WO2012133154A1 - Method and apparatus for treating film surface - Google Patents

Method and apparatus for treating film surface Download PDF

Info

Publication number
WO2012133154A1
WO2012133154A1 PCT/JP2012/057466 JP2012057466W WO2012133154A1 WO 2012133154 A1 WO2012133154 A1 WO 2012133154A1 JP 2012057466 W JP2012057466 W JP 2012057466W WO 2012133154 A1 WO2012133154 A1 WO 2012133154A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
roll electrode
gas
roll
pmma film
Prior art date
Application number
PCT/JP2012/057466
Other languages
French (fr)
Japanese (ja)
Inventor
平 長谷川
純一 松崎
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020137022592A priority Critical patent/KR101899177B1/en
Priority to CN201280015839.1A priority patent/CN103459476B/en
Publication of WO2012133154A1 publication Critical patent/WO2012133154A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical

Definitions

  • the present invention relates to a method and an apparatus for treating the surface of an optical resin film, and in particular, a resin film (hereinafter referred to as “PMMA film”) containing polymethylmethacrylate (hereinafter referred to as “PMMA”) as a main component.
  • PMMA film a resin film
  • PMMA polymethylmethacrylate
  • the present invention relates to a surface treatment method and apparatus suitable for improving adhesiveness.
  • the protective monomer-containing gas is brought into contact with the protective film and plasma is irradiated.
  • acrylic acid is used as the polymerizable monomer.
  • a PMMA film is mentioned as an example of the protective film.
  • Argon is mentioned as an example of the plasma generating gas.
  • a polarizing plate is comprised by bonding the processed protective film with a polarizing film through an adhesive.
  • the adhesive water-based adhesives such as polyvinyl alcohol (hereinafter referred to as “PVA”) and polyether are used.
  • PVA film a resin film containing PVA as a main component
  • JP 2010-150372 A (0013, 0017) JP 2010-150373 A (0011, 0018)
  • the method of the present invention is a film surface treatment method for treating the surface of a PMMA film, A first contact step of contacting a PMMA film with a first reaction gas obtained by vaporizing acrylic acid into a carrier gas; A first irradiation step of irradiating the PMMA film with argon plasma generated near atmospheric pressure after the first contact step or in parallel with the first contact step; A second contact step in which a second reactive gas obtained by vaporizing acrylic acid into a carrier gas after the first irradiation step is brought into contact with the PMMA film; A second irradiation step of irradiating the PMMA film with argon plasma generated under atmospheric pressure after the second contact step or in parallel with the second contact step; It is characterized by including.
  • a first condensed layer of acrylic acid can be formed on the surface of the PMMA film by the first contact step.
  • the first condensed layer can be plasma polymerized in the first irradiation step to form a first plasma polymerized film of polyacrylic acid.
  • a second condensed layer of acrylic acid can be formed on the first plasma polymerization film by the second contact step.
  • the second condensation layer may be plasma-polymerized in a second irradiation step, and a second plasma polymerization film of polyacrylic acid may be laminated on the first plasma polymerization film.
  • the adhesive strength of the hard-to-adhere PMMA film can be improved, and furthermore, the adhesive durability can be sufficiently improved.
  • the adhesion durability refers to the degree to which the adhesion strength does not decrease after the object after bonding is exposed to a high humidity and high temperature wet heat environment.
  • the apparatus of the present invention is a film surface treatment apparatus for treating the surface of a PMMA film, First, second, and third roll electrodes that are arranged in parallel with each other and generate a discharge in the gap between adjacent ones near atmospheric pressure; A first reactive gas nozzle that faces the peripheral surface of the first roll electrode and blows out a first reactive gas containing acrylic acid; A first discharge gas nozzle that blows out argon into a gap between the first roll electrode and the second roll electrode; A second reaction gas nozzle that blows out a second reaction gas containing acrylic acid, facing the peripheral surface of the second roll electrode; A second discharge gas nozzle that blows out argon into the gap between the second roll electrode and the third roll electrode;
  • the PMMA film is wound around the first, second, and third roll electrodes, and the PMMA film is turned into the first roll electrode and the second roll electrode by the rotation of the first, second, and third roll electrodes.
  • the third roll electrode is conveyed in this order.
  • the first reactive gas is sprayed from the first reactive gas nozzle onto the PMMA film on the peripheral surface of the first roll electrode.
  • a first condensed layer of acrylic acid can be formed on the surface of the PMMA film.
  • argon plasma is irradiated to the PMMA film at the gap between the first and second roll electrodes. Accordingly, the first condensed layer can be plasma polymerized to form a first plasma polymerized film of polyacrylic acid.
  • the second reaction gas is sprayed onto the PMMA film from the second reaction gas nozzle on the peripheral surface of the second roll electrode.
  • a second condensed layer of acrylic acid can be formed on the first plasma polymerization film.
  • the PMMA film is irradiated with argon plasma at the gap between the second and third roll electrodes.
  • the second condensed layer can be plasma polymerized to form a second plasma polymerized film of polyacrylic acid on the first plasma polymerized film.
  • the first, second, and third roll electrodes also serve as a PMMA film supporting unit and a conveying unit.
  • the carrier gas of the first and second reaction gases is argon. Thereby, even if the carrier gas flows into the space (for example, the gap between the roll electrodes) in which the first and second irradiation processes are performed, it is possible to prevent the discharge state from changing.
  • the carrier gas may be nitrogen in order to reduce running costs.
  • the surface treatment is preferably performed near atmospheric pressure.
  • the vicinity of atmospheric pressure refers to a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4 to 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.9797 ⁇ 10 4 Pa is more preferable.
  • the present invention it is possible to improve the adhesive strength of the difficult-to-adhere PMMA film and to sufficiently improve the adhesion durability.
  • FIG. 1 shows a first embodiment of the present invention.
  • a to-be-processed object is the PMMA film 9 for the protective film of a polarizing plate.
  • the PMMA film 9 contains PMMA as a main component and is extremely difficult to adhere.
  • “containing PMMA as a main component” means that the proportion of PMMA in the film 9 is 60 wt% to 100 wt%.
  • the proportion of methyl methacrylate (MMA) in the film raw material is 60 wt% to 100 wt%.
  • components other than PMMA in the film 9 include ultraviolet absorbers, stabilizers, lubricants, processing aids, plasticizers, impact resistance aids, foaming agents, fillers, colorants, matting agents, and the like.
  • the film surface treatment apparatus 1 includes an electrode structure 10 and gas supply means 20-50.
  • the electrode structure 10 includes a first roll electrode 11, a second roll electrode 12, and a third roll electrode 13.
  • These roll electrodes 11 to 13 are cylindrical bodies having the same diameter and the same axial length. At least the outer periphery of each of the roll electrodes 11 to 13 is made of metal, and a solid dielectric layer is coated on the outer periphery of the metal outer periphery.
  • the axis of each roll electrode 11, 12, 13 is oriented in the horizontal direction (hereinafter referred to as “processing width direction”) orthogonal to the paper surface of FIG. 1.
  • processing width direction orthogonal to the paper surface of FIG.
  • Dimensional shapes such as thickness 15 are equal to each other.
  • the thickness of the narrowest part of the gaps 14 and 15 is preferably about 0.5 mm to 1.0 mm.
  • a power source is connected to the central roll electrode 12, and the left and right roll electrodes 11, 13 are electrically grounded.
  • a power source may be connected to the left and right roll electrodes 11 and 13 and the central roll electrode 12 may be electrically grounded.
  • the power source outputs, for example, pulsed high frequency power.
  • plasma discharge is generated between the left roll electrode 11 and the central roll electrode 12 under a pressure near atmospheric pressure, and the gap 14 becomes a first discharge space near atmospheric pressure.
  • plasma discharge is generated between the central roll electrode 12 and the right roll electrode 13 under a pressure near atmospheric pressure, and the gap 15 becomes a second discharge space near atmospheric pressure.
  • the frequency of the high frequency power is preferably about 50 kHz to 70 kHz.
  • the rise time and fall time of the pulse are preferably 10 ⁇ sec or less.
  • the pulse duration is preferably 1 to 1000 ⁇ sec.
  • the high frequency is not limited to a pulse wave, and may be a continuous wave.
  • a plurality (two in the figure) of front guide rolls 16 and 16 are arranged below the roll electrodes 11 and 12.
  • a plurality (two in the figure) of rear guide rolls 17 and 17 are arranged below the roll electrodes 12 and 13.
  • a continuous sheet-like PMMA film 9 is wound around the upper peripheral surfaces of the three roll electrodes 11, 12, and 13 by about a half turn, with the width direction directed in the processing width direction (the direction orthogonal to the plane of FIG. Yes.
  • the upper peripheral surface of each roll electrode 11, 12, 13 and the approximately half-periphery portion including the portion defining the gaps 14, 15 are covered with the PMMA film 9.
  • the PMMA film 9 between the roll electrodes 11 and 12 is hung down from the gap 14 and is wound around the guide rolls 16 and 16.
  • the PMMA film 9 between the gap 14 and the guide rolls 16 and 16 forms a folded portion 9a.
  • the PMMA film 9 between the roll electrodes 12 and 13 is hung downward from the gap 15 and is wound around the guide rolls 17 and 17.
  • the PMMA film 9 between the gap 15 and the guide rolls 17 and 17 forms a folded portion 9b.
  • a rotation mechanism is connected to each roll electrode 11, 12, 13.
  • the rotation mechanism includes a drive unit such as a motor or an internal combustion engine, and a transmission unit that transmits the driving force of the drive unit to the shafts of the roll electrodes 11, 12, and 13.
  • the transmission means is constituted by, for example, a belt / pulley mechanism or a gear train.
  • the roll electrodes 11, 12, and 13 are rotated around their own axes and in the same direction (clockwise in FIG. 1) in synchronism with each other by the rotation mechanism. Is done.
  • the electrode structure 10 also functions as a support unit that supports the PMMA film 9 and a transport unit that transports the PMMA film 9.
  • Each roll electrode 11, 12, 13 is provided with temperature control means (not shown).
  • the temperature adjustment means is constituted by a temperature adjustment path formed in the roll electrodes 11, 12, and 13, for example.
  • the temperature of the roll electrodes 11, 12, and 13 can be controlled by flowing a temperature-controlled medium such as water through the temperature control path.
  • the set temperature of the roll electrodes 11, 12, 13 is preferably lower than the condensation temperature of the polymerizable monomer (acrylic acid).
  • the set temperature of the PMMA film 9 is preferably about 25 ° C. to 45 ° C.
  • the first reactive gas supply means 20 includes a first reactive gas supply source 21 and a first reactive gas nozzle 23.
  • the first reaction gas contains a polymerizable monomer and a carrier gas.
  • Acrylic acid (AA) is used as the polymerizable monomer.
  • Nitrogen (N 2 ) is used as the carrier gas.
  • the first reaction gas is composed of a mixed gas of acrylic acid and nitrogen.
  • the first reactive gas supply source 21 includes a vaporizer.
  • liquid acrylic acid is vaporized into the carrier gas.
  • the vaporization may be a bubbling method or an extrusion method.
  • the first reaction gas is generated by mixing the vaporized acrylic acid and the carrier gas.
  • the bubbling method refers to a method in which a carrier gas is injected into the liquid acrylic acid solution in the vaporizer and the acrylic acid is vaporized into the bubbles of the carrier gas.
  • the extrusion method refers to a method in which a carrier gas is introduced into a space portion above the liquid acrylic acid level in the vaporizer, and the saturated acrylic acid vapor in the space portion is mixed with the carrier gas and extruded.
  • a first reactive gas supply source 21 is connected to a first reactive gas nozzle 23 via a gas path 22.
  • the first reactive gas nozzle 23 is disposed above the first roll electrode 11.
  • the first reactive gas nozzle 23 extends long in the processing width direction and has a certain width in the circumferential direction of the first roll electrode 11 (left and right in FIG. 1).
  • An outlet is provided on the lower surface of the first reactive gas nozzle 23.
  • the outlets are formed so as to be distributed over a wide range (the processing width direction and the roll circumferential direction) of the lower surface of the first reactive gas nozzle 23.
  • the blowing surface (lower surface) of the first reactive gas nozzle 23 faces the PMMA film 9 on the first roll electrode 11.
  • the first reactive gas from the first reactive gas supply source 21 is supplied to the first reactive gas nozzle 23 and is made uniform by a rectification unit (not shown) in the first reactive gas nozzle 23, and then the first reactive gas nozzle. It blows out from 23 outlets.
  • the blowout flow of the first reactive gas is a flow that is uniformly distributed in the processing width direction.
  • the gas path 22 and the first reactive gas nozzle 23 are provided with temperature control means (not shown).
  • the temperature adjusting means of the gas path 22 is constituted by a ribbon heater or the like.
  • the temperature control means of the first reactive gas nozzle 23 is configured by a temperature control path through which temperature control water passes.
  • the set temperatures of the gas path 22 and the first reaction gas nozzle 23 are higher than the condensation temperature of acrylic acid. This can prevent the acrylic acid from condensing before blowing out.
  • the set temperatures of the gas path 22 and the first reaction gas nozzle 23 are preferably about 60 ° C. to 80 ° C.
  • Shield members 24 are provided on both sides of the bottom of the first reactive gas nozzle 23.
  • the shielding member 24 has an arcuate cross section along the circumferential direction of the first roll electrode 11 and has a curved plate shape extending substantially the same length as the roll electrode 11 in the processing width direction.
  • the shielding member 24 extends from the first reactive gas nozzle 23 in the circumferential direction of the first roll electrode 11. In FIG. 1, the left end of the left shielding member 24 is released. In FIG. 1, the right end portion of the right shielding member 24 is in contact with or close to the nozzle 34 described later.
  • a first spraying space 25 is defined between the first reactive gas nozzle 23 and the first roll electrode 11.
  • the first blowing space 25 is a space having an arcuate cross section along the upper peripheral surface of the first roll electrode 11.
  • the first blowing space 25 is extended by the shielding member 24 to both sides in the circumferential direction of the first roll electrode 11 rather than the first reactive gas nozzle 23.
  • the left end portion of the first blowing space 25 is connected to the external space on the left side of the roll electrode 11 (the side opposite to the roll electrode 12 side).
  • the right end of the first blowing space 25 is connected to the gap 14 through a gap between a nozzle 34 and a roll electrode 11 described later.
  • the first discharge gas supply means 30 includes a first discharge gas supply source 31 and first discharge gas nozzles 33 and 34.
  • the gas supply source 31 stores argon (Ar) as the first discharge product gas.
  • the gas path 32 from the gas supply source 31 is connected to the first discharge gas nozzles 33 and 34.
  • the first discharge gas nozzles 33 and 34 are paired up and down across the gap 14.
  • the lower first discharge gas nozzle 33 is disposed inside the folded portion 9 a of the PMMA film 9.
  • the upper first discharge gas nozzle 34 is disposed between the roll electrodes 11 and 12 above the gap 14.
  • the first discharge gas nozzles 33 and 34 extend long in the processing width direction, and the cross sections perpendicular to the extending direction are tapered toward the opposing sides. The outlets at the tips of the first discharge gas nozzles 33 and 34 face the gap 14.
  • the argon gas from the gas supply source 31 is made uniform in the processing width direction by a rectification unit (not shown) in the first discharge gas nozzles 33 and 34, and then the gap from the outlet of the first discharge gas nozzles 33 and 34 It blows out toward 14.
  • This blowing flow is a flow that is uniformly distributed in the processing width direction.
  • a temperature control path (not shown) is provided in the first discharge gas nozzles 33 and 34.
  • a temperature control medium such as water is passed through the temperature control path in the first discharge gas nozzles 33 and 34.
  • the set temperature of the first discharge gas nozzles 33 and 34 is preferably about 25 ° C. to 45 ° C.
  • the second reactive gas supply means 40 includes a second reactive gas supply source 41 and a second reactive gas nozzle 43.
  • the second reaction gas is composed of the same gas as the first reaction gas. That is, the second reaction gas contains a polymerizable monomer and a carrier gas. Acrylic acid (AA) is used as the polymerizable monomer. Nitrogen (N 2 ) is used as the carrier gas.
  • the second reaction gas is composed of a mixed gas of acrylic acid and nitrogen.
  • the second reactive gas supply source 41 includes a vaporizer.
  • liquid acrylic acid is vaporized into the carrier gas.
  • the vaporization may be a bubbling method or an extrusion method.
  • a second reaction gas is generated.
  • the first reactive gas supply source 21 and the second reactive gas supply source 41 may be configured by a common acrylic acid supply source.
  • the second reactive gas supply source 41 is connected to the second reactive gas nozzle 43 via the gas path 42.
  • the second reactive gas nozzle 43 is disposed above the second roll electrode 12.
  • the second reactive gas nozzle 43 extends long in the processing width direction and has a certain width in the circumferential direction of the second roll electrode 12 (left and right in FIG. 1).
  • An outlet is provided on the lower surface of the second reactive gas nozzle 43.
  • the outlets are formed so as to be distributed over a wide range (the processing width direction and the roll circumferential direction) of the lower surface of the second reactive gas nozzle 43.
  • the blowing surface (lower surface) of the second reactive gas nozzle 43 faces the PMMA film 9 on the second roll electrode 12.
  • the second reaction gas from the second reaction gas supply source 41 is supplied to the second reaction gas nozzle 43 and is uniformized by a rectification unit (not shown) in the second reaction gas nozzle 43, and then the second reaction gas nozzle. It blows out from 43 outlets.
  • the flow of the second reactive gas is a flow that is uniformly distributed in the processing width direction.
  • the gas passage 42 and the second reactive gas nozzle 43 are provided with temperature control means (not shown).
  • the temperature adjusting means of the gas passage 42 is constituted by a ribbon heater or the like.
  • the temperature control means of the second reactive gas nozzle 43 is configured by a temperature control path through which temperature control water passes.
  • the set temperatures of the gas passage 42 and the second reaction gas nozzle 43 are higher than the condensation temperature of acrylic acid. This can prevent the acrylic acid from condensing before blowing out.
  • the set temperatures of the gas passage 42 and the second reaction gas nozzle 43 are preferably about 60 ° C. to 80 ° C.
  • a shielding member 44 is provided at the bottom of the second reactive gas nozzle 43.
  • the shielding member 44 has an arcuate cross section along the circumferential direction of the second roll electrode 12 and has a curved plate shape extending in the processing width direction substantially the same length as the roll electrode 12.
  • the shielding member 44 extends from the second reactive gas nozzle 43 in the circumferential direction of the second roll electrode 12. In FIG. 1, the left end portion of the left shielding member 44 is in contact with or close to the side portion of the first discharge gas nozzle 34. In FIG. 1, the right end portion of the right shielding member 44 is in contact with or close to the nozzle 54 described later.
  • a second spray space 45 is defined between the shielding member 44 and the second roll electrode 12.
  • the second spray space 45 is a space having an arcuate cross section along the upper peripheral surface of the second roll electrode 12.
  • the shielding member 44 extends the second blowing space 45 to both sides of the second roll electrode 12 in the circumferential direction from the second reactive gas nozzle 43.
  • the left end portion of the second spray space 45 is connected to the first discharge space 14 through a gap between the first discharge gas nozzle 34 and the roll electrode 12.
  • the right end of the second blowing space 45 is connected to the gap 15 through a gap between the nozzle 54 and the roll electrode 12 described later.
  • the second discharge gas supply means 50 includes a second discharge gas supply source 51 and second discharge gas nozzles 53 and 54.
  • Argon (Ar) is stored in the second discharge gas supply source 51 as the second discharge product gas.
  • the first discharge gas supply source 31 and the second discharge gas supply source 51 may be configured by a common argon gas supply source.
  • a gas path 52 from the gas supply source 51 is connected to the second discharge gas nozzles 53 and 54.
  • the second discharge gas nozzles 53 and 54 are paired up and down across the gap 15.
  • the lower second discharge gas nozzle 53 is disposed inside the folded portion 9 b of the PMMA film 9.
  • the upper second discharge gas nozzle 54 is disposed between the roll electrodes 11 and 12 above the gap 15.
  • the argon gas from the gas supply source 51 is made uniform in the processing width direction by a rectification unit (not shown) in the second discharge gas nozzles 53 and 54, and then the gap from the outlet of the second discharge gas nozzles 53 and 54 It blows out toward 15.
  • This blowing flow is a flow that is uniformly distributed in the processing width direction.
  • a temperature control path (not shown) is provided in the second discharge gas nozzles 53 and 54.
  • a temperature control medium such as water is passed through the temperature control path in the second discharge gas nozzles 53 and 54.
  • the set temperature of the second discharge gas nozzles 53 and 54 is preferably about 25 ° C. to 45 ° C.
  • a method for surface-treating the PMMA film 9 by the film surface treatment apparatus 1 having the above-described configuration, and a method for manufacturing a polarizing plate will be described.
  • [Support process, transport process] A continuous sheet-like PMMA film 9 is wound around the roll electrodes 11 to 13 and the guide rolls 16 and 17. The roll electrodes 11 to 13 are rotated clockwise in FIG. 1, and the PMMA film 9 is conveyed in the order of the first roll electrode 11, the second roll electrode 12, and the third roll electrode 13 in a substantially right direction in FIG.
  • the conveyance speed is preferably about 1 m / min to 30 m / min.
  • the first reaction gas supplying means 20 for generating a carrier gas (N 2) the first reaction gas is vaporized acrylic acid (AA) in (AA + N 2).
  • the volume concentration of acrylic acid in the first reaction gas is preferably 2% to 8%.
  • This first reactive gas is blown out from the reactive gas nozzle 23 into the first blowing space 25.
  • the first reactive gas contacts the surface of the PMMA film 9 in the first blowing space 25.
  • the acrylic acid monomer in the first reaction gas is condensed and attached to the PMMA film 9, and a first condensed layer made of the acrylic acid monomer is formed on the surface of the PMMA film 9.
  • argon is blown out from the first discharge gas nozzles 33 and 34 into the first discharge space 14 as the first discharge gas.
  • Argon may be blown out from both the upper and lower first discharge gas nozzles 33 and 34, or argon may be blown out only from one of the first discharge gas nozzles 33 or 34.
  • argon is blown out from the lower first discharge gas nozzle 33.
  • the portion of the PMMA film 9 that has undergone the first irradiation step is conveyed along the second roll electrode 12 to the second spraying space 45.
  • the second reaction gas supplying means 40 for generating a carrier gas (N 2) to vaporize acrylic acid (AA) in a second reaction gas (AA + N 2).
  • the volume concentration of acrylic acid in the second reaction gas is preferably 2% to 8%.
  • the acrylic acid concentration of the second reaction gas may be the same as the acrylic acid concentration of the first reaction gas, may be higher than the acrylic acid concentration of the first reaction gas, or may be lower than the acrylic acid concentration of the first reaction gas. .
  • This second reactive gas is blown out from the second reactive gas nozzle 43 into the second blowing space 45.
  • the second reactive gas contacts the surface of the PMMA film 9 in the second spray space 45.
  • the acrylic monomer in the second reaction gas condenses and adheres to the PMMA film 9, and a second condensed layer made of acrylic acid monomer is further formed on the first plasma polymerization film.
  • argon is blown out from the second discharge gas nozzles 53 and 54 into the second discharge space 15 as the second discharge gas.
  • Argon may be blown out from both the upper and lower second discharge gas nozzles 53, 54, or argon may be blown out only from one of the second discharge gas nozzles 53 or 54.
  • argon is blown out from the lower second discharge gas nozzle 53.
  • the second discharge space 15 discharge near atmospheric pressure is generated by supplying power to the roll electrode 12, and argon (second discharge gas) is turned into plasma.
  • This argon plasma comes into contact with the surface of the PMMA film 9 in the second discharge space 15.
  • the degree of polymerization of the first plasma polymerized film is further increased, and the acrylic acid monomer of the second condensing layer is plasma polymerized, and the second plasma polymerized further comprising polyacrylic acid on the first plasma polymerized film.
  • a film is laminated.
  • the first and second plasma polymerized films constitute an adhesion promoting layer.
  • the first plasma polymerized film has a higher degree of polymerization than the second plasma polymerized film because the polymerization proceeds not only in the first irradiation process but also in the second irradiation process. It is considered that the plasma density in the second discharge space 15 can be increased by using argon as the discharge gas in the second irradiation step, and the degree of polymerization of the first and second plasma polymer films can be increased.
  • the PMMA film 9 is folded back by the guide roll 16 to reciprocate in the second discharge space 15 and is processed twice by the second discharge gas supply means 50. The PMMA film 9 after reciprocating in the second discharge space is sent along the third roll electrode 13 and is unloaded from the apparatus 1.
  • the PMMA film 9 after the surface treatment is bonded to a PVA film through a PVA adhesive to produce a polarizing plate.
  • the adhesive strength between the difficult-to-adhere PMMA film 9 and the PVA adhesive can be improved.
  • the adhesion durability can be sufficiently increased.
  • acrylic acid as the polymerizable monomer of the reaction component and using argon as the discharge gas, it is possible to reliably increase the above-described adhesive strength and thus the adhesive durability.
  • Concerning the adhesive durability when the PMMA film is exposed to a high temperature and high humidity environment, the adhesive strength can be made higher than before the exposure (see Examples 1 to 4 below). Thereby, peeling of a polarizing plate can be prevented and quality can be improved.
  • the carrier gas of the first and second reaction gases is not limited to nitrogen (N 2 ), and may be argon (Ar).
  • the carrier gas may be the same component as the first and second discharge generation gases. Then, even if the carrier gas (Ar) flows into the discharge spaces 14 and 15, it is possible to prevent the discharge state from changing, and to maintain a stable discharge.
  • the carrier gas may be other rare gas such as helium or neon. The first contact step and the first irradiation step may be performed concurrently.
  • the gas nozzle 23 may be omitted, and the first reactive gas containing acrylic acid and argon may be blown out from the gas nozzles 33 and 34 into the first discharge space 14. This argon serves as both the carrier gas for the first reaction gas and the first discharge product gas.
  • the second contact step and the second irradiation step may be performed simultaneously.
  • the gas nozzle 43 may be omitted, and the second reactive gas containing acrylic acid and argon may be blown out from the gas nozzles 53 and 54 into the second discharge space 15. This argon serves as both the carrier gas for the second reaction gas and the second discharge product gas.
  • the PMMA film may be exposed to a high temperature and high humidity environment.
  • the adhesion durability of the PMMA film can be increased.
  • Four or more roll electrodes may be arranged, and acrylic acid-containing reactive gas spraying and argon plasma irradiation may be performed three or more times.
  • the preceding acrylic acid-containing reactive gas spraying is the “first contact process”
  • the preceding argon plasma irradiation is the “first irradiation process”.
  • the subsequent acrylic acid-containing reactive gas spraying becomes the “second contact step”
  • the subsequent argon plasma irradiation becomes the “second irradiation step”.
  • the present invention is not limited to the following examples.
  • an optical film O-PMMA
  • the width of the film 9 was 320 mm.
  • a mixed gas of N 2 and O 2 was converted into plasma and irradiated onto the PMMA film 9 to clean the surface of the film 9 (removal of organic impurities).
  • a first contact process, a first irradiation process, a second contact process, and a second irradiation process are sequentially performed on the PMMA film 9 using an apparatus having substantially the same structure as the surface treatment apparatus 1 of FIG. It was.
  • the dimensional configuration and processing conditions of the surface treatment apparatus 1 were as follows.
  • Axial length in roll width direction of roll electrodes 11, 12, 13: 390mm Diameter of roll electrodes 11, 12, 13: 310mm Power supplied to roll electrode 12: 250 W (DC voltage 120 V x DC current 2.1 A is converted to high frequency) Supply frequency: 50 kHz Applied voltage between roll electrodes 11 and 12 and between roll electrodes 12 and 13: Vpp 6.5 kV Conveying speed of PMMA film 9: 20 m / min Setting temperature of PMMA film 9: 40 ° C First reaction gas (AA + N 2 ) blowing temperature: 75 ° C.
  • a PVA adhesive was applied to the surface to be treated of the PMMA film 9 after the surface treatment, and was bonded to the PVA film.
  • the adhesive was dried at 80 ° C. for 5 minutes. Separately, acrylic acid was sprayed on the TAC film, and N 2 plasma was irradiated. This TAC film was bonded to the opposite surface of the PVA film with the same PVA adhesive as described above. Thus, a plurality of polarizing plate samples having a three-layer structure were produced. The width of the polarizing plate sample was 25 mm.
  • the adhesive strength between the PMMA film 9 and the PVA film was measured for a polarizing plate sample that was not subjected to the wet heat treatment described below.
  • the measuring method was based on the floating roller method (JIS K6854). The result was an average of 2.9 N / inch.
  • the remaining polarizing plate sample was subjected to wet heat treatment after the PVA adhesive was cured.
  • the inside of the wet heat treatment tank was set to a high temperature and high humidity environment of 60 ° C. and 95% RH, and the polarizing plate sample was left in this wet heat treatment tank for 1 hour. Thereafter, the polarizing plate sample was taken out of the wet heat treatment tank and cooled at room temperature for 3 minutes.
  • the adhesive strength (referred to as "durable adhesive strength") between the PMMA film 9 and the PVA film was measured by the same floating roller method (JIS K6854) as the initial adhesive strength. The result was broken at 8.4 N / inch.
  • Example 1 the surface treatment of the PMMA film 9, the preparation of the polarizing plate sample, and the evaluation (initial adhesive strength measurement / durable adhesive strength measurement) were all performed on the same day.
  • Example 2 the acrylic acid concentration in the first reaction gas was 5.8%, and the acrylic acid concentration in the second reaction gas was 5.8%.
  • the other conditions were the same as in Example 1.
  • the procedure for preparing the polarizing plate sample after the surface treatment and the procedure for measuring the initial adhesive strength and the durable adhesive strength were also the same as in Example 1.
  • the initial adhesive strength was 1.8 N / inch on average. In the measurement of the durable adhesive strength, the material was broken at 8.4 N / inch.
  • Example 3 the conveyance speed of the PMMA film 9 was 10 m / min.
  • the other conditions were the same as in Example 2.
  • the procedure for preparing the polarizing plate sample after the surface treatment and the procedure for measuring the initial adhesive strength and the durable adhesive strength were the same as those in Examples 1 and 2.
  • the initial adhesive strength was 2.9 N / inch on average. In the measurement of the durable adhesive strength, the material was broken at 8.7 N / inch.
  • the initial adhesive strength can be adjusted by setting the acrylic acid concentrations in the first and second reaction gases or by setting the conveying speed. That is, the initial adhesive strength could be increased by increasing the acrylic acid concentration or decreasing the transport speed. In addition, the durable adhesive strength could be sufficiently increased regardless of the acrylic acid concentration and the conveyance speed.
  • Example 4 the surface treatment of PMMA film 9 (OP-PMMA) was performed under the same conditions as in Example 1.
  • the PMMA film 9 after the surface treatment was wound into a roll, and this was left at room temperature for 38 days.
  • the polarizing plate sample was produced in the same procedure as Example 1, and the initial stage adhesive strength and durable adhesive strength were measured.
  • the initial adhesive strength was 2.8 N / inch on average.
  • the durable adhesive strength the material was broken at 9.9 N / inch. It was confirmed that almost no change with time after the surface treatment occurred.
  • Table 1 summarizes the main processing conditions and evaluations of Examples 1 to 4.
  • Comparative Example 1 As Comparative Example 1, a polarizing plate sample was prepared for the PMMA film 9 (OP-PMMA) not subjected to the surface treatment, and the initial adhesive strength and the durable adhesive strength were measured. The procedure for preparing the polarizing plate sample and the measurement procedure for the initial adhesive strength and the durable adhesive strength were the same as in Example 1. The initial adhesive strength was 0.4 N / inch on average. The average durable adhesive strength was 0.5 N / inch.
  • Comparative Example 2 As Comparative Example 2, the second contact step and the second irradiation step were omitted in the surface treatment of the PMMA film 9 (OP-PMMA), and only the first contact step and the first irradiation step were performed.
  • the other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as in Example 1.
  • the initial adhesive strength was 1.2 N / inch on average.
  • the average durable adhesive strength was 2.7 N / inch. From the results of Examples and Comparative Example 2 above, it was confirmed that the initial adhesive strength and the durable adhesive strength can be improved by repeating the acrylic acid spraying and the argon plasma irradiation.
  • Comparative Example 3 In Comparative Example 3, nitrogen (N 2 ) was used as the first and second discharge generation gases. The other surface treatment conditions were the same as in Example 1, including the flow rates of the first and second discharge product gases. The production procedure of the polarizing plate sample and the measurement procedure of the initial adhesive strength and the durable adhesive strength were also the same as in Example 1. The initial adhesive strength was 1.3 N / inch on average. The average durable adhesive strength was 6.3 N / inch. From the results of Examples and Comparative Example 3 above, it was confirmed that the initial adhesive strength and the durable adhesive strength can be improved by using argon as the discharge generation gas.
  • Comparative Example 4 In Comparative Example 4, the second contact step and the second irradiation step were omitted in Comparative Example 3, and only the first contact step and the first irradiation step were performed.
  • the other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as those in Comparative Example 3.
  • the initial adhesive strength was 1.2 N / inch on average.
  • the durable adhesive strength was 1.6 N / inch on average.
  • Comparative Example 6 In Comparative Example 6, the second contact step and the second irradiation step were omitted in the surface treatment for the PMMA film (OS-PMMA manufactured by Sekisui Chemical Co., Ltd.), and only the first contact step and the first irradiation step were performed.
  • the other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as in Example 1.
  • the initial adhesive strength was 2.7 N / inch on average.
  • the average durable adhesive strength was 4.8 N / inch.
  • Comparative Example 7 nitrogen (N 2 ) was used as the first discharge product gas in Comparative Example 6.
  • the other processing conditions were the same as those in Comparative Example 6 including the flow rate of the first discharge product gas.
  • the procedure for producing the polarizing plate sample and the measurement procedure for the initial adhesive strength and the durable adhesive strength were the same as those in Example 1.
  • the initial adhesive strength was 2.7 N / inch on average.
  • the average durable adhesive strength was 4.8 N / inch.
  • Table 2 summarizes the main processing conditions and evaluations of Comparative Examples 1-7.
  • “single” in the “number of treatments” column indicates that only the first contact process and the first irradiation process were performed as the surface treatment process, and “twin” represents the first contact process as the surface treatment process. And the first irradiation step, the second contact step, and the second irradiation step.
  • the present invention can be applied to a polarizing plate of a flat panel display (FPD), for example.
  • FPD flat panel display
  • 1 Film surface treatment device 9 Film to be treated (PMMA film) DESCRIPTION OF SYMBOLS 10 Electrode structure 11 1st roll electrode 12 2nd roll electrode 13 3rd roll electrode 14 Gap, 1st discharge space 15 Gap, 2nd discharge space 16 Guide roll 17 Guide roll 20 1st reaction gas supply means 21 1st reaction gas Supply source 22 Gas path 23 First reaction gas nozzle 24 Shield member 25 First blowing space 30 First discharge gas supply means 31 First discharge gas supply source 32 Gas path 33 Lower first discharge gas nozzle 34 Upper first discharge gas nozzle 40 second reaction gas supply means 41 second reaction gas supply source 42 gas path 43 second reaction gas nozzle 44 shielding member 45 second blowing space 50 second discharge gas supply means 51 second discharge gas supply source 52 gas path 53 lower side Second discharge gas nozzle 54 of the second upper discharge gas nozzle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To improve adhesive strength of a polymethylmethacrylate (PMMA) film. In this film surface treatment method, a first reaction gas containing an acrylic acid is blown out from a first reaction gas nozzle (23), and is brought into contact with the PMMA film (first contact step). Then, in a gap (14) between a first roll electrode (11) and a second roll electrode (12), the PMMA film is irradiated with argon plasma (first irradiation step). Then, a second reaction gas containing the acrylic acid is blown out from a second reaction gas nozzle (43), and is brought into contact with the PMMA film (second contact step). Then, in a gap (15) between the second roll electrode (12) and a third roll electrode (13), the PMMA film is irradiated with the argon plasma (second irradiation step).

Description

フィルム表面処理方法及び装置Film surface treatment method and apparatus
 本発明は、光学樹脂フィルムの表面を処理する方法及び装置に関し、特に、ポリメタクリル酸メチル(Polymethylmethacrylate、以下「PMMA」と称す)を主成分とする樹脂フィルム(以下「PMMAフィルム」と称す)の接着性を向上させるのに適した表面処理方法及び装置に関する。 The present invention relates to a method and an apparatus for treating the surface of an optical resin film, and in particular, a resin film (hereinafter referred to as “PMMA film”) containing polymethylmethacrylate (hereinafter referred to as “PMMA”) as a main component. The present invention relates to a surface treatment method and apparatus suitable for improving adhesiveness.
 例えば、特許文献1,2では、偏光板の保護フィルムの接着性を向上させるために、上記保護フィルムに重合性モノマー含有ガスを接触させるとともにプラズマを照射している。重合性モノマーとしては、例えばアクリル酸が用いられている。保護フィルムの一例として、PMMAフィルムが挙げられている。プラズマ生成用ガスの一例として、アルゴンが挙げられている。処理済みの保護フィルムを接着剤を介して偏光フィルムと貼り合わせることで偏光板が構成される。接着剤としては、ポリビニルアルコール(以下「PVA」と称す)系やポリエーテル系等の水系接着剤が用いられている。偏光フィルムとしては、PVAを主成分とする樹脂フィルム(以下「PVAフィルム」と称す)が用いられている。 For example, in Patent Documents 1 and 2, in order to improve the adhesion of the protective film of the polarizing plate, the protective monomer-containing gas is brought into contact with the protective film and plasma is irradiated. For example, acrylic acid is used as the polymerizable monomer. A PMMA film is mentioned as an example of the protective film. Argon is mentioned as an example of the plasma generating gas. A polarizing plate is comprised by bonding the processed protective film with a polarizing film through an adhesive. As the adhesive, water-based adhesives such as polyvinyl alcohol (hereinafter referred to as “PVA”) and polyether are used. As the polarizing film, a resin film containing PVA as a main component (hereinafter referred to as “PVA film”) is used.
特開2010-150372号公報(0013、0017)JP 2010-150372 A (0013, 0017) 特開2010-150373号公報(0011、0018)JP 2010-150373 A (0011, 0018)
 しかし、PMMAフィルムは極めて難接着性である。接着性の向上処理としてコロナ放電処理を行なったり接着剤を工夫したりすることも行なわれているが、これらの処理では接着性が不十分であった。 However, PMMA film is extremely difficult to adhere. Corona discharge treatment or devising adhesives have been carried out as an adhesive improvement treatment, but these treatments have insufficient adhesiveness.
 本発明方法は、PMMAフィルムの表面を処理するフィルム表面処理方法であって、
 アクリル酸をキャリアガスに気化させてなる第1反応ガスをPMMAフィルムに接触させる第1接触工程と、
 前記第1接触工程後又は前記第1接触工程と併行して、大気圧近傍下で生成したアルゴンプラズマを前記PMMAフィルムに照射する第1照射工程と、
 前記第1照射工程後にアクリル酸をキャリアガスに気化させてなる第2反応ガスを前記PMMAフィルムに接触させる第2接触工程と、
 前記第2接触工程後又は前記第2接触工程と併行して、大気圧近傍下で生成したアルゴンプラズマを前記PMMAフィルムに照射する第2照射工程と、
 を含むことを特徴とする。
The method of the present invention is a film surface treatment method for treating the surface of a PMMA film,
A first contact step of contacting a PMMA film with a first reaction gas obtained by vaporizing acrylic acid into a carrier gas;
A first irradiation step of irradiating the PMMA film with argon plasma generated near atmospheric pressure after the first contact step or in parallel with the first contact step;
A second contact step in which a second reactive gas obtained by vaporizing acrylic acid into a carrier gas after the first irradiation step is brought into contact with the PMMA film;
A second irradiation step of irradiating the PMMA film with argon plasma generated under atmospheric pressure after the second contact step or in parallel with the second contact step;
It is characterized by including.
 第1接触工程によってPMMAフィルムの表面にアクリル酸の第1凝縮層を形成できる。次に、第1照射工程によって上記第1凝縮層をプラズマ重合させて、ポリアクリル酸の第1プラズマ重合膜を形成できる。次に、第2接触工程によって上記第1プラズマ重合膜上にアクリル酸の第2凝縮層を形成できる。次に、第2照射工程によって上記第2凝縮層をプラズマ重合させて、ポリアクリル酸の第2プラズマ重合膜を上記第1プラズマ重合膜上に積層形成できる。これら第1、第2プラズマ重合膜がPMMAフィルムの接着性促進層となる。これによって、難接着性のPMMAフィルムの接着強度を向上でき、更には接着耐久性を充分に向上させることができる。ここで、接着耐久性とは、接着後の対象物を高湿度かつ高温の湿熱環境に晒した後に接着強度が低下しない度合いを云う。 A first condensed layer of acrylic acid can be formed on the surface of the PMMA film by the first contact step. Next, the first condensed layer can be plasma polymerized in the first irradiation step to form a first plasma polymerized film of polyacrylic acid. Next, a second condensed layer of acrylic acid can be formed on the first plasma polymerization film by the second contact step. Next, the second condensation layer may be plasma-polymerized in a second irradiation step, and a second plasma polymerization film of polyacrylic acid may be laminated on the first plasma polymerization film. These first and second plasma polymerization films serve as adhesion promoting layers for the PMMA film. As a result, the adhesive strength of the hard-to-adhere PMMA film can be improved, and furthermore, the adhesive durability can be sufficiently improved. Here, the adhesion durability refers to the degree to which the adhesion strength does not decrease after the object after bonding is exposed to a high humidity and high temperature wet heat environment.
 本発明装置は、PMMAフィルムの表面を処理するフィルム表面処理装置であって、
 互いに平行に並べられ、隣り合うものどうし間のギャップに大気圧近傍下で放電を生成する第1、第2、第3のロール電極と、
 前記第1ロール電極の周面に面して、アクリル酸を含有する第1反応ガスを吹き出す第1反応ガスノズルと、
 前記第1ロール電極と前記第2ロール電極との間のギャップにアルゴンを吹き出す第1放電ガスノズルと、
 前記第2ロール電極の周面に面して、アクリル酸を含有する第2反応ガスを吹き出す第2反応ガスノズルと、
 前記第2ロール電極と前記第3ロール電極との間のギャップにアルゴンを吹き出す第2放電ガスノズルを含み、
 前記PMMAフィルムが前記第1、第2、第3ロール電極に掛け回され、かつ前記第1、第2、第3ロール電極の回転によって前記PMMAフィルムが前記第1ロール電極、前記第2ロール電極、前記第3ロール電極の順に搬送されることを特徴とする。
The apparatus of the present invention is a film surface treatment apparatus for treating the surface of a PMMA film,
First, second, and third roll electrodes that are arranged in parallel with each other and generate a discharge in the gap between adjacent ones near atmospheric pressure;
A first reactive gas nozzle that faces the peripheral surface of the first roll electrode and blows out a first reactive gas containing acrylic acid;
A first discharge gas nozzle that blows out argon into a gap between the first roll electrode and the second roll electrode;
A second reaction gas nozzle that blows out a second reaction gas containing acrylic acid, facing the peripheral surface of the second roll electrode;
A second discharge gas nozzle that blows out argon into the gap between the second roll electrode and the third roll electrode;
The PMMA film is wound around the first, second, and third roll electrodes, and the PMMA film is turned into the first roll electrode and the second roll electrode by the rotation of the first, second, and third roll electrodes. The third roll electrode is conveyed in this order.
 PMMAフィルムを第1ロール電極、第2ロール電極、第3ロール電極の順に送りながら、第1ロール電極の周面上で第1反応ガスノズルから第1反応ガスをPMMAフィルムに吹き付ける。これによって、PMMAフィルムの表面にアクリル酸の第1凝縮層を形成できる。次いで、第1、第2ロール電極間のギャップでPMMAフィルムにアルゴンプラズマを照射する。これによって、上記第1凝縮層をプラズマ重合させて、ポリアクリル酸の第1プラズマ重合膜を形成できる。続いて、第2ロール電極の周面上で第2反応ガスノズルから第2反応ガスをPMMAフィルムに吹き付ける。これによって、上記第1プラズマ重合膜上にアクリル酸の第2凝縮層を形成できる。その後、第2、第3ロール電極間のギャップでPMMAフィルムにアルゴンプラズマを照射する。これによって、上記第2凝縮層をプラズマ重合させて、ポリアクリル酸の第2プラズマ重合膜を上記第1プラズマ重合膜上に積層形成できる。この結果、難接着性のPMMAフィルムの接着強度を向上でき、更には接着耐久性を充分に向上させることができる。第1、第2、第3ロール電極は、PMMAフィルムの支持手段及び搬送手段を兼ねる。 While feeding the PMMA film in the order of the first roll electrode, the second roll electrode, and the third roll electrode, the first reactive gas is sprayed from the first reactive gas nozzle onto the PMMA film on the peripheral surface of the first roll electrode. Thus, a first condensed layer of acrylic acid can be formed on the surface of the PMMA film. Next, argon plasma is irradiated to the PMMA film at the gap between the first and second roll electrodes. Accordingly, the first condensed layer can be plasma polymerized to form a first plasma polymerized film of polyacrylic acid. Subsequently, the second reaction gas is sprayed onto the PMMA film from the second reaction gas nozzle on the peripheral surface of the second roll electrode. Thus, a second condensed layer of acrylic acid can be formed on the first plasma polymerization film. Thereafter, the PMMA film is irradiated with argon plasma at the gap between the second and third roll electrodes. As a result, the second condensed layer can be plasma polymerized to form a second plasma polymerized film of polyacrylic acid on the first plasma polymerized film. As a result, the adhesive strength of the hardly-adhesive PMMA film can be improved, and the adhesion durability can be sufficiently improved. The first, second, and third roll electrodes also serve as a PMMA film supporting unit and a conveying unit.
 前記第1、第2反応ガスのキャリアガスが、アルゴンであることが好ましい。これによって、キャリアガスが、第1、第2照射工程を行う空間(例えばロール電極間のギャップ)内に流入したとしても、放電状態が変わるのを防止できる。また、前記キャリアガスは、ランニングコストを低減させるために、窒素でもよい。 It is preferable that the carrier gas of the first and second reaction gases is argon. Thereby, even if the carrier gas flows into the space (for example, the gap between the roll electrodes) in which the first and second irradiation processes are performed, it is possible to prevent the discharge state from changing. The carrier gas may be nitrogen in order to reduce running costs.
 前記表面処理は、大気圧近傍下にて行なうことが好ましい。ここで、大気圧近傍とは、1.013×10~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10~10.664×10Paが好ましく、9.331×10~10.397×10Paがより好ましい。 The surface treatment is preferably performed near atmospheric pressure. Here, the vicinity of atmospheric pressure refers to a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 to 10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.9797 × 10 4 Pa is more preferable.
 本発明によれば、難接着性のPMMAフィルムの接着強度を向上でき、更には接着耐久性を充分に向上させることができる。 According to the present invention, it is possible to improve the adhesive strength of the difficult-to-adhere PMMA film and to sufficiently improve the adhesion durability.
本発明の一実施形態に係る表面処理装置を示す側面図である。It is a side view which shows the surface treatment apparatus which concerns on one Embodiment of this invention. 上記表面処理装置の電極部及びノズル部の斜視図である。It is a perspective view of the electrode part and nozzle part of the said surface treatment apparatus.
 以下、本発明の実施形態を図面にしたがって説明する。
 図1は、本発明の第1実施形態を示したものである。被処理物は、偏光板の保護フィルム用のPMMAフィルム9である。PMMAフィルム9は、PMMAを主成分として含み、極めて難接着性である。ここで、PMMAを主成分として含むとは、フィルム9に占めるPMMAの割合が60wt%~100wt%であることを云う。言い換えると、フィルム原料に占めるメタクリル酸メチル(MMA)の割合が60wt%~100wt%であることを云う。フィルム9のPMMA以外の含有成分としては、紫外線吸収剤、安定剤、滑剤、加工助剤、可塑剤、耐衝撃助剤、発泡剤、充填剤、着色剤、艶消剤等が挙げられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention. A to-be-processed object is the PMMA film 9 for the protective film of a polarizing plate. The PMMA film 9 contains PMMA as a main component and is extremely difficult to adhere. Here, “containing PMMA as a main component” means that the proportion of PMMA in the film 9 is 60 wt% to 100 wt%. In other words, the proportion of methyl methacrylate (MMA) in the film raw material is 60 wt% to 100 wt%. Examples of components other than PMMA in the film 9 include ultraviolet absorbers, stabilizers, lubricants, processing aids, plasticizers, impact resistance aids, foaming agents, fillers, colorants, matting agents, and the like.
 図1及び図2に示すように、フィルム表面処理装置1は、電極構造10と、ガス供給手段20~50を備えている。電極構造10は、第1ロール電極11と、第2ロール電極12と、第3ロール電極13を有している。これらロール電極11~13は、互いに同一径、同一軸長の円筒体になっている。ロール電極11~13の少なくとも外周部は金属にて構成され、かつ該金属製の外周部の外周面には固体誘電体層が被膜されている。各ロール電極11,12,13の軸線が、図1の紙面と直交する水平方向(以下「処理幅方向」と称す。)に向けられている。3つのロール電極11,12,13が、この順に、かつ平行に並べられている。図1において左側の第1ロール電極11と中央の第2ロール電極12との間の第1ギャップ14と、中央の第2ロール電極12と右側の第3ロール電極13との間の第2ギャップ15の厚み等の寸法形状は互いに等しい。ギャップ14,15の最も狭い箇所の厚さは、好ましくは0.5mm~1.0mm程度である。 As shown in FIGS. 1 and 2, the film surface treatment apparatus 1 includes an electrode structure 10 and gas supply means 20-50. The electrode structure 10 includes a first roll electrode 11, a second roll electrode 12, and a third roll electrode 13. These roll electrodes 11 to 13 are cylindrical bodies having the same diameter and the same axial length. At least the outer periphery of each of the roll electrodes 11 to 13 is made of metal, and a solid dielectric layer is coated on the outer periphery of the metal outer periphery. The axis of each roll electrode 11, 12, 13 is oriented in the horizontal direction (hereinafter referred to as “processing width direction”) orthogonal to the paper surface of FIG. 1. Three roll electrodes 11, 12, and 13 are arranged in this order and in parallel. In FIG. 1, the first gap 14 between the left first roll electrode 11 and the central second roll electrode 12, and the second gap between the central second roll electrode 12 and the right third roll electrode 13. Dimensional shapes such as thickness 15 are equal to each other. The thickness of the narrowest part of the gaps 14 and 15 is preferably about 0.5 mm to 1.0 mm.
 図示は省略するが、中央のロール電極12に電源が接続され、かつ左右のロール電極11,13が電気的に接地されている。これに代えて、左右のロール電極11,13に電源がそれぞれ接続され、かつ中央のロール電極12が電気的に接地されていてもよい。電源は、例えばパルス波状の高周波電力を出力する。この電力供給によって、左側のロール電極11と中央のロール電極12との間に大気圧近傍の圧力下でプラズマ放電が生成され、ギャップ14が大気圧近傍の第1放電空間になる。また、上記電力供給によって、中央のロール電極12と右側のロール電極13との間に大気圧近傍の圧力下でプラズマ放電が生成され、ギャップ15が大気圧近傍の第2放電空間になる。ギャップ14,15間の印加電圧は、Vpp=6.0kV~7.0kV程度であることが好ましい。上記高周波電力の周波数は、50kHz~70kHz程度であることが好ましい。上記パルスの立ち上がり時間及び立下り時間は、10μsec以下であることが好ましい。上記パルスの継続時間は1~1000μsecであることが好ましい。上記高周波は、パルス波に限られず、連続波でもよい。 Although illustration is omitted, a power source is connected to the central roll electrode 12, and the left and right roll electrodes 11, 13 are electrically grounded. Alternatively, a power source may be connected to the left and right roll electrodes 11 and 13 and the central roll electrode 12 may be electrically grounded. The power source outputs, for example, pulsed high frequency power. By this power supply, plasma discharge is generated between the left roll electrode 11 and the central roll electrode 12 under a pressure near atmospheric pressure, and the gap 14 becomes a first discharge space near atmospheric pressure. Further, by the power supply, plasma discharge is generated between the central roll electrode 12 and the right roll electrode 13 under a pressure near atmospheric pressure, and the gap 15 becomes a second discharge space near atmospheric pressure. The applied voltage between the gaps 14 and 15 is preferably about Vpp = 6.0 kV to 7.0 kV. The frequency of the high frequency power is preferably about 50 kHz to 70 kHz. The rise time and fall time of the pulse are preferably 10 μsec or less. The pulse duration is preferably 1 to 1000 μsec. The high frequency is not limited to a pulse wave, and may be a continuous wave.
 ロール電極11,12の下方に複数(図では2つ)の前段ガイドロール16,16が配置されている。ロール電極12,13の下方に複数(図では2つ)の後段ガイドロール17,17が配置されている。 A plurality (two in the figure) of front guide rolls 16 and 16 are arranged below the roll electrodes 11 and 12. A plurality (two in the figure) of rear guide rolls 17 and 17 are arranged below the roll electrodes 12 and 13.
 連続シート状のPMMAフィルム9が、幅方向を上記処理幅方向(図1の紙面直交方向)に向けて、3つのロール電極11,12,13の上側の周面にそれぞれ半周程度掛け回されている。各ロール電極11,12,13の上側の周面及びギャップ14,15を画成する部分を含む約半周部分が、PMMAフィルム9にて覆われている。 A continuous sheet-like PMMA film 9 is wound around the upper peripheral surfaces of the three roll electrodes 11, 12, and 13 by about a half turn, with the width direction directed in the processing width direction (the direction orthogonal to the plane of FIG. Yes. The upper peripheral surface of each roll electrode 11, 12, 13 and the approximately half-periphery portion including the portion defining the gaps 14, 15 are covered with the PMMA film 9.
 ロール電極11,12間のPMMAフィルム9は、ギャップ14から下方に垂らされ、ガイドロール16,16に掛け回されている。ギャップ14とガイドロール16,16との間のPMMAフィルム9が、折り返し部分9aを形成している。 The PMMA film 9 between the roll electrodes 11 and 12 is hung down from the gap 14 and is wound around the guide rolls 16 and 16. The PMMA film 9 between the gap 14 and the guide rolls 16 and 16 forms a folded portion 9a.
 ロール電極12,13間のPMMAフィルム9は、ギャップ15から下方に垂らされ、ガイドロール17,17に掛け回されている。ギャップ15とガイドロール17,17との間のPMMAフィルム9が、折り返し部分9bを形成している。 The PMMA film 9 between the roll electrodes 12 and 13 is hung downward from the gap 15 and is wound around the guide rolls 17 and 17. The PMMA film 9 between the gap 15 and the guide rolls 17 and 17 forms a folded portion 9b.
 図示は省略するが、各ロール電極11,12,13に回転機構が連結されている。回転機構は、モータ、内燃機関等の駆動部と、該駆動部の駆動力をロール電極11,12,13の軸に伝達する伝達手段とを含む。伝達手段は、例えばベルト・プーリ機構やギア列にて構成されている。図1において白抜き円弧状矢印にて示すように、回転機構によって、ロール電極11,12,13が、それぞれ自らの軸線まわりに、かつ互いに同期して同方向(図1において時計周り)に回転される。これにより、PMMAフィルム9が、第1ロール電極11、第2ロール電極12、第3ロール電極13の順に概略右方向へ搬送される。
 電極構造10は、PMMAフィルム9を支持する支持手段、及びPMMAフィルム9を搬送する搬送手段としての機能を兼ねている。
Although not shown, a rotation mechanism is connected to each roll electrode 11, 12, 13. The rotation mechanism includes a drive unit such as a motor or an internal combustion engine, and a transmission unit that transmits the driving force of the drive unit to the shafts of the roll electrodes 11, 12, and 13. The transmission means is constituted by, for example, a belt / pulley mechanism or a gear train. As indicated by the white arc-shaped arrows in FIG. 1, the roll electrodes 11, 12, and 13 are rotated around their own axes and in the same direction (clockwise in FIG. 1) in synchronism with each other by the rotation mechanism. Is done. Thereby, the PMMA film 9 is conveyed to the substantially right direction in order of the 1st roll electrode 11, the 2nd roll electrode 12, and the 3rd roll electrode 13. FIG.
The electrode structure 10 also functions as a support unit that supports the PMMA film 9 and a transport unit that transports the PMMA film 9.
 各ロール電極11,12,13には、温調手段(図示省略)が設けられている。温調手段は、例えばロール電極11,12,13内に形成された温調路にて構成されている。温調路に、温調された水等の媒体を流すことにより、ロール電極11,12,13を温調できる。ひいては、ロール電極11,12,13の周面上のPMMAフィルム9を温調できる。ロール電極11,12,13の設定温度は、好ましくは重合性モノマー(アクリル酸)の凝縮温度より低温である。PMMAフィルム9の設定温度は、好ましくは25℃~45℃程度である。 Each roll electrode 11, 12, 13 is provided with temperature control means (not shown). The temperature adjustment means is constituted by a temperature adjustment path formed in the roll electrodes 11, 12, and 13, for example. The temperature of the roll electrodes 11, 12, and 13 can be controlled by flowing a temperature-controlled medium such as water through the temperature control path. As a result, the temperature of the PMMA film 9 on the peripheral surfaces of the roll electrodes 11, 12, 13 can be controlled. The set temperature of the roll electrodes 11, 12, 13 is preferably lower than the condensation temperature of the polymerizable monomer (acrylic acid). The set temperature of the PMMA film 9 is preferably about 25 ° C. to 45 ° C.
 第1反応ガス供給手段20は、第1反応ガスの供給源21と、第1反応ガスノズル23を備えている。第1反応ガスは、重合性モノマー及びキャリアガスを含有する。重合性モノマーとしては、アクリル酸(AA)が用いられている。キャリアガスとしては窒素(N)が用いられている。第1反応ガスは、アクリル酸と窒素の混合ガスにて構成されている。 The first reactive gas supply means 20 includes a first reactive gas supply source 21 and a first reactive gas nozzle 23. The first reaction gas contains a polymerizable monomer and a carrier gas. Acrylic acid (AA) is used as the polymerizable monomer. Nitrogen (N 2 ) is used as the carrier gas. The first reaction gas is composed of a mixed gas of acrylic acid and nitrogen.
 詳細な図示は省略するが、第1反応ガス供給源21は、気化器を含む。気化器において、液体のアクリル酸がキャリアガス中に気化される。気化は、バブリング方式でもよく、押し出し方式でもよい。気化したアクリル酸とキャリアガスとが混合することにより、第1反応ガスが生成される。ここで、バブリング方式とは、気化器内の液体アクリル酸の液中にキャリアガスを注入し、キャリアガスの気泡中にアクリル酸を気化させる方式を云う。押し出し方式とは、気化器内の液体アクリル酸の液面より上側の空間部分にキャリアガスを導入し、上記空間部分の飽和アクリル酸蒸気をキャリアガスと混合して押し出す方式を云う。 Although detailed illustration is omitted, the first reactive gas supply source 21 includes a vaporizer. In the vaporizer, liquid acrylic acid is vaporized into the carrier gas. The vaporization may be a bubbling method or an extrusion method. The first reaction gas is generated by mixing the vaporized acrylic acid and the carrier gas. Here, the bubbling method refers to a method in which a carrier gas is injected into the liquid acrylic acid solution in the vaporizer and the acrylic acid is vaporized into the bubbles of the carrier gas. The extrusion method refers to a method in which a carrier gas is introduced into a space portion above the liquid acrylic acid level in the vaporizer, and the saturated acrylic acid vapor in the space portion is mixed with the carrier gas and extruded.
 第1反応ガス供給源21が、ガス路22を介して第1反応ガスノズル23に接続されている。第1反応ガスノズル23は、第1ロール電極11の上方に配置されている。第1反応ガスノズル23は、処理幅方向に長く延び、かつ第1ロール電極11の周方向(図1の左右)にある程度の幅を有している。第1反応ガスノズル23の下面には、吹出し口が設けられている。吹き出し口は、第1反応ガスノズル23の下面の広い範囲(処理幅方向及びロール周方向)に分布するよう形成されている。第1反応ガスノズル23の吹出し面(下面)が、第1ロール電極11上のPMMAフィルム9に面している。第1反応ガス供給源21からの第1反応ガスが、第1反応ガスノズル23に供給され、第1反応ガスノズル23内の整流部(図示省略)にて均一化されたうえで、第1反応ガスノズル23の吹出し口から吹き出される。第1反応ガスの吹出し流は、処理幅方向に均一に分布した流れになる。 A first reactive gas supply source 21 is connected to a first reactive gas nozzle 23 via a gas path 22. The first reactive gas nozzle 23 is disposed above the first roll electrode 11. The first reactive gas nozzle 23 extends long in the processing width direction and has a certain width in the circumferential direction of the first roll electrode 11 (left and right in FIG. 1). An outlet is provided on the lower surface of the first reactive gas nozzle 23. The outlets are formed so as to be distributed over a wide range (the processing width direction and the roll circumferential direction) of the lower surface of the first reactive gas nozzle 23. The blowing surface (lower surface) of the first reactive gas nozzle 23 faces the PMMA film 9 on the first roll electrode 11. The first reactive gas from the first reactive gas supply source 21 is supplied to the first reactive gas nozzle 23 and is made uniform by a rectification unit (not shown) in the first reactive gas nozzle 23, and then the first reactive gas nozzle. It blows out from 23 outlets. The blowout flow of the first reactive gas is a flow that is uniformly distributed in the processing width direction.
 ガス路22及び第1反応ガスノズル23には、温調手段(図示省略)が設けられている。ガス路22の温調手段はリボンヒータ等にて構成されている。第1反応ガスノズル23の温調手段は、温調水を通す温調路等にて構成されている。ガス路22及び第1反応ガスノズル23の設定温度は、アクリル酸の凝縮温度より高温である。これによって、アクリル酸が吹出し前に凝縮するのを防止できる。ガス路22及び第1反応ガスノズル23の設定温度は、好ましくは60℃~80℃程度である。 The gas path 22 and the first reactive gas nozzle 23 are provided with temperature control means (not shown). The temperature adjusting means of the gas path 22 is constituted by a ribbon heater or the like. The temperature control means of the first reactive gas nozzle 23 is configured by a temperature control path through which temperature control water passes. The set temperatures of the gas path 22 and the first reaction gas nozzle 23 are higher than the condensation temperature of acrylic acid. This can prevent the acrylic acid from condensing before blowing out. The set temperatures of the gas path 22 and the first reaction gas nozzle 23 are preferably about 60 ° C. to 80 ° C.
 第1反応ガスノズル23の底部の両側には遮蔽部材24が設けられている。遮蔽部材24は、第1ロール電極11の周方向に沿う円弧状の断面をなして、処理幅方向にロール電極11とほぼ同じ長さ延びる湾曲板状になっている。遮蔽部材24が、第1反応ガスノズル23よりも第1ロール電極11の周方向に延び出ている。図1において左側の遮蔽部材24の左端部は解放されている。図1において右側の遮蔽部材24の右端部は、後記ノズル34に当接又は近接している。 Shield members 24 are provided on both sides of the bottom of the first reactive gas nozzle 23. The shielding member 24 has an arcuate cross section along the circumferential direction of the first roll electrode 11 and has a curved plate shape extending substantially the same length as the roll electrode 11 in the processing width direction. The shielding member 24 extends from the first reactive gas nozzle 23 in the circumferential direction of the first roll electrode 11. In FIG. 1, the left end of the left shielding member 24 is released. In FIG. 1, the right end portion of the right shielding member 24 is in contact with or close to the nozzle 34 described later.
 第1反応ガスノズル23と第1ロール電極11との間に第1吹付空間25が画成されている。第1吹付空間25は、第1ロール電極11の上側の周面に沿う断面円弧状の空間になっている。遮蔽部材24によって、第1吹付空間25が、第1反応ガスノズル23よりも第1ロール電極11の周方向の両側に延長されている。図1において、第1吹付空間25の左側の端部は、ロール電極11の左側(ロール電極12側とは反対側)の外部空間に連なっている。図1において、第1吹付空間25の右側の端部は、後記ノズル34とロール電極11との間の隙間を介してギャップ14に連なっている。 A first spraying space 25 is defined between the first reactive gas nozzle 23 and the first roll electrode 11. The first blowing space 25 is a space having an arcuate cross section along the upper peripheral surface of the first roll electrode 11. The first blowing space 25 is extended by the shielding member 24 to both sides in the circumferential direction of the first roll electrode 11 rather than the first reactive gas nozzle 23. In FIG. 1, the left end portion of the first blowing space 25 is connected to the external space on the left side of the roll electrode 11 (the side opposite to the roll electrode 12 side). In FIG. 1, the right end of the first blowing space 25 is connected to the gap 14 through a gap between a nozzle 34 and a roll electrode 11 described later.
 第1放電ガス供給手段30は、第1放電ガス供給源31と、第1放電ガスノズル33,34を備えている。ガス供給源31には、第1放電生成ガスとしてアルゴン(Ar)が蓄えられている。 The first discharge gas supply means 30 includes a first discharge gas supply source 31 and first discharge gas nozzles 33 and 34. The gas supply source 31 stores argon (Ar) as the first discharge product gas.
 ガス供給源31からのガス路32が第1放電ガスノズル33,34に接続されている。第1放電ガスノズル33,34は、ギャップ14を挟んで上下に一対をなしている。下側の第1放電ガスノズル33は、PMMAフィルム9の折り返し部分9aの内部に配置されている。上側の第1放電ガスノズル34は、ギャップ14より上側のロール電極11,12間に配置されている。これら第1放電ガスノズル33,34は、処理幅方向に長く延び、かつその延び方向と直交する断面が互いの対向側に向かって先細になっている。各第1放電ガスノズル33,34の先端の吹き出し口がギャップ14に臨んでいる。ガス供給源31からのアルゴンガスが、第1放電ガスノズル33,34内の整流部(図示省略)にて処理幅方向に均一化されたうえで、第1放電ガスノズル33,34の吹出し口からギャップ14へ向けて吹き出される。この吹出し流は、処理幅方向に均一に分布した流れになる。 The gas path 32 from the gas supply source 31 is connected to the first discharge gas nozzles 33 and 34. The first discharge gas nozzles 33 and 34 are paired up and down across the gap 14. The lower first discharge gas nozzle 33 is disposed inside the folded portion 9 a of the PMMA film 9. The upper first discharge gas nozzle 34 is disposed between the roll electrodes 11 and 12 above the gap 14. The first discharge gas nozzles 33 and 34 extend long in the processing width direction, and the cross sections perpendicular to the extending direction are tapered toward the opposing sides. The outlets at the tips of the first discharge gas nozzles 33 and 34 face the gap 14. The argon gas from the gas supply source 31 is made uniform in the processing width direction by a rectification unit (not shown) in the first discharge gas nozzles 33 and 34, and then the gap from the outlet of the first discharge gas nozzles 33 and 34 It blows out toward 14. This blowing flow is a flow that is uniformly distributed in the processing width direction.
 第1放電ガスノズル33,34内には、図示しない温調路が設けられている。水等の温調媒体が第1放電ガスノズル33,34内の上記温調路に通される。これによって、第1放電ガスノズル33,34を温調でき、ひいてはアルゴンガス(第1放電ガス)の吹き出し温度を調節できる。第1放電ガスノズル33,34の設定温度は、好ましくは25℃~45℃程度である。 In the first discharge gas nozzles 33 and 34, a temperature control path (not shown) is provided. A temperature control medium such as water is passed through the temperature control path in the first discharge gas nozzles 33 and 34. Thus, the temperature of the first discharge gas nozzles 33 and 34 can be adjusted, and the blowing temperature of the argon gas (first discharge gas) can be adjusted. The set temperature of the first discharge gas nozzles 33 and 34 is preferably about 25 ° C. to 45 ° C.
 第2反応ガス供給手段40は、第2反応ガスの供給源41と、第2反応ガスノズル43を備えている。第2反応ガスは第1反応ガスと同一のガスにて構成されている。すなわち、第2反応ガスは、重合性モノマー及びキャリアガスを含有する。重合性モノマーとしては、アクリル酸(AA)が用いられている。キャリアガスとしては窒素(N)が用いられている。第2反応ガスは、アクリル酸と窒素の混合ガスにて構成されている。 The second reactive gas supply means 40 includes a second reactive gas supply source 41 and a second reactive gas nozzle 43. The second reaction gas is composed of the same gas as the first reaction gas. That is, the second reaction gas contains a polymerizable monomer and a carrier gas. Acrylic acid (AA) is used as the polymerizable monomer. Nitrogen (N 2 ) is used as the carrier gas. The second reaction gas is composed of a mixed gas of acrylic acid and nitrogen.
 詳細な図示は省略するが、第2反応ガス供給源41は、気化器を含む。気化器において、液体のアクリル酸がキャリアガス中に気化される。気化は、バブリング方式でもよく、押し出し方式でもよい。気化したアクリル酸とキャリアガスとが混合することにより、第2反応ガスが生成される。第1反応ガス供給源21と第2反応ガス供給源41が共通のアクリル酸供給源にて構成されていてもよい。 Although detailed illustration is omitted, the second reactive gas supply source 41 includes a vaporizer. In the vaporizer, liquid acrylic acid is vaporized into the carrier gas. The vaporization may be a bubbling method or an extrusion method. By mixing the vaporized acrylic acid and the carrier gas, a second reaction gas is generated. The first reactive gas supply source 21 and the second reactive gas supply source 41 may be configured by a common acrylic acid supply source.
 第2反応ガス供給源41は、ガス路42を介して第2反応ガスノズル43に接続されている。第2反応ガスノズル43は、第2ロール電極12の上方に配置されている。第2反応ガスノズル43は、処理幅方向に長く延び、かつ第2ロール電極12の周方向(図1の左右)にある程度の幅を有している。第2反応ガスノズル43の下面には、吹出し口が設けられている。吹き出し口は、第2反応ガスノズル43の下面の広い範囲(処理幅方向及びロール周方向)に分布するよう形成されている。第2反応ガスノズル43の吹出し面(下面)が、第2ロール電極12上のPMMAフィルム9に面している。第2反応ガス供給源41からの第2反応ガスが、第2反応ガスノズル43に供給され、第2反応ガスノズル43内の整流部(図示省略)にて均一化されたうえで、第2反応ガスノズル43の吹出し口から吹き出される。第2反応ガスの吹出し流は、処理幅方向に均一に分布した流れになる。 The second reactive gas supply source 41 is connected to the second reactive gas nozzle 43 via the gas path 42. The second reactive gas nozzle 43 is disposed above the second roll electrode 12. The second reactive gas nozzle 43 extends long in the processing width direction and has a certain width in the circumferential direction of the second roll electrode 12 (left and right in FIG. 1). An outlet is provided on the lower surface of the second reactive gas nozzle 43. The outlets are formed so as to be distributed over a wide range (the processing width direction and the roll circumferential direction) of the lower surface of the second reactive gas nozzle 43. The blowing surface (lower surface) of the second reactive gas nozzle 43 faces the PMMA film 9 on the second roll electrode 12. The second reaction gas from the second reaction gas supply source 41 is supplied to the second reaction gas nozzle 43 and is uniformized by a rectification unit (not shown) in the second reaction gas nozzle 43, and then the second reaction gas nozzle. It blows out from 43 outlets. The flow of the second reactive gas is a flow that is uniformly distributed in the processing width direction.
 ガス路42及び第2反応ガスノズル43には、温調手段(図示省略)が設けられている。ガス路42の温調手段はリボンヒータ等にて構成されている。第2反応ガスノズル43の温調手段は、温調水を通す温調路等にて構成されている。ガス路42及び第2反応ガスノズル43の設定温度は、アクリル酸の凝縮温度より高温である。これによって、アクリル酸が吹出し前に凝縮するのを防止できる。ガス路42及び第2反応ガスノズル43の設定温度は、好ましくは60℃~80℃程度である。 The gas passage 42 and the second reactive gas nozzle 43 are provided with temperature control means (not shown). The temperature adjusting means of the gas passage 42 is constituted by a ribbon heater or the like. The temperature control means of the second reactive gas nozzle 43 is configured by a temperature control path through which temperature control water passes. The set temperatures of the gas passage 42 and the second reaction gas nozzle 43 are higher than the condensation temperature of acrylic acid. This can prevent the acrylic acid from condensing before blowing out. The set temperatures of the gas passage 42 and the second reaction gas nozzle 43 are preferably about 60 ° C. to 80 ° C.
 第2反応ガスノズル43の底部には遮蔽部材44が設けられている。遮蔽部材44は、第2ロール電極12の周方向に沿う円弧状の断面をなして、処理幅方向にロール電極12とほぼ同じ長さ延びる湾曲板状になっている。遮蔽部材44が、第2反応ガスノズル43よりも第2ロール電極12の周方向に延び出ている。図1において左側の遮蔽部材44の左端部は、第1放電ガスノズル34の側部に当接又は近接している。図1において右側の遮蔽部材44の右端部は、後記ノズル54に当接又は近接している。 A shielding member 44 is provided at the bottom of the second reactive gas nozzle 43. The shielding member 44 has an arcuate cross section along the circumferential direction of the second roll electrode 12 and has a curved plate shape extending in the processing width direction substantially the same length as the roll electrode 12. The shielding member 44 extends from the second reactive gas nozzle 43 in the circumferential direction of the second roll electrode 12. In FIG. 1, the left end portion of the left shielding member 44 is in contact with or close to the side portion of the first discharge gas nozzle 34. In FIG. 1, the right end portion of the right shielding member 44 is in contact with or close to the nozzle 54 described later.
 遮蔽部材44と第2ロール電極12との間に第2吹付空間45が画成されている。第2吹付空間45は、第2ロール電極12の上側の周面に沿う断面円弧状の空間になっている。遮蔽部材44によって、第2吹付空間45が、第2反応ガスノズル43よりも第2ロール電極12の周方向の両側に延長されている。図1において、第2吹付空間45の左側の端部は、第1放電ガスノズル34とロール電極12との間の隙間を介して、第1放電空間14に連なっている。図1において、第2吹付空間45の右側の端部は、後記ノズル54とロール電極12との間の隙間を介してギャップ15に連なっている。 A second spray space 45 is defined between the shielding member 44 and the second roll electrode 12. The second spray space 45 is a space having an arcuate cross section along the upper peripheral surface of the second roll electrode 12. The shielding member 44 extends the second blowing space 45 to both sides of the second roll electrode 12 in the circumferential direction from the second reactive gas nozzle 43. In FIG. 1, the left end portion of the second spray space 45 is connected to the first discharge space 14 through a gap between the first discharge gas nozzle 34 and the roll electrode 12. In FIG. 1, the right end of the second blowing space 45 is connected to the gap 15 through a gap between the nozzle 54 and the roll electrode 12 described later.
 第2放電ガス供給手段50は、第2放電ガス供給源51と、第2放電ガスノズル53,54を備えている。第2放電ガス供給源51には、第2放電生成ガスとしてアルゴン(Ar)が蓄えられている。第1放電ガス供給源31と第2放電ガス供給源51が共通のアルゴンガス供給源にて構成されていてもよい。 The second discharge gas supply means 50 includes a second discharge gas supply source 51 and second discharge gas nozzles 53 and 54. Argon (Ar) is stored in the second discharge gas supply source 51 as the second discharge product gas. The first discharge gas supply source 31 and the second discharge gas supply source 51 may be configured by a common argon gas supply source.
 ガス供給源51からのガス路52が第2放電ガスノズル53,54に接続されている。第2放電ガスノズル53,54は、ギャップ15を挟んで上下に一対をなしている。下側の第2放電ガスノズル53は、PMMAフィルム9の折り返し部分9bの内部に配置されている。上側の第2放電ガスノズル54は、ギャップ15より上側のロール電極11,12間に配置されている。これら第2放電ガスノズル53,54は、処理幅方向に長く延び、かつその延び方向と直交する断面が互いの対向側に向かって先細になっている。各第2放電ガスノズル53,54の先端の吹き出し口がギャップ15に臨んでいる。ガス供給源51からのアルゴンガスが、第2放電ガスノズル53,54内の整流部(図示省略)にて処理幅方向に均一化されたうえで、第2放電ガスノズル53,54の吹出し口からギャップ15へ向けて吹き出される。この吹出し流は、処理幅方向に均一に分布した流れになる。 A gas path 52 from the gas supply source 51 is connected to the second discharge gas nozzles 53 and 54. The second discharge gas nozzles 53 and 54 are paired up and down across the gap 15. The lower second discharge gas nozzle 53 is disposed inside the folded portion 9 b of the PMMA film 9. The upper second discharge gas nozzle 54 is disposed between the roll electrodes 11 and 12 above the gap 15. These second discharge gas nozzles 53, 54 extend long in the processing width direction, and the cross sections orthogonal to the extending direction taper toward the opposing sides. The outlets at the tips of the second discharge gas nozzles 53 and 54 face the gap 15. The argon gas from the gas supply source 51 is made uniform in the processing width direction by a rectification unit (not shown) in the second discharge gas nozzles 53 and 54, and then the gap from the outlet of the second discharge gas nozzles 53 and 54 It blows out toward 15. This blowing flow is a flow that is uniformly distributed in the processing width direction.
 第2放電ガスノズル53,54内には、図示しない温調路が設けられている。水等の温調媒体が第2放電ガスノズル53,54内の上記温調路に通される。これによって、第2放電ガスノズル53,54を温調でき、ひいてはアルゴンガス(第2放電ガス)の吹き出し温度を調節できる。第2放電ガスノズル53,54の設定温度は、好ましくは25℃~45℃程度である。 In the second discharge gas nozzles 53 and 54, a temperature control path (not shown) is provided. A temperature control medium such as water is passed through the temperature control path in the second discharge gas nozzles 53 and 54. Thus, the temperature of the second discharge gas nozzles 53 and 54 can be adjusted, and the blowing temperature of the argon gas (second discharge gas) can be adjusted. The set temperature of the second discharge gas nozzles 53 and 54 is preferably about 25 ° C. to 45 ° C.
 上記構成のフィルム表面処理装置1によってPMMAフィルム9を表面処理する方法、ひいては偏光板を製造する方法を説明する。
[支持工程、搬送工程]
 ロール電極11~13及びガイドロール16,17に、連続シート状のPMMAフィルム9を掛け回す。
 ロール電極11~13を図1において時計周りに回転させ、PMMAフィルム9を第1ロール電極11、第2ロール電極12、第3ロール電極13の順に、図1において概略右方向へ搬送する。搬送速度は、好ましくは1m/min~30m/min程度である。
A method for surface-treating the PMMA film 9 by the film surface treatment apparatus 1 having the above-described configuration, and a method for manufacturing a polarizing plate will be described.
[Support process, transport process]
A continuous sheet-like PMMA film 9 is wound around the roll electrodes 11 to 13 and the guide rolls 16 and 17.
The roll electrodes 11 to 13 are rotated clockwise in FIG. 1, and the PMMA film 9 is conveyed in the order of the first roll electrode 11, the second roll electrode 12, and the third roll electrode 13 in a substantially right direction in FIG. The conveyance speed is preferably about 1 m / min to 30 m / min.
[第1接触工程]
 第1反応ガス供給手段20では、キャリアガス(N)中にアクリル酸(AA)を気化させて第1反応ガス(AA+N)を生成する。第1反応ガス中のアクリル酸の体積濃度は、好ましくは2%~8%である。この第1反応ガスを反応ガスノズル23から第1吹付空間25に吹き出す。第1反応ガスは、第1吹付空間25内のPMMAフィルム9の表面に接触する。これによって、第1反応ガス中のアクリル酸モノマーが凝縮して、PMMAフィルム9に付着し、PMMAフィルム9の表面にアクリル酸モノマーからなる第1の凝縮層が形成される。
[First contact step]
In the first reaction gas supplying means 20, for generating a carrier gas (N 2) the first reaction gas is vaporized acrylic acid (AA) in (AA + N 2). The volume concentration of acrylic acid in the first reaction gas is preferably 2% to 8%. This first reactive gas is blown out from the reactive gas nozzle 23 into the first blowing space 25. The first reactive gas contacts the surface of the PMMA film 9 in the first blowing space 25. As a result, the acrylic acid monomer in the first reaction gas is condensed and attached to the PMMA film 9, and a first condensed layer made of the acrylic acid monomer is formed on the surface of the PMMA film 9.
[第1照射工程]
 第1ロール電極11の回転に伴ない、PMMAフィルム9における上記第1接触工程を経た部分がギャップ14すなわち第1放電空間14へ搬送される。第1放電ガス供給手段30では、第1放電ガスとしてアルゴンを第1放電ガスノズル33,34から第1放電空間14に吹き出す。上下両方の第1放電ガスノズル33,34からアルゴンを吹き出してもよく、片方の第1放電ガスノズル33又は34からだけアルゴンを吹き出してもよい。好ましくは、下側の第1放電ガスノズル33からアルゴンを吹き出す。併行して、ロール電極12に電力を供給し、第1放電空間14内に大気圧近傍の放電を生成し、アルゴン(第1放電ガス)をプラズマ化する。このアルゴンプラズマが第1放電空間14内のPMMAフィルム9の表面に接触する。これによって、上記第1凝縮層のアクリル酸モノマーがプラズマ重合し、PMMAフィルム9の表面にポリアクリル酸からなる第1のプラズマ重合膜が形成される。放電ガスとしてアルゴンを用いることでプラズマ密度を高くでき、上記第1プラズマ重合膜の重合度を高くできると考えられる。PMMAフィルム9は、ガイドロール16にて折り返されることによって、第1放電空間14を往復し、第1放電ガス供給手段30にて2回処理される。
[First irradiation step]
Along with the rotation of the first roll electrode 11, the portion of the PMMA film 9 that has undergone the first contact step is conveyed to the gap 14, that is, the first discharge space 14. In the first discharge gas supply means 30, argon is blown out from the first discharge gas nozzles 33 and 34 into the first discharge space 14 as the first discharge gas. Argon may be blown out from both the upper and lower first discharge gas nozzles 33 and 34, or argon may be blown out only from one of the first discharge gas nozzles 33 or 34. Preferably, argon is blown out from the lower first discharge gas nozzle 33. At the same time, electric power is supplied to the roll electrode 12 to generate a discharge near atmospheric pressure in the first discharge space 14, and argon (first discharge gas) is turned into plasma. This argon plasma comes into contact with the surface of the PMMA film 9 in the first discharge space 14. As a result, the acrylic monomer in the first condensing layer is plasma polymerized, and a first plasma polymerized film made of polyacrylic acid is formed on the surface of the PMMA film 9. It is considered that the plasma density can be increased by using argon as the discharge gas, and the degree of polymerization of the first plasma polymerization film can be increased. The PMMA film 9 is folded back by the guide roll 16 so as to reciprocate in the first discharge space 14 and processed twice by the first discharge gas supply means 30.
[第2接触工程]
 その後、PMMAフィルム9における第1照射工程を経た部分が、第2ロール電極12に添って第2吹付空間45へ搬送される。第2反応ガス供給手段40では、キャリアガス(N)中にアクリル酸(AA)を気化させて第2反応ガス(AA+N)を生成する。第2反応ガス中のアクリル酸の体積濃度は、好ましくは2%~8%である。第2反応ガスのアクリル酸濃度は、第1反応ガスのアクリル酸濃度と同じでもよく、第1反応ガスのアクリル酸濃度より高くてもよく、第1反応ガスのアクリル酸濃度より低くてもよい。この第2反応ガスを第2反応ガスノズル43から第2吹付空間45に吹き出す。第2反応ガスは、第2吹付空間45内のPMMAフィルム9の表面に接触する。この第2反応ガス中のアクリル酸モノマーが凝縮して、PMMAフィルム9に付着し、上記第1のプラズマ重合膜の上に更にアクリル酸モノマーからなる第2の凝縮層が形成される。
[Second contact step]
Thereafter, the portion of the PMMA film 9 that has undergone the first irradiation step is conveyed along the second roll electrode 12 to the second spraying space 45. In the second reaction gas supplying means 40, for generating a carrier gas (N 2) to vaporize acrylic acid (AA) in a second reaction gas (AA + N 2). The volume concentration of acrylic acid in the second reaction gas is preferably 2% to 8%. The acrylic acid concentration of the second reaction gas may be the same as the acrylic acid concentration of the first reaction gas, may be higher than the acrylic acid concentration of the first reaction gas, or may be lower than the acrylic acid concentration of the first reaction gas. . This second reactive gas is blown out from the second reactive gas nozzle 43 into the second blowing space 45. The second reactive gas contacts the surface of the PMMA film 9 in the second spray space 45. The acrylic monomer in the second reaction gas condenses and adheres to the PMMA film 9, and a second condensed layer made of acrylic acid monomer is further formed on the first plasma polymerization film.
[第2照射工程]
 第2ロール電極12の回転に伴ない、PMMAフィルム9における上記第2接触工程を経た部分がギャップ15すなわち第2放電空間15へ搬送される。第2放電ガス供給手段50では、第2放電ガスとしてアルゴンを第2放電ガスノズル53,54から第2放電空間15に吹き出す。上下両方の第2放電ガスノズル53,54からアルゴンを吹き出してもよく、片方の第2放電ガスノズル53又は54からだけアルゴンを吹き出してもよい。好ましくは、下側の第2放電ガスノズル53からアルゴンを吹き出す。第2放電空間15内では、ロール電極12への電力供給によって大気圧近傍の放電が生成され、アルゴン(第2放電ガス)がプラズマ化される。このアルゴンプラズマが第2放電空間15内のPMMAフィルム9の表面に接触する。これによって、上記第1プラズマ重合膜の重合度が更に高まるとともに、上記第2凝縮層のアクリル酸モノマーがプラズマ重合し、上記第1プラズマ重合膜上に更にポリアクリル酸からなる第2のプラズマ重合膜が積層形成される。上記第1、第2のプラズマ重合膜によって接着性促進層が構成される。第1プラズマ重合膜は、第1照射工程だけでなく第2照射工程でも重合が進むから、第2プラズマ重合膜より重合度が高い。第2照射工程の放電ガスとしてアルゴンを用いることで第2放電空間15内のプラズマ密度を高くでき、上記第1、第2プラズマ重合膜の重合度を高くできると考えられる。PMMAフィルム9は、ガイドロール16にて折り返されることによって、第2放電空間15を往復し、第2放電ガス供給手段50にて2回処理される。第2放電空間を往復後のPMMAフィルム9は、第3ロール電極13に添って送られ、装置1から搬出される。
[Second irradiation step]
As the second roll electrode 12 rotates, the portion of the PMMA film 9 that has undergone the second contact step is conveyed to the gap 15, that is, the second discharge space 15. In the second discharge gas supply means 50, argon is blown out from the second discharge gas nozzles 53 and 54 into the second discharge space 15 as the second discharge gas. Argon may be blown out from both the upper and lower second discharge gas nozzles 53, 54, or argon may be blown out only from one of the second discharge gas nozzles 53 or 54. Preferably, argon is blown out from the lower second discharge gas nozzle 53. In the second discharge space 15, discharge near atmospheric pressure is generated by supplying power to the roll electrode 12, and argon (second discharge gas) is turned into plasma. This argon plasma comes into contact with the surface of the PMMA film 9 in the second discharge space 15. As a result, the degree of polymerization of the first plasma polymerized film is further increased, and the acrylic acid monomer of the second condensing layer is plasma polymerized, and the second plasma polymerized further comprising polyacrylic acid on the first plasma polymerized film. A film is laminated. The first and second plasma polymerized films constitute an adhesion promoting layer. The first plasma polymerized film has a higher degree of polymerization than the second plasma polymerized film because the polymerization proceeds not only in the first irradiation process but also in the second irradiation process. It is considered that the plasma density in the second discharge space 15 can be increased by using argon as the discharge gas in the second irradiation step, and the degree of polymerization of the first and second plasma polymer films can be increased. The PMMA film 9 is folded back by the guide roll 16 to reciprocate in the second discharge space 15 and is processed twice by the second discharge gas supply means 50. The PMMA film 9 after reciprocating in the second discharge space is sent along the third roll electrode 13 and is unloaded from the apparatus 1.
 上記表面処理後のPMMAフィルム9を、PVA系接着剤を介してPVAフィルムと接着し、偏光板を作製する。接着に先立って上記表面処理を行うことによって、難接着性のPMMAフィルム9とPVA接着剤との接着強度を向上でき、更にはPMMAフィルム9又は偏光板を高温かつ高湿度環境下に晒した場合の接着耐久性を充分に高めることができる。特に、反応成分の重合性モノマーとしてアクリル酸を用い、放電ガスとしてアルゴンを用いることで、上記接着強度ひいては接着耐久性を確実に高めることができる。接着耐久性に関しては、PMMAフィルムを高温かつ高湿度環境下に晒すと、晒す前よりも却って接着強度を高くできる(後記実施例1~4参照)。これによって、偏光板の剥がれを防止でき、品質を高めることができる。 The PMMA film 9 after the surface treatment is bonded to a PVA film through a PVA adhesive to produce a polarizing plate. By performing the above surface treatment prior to bonding, the adhesive strength between the difficult-to-adhere PMMA film 9 and the PVA adhesive can be improved. The adhesion durability can be sufficiently increased. In particular, by using acrylic acid as the polymerizable monomer of the reaction component and using argon as the discharge gas, it is possible to reliably increase the above-described adhesive strength and thus the adhesive durability. Concerning the adhesive durability, when the PMMA film is exposed to a high temperature and high humidity environment, the adhesive strength can be made higher than before the exposure (see Examples 1 to 4 below). Thereby, peeling of a polarizing plate can be prevented and quality can be improved.
 本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変をなすことができる。
 例えば、第1、第2反応ガスのキャリアガスは、窒素(N)に限られず、アルゴン(Ar)であってもよい。上記キャリアガスが、第1、第2放電生成ガスと同一成分であってもよい。そうすると、キャリアガス(Ar)が放電空間14,15内に流入したとしても、放電状態が変わるのを防止でき、安定した放電を維持できる。更に、上記キャリアガスは、ヘリウム、ネオン等の他の希ガスであってもよい。
 第1接触工程と第1照射工程を同時併行して行なってもよい。ガスノズル23を省略し、ガスノズル33,34からアクリル酸とアルゴンを含む第1反応ガスを第1放電空間14に吹き出してもよい。このアルゴンは、第1反応ガスのキャリアガスと第1放電生成ガスとを兼ねる。
 第2接触工程と第2照射工程を同時併行して行なってもよい。ガスノズル43を省略し、ガスノズル53,54からアクリル酸とアルゴンを含む第2反応ガスを第2放電空間15に吹き出してもよい。このアルゴンは、第2反応ガスのキャリアガスと第2放電生成ガスとを兼ねる。
 偏光板の製造工程において、PMMAフィルムを高温かつ高湿度環境下に晒すことにしてもよい。これによって、PMMAフィルムの接着耐久性を高くできる。
 ロール電極を4つ以上並べ、アクリル酸含有反応ガスの吹き付け及びアルゴンプラズマ照射を3回以上行ってもよい。この場合、連続する2回のアクリル酸含有反応ガス吹き付け及びアルゴンプラズマ照射のうち、先行のアクリル酸含有反応ガス吹き付けが「第1接触工程」となり、先行のアルゴンプラズマ照射が「第1照射工程」となり、後行のアクリル酸含有反応ガス吹き付けが「第2接触工程」となり、後行のアルゴンプラズマ照射が「第2照射工程」となる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, the carrier gas of the first and second reaction gases is not limited to nitrogen (N 2 ), and may be argon (Ar). The carrier gas may be the same component as the first and second discharge generation gases. Then, even if the carrier gas (Ar) flows into the discharge spaces 14 and 15, it is possible to prevent the discharge state from changing, and to maintain a stable discharge. Further, the carrier gas may be other rare gas such as helium or neon.
The first contact step and the first irradiation step may be performed concurrently. The gas nozzle 23 may be omitted, and the first reactive gas containing acrylic acid and argon may be blown out from the gas nozzles 33 and 34 into the first discharge space 14. This argon serves as both the carrier gas for the first reaction gas and the first discharge product gas.
The second contact step and the second irradiation step may be performed simultaneously. The gas nozzle 43 may be omitted, and the second reactive gas containing acrylic acid and argon may be blown out from the gas nozzles 53 and 54 into the second discharge space 15. This argon serves as both the carrier gas for the second reaction gas and the second discharge product gas.
In the production process of the polarizing plate, the PMMA film may be exposed to a high temperature and high humidity environment. Thereby, the adhesion durability of the PMMA film can be increased.
Four or more roll electrodes may be arranged, and acrylic acid-containing reactive gas spraying and argon plasma irradiation may be performed three or more times. In this case, of the two consecutive acrylic acid-containing reactive gas sprays and argon plasma irradiation, the preceding acrylic acid-containing reactive gas spraying is the “first contact process”, and the preceding argon plasma irradiation is the “first irradiation process”. The subsequent acrylic acid-containing reactive gas spraying becomes the “second contact step”, and the subsequent argon plasma irradiation becomes the “second irradiation step”.
 実施例を説明するが、本発明は以下の実施例に限定されるものではない。
 PMMAフィルム9として、光学用フィルム(OP-PMMA)を用いた。フィルム9の幅は、320mmであった。
 前処理として、N及びOの混合ガスをプラズマ化して上記PMMAフィルム9に照射し、上記フィルム9の表面を洗浄(有機不純物の除去)した。
 次に、図1の表面処理装置1と実質的に同一構造の装置を用いて、上記PMMAフィルム9に対し第1接触工程、第1照射工程、第2接触工程、第2照射工程を順次行なった。表面処理装置1の寸法構成及び処理条件は、以下の通りであった。
  ロール電極11,12,13の処理幅方向の軸長:390mm
  ロール電極11,12,13の直径:310mm
  ロール電極12への供給電力: 250W(直流電圧120V×直流電流2.1Aを高周波変換)
          供給周波数: 50kHz
  ロール電極11,12間、及びロール電極12,13間の印加電圧:Vpp=6.5kV
  PMMAフィルム9の搬送速度: 20m/min
  PMMAフィルム9の設定温度: 40℃
  第1反応ガス(AA+N)の吹出し温度:75℃
  第1反応ガス(AA+N)の流量:30slm
  第1反応ガス中のアクリル酸の体積濃度: 7.8%
  第1放電ガスノズル33からのアルゴン流量:15slm
  第1放電ガスノズル34からのアルゴン流量:0slm
  第2反応ガス(AA+N)の吹出し温度:75℃
  第2反応ガス(AA+N)の流量:30slm
  第2反応ガス中のアクリル酸の体積濃度: 7.8%
  第2放電ガスノズル53からのアルゴン流量:15slm
  第2放電ガスノズル54からのアルゴン流量:0slm
Examples will be described, but the present invention is not limited to the following examples.
As the PMMA film 9, an optical film (OP-PMMA) was used. The width of the film 9 was 320 mm.
As a pretreatment, a mixed gas of N 2 and O 2 was converted into plasma and irradiated onto the PMMA film 9 to clean the surface of the film 9 (removal of organic impurities).
Next, a first contact process, a first irradiation process, a second contact process, and a second irradiation process are sequentially performed on the PMMA film 9 using an apparatus having substantially the same structure as the surface treatment apparatus 1 of FIG. It was. The dimensional configuration and processing conditions of the surface treatment apparatus 1 were as follows.
Axial length in roll width direction of roll electrodes 11, 12, 13: 390mm
Diameter of roll electrodes 11, 12, 13: 310mm
Power supplied to roll electrode 12: 250 W (DC voltage 120 V x DC current 2.1 A is converted to high frequency)
Supply frequency: 50 kHz
Applied voltage between roll electrodes 11 and 12 and between roll electrodes 12 and 13: Vpp = 6.5 kV
Conveying speed of PMMA film 9: 20 m / min
Setting temperature of PMMA film 9: 40 ° C
First reaction gas (AA + N 2 ) blowing temperature: 75 ° C.
Flow rate of the first reactive gas (AA + N 2 ): 30 slm
Volume concentration of acrylic acid in the first reaction gas: 7.8%
Argon flow rate from the first discharge gas nozzle 33: 15 slm
Argon flow rate from the first discharge gas nozzle 34: 0 slm
Blowing temperature of the second reactive gas (AA + N 2 ): 75 ° C.
Second reactive gas (AA + N 2 ) flow rate: 30 slm
Volume concentration of acrylic acid in the second reaction gas: 7.8%
Argon flow rate from second discharge gas nozzle 53: 15 slm
Argon flow rate from second discharge gas nozzle 54: 0 slm
 表面処理後のPMMAフィルム9の被処理面にPVA系接着剤を塗布し、PVAフィルムと貼り合わせた。PVA系接着剤として、(A)重合度500のPVA 5wt%水溶液と、(B)カルボキシメチルセルロースナトリウム 2wt%水溶液とを混合した水溶液を用いた。(A)及び(B)の混合比は、(A):(B)=20:1とした。接着剤の
乾燥条件は80℃、5分間とした。
 別途、TACフィルムにアクリル酸を吹き付け、かつNプラズマを照射した。このTACフィルムをPVAフィルムの反対側の面に上記と同じPVA系接着剤にて貼り合わせた。これにより、3層構造の偏光板サンプルを複数作製した。偏光板サンプルの幅は、25mmとした。
A PVA adhesive was applied to the surface to be treated of the PMMA film 9 after the surface treatment, and was bonded to the PVA film. As the PVA-based adhesive, an aqueous solution obtained by mixing (A) a 5 wt% PVA aqueous solution having a polymerization degree of 500 and (B) a 2 wt% aqueous sodium carboxymethyl cellulose was used. The mixing ratio of (A) and (B) was (A) :( B) = 20: 1. The adhesive was dried at 80 ° C. for 5 minutes.
Separately, acrylic acid was sprayed on the TAC film, and N 2 plasma was irradiated. This TAC film was bonded to the opposite surface of the PVA film with the same PVA adhesive as described above. Thus, a plurality of polarizing plate samples having a three-layer structure were produced. The width of the polarizing plate sample was 25 mm.
[初期接着強度]
 上記PVA系接着剤が硬化した後、後述する湿熱処理を施していない偏光板サンプルについて、PMMAフィルム9とPVAフィルムとの接着強度(「初期接着強度」と称す)を測定した。測定方法は浮動ローラー法(JIS K6854)に依った。結果は平均で2.9N/inchであった。
[Initial bond strength]
After the PVA-based adhesive was cured, the adhesive strength between the PMMA film 9 and the PVA film (referred to as “initial adhesive strength”) was measured for a polarizing plate sample that was not subjected to the wet heat treatment described below. The measuring method was based on the floating roller method (JIS K6854). The result was an average of 2.9 N / inch.
[耐久接着強度]
 残りの偏光板サンプルに対して、PVA接着剤が硬化した後、湿熱処理した。湿熱処理槽の内部を60℃、95%RHの高温高湿度環境にし、この湿熱処理槽内に偏光板サンプルを1時間留置した。その後、偏光板サンプルを湿熱処理槽から出し、室温下で3分間冷却した。そして、PMMAフィルム9とPVAフィルムとの接着強度(「耐久接着強度」と称す)を上記初期接着強度と同じ浮動ローラー法(JIS K6854)にて測定した。結果は8.4N/inchで材破した。したがって、PMMAフィルムを湿熱環境に晒すと却って接着強度が高くなった。
 なお、実施例1では、PMMAフィルム9の表面処理、偏光板サンプルの作製、及び評価(初期接着強度測定・耐久接着強度測定)をすべて同日中に行なった。
[Durable adhesive strength]
The remaining polarizing plate sample was subjected to wet heat treatment after the PVA adhesive was cured. The inside of the wet heat treatment tank was set to a high temperature and high humidity environment of 60 ° C. and 95% RH, and the polarizing plate sample was left in this wet heat treatment tank for 1 hour. Thereafter, the polarizing plate sample was taken out of the wet heat treatment tank and cooled at room temperature for 3 minutes. And the adhesive strength (referred to as "durable adhesive strength") between the PMMA film 9 and the PVA film was measured by the same floating roller method (JIS K6854) as the initial adhesive strength. The result was broken at 8.4 N / inch. Therefore, when the PMMA film was exposed to a humid heat environment, the adhesive strength was increased.
In Example 1, the surface treatment of the PMMA film 9, the preparation of the polarizing plate sample, and the evaluation (initial adhesive strength measurement / durable adhesive strength measurement) were all performed on the same day.
 実施例2では、第1反応ガス中のアクリル酸濃度を5.8%とし、かつ第2反応ガス中のアクリル酸濃度を5.8%とした。それ以外の条件は、実施例1と同じであった。表面処理後の偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順についても実施例1と同じであった。初期接着強度は平均で1.8N/inchであった。耐久接着強度の測定では、8.4N/inchで材破した。 In Example 2, the acrylic acid concentration in the first reaction gas was 5.8%, and the acrylic acid concentration in the second reaction gas was 5.8%. The other conditions were the same as in Example 1. The procedure for preparing the polarizing plate sample after the surface treatment and the procedure for measuring the initial adhesive strength and the durable adhesive strength were also the same as in Example 1. The initial adhesive strength was 1.8 N / inch on average. In the measurement of the durable adhesive strength, the material was broken at 8.4 N / inch.
 実施例3では、PMMAフィルム9の搬送速度を10m/minとした。それ以外の条件は、実施例2と同じであった。表面処理後の偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については実施例1、2と同じであった。初期接着強度は平均で2.9N/inchであった。耐久接着強度の測定では、8.7N/inchで材破した。 In Example 3, the conveyance speed of the PMMA film 9 was 10 m / min. The other conditions were the same as in Example 2. The procedure for preparing the polarizing plate sample after the surface treatment and the procedure for measuring the initial adhesive strength and the durable adhesive strength were the same as those in Examples 1 and 2. The initial adhesive strength was 2.9 N / inch on average. In the measurement of the durable adhesive strength, the material was broken at 8.7 N / inch.
 実施例1~実施例3の結果より、第1、第2反応ガス中のアクリル酸濃度の設定、又は搬送速度の設定によって初期接着強度を調節できることが確認された。すなわち、アクリル酸濃度を高くするか、搬送速度を遅くすることで初期接着強度を高くすることができた。また、耐久接着強度に関しては、アクリル酸濃度及び搬送速度に拘わらず、十分に高くすることができた。 From the results of Examples 1 to 3, it was confirmed that the initial adhesive strength can be adjusted by setting the acrylic acid concentrations in the first and second reaction gases or by setting the conveying speed. That is, the initial adhesive strength could be increased by increasing the acrylic acid concentration or decreasing the transport speed. In addition, the durable adhesive strength could be sufficiently increased regardless of the acrylic acid concentration and the conveyance speed.
 実施例4では、実施例1と同一条件でPMMAフィルム9(OP-PMMA)の表面処理を行なった。表面処理後のPMMAフィルム9を巻いてロール状にし、これを38日間、室温で留置した。そして、実施例1と同じ手順で偏光板サンプルを作製し、かつ初期接着強度及び耐久接着強度を測定した。初期接着強度は平均で2.8N/inchであった。耐久接着強度の測定では、9.9N/inchで材破した。
 表面処理後の経時変化は殆ど起きないことが確認された。
In Example 4, the surface treatment of PMMA film 9 (OP-PMMA) was performed under the same conditions as in Example 1. The PMMA film 9 after the surface treatment was wound into a roll, and this was left at room temperature for 38 days. And the polarizing plate sample was produced in the same procedure as Example 1, and the initial stage adhesive strength and durable adhesive strength were measured. The initial adhesive strength was 2.8 N / inch on average. In the measurement of the durable adhesive strength, the material was broken at 9.9 N / inch.
It was confirmed that almost no change with time after the surface treatment occurred.
 表1は、実施例1~4の主な処理条件及び評価をまとめたものである。
 
 
Figure JPOXMLDOC01-appb-T000001
 
Table 1 summarizes the main processing conditions and evaluations of Examples 1 to 4.


Figure JPOXMLDOC01-appb-T000001
[比較例1]
 比較例1として、上記表面処理を行なっていないPMMAフィルム9(OP-PMMA)について、偏光板サンプルを作製し、初期接着強度及び耐久接着強度を測定した。偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については実施例1と同じであった。初期接着強度は平均で0.4N/inchであった。耐久接着強度は平均で0.5N/inchであった。
[Comparative Example 1]
As Comparative Example 1, a polarizing plate sample was prepared for the PMMA film 9 (OP-PMMA) not subjected to the surface treatment, and the initial adhesive strength and the durable adhesive strength were measured. The procedure for preparing the polarizing plate sample and the measurement procedure for the initial adhesive strength and the durable adhesive strength were the same as in Example 1. The initial adhesive strength was 0.4 N / inch on average. The average durable adhesive strength was 0.5 N / inch.
[比較例2]
 比較例2として、PMMAフィルム9(OP-PMMA)の表面処理において第2接触工程及び第2照射工程を省略し、第1接触工程及び第1照射工程のみを行なった。それ以外の表面処理条件、偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については実施例1と同じであった。初期接着強度は平均で1.2N/inchであった。耐久接着強度は平均で2.7N/inchであった。
 上記実施例及び比較例2の結果から、アクリル酸吹き付け及びアルゴンプラズマ照射を反復することで、初期接着強度及び耐久接着強度を向上できることが確認された。
[Comparative Example 2]
As Comparative Example 2, the second contact step and the second irradiation step were omitted in the surface treatment of the PMMA film 9 (OP-PMMA), and only the first contact step and the first irradiation step were performed. The other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as in Example 1. The initial adhesive strength was 1.2 N / inch on average. The average durable adhesive strength was 2.7 N / inch.
From the results of Examples and Comparative Example 2 above, it was confirmed that the initial adhesive strength and the durable adhesive strength can be improved by repeating the acrylic acid spraying and the argon plasma irradiation.
[比較例3]
 比較例3として、第1、第2放電生成ガスとして窒素(N)を用いた。それ以外の表面処理条件は、第1、第2放電生成ガスの流量を含めて、実施例1と同じとした。偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順についても実施例1と同じであった。初期接着強度は平均で1.3N/inchであった。耐久接着強度は平均で6.3N/inchであった。
 上記実施例及び比較例3の結果から、放電生成ガスとしてアルゴンを用いることで初期接着強度及び耐久接着強度を向上できることが確認された。
[Comparative Example 3]
In Comparative Example 3, nitrogen (N 2 ) was used as the first and second discharge generation gases. The other surface treatment conditions were the same as in Example 1, including the flow rates of the first and second discharge product gases. The production procedure of the polarizing plate sample and the measurement procedure of the initial adhesive strength and the durable adhesive strength were also the same as in Example 1. The initial adhesive strength was 1.3 N / inch on average. The average durable adhesive strength was 6.3 N / inch.
From the results of Examples and Comparative Example 3 above, it was confirmed that the initial adhesive strength and the durable adhesive strength can be improved by using argon as the discharge generation gas.
[比較例4]
 比較例4では、比較例3において第2接触工程及び第2照射工程を省略し、第1接触工程及び第1照射工程のみを行なった。それ以外の表面処理条件、偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については、比較例3と同じであった。初期接着強度は平均で1.2N/inchであった。耐久接着強度は平均で1.6N/inchであった。
[Comparative Example 4]
In Comparative Example 4, the second contact step and the second irradiation step were omitted in Comparative Example 3, and only the first contact step and the first irradiation step were performed. The other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as those in Comparative Example 3. The initial adhesive strength was 1.2 N / inch on average. The durable adhesive strength was 1.6 N / inch on average.
[比較例5]
 ここまでの実施例1~4及び比較例1~4では、PMMAフィルムとしてOP-PMMAを用いたが、以下の比較例5~7では、PMMAフィルムとして積水化学工業株式会社製OS-PMMAを用いた。比較例5では、表面処理を行なっていないPMMAフィルム(積水化学工業株式会社製OS-PMMA)について、偏光板サンプルを作製し、初期接着強度及び耐久接着強度を測定した。偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については実施例1と同じであった。初期接着強度は平均で0.4N/inchであった。耐久接着強度は平均で0.5N/inchであった。
[Comparative Example 5]
In Examples 1 to 4 and Comparative Examples 1 to 4 so far, OP-PMMA was used as the PMMA film, but in Comparative Examples 5 to 7 below, OS-PMMA manufactured by Sekisui Chemical Co., Ltd. was used as the PMMA film. It was. In Comparative Example 5, a polarizing plate sample was prepared for a PMMA film (OS-PMMA manufactured by Sekisui Chemical Co., Ltd.) that had not been surface-treated, and the initial adhesive strength and the durable adhesive strength were measured. The procedure for preparing the polarizing plate sample and the measurement procedure for the initial adhesive strength and the durable adhesive strength were the same as in Example 1. The initial adhesive strength was 0.4 N / inch on average. The average durable adhesive strength was 0.5 N / inch.
[比較例6]
 比較例6では、PMMAフィルム(積水化学工業株式会社製OS-PMMA)に対する表面処理において第2接触工程及び第2照射工程を省略し、第1接触工程及び第1照射工程のみを行なった。それ以外の表面処理条件、偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については、実施例1と同じであった。初期接着強度は平均で2.7N/inchであった。耐久接着強度は平均で4.8N/inchであった。
[Comparative Example 6]
In Comparative Example 6, the second contact step and the second irradiation step were omitted in the surface treatment for the PMMA film (OS-PMMA manufactured by Sekisui Chemical Co., Ltd.), and only the first contact step and the first irradiation step were performed. The other surface treatment conditions, the preparation procedure of the polarizing plate sample, and the measurement procedure of the initial adhesive strength and the durable adhesive strength were the same as in Example 1. The initial adhesive strength was 2.7 N / inch on average. The average durable adhesive strength was 4.8 N / inch.
[比較例7]
 比較例7では、比較例6において第1放電生成ガスとして窒素(N)を用いた。それ以外の処理条件は、第1放電生成ガスの流量を含めて、比較例6と同じとした。偏光板サンプルの作製手順、並びに初期接着強度及び耐久接着強度の測定手順については、実施例1と同じであった。初期接着強度は平均で2.7N/inchであった。耐久接着強度は平均で4.8N/inchであった。
[Comparative Example 7]
In Comparative Example 7, nitrogen (N 2 ) was used as the first discharge product gas in Comparative Example 6. The other processing conditions were the same as those in Comparative Example 6 including the flow rate of the first discharge product gas. The procedure for producing the polarizing plate sample and the measurement procedure for the initial adhesive strength and the durable adhesive strength were the same as those in Example 1. The initial adhesive strength was 2.7 N / inch on average. The average durable adhesive strength was 4.8 N / inch.
 表2は、比較例1~7の主な処理条件及び評価をまとめたものである。表2において、「処理数」の欄の「single」は、表面処理工程として第1接触工程及び第1照射工程のみを行なったことを示し、「twin」は、表面処理工程として第1接触工程及び第1照射工程、並びに第2接触工程及び第2照射工程を行なったことを示す。
Figure JPOXMLDOC01-appb-T000002
 
Table 2 summarizes the main processing conditions and evaluations of Comparative Examples 1-7. In Table 2, “single” in the “number of treatments” column indicates that only the first contact process and the first irradiation process were performed as the surface treatment process, and “twin” represents the first contact process as the surface treatment process. And the first irradiation step, the second contact step, and the second irradiation step.
Figure JPOXMLDOC01-appb-T000002
 本発明は、例えばフラットパネルディスプレイ(FPD)の偏光板に適用可能である。 The present invention can be applied to a polarizing plate of a flat panel display (FPD), for example.
1   フィルム表面処理装置
9   被処理フィルム(PMMAフィルム)
10  電極構造
11  第1ロール電極
12  第2ロール電極
13  第3ロール電極
14  ギャップ、第1放電空間
15  ギャップ、第2放電空間
16  ガイドロール
17  ガイドロール
20  第1反応ガス供給手段
21  第1反応ガス供給源
22  ガス路
23  第1反応ガスノズル
24  遮蔽部材
25  第1吹付空間
30  第1放電ガス供給手段
31  第1放電ガス供給源
32  ガス路
33  下側の第1放電ガスノズル
34  上側の第1放電ガスノズル
40  第2反応ガス供給手段
41  第2反応ガス供給源
42  ガス路
43  第2反応ガスノズル
44  遮蔽部材
45  第2吹付空間
50  第2放電ガス供給手段
51  第2放電ガス供給源
52  ガス路
53  下側の第2放電ガスノズル
54  上側の第2放電ガスノズル
1 Film surface treatment device 9 Film to be treated (PMMA film)
DESCRIPTION OF SYMBOLS 10 Electrode structure 11 1st roll electrode 12 2nd roll electrode 13 3rd roll electrode 14 Gap, 1st discharge space 15 Gap, 2nd discharge space 16 Guide roll 17 Guide roll 20 1st reaction gas supply means 21 1st reaction gas Supply source 22 Gas path 23 First reaction gas nozzle 24 Shield member 25 First blowing space 30 First discharge gas supply means 31 First discharge gas supply source 32 Gas path 33 Lower first discharge gas nozzle 34 Upper first discharge gas nozzle 40 second reaction gas supply means 41 second reaction gas supply source 42 gas path 43 second reaction gas nozzle 44 shielding member 45 second blowing space 50 second discharge gas supply means 51 second discharge gas supply source 52 gas path 53 lower side Second discharge gas nozzle 54 of the second upper discharge gas nozzle

Claims (2)

  1.  ポリメタクリル酸メチルを主成分とする樹脂フィルム(以下「PMMAフィルム」と称す)の表面を処理するフィルム表面処理方法であって、
     アクリル酸をキャリアガスに気化させてなる第1反応ガスをPMMAフィルムに接触させる第1接触工程と、
     前記第1接触工程後又は前記第1接触工程と併行して、大気圧近傍下で生成したアルゴンプラズマを前記PMMAフィルムに照射する第1照射工程と、
     前記第1照射工程後にアクリル酸をキャリアガスに気化させてなる第2反応ガスを前記PMMAフィルムに接触させる第2接触工程と、
     前記第2接触工程後又は前記第2接触工程と併行して、大気圧近傍下で生成したアルゴンプラズマを前記PMMAフィルムに照射する第2照射工程と、
     を含むことを特徴とするフィルム表面処理方法。
    A film surface treatment method for treating the surface of a resin film containing polymethyl methacrylate as a main component (hereinafter referred to as “PMMA film”),
    A first contact step of contacting a PMMA film with a first reaction gas obtained by vaporizing acrylic acid into a carrier gas;
    A first irradiation step of irradiating the PMMA film with argon plasma generated near atmospheric pressure after the first contact step or in parallel with the first contact step;
    A second contact step in which a second reactive gas obtained by vaporizing acrylic acid into a carrier gas after the first irradiation step is brought into contact with the PMMA film;
    A second irradiation step of irradiating the PMMA film with argon plasma generated under atmospheric pressure after the second contact step or in parallel with the second contact step;
    A film surface treatment method comprising:
  2.  PMMAフィルムの表面を処理するフィルム表面処理装置であって、
     互いに平行に並べられ、隣り合うものどうし間のギャップに大気圧近傍下で放電を生成する第1、第2、第3のロール電極と、
     前記第1ロール電極の周面に面して、アクリル酸を含有する第1反応ガスを吹き出す第1反応ガスノズルと、
     前記第1ロール電極と前記第2ロール電極との間のギャップにアルゴンを吹き出す第1放電ガスノズルと、
     前記第2ロール電極の周面に面して、アクリル酸を含有する第2反応ガスを吹き出す第2反応ガスノズルと、
     前記第2ロール電極と前記第3ロール電極との間のギャップにアルゴンを吹き出す第2放電ガスノズルを含み、
     前記PMMAフィルムが前記第1、第2、第3ロール電極に掛け回され、かつ前記第1、第2、第3ロール電極の回転によって前記PMMAフィルムが前記第1ロール電極、前記第2ロール電極、前記第3ロール電極の順に搬送されることを特徴とするフィルム表面処理装置。
     
    A film surface treatment apparatus for treating the surface of a PMMA film,
    First, second, and third roll electrodes that are arranged in parallel with each other and generate a discharge in the gap between adjacent ones near atmospheric pressure;
    A first reactive gas nozzle that faces the peripheral surface of the first roll electrode and blows out a first reactive gas containing acrylic acid;
    A first discharge gas nozzle that blows out argon into a gap between the first roll electrode and the second roll electrode;
    A second reaction gas nozzle that blows out a second reaction gas containing acrylic acid, facing the peripheral surface of the second roll electrode;
    A second discharge gas nozzle that blows out argon into the gap between the second roll electrode and the third roll electrode;
    The PMMA film is wound around the first, second, and third roll electrodes, and the PMMA film is turned into the first roll electrode and the second roll electrode by the rotation of the first, second, and third roll electrodes. The film surface treatment apparatus is conveyed in the order of the third roll electrode.
PCT/JP2012/057466 2011-03-30 2012-03-23 Method and apparatus for treating film surface WO2012133154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137022592A KR101899177B1 (en) 2011-03-30 2012-03-23 Method and apparatus for treating film surface
CN201280015839.1A CN103459476B (en) 2011-03-30 2012-03-23 Method and apparatus for treating film surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075647A JP5039220B1 (en) 2011-03-30 2011-03-30 Film surface treatment method and apparatus
JP2011-075647 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133154A1 true WO2012133154A1 (en) 2012-10-04

Family

ID=46930878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057466 WO2012133154A1 (en) 2011-03-30 2012-03-23 Method and apparatus for treating film surface

Country Status (5)

Country Link
JP (1) JP5039220B1 (en)
KR (1) KR101899177B1 (en)
CN (1) CN103459476B (en)
TW (1) TWI491654B (en)
WO (1) WO2012133154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320986A1 (en) 2016-11-09 2018-05-16 Europlasma NV Hydrophilic, multifunctional ultra-thin coatings with excellent stability and durability

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930972B1 (en) * 2011-08-30 2018-12-19 세키스이가가쿠 고교가부시키가이샤 Film surface treatment method and device
JP6319000B2 (en) * 2014-09-05 2018-05-09 日産自動車株式会社 Method and apparatus for surface modification of reinforced substrate
JP6421962B1 (en) * 2017-08-09 2018-11-14 春日電機株式会社 Surface reformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241165A (en) * 1998-02-26 1999-09-07 Sekisui Chem Co Ltd Production of surface-treated article
JP2009025604A (en) * 2007-07-20 2009-02-05 Konica Minolta Opto Inc Polarizing plate protective film, method and apparatus for manufacturing the same, and polarizing plate, method for manufacturing the same, and display device
WO2010073626A1 (en) * 2008-12-25 2010-07-01 積水化学工業株式会社 Method and device for treating film surface and process for producing polarizer
JP2010150372A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Method and device for surface treatment of film, and method for manufacturing polarizing plate
JP2010150373A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Surface treating method and adhesion method of film, and method of manufacturing polarizing plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345889B1 (en) * 2007-07-09 2013-12-30 세키스이가가쿠 고교가부시키가이샤 Method for treating film surface, method for producing polarizing plate, and surface treatment apparatus
JP5167431B2 (en) * 2010-03-09 2013-03-21 積水化学工業株式会社 Film surface treatment equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241165A (en) * 1998-02-26 1999-09-07 Sekisui Chem Co Ltd Production of surface-treated article
JP2009025604A (en) * 2007-07-20 2009-02-05 Konica Minolta Opto Inc Polarizing plate protective film, method and apparatus for manufacturing the same, and polarizing plate, method for manufacturing the same, and display device
WO2010073626A1 (en) * 2008-12-25 2010-07-01 積水化学工業株式会社 Method and device for treating film surface and process for producing polarizer
JP2010150372A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Method and device for surface treatment of film, and method for manufacturing polarizing plate
JP2010150373A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Surface treating method and adhesion method of film, and method of manufacturing polarizing plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320986A1 (en) 2016-11-09 2018-05-16 Europlasma NV Hydrophilic, multifunctional ultra-thin coatings with excellent stability and durability
WO2018087192A1 (en) 2016-11-09 2018-05-17 Europlasma Nv Hydrophilic, multifunctional ultra-thin coatings with excellent stability and durability
US11167311B2 (en) 2016-11-09 2021-11-09 Europlasma Nv Hydrophilic, multifunctional ultra-thin coatings with excellent stability and durability

Also Published As

Publication number Publication date
CN103459476A (en) 2013-12-18
TWI491654B (en) 2015-07-11
KR20140020879A (en) 2014-02-19
JP2012207182A (en) 2012-10-25
JP5039220B1 (en) 2012-10-03
TW201302877A (en) 2013-01-16
KR101899177B1 (en) 2018-09-14
CN103459476B (en) 2014-11-26

Similar Documents

Publication Publication Date Title
EP2278047A1 (en) Plasma discharge treatment apparatus, and method of manufacturing gas barrier film
WO2010150551A1 (en) Method and device for treating film surface and method for production of polarising plate
JP5320848B2 (en) Laminate with hard coat layer
JP5039220B1 (en) Film surface treatment method and apparatus
JP5006951B2 (en) Film surface treatment equipment
JP2010247369A (en) Method for producing gas-barrier laminate and gas-barrier laminate
JP2010150373A (en) Surface treating method and adhesion method of film, and method of manufacturing polarizing plate
JP5576297B2 (en) Film surface treatment method and apparatus, and polarizing plate production method
TWI417326B (en) Film surface treatment device
TWI522400B (en) Membrane surface treatment method and device
US20110214609A1 (en) Atmospheric plasma apparatus
WO2012117933A1 (en) Film surface treatment method and device
JP2008075099A (en) Thin film deposition device, thin film deposition method, thin film, and thin film stacked body
JP5477839B2 (en) Surface treatment method for triacetyl cellulose film
WO2017038200A1 (en) Film forming device and film forming method
TW202244150A (en) Surface modification method
JP6897567B2 (en) Gas barrier film
WO2012043385A1 (en) Film surface treatment method and device
JP2005107420A (en) Method for manufacturing liquid crystal display element, alignment processor, and liquid crystal display element
JPH0462116A (en) Casting of thermoplastic sheet
JP2013073078A (en) Method for manufacturing polarizing plate
JP2011201970A (en) Film surface treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137022592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763697

Country of ref document: EP

Kind code of ref document: A1