transmission signals;
The calculation means calculates a delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value,
The delay means delays each of the frequency components by the delay amount group of a predetermined plurality of combinations,
The combined transmission means combines the delayed frequency components for each of the plurality of combinations and sends the combined frequency signal to a transmission path as a combined transmission signal.
The chromatic dispersion precompensated optical communication transmitter / receiver according to supplementary note 1, wherein:
(Appendix 3)
The transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
The chromatic dispersion precompensated optical communication transmitter / receiver according to Supplementary Note 2, wherein
(Appendix 4)
Changing the delay amount group until the number of bit errors is minimized;
The chromatic dispersion precompensated optical communication transmitter / receiver according to Supplementary Note 3, wherein
(Appendix 5)
The delay amount group is changed by a predetermined amount until the number of bit errors is minimized,
Reducing the predetermined amount after the number of bit errors is minimized;
The chromatic dispersion precompensated optical communication transmitter / receiver according to appendix 3 or appendix 4, wherein
(Appendix 6)
The delay amount group is a best value of the transmission evaluation value in a predetermined function that approximates a relationship of the transmission evaluation value to the chromatic dispersion amount of the transmission line corresponding to each of the predetermined plurality of combinations of delay amount groups. Calculated as a combination of delay amounts corresponding to chromatic dispersion amounts
The chromatic dispersion precompensated optical communication transmitter / receiver according to any one of appendix 2 to appendix 5, wherein
(Appendix 7)
The predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
The chromatic dispersion precompensated optical communication transmitter / receiver according to appendix 6, wherein:
(Appendix 8)
The delay amount group is changed until the delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
8. The chromatic dispersion precompensated optical communication transmitting / receiving apparatus according to any one of appendix 2 to appendix 7, wherein
(Appendix 9)
The chromatic dispersion precompensation optical communication transmitter / receiver according to any one of appendices 1 to 8, and a chromatic dispersion precompensation optical communication transmitter / receiver on a receiving side installed opposite to the chromatic dispersion precompensation optical communication transmitter / receiver, Prepared,
The chromatic dispersion pre-compensation optical communication system, wherein the reception-side chromatic dispersion pre-compensation optical communication transceiver receives each of the combined transmission signals and returns a transmission evaluation value.
(Appendix 10)
Decompose the signal to be transmitted for each frequency component,
Calculating a delay amount to be added to each of the frequency components;
Combining after delaying each frequency component based on the delay amount,
The synthesized signal is sent to the transmission line as a synthesized transmission signal.
A chromatic dispersion precompensated optical communication transmitting / receiving method.
(Appendix 11)
Receiving a transmission evaluation value returned from the receiving side that received each of the combined transmission signals;
Calculate an optimal delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value,
Each of the frequency components is delayed by a predetermined plurality of combinations of the delay amount groups,
Combining each delayed frequency component for each of the plurality of combinations and sending it to a transmission line as a combined transmission signal;
The chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 10, wherein:
(Appendix 12)
The transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
The chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 11, wherein:
(Appendix 13)
Changing the delay amount group until the number of bit errors is minimized;
The chromatic dispersion precompensated optical communication transmission / reception method as set forth in appendix 12, wherein:
(Appendix 14)
The delay amount group is changed by a predetermined amount until the number of bit errors is minimized,
Reducing the predetermined amount after the number of bit errors is minimized;
14. The chromatic dispersion precompensated optical communication transmitting / receiving method according to appendix 12 or appendix 13.
(Appendix 15)
The delay amount group is a best function of the transmission evaluation value in a predetermined function that approximates the relationship of the transmission evaluation value to the chromatic dispersion amount of the transmission line corresponding to each of the delay amount groups of the predetermined plurality of combinations. Calculated as a delay amount group corresponding to the chromatic dispersion amount giving the value
15. The chromatic dispersion precompensated optical communication transmission / reception method according to any one of appendix 11 to appendix 14, wherein:
(Appendix 16)
The predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
The chromatic dispersion precompensated optical communication transmission / reception method according to supplementary note 15, characterized by:
(Appendix 17)
The delay amount group is changed by a constant amount until delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
The chromatic dispersion precompensated optical communication transmitting / receiving method according to any one of Supplementary Note 11 to Supplementary Note 16, wherein:
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-067671 for which it applied on March 25, 2011, and takes in those the indications of all here.
 本発明は、波長分散を予め補償する光通信システムに関するものであり、産業上の利用可能性を有する。 The present invention relates to an optical communication system that compensates for chromatic dispersion in advance, and has industrial applicability.
 101a  送信側ノード
 101b  受信側ノード
 200  管理ネットワーク
101a transmitting node 101b receiving node 200 management network

Claims (17)

  1.  送信すべき信号を周波数成分毎に分解する分解手段と、
    前記周波数成分各々に加えるべき遅延量を算出する算出手段と、
    前記遅延量に基づき前記各周波数成分を遅延させる遅延手段と、
    遅延させた信号を合成し、該合成した信号を伝送路に合成送信信号として送出する合成送信手段と、
    を有することを特徴とする波長分散予補償光通信送受信装置。
    Decomposition means for decomposing the signal to be transmitted for each frequency component;
    Calculating means for calculating a delay amount to be added to each of the frequency components;
    Delay means for delaying each frequency component based on the delay amount;
    A combined transmission means for combining the delayed signals and sending the combined signals to the transmission line as a combined transmission signal;
    A chromatic dispersion precompensated optical communication transmitter / receiver comprising:
  2.  前記合成送信信号の各々を受信した受信側から返送された伝送評価値を受信する伝送評価値受信手段を更に有し、
     前記算出手段は前記伝送評価値から前記周波数成分各々に加えるべき遅延量の組合せである遅延量群を算出し、
     前記遅延手段は前記周波数成分の各々を所定の複数の組み合わせの前記遅延量群で遅延させ、
     前記合成送信手段は前記遅延させた前記各周波数成分を前記複数の組み合わせの各々につき合成して合成送信信号として伝送路に送出する、
    ことを特徴とする請求項1記載の波長分散予補償光通信送受信装置。
    A transmission evaluation value receiving means for receiving a transmission evaluation value returned from the receiving side that has received each of the combined transmission signals;
    The calculation means calculates a delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value,
    The delay means delays each of the frequency components by the delay amount group of a predetermined plurality of combinations,
    The combined transmission means combines the delayed frequency components for each of the plurality of combinations and sends the combined frequency signal to a transmission path as a combined transmission signal.
    The chromatic dispersion precompensated optical communication transmitting / receiving apparatus according to claim 1.
  3.  前記伝送評価値は前記合成送信信号の各々を受信した前記受信側に於けるビット誤り数である、
    ことを特徴とする請求項2に記載の波長分散予補償光通信送受信装置。
    The transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
    The chromatic dispersion precompensated optical communication transmitter / receiver according to claim 2.
  4.  前記ビット誤り数が最小となるまで、前記遅延量群を変化させる、
     ことを特徴とする請求項3に記載の波長分散予補償光通信送受信装置。
    Changing the delay amount group until the number of bit errors is minimized;
    The chromatic dispersion precompensated optical communication transmitting / receiving apparatus according to claim 3.
  5.  前記ビット誤り数が最小となるまで、前記遅延量群を所定の量で変化させ、
    前記ビット誤り数が最小となった後に、前記所定の量を減少させる、
     ことを特徴とする請求項3または請求項4に記載の波長分散予補償光通信送受信装置。
    The delay amount group is changed by a predetermined amount until the number of bit errors is minimized,
    Reducing the predetermined amount after the number of bit errors is minimized;
    5. The chromatic dispersion precompensated optical communication transmitter / receiver according to claim 3 or 4,
  6.  前記遅延量群は、前記所定の複数の組み合わせの遅延量群の各々に対応する前記伝送路の波長分散量に対する前記伝送評価値の関係を近似する所定の関数において、前記伝送評価値の最良値を与える波長分散量に対応する遅延量の組み合わせとして算出される
    ことを特徴とする請求項2乃至請求項5のいずれかに記載の波長分散予補償光通信送受信装置。
    The delay amount group is a best value of the transmission evaluation value in a predetermined function that approximates a relationship of the transmission evaluation value to the chromatic dispersion amount of the transmission line corresponding to each of the predetermined plurality of combinations of delay amount groups. 6. The chromatic dispersion precompensated optical communication transmitter / receiver according to claim 2, wherein the chromatic dispersion precompensated optical communication transmitter / receiver is calculated as a combination of delay amounts corresponding to chromatic dispersion amounts.
  7.  前記所定の関数は2次関数であり、前記所定の複数の組み合わせの数は3である、
    ことを特徴とする請求項6に記載の波長分散予補償光通信送受信装置。
    The predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
    The chromatic dispersion precompensated optical communication transmitter / receiver according to claim 6.
  8.  前記合成送信信号の各々を受信した前記受信側における遅延分散が最小となるまで前記遅延量群を変化させる、
     ことを特徴とする請求項2乃至請求項7のいずれかに記載の波長分散予補償光通信送受信装置。
    The delay amount group is changed until the delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
    The chromatic dispersion precompensated optical communication transmitter / receiver according to any one of claims 2 to 7.
  9.  請求項1乃至8のいずれかに記載の波長分散予補償光通信送受信機と、前記波長分散予補償光通信送受信機と対向して設置される受信側の波長分散予補償光通信送受信機と、を備え、
    前記受信側の波長分散予補償光通信送受信機は前記合成送信信号の各々を受信し伝送評価値を返送する、ことを特徴とする波長分散予補償光通信システム。
    A chromatic dispersion pre-compensation optical communication transceiver according to any one of claims 1 to 8, a reception-side chromatic dispersion pre-compensation optical communication transceiver installed opposite to the chromatic dispersion pre-compensation optical communication transceiver, With
    The chromatic dispersion pre-compensation optical communication system, wherein the reception-side chromatic dispersion pre-compensation optical communication transceiver receives each of the combined transmission signals and returns a transmission evaluation value.
  10.  送信すべき信号を周波数成分毎に分解し、
    前記周波数成分各々に加えるべき遅延量を算出し、
    前記遅延量に基づき前記各周波数成分を遅延させた後に合成し、
    該合成した信号を合成送信信号として伝送路に送出する
    ことを特徴とする波長分散予補償光通信送受信方法。
    Decompose the signal to be transmitted for each frequency component,
    Calculating a delay amount to be added to each of the frequency components;
    Combining after delaying each frequency component based on the delay amount,
    A chromatic dispersion precompensated optical communication transmitting / receiving method, wherein the combined signal is sent to a transmission line as a combined transmission signal.
  11.  前記合成送信信号の各々を受信した受信側から返送された伝送評価値を受信し、
     前記伝送評価値から前記周波数成分各々に加えるべき遅延量の組合せである最適な遅延量群を算出し、
     前記周波数成分の各々を所定の複数の組み合わせの前記遅延量群で遅延させ、
     前記遅延させた前記各周波数成分を前記複数の組み合わせの各々につき合成して合成送信信号として伝送路に送出する、
    ことを特徴とする請求項10に記載の波長分散予補償光通信送受信方法。
    Receiving a transmission evaluation value returned from the receiving side that received each of the combined transmission signals;
    Calculate an optimal delay amount group that is a combination of delay amounts to be added to each of the frequency components from the transmission evaluation value,
    Each of the frequency components is delayed by a predetermined plurality of combinations of the delay amount groups,
    Combining each delayed frequency component for each of the plurality of combinations and sending it to a transmission line as a combined transmission signal;
    The chromatic dispersion precompensated optical communication transmission / reception method according to claim 10.
  12.  前記伝送評価値は前記合成送信信号の各々を受信した前記受信側に於けるビット誤り数である、
    ことを特徴とする請求項11に記載の波長分散予補償光通信送受信方法。
    The transmission evaluation value is the number of bit errors on the receiving side that received each of the combined transmission signals.
    The chromatic dispersion precompensated optical communication transmission / reception method according to claim 11.
  13.  前記ビット誤り数が最小となるまで、前記遅延量群を変化させる、
     ことを特徴とする請求項12に記載の波長分散予補償光通信送受信方法。
    Changing the delay amount group until the number of bit errors is minimized;
    The chromatic dispersion precompensated optical communication transmission / reception method according to claim 12.
  14.  前記ビット誤り数が最小となるまで、前記遅延量群を所定の量で変化させ、
    前記ビット誤り数が最小となった後に、前記所定の量を減少させる、
     ことを特徴とする請求項12または請求項13に記載の波長分散予補償光通信送受信方法。
    The delay amount group is changed by a predetermined amount until the number of bit errors is minimized,
    Reducing the predetermined amount after the number of bit errors is minimized;
    14. The chromatic dispersion precompensated optical communication transmission / reception method according to claim 12 or claim 13.
  15.  前記遅延量群は、前記所定の複数の組み合わせの前記遅延量群の各々に対応する前記伝送路の波長分散量に対する前記伝送評価値の関係を近似する所定の関数において、前記伝送評価値の最良値を与える波長分散量に対応する遅延量群として算出される
    ことを特徴とする請求項11乃至請求項14の何れかに記載の波長分散予補償光通信送受信方法。
    The delay amount group is a best function of the transmission evaluation value in a predetermined function that approximates the relationship of the transmission evaluation value to the chromatic dispersion amount of the transmission line corresponding to each of the delay amount groups of the predetermined plurality of combinations. 15. The chromatic dispersion precompensated optical communication transmitting / receiving method according to claim 11, wherein the chromatic dispersion precompensated optical communication transmitting / receiving method is calculated as a delay amount group corresponding to a chromatic dispersion amount giving a value.
  16.  前記所定の関数は2次関数であり、前記所定の複数の組み合わせの数は3である、
    ことを特徴とする請求項15に記載の波長分散予補償光通信送受信方法。
    The predetermined function is a quadratic function, and the number of the plurality of predetermined combinations is three.
    The chromatic dispersion precompensated optical communication transmission / reception method according to claim 15.
  17.  前記合成送信信号の各々を受信した前記受信側における遅延分散が最小となるまで前記遅延量群を一定の量で変化させる、
     ことを特徴とする請求項11乃至請求項16の何れかに記載の波長分散予補償光通信送受信方法。
    The delay amount group is changed by a constant amount until delay dispersion at the receiving side that has received each of the combined transmission signals is minimized.
    The chromatic dispersion precompensated optical communication transmission / reception method according to any one of claims 11 to 16.
PCT/JP2012/058043 2011-03-25 2012-03-21 Wavelength dispersion pre-compensation optical communication system WO2012133473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067701 2011-03-25
JP2011-067701 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133473A1 true WO2012133473A1 (en) 2012-10-04

Family

ID=46931184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058043 WO2012133473A1 (en) 2011-03-25 2012-03-21 Wavelength dispersion pre-compensation optical communication system

Country Status (1)

Country Link
WO (1) WO2012133473A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124782A (en) * 2010-12-09 2012-06-28 Fujitsu Ltd Digital coherent optical receiver, adaptive equalization type equalizer and digital coherent optical communication method
CN105917605A (en) * 2014-02-04 2016-08-31 华为技术有限公司 Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137113A1 (en) * 2009-05-26 2010-12-02 三菱電機株式会社 Pre-equalization transmitter apparatus and pre-equalization transmission system
WO2010150356A1 (en) * 2009-06-23 2010-12-29 三菱電機株式会社 Optical access system, station-end termination apparatus and subscriber-end termination apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137113A1 (en) * 2009-05-26 2010-12-02 三菱電機株式会社 Pre-equalization transmitter apparatus and pre-equalization transmission system
WO2010150356A1 (en) * 2009-06-23 2010-12-29 三菱電機株式会社 Optical access system, station-end termination apparatus and subscriber-end termination apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALAN BARBIERI ET AL.: "OFDM versus Single- Carrier Transmission for 100 Gbps Optical Communication", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 28, no. ISSUE., 1 September 2010 (2010-09-01), pages 2537 - 2551, XP011312257 *
FRED BUCHALI ET AL.: "Adaptive PMD compensation by electrical and optical techniques", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 22, no. ISSUE., April 2004 (2004-04-01), pages 1116 - 1126, XP011111648, DOI: doi:10.1109/JLT.2004.825893 *
LAKSHMI P.BASKARAN ET AL.: "Transmitter Pre- emphasis and Adaptive Receiver Equalization for Duobinary Signaling in Backplane Channels", INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2007. ICCE 2007. DIGEST OF TECHNICAL PAPERS, 10 January 2007 (2007-01-10), pages 1 - 2, XP031071421 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124782A (en) * 2010-12-09 2012-06-28 Fujitsu Ltd Digital coherent optical receiver, adaptive equalization type equalizer and digital coherent optical communication method
US8989602B2 (en) 2010-12-09 2015-03-24 Fujitsu Limited Digital coherent optical receiver, adaptive equalizer, and digital coherent optical communication method
CN105917605A (en) * 2014-02-04 2016-08-31 华为技术有限公司 Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
EP3100388A4 (en) * 2014-02-04 2017-02-15 Huawei Technologies Co., Ltd. Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing
US9641374B2 (en) 2014-02-04 2017-05-02 Huawei Technologies Co., Ltd. Direct-detected orthogonal frequency-division multiplexing with dispersion pre-compensation digital signal processing

Similar Documents

Publication Publication Date Title
US10181899B2 (en) Apparatus and methods for timing tone based transmitter skew alignment in an optical communication system
JP6319487B1 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system, and optical transmission characteristic compensation system
CN103004098B (en) Digital filter device, and digital filtering method
US9112608B2 (en) Resource-efficient digital chromatic dispersion compensation in fiber optical communication using spectral shaping subcarrier modulation
US9515763B2 (en) Digital coherent receiver and receiving method of optical signal
KR100708482B1 (en) Channel equalizer and method for equalizing channel
JP6060588B2 (en) Nonlinear compensation apparatus, method, and transmitter
JP2016536948A (en) Adaptive pre-equalization in optical communications
EP2399353B1 (en) Equaliser for an optical transmission system
US20100119241A1 (en) Adaptive frequency domain equalization without cyclic prefixes
JP2010057016A (en) Method of controlling power supply of optical receiver, digital signal processing circuit, and optical receiver
US10148465B2 (en) Training assisted joint equalization
US8755694B2 (en) Method and a system with distortion compensation
JP2018019245A (en) Device and method for signal processing
US10567211B2 (en) Nonlinearity pre-compensation of high order modulation transmissions
JP5522056B2 (en) Optical communication system and optical communication method
US20170019203A1 (en) Optical receiver and method for updating tap coefficient of digital filter
US9887798B2 (en) Transmission apparatus, reception apparatus and modulation method
JP6428881B1 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system, and optical transmission characteristic compensation system
WO2012133473A1 (en) Wavelength dispersion pre-compensation optical communication system
GB2428169A (en) Method and apparatus for providing diagnostic features for an optical transceiver
WO2010070831A1 (en) Communications device, method of control of data rate, and communications system
US11476946B2 (en) Signal processing device and transmission device
ITMI20000833A1 (en) METHOD AND APPARATUS FOR THE AUTOMATIC DELAY OF THE DELAY FOR RADIO TRANSMISSIONS IN DIFFERENT SPACE.
WO2022244125A1 (en) Receiver and receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP