WO2012132893A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2012132893A1
WO2012132893A1 PCT/JP2012/056504 JP2012056504W WO2012132893A1 WO 2012132893 A1 WO2012132893 A1 WO 2012132893A1 JP 2012056504 W JP2012056504 W JP 2012056504W WO 2012132893 A1 WO2012132893 A1 WO 2012132893A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
electrode
fuel
separator
intermediate film
Prior art date
Application number
PCT/JP2012/056504
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 森
和英 高田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013507359A priority Critical patent/JP5418722B2/en
Publication of WO2012132893A1 publication Critical patent/WO2012132893A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell.
  • the present invention relates to a solid oxide fuel cell.
  • fuel cells As a new energy source.
  • the fuel cell include a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell.
  • SOFC solid oxide fuel cell
  • molten carbonate fuel cell a molten carbonate fuel cell
  • phosphoric acid fuel cell a phosphoric acid fuel cell
  • polymer electrolyte fuel cell a solid oxide fuel cell
  • solid oxide fuel cells do not necessarily require liquid components, and can be reformed internally when using hydrocarbon fuel. For this reason, research and development on solid oxide fuel cells are actively conducted.
  • the solid oxide fuel cell includes a power generation element having a solid oxide electrolyte layer, and a fuel electrode and an air electrode that sandwich the solid oxide electrolyte layer.
  • a separator that defines a flow path for supplying fuel gas is disposed on the fuel electrode.
  • An interconnector for drawing the fuel electrode to the outside is provided in the separator.
  • An interconnector for drawing out the air electrode to the outside is provided in the separator.
  • Patent Document 1 describes yttria-stabilized zirconia (YSZ) containing at least one metal selected from Ni, Cu, Fe, Ru, and Pd as a constituent material of the fuel electrode. Yes.
  • YSZ yttria-stabilized zirconia
  • Patent Document 1 describes glass containing an Ag—Pd alloy as a constituent material of an interconnector.
  • the present invention has been made in view of such points, and an object thereof is to provide a fuel cell having a long product life.
  • the fuel cell according to the present invention includes a power generation element, a separator, and an interconnector.
  • the power generation element has a solid oxide electrolyte layer, a first electrode, and a second electrode.
  • the first electrode is disposed on one main surface of the solid oxide electrolyte layer.
  • the second electrode is disposed on the other main surface of the solid oxide electrolyte layer.
  • the separator is disposed on the first electrode.
  • the separator defines a flow path that faces the first electrode.
  • the interconnector is connected to the first electrode.
  • the first electrode includes Ni.
  • the interconnector has a portion made of Ag or an Ag alloy.
  • the fuel cell according to the present invention further includes an intermediate film.
  • the intermediate film is disposed between the portion made of Ag or an Ag alloy and the first electrode.
  • the intermediate film is made of an oxide containing Co and Ti.
  • the intermediate film includes a CoTiO 3 crystal phase when the fuel cell is manufactured.
  • the intermediate film further includes a Co 3 O 4 crystal phase when the fuel cell is manufactured.
  • the molar ratio of Co and Ti (Co: Ti) in the intermediate film is in the range of 40:60 to 80:20.
  • the first electrode includes yttria stabilized zirconia containing Ni, scandia stabilized zirconia containing Ni, ceria doped with Sm containing Ni, or Gd containing Ni. Made of ceria doped with
  • the interconnector has a portion made of an Ag—Pd alloy.
  • a fuel cell having a long product life can be provided.
  • FIG. 1 is a schematic exploded perspective view of a fuel cell according to a first embodiment.
  • FIG. 2 is a schematic plan view of the first separator body in the first embodiment.
  • FIG. 3 is a schematic plan view of the first flow path forming member in the first embodiment.
  • FIG. 4 is a schematic plan view of the air electrode layer in the first embodiment.
  • FIG. 5 is a schematic plan view of the solid oxide electrolyte layer in the first embodiment.
  • FIG. 6 is a schematic plan view of the fuel electrode layer in the first embodiment.
  • FIG. 7 is a schematic plan view of the second flow path forming member in the first embodiment.
  • FIG. 8 is a schematic plan view of the second separator body in the first embodiment.
  • FIG. 9 is a schematic cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a schematic cross-sectional view taken along line XX in FIG.
  • FIG. 11 is a schematic cross-sectional view of a fuel cell according to the second embodiment.
  • FIG. 12 is a schematic cross-sectional view of a fuel cell according to the third embodiment.
  • FIG. 13 is a schematic cross-sectional view of a fuel cell according to the fourth embodiment.
  • FIG. 14 is a graph showing the results of an energization test of fuel cells produced in each of the examples and comparative examples.
  • FIG. 1 is a schematic exploded perspective view of a fuel cell according to a first embodiment.
  • FIG. 2 is a schematic plan view of the first separator body in the first embodiment.
  • FIG. 3 is a schematic plan view of the first flow path forming member in the first embodiment.
  • FIG. 4 is a schematic plan view of the air electrode layer in the first embodiment.
  • FIG. 5 is a schematic plan view of the solid oxide electrolyte layer in the first embodiment.
  • FIG. 6 is a schematic plan view of the fuel electrode layer in the first embodiment.
  • FIG. 7 is a schematic plan view of the second flow path forming member in the first embodiment.
  • FIG. 8 is a schematic plan view of the second separator body in the first embodiment.
  • FIG. 9 is a schematic cross-sectional view taken along line IX-IX in FIG.
  • FIG. 10 is a schematic cross-sectional view taken along line XX in FIG.
  • the fuel cell 1 of the present embodiment includes a first separator 10, a power generation element 30, and a second separator 50.
  • the first separator 10, the power generation element 30, and the second separator 50 are stacked in this order.
  • the fuel cell 1 of the present embodiment has only one power generation element 30.
  • the present invention is not limited to this configuration.
  • the fuel cell of the present invention may have, for example, a plurality of power generation elements. In that case, adjacent power generation elements are separated by a separator.
  • the oxidant gas supplied from the oxidant gas flow path (oxidant gas manifold) 61 and the fuel gas supplied from the fuel gas flow path (fuel gas manifold) 62 react to generate power.
  • the oxidant gas can be composed of an aerobic gas such as air or oxygen gas.
  • the fuel gas may be a gas containing hydrogen gas or hydrocarbon gas such as carbon monoxide gas.
  • the power generation element 30 includes a solid oxide electrolyte layer 31. It is preferable that the solid oxide electrolyte layer 31 has a high ionic conductivity.
  • the solid oxide electrolyte layer 31 can be formed of, for example, stabilized zirconia or partially stabilized zirconia. Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ), 11 mol% scandia stabilized zirconia (11ScSZ), and the like. Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ).
  • the solid oxide electrolyte layer 31 is, for example, Sm and Gd or the like ceria oxides doped, a LaGaO 3 as a host, La 0 the part of the La and Ga was substituted with Sr and Mg, respectively. It can also be formed of a perovskite oxide such as 8 Sr 0.2 Ga 0.8 Mg 0.2 O (3- ⁇ ) .
  • the solid oxide electrolyte layer 31 is sandwiched between the air electrode layer 32 and the fuel electrode layer 33. That is, the air electrode layer 32 is formed on one main surface of the solid oxide electrolyte layer 31, and the fuel electrode layer 33 is formed on the other main surface.
  • the air electrode layer 32 includes an air electrode 32a and a peripheral portion 32b. Through holes 32c and 32d constituting part of the flow paths 61 and 62 are formed in the peripheral portion 32b.
  • the air electrode 32a is a cathode. In the air electrode 32a, oxygen takes in electrons and oxygen ions are formed.
  • the air electrode 32a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 31 and the like at a high temperature.
  • the air electrode 32a includes, for example, scandia-stabilized zirconia (ScSZ), ceria doped with Gd, indium oxide doped with Sn, PrCoO 3 oxide, LaCoO 3 oxide, LaFeO 3 oxide, LaCoFeO 3 oxide And LaMnO 3 oxide.
  • Specific examples of the LaMnO 3 -based oxide include La 0.8 Sr 0.2 MnO 3 (common name: LSM), La 0.6 Ca 0.4 MnO 3 (common name: LCM), and the like.
  • the peripheral portion 32b can be formed of the same material as the first and second separator bodies 11 and 51 described below, for example.
  • the fuel electrode layer 33 has a fuel electrode 33a and a peripheral portion 33b. Through holes 33c and 33d constituting part of the flow paths 61 and 62 are formed in the peripheral portion 33b.
  • the fuel electrode 33a is an anode. In the fuel electrode 33a, oxygen ions and the fuel gas react to emit electrons.
  • the fuel electrode 33a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 31 and the like at a high temperature.
  • the fuel electrode 33a contains Ni.
  • the fuel electrode 33a can be composed of, for example, yttria-stabilized zirconia containing Ni, scandia-stabilized zirconia containing Ni (or cermet).
  • the Ni content in the fuel electrode 33a can be, for example, about 40% by mass to 80% by mass.
  • the first separator 10 is disposed on the air electrode layer 32 of the power generation element 30.
  • the first separator 10 has a function of forming a flow path 12a for supplying the oxidant gas supplied from the oxidant gas flow path 61 to the air electrode 32a. Further, in a fuel cell including a plurality of power generation elements, the first separator also has a function of separating fuel gas and oxidant gas.
  • the first separator 10 includes a first separator body 11 and a first flow path forming member 12.
  • the first separator body 11 is disposed on the air electrode 32a.
  • the first separator body 11 is formed with through holes 11 a and 11 b that constitute part of the flow paths 61 and 62.
  • the first flow path forming member 12 is disposed between the first separator body 11 and the air electrode layer 32.
  • the first flow path forming member 12 has a peripheral portion 12b and a plurality of linear convex portions 12c.
  • a through hole 12d constituting a part of the fuel gas flow path 62 is formed in the peripheral portion 12b.
  • Each of the plurality of linear protrusions 12c is provided so as to protrude from the surface of the first separator body 11 on the air electrode layer 32 side toward the air electrode layer 32 side.
  • Each of the plurality of linear protrusions 12c is provided along the x direction.
  • the plurality of linear protrusions 12c are arranged at intervals from each other along the y direction.
  • the flow path 12a is defined between the adjacent linear convex portions 12c and between the linear convex portions 12c and the peripheral portion 12b.
  • the materials of the first separator body 11 and the first flow path forming member 12 are not particularly limited.
  • Each of the first separator main body 11 and the first flow path forming member 12 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like.
  • Each of the first separator main body 11 and the first flow path forming member 12 includes, for example, conductive ceramics such as lanthanum chromite to which a rare earth metal is added, MgO / MgAl 2 O 4 , SrTiO 3 / Al 2 O. It can also be formed by insulating ceramics such as 3 .
  • a plurality of via-hole electrodes 12c1 are embedded in each of the plurality of linear protrusions 12c.
  • the plurality of via-hole electrodes 12c1 are formed so as to penetrate the plurality of linear protrusions 12c in the z direction.
  • the first separator body 11 has a plurality of via hole electrodes 11c corresponding to the positions of the plurality of via hole electrodes 12c1.
  • the plurality of via-hole electrodes 11 c are formed so as to penetrate the first separator body 11.
  • the interconnector 13 may be formed integrally with the first separator 10. That is, the first separator 10 may have a function as an interconnector.
  • the material of the via hole electrode 11c and the via hole electrode 12c1 is not particularly limited.
  • Each of the via hole electrode 11c and the via hole electrode 12c1 can be formed by, for example, LSM.
  • a second separator 50 is disposed on the fuel electrode layer 33 of the power generation element 30.
  • the second separator 50 has a function of forming a flow path 52a for supplying the fuel gas supplied from the fuel gas flow path 62 to the fuel electrode 33a.
  • the second separator also has a function of separating fuel gas and oxidant gas.
  • the second separator 50 includes a second separator body 51 and a second flow path forming member 52.
  • the second separator body 51 is disposed on the fuel electrode 33a.
  • the second separator body 51 is formed with through holes 51 a and 51 b that constitute part of the flow paths 61 and 62.
  • the second flow path forming member 52 is disposed between the second separator body 51 and the fuel electrode layer 33.
  • the second flow path forming member 52 has a peripheral portion 52b and a plurality of linear convex portions 52c.
  • a through hole 52d constituting a part of the fuel gas channel 62 is formed in the peripheral portion 52b.
  • Each of the plurality of linear protrusions 52c is provided so as to protrude from the surface of the second separator body 51 on the fuel electrode layer 33 side toward the fuel electrode layer 33 side.
  • Each of the plurality of linear protrusions 52c is provided along the y direction perpendicular to the direction in which the linear protrusions 52c extend.
  • the plurality of linear protrusions 52c are arranged at intervals from each other along the x direction.
  • the flow path 52a is partitioned and formed between the adjacent linear protrusions 52c and between the linear protrusions 52c and the peripheral part 52b. For this reason, the direction in which the flow path 52a extends is orthogonal to the direction in which the flow path 12a extends.
  • the materials of the second separator body 51 and the second flow path forming member 52 are not particularly limited.
  • Each of the second separator body 51 and the second flow path forming member 52 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like.
  • Each of the second separator main body 51 and the second flow path forming member 52 includes, for example, conductive ceramics such as lanthanum chromite to which rare earth metal is added, MgO / MgAl 2 O 4 , SrTiO 3 / Al 2 O. It can also be formed by insulating ceramics such as 3 .
  • a plurality of via hole electrodes 52c1 are embedded in each of the plurality of linear protrusions 52c.
  • the second separator main body 51 has a plurality of via hole electrodes 51c corresponding to the positions of the plurality of via hole electrodes 52c1.
  • the plurality of via hole electrodes 51c are electrically connected to the plurality of via hole electrodes 52c1.
  • the plurality of via hole electrodes 51 c are formed so as to penetrate the second separator body 51.
  • the plurality of via hole electrodes 51c and the plurality of via hole electrodes 52c1 constitute the interconnector 14 that draws the fuel electrode 33a to the outside.
  • the interconnector 14 may be formed integrally with the second separator 50. That is, the second separator 50 may have a function as an interconnector.
  • the interconnector 14 has a portion made of Ag or an Ag alloy.
  • the interconnector 14 has a portion made of an Ag alloy. More specifically, the entire interconnector 14 is made of an Ag—Pd alloy. For this reason, the gas barrier property of the interconnector 14 is high.
  • the intermediate film 53 is disposed between the interconnector 14 and the fuel electrode 33a. Specifically, the intermediate film 53 is disposed at the end of the via hole 52c2 formed in the linear protrusion 52c on the fuel electrode 33a side. The interconnector 14 and the fuel electrode 33a are isolated by the intermediate film 53.
  • the intermediate film 53 is made of an oxide containing Co and Ti.
  • the molar ratio of Co and Ti (Co: Ti) in the intermediate film 53 is preferably 40:60 to 80:20, and more preferably 50:50 to 70:30.
  • the properties of the intermediate film 53 are different between a state where power generation is not performed and a state where power generation is performed.
  • the intermediate film 53 includes a CoTiO 3 crystal phase when the fuel cell 1 is manufactured.
  • the intermediate film 53 further includes a Co 3 O 4 crystal phase when the fuel cell 1 is manufactured.
  • the intermediate film 53 is in a state constituted by a mixture of metal Co and titanium oxide.
  • the intermediate film 53 can be formed by sintering a cobalt oxide powder such as a Co 3 O 4 powder and a titanium oxide powder such as a TiO 2 powder.
  • the mixing ratio (Co 3 O 4 : TiO 2 ) between the Co 3 O 4 powder and the TiO 2 powder is preferably 40:60 to 80:20, and 50:50 to 70:30 in terms of mass%. It is more preferable.
  • the product life of the fuel cell is shortened. Specifically, the voltage drops rapidly during power generation.
  • an intermediate film 53 made of an oxide containing Co and Ti is disposed between the fuel electrode 33a and the interconnector 14. For this reason, a rapid voltage drop during power generation can be suppressed. As a result, a long product life can be realized.
  • the reason for this is not clear, but by interposing an intermediate film made of an oxide containing Co and Ti between the fuel electrode 33a and the interconnector 14, the fuel electrode 33a and the interconnector can be used in the operating environment of the fuel cell. This is thought to be due to the stabilization of the bonding with 14.
  • the molar ratio (Co: Ti) between Co and Ti in the intermediate film 53 is 40:60 to 80:20.
  • the electrical resistance of the intermediate film 53 can be reduced to a level that does not cause a problem in practice. Therefore, a voltage drop due to the provision of the intermediate film 53 can be suppressed.
  • the molar ratio of Co to Ti (Co: Ti) in the intermediate film 53 is preferably 50:50 to 70:30. .
  • FIG. 11 is a schematic cross-sectional view of a fuel cell according to the second embodiment.
  • FIG. 12 is a schematic cross-sectional view of a fuel cell according to the third embodiment.
  • the intermediate film 53 may be provided so as to cover the surface of the fuel electrode 33a on the interconnector 14 side.
  • the intermediate film 53 is provided so as to cover the surface of the fuel electrode layer 33 on the interconnector 14 side.
  • the intermediate film 53 is made of a porous body. Therefore, the fuel gas passes through the intermediate film 53 and is supplied to the fuel electrode 33a.
  • an intermediate film may be disposed between the second linear convex portion and the fuel electrode, and the intermediate film may not be disposed on the portion facing the flow path of the fuel electrode.
  • the intermediate film 53 may be disposed in the central portion of the via hole 52c2. As shown in FIG. 13, the intermediate film 53 may be disposed at the end of the via hole 52 c 2 on the separator body 51 side.
  • the portion 52c11 on the separator 50 side of the intermediate film 53 of the interconnector 14 includes Ag or an Ag alloy.
  • the portion 52c12 on the fuel electrode 33a side is made of the same material as the fuel electrode 33a.
  • Example 10 A fuel cell having substantially the same configuration as that of the fuel cell according to the second embodiment was manufactured under the following conditions.
  • Co 3 O 4 TiO 2 is 40% by mass: 60% by mass to 80% by mass: 20% by mass, and Co: Ti is 40 mol: 60 mol to 80 mol: 20 mol: 20 mol.
  • the CoO is preferably 80% by mass or less, and the molar ratio Co / Ti is preferably 70/30 or less.

Abstract

Provided is a fuel cell having a long product life. In this fuel cell (1), an intermediate membrane (53) is arranged between a portion made of Ag or an Ag alloy of each interconnector (14) and a first electrode (33) containing Ni. The intermediate membrane (53) is made of an oxide containing Co and Ti.

Description

燃料電池Fuel cell
 本発明は、燃料電池に関する。特に、本発明は、固体酸化物形燃料電池に関する。 The present invention relates to a fuel cell. In particular, the present invention relates to a solid oxide fuel cell.
 近年、新たなエネルギー源として、燃料電池に対する注目が大きくなってきている。燃料電池には、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体高分子形燃料電池等がある。これらの燃料電池の中でも、固体酸化物形燃料電池では、液体の構成要素を用いる必要が必ずしもなく、炭化水素燃料を用いるときに内部での改質も可能である。このため、固体酸化物形燃料電池に対する研究開発が盛んに行われている。 In recent years, attention has been paid to fuel cells as a new energy source. Examples of the fuel cell include a solid oxide fuel cell (SOFC), a molten carbonate fuel cell, a phosphoric acid fuel cell, and a polymer electrolyte fuel cell. Among these fuel cells, solid oxide fuel cells do not necessarily require liquid components, and can be reformed internally when using hydrocarbon fuel. For this reason, research and development on solid oxide fuel cells are actively conducted.
 固体酸化物形燃料電池は、固体酸化物電解質層と、固体酸化物電解質層を挟持している燃料極及び空気極とを有する発電要素を備えている。燃料極の上には、燃料ガスを供給するための流路を区画形成しているセパレータが配置されている。このセパレータ内には、燃料極を外部に引き出すためのインターコネクタが設けられている。一方、空気極の上には、酸化剤ガスを供給するための流路を区画形成しているセパレータが配置されている。このセパレータ内には、空気極を外部に引き出すためのインターコネクタが設けられている。 The solid oxide fuel cell includes a power generation element having a solid oxide electrolyte layer, and a fuel electrode and an air electrode that sandwich the solid oxide electrolyte layer. A separator that defines a flow path for supplying fuel gas is disposed on the fuel electrode. An interconnector for drawing the fuel electrode to the outside is provided in the separator. On the other hand, on the air electrode, a separator that defines a flow path for supplying an oxidant gas is disposed. An interconnector for drawing out the air electrode to the outside is provided in the separator.
 例えば下記の特許文献1には、燃料極の構成材料として、Ni,Cu,Fe,Ru及びPdから選ばれた少なくとも一種の金属を含むイットリア安定化ジルコニア(YSZ:Yttria Stabilized Zirconia)が記載されている。 For example, Patent Document 1 below describes yttria-stabilized zirconia (YSZ) containing at least one metal selected from Ni, Cu, Fe, Ru, and Pd as a constituent material of the fuel electrode. Yes.
 また、特許文献1には、インターコネクタの構成材料として、Ag-Pd合金を含むガラスが記載されている。 Patent Document 1 describes glass containing an Ag—Pd alloy as a constituent material of an interconnector.
WO2004/088783 A1号公報WO2004 / 088783 A1 Publication
 しかしながら、上記特許文献1に記載のように、燃料極がNiを含むイットリア安定化ジルコニアからなり、インターコネクタがAg-Pd合金を含む場合、燃料極とインターコネクタとの電気的接続が経時劣化することがあり、燃料電池の製品寿命を十分に長くできないという問題がある。 However, as described in Patent Document 1, when the fuel electrode is made of yttria-stabilized zirconia containing Ni and the interconnector contains an Ag—Pd alloy, the electrical connection between the fuel electrode and the interconnector deteriorates with time. In some cases, the product life of the fuel cell cannot be made sufficiently long.
 本発明は、斯かる点に鑑みて成されたものであり、その目的は、製品寿命が長い燃料電池を提供することにある。 The present invention has been made in view of such points, and an object thereof is to provide a fuel cell having a long product life.
 本発明に係る燃料電池は、発電要素と、セパレータと、インターコネクタとを備えている。発電要素は、固体酸化物電解質層と、第1の電極と、第2の電極とを有する。第1の電極は、固体酸化物電解質層の一主面の上に配されている。第2の電極は、固体酸化物電解質層の他主面の上に配されている。セパレータは、第1の電極の上に配されている。セパレータは、第1の電極に臨む流路を区画形成している。インターコネクタは、第1の電極に接続されている。第1の電極は、Niを含む。インターコネクタは、AgまたはAg合金からなる部分を有する。本発明に係る燃料電池は、中間膜をさらに備えている。中間膜は、AgまたはAg合金からなる部分と、第1の電極との間に配されている。中間膜は、CoとTiとを含む酸化物からなる。 The fuel cell according to the present invention includes a power generation element, a separator, and an interconnector. The power generation element has a solid oxide electrolyte layer, a first electrode, and a second electrode. The first electrode is disposed on one main surface of the solid oxide electrolyte layer. The second electrode is disposed on the other main surface of the solid oxide electrolyte layer. The separator is disposed on the first electrode. The separator defines a flow path that faces the first electrode. The interconnector is connected to the first electrode. The first electrode includes Ni. The interconnector has a portion made of Ag or an Ag alloy. The fuel cell according to the present invention further includes an intermediate film. The intermediate film is disposed between the portion made of Ag or an Ag alloy and the first electrode. The intermediate film is made of an oxide containing Co and Ti.
 本発明に係る燃料電池のある特定の局面では、中間膜は、燃料電池作製時において、CoTiO結晶相を含む。 In a specific aspect of the fuel cell according to the present invention, the intermediate film includes a CoTiO 3 crystal phase when the fuel cell is manufactured.
 本発明に係る燃料電池の別の特定の局面では、中間膜は、燃料電池作製時において、Co結晶相をさらに含む。 In another specific aspect of the fuel cell according to the present invention, the intermediate film further includes a Co 3 O 4 crystal phase when the fuel cell is manufactured.
 本発明に係る燃料電池の他の特定の局面では、中間膜におけるCoとTiとのモル比(Co:Ti)が、40:60~80:20の範囲内にある。 In another specific aspect of the fuel cell according to the present invention, the molar ratio of Co and Ti (Co: Ti) in the intermediate film is in the range of 40:60 to 80:20.
 本発明に係る燃料電池のさらに他の特定の局面では、第1の電極は、Niを含むイットリア安定化ジルコニア、Niを含むスカンジア安定化ジルコニア、Niを含むSmをドープしたセリアまたはNiを含むGdをドープしたセリアからなる。 In still another specific aspect of the fuel cell according to the present invention, the first electrode includes yttria stabilized zirconia containing Ni, scandia stabilized zirconia containing Ni, ceria doped with Sm containing Ni, or Gd containing Ni. Made of ceria doped with
 本発明に係る燃料電池のさらに別の特定の局面では、インターコネクタは、Ag-Pd合金からなる部分を有する。 In yet another specific aspect of the fuel cell according to the present invention, the interconnector has a portion made of an Ag—Pd alloy.
 本発明によれば、製品寿命が長い燃料電池を提供することができる。 According to the present invention, a fuel cell having a long product life can be provided.
図1は、第1の実施形態に係る燃料電池の略図的分解斜視図である。FIG. 1 is a schematic exploded perspective view of a fuel cell according to a first embodiment. 図2は、第1の実施形態における第1のセパレータ本体の略図的平面図である。FIG. 2 is a schematic plan view of the first separator body in the first embodiment. 図3は、第1の実施形態における第1の流路形成部材の略図的平面図である。FIG. 3 is a schematic plan view of the first flow path forming member in the first embodiment. 図4は、第1の実施形態における空気極層の略図的平面図である。FIG. 4 is a schematic plan view of the air electrode layer in the first embodiment. 図5は、第1の実施形態における固体酸化物電解質層の略図的平面図である。FIG. 5 is a schematic plan view of the solid oxide electrolyte layer in the first embodiment. 図6は、第1の実施形態における燃料極層の略図的平面図である。FIG. 6 is a schematic plan view of the fuel electrode layer in the first embodiment. 図7は、第1の実施形態における第2の流路形成部材の略図的平面図である。FIG. 7 is a schematic plan view of the second flow path forming member in the first embodiment. 図8は、第1の実施形態における第2のセパレータ本体の略図的平面図である。FIG. 8 is a schematic plan view of the second separator body in the first embodiment. 図9は、図3の線IX-IXにおける略図的断面図である。FIG. 9 is a schematic cross-sectional view taken along line IX-IX in FIG. 図10は、図7の線X-Xにおける略図的断面図である。FIG. 10 is a schematic cross-sectional view taken along line XX in FIG. 図11は、第2の実施形態に係る燃料電池の略図的断面図である。FIG. 11 is a schematic cross-sectional view of a fuel cell according to the second embodiment. 図12は、第3の実施形態に係る燃料電池の略図的断面図である。FIG. 12 is a schematic cross-sectional view of a fuel cell according to the third embodiment. 図13は、第4の実施形態に係る燃料電池の略図的断面図である。FIG. 13 is a schematic cross-sectional view of a fuel cell according to the fourth embodiment. 図14は、実施例及び比較例のそれぞれにおいて作製した燃料電池の通電試験の結果を表すグラフである。FIG. 14 is a graph showing the results of an energization test of fuel cells produced in each of the examples and comparative examples.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものであり、図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described, and the ratio of the dimensions of the objects drawn in the drawings may be different from the ratio of the dimensions of the actual objects. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1は、第1の実施形態に係る燃料電池の略図的分解斜視図である。図2は、第1の実施形態における第1のセパレータ本体の略図的平面図である。図3は、第1の実施形態における第1の流路形成部材の略図的平面図である。図4は、第1の実施形態における空気極層の略図的平面図である。図5は、第1の実施形態における固体酸化物電解質層の略図的平面図である。図6は、第1の実施形態における燃料極層の略図的平面図である。図7は、第1の実施形態における第2の流路形成部材の略図的平面図である。図8は、第1の実施形態における第2のセパレータ本体の略図的平面図である。図9は、図3の線IX-IXにおける略図的断面図である。図10は、図7の線X-Xにおける略図的断面図である。
(First embodiment)
FIG. 1 is a schematic exploded perspective view of a fuel cell according to a first embodiment. FIG. 2 is a schematic plan view of the first separator body in the first embodiment. FIG. 3 is a schematic plan view of the first flow path forming member in the first embodiment. FIG. 4 is a schematic plan view of the air electrode layer in the first embodiment. FIG. 5 is a schematic plan view of the solid oxide electrolyte layer in the first embodiment. FIG. 6 is a schematic plan view of the fuel electrode layer in the first embodiment. FIG. 7 is a schematic plan view of the second flow path forming member in the first embodiment. FIG. 8 is a schematic plan view of the second separator body in the first embodiment. FIG. 9 is a schematic cross-sectional view taken along line IX-IX in FIG. FIG. 10 is a schematic cross-sectional view taken along line XX in FIG.
 図1、図9及び図10に示すように、本実施形態の燃料電池1は、第1のセパレータ10と、発電要素30と、第2のセパレータ50とを有する。燃料電池1では、第1のセパレータ10と、発電要素30と、第2のセパレータ50とがこの順番で積層されている。 As shown in FIGS. 1, 9, and 10, the fuel cell 1 of the present embodiment includes a first separator 10, a power generation element 30, and a second separator 50. In the fuel cell 1, the first separator 10, the power generation element 30, and the second separator 50 are stacked in this order.
 なお、本実施形態の燃料電池1は、発電要素30をひとつのみ有している。但し、本発明は、この構成に限定されない。本発明の燃料電池は、例えば、発電要素を複数有していてもよい。その場合、隣り合う発電要素は、セパレータにより隔離される。 Note that the fuel cell 1 of the present embodiment has only one power generation element 30. However, the present invention is not limited to this configuration. The fuel cell of the present invention may have, for example, a plurality of power generation elements. In that case, adjacent power generation elements are separated by a separator.
 (発電要素30)
 発電要素30は、酸化剤ガス流路(酸化剤ガス用マニホールド)61から供給される酸化剤ガスと、燃料ガス流路(燃料ガス用マニホールド)62から供給される燃料ガスとが反応し、発電が行われる部分である。酸化剤ガスは、例えば空気や酸素ガス等の有酸素ガスにより構成することができる。また、燃料ガスは、水素ガスや、一酸化炭素ガスなどの炭化水素ガス等を含むガスとすることができる。
(Power generation element 30)
In the power generation element 30, the oxidant gas supplied from the oxidant gas flow path (oxidant gas manifold) 61 and the fuel gas supplied from the fuel gas flow path (fuel gas manifold) 62 react to generate power. Is the part where The oxidant gas can be composed of an aerobic gas such as air or oxygen gas. The fuel gas may be a gas containing hydrogen gas or hydrocarbon gas such as carbon monoxide gas.
 (固体酸化物電解質層31)
 発電要素30は、固体酸化物電解質層31を備えている。固体酸化物電解質層31は、イオン導電性が高いものであることが好ましい。固体酸化物電解質層31は、例えば、安定化ジルコニアや、部分安定化ジルコニアなどにより形成することができる。安定化ジルコニアの具体例としは、10mol%イットリア安定化ジルコニア(10YSZ)、11mol%スカンジア安定化ジルコニア(11ScSZ)等が挙げられる。部分安定化ジルコニアの具体例としは、3mol%イットリア部分安定化ジルコニア(3YSZ)、等が挙げられる。また、固体酸化物電解質層31は、例えば、SmやGd等がドープされたセリア系酸化物や、LaGaOを母体とし、LaとGaとの一部をそれぞれSr及びMgで置換したLa0.8Sr0.2Ga0.8Mg0.2(3-δ)などのペロブスカイト型酸化物などにより形成することもできる。
(Solid oxide electrolyte layer 31)
The power generation element 30 includes a solid oxide electrolyte layer 31. It is preferable that the solid oxide electrolyte layer 31 has a high ionic conductivity. The solid oxide electrolyte layer 31 can be formed of, for example, stabilized zirconia or partially stabilized zirconia. Specific examples of the stabilized zirconia include 10 mol% yttria stabilized zirconia (10YSZ), 11 mol% scandia stabilized zirconia (11ScSZ), and the like. Specific examples of the partially stabilized zirconia include 3 mol% yttria partially stabilized zirconia (3YSZ). Further, the solid oxide electrolyte layer 31 is, for example, Sm and Gd or the like ceria oxides doped, a LaGaO 3 as a host, La 0 the part of the La and Ga was substituted with Sr and Mg, respectively. It can also be formed of a perovskite oxide such as 8 Sr 0.2 Ga 0.8 Mg 0.2 O (3-δ) .
 なお、固体酸化物電解質層31には、図5に示すように、流路61,62の一部を構成している貫通孔31a、31bが形成されている。 Note that, as shown in FIG. 5, through holes 31 a and 31 b constituting part of the flow paths 61 and 62 are formed in the solid oxide electrolyte layer 31.
 固体酸化物電解質層31は、空気極層32と燃料極層33とにより挟持されている。すなわち、固体酸化物電解質層31の一主面の上に空気極層32が形成されており、他主面の上に燃料極層33が形成されている。 The solid oxide electrolyte layer 31 is sandwiched between the air electrode layer 32 and the fuel electrode layer 33. That is, the air electrode layer 32 is formed on one main surface of the solid oxide electrolyte layer 31, and the fuel electrode layer 33 is formed on the other main surface.
 (空気極層32)
 図4に示すように、空気極層32は、空気極32aと、周辺部32bとを有する。周辺部32bには、流路61,62の一部を構成している貫通孔32c、32dが形成されている。
(Air electrode layer 32)
As shown in FIG. 4, the air electrode layer 32 includes an air electrode 32a and a peripheral portion 32b. Through holes 32c and 32d constituting part of the flow paths 61 and 62 are formed in the peripheral portion 32b.
 空気極32aは、カソードである。空気極32aにおいては、酸素が電子を取り込んで、酸素イオンが形成される。空気極32aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層31等と固体間反応を起こしにくいものであることが好ましい。空気極32aは、例えば、スカンジア安定化ジルコニア(ScSZ)、Gdをドープしたセリア、Snをドープした酸化インジウム、PrCoO系酸化物、LaCoO系酸化物、LaFeO系酸化物、LaCoFeO系酸化物、LaMnO系酸化物などにより形成することができる。LaMnO系酸化物の具体例としては、例えば、La0.8Sr0.2MnO(通称:LSM)や、La0.6Ca0.4MnO(通称:LCM)等が挙げられる。 The air electrode 32a is a cathode. In the air electrode 32a, oxygen takes in electrons and oxygen ions are formed. The air electrode 32a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 31 and the like at a high temperature. The air electrode 32a includes, for example, scandia-stabilized zirconia (ScSZ), ceria doped with Gd, indium oxide doped with Sn, PrCoO 3 oxide, LaCoO 3 oxide, LaFeO 3 oxide, LaCoFeO 3 oxide And LaMnO 3 oxide. Specific examples of the LaMnO 3 -based oxide include La 0.8 Sr 0.2 MnO 3 (common name: LSM), La 0.6 Ca 0.4 MnO 3 (common name: LCM), and the like.
 周辺部32bは、例えば、下記の第1及び第2のセパレータ本体11,51と同様の材料により形成することができる。 The peripheral portion 32b can be formed of the same material as the first and second separator bodies 11 and 51 described below, for example.
 (燃料極層33)
 図6に示すように、燃料極層33は、燃料極33aと、周辺部33bとを有する。周辺部33bには、流路61,62の一部を構成している貫通孔33c、33dが形成されている。
(Fuel electrode layer 33)
As shown in FIG. 6, the fuel electrode layer 33 has a fuel electrode 33a and a peripheral portion 33b. Through holes 33c and 33d constituting part of the flow paths 61 and 62 are formed in the peripheral portion 33b.
 燃料極33aは、アノードである。燃料極33aにおいては、酸素イオンと燃料ガスとが反応して電子を放出する。燃料極33aは、多孔質で、電子伝導性が高く、かつ、高温において固体酸化物電解質層31等と固体間反応を起こしにくいものであることが好ましい。 The fuel electrode 33a is an anode. In the fuel electrode 33a, oxygen ions and the fuel gas react to emit electrons. The fuel electrode 33a is preferably porous, has high electron conductivity, and does not easily cause a solid-solid reaction with the solid oxide electrolyte layer 31 and the like at a high temperature.
 燃料極33aは、Niを含む。具体的には、燃料極33aは、例えば、Niを含むイットリア安定化ジルコニア、Niを含むスカンジア安定化ジルコニア(サーメットであってもよい)等により構成することができる。 The fuel electrode 33a contains Ni. Specifically, the fuel electrode 33a can be composed of, for example, yttria-stabilized zirconia containing Ni, scandia-stabilized zirconia containing Ni (or cermet).
 なお、燃料極33aにおけるNiの含有率は、例えば、40質量%~80質量%程度とすることができる。 The Ni content in the fuel electrode 33a can be, for example, about 40% by mass to 80% by mass.
 (第1のセパレータ10)
 図1、図9及び図10に示すように、発電要素30の空気極層32の上には、第1のセパレータ10が配置されている。この第1のセパレータ10は、酸化剤ガス流路61から供給される酸化剤ガスを空気極32aに供給するための流路12aを形成する機能を有している。また、複数の発電要素を備える燃料電池においては、第1のセパレータは、燃料ガスと酸化剤ガスとを分離する機能も兼ね備えている。
(First separator 10)
As shown in FIGS. 1, 9, and 10, the first separator 10 is disposed on the air electrode layer 32 of the power generation element 30. The first separator 10 has a function of forming a flow path 12a for supplying the oxidant gas supplied from the oxidant gas flow path 61 to the air electrode 32a. Further, in a fuel cell including a plurality of power generation elements, the first separator also has a function of separating fuel gas and oxidant gas.
 第1のセパレータ10は、第1のセパレータ本体11と、第1の流路形成部材12とを有する。第1のセパレータ本体11は、空気極32aの上に配されている。第1のセパレータ本体11には、流路61,62の一部を構成している貫通孔11a、11bが形成されている。 The first separator 10 includes a first separator body 11 and a first flow path forming member 12. The first separator body 11 is disposed on the air electrode 32a. The first separator body 11 is formed with through holes 11 a and 11 b that constitute part of the flow paths 61 and 62.
 第1の流路形成部材12は、第1のセパレータ本体11と空気極層32との間に配されている。第1の流路形成部材12は、周辺部12bと、複数の線状凸部12cとを有する。周辺部12bには、燃料ガス流路62の一部を構成している貫通孔12dが形成されている。 The first flow path forming member 12 is disposed between the first separator body 11 and the air electrode layer 32. The first flow path forming member 12 has a peripheral portion 12b and a plurality of linear convex portions 12c. A through hole 12d constituting a part of the fuel gas flow path 62 is formed in the peripheral portion 12b.
 複数の線状凸部12cのそれぞれは、第1のセパレータ本体11の空気極層32側の表面から、空気極層32側に向かって突出するように設けられている。複数の線状凸部12cのそれぞれは、x方向に沿って設けられている。複数の線状凸部12cは、y方向に沿って相互に間隔をおいて配置されている。隣接する線状凸部12cの間と、線状凸部12cと周辺部12bとの間に、上記流路12aが区画形成されている。 Each of the plurality of linear protrusions 12c is provided so as to protrude from the surface of the first separator body 11 on the air electrode layer 32 side toward the air electrode layer 32 side. Each of the plurality of linear protrusions 12c is provided along the x direction. The plurality of linear protrusions 12c are arranged at intervals from each other along the y direction. The flow path 12a is defined between the adjacent linear convex portions 12c and between the linear convex portions 12c and the peripheral portion 12b.
 第1のセパレータ本体11及び第1の流路形成部材12の材料は、特に限定されない。第1のセパレータ本体11及び第1の流路形成部材12のそれぞれは、例えば、安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。また、第1のセパレータ本体11及び第1の流路形成部材12のそれぞれは、例えば、希土類金属が添加されたランタンクロマイトなどの導電性セラミックスやMgO/MgAl、SrTiO/Alなどの絶縁性セラミックスなどによっても形成することができる。 The materials of the first separator body 11 and the first flow path forming member 12 are not particularly limited. Each of the first separator main body 11 and the first flow path forming member 12 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like. Each of the first separator main body 11 and the first flow path forming member 12 includes, for example, conductive ceramics such as lanthanum chromite to which a rare earth metal is added, MgO / MgAl 2 O 4 , SrTiO 3 / Al 2 O. It can also be formed by insulating ceramics such as 3 .
 複数の線状凸部12cのそれぞれには、複数のビアホール電極12c1が埋設されている。複数のビアホール電極12c1は、複数の線状凸部12cをz方向に貫通するように形成されている。また、第1のセパレータ本体11には、複数のビアホール電極12c1の位置に対応して複数のビアホール電極11cが形成されている。複数のビアホール電極11cは、第1のセパレータ本体11を貫通するように形成されている。これら複数のビアホール電極11c及び複数のビアホール電極12c1により、線状凸部12cの第1のセパレータ本体11とは反対側の表面から第1のセパレータ本体11の線状凸部12cとは反対側の表面にまで至る複数のインターコネクタ13が構成されている。 A plurality of via-hole electrodes 12c1 are embedded in each of the plurality of linear protrusions 12c. The plurality of via-hole electrodes 12c1 are formed so as to penetrate the plurality of linear protrusions 12c in the z direction. The first separator body 11 has a plurality of via hole electrodes 11c corresponding to the positions of the plurality of via hole electrodes 12c1. The plurality of via-hole electrodes 11 c are formed so as to penetrate the first separator body 11. By the plurality of via-hole electrodes 11c and the plurality of via-hole electrodes 12c1, the surface of the linear convex portion 12c on the side opposite to the first separator body 11 is opposite to the linear convex portion 12c of the first separator main body 11. A plurality of interconnectors 13 extending to the surface are configured.
 なお、インターコネクタ13は、第1のセパレータ10と一体に形成されていてもよい。すなわち、第1のセパレータ10は、インターコネクタとしての機能を兼ね備えたものであってもよい。 The interconnector 13 may be formed integrally with the first separator 10. That is, the first separator 10 may have a function as an interconnector.
 ビアホール電極11c及びビアホール電極12c1の材質は、特に限定されない。ビアホール電極11c及びビアホール電極12c1のそれぞれは、例えば、LSM等により形成することができる。 The material of the via hole electrode 11c and the via hole electrode 12c1 is not particularly limited. Each of the via hole electrode 11c and the via hole electrode 12c1 can be formed by, for example, LSM.
 (第2のセパレータ50)
 発電要素30の燃料極層33の上には、第2のセパレータ50が配置されている。この第2のセパレータ50は、燃料ガス流路62から供給される燃料ガスを燃料極33aに供給するための流路52aを形成する機能を有している。また、複数の発電要素を備える燃料電池においては、第2のセパレータは、燃料ガスと酸化剤ガスとを分離する機能も兼ね備えている。
(Second separator 50)
A second separator 50 is disposed on the fuel electrode layer 33 of the power generation element 30. The second separator 50 has a function of forming a flow path 52a for supplying the fuel gas supplied from the fuel gas flow path 62 to the fuel electrode 33a. In a fuel cell including a plurality of power generation elements, the second separator also has a function of separating fuel gas and oxidant gas.
 第2のセパレータ50は、第2のセパレータ本体51と、第2の流路形成部材52とを有する。第2のセパレータ本体51は、燃料極33aの上に配されている。第2のセパレータ本体51には、流路61,62の一部を構成している貫通孔51a、51bが形成されている。 The second separator 50 includes a second separator body 51 and a second flow path forming member 52. The second separator body 51 is disposed on the fuel electrode 33a. The second separator body 51 is formed with through holes 51 a and 51 b that constitute part of the flow paths 61 and 62.
 第2の流路形成部材52は、第2のセパレータ本体51と燃料極層33との間に配されている。第2の流路形成部材52は、周辺部52bと、複数の線状凸部52cとを有する。周辺部52bには、燃料ガス流路62の一部を構成している貫通孔52dが形成されている。 The second flow path forming member 52 is disposed between the second separator body 51 and the fuel electrode layer 33. The second flow path forming member 52 has a peripheral portion 52b and a plurality of linear convex portions 52c. A through hole 52d constituting a part of the fuel gas channel 62 is formed in the peripheral portion 52b.
 複数の線状凸部52cのそれぞれは、第2のセパレータ本体51の燃料極層33側の表面から、燃料極層33側に向かって突出するように設けられている。複数の線状凸部52cのそれぞれは、線状凸部52cの延びる方向に対して垂直なy方向に沿って設けられている。複数の線状凸部52cは、x方向に沿って相互に間隔をおいて配置されている。隣接する線状凸部52cの間と、線状凸部52cと周辺部52bとの間に、上記流路52aが区画形成されている。このため、流路52aの延びる方向と、流路12aの延びる方向とは直交している。 Each of the plurality of linear protrusions 52c is provided so as to protrude from the surface of the second separator body 51 on the fuel electrode layer 33 side toward the fuel electrode layer 33 side. Each of the plurality of linear protrusions 52c is provided along the y direction perpendicular to the direction in which the linear protrusions 52c extend. The plurality of linear protrusions 52c are arranged at intervals from each other along the x direction. The flow path 52a is partitioned and formed between the adjacent linear protrusions 52c and between the linear protrusions 52c and the peripheral part 52b. For this reason, the direction in which the flow path 52a extends is orthogonal to the direction in which the flow path 12a extends.
 第2のセパレータ本体51及び第2の流路形成部材52の材料は、特に限定されない。第2のセパレータ本体51及び第2の流路形成部材52のそれぞれは、例えば、安定化ジルコニアや、部分安定化ジルコニア等により形成することができる。また、第2のセパレータ本体51及び第2の流路形成部材52のそれぞれは、例えば、希土類金属が添加されたランタンクロマイトなどの導電性セラミックスやMgO/MgAl、SrTiO/Alなどの絶縁性セラミックスなどによっても形成することができる。 The materials of the second separator body 51 and the second flow path forming member 52 are not particularly limited. Each of the second separator body 51 and the second flow path forming member 52 can be formed of, for example, stabilized zirconia, partially stabilized zirconia, or the like. Each of the second separator main body 51 and the second flow path forming member 52 includes, for example, conductive ceramics such as lanthanum chromite to which rare earth metal is added, MgO / MgAl 2 O 4 , SrTiO 3 / Al 2 O. It can also be formed by insulating ceramics such as 3 .
 図9及び図10に示すように、複数の線状凸部52cのそれぞれには、複数のビアホール電極52c1が埋設されている。また、第2のセパレータ本体51には、複数のビアホール電極52c1の位置に対応して複数のビアホール電極51cが形成されている。複数のビアホール電極51cは、複数のビアホール電極52c1と電気的に接続されている。複数のビアホール電極51cは、第2のセパレータ本体51を貫通するように形成されている。これら複数のビアホール電極51c及び複数のビアホール電極52c1により、燃料極33aを外部に引き出すインターコネクタ14が構成されている。 As shown in FIGS. 9 and 10, a plurality of via hole electrodes 52c1 are embedded in each of the plurality of linear protrusions 52c. The second separator main body 51 has a plurality of via hole electrodes 51c corresponding to the positions of the plurality of via hole electrodes 52c1. The plurality of via hole electrodes 51c are electrically connected to the plurality of via hole electrodes 52c1. The plurality of via hole electrodes 51 c are formed so as to penetrate the second separator body 51. The plurality of via hole electrodes 51c and the plurality of via hole electrodes 52c1 constitute the interconnector 14 that draws the fuel electrode 33a to the outside.
 なお、インターコネクタ14は、第2のセパレータ50と一体に形成されていてもよい。すなわち、第2のセパレータ50は、インターコネクタとしての機能を兼ね備えたものであってもよい。 The interconnector 14 may be formed integrally with the second separator 50. That is, the second separator 50 may have a function as an interconnector.
 インターコネクタ14は、AgまたはAg合金からなる部分を有する。本実施形態では、具体的には、インターコネクタ14は、Ag合金からなる部分を有する。より具体的には、インターコネクタ14の全体が、Ag-Pd合金からなる。このため、インターコネクタ14のガスバリア性が高い。 The interconnector 14 has a portion made of Ag or an Ag alloy. In the present embodiment, specifically, the interconnector 14 has a portion made of an Ag alloy. More specifically, the entire interconnector 14 is made of an Ag—Pd alloy. For this reason, the gas barrier property of the interconnector 14 is high.
 (中間膜53)
 本実施形態では、インターコネクタ14と燃料極33aとの間に中間膜53が配置されている。具体的には、中間膜53は、線状凸部52cに形成されたビアホール52c2の燃料極33a側端部に配されている。インターコネクタ14と燃料極33aとは、この中間膜53によって隔離されている。
(Intermediate film 53)
In the present embodiment, the intermediate film 53 is disposed between the interconnector 14 and the fuel electrode 33a. Specifically, the intermediate film 53 is disposed at the end of the via hole 52c2 formed in the linear protrusion 52c on the fuel electrode 33a side. The interconnector 14 and the fuel electrode 33a are isolated by the intermediate film 53.
 中間膜53は、CoとTiとを含む酸化物からなる。中間膜53におけるCoとTiとのモル比(Co:Ti)は、40:60~80:20であることが好ましく、50:50~70:30であることがより好ましい。 The intermediate film 53 is made of an oxide containing Co and Ti. The molar ratio of Co and Ti (Co: Ti) in the intermediate film 53 is preferably 40:60 to 80:20, and more preferably 50:50 to 70:30.
 本実施形態においては、中間膜53は、発電を行っていない状態と、発電を行っている状態とにおいて、性状が異なる。中間膜53は、燃料電池1の作製時においては、CoTiO結晶相を含む。中間膜53は、燃料電池1の作製時においては、Co結晶相をさらに含む。 In the present embodiment, the properties of the intermediate film 53 are different between a state where power generation is not performed and a state where power generation is performed. The intermediate film 53 includes a CoTiO 3 crystal phase when the fuel cell 1 is manufactured. The intermediate film 53 further includes a Co 3 O 4 crystal phase when the fuel cell 1 is manufactured.
 一方、高温になり、燃料ガスが供給されている発電中においては、CoOは金属Coに還元される。このため、発電中においては、中間膜53は、金属Coと酸化チタンとの混合物により構成された状態となる。 On the other hand, CoO is reduced to metallic Co during power generation when the temperature is high and fuel gas is supplied. For this reason, during power generation, the intermediate film 53 is in a state constituted by a mixture of metal Co and titanium oxide.
 中間膜53は、Co粉末等の酸化コバルト粉末と、TiO粉末等の酸化チタン粉末とを焼結させることにより形成することができる。Co粉末とTiO粉末との混合比(Co:TiO)は、質量%で、40:60~80:20であることが好ましく、50:50~70:30であることがより好ましい。 The intermediate film 53 can be formed by sintering a cobalt oxide powder such as a Co 3 O 4 powder and a titanium oxide powder such as a TiO 2 powder. The mixing ratio (Co 3 O 4 : TiO 2 ) between the Co 3 O 4 powder and the TiO 2 powder is preferably 40:60 to 80:20, and 50:50 to 70:30 in terms of mass%. It is more preferable.
 ところで、Niを含む燃料極と、AgまたはAg合金を含むインターコネクタとを直接接触させることにより燃料極とインターコネクタとを電気的に接続した場合、燃料電池の製品寿命が短くなる。具体的には、発電中に、急激に電圧が低下してしまう。 By the way, when the fuel electrode containing Ni and the interconnector containing Ag or an Ag alloy are brought into direct contact with each other to electrically connect the fuel electrode and the interconnector, the product life of the fuel cell is shortened. Specifically, the voltage drops rapidly during power generation.
 それに対して、本実施形態では、燃料極33aとインターコネクタ14との間に、CoとTiとを含む酸化物からなる中間膜53が配されている。このため、発電中における急激な電圧低下を抑制できる。その結果、長い製品寿命を実現することができる。この理由は、定かではないが、燃料極33aとインターコネクタ14との間にCoとTiとを含む酸化物からなる中間膜を介在させることで、燃料電池の動作環境において燃料極33aとインターコネクタ14との接合が安定化されるためであると考えられる。 On the other hand, in the present embodiment, an intermediate film 53 made of an oxide containing Co and Ti is disposed between the fuel electrode 33a and the interconnector 14. For this reason, a rapid voltage drop during power generation can be suppressed. As a result, a long product life can be realized. The reason for this is not clear, but by interposing an intermediate film made of an oxide containing Co and Ti between the fuel electrode 33a and the interconnector 14, the fuel electrode 33a and the interconnector can be used in the operating environment of the fuel cell. This is thought to be due to the stabilization of the bonding with 14.
 また、本実施形態では、中間膜53におけるCoとTiとのモル比(Co:Ti)は、40:60~80:20である。このため、中間膜53の電気抵抗を実用上問題ないレベルに小さくすることができる。よって、中間膜53を設けることによる電圧降下を抑制することができる。中間膜53を設けることによる電圧降下をより効果的に抑制する観点からは、中間膜53におけるCoとTiとのモル比(Co:Ti)は、50:50~70:30であることが好ましい。 In this embodiment, the molar ratio (Co: Ti) between Co and Ti in the intermediate film 53 is 40:60 to 80:20. For this reason, the electrical resistance of the intermediate film 53 can be reduced to a level that does not cause a problem in practice. Therefore, a voltage drop due to the provision of the intermediate film 53 can be suppressed. From the viewpoint of more effectively suppressing the voltage drop due to the provision of the intermediate film 53, the molar ratio of Co to Ti (Co: Ti) in the intermediate film 53 is preferably 50:50 to 70:30. .
 以下、本発明を実施した好ましい形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, other examples of preferred embodiments in which the present invention is implemented will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2~第4の実施形態)
 図11は、第2の実施形態に係る燃料電池の略図的断面図である。図12は、第3の実施形態に係る燃料電池の略図的断面図である。
(Second to fourth embodiments)
FIG. 11 is a schematic cross-sectional view of a fuel cell according to the second embodiment. FIG. 12 is a schematic cross-sectional view of a fuel cell according to the third embodiment.
 上記第1の実施形態では、中間膜53がビアホール52c2の燃料極33a側端部に配されている例について説明した。但し、本発明は、この構成に限定されない。例えば、図11に示すように、中間膜53は、燃料極33aのインターコネクタ14側の表面を覆うように設けられていてもよい。具体的には、第2の実施形態では、中間膜53は、燃料極層33のインターコネクタ14側の表面を覆うように設けられている。第2の実施形態では、中間膜53は、多孔質体からなる。このため、燃料ガスは、中間膜53を透過して燃料極33aに供給される。 In the first embodiment, the example in which the intermediate film 53 is disposed at the end of the via hole 52c2 on the fuel electrode 33a side has been described. However, the present invention is not limited to this configuration. For example, as shown in FIG. 11, the intermediate film 53 may be provided so as to cover the surface of the fuel electrode 33a on the interconnector 14 side. Specifically, in the second embodiment, the intermediate film 53 is provided so as to cover the surface of the fuel electrode layer 33 on the interconnector 14 side. In the second embodiment, the intermediate film 53 is made of a porous body. Therefore, the fuel gas passes through the intermediate film 53 and is supplied to the fuel electrode 33a.
 また、第2の線状凸部と燃料極との間に中間膜を配し、燃料極の流路に臨んでいる部分の上には中間膜を配さないようにしてもよい。 Further, an intermediate film may be disposed between the second linear convex portion and the fuel electrode, and the intermediate film may not be disposed on the portion facing the flow path of the fuel electrode.
 また、図12に示すように、中間膜53は、ビアホール52c2の中央部に配されていてもよい。図13に示すように、中間膜53は、ビアホール52c2のセパレータ本体51側端部に配されていてもよい。第3及び第4の実施形態のそれぞれにおいては、インターコネクタ14の中間膜53よりもセパレータ50側の部分52c11が、AgまたはAg合金を含んでいる。燃料極33a側の部分52c12が燃料極33aと同じ材料により構成されている。 Further, as shown in FIG. 12, the intermediate film 53 may be disposed in the central portion of the via hole 52c2. As shown in FIG. 13, the intermediate film 53 may be disposed at the end of the via hole 52 c 2 on the separator body 51 side. In each of the third and fourth embodiments, the portion 52c11 on the separator 50 side of the intermediate film 53 of the interconnector 14 includes Ag or an Ag alloy. The portion 52c12 on the fuel electrode 33a side is made of the same material as the fuel electrode 33a.
 (実施例)
 下記に示す条件で、上記第2の実施形態に係る燃料電池と実質的に同様の構成を有する燃料電池を作製した。
(Example)
A fuel cell having substantially the same configuration as that of the fuel cell according to the second embodiment was manufactured under the following conditions.
 セパレータの構成材料:YSZ
 固体酸化物電解質層の構成材料:YSZ
 空気極の構成材料:LSM/YSZ
 燃料極の構成材料:Ni/YSZ(Niの含有率:60質量%)
 インターコネクタ:Ag-Pd合金
 中間膜の構成材料:Co及びTiを含む酸化物(モル比Co:Ti=50:50)
 (比較例)
 中間膜を設けなかったこと以外は、上記実施例と同様にして燃料電池を作製した。
Separator material: YSZ
Constituent material of solid oxide electrolyte layer: YSZ
Air electrode material: LSM / YSZ
Composition of fuel electrode: Ni / YSZ (Ni content: 60% by mass)
Interconnector: Ag—Pd alloy Interlayer material: Co and Ti-containing oxide (molar ratio Co: Ti = 50: 50)
(Comparative example)
A fuel cell was fabricated in the same manner as in the above example except that no intermediate film was provided.
 (評価)
 上記実施例及び比較例のそれぞれにおいて作製した燃料電池に対して、900℃において、96%H-4%HOガスと、酸化剤ガスを流して発電させた。その結果を図14に示す。
(Evaluation)
The fuel cells produced in each of the above Examples and Comparative Examples were generated at 900 ° C. by flowing 96% H 2 -4% H 2 O gas and oxidant gas. The result is shown in FIG.
 図14に示す結果から、実施例において作製した燃料電池では、0.6A/cmの電流密度における通電試験を80時間実施しても急激に電圧が低下することはなかった。 From the results shown in FIG. 14, in the fuel cell produced in the example, the voltage did not drop suddenly even when the current test at a current density of 0.6 A / cm 2 was performed for 80 hours.
 一方、比較例において作製した燃料電池では、0.3A/cmの電流密度における通電試験を行った結果、約30時間で急激に電圧が低下した。 On the other hand, in the fuel cell produced in the comparative example, as a result of conducting an energization test at a current density of 0.3 A / cm 2 , the voltage suddenly decreased in about 30 hours.
 (実験例)
 表1に示す条件1~5に従って酸化コバルト及び酸化チタンを、水を溶媒として混合・粉砕した。その後、乾燥させ、950℃で仮焼成した。得られた焼成物に有機バインダーを加え、スラリーを作製した。そのスラリーをドクターブレード法によりシート状に成形した。
(Experimental example)
In accordance with conditions 1 to 5 shown in Table 1, cobalt oxide and titanium oxide were mixed and pulverized using water as a solvent. Then, it dried and calcined at 950 degreeC. An organic binder was added to the obtained fired product to prepare a slurry. The slurry was formed into a sheet by a doctor blade method.
 次に、得られたシートを複数枚積層し、圧着させることにより、長さ20mm、幅5mm、厚さ1mmの角柱を作製した。これを焼成し、導電率測定用のサンプルを得た。得られた各条件のサンプルにつき、4端子法を用いて、900℃、96%H-4%HO雰囲気中において、導電率を測定した。結果を下記の表1に示す。 Next, a plurality of the obtained sheets were stacked and pressed to form a prism having a length of 20 mm, a width of 5 mm, and a thickness of 1 mm. This was fired to obtain a sample for measuring conductivity. For each sample obtained under the above conditions, the conductivity was measured at 900 ° C. in a 96% H 2 -4% H 2 O atmosphere using a four-terminal method. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、Co:TiOを40質量%:60質量%~80質量%:20質量%とし、Co:Tiを40モル:60モル~80モル:20モルとすることにより実用上問題の無い導電率が得られることが分かる。なお、Coの割合が多すぎると、CoからCoへと還元される際の体積変化量が大きくなりすぎるため、クラックが発生しやすくなる傾向にある。従って、CoOは、80質量%以下であることが好ましく、モル比Co/Tiは、70/30以下であることが好ましい。 From the results shown in Table 1, Co 3 O 4 : TiO 2 is 40% by mass: 60% by mass to 80% by mass: 20% by mass, and Co: Ti is 40 mol: 60 mol to 80 mol: 20 mol: 20 mol. Thus, it can be seen that a conductivity having no practical problem can be obtained. Incidentally, when the ratio of Co is too large, the volume change at the time of being reduced from Co 3 O 4 to Co is too large, there is a tendency that cracks are likely to occur. Therefore, the CoO is preferably 80% by mass or less, and the molar ratio Co / Ti is preferably 70/30 or less.
1…燃料電池
10…第1のセパレータ
11…第1のセパレータ本体
11a、11b…貫通孔
11c…ビアホール電極
12…第1の流路形成部材
12a…第1の流路
12b…周辺部
12c…第1の線状凸部
12c1…ビアホール電極
12d…貫通孔
13,14…インターコネクタ
30…発電要素
31…固体酸化物電解質層
31a、31b…貫通孔
32…空気極層
32a…空気極
32b…周辺部
32c、32d…貫通孔
33…燃料極層
33a…燃料極
33b…周辺部
33c、33d…貫通孔
50…第2のセパレータ
51…第2のセパレータ本体
51a、51b…貫通孔
51c…ビアホール電極
52…第2の流路形成部材
52a…流路
52b…周辺部
52c1,52c2…ビアホール電極
52c…第2の線状凸部
52d…貫通孔
61…酸化剤ガス流路
62…燃料ガス流路
DESCRIPTION OF SYMBOLS 1 ... Fuel cell 10 ... 1st separator 11 ... 1st separator main body 11a, 11b ... Through-hole 11c ... Via-hole electrode 12 ... 1st flow-path formation member 12a ... 1st flow-path 12b ... Peripheral part 12c ... 1st 1 linear convex part 12c1 ... via-hole electrode 12d ... through- hole 13,14 ... interconnector 30 ... power generation element 31 ... solid oxide electrolyte layer 31a, 31b ... through-hole 32 ... air electrode layer 32a ... air electrode 32b ... peripheral part 32c, 32d ... through hole 33 ... fuel electrode layer 33a ... fuel electrode 33b ... peripheral portion 33c, 33d ... through hole 50 ... second separator 51 ... second separator body 51a, 51b ... through hole 51c ... via hole electrode 52 ... Second flow path forming member 52a ... flow path 52b ... peripheral parts 52c1, 52c2 ... via hole electrode 52c ... second linear protrusion 52d ... through hole 61 ... oxidant gas flow 62 ... fuel gas flow path

Claims (6)

  1.  固体酸化物電解質層と、前記固体酸化物電解質層の一主面の上に配された第1の電極と、前記固体酸化物電解質層の他主面の上に配された第2の電極とを有する発電要素と、
     前記第1の電極の上に配されており、前記第1の電極に臨む流路を区画形成しているセパレータと、
     前記第1の電極に接続されているインターコネクタと、
    を備え、
     前記第1の電極は、Niを含み、
     前記インターコネクタは、AgまたはAg合金からなる部分を有し、
     前記AgまたはAg合金からなる部分と、第1の電極との間に配されており、CoとTiとを含む酸化物からなる中間膜をさらに備える、燃料電池。
    A solid oxide electrolyte layer; a first electrode disposed on one main surface of the solid oxide electrolyte layer; and a second electrode disposed on the other main surface of the solid oxide electrolyte layer; A power generation element having
    A separator disposed on the first electrode and defining a flow channel facing the first electrode;
    An interconnector connected to the first electrode;
    With
    The first electrode includes Ni;
    The interconnector has a portion made of Ag or an Ag alloy,
    A fuel cell further comprising an intermediate film made of an oxide containing Co and Ti, disposed between the portion made of Ag or an Ag alloy and the first electrode.
  2.  前記中間膜は、燃料電池作製時において、CoTiO結晶相を含む、請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the intermediate film includes a CoTiO 3 crystal phase when the fuel cell is manufactured.
  3.  前記中間膜は、燃料電池作製時において、Co結晶相をさらに含む、請求項2に記載の燃料電池。 The fuel cell according to claim 2, wherein the intermediate film further includes a Co 3 O 4 crystal phase when the fuel cell is manufactured.
  4.  前記中間膜におけるCoとTiとのモル比(Co:Ti)が、40:60~80:20の範囲内にある、請求項1~3のいずれか一項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 3, wherein a molar ratio of Co and Ti (Co: Ti) in the intermediate film is in a range of 40:60 to 80:20.
  5.  前記第1の電極は、Niを含むイットリア安定化ジルコニア、Niを含むスカンジア安定化ジルコニア、Niを含むGdをドープしたセリアまたはNiを含むSmをドープしたセリアである、請求項1~4のいずれか一項に記載の燃料電池。 The first electrode is yttria stabilized zirconia containing Ni, scandia stabilized zirconia containing Ni, ceria doped with Gd containing Ni, or ceria doped with Sm containing Ni. A fuel cell according to claim 1.
  6.  前記インターコネクタは、Ag-Pd合金からなる部分を有する、請求項1~5のいずれか一項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 5, wherein the interconnector has a portion made of an Ag-Pd alloy.
PCT/JP2012/056504 2011-03-30 2012-03-14 Fuel cell WO2012132893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507359A JP5418722B2 (en) 2011-03-30 2012-03-14 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-076082 2011-03-30
JP2011076082 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132893A1 true WO2012132893A1 (en) 2012-10-04

Family

ID=46930631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056504 WO2012132893A1 (en) 2011-03-30 2012-03-14 Fuel cell

Country Status (2)

Country Link
JP (1) JP5418722B2 (en)
WO (1) WO2012132893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208449A1 (en) * 2015-06-22 2016-12-29 株式会社 村田製作所 Solid oxide fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287930A (en) * 1995-04-07 1996-11-01 Mitsubishi Heavy Ind Ltd Conductive bond
JP2008004314A (en) * 2006-06-20 2008-01-10 Tokyo Gas Co Ltd Solid oxide fuel cell stack, and its manufacturing method
JP2009099308A (en) * 2007-10-15 2009-05-07 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2009205907A (en) * 2008-02-27 2009-09-10 Ngk Spark Plug Co Ltd Solid oxide fuel cell and method of manufacturing the same
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
JP2010503157A (en) * 2006-09-06 2010-01-28 セラミック・フューエル・セルズ・リミテッド Gas separator for fuel cell used between a plurality of solid oxide fuel cells
JP2011009065A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Solid oxide fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287930A (en) * 1995-04-07 1996-11-01 Mitsubishi Heavy Ind Ltd Conductive bond
JP2008004314A (en) * 2006-06-20 2008-01-10 Tokyo Gas Co Ltd Solid oxide fuel cell stack, and its manufacturing method
JP2010503157A (en) * 2006-09-06 2010-01-28 セラミック・フューエル・セルズ・リミテッド Gas separator for fuel cell used between a plurality of solid oxide fuel cells
JP2009099308A (en) * 2007-10-15 2009-05-07 Ngk Spark Plug Co Ltd Solid oxide fuel cell
JP2009205907A (en) * 2008-02-27 2009-09-10 Ngk Spark Plug Co Ltd Solid oxide fuel cell and method of manufacturing the same
WO2009131180A1 (en) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 Cell for solid oxide fuel battery
JP2011009065A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208449A1 (en) * 2015-06-22 2016-12-29 株式会社 村田製作所 Solid oxide fuel cell
JPWO2016208449A1 (en) * 2015-06-22 2018-01-25 株式会社村田製作所 Solid oxide fuel cell

Also Published As

Publication number Publication date
JPWO2012132893A1 (en) 2014-07-28
JP5418722B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5652545B2 (en) Fuel cell
EP2529442B1 (en) Phase stable doped zirconia electrolyte compositions with low degradation
TWI761479B (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell and manufacturing method for electrochemical element
US9806345B2 (en) Electrochemical energy conversion devices and cells, and positive electrode-side materials for them
US10003083B2 (en) Composition for fuel cell electrode
JP5655940B2 (en) Fuel cell
TWI688154B (en) Sofc cathode compositions with improved resistance to sofc degradation
US20090011314A1 (en) Electrode/electrolyte interfaces in solid oxide fuel cells
JP5418723B2 (en) Fuel cell
JP5888420B2 (en) Fuel cell
JP5418722B2 (en) Fuel cell
JP5408381B2 (en) Fuel cell
JP7428686B2 (en) Solid oxide electrolyzer cell with electrolysis-resistant air-side electrode
JP2023070100A (en) Solid oxide electrolyzer cell including electrolysis-tolerant air-side electrode
US20160164109A1 (en) Solid electrolyte fuel cell
JP2008060001A (en) Single-cell solid oxide fuel cell and its stack structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764180

Country of ref document: EP

Kind code of ref document: A1