WO2012133090A1 - Printed wiring board and method for manufacturing printed wiring board - Google Patents

Printed wiring board and method for manufacturing printed wiring board Download PDF

Info

Publication number
WO2012133090A1
WO2012133090A1 PCT/JP2012/057292 JP2012057292W WO2012133090A1 WO 2012133090 A1 WO2012133090 A1 WO 2012133090A1 JP 2012057292 W JP2012057292 W JP 2012057292W WO 2012133090 A1 WO2012133090 A1 WO 2012133090A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind via
printed wiring
wiring board
standard
manufacturing
Prior art date
Application number
PCT/JP2012/057292
Other languages
French (fr)
Japanese (ja)
Inventor
岡 良雄
直太 上西
春日 隆
辰珠 朴
上田 宏
寛 富岡
澄人 上原
Original Assignee
住友電気工業 株式会社
住友電工プリントサーキット 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業 株式会社, 住友電工プリントサーキット 株式会社 filed Critical 住友電気工業 株式会社
Priority to CN201280001266.7A priority Critical patent/CN102870505B/en
Publication of WO2012133090A1 publication Critical patent/WO2012133090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/17Post-manufacturing processes
    • H05K2203/175Configurations of connections suitable for easy deletion, e.g. modifiable circuits or temporary conductors for electroplating; Processes for deleting connections

Definitions

  • the present invention relates to a printed wiring board having blind vias and a method for manufacturing the printed wiring board.
  • the blind via of the printed wiring board connects the first conductive layer and the second conductive layer with a conductor.
  • the connection state between the conductor and the first conductive layer or the second conductive layer is not good, there is a risk of disconnection due to long-term use of the printed wiring board.
  • the printed wiring board may repeat expansion and contraction cycles, leading to disconnection at a defective portion of a blind via. For this reason, in the manufacturing process of a printed wiring board, the operation
  • Defective products in which there are few conductors filled in the blind via, the surface of the blind via is recessed, and the bottom of the blind via is exposed can be detected by visual inspection.
  • defective products due to poor adhesion between the conductor and the metal layer inside the blind via, and defective products in which bubbles or insulating foreign substances exist inside the blind via cannot be detected by visual inspection.
  • Patent Document 1 As a method for detecting a defective blind via that cannot be detected by appearance inspection, for example, there is a method described in Patent Document 1. In this method, the printed wiring board is heated after a film is formed in the opening of the blind via. Since a defective blind via generates gas by heating, the coating on the defective blind via is deformed. Therefore, the quality of the blind via is determined by inspecting the appearance of the film for deformation.
  • test blind vias are provided, and the test blind vias are inspected. Has not done the inspection.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a printed wiring board that can easily determine whether a blind via is good or bad, and a printed wiring that can determine whether a blind via is within or outside of a standard. It is in providing the manufacturing method of a board.
  • the first conductive layer and the first conductive layer are formed by a blind via having an insulating layer between the first conductive layer and the second conductive layer and including a conductor penetrating the insulating layer.
  • a method for manufacturing a printed wiring board to which a second conductive layer is connected is provided. The manufacturing method determines whether the blind via is within the standard or out of the standard, recognizes that the blind via is within the standard, and identifies the non-standard blind via as the non-standard blind via. Energizing the blind via under a current-carrying condition in which the non-standard blind via is disconnected and the intra-standard blind via is not disconnected.
  • the non-standard blind via can be disconnected and the non-standard blind via can be disconnected by energization.
  • the electrical inspection that is subsequently performed it is possible to easily discriminate between the non-standard blind via and the non-standard blind via by the electrical inspection that is subsequently performed.
  • the following two actions are obtained.
  • When a blind via with a filling rate equal to or lower than the first reference value is recognized as a non-standard blind via, it is desirable to set energization conditions based on the square of the first reference value. In this case, it is possible to increase the probability that a blind via having a filling rate equal to or less than the first reference value is selectively disconnected as a non-standard blind via.
  • the energization condition is set so that the ratio of the calorific value to the heat capacity is 1 or more, the blind via with a filling rate of 1 may break.
  • the energization condition is set such that the ratio of the heat generation amount to the heat capacity is less than the square of the first reference value, there is a possibility that blind vias whose charging rate is equal to or less than the first reference value will not be disconnected.
  • the energization condition is set as described in (4) above, it is possible to suppress the blind via having a filling rate of 1 from being broken and to open the blind via having a filling rate equal to or less than the first reference value. It can be suppressed.
  • the energization condition is set based on the second reference value. It is desirable.
  • the contact resistance between the first conductive layer and the conductor increases. This acts to promote blind via disconnection.
  • the energization condition is set so that the ratio of the calorific value to the heat capacity is 1 or more, the blind via with a contact rate of 1 may be broken.
  • the energization condition is set with the ratio of the calorific value to the heat capacity being less than the second reference value, there is a possibility that blind vias having a contact rate of the second reference value or less will not be disconnected.
  • the energization condition is set as described in (6) above, it is possible to suppress the blind via having a contact rate of 1 from being disconnected and the blind via having a contact rate of not more than the second reference value from being disconnected. This can be suppressed.
  • the conductor preferably contains silver particles having an average particle diameter of 0.5 ⁇ m to 2.0 ⁇ m and silver particles having an average particle diameter of 10 nm to 500 nm.
  • the blind via expands due to heating by energization. As a result, contact between silver particles may be reduced, and resistance may be increased.
  • the resistance hardly increases. This is because the surface of the silver particles of 10 nm to 500 nm or the whole is melted by heating by energization to increase the conduction path in the blind via. That is, in this type of blind via, the increase in resistance before and after energization is small compared to the conductive paste 30 that does not contain silver particles having an average particle diameter of 10 nm to 500 nm.
  • At least one of the first conductive layer and the second conductive layer is formed of stainless steel.
  • stainless steel is known to be easily oxidized on the surface. For this reason, when the 1st conductive layer or the 2nd conductive layer is formed with stainless steel, the adhesive force of a conductor and a conductive layer falls by surface oxidation of stainless steel, and between a conductor and these conductive layers The contact resistance increases. Blind vias with surface oxidation may break in the future.
  • At least one of the first conductive layer and the second conductive layer is formed of stainless steel.
  • the reason for this is that blind vias in which the adhesive force between the conductor and the conductive layer is reduced due to the oxidation of stainless steel, or blind vias in which the contact resistance between the conductor and the conductive layer is increased, are out of specification. This is because it can be distinguished electrically.
  • the non-standard blind via may burn out and generate dust.
  • the dust may be caught between the terminals of the electronic components and cause malfunction. .
  • the blind via is covered with a coating layer so that dust due to burning does not move. Thereby, it can suppress that the malfunctioning by a dust arises.
  • the printed wiring board is preferably manufactured by the above manufacturing method.
  • the selected non-standard blind via contains almost no non-standard blind via. For this reason, even if the printed wiring board is deformed or expanded / contracted due to a change in the surrounding environment, the standard blind via is hardly broken. That is, the frequency of blind via disconnection due to deformation or expansion / contraction of the printed wiring board can be reduced as compared with a printed wiring board that is not energized.
  • a printed wiring board that can easily determine whether a blind via is acceptable or not, and a printed wiring board manufacturing method that can determine whether a blind via is within specifications.
  • FIG. 3A to FIG. 3C are cross-sectional views in each manufacturing process of the printed wiring board.
  • 4A to 4C show a cross-sectional structure of a non-standard blind via
  • FIG. 4A is a cross-sectional view of an unfilled blind via
  • FIG. 4B is a blind containing an insulating foreign material.
  • 4 is a cross-sectional view of a via
  • FIG. 4C is a cross-sectional view of a blind via in which a part of a contact surface is in a non-contact state.
  • inducing energization conditions about a non-standard blind via with an unfilling The graph which shows the relationship between the upper limit of the filling rate of a non-standard blind via, and JA / QA.
  • the printed wiring board 1 includes a first conductive layer 2 formed of a metal foil, an insulating layer 3 provided on the surface of the first conductive layer 2, and a predetermined wiring pattern provided on the surface of the insulating layer 3.
  • the second conductive layer 4 is formed, the blind via 5 connecting the first conductive layer 2 and the second conductive layer 4, and the covering layer 11 covering the second conductive layer 4. Note that the first conductive layer 2 and the second conductive layer 4 are not electrically connected at portions other than the blind via 5.
  • the first conductive layer 2 is made of stainless steel, and the thickness of the first conductive layer 2 is 1 ⁇ m to 100 ⁇ m.
  • the 1st conductive layer 2 you may use the metal foil which consists of aluminum, iron, copper, nickel, titanium, molybdenum, chromium, zinc other than stainless steel.
  • the insulating layer 3 is formed of a resin material having excellent flexibility.
  • the insulating layer 3 is formed of a polyester resin, a polyamide resin, or a polyimide resin.
  • the insulating layer 3 has a thickness of 5 ⁇ m to 200 ⁇ m.
  • the second conductive layer 4 is made of copper.
  • the second conductive layer 4 may be formed of, for example, aluminum, nickel, gold, alloys thereof, solder, or the like.
  • the second conductive layer 4 may contain nickel and chromium.
  • an additional layer is provided between the second conductive layer 4 and the insulating layer 3, and this additional layer is formed on the surface of the second conductive layer 4. You may comprise by the nickel plating layer formed and the gold plating layer formed on the surface of the nickel plating layer.
  • the covering layer 11 is formed of the same resin material as that of the insulating layer 3.
  • a polyester resin, a polyamide resin, or a polyimide resin is used for forming the coating layer 11.
  • the thickness of the coating layer 11 is 5 ⁇ m to 200 ⁇ m.
  • the blind via 5 is composed of a conductor 7 that connects the first conductive layer 2 and the second conductive layer 4.
  • the conductor 7 is obtained by heat-curing the conductive paste 30.
  • the blind via 5 has a diameter of 10 ⁇ m to 200 ⁇ m and a depth of 5 ⁇ m to 200 ⁇ m.
  • the conductive paste 30 includes a conductive filler and an epoxy resin (cured product). The volume ratio between the conductive filler and the epoxy resin is 60:40.
  • the conductive paste 30 a paste in which two kinds of conductive fillers having different average particle diameters are dispersed in an epoxy resin is used.
  • the epoxy resin functions as a binder.
  • silver powder having an average particle size of 0.5 ⁇ m to 2.0 ⁇ m is used, and as the second conductive filler 22, silver powder having an average particle size of 10 nm to 500 nm is used.
  • the powder of silver coat copper powder platinum, gold
  • An average particle diameter shows the value (D50) of the integrated value 50% in the integrated distribution of a particle diameter.
  • the integrated distribution is obtained from a value obtained by volume-converting the radius of the particle measured based on the image analysis of 500 particles observed by a scanning electron microscope (SEM). It is determined by a particle size distribution measuring device.
  • the epoxy resin in the conductive paste 30 is thermosetting and is used by being dissolved in an organic solvent. Since the conductive paste 30 is filled in the through holes 6 by screen printing or the like, a solvent having excellent printability is used as the organic solvent of the conductive paste 30. For example, carbitol acetate or butyl carbitol acetate is used.
  • the blind via 5 is formed by filling the through-hole 6 penetrating the insulating layer 3 and the second conductive layer 4 with the conductive paste 30 and performing a heat treatment. By the heat treatment, the solvent in the conductive paste 30 is removed, and the conductive paste 30 is cured and contracted so that the conductive fillers are in contact with each other in a pressed state. Since two types of conductive fillers having different average particle diameters are used, when the through-hole 6 is filled with the conductive paste 30, the second conductive filler 22 is inserted into the gap between the first conductive fillers 21. Enters.
  • the blind via 5 formed using the two types of conductive fillers 21 and 22 having different average particle diameters has a through hole compared to the blind via 5 formed using only the first conductive filler 21.
  • 6 has a high density of conductive fillers 21 and 22 and a small resistance value. Further, since there are many contact points between the conductive fillers 21 and 22, the resistance change when the conductor 7 expands is smaller than that of the blind via 5 formed using only the first conductive filler 21.
  • FIG. 3A to 3C are cross-sectional views for explaining a method of manufacturing the printed wiring board 1.
  • FIG. 3A to 3C are cross-sectional views for explaining a method of manufacturing the printed wiring board 1.
  • the second conductive layer 4 is formed on the upper surface of the insulating layer 3 by a semi-additive method.
  • the first conductive layer 2 and the second conductive layer 4 are separated. It is electrically connected via the conductive paste 30.
  • the filling of the conductive paste 30 is performed by a screen printing method. After the conductive paste 30 is filled, the conductive paste 30 is heated and cured.
  • a coating layer 11 is laminated on the surface of the second conductive layer 4, and the second conductive layer 4 and the conductor 7 are covered with the coating layer 11.
  • a polyimide-based photosensitive cover coat ink is applied on the surface of the second conductive layer 4 and the surface of the conductor 7 by screen printing or the like, then dried, further exposed and developed, and polyimide A film-like coating layer 11 made of resin is formed.
  • the printed wiring board 1 is formed by the above steps.
  • the property of the conductive paste 30 varies among lots, and the property of the conductive paste 30 changes with time.
  • the surface state of the first conductive layer 2 is various, and the surface is oxidized, the surface is uneven, or the plating solution is attached to the surface. There are things. Due to these factors, various defective products are formed in the manufacturing process of the blind via 5.
  • the unfilled portion 50 may be formed inside the blind via 5 or air bubbles may be contained inside the blind via 5.
  • the blind via 5 in which the unfilled portion 50 exists and the blind via 5 including bubbles are referred to as “unfilled blind via 5X”.
  • the unfilled portion 50 inside the blind via 5 is generated due to an inappropriate viscosity of the conductive paste 30 or an execution time of the printing process being too short.
  • the factors that cause bubbles to enter inside the blind via 5 are that the conductive paste 30 contains bubbles inside itself, and bubbles are formed when the conductive paste 30 is filled in the through holes 6. And so on. Some of the bubbles or the unfilled portion 50 may disappear due to the heat treatment process of the blind via 5, but some may remain.
  • the bubbles or the unfilled portion 50 reduces the amount of the conductor 7 in the blind via 5, and thus increases the resistance value of the blind via 5.
  • an insulating foreign material 51 may be present inside the blind via 5.
  • the blind via 5 including the insulating foreign material 51 is referred to as “foreign-material-containing blind via 5Y”.
  • the insulating foreign matter 51 is included in the conductive paste 30, and an insulating property when filling the through-hole 6 with the conductive paste 30 by a printing method or the like.
  • foreign matter 51 may be mixed.
  • the insulating foreign matter 51 is generated, for example, when the insulating layer 3 is missing in the transport process of the printed wiring board 1. Since the insulating foreign matter 51 does not conduct electricity, it increases the resistance of the blind via 5 when mixed.
  • the contact surface 7A between the conductor 7 and the first conductive layer 2 may not be in contact with each other.
  • the blind via 5 in which the conductor 7 and the first conductive layer 2 are in partial contact or the blind via 5 in which the conductor 7 and the first conductive layer 2 are not in contact is referred to as “partial contact”. It is called "blind via 5Z”.
  • the non-contact state between the conductor 7 and the first conductive layer 2 is that the conductor 7 and the first conductive layer 2 are peeled off due to expansion or contraction of the conductor 7 in the heat treatment process of the blind via 5, and printed in the manufacturing process. It is formed by applying an external force to the wiring board 1. Further, the blind via 5 in a non-contact state is formed due to a decrease in adhesive force due to oxidation of the surface of the first conductive layer 2. When the conductor 7 and the first conductive layer 2 are in a non-contact state, the resistance of the blind via 5 is increased.
  • the portion where the cross-sectional area is small in the axial direction of the blind via 5. Since the portion has a small cross-sectional area, the force is likely to concentrate, or the current is likely to be concentrated to be overheated, so that there is a risk of disconnection at the portion.
  • the partial contact blind via 5Z has a larger contact resistance between the conductor 7 and the first conductive layer 2 than the blind contact 5 in a normal contact state, or starts from the non-contact state portion. As a result, it is likely to be disconnected at the relevant part.
  • the inspection for determining the quality of the blind via 5 is performed during the manufacturing process.
  • the standard blind via 5A and the non-standard blind via 5B are distinguished.
  • the non-standard blind via 5B is in a disconnected state, and further, a marking is given so that both can be discriminated visually.
  • the standard blind via 5A has a filling ratio with respect to the filling volume of the blind via 5 larger than the first reference value C, and a contact ratio at the contact surface 7A between the conductor 7 and the first conductive layer 2 is the second reference. Points larger than the value D.
  • the non-standard blind via 5B is that the filling rate with respect to the filling volume in the blind via 5 is equal to or less than the first reference value C, and the contact rate at the contact surface 7A between the conductor 7 and the first conductive layer 2 is equal to or less than the second reference value D.
  • the filling volume in the blind via 5 indicates the volume of the hole defined by the through hole 6 and the first conductive layer 2.
  • the filling rate is 1, it is assumed that the volume of the conductor 7 and the filling volume in the blind via 5 match.
  • Energization and electrical inspection are performed by one inspection machine.
  • the head of the inspection machine is provided with a first probe 40A for energization and a second probe 40B for electrical inspection.
  • the first probe 40A includes a first terminal 41 and a second terminal 42 that face each other along the axial direction.
  • the first terminal 41 is connected to a current circuit.
  • the second probe 40B includes a third terminal 43 and a fourth terminal 44 that face each other along the axial direction.
  • the third terminal 43 and the fourth terminal 44 are connected to a voltage measuring device 60 that measures the voltage between both terminals. Then, the resistance value of the conductor 7 is derived from the current flowing through the first terminal 41 and the measured voltage.
  • the first terminal 41 and the third terminal 43 are connected to the conductor 7, and the second terminal 42 and the fourth terminal 44 are connected to the first conductive layer 2.
  • the pass / fail judgment inspection of the blind via 5 includes a step of energizing the blind via 5 (hereinafter referred to as “energization step”), and a step of performing an electrical inspection of the blind via 5 after energization for a predetermined time (hereinafter referred to as “below”). And “marking the blind via 5 based on the result of the electric inspection” (hereinafter, “marking process”).
  • energization step a step of energizing the blind via 5
  • below a step of performing an electrical inspection of the blind via 5 after energization for a predetermined time
  • marking process hereinafter, each step will be described.
  • a current of a predetermined condition (hereinafter referred to as “energization condition”) is passed through the blind via 5.
  • energization condition a current of a predetermined condition
  • the non-standard blind via 5A and the non-standard blind via 5B are discriminated as follows in the electrical inspection process.
  • the blind via 5 to be inspected when the resistance value of the blind via 5 to be inspected is equal to or greater than the determination value, it is determined that the blind via 5 is in a disconnected state, that is, the blind via to be inspected is a non-standard blind via 5B. I do. When the resistance value of the blind via 5 to be inspected is less than the determination value, it is determined that the blind via 5 is not disconnected, that is, the blind via to be inspected is the intra-standard blind via 5A.
  • marking is performed around the blind via 5 with respect to what is determined to be a non-standard blind via 5B.
  • the size of the mark can be determined visually.
  • energization conditions are set by a setting formula.
  • the energization condition setting formula is obtained based on a model of the non-standard blind via 5B.
  • the first model corresponds to the unfilled blind via 5X and the foreign-containing blind via 5Y.
  • the second model corresponds to the partial contact blind via 5Z. Since the setting formulas for the energization conditions are different for each model, these setting formulas will be described.
  • the first model will be described with reference to FIG.
  • the blind via 5 is disconnected according to the filling rate, that is, the ratio of the volume of the conductor 7 to the filled volume in the blind via 5.
  • the filling rate that is, the ratio of the volume of the conductor 7 to the filled volume in the blind via 5.
  • a setting equation for deriving an energization condition in which the filling rate is less than the first reference value C is obtained as follows.
  • the “energization condition in which the filling rate is not greater than the first reference value C” means that the blind via 5 whose filling rate is not greater than the first reference value C is recognized as a non-standard blind via 5B, An energization condition for disconnecting the outer blind via 5B.
  • the energization conditions are firstly required to disconnect the blind via 5 having a filling rate equal to or less than the first reference value C, and secondly, to prevent the blind via 5 having a filling rate of 1 from being disconnected.
  • firstly required to disconnect the blind via 5 having a filling rate equal to or less than the first reference value C and secondly, to prevent the blind via 5 having a filling rate of 1 from being disconnected.
  • the conditions for breaking the blind via 5 whose filling rate is the first reference value C are as follows.
  • the amount of heat generated by the blind via 5 when energized is JA.
  • the heat capacity from the state in which the blind via 5 is at room temperature to the state in which the conductor 7 is melted and disconnected is defined as QA.
  • a conditional expression for preventing the blind via 5 having a filling rate of 1 from being disconnected is given as follows.
  • the specific resistance of the conductor 7 is “ ⁇ ”
  • the contact resistance between the conductor 7 and the first conductive layer 2 is “Rc”
  • the ratio of heat generated by the contact resistance to the heating of the conductor 7 is “ ⁇ ”
  • the conductor 7 is “S”
  • the resistance is inversely proportional to the filling rate based on this assumption and the above equation of resistance. That is, the relationship between the heat generation amount (JA) of the blind via 5 having a filling rate of 1 and the heat generation amount (J1) of the blind via 5 having a filling rate of the first reference value C is as follows.
  • Samples for this test were prepared as follows. As the blind via 5 having a filling rate of 1, a through hole 6 having a radius of 30 ⁇ m and a depth of 25 ⁇ m is formed in the insulating layer 3 and the second conductive layer 4 by a UV-YAG laser, and the conductive paste 30 is formed in the through hole 6. And the conductive paste 30 was heat-cured.
  • a through hole 6 having a radius of 19 ⁇ m and a depth of 25 ⁇ m is formed in the insulating layer 3 and the second conductive layer 4 by laser, and the through hole 6 is filled with the conductive paste 30. Then, the conductive paste 30 was heat-cured. That is, the non-standard blind via 5B was formed based on the first model.
  • the following values were used as parameters other than the current I and the energization time t.
  • the specific resistance ( ⁇ ) of the conductor 7 was set to 1.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the depth (d) of the blind via 5 was 25 ⁇ m.
  • the cross-sectional area (S) of the conductor 7 was a circle area with a radius of 30 ⁇ m.
  • the contact resistance (Rc) between the conductor 7 and the first conductive layer 2 (stainless steel) was 2.4 ⁇ 10 ⁇ 6 ⁇ ⁇ cm 2 .
  • the ratio ( ⁇ ) that the heat generated by the contact resistance contributes to the heating of the conductor 7 was set to 0.5. This value was set on the assumption that half of the calorific value at the contact portion was transferred to the conductor 7 and the other half was transferred to the first conductive layer 2.
  • the heat capacity (QA) was determined as follows.
  • the filling volume (V) of the blind via was calculated by regarding the through hole 6 of the blind via 5 as a cylinder having a radius of 30 ⁇ m and a depth of 25 ⁇ m.
  • the difference (Td) between the room temperature and the melting temperature of the conductor 7 was calculated using a silver melting temperature of 962 ° C. and a room temperature of 20 ° C.
  • the heat capacity density (H) of the conductor 7 was 2.02 J / (K ⁇ cm 3 ).
  • the value of the heat capacity density (H) of the conductor 7 is based on the fact that the volume ratio of the conductive filler (silver particles) to the epoxy resin is 60:40, and the heat capacity of the conductive filler itself and the heat capacity of the epoxy resin itself. And calculated by proportional distribution.
  • 2.48 J / (K ⁇ cm 3 ) was used as the heat capacity density of the conductive filler (silver particles).
  • 1.32 J / (K ⁇ cm 3 ) was used as the heat capacity density of the epoxy resin.
  • Each energization condition shown in Table 1 is whether or not the energization condition setting formula (the above formula (5)) for breaking the blind via 5 having a filling rate of 0.4 or less as a non-standard blind via 5B is valid. This is the condition set to confirm
  • the blind via 5 having a filling rate of 0.4 could be disconnected. Further, the blind via 5 having a filling rate of 1 could be present without being disconnected.
  • the fourth condition and the fifth condition in Table 1 are conditions set so that the value of JA / QA is smaller than the lower limit value of the above formula (5). That is, the energization condition is set so that the value of JA / QA is smaller than 0.16 (0.4 2 ). When energization was performed under these energization conditions, the blind via 5 having a filling rate of 0.4 could not be disconnected.
  • the sixth condition in Table 1 is a condition set so that the value of JA / QA is larger than the upper limit value of the above formula (5). That is, the energization condition is set so that the value of JA / QA is greater than 1. When energization was performed under these energization conditions, the blind via 5 having a filling rate of 1 was disconnected.
  • the blind via 5 having a filling rate of 0.4 or less can be disconnected, and the blinding rate is 1.
  • the via 5 can be prevented from being disconnected.
  • FIG. 7 illustrates the energization condition setting formula.
  • the vertical axis represents the value of JA / QA, that is, the ratio between the heat generation amount JA and the heat capacity QA in a blind via having a filling rate of 1.
  • the horizontal axis represents the upper limit value of the filling rate of the non-standard blind via 5B.
  • Each point in FIG. 7 shows a disconnection result under each energization condition shown in Table 1.
  • the range where JA / QA is 1 or more indicates a range where all blind vias 5 having a filling rate of 1 to 0 are disconnected (all blind via disconnection range). That is, under the energization conditions in this range, there is a possibility that all the blind vias 5 are disconnected.
  • the blind via 5 with a filling rate of the first reference value C or less can be disconnected, and the blind via 5 with a filling rate of 1 is disconnected.
  • the range satisfying “JA / QA ⁇ C 2 ” indicates a range in which the blind via 5 having the filling rate of the first reference value C cannot be disconnected (range where disconnection is not possible). That is, under the energization conditions in this range, the blind via 5 having a filling rate equal to or lower than the first reference value C cannot be disconnected.
  • the second model models the blind via 5 having a non-contact portion on the contact surface 7A between the conductor 7 and the first conductive layer 2.
  • the blind via 5 does not include bubbles or unfilled portions 50 or insulating foreign matter 51. That is, the filling rate is 1.
  • a setting equation for deriving an energization condition in which the contact rate is less than the second reference value D is obtained as follows.
  • the “energization condition in which the contact rate is less than or equal to the second reference value D” means that the blind via 5 whose contact rate is less than or equal to the second reference value D is defined as a non-standard blind via 5B.
  • the contact rate represents the ratio of the contact area between the conductor 7 and the first conductive layer 2 with respect to the reference area, with the size of the contact surface 7A between the conductor 7 and the first conductive layer 2 as a reference area.
  • the energization conditions are firstly required to disconnect the blind via 5 whose contact rate is equal to or less than the second reference value D, and secondly, not to disconnect the blind via 5 whose contact rate is 1.
  • each requirement will be described.
  • the conditions for breaking the blind via 5 whose contact rate is the second reference value D are as follows.
  • the condition for preventing the blind via 5 having a contact ratio of 1 from being disconnected is obtained in the same manner as in the first model. That is, when the following conditional expression is satisfied, the blind via 5 is not disconnected.
  • the non-standard blind via 5B set as non-standard using a predetermined parameter can be disconnected.
  • the formula corresponding to the type is selected based on the type of failure that is likely to occur in the manufacturing process of the printed wiring board 1. That is, in the manufacturing process of the printed wiring board 1, unfilled blind vias 5X and foreign matter-containing blind vias 5Y often occur, and when the partial contact blind via 5Z hardly occurs, a defect standard is set for the filling rate, The energization condition is set based on the above formula (5).
  • the energization condition is set based on the above equation (10). Further, when any defect of the unfilled blind via 5X, the foreign-containing blind via 5Y, and the partial contact blind via 5Z occurs, the energization condition is derived based on the above formula (5) and the above formula (10), and the most severe Select a condition.
  • An energization condition is set such that the blind via is disconnected if it is out of standard and is not disconnected if it is within the standard, and the blind via 5 is energized based on the energization condition. Thereby, it is possible to easily discriminate between the non-standard blind via 5A and the non-standard blind via 5B by electrical inspection.
  • the blind via 5 After the blind via 5 is energized, the blind via 5 is subjected to electrical inspection to distinguish between the standard blind via 5A and the non-standard blind via 5B by marking. Thereby, it is possible to easily grasp whether or not the non-standard blind via 5B exists in the printed wiring board 1.
  • the energization condition is the first reference value C. Is set based on the square of. Thereby, it is possible to increase the probability that the blind via 5 whose filling rate is equal to or less than the first reference value C will be selectively disconnected as the non-standard blind via 5B.
  • the energization condition is set so that the ratio of the heat generation amount to the heat capacity (JA / QA) is a value equal to or larger than the first reference value C square and smaller than 1. Thereby, it can suppress that the blind via 5 with a filling rate of 1 breaks, and can suppress that the blind via 5 whose filling rate is below the 1st reference value C does not break.
  • the energization condition is the second reference It is set based on the value D. Thereby, the probability that the blind via 5 whose contact rate is equal to or less than the second reference value D is selectively disconnected as the non-standard blind via 5B can be increased.
  • the energization conditions are set so that the ratio of the heat generation amount to the heat capacity (JA / QA) is equal to or larger than the second reference value D and smaller than 1. Thereby, it can suppress that the blind via 5 with a contact rate of 1 breaks, and can suppress that the blind via 5 whose contact rate is below the 2nd reference value D does not break.
  • the above energization and electrical inspection are performed on the printed wiring board 1 having the blind via 5 containing silver particles having an average particle diameter of 10 nm to 500 nm.
  • the increase in the resistance of the blind via 5 before and after energization can be reduced as compared with the case where the energization is performed to the blind via 5 that does not contain silver particles having an average particle diameter of 10 nm to 500 nm. That is, it is possible to suppress deterioration of the standard blind via 5A that may occur due to the energization.
  • the blind via in which the adhesive force between the conductor 7 and the first conductive layer 2 is reduced due to oxidation of the stainless steel. 5 or a blind via whose contact resistance between the conductor 7 and the first conductive layer 2 is increased can be distinguished from the non-standard blind via 5A by being electrically distinguished from the standard non-standard blind via 5A. Furthermore, it is possible to easily determine whether or not the printed wiring board 1 includes the non-standard blind via 5B by performing an electrical inspection and marking. Thereby, when the printed wiring board 1 is used as a component of an electric device, the printed wiring board 1 including the nonstandard blind via 5B can be easily removed.
  • the blind via 5 is covered with a coating layer so that dust due to burning does not move. Thereby, it can suppress that the malfunctioning by the said dust arises in the electronic device using the printed wiring board 1.
  • the pass / fail judgment inspection of the blind via 5 is performed.
  • the non-standard blind via 5A selected by energization contains almost no non-standard blind via 5B. Therefore, even if the printed wiring board 1 is deformed or expanded / contracted due to environmental changes, the standard blind via 5A is hardly disconnected. That is, the frequency with which the blind via 5 is disconnected due to deformation or expansion / contraction of the printed wiring board 1 can be reduced compared to a printed wiring board that is not energized.
  • the embodiment of the present invention is not limited to each of the above embodiments, and can be modified as follows. Further, the following modifications may be implemented in combination with each other.
  • JA is the amount of heat generated by the blind via 5 with a filling rate of 1
  • QA is the heat capacity of the blind via 5 with a filling rate of 1
  • I is the energizing current
  • t is the energizing time
  • H is the energizing time of the conductor 7.
  • Thermal capacity density V is the filling volume of the blind via
  • Td is the difference between the room temperature and the melting temperature of the conductor 7
  • R is the resistance of the blind via 5.
  • a specific parameter can also be obtained from an actual measurement value as follows.
  • the energization condition is set based on the conditional expression (5) or the conditional expression (10). Instead, the conditional expression (5) or the conditional expression (10) is used as the actual inspection result. And the energization condition may be obtained based on this correction formula.
  • the disconnection state of the blind via 5 is determined based on the measured value of the resistance of the blind via 5 by electrical inspection. Instead, the disconnection state of the blind via 5 may be determined based on the current amount or voltage value of the blind via 5.
  • the present invention can also be applied to the printed wiring board 1 having the following conditions.
  • the first conductive layer 2 and the second conductive layer 4 are connected by two blind vias 5, the first blind via 5 is determined to be defective, and the second blind via 5 has almost no current.
  • the present invention can be applied to the case where the two blind vias 5 are arranged so as not to flow. That is, when the blind via 5 is energized, no current flows between the first conductive layer and the second conductive layer through a path other than the blind via 5 to be inspected, or even if a current flows.
  • the condition is that the value does not affect the determination result.
  • energization is performed between the conductor 7 and the first conductive layer 2, but instead, energization may be performed between the conductor 7 and the second conductive layer 4.
  • a decrease in the contact ratio between the two affects the quality of the blind via, and therefore the energization condition is set based on a model that approximates the second model. That is, when the blind via 5 whose contact ratio with respect to the contact surface between the conductor 7 and the second conductive layer 4 is equal to or less than the third reference value is set as the non-standard blind via 5B, the energization condition is set based on the third reference value. To do.
  • the present invention is applied to the printed wiring board 1 having the blind via 5 formed by the conductive paste 30, but the present invention is applied to the printed wiring board 1 having the blind via 5 formed by electroplating. The invention can also be applied.
  • the present invention is applied to the printed wiring board 1 in which the first conductive layer 2 connected to the conductor 7 is stainless steel, but the material for forming the first conductive layer 2 is not limited to this. .
  • the present invention can be applied to the printed wiring board 1 in which the first conductive layer 2 is formed of copper.
  • the manufacturing method of the present invention is applied to the printed wiring board 1 having two conductive layers, but the present invention can also be applied to a multilayer printed wiring board having three or more conductive layers. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

A printed wiring board has an insulating layer (3) between a first conductive layer (2) and a second conductive layer (4). The first and second conductive layers (2, 4) are connected by a blind via (5) comprising a conductor penetrating through the insulating layer (3). During the manufacturing of these printed wiring boards, it is determined whether blind via (5) are within specification or out of specification, the ones within specification being identified as within-specification blind vias, and the ones out of specification being identified as out-of-specification blind vias. Current is passed through the blind vias (5) in current-passing conditions such that the out-of-specification blind vias will break and the within-specification blind vias will not break.

Description

プリント配線板およびプリント配線板の製造方法Printed wiring board and printed wiring board manufacturing method
 本発明は、ブラインドビアを有するプリント配線板、およびプリント配線板の製造方法に関する。 The present invention relates to a printed wiring board having blind vias and a method for manufacturing the printed wiring board.
 プリント配線板のブラインドビアは第1導電層と第2導電層とを導電体により接続するものである。導電体と第1導電層または第2導電層との接続状態が良好でないとき、プリント配線板の長期の使用により断線が生じるおそれがある。例えば、プリント配線板が実装された電子機器が環境の変化に曝されて、プリント配線板が膨張および収縮のサイクルを繰り返すことにより、ブラインドビアの不良箇所で断線に至ることがある。このため、プリント配線板の製造工程では、接続状態が良好でないブラインドビアを検出する作業が行われている。 The blind via of the printed wiring board connects the first conductive layer and the second conductive layer with a conductor. When the connection state between the conductor and the first conductive layer or the second conductive layer is not good, there is a risk of disconnection due to long-term use of the printed wiring board. For example, when an electronic device on which a printed wiring board is mounted is exposed to a change in the environment, the printed wiring board may repeat expansion and contraction cycles, leading to disconnection at a defective portion of a blind via. For this reason, in the manufacturing process of a printed wiring board, the operation | work which detects the blind via with a poor connection state is performed.
 ブラインドビア内に充填される導電体が少なく、ブラインドビアの表面が凹んでブラインドビアの底部が露出しているような不良品は、外観検査により検出することができる。一方、ブラインドビア内部における導電体と金属層との接着不良に起因する不良品や、ブラインドビア内部に気泡や絶縁性異物が存在するような不良品は、外観検査により検出することができない。 Defective products in which there are few conductors filled in the blind via, the surface of the blind via is recessed, and the bottom of the blind via is exposed can be detected by visual inspection. On the other hand, defective products due to poor adhesion between the conductor and the metal layer inside the blind via, and defective products in which bubbles or insulating foreign substances exist inside the blind via cannot be detected by visual inspection.
 外観検査で検出することのできない不良のブラインドビアを検出する方法として、例えば、特許文献1に記載の方法がある。この方法では、ブラインドビアの開口部に皮膜を形成した上で、プリント配線板が加熱される。不良のブラインドビアは加熱によりガスを発生するため、不良のブラインドビア上の皮膜が変形する。そこで、皮膜の変形の有無について外観検査することにより、ブラインドビアの良否が判定されている。 As a method for detecting a defective blind via that cannot be detected by appearance inspection, for example, there is a method described in Patent Document 1. In this method, the printed wiring board is heated after a film is formed in the opening of the blind via. Since a defective blind via generates gas by heating, the coating on the defective blind via is deformed. Therefore, the quality of the blind via is determined by inspecting the appearance of the film for deformation.
特開2007-173543号公報JP 2007-173543 A
 しかし、上記の従来方法では、規格外すなわち不良のブラインドビアを検出するため、テスト用のブラインドビアを設け、そのテスト用ブラインドビアについて検査を行うものであり、回路を構成する実際のブラインドビアについては、検査を行っていない。プリント配線板の信頼性を向上させるためには、個々のブラインドビアについて良品と不良品とを判別する必要がある。 However, in the above conventional method, in order to detect out-of-standard, that is, defective blind vias, test blind vias are provided, and the test blind vias are inspected. Has not done the inspection. In order to improve the reliability of the printed wiring board, it is necessary to determine whether each blind via is good or defective.
 従って、回路を構成する実際のブラインドビアについて、規格内のものであるか否かについて判定することができる技術が要求されている。また、ブラインドビアが規格内にあるか規格外にあるかを容易に判別することのできるプリント配線板が要求されている。 Therefore, there is a demand for a technique that can determine whether or not an actual blind via constituting a circuit is within the standard. There is also a need for a printed wiring board that can easily determine whether a blind via is within the standard or not.
 本発明はこのような実情に鑑みてなされたものであり、その目的は、ブラインドビアについて良否判別の容易なプリント配線板、およびブラインドビアについて規格内か規格外かについて判定することができるプリント配線板の製造方法を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a printed wiring board that can easily determine whether a blind via is good or bad, and a printed wiring that can determine whether a blind via is within or outside of a standard. It is in providing the manufacturing method of a board.
 (1)本発明の一態様では、第1導電層と第2導電層との間に絶縁層を有し、その絶縁層を貫通する導電体を備えたブラインドビアにより、前記第1導電層及び第2導電層を接続したプリント配線板の製造方法が提供される。その製造方法は、前記ブラインドビアが規格内にあるか規格外であるかを判定し、規格内にあるものを規格内ブラインドビアと認定し、規格外にあるものを規格外ブラインドビアと認定し、前記規格外ブラインドビアが断線しかつ前記規格内ブラインドビアが断線しない通電条件で、前記ブラインドビアに通電することを含む。 (1) In one embodiment of the present invention, the first conductive layer and the first conductive layer are formed by a blind via having an insulating layer between the first conductive layer and the second conductive layer and including a conductor penetrating the insulating layer. A method for manufacturing a printed wiring board to which a second conductive layer is connected is provided. The manufacturing method determines whether the blind via is within the standard or out of the standard, recognizes that the blind via is within the standard, and identifies the non-standard blind via as the non-standard blind via. Energizing the blind via under a current-carrying condition in which the non-standard blind via is disconnected and the intra-standard blind via is not disconnected.
 この場合、通電により、規格内ブラインドビアを断線させず、かつ規格外ブラインドビアを断線させることができる。これにより、引き続き行われる電気検査によって、規格内ブラインドビアと規格外ブラインドビアとを容易に判別することが可能となる。 In this case, the non-standard blind via can be disconnected and the non-standard blind via can be disconnected by energization. As a result, it is possible to easily discriminate between the non-standard blind via and the non-standard blind via by the electrical inspection that is subsequently performed.
 (2)前記ブラインドビアの通電後、前記ブラインドビアの断線状態について電気検査を行うことにより、前記規格外ブラインドビアと前記規格内ブラインドビアとを区別することが望ましい。 (2) It is desirable to distinguish between the non-standard blind via and the non-standard blind via by conducting an electrical inspection on the disconnection state of the blind via after energization of the blind via.
 この場合、プリント配線板内に規格外ブラインドビアがあるか否かについて容易に把握することができる。 In this case, it is possible to easily grasp whether or not there is a non-standard blind via in the printed wiring board.
 (3)前記ブラインドビアの充填容積に対する前記導電体の充填率が第1基準値以下である前記ブラインドビアを前記規格外ブラインドビアと認定するため、その第1基準値の2乗に基づいて前記通電条件を設定することが望ましい。 (3) In order to certify the blind via whose filling rate of the conductor with respect to the filling volume of the blind via is equal to or less than a first reference value as the non-standard blind via, based on the square of the first reference value, It is desirable to set energization conditions.
 ブラインドビアの充填容積に対する導電体の充填率が小さいとき、次の2つの作用が得られる。第1に、第1導電層と第2導電層とを接続する導電体の断面積が小さくなる。これにより、ブラインドビアの抵抗が大きくなり、通電による発熱量が増大する。第2に、断線状態に至るまでに必要な熱容量が小さくなる。第1の作用および第2の作用は、ともに、規格外ブラインドビアの断線を促進する。 When the filling rate of the conductor with respect to the filling volume of the blind via is small, the following two actions are obtained. First, the cross-sectional area of the conductor connecting the first conductive layer and the second conductive layer is reduced. This increases the resistance of the blind via and increases the amount of heat generated by energization. Second, the heat capacity required to reach the disconnection state is reduced. Both the first action and the second action promote disconnection of non-standard blind vias.
 充填率が第1基準値以下のブラインドビアを規格外ブラインドビアと認定する場合、その第1基準値の2乗に基づいて通電条件を設定することが望ましい。この場合、充填率が第1基準値以下のブラインドビアを、規格外ブラインドビアとして選択的に断線状態にする確率を高くすることができる。 ∙ When a blind via with a filling rate equal to or lower than the first reference value is recognized as a non-standard blind via, it is desirable to set energization conditions based on the square of the first reference value. In this case, it is possible to increase the probability that a blind via having a filling rate equal to or less than the first reference value is selectively disconnected as a non-standard blind via.
 (4)前記充填率が1である前記ブラインドビアを断線状態にするために必要な熱容量と、前記充填率が1の前記ブラインドビアに前記通電条件で通電することにより前記ブラインドビアが発する発熱量とに関し、前記熱容量に対する前記発熱量の比が前記第1基準値の2乗以上かつ1より小さい値となるように、前記通電条件を設定することが望ましい。 (4) The heat capacity necessary for disconnecting the blind via with the filling rate of 1 and the amount of heat generated by the blind via when the blind via with the filling rate of 1 is energized under the energization condition. Therefore, it is desirable to set the energization condition so that the ratio of the heat generation amount to the heat capacity is a value that is greater than or equal to the square of the first reference value and smaller than 1.
 熱容量に対する発熱量の比を1以上として通電条件を設定すると、充填率が1のブラインドビアが断線するおそれがある。一方、熱容量に対する発熱量の比を第1基準値の2乗未満として通電条件を設定すると、充電率が第1基準値以下のブラインドビアが断線しないおそれがある。 If the energization condition is set so that the ratio of the calorific value to the heat capacity is 1 or more, the blind via with a filling rate of 1 may break. On the other hand, if the energization condition is set such that the ratio of the heat generation amount to the heat capacity is less than the square of the first reference value, there is a possibility that blind vias whose charging rate is equal to or less than the first reference value will not be disconnected.
 それに対して、前記通電条件を上記(4)に記載のように設定すれば、充填率が1のブラインドビアが断線することを抑制し、かつ充填率が第1基準値以下のブラインドビアが断線しないことを抑制することができる。 On the other hand, if the energization condition is set as described in (4) above, it is possible to suppress the blind via having a filling rate of 1 from being broken and to open the blind via having a filling rate equal to or less than the first reference value. It can be suppressed.
 (5)前記第1導電層に対する前記導電体の接触率が第2基準値以下であるブラインドビアを前記規格外ブラインドビアと認定するため、その第2基準値に基づいて前記通電条件を設定することが望ましい。 (5) In order to certify a blind via whose contact ratio of the conductor to the first conductive layer is equal to or less than a second reference value as the non-standard blind via, the energization condition is set based on the second reference value. It is desirable.
 第1導電層に対する導電体の接触率が小さくなると、第1導電層と導電体との接触抵抗が増大する。これは、ブラインドビアの断線を促進するように作用する。それに対し、接触率が第2基準値以下であるブラインドビアを規格外ブラインドビアと認定するには、前記第2基準値に基づいて通電条件を設定することが望ましい。これにより、接触率が第2基準値以下のものを規格外ブラインドビアとして選択的に断線状態にする確率を高くすることができる。 When the contact ratio of the conductor to the first conductive layer decreases, the contact resistance between the first conductive layer and the conductor increases. This acts to promote blind via disconnection. On the other hand, in order to recognize a blind via whose contact rate is equal to or lower than the second reference value as a non-standard blind via, it is desirable to set an energization condition based on the second reference value. Accordingly, it is possible to increase the probability that a contact rate of the second reference value or less is selectively disconnected as a non-standard blind via.
 (6)前記接触率が1である前記ブラインドビアを断線状態にするために必要な熱容量と、前記接触率が1である前記ブラインドビアに前記通電条件で通電することにより前記ブラインドビアが発する発熱量とに関し、前記熱容量に対する前記発熱量の比が前記第2基準値以上かつ1より小さい値となるように、前記通電条件を設定することが望ましい。 (6) A heat capacity necessary for disconnecting the blind via having the contact rate of 1 and heat generated by the blind via when the blind via having the contact rate of 1 is energized under the energization condition. It is desirable to set the energization condition so that the ratio of the heat generation amount to the heat capacity is a value that is greater than or equal to the second reference value and less than 1.
 熱容量に対する発熱量の比を1以上として通電条件を設定すると、接触率が1のブラインドビアが断線するおそれがある。一方、熱容量に対する発熱量の比を第2基準値未満として通電条件を設定すると、接触率が第2基準値以下のブラインドビアが断線しないおそれがある。 If the energization condition is set so that the ratio of the calorific value to the heat capacity is 1 or more, the blind via with a contact rate of 1 may be broken. On the other hand, if the energization condition is set with the ratio of the calorific value to the heat capacity being less than the second reference value, there is a possibility that blind vias having a contact rate of the second reference value or less will not be disconnected.
 それに対し、前記通電条件を上記(6)に記載のように設定すれば、接触率が1のブラインドビアが断線することを抑制し、かつ接触率が第2基準値以下のブラインドビアが断線しないことを抑制することができる。 On the other hand, if the energization condition is set as described in (6) above, it is possible to suppress the blind via having a contact rate of 1 from being disconnected and the blind via having a contact rate of not more than the second reference value from being disconnected. This can be suppressed.
 (7)前記導電体には、平均粒径が0.5μm~2.0μmの銀粒子と平均粒径が10nm~500nmの銀粒子とが含まれることが望ましい。 (7) The conductor preferably contains silver particles having an average particle diameter of 0.5 μm to 2.0 μm and silver particles having an average particle diameter of 10 nm to 500 nm.
 平均粒径が10nm~500nmの銀粒子が含まれていない導電性ペーストを用いて形成された正常なブラインドビアに対して上記の通電を行うと、通電による加熱によりブラインドビアが膨張し、それに起因して銀粒子同士の接触が減少して、抵抗が高くなることがある。 When the above energization is performed on a normal blind via formed using a conductive paste that does not contain silver particles having an average particle diameter of 10 nm to 500 nm, the blind via expands due to heating by energization. As a result, contact between silver particles may be reduced, and resistance may be increased.
 これに対して、平均粒径が10nm~500nmの銀粒子が含む導電性ペーストを用いて形成された正常なブラインドビアに対して上記の通電を行っても、抵抗が高くなることは殆どない。これは、通電による加熱により10nm~500nmの銀粒子の表面または全体が溶融してブラインドビア内の導通経路を増大させるためである。すなわち、この種のブラインドビアでは、平均粒径が10nm~500nmの銀粒子が含まれていない導電性ペースト30に比べて通電前後の抵抗の上昇が小さい。 On the other hand, even when the above energization is performed on a normal blind via formed using a conductive paste containing silver particles having an average particle diameter of 10 nm to 500 nm, the resistance hardly increases. This is because the surface of the silver particles of 10 nm to 500 nm or the whole is melted by heating by energization to increase the conduction path in the blind via. That is, in this type of blind via, the increase in resistance before and after energization is small compared to the conductive paste 30 that does not contain silver particles having an average particle diameter of 10 nm to 500 nm.
 (8)前記第1導電層および前記第2導電層の少なくとも一方をステンレスにより形成することが望ましい。 (8) It is desirable that at least one of the first conductive layer and the second conductive layer is formed of stainless steel.
 導電層を形成する材料のうち、ステンレスは表面が酸化しやすいことで知られている。このため、第1導電層または第2導電層がステンレスにより形成されている場合、ステンレスの表面酸化により、導電体と導電層との接着力が低下するとともに導電体とこれら導電層との間での接触抵抗が大きくなる。表面酸化しているブラインドビアは、将来的に断線するおそれがある。 Of the materials forming the conductive layer, stainless steel is known to be easily oxidized on the surface. For this reason, when the 1st conductive layer or the 2nd conductive layer is formed with stainless steel, the adhesive force of a conductor and a conductive layer falls by surface oxidation of stainless steel, and between a conductor and these conductive layers The contact resistance increases. Blind vias with surface oxidation may break in the future.
 それに対し、本発明では、第1導電層および第2導電層の少なくとも一方がステンレスにより形成されている。その理由は、ステンレスの酸化により導電体と導電層との間の接着力が小さくなっているブラインドビア、または、導電体と導電層と間の接触抵抗が増大しているブラインドビアを、規格外であると、電気的に判別することができるからである。 In contrast, in the present invention, at least one of the first conductive layer and the second conductive layer is formed of stainless steel. The reason for this is that blind vias in which the adhesive force between the conductor and the conductive layer is reduced due to the oxidation of stainless steel, or blind vias in which the contact resistance between the conductor and the conductive layer is increased, are out of specification. This is because it can be distinguished electrically.
 (9)前記ブラインドビアを被覆層により覆うことが望ましい。 (9) It is desirable to cover the blind via with a coating layer.
 ブラインドビアに通電すると、規格外ブラインドビアが焼損し、粉塵が生じることがある。粉塵がプリント配線板上に残存したまま、そのプリント配線板に電子部品等が搭載されて電気回路として動作させる場合、粉塵が電子部品の端子の間に挟まって、動作不良を生じさせるおそれがある。 ¡When power is supplied to the blind via, the non-standard blind via may burn out and generate dust. When the electronic components are mounted on the printed wiring board while the dust remains on the printed wiring board and operated as an electric circuit, the dust may be caught between the terminals of the electronic components and cause malfunction. .
 本発明では、この点を考慮し、焼損による粉塵が移動しないように、ブラインドビアを被覆層により覆っている。これにより、粉塵による動作不良が生じることを抑制することができる。 In the present invention, in consideration of this point, the blind via is covered with a coating layer so that dust due to burning does not move. Thereby, it can suppress that the malfunctioning by a dust arises.
 (10)プリント配線板は上記の製造方法により製造されていることが望ましい。 (10) The printed wiring board is preferably manufactured by the above manufacturing method.
 この場合、ブラインドビアが所定の通電条件に従って通電されているため、選別された規格内ブラインドビアには規格外ブラインドビアが殆ど含まれていない。このため、プリント配線板が周囲の環境変化により変形または膨張収縮することがあっても、規格内ブラインドビアが断線することは殆どない。すなわち、通電を行っていないプリント配線板に比べて、プリント配線板の変形または膨張収縮により、ブラインドビアが断線する頻度を小さくすることができる。 In this case, since the blind via is energized according to the predetermined energization condition, the selected non-standard blind via contains almost no non-standard blind via. For this reason, even if the printed wiring board is deformed or expanded / contracted due to a change in the surrounding environment, the standard blind via is hardly broken. That is, the frequency of blind via disconnection due to deformation or expansion / contraction of the printed wiring board can be reduced as compared with a printed wiring board that is not energized.
 本発明によれば、ブラインドビアについて良否判別の容易なプリント配線板、および、ブラインドビアについて規格内か否かについて判定することができるプリント配線板の製造方法を提供することができる。 According to the present invention, it is possible to provide a printed wiring board that can easily determine whether a blind via is acceptable or not, and a printed wiring board manufacturing method that can determine whether a blind via is within specifications.
本発明の一実施形態におけるプリント配線板の断面図。Sectional drawing of the printed wiring board in one Embodiment of this invention. プリント配線板のブラインドビアを拡大して示す断面図。Sectional drawing which expands and shows the blind via of a printed wiring board. 図3(A)から図3(C)はプリント配線板の各製造工程における断面図。FIG. 3A to FIG. 3C are cross-sectional views in each manufacturing process of the printed wiring board. 図4(A)から図4(C)は規格外ブラインドビアの断面構造を示し、図4(A)は未充填があるブラインドビアの断面図、図4(B)は絶縁性異物を含むブラインドビアの断面図、図4(C)は接触面の一部が非接触状態にあるブラインドビアの断面図。4A to 4C show a cross-sectional structure of a non-standard blind via, FIG. 4A is a cross-sectional view of an unfilled blind via, and FIG. 4B is a blind containing an insulating foreign material. 4 is a cross-sectional view of a via, and FIG. 4C is a cross-sectional view of a blind via in which a part of a contact surface is in a non-contact state. プリント配線板のブラインドビアの検査方法を模式的に示す図。The figure which shows typically the inspection method of the blind via of a printed wiring board. 未充填がある規格外ブラインドビアについて、通電条件を導くためのモデルを示す図。The figure which shows the model for guide | inducing energization conditions about a non-standard blind via with an unfilling. 規格外ブラインドビアの充填率の上限値とJA/QAとの関係を示すグラフ。The graph which shows the relationship between the upper limit of the filling rate of a non-standard blind via, and JA / QA. 接触面に非接触部分があるブラインドビアについて、通電条件を導くためのモデルを示す図。The figure which shows the model for guide | inducing energization conditions about the blind via which has a non-contact part in a contact surface.
 以下、本発明を具体化した一実施形態について、詳細に説明する。 Hereinafter, an embodiment embodying the present invention will be described in detail.
 図1を参照して、プリント配線板の断面構造について説明する。 Referring to FIG. 1, the cross-sectional structure of the printed wiring board will be described.
 プリント配線板1は、金属箔により形成された第1導電層2と、第1導電層2の表面上に設けられた絶縁層3と、絶縁層3の表面上に設けられ、所定の配線パターンを形成する第2導電層4と、第1導電層2と第2導電層4とを接続するブラインドビア5と、第2導電層4を被覆する被覆層11とを備えている。なお、第1導電層2と第2導電層4とはブラインドビア5以外の部分では電気的に接続されていない。 The printed wiring board 1 includes a first conductive layer 2 formed of a metal foil, an insulating layer 3 provided on the surface of the first conductive layer 2, and a predetermined wiring pattern provided on the surface of the insulating layer 3. The second conductive layer 4 is formed, the blind via 5 connecting the first conductive layer 2 and the second conductive layer 4, and the covering layer 11 covering the second conductive layer 4. Note that the first conductive layer 2 and the second conductive layer 4 are not electrically connected at portions other than the blind via 5.
 第1導電層2はステンレスにより形成され、第1導電層2の厚みは1μm~100μmとされている。なお、第1導電層2としては、ステンレスのほか、アルミニウム、鉄、銅、ニッケル、チタン、モリブデン、クロム、亜鉛等からなる金属箔を用いてもよい。 The first conductive layer 2 is made of stainless steel, and the thickness of the first conductive layer 2 is 1 μm to 100 μm. In addition, as the 1st conductive layer 2, you may use the metal foil which consists of aluminum, iron, copper, nickel, titanium, molybdenum, chromium, zinc other than stainless steel.
 絶縁層3は、柔軟性にすぐれた樹脂材料によって形成される。例えば、ポリエステル系の樹脂、ポリアミド系の樹脂、ポリイミド系の樹脂により絶縁層3が形成される。絶縁層3の厚みは5μm~200μmとされている。 The insulating layer 3 is formed of a resin material having excellent flexibility. For example, the insulating layer 3 is formed of a polyester resin, a polyamide resin, or a polyimide resin. The insulating layer 3 has a thickness of 5 μm to 200 μm.
 第2導電層4は銅により形成されている。銅のほか、例えば、アルミニウム、ニッケル、金、これらの合金、または、はんだ等により、第2導電層4を形成してもよい。また、第2導電層4と絶縁層3との密着力を高めるために、第2導電層4にニッケルおよびクロムを含有させてもよい。また、第2導電層4が銅および銅合金からなる場合、第2導電層4と絶縁層3との間に追加の層を設け、この追加の層を、第2導電層4の表面に形成されるニッケルめっき層と、そのニッケルめっき層の表面上に形成される金めっき層とにより構成してもよい。 The second conductive layer 4 is made of copper. In addition to copper, the second conductive layer 4 may be formed of, for example, aluminum, nickel, gold, alloys thereof, solder, or the like. Further, in order to increase the adhesion between the second conductive layer 4 and the insulating layer 3, the second conductive layer 4 may contain nickel and chromium. When the second conductive layer 4 is made of copper and a copper alloy, an additional layer is provided between the second conductive layer 4 and the insulating layer 3, and this additional layer is formed on the surface of the second conductive layer 4. You may comprise by the nickel plating layer formed and the gold plating layer formed on the surface of the nickel plating layer.
 被覆層11は、上記絶縁層3と同様の樹脂材料により形成されている。例えば、ポリエステル系の樹脂、ポリアミド系の樹脂、ポリイミド系の樹脂が被覆層11の形成のために用いられる。被覆層11の厚みは5μm~200μmとされている。 The covering layer 11 is formed of the same resin material as that of the insulating layer 3. For example, a polyester resin, a polyamide resin, or a polyimide resin is used for forming the coating layer 11. The thickness of the coating layer 11 is 5 μm to 200 μm.
 ブラインドビア5は、第1導電層2と第2導電層4とを接続する導電体7により構成されている。導電体7は、導電性ペースト30を加熱硬化したものである。ブラインドビア5の直径は10μm~200μmとされ、深さは5μm~200μmとされる。導電性ペースト30は導電性フィラーとエポキシ樹脂(硬化物)とを含む。導電性フィラーとエポキシ樹脂との容積比は60対40とされている。 The blind via 5 is composed of a conductor 7 that connects the first conductive layer 2 and the second conductive layer 4. The conductor 7 is obtained by heat-curing the conductive paste 30. The blind via 5 has a diameter of 10 μm to 200 μm and a depth of 5 μm to 200 μm. The conductive paste 30 includes a conductive filler and an epoxy resin (cured product). The volume ratio between the conductive filler and the epoxy resin is 60:40.
 導電性ペースト30としては、平均粒径の異なる2種類の導電性フィラーをエポキシ樹脂中に分散したものが用いられる。エポキシ樹脂はバインダとして機能する。第1導電性フィラー21としては平均粒径0.5μm~2.0μmの銀粉末が用いられ、第2導電性フィラー22としては平均粒径10nm~500nmの銀粉末が用いられている。なお、第1導電性フィラー21および第2導電性フィラー22としては、銀粉末のほか、銀コート銅粉末、白金、金、銅、ニッケルおよびパラジウムの粉末を用いることができる。平均粒径とは、粒径の積算分布における積算値50%の値(D50)を示す。積算分布は、走査型電子顕微鏡(SEM)により観察した500個の粒子の画像解析に基づいて測定した粒子の半径を体積換算して求めた値から得られ、動的光散乱式の粒子径及び粒度分布測定装置により求められる。 As the conductive paste 30, a paste in which two kinds of conductive fillers having different average particle diameters are dispersed in an epoxy resin is used. The epoxy resin functions as a binder. As the first conductive filler 21, silver powder having an average particle size of 0.5 μm to 2.0 μm is used, and as the second conductive filler 22, silver powder having an average particle size of 10 nm to 500 nm is used. In addition, as the 1st electroconductive filler 21 and the 2nd electroconductive filler 22, the powder of silver coat copper powder, platinum, gold | metal | money, copper, nickel, and palladium other than silver powder can be used. An average particle diameter shows the value (D50) of the integrated value 50% in the integrated distribution of a particle diameter. The integrated distribution is obtained from a value obtained by volume-converting the radius of the particle measured based on the image analysis of 500 particles observed by a scanning electron microscope (SEM). It is determined by a particle size distribution measuring device.
 導電性ペースト30中のエポキシ樹脂は熱硬化性であり、有機溶剤に溶かして用いられる。導電性ペースト30はスクリーン印刷等により貫通孔6に充填されるため、導電性ペースト30の有機溶剤としては印刷性に優れた溶媒が用いられる。例えば、カルビトールアセテートやブチルカルビトールアセテートが用いられる。 The epoxy resin in the conductive paste 30 is thermosetting and is used by being dissolved in an organic solvent. Since the conductive paste 30 is filled in the through holes 6 by screen printing or the like, a solvent having excellent printability is used as the organic solvent of the conductive paste 30. For example, carbitol acetate or butyl carbitol acetate is used.
 図2を参照して、ブラインドビア5の断面構造について説明する。 The cross-sectional structure of the blind via 5 will be described with reference to FIG.
 ブラインドビア5は、絶縁層3及び第2導電層4を貫通する貫通孔6に導電性ペースト30を充填し、加熱処理することにより形成される。加熱処理により、導電性ペースト30中の溶剤が除去されるとともに、導電性ペースト30は硬化及び収縮して、導電性フィラー同士が互いに押圧された状態で接触する。導電性フィラーとして、平均粒径の異なる2種類のものが用いられているため、貫通孔6に導電性ペースト30を充填したとき、第1導電性フィラー21同士の隙間に第2導電性フィラー22が入り込む。このため、平均粒径の異なる2種類の導電性フィラー21,22を用いて形成されたブラインドビア5は、第1導電性フィラー21のみを用いて形成されたブラインドビア5に比べて、貫通孔6の内部の導電性フィラー21,22の密度が高く、かつ抵抗値が小さい。また、導電性フィラー21,22同士の接触点が多いため、導電体7が膨張したときの抵抗変化は、第1導電性フィラー21のみを用いて形成されたブラインドビア5に比べて小さい。 The blind via 5 is formed by filling the through-hole 6 penetrating the insulating layer 3 and the second conductive layer 4 with the conductive paste 30 and performing a heat treatment. By the heat treatment, the solvent in the conductive paste 30 is removed, and the conductive paste 30 is cured and contracted so that the conductive fillers are in contact with each other in a pressed state. Since two types of conductive fillers having different average particle diameters are used, when the through-hole 6 is filled with the conductive paste 30, the second conductive filler 22 is inserted into the gap between the first conductive fillers 21. Enters. For this reason, the blind via 5 formed using the two types of conductive fillers 21 and 22 having different average particle diameters has a through hole compared to the blind via 5 formed using only the first conductive filler 21. 6 has a high density of conductive fillers 21 and 22 and a small resistance value. Further, since there are many contact points between the conductive fillers 21 and 22, the resistance change when the conductor 7 expands is smaller than that of the blind via 5 formed using only the first conductive filler 21.
 図3を参照して、プリント配線板1の製造方法の一例を説明する。図3(A)~(C)は、プリント配線板1の製造方法を説明するための断面図である。 An example of a method for manufacturing the printed wiring board 1 will be described with reference to FIG. 3A to 3C are cross-sectional views for explaining a method of manufacturing the printed wiring board 1. FIG.
 まず、図3(A)に示すように、絶縁層3の上面にセミアディティブ法により第2導電層4が形成される。 First, as shown in FIG. 3A, the second conductive layer 4 is formed on the upper surface of the insulating layer 3 by a semi-additive method.
 次に、図3(B)に示すように、第2導電層3及び絶縁層4の貫通孔6に導電性ペースト30を充填することにより、第1導電層2と第2導電層4とが導電性ペースト30を介して電気的に接続される。導電性ペースト30の充填はスクリーン印刷法により行なわれる。そして、導電性ペースト30の充填後、導電性ペースト30が加熱処理されて硬化される。 Next, as shown in FIG. 3B, by filling the through holes 6 of the second conductive layer 3 and the insulating layer 4 with the conductive paste 30, the first conductive layer 2 and the second conductive layer 4 are separated. It is electrically connected via the conductive paste 30. The filling of the conductive paste 30 is performed by a screen printing method. After the conductive paste 30 is filled, the conductive paste 30 is heated and cured.
 次に、図3(C)に示すように、第2導電層4の表面上に被覆層11が積層されて、第2導電層4および導電体7が被覆層11で被覆される。具体的には、第2導電層4の表面および導電体7の表面上に、ポリイミド系の感光性カバーコートインクをスクリーン印刷等により塗工した後、乾燥し、さらに、露光現像して、ポリイミド樹脂からなるフィルム状の被覆層11が形成される。以上の工程により、プリント配線板1が形成される。 Next, as shown in FIG. 3C, a coating layer 11 is laminated on the surface of the second conductive layer 4, and the second conductive layer 4 and the conductor 7 are covered with the coating layer 11. Specifically, a polyimide-based photosensitive cover coat ink is applied on the surface of the second conductive layer 4 and the surface of the conductor 7 by screen printing or the like, then dried, further exposed and developed, and polyimide A film-like coating layer 11 made of resin is formed. The printed wiring board 1 is formed by the above steps.
 ところで、導電性ペースト30の性質にはロット間にばらつきがあり、導電性ペースト30の性質は時間とともに変化する。また、印刷作業にもばらつきがあって、第1導電層2の表面状態も様々であり、表面が酸化しているもの、表面の凹凸の少ないもの、あるいは、表面にメッキ液が付着しているもの等がある。これらの要因により、ブラインドビア5の製造工程では種々の不良品が形成される。 Incidentally, the property of the conductive paste 30 varies among lots, and the property of the conductive paste 30 changes with time. In addition, there are variations in the printing operation, and the surface state of the first conductive layer 2 is various, and the surface is oxidized, the surface is uneven, or the plating solution is attached to the surface. There are things. Due to these factors, various defective products are formed in the manufacturing process of the blind via 5.
 図4(A)-(C)を参照して、ブラインドビア5の各種不良品について説明する。 The various defective products of the blind via 5 will be described with reference to FIGS.
 図4(A)に示すように、ブラインドビア5の内部に未充填部50が形成される場合や、ブラインドビア5の内部に気泡が含まれる場合がある。以後の説明では、内部に未充填部50が存在するブラインドビア5や気泡を含むブラインドビア5を「未充填ブラインドビア5X」という。 As shown in FIG. 4A, the unfilled portion 50 may be formed inside the blind via 5 or air bubbles may be contained inside the blind via 5. In the following description, the blind via 5 in which the unfilled portion 50 exists and the blind via 5 including bubbles are referred to as “unfilled blind via 5X”.
 ブラインドビア5の内部の未充填部50は、導電性ペースト30の粘度が適切でないこと、あるいは印刷工程の実行時間が短すぎたこと等により発生する。ブラインドビア5の内部に気泡が入る要因としては、導電性ペースト30が自身の内部に気泡を含んでいることがあること、導電性ペースト30を貫通孔6に充填する際に気泡が形成されること等が挙げられる。気泡または未充填部50の一部は、ブラインドビア5の加熱処理工程により消滅することもあるが、一部が残存することもある。気泡または未充填部50は、ブラインドビア5内の導電体7の量を減らすことになるため、ブラインドビア5の抵抗値を増大させる要因となる。 The unfilled portion 50 inside the blind via 5 is generated due to an inappropriate viscosity of the conductive paste 30 or an execution time of the printing process being too short. The factors that cause bubbles to enter inside the blind via 5 are that the conductive paste 30 contains bubbles inside itself, and bubbles are formed when the conductive paste 30 is filled in the through holes 6. And so on. Some of the bubbles or the unfilled portion 50 may disappear due to the heat treatment process of the blind via 5, but some may remain. The bubbles or the unfilled portion 50 reduces the amount of the conductor 7 in the blind via 5, and thus increases the resistance value of the blind via 5.
 図4(B)に示すように、ブラインドビア5の内部には絶縁性異物51が存在する場合もある。以後の説明では、絶縁性異物51が含まれるブラインドビア5を「含異物ブラインドビア5Y」という。 As shown in FIG. 4B, an insulating foreign material 51 may be present inside the blind via 5. In the following description, the blind via 5 including the insulating foreign material 51 is referred to as “foreign-material-containing blind via 5Y”.
 ブラインドビア5の内部に異物が入る要因としては、導電性ペースト30内に絶縁性異物51が含まれることがあること、印刷法等により導電性ペースト30を貫通孔6に充填する際に絶縁性異物51が混入すること等が挙げられる。絶縁性異物51は、例えばプリント配線板1の搬送工程で絶縁層3が欠けることにより生成される。絶縁性異物51は電気を通さないため、混入時にはブラインドビア5の抵抗を増大させる。 As a factor that foreign matter enters inside the blind via 5, there is a case where the insulating foreign matter 51 is included in the conductive paste 30, and an insulating property when filling the through-hole 6 with the conductive paste 30 by a printing method or the like. For example, foreign matter 51 may be mixed. The insulating foreign matter 51 is generated, for example, when the insulating layer 3 is missing in the transport process of the printed wiring board 1. Since the insulating foreign matter 51 does not conduct electricity, it increases the resistance of the blind via 5 when mixed.
 図4(C)に示すように、導電体7と第1導電層2との接触面7Aで両者が接触していない場合もある。以後の説明では、導電体7と第1導電層2とが部分的に接触しているブラインドビア5、または導電体7と第1導電層2とが接触していないブラインドビア5を「部分接触ブラインドビア5Z」という。 As shown in FIG. 4C, the contact surface 7A between the conductor 7 and the first conductive layer 2 may not be in contact with each other. In the following description, the blind via 5 in which the conductor 7 and the first conductive layer 2 are in partial contact or the blind via 5 in which the conductor 7 and the first conductive layer 2 are not in contact is referred to as “partial contact”. It is called "blind via 5Z".
 導電体7と第1導電層2の非接触状態は、ブラインドビア5の加熱処理工程における導電体7の膨張また収縮により導電体7と第1導電層2とが剥離すること、製造工程においてプリント配線板1に外力が加わることにより形成される。また、第1導電層2の表面が酸化することにより接着力が低下することに起因して非接触状態のブラインドビア5が形成される。導電体7と第1導電層2とが非接触状態にあるとき、ブラインドビア5の抵抗は大きくなる。 The non-contact state between the conductor 7 and the first conductive layer 2 is that the conductor 7 and the first conductive layer 2 are peeled off due to expansion or contraction of the conductor 7 in the heat treatment process of the blind via 5, and printed in the manufacturing process. It is formed by applying an external force to the wiring board 1. Further, the blind via 5 in a non-contact state is formed due to a decrease in adhesive force due to oxidation of the surface of the first conductive layer 2. When the conductor 7 and the first conductive layer 2 are in a non-contact state, the resistance of the blind via 5 is increased.
 前記未充填ブラインドビア5Xおよび含異物ブラインドビア5Yでは、ブラインドビア5の軸方向において断面積が小さくなっている部分が存在する。当該部分は、断面積が小さいために力が集中しやすいこと、あるいは、電流が集中して過熱状態になりやすいことにより、当該部分で断線するおそれがある。 In the unfilled blind via 5X and the foreign-containing blind via 5Y, there is a portion where the cross-sectional area is small in the axial direction of the blind via 5. Since the portion has a small cross-sectional area, the force is likely to concentrate, or the current is likely to be concentrated to be overheated, so that there is a risk of disconnection at the portion.
 また、部分接触ブラインドビア5Zは、正常な接触状態のブラインドビア5と比べて、導電体7と第1導電層2との間の接触抵抗が大きいこと、あるいは、当該非接触状態の部分を起点として剥離し易くなっていることに起因して、当該部分で断線するおそれがある。 Further, the partial contact blind via 5Z has a larger contact resistance between the conductor 7 and the first conductive layer 2 than the blind contact 5 in a normal contact state, or starts from the non-contact state portion. As a result, it is likely to be disconnected at the relevant part.
 以上のように、未充填ブラインドビア5X、含異物ブラインドビア5Yおよび部分接触ブラインドビア5Zは、正常なブラインドビア5に比べて、断線が生じやすい。このため、製造工程中でブラインドビア5の良否を判定するための検査が行われている。 As described above, the unfilled blind via 5X, the foreign-containing blind via 5Y, and the partial contact blind via 5Z are more likely to be disconnected than the normal blind via 5. For this reason, the inspection for determining the quality of the blind via 5 is performed during the manufacturing process.
 図5を参照して、ブラインドビア5の良否判定検査について説明する。 Referring to FIG. 5, the pass / fail judgment inspection of the blind via 5 will be described.
 良否判定検査では、規格内ブラインドビア5Aと規格外ブラインドビア5Bとが判別される。規格外ブラインドビア5Bは断線状態にされ、さらに、目視で両者の判別をすることができるように、マーキングが付与される。 In the pass / fail judgment inspection, the standard blind via 5A and the non-standard blind via 5B are distinguished. The non-standard blind via 5B is in a disconnected state, and further, a marking is given so that both can be discriminated visually.
 規格内ブラインドビア5Aとは、ブラインドビア5における充填容積に対する充填率が第1基準値Cよりも大きいもの、および導電体7と第1導電層2との接触面7Aにおける接触率が第2基準値Dよりも大きいものを指す。 The standard blind via 5A has a filling ratio with respect to the filling volume of the blind via 5 larger than the first reference value C, and a contact ratio at the contact surface 7A between the conductor 7 and the first conductive layer 2 is the second reference. Points larger than the value D.
 規格外ブラインドビア5Bとは、ブラインドビア5における充填容積に対する充填率が第1基準値C以下、および導電体7と第1導電層2との接触面7Aにおける接触率が第2基準値D以下のものを指す。 The non-standard blind via 5B is that the filling rate with respect to the filling volume in the blind via 5 is equal to or less than the first reference value C, and the contact rate at the contact surface 7A between the conductor 7 and the first conductive layer 2 is equal to or less than the second reference value D. Refers to things.
 ブラインドビア5における充填容積とは、貫通孔6および第1導電層2により区画される孔の容積を示す。充填率が1のとき、導電体7の体積とブラインドビア5における充填容積とが一致するものとする。 The filling volume in the blind via 5 indicates the volume of the hole defined by the through hole 6 and the first conductive layer 2. When the filling rate is 1, it is assumed that the volume of the conductor 7 and the filling volume in the blind via 5 match.
 通電および電気検査は1つの検査機により行われる。図5に示すように、検査機のヘッドには、通電用の第1プローブ40Aと電気検査用の第2プローブ40Bとが設けられている。第1プローブ40Aは、軸方向に沿って対向する第1端子41と第2端子42とにより構成されている。第1端子41は電流回路に接続されている。第2プローブ40Bは、軸方向に沿って対向する第3端子43と第4端子44とにより構成されている。第3端子43及び第4端子44は両端子の間の電圧を測定する電圧測定器60に接続されている。そして、第1端子41に流される電流と測定された電圧とから、導電体7の抵抗値が導かれる。 Energization and electrical inspection are performed by one inspection machine. As shown in FIG. 5, the head of the inspection machine is provided with a first probe 40A for energization and a second probe 40B for electrical inspection. The first probe 40A includes a first terminal 41 and a second terminal 42 that face each other along the axial direction. The first terminal 41 is connected to a current circuit. The second probe 40B includes a third terminal 43 and a fourth terminal 44 that face each other along the axial direction. The third terminal 43 and the fourth terminal 44 are connected to a voltage measuring device 60 that measures the voltage between both terminals. Then, the resistance value of the conductor 7 is derived from the current flowing through the first terminal 41 and the measured voltage.
 ブラインドビア5の通電検査および電気検査を行うときには、第1端子41および第3端子43が導電体7に接続されるともに、第2端子42および第4端子44が第1導電層2に接続される。 When conducting the electrical inspection and electrical inspection of the blind via 5, the first terminal 41 and the third terminal 43 are connected to the conductor 7, and the second terminal 42 and the fourth terminal 44 are connected to the first conductive layer 2. The
 ブラインドビア5の良否判定検査は、ブラインドビア5に通電を行う工程(以下、「通電工程」)と、通電して所定時間が経過した後、このブラインドビア5の電気検査をする工程(以下、「電気検査工程」)と、電気検査の結果に基づいてブラインドビア5にマーキングをする工程(以下、「マーキング工程」)とを含む。以下、各工程について説明する。 The pass / fail judgment inspection of the blind via 5 includes a step of energizing the blind via 5 (hereinafter referred to as “energization step”), and a step of performing an electrical inspection of the blind via 5 after energization for a predetermined time (hereinafter referred to as “below”). And “marking the blind via 5 based on the result of the electric inspection” (hereinafter, “marking process”). Hereinafter, each step will be described.
 通電工程では、所定条件(以下、「通電条件」)の電流がブラインドビア5に流される。その後、規格内ブラインドビア5Aと規格外ブラインドビア5Bとが電気検査工程において以下のように判別される。 In the energization process, a current of a predetermined condition (hereinafter referred to as “energization condition”) is passed through the blind via 5. Thereafter, the non-standard blind via 5A and the non-standard blind via 5B are discriminated as follows in the electrical inspection process.
 電気検査工程では、検査対象のブラインドビア5の抵抗値が判定値以上のとき、そのブラインドビア5が断線状態にある旨、すなわち、検査対象のブラインドビアが規格外ブラインドビア5Bである旨の判定を行う。検査対象のブラインドビア5の抵抗値が判定値未満のとき、そのブラインドビア5が断線状態にない旨、すなわち、検査対象のブラインドビアが規格内ブラインドビア5Aである旨の判定を行う。 In the electrical inspection process, when the resistance value of the blind via 5 to be inspected is equal to or greater than the determination value, it is determined that the blind via 5 is in a disconnected state, that is, the blind via to be inspected is a non-standard blind via 5B. I do. When the resistance value of the blind via 5 to be inspected is less than the determination value, it is determined that the blind via 5 is not disconnected, that is, the blind via to be inspected is the intra-standard blind via 5A.
 マーキング工程では、規格外ブラインドビア5Bである旨の判定が行われたものに対して、当該ブラインドビア5の周囲にマーキングを行う。マークの大きさは、目視により判別することができるものとする。 In the marking process, marking is performed around the blind via 5 with respect to what is determined to be a non-standard blind via 5B. The size of the mark can be determined visually.
 次に、図6~図8及び表1を参照して、ブラインドビア5の通電条件を導き出すための設定式について説明する。 Next, with reference to FIGS. 6 to 8 and Table 1, a setting formula for deriving the energization condition of the blind via 5 will be described.
 前記の通電工程では、規格内ブラインドビア5Aを断線させず、かつ規格外ブラインドビア5Bを断線させる必要がある。このような通電条件は設定式により設定される。通電条件の設定式は、規格外ブラインドビア5Bをモデル化したものに基づいて求められる。 In the energization process, it is necessary not to disconnect the non-standard blind via 5A and to disconnect the non-standard blind via 5B. Such energization conditions are set by a setting formula. The energization condition setting formula is obtained based on a model of the non-standard blind via 5B.
 規格外ブラインドビアの不良モデルとしては、2種類考えられる。第1モデルは、上記未充填ブラインドビア5Xおよび含異物ブラインドビア5Yに対応する。第2モデルは、部分接触ブラインドビア5Zに対応する。各モデルに対応して通電条件の設定式が異なるため、それらの設定式をそれぞれ説明する。 There are two types of non-standard blind via failure models. The first model corresponds to the unfilled blind via 5X and the foreign-containing blind via 5Y. The second model corresponds to the partial contact blind via 5Z. Since the setting formulas for the energization conditions are different for each model, these setting formulas will be described.
 図6を参照して、第1モデルについて説明する。 The first model will be described with reference to FIG.
 第1モデルでは、気泡、未充填部50および絶縁性異物51には電流が流れないものとして扱う。そして、気泡、未充填部50および絶縁性異物51の形状や個数に関係なく、前記充填率、すなわち、ブラインドビア5における充填容積に対する導電体7の体積の比率に応じて、ブラインドビア5の断面積を設定する。例えば、導電体7が完全に充填されているブラインドビア5の充填率を1とし、導電体7の断面積をSで表すとき、充填率が0.3のブラインドビア5の断面積は「S×0.3」と表される。 In the first model, it is assumed that no current flows through the bubbles, the unfilled portion 50, and the insulating foreign matter 51. Then, regardless of the shape and number of the bubbles, the unfilled portion 50 and the insulating foreign matter 51, the blind via 5 is disconnected according to the filling rate, that is, the ratio of the volume of the conductor 7 to the filled volume in the blind via 5. Set the area. For example, when the filling rate of the blind via 5 in which the conductor 7 is completely filled is 1 and the sectional area of the conductor 7 is represented by S, the sectional area of the blind via 5 having a filling rate of 0.3 is “S X0.3 ".
 このような第1モデルにおいて、充填率が第1基準値C以下を規格外とする通電条件を導き出すための設定式は以下のように求められる。なお、「充填率が第1基準値C以下を規格外とする通電条件」とは、充填率が第1基準値C以下のブラインドビア5を、規格外ブラインドビア5Bと認定して、その規格外ブラインドビア5Bを断線させるための通電条件をいう。 In such a first model, a setting equation for deriving an energization condition in which the filling rate is less than the first reference value C is obtained as follows. The “energization condition in which the filling rate is not greater than the first reference value C” means that the blind via 5 whose filling rate is not greater than the first reference value C is recognized as a non-standard blind via 5B, An energization condition for disconnecting the outer blind via 5B.
 通電条件は、第一に、充填率が第1基準値C以下のブラインドビア5を断線させること、第二に、充填率が1であるブラインドビア5を断線させないことを要件とする。以下、要件ごとに説明する。 The energization conditions are firstly required to disconnect the blind via 5 having a filling rate equal to or less than the first reference value C, and secondly, to prevent the blind via 5 having a filling rate of 1 from being disconnected. Hereinafter, each requirement will be described.
 充填率が第1基準値Cであるブラインドビア5を断線させるための条件は次のようになる。 The conditions for breaking the blind via 5 whose filling rate is the first reference value C are as follows.
 通電によるブラインドビア5の発熱量をJ1とする。一方、ブラインドビア5が室温にある状態から導電体7が溶融して断線状態に至るまでの熱容量をQ1とする。すると、充填率が第1基準値Cであるブラインドビア5を断線させるための条件式は次のように与えられる。 Suppose that the amount of heat generated by the blind via 5 when energized is J1. On the other hand, the heat capacity from the state in which the blind via 5 is at room temperature to the state in which the conductor 7 is melted and disconnected is defined as Q1. Then, a conditional expression for breaking the blind via 5 whose filling rate is the first reference value C is given as follows.
 J1/Q1≧1 ・・・ (1)
 一方、充填率が1であるブラインドビア5を断線させない条件は次のようになる。
J1 / Q1 ≧ 1 (1)
On the other hand, the condition that the blind via 5 having a filling rate of 1 is not disconnected is as follows.
 通電によるブラインドビア5の発熱量をJAとする。一方、ブラインドビア5が室温にある状態から導電体7が溶融して断線状態に至るまでの熱容量をQAとする。すると、充填率が1であるブラインドビア5を断線させないための条件式は次のように与えられる。 Suppose that the amount of heat generated by the blind via 5 when energized is JA. On the other hand, the heat capacity from the state in which the blind via 5 is at room temperature to the state in which the conductor 7 is melted and disconnected is defined as QA. Then, a conditional expression for preventing the blind via 5 having a filling rate of 1 from being disconnected is given as follows.
 JA/QA<1 ・・・ (2)
 一般に、発熱量(J)は、通電電流を「I」、通電時間を「t」、ブラインドビア5の抵抗を「R」とするとき、「J=I・t・R」として与えられる。導電体7の比抵抗を「ρ」、導電体7と第1導電層2との接触抵抗を「Rc」、接触抵抗による発熱が導電体7の加熱に寄与する割合を「α」、導電体7の断面積を「S」とするとき、抵抗Rは「R=(ρ・d+α・Rc)/S」として与えられる。第1モデルでは充填率と断面積とが比例関係にあると仮定するため、この仮定と上記抵抗の式とに基づけば、抵抗は充填率に反比例する。すなわち、充填率が1のブラインドビア5の発熱量(JA)と、充填率が第1基準値Cであるブラインドビア5の発熱量(J1)との関係は次のようになる。
JA / QA <1 (2)
In general, the heat generation amount (J) is given as “J = I 2 · t · R” where “I” is the energization current, “t” is the energization time, and “R” is the resistance of the blind via 5. The specific resistance of the conductor 7 is “ρ”, the contact resistance between the conductor 7 and the first conductive layer 2 is “Rc”, the ratio of heat generated by the contact resistance to the heating of the conductor 7 is “α”, and the conductor 7 is “S”, the resistance R is given as “R = (ρ · d + α · Rc) / S”. In the first model, since it is assumed that the filling rate and the cross-sectional area are in a proportional relationship, the resistance is inversely proportional to the filling rate based on this assumption and the above equation of resistance. That is, the relationship between the heat generation amount (JA) of the blind via 5 having a filling rate of 1 and the heat generation amount (J1) of the blind via 5 having a filling rate of the first reference value C is as follows.
 J1=JA/C ・・・ (3)
 ブラインドビア5が室温にある状態から導電体7が溶融して断線状態に至るまでの熱容量(Q)は、導電体7の熱容量密度を「H」とし、ブラインドビア5における充填容積を「V」とし、室温と導電体7の溶融温度との温度差を「Td」とするとき、「Q=H・V・Td」として与えられる。この式において、熱容量密度「H」と温度差「Td」は定数であると見なすことができため、熱容量(Q)は導電体7の体積に比例する。すなわち、充填率が1のブラインドビア5の熱容量(QA)と、充填率が第1基準値Cであるブラインドビア5の熱容量(Q1)との関係は次のようになる。
J1 = JA / C (3)
The heat capacity (Q) from the state where the blind via 5 is at room temperature to the state where the conductor 7 is melted and disconnected is defined as “H” as the heat capacity density of the conductor 7 and the filling volume in the blind via 5 is “V”. When the temperature difference between the room temperature and the melting temperature of the conductor 7 is “Td”, “Q = H · V · Td” is given. In this equation, since the heat capacity density “H” and the temperature difference “Td” can be regarded as constants, the heat capacity (Q) is proportional to the volume of the conductor 7. That is, the relationship between the heat capacity (QA) of the blind via 5 with a filling rate of 1 and the heat capacity (Q1) of the blind via 5 with a filling rate of the first reference value C is as follows.
 Q1=QA・C ・・・ (4)
 上記式(1)および式(2)をまとめ、上記式(3)および式(4)に基づいて変形すると、以下の式すなわち、通電条件の設定式が成立する。
Q1 = QA · C (4)
When the above formulas (1) and (2) are put together and modified based on the above formulas (3) and (4), the following formula, that is, the energization condition setting formula is established.
 C≦JA/QA<1 ・・・ (5)
 すなわち、上記式(5)を満たすように電流および通電時間を設定することにより、充填率が1であるブラインドビア5を断線させず、かつ充填率が第1基準値C以下のブラインドビア5を断線させることができる。
C 2 ≦ JA / QA <1 (5)
That is, by setting the current and energization time so as to satisfy the above formula (5), the blind via 5 having a filling rate of 1 is not disconnected, and the blind via 5 having a filling rate of not more than the first reference value C is set. It can be disconnected.
 表1および図7を参照して、充填率が1のブラインドビア5と充填率が0.4のブラインドビア5とを各種通電条件で通電したときの断線結果について説明する。そして、充填率が0.4以下であるブラインドビア5を断線するとともに、充填率が1であるブラインドビア5を断線しない通電条件を導き出すための上記通電条件の設定式が有効なものである否かについて検討する。
With reference to Table 1 and FIG. 7, the disconnection result when the blind via 5 having a filling rate of 1 and the blind via 5 having a filling rate of 0.4 is energized under various energization conditions will be described. Whether or not the above-described energization condition setting formula for deriving an energization condition for disconnecting the blind via 5 having a filling rate of 0.4 or less and not disconnecting the blind via 5 having a filling rate of 1 is valid. To consider.
Figure JPOXMLDOC01-appb-T000001
 
 この試験の試料を次のように作成した。充填率が1であるブラインドビア5としては、半径30μm、深さ25μmの貫通孔6を、UV-YAGレーザにより絶縁層3及び第2導電層4に形成し、貫通孔6に導電性ペースト30を充填し、導電性ペースト30を加熱硬化したものを用いた。
Figure JPOXMLDOC01-appb-T000001

Samples for this test were prepared as follows. As the blind via 5 having a filling rate of 1, a through hole 6 having a radius of 30 μm and a depth of 25 μm is formed in the insulating layer 3 and the second conductive layer 4 by a UV-YAG laser, and the conductive paste 30 is formed in the through hole 6. And the conductive paste 30 was heat-cured.
 充填率が0.4のブラインドビア5としては、半径19μm、深さ25μmの貫通孔6を絶縁層3及び第2導電層4にレーザにより形成し、この貫通孔6に導電性ペースト30を充填し、導電性ペースト30を加熱硬化したものを用いた。すなわち、第1モデルに基づいて規格外ブラインドビア5Bを形成した。 As the blind via 5 having a filling rate of 0.4, a through hole 6 having a radius of 19 μm and a depth of 25 μm is formed in the insulating layer 3 and the second conductive layer 4 by laser, and the through hole 6 is filled with the conductive paste 30. Then, the conductive paste 30 was heat-cured. That is, the non-standard blind via 5B was formed based on the first model.
 式(5)のJA/QAを求めるため、発熱量(JA)は次のように求めた。 In order to obtain JA / QA of the formula (5), the calorific value (JA) was obtained as follows.
 発熱量は上記したように「JA=I・t・R」として与えられる。抵抗Rは「R=(ρ・d+α・Rc)/S」により与えられる。電流Iと通電時間t以外の各パラメータとして次の値を用いた。
・導電体7の比抵抗(ρ)を1.0×10-4Ω・cmとした。
・ブラインドビア5の深さ(d)は25μmとした。
・導電体7の断面積(S)を半径30μmの円の面積とした。
・導電体7と第1導電層2(ステンレス)との接触抵抗(Rc)は2.4×10-6Ω・cmとした。
・接触抵抗による発熱が導電体7の加熱に寄与する割合(α)は0.5とした。接触部分における発熱量の半分が導電体7に伝わり、残りの半分が第1導電層2に伝わると仮定して、この値を設定した。
As described above, the heat generation amount is given as “JA = I 2 · t · R”. The resistance R is given by “R = (ρ · d + α · Rc) / S”. The following values were used as parameters other than the current I and the energization time t.
The specific resistance (ρ) of the conductor 7 was set to 1.0 × 10 −4 Ω · cm.
The depth (d) of the blind via 5 was 25 μm.
The cross-sectional area (S) of the conductor 7 was a circle area with a radius of 30 μm.
The contact resistance (Rc) between the conductor 7 and the first conductive layer 2 (stainless steel) was 2.4 × 10 −6 Ω · cm 2 .
The ratio (α) that the heat generated by the contact resistance contributes to the heating of the conductor 7 was set to 0.5. This value was set on the assumption that half of the calorific value at the contact portion was transferred to the conductor 7 and the other half was transferred to the first conductive layer 2.
 熱容量(QA)は次のように求めた。 The heat capacity (QA) was determined as follows.
 熱容量は上記したように「QA=H・V・Td」として与えられる。ここで、各パラメータとして次の値を用いた。
・ブラインドビアの充填容積(V)は、ブラインドビア5の貫通孔6を半径30μm、深さ25μmの円柱とみなして算出した。
・室温と導電体7の溶融温度との差(Td)は、銀の溶融温度962℃と室温20℃とを用いて算出した。
・導電体7の熱容量密度(H)は2.02J/(K・cm)とした。
The heat capacity is given as “QA = H · V · Td” as described above. Here, the following values were used as parameters.
The filling volume (V) of the blind via was calculated by regarding the through hole 6 of the blind via 5 as a cylinder having a radius of 30 μm and a depth of 25 μm.
The difference (Td) between the room temperature and the melting temperature of the conductor 7 was calculated using a silver melting temperature of 962 ° C. and a room temperature of 20 ° C.
The heat capacity density (H) of the conductor 7 was 2.02 J / (K · cm 3 ).
 導電体7の熱容量密度(H)の値は、導電性フィラー(銀粒子)とエポキシ樹脂との容積比が60対40であることを考慮し、導電性フィラー自体の熱容量とエポキシ樹脂自体の熱容量との比例配分により演算して求めた。ここで、導電性フィラー(銀粒子)の熱容量密度として2.48J/(K・cm)を用いた。エポキシ樹脂の熱容量密度として1.32J/(K・cm)を用いた。 The value of the heat capacity density (H) of the conductor 7 is based on the fact that the volume ratio of the conductive filler (silver particles) to the epoxy resin is 60:40, and the heat capacity of the conductive filler itself and the heat capacity of the epoxy resin itself. And calculated by proportional distribution. Here, 2.48 J / (K · cm 3 ) was used as the heat capacity density of the conductive filler (silver particles). As the heat capacity density of the epoxy resin, 1.32 J / (K · cm 3 ) was used.
 表1に示す各通電条件は、充填率が0.4以下であるブラインドビア5を、規格外ブラインドビア5Bとして断線させるための通電条件の設定式(上記式(5))が有効か否かを確認するために設定した条件である。 Each energization condition shown in Table 1 is whether or not the energization condition setting formula (the above formula (5)) for breaking the blind via 5 having a filling rate of 0.4 or less as a non-standard blind via 5B is valid. This is the condition set to confirm
 表1中の第1条件~第3条件は、JA/QAの値が上記式(5)を満たすように設定した条件である。すなわち、JA/QAの値が0.16(=0.4)~1.0の間の値に相当するように設定した通電条件である。この通電条件で通電を行った場合、充填率が0.4のブラインドビア5を断線させることができた。また、充填率が1のブラインドビア5を断線させずに存在させることができた。 The first to third conditions in Table 1 are conditions set so that the value of JA / QA satisfies the above formula (5). That is, the energization condition is set so that the value of JA / QA corresponds to a value between 0.16 (= 0.4 2 ) and 1.0. When energization was performed under these energization conditions, the blind via 5 having a filling rate of 0.4 could be disconnected. Further, the blind via 5 having a filling rate of 1 could be present without being disconnected.
 表1中の第4条件および第5条件は、JA/QAの値が上記式(5)の下限値よりも小さい値となるように設定した条件である。すなわち、JA/QAの値が0.16(0.4)よりも小さい値となるように設定した通電条件である。この通電条件で通電を行った場合、充填率が0.4のブラインドビア5を断線させることができなかった。 The fourth condition and the fifth condition in Table 1 are conditions set so that the value of JA / QA is smaller than the lower limit value of the above formula (5). That is, the energization condition is set so that the value of JA / QA is smaller than 0.16 (0.4 2 ). When energization was performed under these energization conditions, the blind via 5 having a filling rate of 0.4 could not be disconnected.
 表1中の第6条件は、JA/QAの値が上記式(5)の上限値よりも大きい値となるように設定した条件である。すなわちJA/QAの値が1よりも大きい値となるように設定した通電条件である。この通電条件で通電を行った場合、充填率が1のブラインドビア5が断線した。 The sixth condition in Table 1 is a condition set so that the value of JA / QA is larger than the upper limit value of the above formula (5). That is, the energization condition is set so that the value of JA / QA is greater than 1. When energization was performed under these energization conditions, the blind via 5 having a filling rate of 1 was disconnected.
 以上の結果によれば、上記式(5)を満たすように通電条件を設定することにより、充填率が0.4以下であるブラインドビア5を断線させることができ、かつ充填率が1のブラインドビア5を断線させないことができる。 According to the above results, by setting the energization conditions so as to satisfy the above formula (5), the blind via 5 having a filling rate of 0.4 or less can be disconnected, and the blinding rate is 1. The via 5 can be prevented from being disconnected.
 図7は、通電条件設定式を図示したものである。縦軸は、JA/QAの値、すなわち、充填率が1のブラインドビアにおける発熱量JAと熱容量QAとの比を示す。横軸は、規格外ブラインドビア5Bの充填率の上限値を示す。図7中の各点は、表1に示す各通電条件における断線結果を示す。 FIG. 7 illustrates the energization condition setting formula. The vertical axis represents the value of JA / QA, that is, the ratio between the heat generation amount JA and the heat capacity QA in a blind via having a filling rate of 1. The horizontal axis represents the upper limit value of the filling rate of the non-standard blind via 5B. Each point in FIG. 7 shows a disconnection result under each energization condition shown in Table 1.
 JA/QAが1以上である範囲は、充填率が1~0までの全てのブラインドビア5が断線する範囲(全ブラインドビア断線範囲)を示す。すなわち、この範囲の通電条件では、全てのブラインドビア5が断線する可能性がある。 The range where JA / QA is 1 or more indicates a range where all blind vias 5 having a filling rate of 1 to 0 are disconnected (all blind via disconnection range). That is, under the energization conditions in this range, there is a possibility that all the blind vias 5 are disconnected.
 JA/QAが「C≦JA/QA<1」を満たす範囲は、充填率が第1基準値C以下のブラインドビア5を断線させることができ、かつ充填率が1のブラインドビア5を断線させない範囲(選択断線可能範囲)を示す。すなわち、この範囲の通電条件では、充填率が第1基準値C以下のブラインドビア5を断線することができる。 In a range where JA / QA satisfies “C 2 ≦ JA / QA <1”, the blind via 5 with a filling rate of the first reference value C or less can be disconnected, and the blind via 5 with a filling rate of 1 is disconnected. Indicates the range (selectable disconnection possible range) that is not allowed That is, under the energization conditions in this range, the blind via 5 having a filling rate equal to or lower than the first reference value C can be disconnected.
 「JA/QA<C」を満たす範囲は、充填率が第1基準値Cであるブラインドビア5を断線させることができない範囲(断線不可能範囲)を示す。すなわち、この範囲の通電条件では、充填率が第1基準値C以下のブラインドビア5を断線することができない。 The range satisfying “JA / QA <C 2 ” indicates a range in which the blind via 5 having the filling rate of the first reference value C cannot be disconnected (range where disconnection is not possible). That is, under the energization conditions in this range, the blind via 5 having a filling rate equal to or lower than the first reference value C cannot be disconnected.
 次に、図8を参照して、第2モデルに対応する通電条件の設定式について以下に説明する。 Next, the energization condition setting formula corresponding to the second model will be described below with reference to FIG.
 第2モデルは、導電体7と第1導電層2との接触面7Aに未接触の部分があるブラインドビア5をモデル化したものである。このモデルでは、ブラインドビア5に、気泡または未充填部50または絶縁性異物51が含まれていないものとする。すなわち、充填率を1とする。 The second model models the blind via 5 having a non-contact portion on the contact surface 7A between the conductor 7 and the first conductive layer 2. In this model, it is assumed that the blind via 5 does not include bubbles or unfilled portions 50 or insulating foreign matter 51. That is, the filling rate is 1.
 このような第2モデルにおいて、接触率が第2基準値D以下を規格外とする通電条件を導き出すための設定式は以下のように求められる。なお、「接触率が第2基準値D以下を規格外とする通電条件」とは、接触率が第2基準値D以下のブラインドビア5を規格外ブラインドビア5Bとして、この規格外ブラインドビア5Bを断線させるための通電条件をいう。ここで、接触率は、導電体7と第1導電層2との接触面7Aの大きさを基準面積とし、その基準面積に対する導電体7と第1導電層2との接触面積の比率を表すものとする。

 通電条件は、第一に、接触率が第2基準値D以下のブラインドビア5を断線させること、第二に、接触率が1であるブラインドビア5を断線させないことを要件とする。以下、要件ごとに説明する。
In such a second model, a setting equation for deriving an energization condition in which the contact rate is less than the second reference value D is obtained as follows. The “energization condition in which the contact rate is less than or equal to the second reference value D” means that the blind via 5 whose contact rate is less than or equal to the second reference value D is defined as a non-standard blind via 5B. The energization condition for disconnecting. Here, the contact rate represents the ratio of the contact area between the conductor 7 and the first conductive layer 2 with respect to the reference area, with the size of the contact surface 7A between the conductor 7 and the first conductive layer 2 as a reference area. Shall.

The energization conditions are firstly required to disconnect the blind via 5 whose contact rate is equal to or less than the second reference value D, and secondly, not to disconnect the blind via 5 whose contact rate is 1. Hereinafter, each requirement will be described.
 接触率が第2基準値Dであるブラインドビア5を断線させるための条件は次のようになる。 The conditions for breaking the blind via 5 whose contact rate is the second reference value D are as follows.
 通電によるブラインドビア5の発熱量をJ2とする。一方、ブラインドビア5が室温にある状態から導電体7が溶融して断線状態に至るまでの熱容量をQ2とする。すると、接触率が第2基準値Dであるブラインドビア5を断線させるための条件式は次のように与えられる。 Suppose that the heat generation of the blind via 5 due to energization is J2. On the other hand, the heat capacity from the state where the blind via 5 is at room temperature to the state where the conductor 7 is melted and disconnected is defined as Q2. Then, a conditional expression for disconnecting the blind via 5 whose contact rate is the second reference value D is given as follows.
 J2/Q2≧1 ・・・ (6)
 接触率が1であるブラインドビア5を断線させない条件は、第1モデルと同様に求められる。すなわち、次の条件式が成立するとき、ブラインドビア5は断線しない。
J2 / Q2 ≧ 1 (6)
The condition for preventing the blind via 5 having a contact ratio of 1 from being disconnected is obtained in the same manner as in the first model. That is, when the following conditional expression is satisfied, the blind via 5 is not disconnected.
 JA/QA<1 ・・・ (7)
 一般に、発熱量(J)は、上記したように「J=I・t・R」として与えられる。抵抗は、接触率に反比例すると考えられるため、接触率が1のときの抵抗をRAで表すと、接触率が第2基準値Dのときの抵抗は「RA/D」で表される。すると、接触率が1のブラインドビア5の発熱量(JA)と、接触率が第2基準値Dであるブラインドビア5の発熱量(J2)との関係は、次のようになる。
JA / QA <1 (7)
Generally, the calorific value (J) is given as “J = I 2 · t · R” as described above. Since the resistance is considered to be inversely proportional to the contact rate, when the resistance when the contact rate is 1 is represented by RA, the resistance when the contact rate is the second reference value D is represented by “RA / D”. Then, the relationship between the heat generation amount (JA) of the blind via 5 having a contact rate of 1 and the heat generation amount (J2) of the blind via 5 having a contact rate of the second reference value D is as follows.
 J2=JA/D ・・・ (8)
 ブラインドビア5が室温にある状態から導電体7が溶融して断線状態に至るまでに必要な熱容量(Q)は、接触率とは無関係であるため、接触率が1のブラインドビア5の熱容量(QA)と、接触率が第2基準値Dであるブラインドビア5の熱容量(Q2)との関係は次のようになる。
J2 = JA / D (8)
The heat capacity (Q) required from the state in which the blind via 5 is at room temperature to the state in which the conductor 7 is melted and disconnected is irrelevant to the contact rate. The relationship between QA) and the heat capacity (Q2) of the blind via 5 whose contact rate is the second reference value D is as follows.
 Q2=QA ・・・ (9)
 上記式(6)および式(7)をまとめ、上記式(8)および式(9)に基づいて変形すると、以下のような通電条件の設定式が成立する。
Q2 = QA (9)
When the above formulas (6) and (7) are put together and modified based on the above formulas (8) and (9), the following energization condition setting formula is established.
 D≦JA/QA<1 ・・・ (10)
 すなわち、上記式(10)を満たすように電流および通電時間を設定することにより、接触率が1であるブラインドビア5を断線させず、かつ接触率が第2基準値Dであるブラインドビア5を断線させることができる。
D ≦ JA / QA <1 (10)
That is, by setting the current and energization time so as to satisfy the above formula (10), the blind via 5 having a contact rate of 1 is not disconnected, and the blind via 5 having a contact rate of the second reference value D is set. It can be disconnected.
 以上のように、上記式(5)または式(10)に基づく通電条件によれば、所定のパラメータを用いて規格外として設定した規格外ブラインドビア5Bを断線させることができる。なお、2つの式のうちいずれを採用するかについては、例えば、プリント配線板1の製造工程において発生しやすい不良の種類に基づいて、その種類に対応する式を選択する。すなわち、プリント配線板1の製造工程において、未充填ブラインドビア5Xおよび含異物ブラインドビア5Yが発生することが多く、部分接触ブラインドビア5Zが殆ど発生しないときは、充填率について不良規格を設定し、上記式(5)に基づいて通電条件を設定する。一方、部分接触ブラインドビア5Zが発生することが多いときは、接触率について不良規格を設定し、上記式(10)に基づいて通電条件を設定する。また、未充填ブラインドビア5X、含異物ブラインドビア5Yおよび部分接触ブラインドビア5Zのいずれの不良も発生するときは、上記式(5)および上記式(10)に基づいて通電条件を導き、最も厳しい条件を選択する。 As described above, according to the energization condition based on the above formula (5) or formula (10), the non-standard blind via 5B set as non-standard using a predetermined parameter can be disconnected. As to which of the two formulas is adopted, for example, the formula corresponding to the type is selected based on the type of failure that is likely to occur in the manufacturing process of the printed wiring board 1. That is, in the manufacturing process of the printed wiring board 1, unfilled blind vias 5X and foreign matter-containing blind vias 5Y often occur, and when the partial contact blind via 5Z hardly occurs, a defect standard is set for the filling rate, The energization condition is set based on the above formula (5). On the other hand, when the partial contact blind via 5Z often occurs, a failure standard is set for the contact rate, and the energization condition is set based on the above equation (10). Further, when any defect of the unfilled blind via 5X, the foreign-containing blind via 5Y, and the partial contact blind via 5Z occurs, the energization condition is derived based on the above formula (5) and the above formula (10), and the most severe Select a condition.
 以上のように説明した本実施形態によれば、以下の効果を得ることができる。 According to the present embodiment described above, the following effects can be obtained.
 (1)ブラインドビアが規格外であれば断線しかつ規格内であれば断線しない通電条件を設定し、その通電条件に基づいて、ブラインドビア5に通電される。これにより、規格内ブラインドビア5Aと規格外ブラインドビア5Bとを電気検査により容易に判別することが可能となる。 (1) An energization condition is set such that the blind via is disconnected if it is out of standard and is not disconnected if it is within the standard, and the blind via 5 is energized based on the energization condition. Thereby, it is possible to easily discriminate between the non-standard blind via 5A and the non-standard blind via 5B by electrical inspection.
 (2)ブラインドビア5の通電後、ブラインドビア5の断線状態について電気検査を行うことにより、規格内ブラインドビア5Aと規格外ブラインドビア5Bとをマーキングにより区別する。これにより、プリント配線板1内に規格外ブラインドビア5Bが存在するか否かについて容易に把握することができる。 (2) After the blind via 5 is energized, the blind via 5 is subjected to electrical inspection to distinguish between the standard blind via 5A and the non-standard blind via 5B by marking. Thereby, it is possible to easily grasp whether or not the non-standard blind via 5B exists in the printed wiring board 1.
 (3)ブラインドビア5内の導電材料の充填容積に対する導電体7の充填率が第1基準値C以下であるブラインドビア5を規格外ブラインドビア5Bとする場合、通電条件が第1基準値Cの2乗に基づいて設定される。これにより、充填率が第1基準値C以下のブラインドビア5を規格外ブラインドビア5Bとして選択的に断線状態にする確率を高くすることができる。 (3) When the blind via 5 in which the filling ratio of the conductor 7 with respect to the filling volume of the conductive material in the blind via 5 is equal to or less than the first reference value C is the non-standard blind via 5B, the energization condition is the first reference value C. Is set based on the square of. Thereby, it is possible to increase the probability that the blind via 5 whose filling rate is equal to or less than the first reference value C will be selectively disconnected as the non-standard blind via 5B.
 (4)熱容量に対する発熱量の比(JA/QA)が第1基準値Cの2乗以上かつ1より小さい値となるように、通電条件が設定する。これにより、充填率が1のブラインドビア5が断線することを抑制し、かつ充填率が第1基準値C以下のブラインドビア5が断線しないことを抑制することができる。 (4) The energization condition is set so that the ratio of the heat generation amount to the heat capacity (JA / QA) is a value equal to or larger than the first reference value C square and smaller than 1. Thereby, it can suppress that the blind via 5 with a filling rate of 1 breaks, and can suppress that the blind via 5 whose filling rate is below the 1st reference value C does not break.
 (5)第1導電層2と導電体7との接触面7Aに対する接触率が第2基準値D以下であるブラインドビア5を、規格外であると判定する場合に、通電条件が第2基準値Dに基づいて設定される。これにより、接触率が第2基準値D以下のブラインドビア5を、規格外ブラインドビア5Bとして選択的に断線状態にする確率を高くすることができる。 (5) When determining that the blind via 5 whose contact ratio with respect to the contact surface 7A between the first conductive layer 2 and the conductor 7 is equal to or less than the second reference value D is out of specification, the energization condition is the second reference It is set based on the value D. Thereby, the probability that the blind via 5 whose contact rate is equal to or less than the second reference value D is selectively disconnected as the non-standard blind via 5B can be increased.
 (6)熱容量に対する発熱量の比(JA/QA)が第2基準値D以上かつ1より小さい値となるように、通電条件が設定される。これにより、接触率が1のブラインドビア5が断線することを抑制し、かつ接触率が第2基準値D以下のブラインドビア5が断線しないことを抑制することができる。 (6) The energization conditions are set so that the ratio of the heat generation amount to the heat capacity (JA / QA) is equal to or larger than the second reference value D and smaller than 1. Thereby, it can suppress that the blind via 5 with a contact rate of 1 breaks, and can suppress that the blind via 5 whose contact rate is below the 2nd reference value D does not break.
 (7)平均粒径が10nm~500nmの銀粒子が含まれるブラインドビア5を有するプリント配線板1に対して、上記通電および電気検査が行われる。この場合、平均粒径が10nm~500nmの銀粒子が含まれていないブラインドビア5に通電を行う場合と比べて、通電前後におけるブラインドビア5の抵抗の上昇を小さくすることができる。すなわち、上記通電によって生じうる規格内ブラインドビア5Aの劣化を抑制することができる。 (7) The above energization and electrical inspection are performed on the printed wiring board 1 having the blind via 5 containing silver particles having an average particle diameter of 10 nm to 500 nm. In this case, the increase in the resistance of the blind via 5 before and after energization can be reduced as compared with the case where the energization is performed to the blind via 5 that does not contain silver particles having an average particle diameter of 10 nm to 500 nm. That is, it is possible to suppress deterioration of the standard blind via 5A that may occur due to the energization.
 (8)第1導電層2がステンレスにより形成されているブラインドビア5について通電される場合、ステンレスの酸化により導電体7と第1導電層2との間の接着力が小さくなっているブラインドビア5、または、導電体7と第1導電層2と間の接触抵抗が増大しているブラインドビアを、規格内ブラインドビア5Aから電気的に区別して規格外であると判別することができる。さらに、電気検査を行ってマーキングすることにより、規格外ブラインドビア5Bを含むプリント配線板1であるか否かを容易に判別することができる。これにより、電気機器の部品としてプリント配線板1が用いられている場合、規格外ブラインドビア5Bを含むプリント配線板1を容易に除去することができる。 (8) When the first conductive layer 2 is energized with respect to the blind via 5 formed of stainless steel, the blind via in which the adhesive force between the conductor 7 and the first conductive layer 2 is reduced due to oxidation of the stainless steel. 5 or a blind via whose contact resistance between the conductor 7 and the first conductive layer 2 is increased can be distinguished from the non-standard blind via 5A by being electrically distinguished from the standard non-standard blind via 5A. Furthermore, it is possible to easily determine whether or not the printed wiring board 1 includes the non-standard blind via 5B by performing an electrical inspection and marking. Thereby, when the printed wiring board 1 is used as a component of an electric device, the printed wiring board 1 including the nonstandard blind via 5B can be easily removed.
 (9)焼損による粉塵が移動しないように、ブラインドビア5が被覆層により覆われる。これにより、プリント配線板1を用いた電子機器において上記粉塵による動作不良が生じることを抑制することができる。 (9) The blind via 5 is covered with a coating layer so that dust due to burning does not move. Thereby, it can suppress that the malfunctioning by the said dust arises in the electronic device using the printed wiring board 1. FIG.
 (10)本実施形態のプリント配線板1では、ブラインドビア5の良否判定検査が行われている。通電して選別された規格内ブラインドビア5Aには規格外ブラインドビア5Bが殆ど含まれて入ないため、プリント配線板1が環境変化により変形または膨張収縮することがあっても、規格内ブラインドビア5Aが断線することは殆どない。すなわち、通電を行っていないプリント配線板に比べて、プリント配線板1の変形または膨張収縮により、ブラインドビア5が断線する頻度を少なくすることができる。
(その他の実施形態)
 なお、本発明の実施態様は上記各実施形態に限られるものではなく、以下のように変更することも可能である。また、以下の各変形例は、互いに組み合わせて実施することもできる。
(10) In the printed wiring board 1 of this embodiment, the pass / fail judgment inspection of the blind via 5 is performed. The non-standard blind via 5A selected by energization contains almost no non-standard blind via 5B. Therefore, even if the printed wiring board 1 is deformed or expanded / contracted due to environmental changes, the standard blind via 5A is hardly disconnected. That is, the frequency with which the blind via 5 is disconnected due to deformation or expansion / contraction of the printed wiring board 1 can be reduced compared to a printed wiring board that is not energized.
(Other embodiments)
The embodiment of the present invention is not limited to each of the above embodiments, and can be modified as follows. Further, the following modifications may be implemented in combination with each other.
 ・上記実施形態では、JA/QAが上記式(5)または式(10)を満たす通電条件を求めるとき、JA/QAの各パラメータのうち電流および通電時間以外のパラメータを物理量に基づいて設定している。すなわち、JA/QA=(I・t・R)/(H・V・Td)のうち、「R/(H・V・Td)」の値を物理量から定めている。ここで、再度説明すると、JAは充填率が1のブラインドビア5の発熱量、QAは充填率が1のブラインドビア5の熱容量、Iは通電電流、tは通電時間、Hは導電体7の熱容量密度、Vはブラインドビアの充填容積、Tdは室温と導電体7の溶融温度との差、Rはブラインドビア5の抵抗を示す。 In the above embodiment, when JA / QA obtains the energization condition satisfying the above formula (5) or formula (10), parameters other than the current and energization time among the parameters of JA / QA are set based on physical quantities. ing. That is, among JA / QA = (I 2 · t · R) / (H · V · Td), the value of “R / (H · V · Td)” is determined from the physical quantity. Here, again, JA is the amount of heat generated by the blind via 5 with a filling rate of 1, QA is the heat capacity of the blind via 5 with a filling rate of 1, I is the energizing current, t is the energizing time, and H is the energizing time of the conductor 7. Thermal capacity density, V is the filling volume of the blind via, Td is the difference between the room temperature and the melting temperature of the conductor 7, and R is the resistance of the blind via 5.
 これに対して、次のように、特定のパラメータを実測値により求めることもできる。例えば、JA/QA=1を満足する「I・t」の値の最小値Xを実測により求め、この最小値Xに基づいて「R/(H・V・Td)」を求めてもよい。 On the other hand, a specific parameter can also be obtained from an actual measurement value as follows. For example, the minimum value X of “I 2 · t” that satisfies JA / QA = 1 may be obtained by actual measurement, and “R / (H · V · Td)” may be obtained based on this minimum value X. .
 ・上記実施形態では、条件式(5)または条件式(10)に基づいて通電条件を設定しているが、これに代えて、条件式(5)または条件式(10)を実際の検査結果に基づいて補正し、この補正式に基づいて通電条件を求めてもよい。 In the above embodiment, the energization condition is set based on the conditional expression (5) or the conditional expression (10). Instead, the conditional expression (5) or the conditional expression (10) is used as the actual inspection result. And the energization condition may be obtained based on this correction formula.
 ・上記実施形態では、電気検査により、ブラインドビア5の抵抗の計測値に基づいてブラインドビア5の断線状態を判定している。これに代えて、ブラインドビア5の電流量または電圧値に基づいてブラインドビア5の断線状態を判定してもよい。 In the above embodiment, the disconnection state of the blind via 5 is determined based on the measured value of the resistance of the blind via 5 by electrical inspection. Instead, the disconnection state of the blind via 5 may be determined based on the current amount or voltage value of the blind via 5.
 ・以下の条件を備えるプリント配線板1についても、本発明を適用することができる。例えば、第1導電層2と第2導電層4とが2つのブラインドビア5で接続され、第1ののブラインドビア5が不良品であると判定され、第2のブラインドビア5には殆ど電流が流れない程度に両ブラインドビア5が離れて配置されている場合に、本発明を適用することができる。すなわち、ブラインドビア5への通電の際、第1導電層と第2導電層との間には検査対象のブラインドビア5以外の経路を通じて電流が流れないこと、あるいは電流が流れたとしてもその電流値が判定結果に影響を及ぼさないことが条件となる。 The present invention can also be applied to the printed wiring board 1 having the following conditions. For example, the first conductive layer 2 and the second conductive layer 4 are connected by two blind vias 5, the first blind via 5 is determined to be defective, and the second blind via 5 has almost no current. The present invention can be applied to the case where the two blind vias 5 are arranged so as not to flow. That is, when the blind via 5 is energized, no current flows between the first conductive layer and the second conductive layer through a path other than the blind via 5 to be inspected, or even if a current flows. The condition is that the value does not affect the determination result.
 ・上記実施形態では、導電体7と第1導電層2と間で通電を行なっているが、それに代えて、導電体7と第2導電層4と間で通電を行なってもよい。導電体7と第2導電層4との間では、両者間の接触率の低下がブラインドビアの品質に影響を与えるため、上記第2モデルに近似するモデルに基づいて通電条件を設定する。すなわち、導電体7と第2導電層4との接触面に対する接触率が第3基準値以下であるブラインドビア5を規格外ブラインドビア5Bとするとき、第3基準値に基づいて通電条件を設定する。 In the above embodiment, energization is performed between the conductor 7 and the first conductive layer 2, but instead, energization may be performed between the conductor 7 and the second conductive layer 4. Between the conductor 7 and the second conductive layer 4, a decrease in the contact ratio between the two affects the quality of the blind via, and therefore the energization condition is set based on a model that approximates the second model. That is, when the blind via 5 whose contact ratio with respect to the contact surface between the conductor 7 and the second conductive layer 4 is equal to or less than the third reference value is set as the non-standard blind via 5B, the energization condition is set based on the third reference value. To do.
 ・上記実施形態では、導電性ペースト30により形成されたブラインドビア5を有するプリント配線板1について本発明を適用しているが、電気メッキにより形成されたブラインドビア5を有するプリント配線板1について本発明を適用することもできる。 In the above embodiment, the present invention is applied to the printed wiring board 1 having the blind via 5 formed by the conductive paste 30, but the present invention is applied to the printed wiring board 1 having the blind via 5 formed by electroplating. The invention can also be applied.
 ・上記実施形態では、導電体7に接続されている第1導電層2がステンレスであるプリント配線板1について本発明を適用しているが、第1導電層2の形成材料はこれに限定されない。例えば、第1導電層2を銅により形成したプリント配線板1についても本発明を適用することができる。 In the above embodiment, the present invention is applied to the printed wiring board 1 in which the first conductive layer 2 connected to the conductor 7 is stainless steel, but the material for forming the first conductive layer 2 is not limited to this. . For example, the present invention can be applied to the printed wiring board 1 in which the first conductive layer 2 is formed of copper.
 ・上記実施形態では、導電層が2層のプリント配線板1に本発明の製造方法を適用しているが、導電層が3層以上の多層プリント配線板についても本発明を適用することができる。 In the above embodiment, the manufacturing method of the present invention is applied to the printed wiring board 1 having two conductive layers, but the present invention can also be applied to a multilayer printed wiring board having three or more conductive layers. .
 1:プリント配線板、2:第1導電層、3:絶縁層、4:第2導電層、5:ブラインドビア、6:貫通孔、7:導電体、7A:接触面、11:被覆層、21:第1導電性フィラー、22:第2導電性フィラー、30:導電性ペースト、40A:第1プローブ、40B:第2プローブ、41:第1端子、42:第2端子、43:第3端子、44:第4端子、50:未充填部、51:絶縁性異物、60:電圧測定器。 1: printed wiring board, 2: first conductive layer, 3: insulating layer, 4: second conductive layer, 5: blind via, 6: through hole, 7: conductor, 7A: contact surface, 11: coating layer, 21: First conductive filler, 22: Second conductive filler, 30: Conductive paste, 40A: First probe, 40B: Second probe, 41: First terminal, 42: Second terminal, 43: Third Terminal: 44: Fourth terminal, 50: Unfilled portion, 51: Insulating foreign matter, 60: Voltage measuring device.

Claims (10)

  1.  第1導電層と第2導電層との間に絶縁層を有し、その絶縁層を貫通する導電体を備えたブラインドビアにより、前記第1導電層及び第2導電層を接続したプリント配線板の製造方法において、
     前記ブラインドビアが規格内にあるか規格外であるかを判定し、規格内にあるものを規格内ブラインドビアと認定し、規格外にあるものを規格外ブラインドビアと認定し、
     前記規格外ブラインドビアが断線しかつ前記規格内ブラインドビアが断線しない通電条件で、前記ブラインドビアに通電することを含むことを特徴とするプリント配線板の製造方法。
    A printed wiring board having an insulating layer between a first conductive layer and a second conductive layer, wherein the first conductive layer and the second conductive layer are connected by a blind via having a conductor penetrating the insulating layer. In the manufacturing method of
    Determine whether the blind via is within the standard or non-standard, certify that the standard is within the standard, and certify the non-standard blind via as the non-standard blind via,
    A method of manufacturing a printed wiring board, comprising: energizing the blind via under an energizing condition in which the non-standard blind via is disconnected and the intra-standard blind via is not disconnected.
  2.  請求項1に記載のプリント配線板の製造方法において、
     前記ブラインドビアの通電後、前記ブラインドビアの断線状態について電気検査を行うことにより、前記規格外ブラインドビアと前記規格内ブラインドビアとを区別することを特徴とするプリント配線板の製造方法。
    In the manufacturing method of the printed wiring board of Claim 1,
    A method of manufacturing a printed wiring board, comprising: distinguishing between the non-standard blind via and the non-standard blind via by performing an electrical inspection on a disconnection state of the blind via after energization of the blind via.
  3.  請求項1または2に記載のプリント配線板の製造方法において、
     前記ブラインドビアの充填容積に対する前記導電体の充填率が第1基準値以下である前記ブラインドビアを前記規格外ブラインドビアと認定するため、その第1基準値の2乗に基づいて前記通電条件を設定することを特徴とするプリント配線板の製造方法。
    In the manufacturing method of the printed wiring board of Claim 1 or 2,
    In order to certify the blind via whose non-standard blind via has a filling ratio of the conductor with respect to the filling volume of the blind via as a non-standard blind via, the energization condition is determined based on the square of the first reference value. A method of manufacturing a printed wiring board, comprising: setting.
  4.  請求項3に記載のプリント配線板の製造方法において、
     前記充填率が1である前記ブラインドビアを断線状態にするために必要な熱容量と、
     前記充填率が1の前記ブラインドビアに前記通電条件で通電することにより前記ブラインドビアが発する発熱量とに関し、
     前記熱容量に対する前記発熱量の比が前記第1基準値の2乗以上かつ1より小さい値となるように、前記通電条件を設定することを特徴とするプリント配線板の製造方法。
    In the manufacturing method of the printed wiring board according to claim 3,
    A heat capacity necessary to bring the blind via having a filling rate of 1 into a disconnected state;
    With respect to the amount of heat generated by the blind via by energizing the blind via having the filling rate of 1 under the energization condition,
    The method of manufacturing a printed wiring board, wherein the energization condition is set so that a ratio of the heat generation amount to the heat capacity is a value equal to or larger than a square of the first reference value and smaller than 1.
  5.  請求項1または2に記載のプリント配線板の製造方法において、
     前記第1導電層に対する前記導電体の接触率が第2基準値以下である前記ブラインドビアを前記規格外ブラインドビアと認定するため、その第2基準値に基づいて前記通電条件を設定することを特徴とするプリント配線板の製造方法。
    In the manufacturing method of the printed wiring board of Claim 1 or 2,
    In order to recognize the blind via whose contact ratio of the conductor to the first conductive layer is equal to or less than a second reference value as the non-standard blind via, the energization condition is set based on the second reference value. A method for producing a printed wiring board.
  6.  請求項5に記載のプリント配線板の製造方法において、
     前記接触率が1である前記ブラインドビアを断線状態にするために必要な熱容量と、
     前記接触率が1である前記ブラインドビアに前記通電条件で通電することにより前記ブラインドビアが発する発熱量とに関し、
     前記熱容量に対する前記発熱量の比が前記第2基準値以上かつ1より小さい値となるように、前記通電条件を設定することを特徴とするプリント配線板の製造方法。
    In the manufacturing method of the printed wiring board according to claim 5,
    A heat capacity necessary for bringing the blind via having the contact ratio of 1 into a disconnected state;
    Regarding the amount of heat generated by the blind via by energizing the blind via having the contact rate of 1 under the energization condition,
    The method of manufacturing a printed wiring board, wherein the energization condition is set so that a ratio of the heat generation amount to the heat capacity is a value that is greater than or equal to the second reference value and less than 1.
  7.  請求項1~6のいずれか一項に記載のプリント配線板の製造方法において、
     前記導電体には、平均粒径が0.5μm~2.0μmの銀粒子と平均粒径が10nm~500nmの銀粒子とが含まれることを特徴とするプリント配線板の製造方法。
    In the method for manufacturing a printed wiring board according to any one of claims 1 to 6,
    The method for producing a printed wiring board, wherein the conductor includes silver particles having an average particle diameter of 0.5 μm to 2.0 μm and silver particles having an average particle diameter of 10 nm to 500 nm.
  8.  請求項1~7のいずれか一項に記載のプリント配線板の製造方法において、
     前記第1導電層および前記第2導電層の少なくとも一方がステンレスにより形成されることを特徴とするプリント配線板の製造方法。
    In the method for manufacturing a printed wiring board according to any one of claims 1 to 7,
    At least one of said 1st conductive layer and said 2nd conductive layer is formed with stainless steel, The manufacturing method of the printed wiring board characterized by the above-mentioned.
  9.  請求項1~8のいずれか一項に記載のプリント配線板の製造方法において、
     前記ブラインドビアが被覆層により覆われることを特徴とするプリント配線板の製造方法。
    In the method for manufacturing a printed wiring board according to any one of claims 1 to 8,
    The method of manufacturing a printed wiring board, wherein the blind via is covered with a coating layer.
  10.  請求項1~9のいずれか一項に記載のプリント配線板の製造方法により製造されたプリント配線板。 A printed wiring board manufactured by the method for manufacturing a printed wiring board according to any one of claims 1 to 9.
PCT/JP2012/057292 2011-03-28 2012-03-22 Printed wiring board and method for manufacturing printed wiring board WO2012133090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280001266.7A CN102870505B (en) 2011-03-28 2012-03-22 The manufacture method of printing distributing board and printing distributing board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011070894A JP5400823B2 (en) 2011-03-28 2011-03-28 Printed wiring board and printed wiring board manufacturing method
JP2011-070894 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012133090A1 true WO2012133090A1 (en) 2012-10-04

Family

ID=46930818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057292 WO2012133090A1 (en) 2011-03-28 2012-03-22 Printed wiring board and method for manufacturing printed wiring board

Country Status (3)

Country Link
JP (1) JP5400823B2 (en)
CN (1) CN102870505B (en)
WO (1) WO2012133090A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100139A1 (en) * 2012-01-10 2013-07-11 Hella Kgaa Hueck & Co. Light module for headlight of vehicle, has support element received at converter element, where converter element is movable with support element with respect to beam-forming element, and laser beam irradiated by laser beam source
EP4366472A1 (en) * 2022-11-02 2024-05-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections
EP4366473A1 (en) * 2022-11-02 2024-05-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Evaluating the health condition of a single component carrier
WO2024094434A1 (en) * 2022-11-02 2024-05-10 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections
WO2024094430A1 (en) * 2022-11-02 2024-05-10 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257785B2 (en) * 2018-12-26 2023-04-14 日本シイエムケイ株式会社 Printed wiring board and its conduction inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155370A (en) * 1982-03-12 1983-09-16 Hitachi Ltd Flaw discriminator of conductor pattern
JP2002329947A (en) * 2002-02-15 2002-11-15 Ngk Spark Plug Co Ltd Wiring inspecting method of wiring board and method for manufacturing the same
JP2006278762A (en) * 2005-03-29 2006-10-12 Tdk Corp Inspection method and inspection apparatus for multilayered substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100845A (en) * 2000-09-25 2002-04-05 Hitachi Kokusai Electric Inc Circuit pattern for inspecting blind via hole misregistration
US7619434B1 (en) * 2004-12-01 2009-11-17 Cardiac Pacemakers, Inc. System for multiple layer printed circuit board misregistration testing
JP4844714B2 (en) * 2005-08-22 2011-12-28 ミツミ電機株式会社 Multilayer wiring board
CN101466201B (en) * 2009-01-14 2011-01-05 高德(无锡)电子有限公司 Device for discarding and blowing printed circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155370A (en) * 1982-03-12 1983-09-16 Hitachi Ltd Flaw discriminator of conductor pattern
JP2002329947A (en) * 2002-02-15 2002-11-15 Ngk Spark Plug Co Ltd Wiring inspecting method of wiring board and method for manufacturing the same
JP2006278762A (en) * 2005-03-29 2006-10-12 Tdk Corp Inspection method and inspection apparatus for multilayered substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012100139A1 (en) * 2012-01-10 2013-07-11 Hella Kgaa Hueck & Co. Light module for headlight of vehicle, has support element received at converter element, where converter element is movable with support element with respect to beam-forming element, and laser beam irradiated by laser beam source
DE102012100139B4 (en) 2012-01-10 2022-10-13 HELLA GmbH & Co. KGaA Light module for a headlight of a vehicle with a laser beam source
EP4366472A1 (en) * 2022-11-02 2024-05-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections
EP4366473A1 (en) * 2022-11-02 2024-05-08 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Evaluating the health condition of a single component carrier
WO2024094434A1 (en) * 2022-11-02 2024-05-10 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections
WO2024094544A1 (en) * 2022-11-02 2024-05-10 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Evaluating the health condition of a single component carrier
WO2024094430A1 (en) * 2022-11-02 2024-05-10 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Testing electrically conductive interconnections

Also Published As

Publication number Publication date
JP5400823B2 (en) 2014-01-29
CN102870505A (en) 2013-01-09
JP2012204803A (en) 2012-10-22
CN102870505B (en) 2015-09-23

Similar Documents

Publication Publication Date Title
WO2012133090A1 (en) Printed wiring board and method for manufacturing printed wiring board
US9451693B2 (en) Electrically conductive adhesive (ECA) for multilayer device interconnects
US20090241332A1 (en) Circuitized substrate and method of making same
JP2008198964A (en) Printed wiring board and method for manufacturing the same
Kovtun et al. Nondestructive strength diagnostics of solder joints on printed circuit boards
CN104221223A (en) Anisotropic conductive sheet and electrode bonding method using same
JP4254757B2 (en) Conductive material, conductive paste and substrate
US20190343001A1 (en) Printed circuit boards with thick-wall vias
US7629559B2 (en) Method of improving electrical connections in circuitized substrates
JP2007173543A (en) Board inspecting method, printed wiring board, and electronic circuit apparatus
JP5114849B2 (en) Electrical inspection method for printed wiring boards
JP5465980B2 (en) Printed circuit board inspection method and inspection apparatus
US9462680B2 (en) Printed circuit board
JP4991624B2 (en) Printed circuit board and manufacturing method thereof
Birch Reliability testing for microvias in printed wire boards
JP2011228481A (en) Conductive paste, flexible printed-wiring board and electronic equipment
Slee et al. Introduction to printed circuit board failures
JP4752281B2 (en) Printed wiring board with built-in resistor
JP5050924B2 (en) Multilayer printed wiring board, inspection method and manufacturing method thereof
JP3721660B2 (en) Conductive material and conductive paste
JP5062899B2 (en) Wiring board inspection method
Sjoberg et al. High-density assembly and root cause analyses
Caputo et al. PCB Manufacturability and Reliability Solutions for Fine Pitch PCB Server Boards
JP2007088207A (en) Printed wiring board having resistance element and its manufacturing method
Mach et al. Usability of electrically conductive adhesives for power components assembly

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001266.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763305

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201005362

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763305

Country of ref document: EP

Kind code of ref document: A1