WO2012132425A1 - Production method for glass sheet and glass sheet production device - Google Patents

Production method for glass sheet and glass sheet production device Download PDF

Info

Publication number
WO2012132425A1
WO2012132425A1 PCT/JP2012/002144 JP2012002144W WO2012132425A1 WO 2012132425 A1 WO2012132425 A1 WO 2012132425A1 JP 2012002144 W JP2012002144 W JP 2012002144W WO 2012132425 A1 WO2012132425 A1 WO 2012132425A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
glass
glass ribbon
temperature
speed
Prior art date
Application number
PCT/JP2012/002144
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 君嶋
公彦 中嶋
真嗣 山崎
Original Assignee
AvanStrate株式会社
アヴァンストレート コリア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社, アヴァンストレート コリア インコーポレイテッド filed Critical AvanStrate株式会社
Priority to JP2012516255A priority Critical patent/JP5288386B2/en
Priority to KR1020127010848A priority patent/KR101300909B1/en
Priority to CN2012800006628A priority patent/CN102933514B/en
Publication of WO2012132425A1 publication Critical patent/WO2012132425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/068Means for providing the drawing force, e.g. traction or draw rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus.
  • the glass ribbon is drawn down while being held by the pair of transport rollers, and thus is stretched to a desired thickness, and further, no distortion occurs inside.
  • cooling is performed so that the glass ribbon does not warp.
  • the glass ribbon is cut into a predetermined size and stacked on each other with an interleaf or the like interposed therebetween, or further conveyed and processed in the next process (for example, shape processing, chemical strengthening treatment by ion exchange).
  • the rotational drive is controlled so that the same load is applied to each of the transport rollers of the transport roller pair, and slip caused by the difference in outer diameter between the transport rollers It is known that one of the conveying rollers is prevented from idling by preventing this (Patent Document 1). According to this, the glass surface and the conveyance roller can be prevented from being damaged.
  • the relative speed between the peripheral speed of the transport roller provided at each position in the glass ribbon transport direction and the transport speed of the glass ribbon Is preferably 0, but the coefficient of thermal expansion of the glass and the coefficient of thermal expansion of the conveying roller are different, and the temperature dependency thereof is also different. There is a difference in speed. Such a difference in relative speed is also caused by, for example, changes in the atmospheric temperature in the slow cooling furnace and the temperature of the glass ribbon due to changes in the conveyance speed and thickness of the glass ribbon, fluctuations in the airflow generated in the slow cooling furnace, and the like.
  • Patent Document 1 even if control is performed so that the loads on the conveyance rollers of the conveyance roller pair are equal, the actual conveyance speed of the glass ribbon generated between the plurality of conveyance roller pairs. The difference in the relative speed between the transport speed and the peripheral speed of the transport roller cannot be eliminated, and the occurrence of scratches on the glass surface due to slip cannot be prevented.
  • the relative speed is not constant between the required transport speed, which is the target speed of transport of the glass ribbon, and the peripheral speed of the transport roller, among the plurality of transport roller pairs, that is, if a difference in relative speed occurs, the glass ribbon If the actual transport speed is slower than the required transport speed, the glass ribbon will be deformed too much above the pair of transport rollers. Conversely, if the actual transport speed is faster than the required transport speed, the glass ribbon will be pulled downward. There is a risk of cracking due to fine scratches generated on the surface.
  • the glass plate manufacturing apparatus changes over time by continuously forming and slowly cooling the glass ribbon for a long period of time. For this reason, even if the manufacturing conditions in molding and slow cooling are initially set so that a high-quality (small internal strain and warpage) glass plate can be manufactured, it is not always possible to maintain a high-quality glass plate by continuous operation over a long period of time.
  • the diameter of the conveying roller in contact with the glass ribbon changes and greatly affects the quality of the glass plate.
  • the present invention has as a first object to maintain the production of a high-quality glass plate even if the production equipment changes over time by continuous production of the glass plate for a long period of time.
  • a method for producing a glass plate is provided.
  • the second purpose is to maintain the peripheral speed distribution of the transport roller changed by the change in the diameter of the transport roller in the set peripheral speed distribution, and between the transport roller pair, the peripheral speed of the transport roller and the transport speed of the glass ribbon. It is possible to prevent a difference in the relative speed of the glass plate, and thereby to provide a glass plate manufacturing method and a glass plate manufacturing apparatus capable of manufacturing a glass plate excellent in surface quality.
  • One embodiment of the present invention is a method for manufacturing a glass plate.
  • the manufacturing method is Melting process for melting glass raw material to make molten glass; Molding a molten glass using a downdraw method to form a glass ribbon; A slow cooling step in which the glass ribbon is slowly cooled by being pulled downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon.
  • the forming step includes a step of cooling both ends of the glass ribbon while pulling down the glass ribbon while sandwiching the glass ribbon with a pair of rollers.
  • Each roller of the first roller pair which is at least one of the pair of rollers used in any one of the forming step and the slow cooling step, is determined to compensate for a change in the diameter of the roller. It is driven to rotate based on the rotational speed of.
  • Another embodiment of the present invention is a method for producing a glass plate.
  • the manufacturing method is Melting process for melting glass raw material to make molten glass; Molding a molten glass using a downdraw method to form a glass ribbon; A slow cooling step in which the glass ribbon is slowly cooled by being pulled downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon.
  • the slow cooling step includes Each roller of the first roller pair, which is at least one of the roller pairs, is driven to rotate based on the rotational speed of the roller determined so as to compensate for the change in the roller diameter.
  • the slow cooling step A detection step of detecting a change in the diameter of each roller of the first roller pair by a detection unit provided along the conveyance direction of the glass ribbon; And a speed control step of determining a rotational speed of each roller based on the detected diameter change of each roller of the first roller pair and rotationally driving each roller of the first roller pair. preferable.
  • Each roller of the first roller pair is provided in a temperature region in which the temperature of at least the center of the glass ribbon in the slow cooling step is a glass transition point or more and a softening point or less, In the slow cooling step, the rotational speed of each roller of the first roller pair is determined so as to compensate for a change in the diameter of each roller of the first roller pair, and each roller of the first roller pair is driven to rotate. It is preferable.
  • the temperature of the glass ribbon is controlled so as to decrease from the center to the end.
  • the glass ribbon is configured such that there is no temperature gradient between the end portion and the center portion in the width direction of the glass ribbon in the temperature region near the glass strain point of the glass ribbon. To control the temperature distribution.
  • the glass ribbon In the slow cooling step, In the region where the temperature of the central portion of the glass ribbon is less than the vicinity of the strain point, the glass ribbon is lowered from the end in the width direction toward the central portion so that tensile stress in the transport direction acts on the central portion of the glass ribbon. Thus, it is preferable to control the temperature distribution of the glass ribbon.
  • the slow cooling step includes A first cooling step of cooling at a first average cooling rate until the temperature of the central portion of the glass ribbon reaches a slow cooling point; A second cooling step of cooling at a second average cooling rate until the temperature of the central portion reaches a strain point of ⁇ 50 ° C. from the annealing point; It is preferable to include a third cooling step of cooling at a third average cooling rate until the temperature of the central portion becomes from the strain point of ⁇ 50 ° C. to the strain point of ⁇ 200 ° C.
  • the first average cooling rate is 5.0 ° C./second or more
  • the first average cooling rate is faster than the third average cooling rate
  • the third average cooling rate is: Faster than the second average cooling rate.
  • each roller of the first roller pair is determined so as to compensate for the deviation of the peripheral speed caused by the change in the diameter of each roller of the first roller due to the thermal expansion of each roller of the first roller pair.
  • each roller of the first roller pair is driven to rotate.
  • each roller of the first roller pair is compensated for the deviation of the peripheral speed caused by the diameter change of each roller of the first roller pair due to the wear of each roller of the first roller pair. It is also preferable that each of the first roller pair is rotationally driven.
  • a roller pair having a roller driven to rotate based on a rotation speed of the roller determined so as to compensate for a change in the diameter of the roller is a second roller pair in addition to the first roller pair.
  • the manufacturing method includes a detection step of detecting a change in the diameter of each of the first roller pair and the second roller pair by a plurality of detection units provided along the conveyance direction of the glass ribbon. .
  • the diameter of each roller is set so that the relative speed between the peripheral speed of the roller and the conveying speed of the glass ribbon is constant between each roller of the first roller pair and each roller of the second roller pair.
  • the rotational speed of each roller that compensates for the change is determined.
  • the temperature of the glass ribbon is detected by a glass state detection unit that detects the state of the glass ribbon provided along the conveyance direction of the glass ribbon, Using the glass thermal expansion coefficient at the detected temperature of the glass ribbon, a change in the transport speed of the glass ribbon due to the thermal expansion of the glass ribbon is detected, and the transport speed of the glass ribbon and the peripheral speed of the roller It is also preferable to determine the rotational speed of each roller of the first roller pair so as to compensate for the deviation.
  • the thickness of the glass plate obtained by gradually cooling the glass ribbon is, for example, 0.5 mm or less.
  • the device is A molding apparatus for molding a glass ribbon from molten glass using a downdraw method; And a slow cooling device that cools the glass ribbon while pulling it downward while sandwiching it with a plurality of pairs of transport rollers.
  • the slow cooling device includes the plurality of conveyance roller pairs, a detection control unit, and a drive unit.
  • the plurality of transport roller pairs are provided along the transport direction of the glass ribbon, and transport the glass ribbon by drawing the glass ribbon downward.
  • the said detection control part is provided along the conveyance direction of the said glass ribbon, and is provided with the some conveyance roller state detection part which detects the diameter change of the conveyance roller of the said conveyance roller pair.
  • the drive unit maintains a peripheral speed distribution between the plurality of transport roller pairs when a relative speed between the peripheral speed of the transport roller and the transport speed of the glass ribbon is constant between the plurality of transport roller pairs. Then, the transport roller is driven to rotate based on the rotation speed of each transport roller determined based on the detected diameter change of the transport roller.
  • the transport roller state detection unit detects a change in the diameter of the transport roller based on the temperature of the transport roller
  • the drive unit detects the temperature of the transport roller so as to compensate for a deviation from the peripheral speed distribution of the peripheral speed of the transport roller caused by a change in the diameter of the roller due to thermal expansion of the transport roller. It is preferable that the transport roller is rotationally driven based on the rotational speed of each transport roller determined using the roller thermal expansion coefficient.
  • the detection unit further includes a plurality of glass state detection units provided along a conveyance direction of the glass ribbon to detect the state of the glass ribbon, and the driving unit is set based on the state of the glass ribbon. It is preferable that the transport roller is driven to rotate based on the peripheral speed distribution.
  • the glass state detection unit detects the temperature of the glass ribbon
  • the driving unit uses the glass thermal expansion coefficient at the detected temperature of the glass ribbon, and the peripheral speed distribution set according to the change in the conveyance speed of the glass ribbon due to the thermal expansion of the glass ribbon. It is preferable that the transport roller is rotationally driven based on the base.
  • the transport roller state detection unit detects a change in the diameter of the transport roller based on an amount of wear of the transport roller,
  • the drive unit is determined to compensate for a deviation from the peripheral speed distribution of the peripheral speed of the transport roller, which is caused by a change in the diameter of the transport roller due to the detected wear of the transport roller. It is preferable that the transport roller is rotationally driven based on the rotational speed of the transport roller.
  • the thickness of the glass plate obtained by gradually cooling the glass ribbon is, for example, 0.5 mm or less.
  • the production of a high-quality glass plate can be maintained even if the production equipment such as a conveyance roller in contact with the glass ribbon changes with time by continuous production of the glass plate for a long period of time.
  • the glass plate manufacturing method and the glass plate manufacturing apparatus described above maintain a peripheral speed distribution in which the peripheral speed of the transport roller, which has changed due to a change in the diameter of the transport roller, is maintained, and a transport roller between a plurality of transport roller pairs. It is possible to prevent a difference from occurring in the relative speed between the peripheral speed and the glass ribbon transport speed. Thereby, the glass plate excellent in surface quality can be manufactured.
  • FIG. 4 is a cross-sectional view taken along line IV in FIG. 3. It is a block diagram explaining the structure of the control system which controls the rotational drive of a conveyance roller pair. It is a block diagram explaining the structure of the control system which controls the rotational drive of the conveyance roller pair of the glass plate manufacturing apparatus of 2nd Embodiment of this invention.
  • the manufacturing method and glass plate manufacturing apparatus of the glass plate of this invention are demonstrated in detail.
  • at least of the roller pair (cooling roller pair, conveying roller pair) used in the forming step and the slow cooling step which are one step of the glass plate manufacturing method.
  • Each roller of any one roller pair (first roller pair) is rotationally driven based on the rotational speed of the roller determined so as to compensate for the change in the diameter of the roller.
  • each roller of at least one of the plurality of transport roller pairs (first roller pair) is based on the rotational speed of the roller determined so as to compensate for the change in the roller diameter. , Is driven to rotate.
  • the rotational speed of such a roller is determined so as to compensate for the diameter change by detecting the diameter change of each roller of the first roller pair by measurement. That is, the rotational speed of the roller is feedback controlled according to the detection result of the roller diameter change.
  • the rotational speed of the rollers is determined based on information on the number of days used for each roller of the first roller pair. That is, the rotation speed of the rollers is sequentially determined based on information on the usage period of each roller. “Information on the number of days of use” is used for conversion of the change of the roller diameter based on the wear of the first roller pair, and the rotation speed of the roller is determined based on the conversion value of the change of the roller diameter.
  • first roller pair There may be a single first roller pair or a plurality of first roller pairs for determining the rotational speed of such rollers.
  • “Compensating for changes in roller diameter” means that even if the diameter of each roller of the first roller pair changes, the appropriate peripheral speed of the roller before the diameter change is maintained in consideration of the change in diameter. means.
  • the central region of the glass ribbon refers to a range within 85% of the width from the center in the width direction of the glass ribbon in the width in the width direction of the glass ribbon.
  • the center portion of the glass ribbon refers to the center in the width direction of the glass ribbon. That the temperature in the central region of the glass ribbon is substantially uniform means that the temperature is within an allowable range of ⁇ 20 ° C.
  • the edge part of a glass ribbon means the range within 200 mm from the edge of the width direction of a glass ribbon.
  • FIG. 1 is a figure explaining an example of the flow of the manufacturing method of the glass plate of this embodiment.
  • the glass plate manufacturing method includes a melting step (step S10), a clarification step (step S20), a stirring step (step S30), a forming step (step S40), a slow cooling step (step S50), It mainly includes a process (step S60) and a shape processing process (step S70).
  • step S10 in a melting furnace (not shown), the glass raw material is heated to a high temperature by indirect heating from above and direct heating by passing an electric current through the glass to produce molten glass.
  • the melting of the glass may be performed by other methods.
  • a clarification process is performed (step S20).
  • the defoaming of bubbles in the molten glass is promoted by increasing the temperature of the molten glass in a state where the molten glass is stored in a liquid tank (not shown), for example, compared with the heating in the melting step. . Thereby, the bubble content rate in the glass plate finally obtained can be reduced, and a yield can be improved.
  • the clarification step may be performed by other methods.
  • bubbles in the molten glass may be removed using a clarifier.
  • the fining agent is not particularly limited, and for example, metal oxides such as tin oxide and iron oxide are used.
  • the clarification step in this case is performed by a redox reaction of a metal oxide whose valence fluctuates in the molten glass.
  • the metal oxide releases oxygen by a reduction reaction, and this oxygen becomes a gas, and bubbles in the molten glass grow and float on the liquid surface. Thereby, bubbles in the molten glass are defoamed.
  • the bubble of oxygen gas takes in the gas in the other bubble in a molten glass, grows, and floats on the liquid level of a molten glass. Thereby, bubbles in the molten glass are defoamed. Further, when the temperature of the molten glass is lowered, the metal oxide absorbs oxygen remaining in the molten glass due to the oxidation reaction, and reduces bubbles in the molten glass.
  • a stirring process is performed (step S30).
  • the molten glass is mechanically stirred by a stirring device in order to maintain the chemical and thermal uniformity of the glass. Thereby, nonuniformity of the glass such as striae can be suppressed.
  • a molding process is performed (step S40).
  • a downdraw method is used.
  • the down draw method including overflow down draw, slot down draw, and the like is a known method using, for example, Japanese Patent No. 3586142 or the apparatus shown in FIGS.
  • the molding process in the downdraw method will be described later.
  • a sheet-like glass ribbon having a predetermined thickness and width is formed.
  • an overflow downdraw is most preferable among the downdraw methods, but a slot downdraw may be used.
  • the forming step includes a step of cooling both ends of the glass ribbon while drawing the glass ribbon formed by the forming with a pair of rollers and pulling it downward in the conveying direction (downstream direction).
  • a slow cooling process is performed (step S50).
  • the glass ribbon formed into a sheet shape is cooled below the annealing point in the slow cooling furnace shown in FIGS. 3 and 4 by controlling the cooling rate so that distortion does not occur or is reduced.
  • a conveyance speed that is set in advance while the adjacent region adjacent to the width direction end of the glass ribbon in the width direction is sandwiched between a plurality of pairs of conveyance rollers provided in the conveyance direction of the glass ribbon. It is gradually cooled while being pulled down at.
  • FIG. 2 is a diagram illustrating an example of the flow of the slow cooling process.
  • the slow cooling process includes a detection process (step S51), a speed determination process (step S52), and a speed control process (step S53).
  • the manufacturing method of the glass plate of this embodiment includes a detection process (step S51), a detection process is not performed like the modification mentioned later, and a slow cooling process is a speed determination process (step S52), And a speed control step (step S53).
  • the diameter change of each conveyance roller of the plurality of conveyance roller pairs is performed by the plurality of detection units provided corresponding to the plurality of conveyance roller pairs described above along the conveyance direction of the glass ribbon. Is detected.
  • the diameter change of the transport roller for example, the diameter change amount of the transport roller calculated based on the temperature of the transport roller or the wear amount of the transport roller can be mentioned.
  • the detection unit in this case includes, for example, a temperature sensor or a distance measurement sensor described later, and a computer connected to these sensors. As the diameter, the diameter or radius of the transport roller is increased.
  • the relative speed between the peripheral speed of the transport roller and the transport speed of the glass ribbon is constant between the plurality of transport roller pairs, that is, when there is no difference in the relative speed.
  • the rotational speed of each transport roller is determined so as to maintain the set peripheral speed distribution based on the detected change in the diameter of the transport roller.
  • the peripheral speed distribution for example, a peripheral speed ratio between a plurality of pairs of transport rollers and a specific peripheral speed of each transport roller are used.
  • a difference in the relative speed means that the relative speed of a certain pair among the plurality of transport roller pairs is 0.
  • the relative speed of another pair has a distribution such that the relative speed is not zero.
  • the change in the diameter of the conveyance roller is, for example, a thermal expansion amount (diameter change amount) of the conveyance roller calculated based on the temperature, specifically, the detection unit 37 and the speed determination unit 38 described later perform the change.
  • the roller thermal expansion coefficient at the detected transport roller temperature is used to compensate for the deviation of the peripheral speed of the transport roller from the peripheral speed distribution caused by the change in the roller diameter caused by the thermal expansion of the transport roller.
  • the rotational speed of the transport roller is determined so that the peripheral speed of each transport roller is maintained in the set peripheral speed distribution.
  • the thermal expansion coefficient of the transport roller is stored in advance in the speed determination unit 38.
  • the circumferential speed of a conveyance roller is determined by adjusting so that the formed glass ribbon may become the plate
  • the change in the diameter of the transport roller is the amount of change in the radius of the transport roller calculated based on the amount of wear
  • detection is performed as in the second embodiment described later.
  • the peripheral speed of each transport roller was set so as to compensate for the deviation from the peripheral speed distribution of the peripheral speed of the transport roller caused by the change in the radius of the transport roller due to wear of the transport rollers.
  • the rotation speed of the transport roller is determined so that the peripheral speed distribution is maintained.
  • the speed determination unit 38 may determine the rotation speed of each transport roller based on the content input by the operator.
  • the operator may calculate the rotation speed of each conveyance roller based on the detected change in the diameter of the conveyance roller so as to maintain the set peripheral speed distribution.
  • the change in the diameter of the conveyance roller is the above-described amount of thermal expansion
  • the operator can change the diameter of the conveyance roller caused by the change in the roller diameter caused by the thermal expansion of the conveyance roller based on the detected temperature of the conveyance roller.
  • the rotational speed of the transport roller may be calculated so as to compensate for the deviation of the peripheral speed from the peripheral speed distribution, that is, so that the peripheral speed of each transport roller is maintained at the set peripheral speed distribution.
  • the rotation speed of each transport roller calculated and input is determined by the speed determination unit 38, and the rotation of the transport roller is controlled in the speed control step (step S53).
  • step S53 the rotation of the transport roller is controlled based on the rotation speed determined in the speed determination process.
  • a plate-making process is performed (step S60). Specifically, the glass ribbon produced
  • a shape processing step is performed (step S70).
  • the glass end face is ground and polished in addition to cutting into a predetermined glass plate size and shape.
  • a physical means using a cutter or a laser may be used, or a chemical means such as etching may be used.
  • the end portion in the width direction of the glass ribbon is the end. It is preferable to control the temperature of the glass ribbon so that it is lower than the temperature of the central region sandwiched between the parts and the temperature of the central region is substantially uniform. At that time, the temperature in the width direction of the glass ribbon is the center of the glass ribbon so that the tensile stress in the transport direction acts on the center portion of the glass ribbon in the region where the temperature of the center portion of the glass ribbon is less than the softening point and near the strain point.
  • the temperature of the glass ribbon so as to decrease from the portion toward the end in terms of suppressing warpage of the glass plate. Furthermore, in the temperature region where the temperature of the glass ribbon is in the vicinity of the strain point, it is possible to control the temperature distribution of the glass ribbon so that there is no temperature gradient between the end portion in the width direction of the glass ribbon and the center portion. This is preferable in terms of suppressing internal distortion.
  • the glass ribbon is lowered from the end in the width direction toward the central portion so that tensile stress in the transport direction acts on the central portion of the glass ribbon.
  • the slow cooling step includes a first cooling step of cooling at the first average cooling rate until the temperature of the central portion of the glass ribbon reaches a slow cooling point, and the temperature of the central portion of the glass ribbon is gradually cooled. From the point until the strain point reaches ⁇ 50 ° C., the second cooling step of cooling at the second average cooling rate and the temperature of the central portion of the glass ribbon reaches from the strain point ⁇ 50 ° C. to the strain point ⁇ 200 ° C. And a third cooling step of cooling at a third average cooling rate.
  • the first average cooling rate is 5.0 ° C./second or more
  • the first average cooling rate is faster than the third average cooling rate
  • the third average cooling rate is the second average cooling rate. Faster than the cooling rate.
  • the average cooling rate is, in descending order, the first average cooling rate, the third average cooling rate, and the second average cooling rate.
  • the cooling rate in the conveyance direction of the glass ribbon affects the heat shrinkage of the glass plate to be manufactured.
  • the cooling rate in the slow cooling step as described above, it is possible to obtain a glass plate having a suitable heat shrinkage rate while improving the production amount of the glass plate.
  • the glass plate manufacturing method has a cleaning process and an inspection process in addition to this, but the description of these processes is omitted.
  • the clarification step and the stirring step can be omitted.
  • FIG.3 and FIG.4 is a schematic block diagram of the glass plate manufacturing apparatus 1 which is 1st Embodiment of this invention.
  • the glass plate manufacturing apparatus 1 and the glass plate manufacturing method using the glass plate manufacturing apparatus 1 according to this embodiment include a glass substrate of a flat panel display such as a liquid crystal display device or an organic EL display device, and a display surface cover of a portable terminal. It is suitably applied to the production of glass. This is because liquid crystal display devices, organic EL display devices, and the like have recently been required to have high precision and high image quality, and a glass substrate used therefor is required to have high surface quality.
  • the glass plate manufacturing apparatus 1 manufactures the glass plate C from the molten glass A using the downdraw method.
  • the glass plate manufacturing apparatus 1 includes a furnace chamber 11, a first slow cooling furnace 12, a second slow cooling furnace 13, and a sampling chamber (not shown) that are partitioned by heat insulating plates 21, 22, and 23 arranged in three locations in the vertical direction.
  • the heat insulating plates 21 to 23 are plate members made of a heat insulating material such as ceramic fiber.
  • the heat insulating plates 21 to 23 are respectively formed with transport holes 16 so that a glass ribbon B, which will be described later, passes downward.
  • the heat insulating plates 21 to 23 are not shown in FIG. 3 except for two places in the horizontal direction in contact with the furnace wall 15 which will be described later for easy understanding. On the back side, the two horizontal portions are connected together. 3 and 4 show an example in which partitioning is performed at three locations by a heat insulating plate, but the number and installation positions of the heat insulating plates are not particularly limited, and one or more heat insulating plates may be provided. That's fine.
  • the slow cooling apparatus 3 has two or more heat insulation plates. It is preferably provided and partitioned into a plurality of spaces. In other words, it is sufficient that one or more annealing furnaces are provided, but three or more are more preferably provided.
  • the glass plate manufacturing apparatus 1 includes a forming device 2, a slow cooling device 3, and a plate-taking device 4.
  • the forming apparatus 2 is an apparatus for forming the glass ribbon B from the molten glass A using a downdraw method.
  • the forming apparatus 2 has a furnace chamber 11 surrounded by a furnace wall 15 assembled with refractory bricks, block-shaped electroformed column refractories, or the like.
  • a molded body 10 and a roller pair (cooling roller pair) 17 are provided in the furnace chamber 11.
  • the molded body 10 includes a groove 10a opened upward (see FIG. 4), and the molten glass A flows in the groove 10a.
  • the molded body 10 is made of brick, for example.
  • One pair of rollers 17 is provided at positions corresponding to both ends in the width direction of the molten glass A fused at the lower end of the molded body 10, and the glass ribbon is held while holding the molten glass A and pulling it downward.
  • a pair of cooling rollers for cooling both ends of B is the left-right direction in the paper surface in FIG. 3 and the direction perpendicular to the paper surface in FIG. 3 and 4 is the transport direction of the glass ribbon B. 3 and 4, the molded body 10 and the roller pair 17 are installed without partitioning, but in order to facilitate adjustment of the slow cooling conditions, a partition plate is provided by providing a heat insulating plate therebetween. May be. Two or more pairs of rollers 17 may be installed.
  • the slow cooling device 3 cools the glass ribbon B while pulling it downward while holding the glass ribbon B between the plurality of conveying roller pairs 18 and 19.
  • the slow cooling device 3 has a first slow cooling furnace 12 and a second slow cooling furnace 13 provided adjacent to the lower part of the furnace chamber 11.
  • the first slow cooling furnace 12 and the second slow cooling furnace 13 are surrounded by the furnace wall 15 that also constitutes the furnace chamber 11.
  • the slow cooling device 3 is provided with heating means that are arranged in the first slow cooling furnace 12 and the second slow cooling furnace 13 along the conveying direction of the glass ribbon B and are automatically controlled by a computer to be described later.
  • the heating means is not particularly limited, and for example, an electric heater is used.
  • the slow cooling device 3 includes a detection control unit 30 and a drive unit 32 (see FIG. 5).
  • the detection control unit 30 and a drive unit 32 (see FIG. 5).
  • the conveyance roller pairs 18 and 19 convey the glass ribbon B by drawing the glass ribbon B downward.
  • Each conveyance roller pair 18 is on the same side with respect to the glass ribbon B as the four conveyance rollers 18a arranged on both sides of the glass ribbon B so as to sandwich a neighboring region adjacent to both ends in the width direction of the glass ribbon B. It has two drive shafts 18b arranged on both sides of the glass ribbon B for connecting the two transport rollers 18a.
  • Each conveyance roller pair 19 is on the same side with respect to the glass ribbon B as the four conveyance rollers 19a disposed on both sides of the glass ribbon B so as to sandwich a neighboring region adjacent to both ends in the width direction of the glass ribbon B.
  • both ends of the drive shafts 18b and 19b are not shown.
  • the transport rollers 18a and 19a are not limited to those described above.
  • the conveying rollers 18a and 19a on the same surface side with respect to the glass ribbon B are not connected to each other by the driving shaft, and at the both ends in the width direction of the glass ribbon B, like the rollers of the roller pair 17. It may be arranged independently.
  • the glass ribbon B has a temperature profile of the glass ribbon B with a single distribution in the width direction, and then gradually decreases as the distribution of the single peak progresses downstream in the conveyance direction. It is preferable to control a heater or the like disposed around the. At that time, in a temperature region in the vicinity of the strain point of the glass ribbon B, a heater or the like (not shown) can be controlled so that the distribution of peaks is a straight linear distribution, that is, the temperature distribution in the width direction is constant. preferable. In other words, in the temperature range from the temperature obtained by adding 150 ° C.
  • the cooling rate at the center in the width direction of the glass ribbon is faster than the cooling rate at both ends in the width direction.
  • the temperature profile be constant so that the temperature of the central portion in the width direction of the glass ribbon B is the same in the temperature region near the strain point from a state where the temperature is higher than both ends.
  • the glass ribbon B is gradually cooled at a temperature at which the temperature of the glass ribbon B becomes from the annealing point (strain point ⁇ 50 ° C.) as compared with other temperature ranges.
  • the thermal contraction rate of the glass ribbon B can be reduced.
  • the temperature profile of the glass ribbon B becomes a valley along the width direction, and the depth of the valley is conveyed. It is preferable to control a heater or the like (not shown) so as to increase as it goes downstream in the direction, that is, so that the temperature at the center portion becomes gradually lower than both end portions.
  • the detection control unit 30 includes a computer (not shown) that functions as a conveyance roller state detection unit (hereinafter also simply referred to as a detection unit) 37 and a speed determination unit 38.
  • FIG. 5 is a block diagram illustrating the configuration of a control system that controls the rotational drive of the transport roller pairs 18 and 19.
  • the detection unit 37 includes a temperature sensor (glass state detection unit) 34 disposed in correspondence with the pair of conveyance rollers 18 and 19.
  • the speed determining unit 38 is connected to the conveying roller pair 18 and 19 via the driving unit 32. Details of the detection control unit 30 will be described later.
  • the driving unit 32 rotationally drives the transport rollers 18a and 19a based on the rotational speeds of the transport rollers 18a and 19a determined by the speed determination unit 38.
  • the drive unit 32 has a motor (not shown) provided corresponding to each of the conveyance roller pairs 18 and 19.
  • the motor may not be provided corresponding to each conveyance roller pair 18, 19, and the number thereof may be smaller than the number of each conveyance roller pair 18, 19, for example.
  • the driving force from the motor is transmitted to the transport rollers 18a and 19a via, for example, a universal joint.
  • the temperature sensor 34 detects the temperature of the transport rollers 18a and 19a.
  • a contact type or a non-contact type is used as the temperature sensor 34.
  • detecting the temperatures of the transport rollers 18a and 19a includes calculating the temperatures of the transport rollers 18a and 19a.
  • Each temperature sensor 34 specifically detects the ambient temperature at the arrangement position in the first slow cooling furnace 12 and the second slow cooling furnace 13. And the temperature of conveyance roller 18a, 19a is calculated with reference to the temperature difference data memorize
  • the speed determination unit 38 has a storage unit 36.
  • the storage unit 36 stores temperature difference data.
  • the temperature difference data includes data on the difference between the atmospheric temperature of the slow cooling furnaces 12 and 13 and the temperature (surface temperature) of the transport rollers 18a and 19a at each atmospheric temperature, which is measured in advance when the slow cooling furnaces 12 and 13 are installed.
  • the temperature difference data is stored differently depending on the structure of the slow cooling furnaces 12 and 13.
  • the storage unit 36 further stores thermal expansion coefficients (hereinafter also referred to as roller thermal expansion coefficients) of the transport rollers 18a and 19a.
  • the roller thermal expansion coefficient is determined from the material of the transport rollers 18a and 19a.
  • the storage unit 36 also includes a rotational speed of each of the transport rollers 18a and 19a determined by the speed determination unit 38, a reference peripheral speed distribution set between the plurality of transport roller pairs 18 and 19, and each transport roller 18a. , 19a are further stored.
  • the reference value of the diameter of each of the transport rollers 18a and 19a is a diameter at the time of a new article at normal temperature (for example, 25 degrees).
  • the storage unit 36 also has conditions for achieving a reference peripheral velocity distribution (conveying roller temperature, glass ribbon temperature, glass ribbon thermal expansion coefficient, glass ribbon thickness, width, glass ribbon flow rate, etc. ) Is memorized.
  • the speed determination unit 38 is provided between the plurality of conveyance roller pairs 18 and 19 when the relative speed between the circumferential speed of the conveyance rollers 18a and 19a and the conveyance speed of the glass ribbon B is constant between the plurality of conveyance roller pairs 18 and 19. Set the peripheral speed ratio (peripheral speed distribution). Next, the speed determination unit 38 is configured to maintain the peripheral speed ratio between the plurality of conveyance roller pairs 18 and 19 based on the change in the diameter of the conveyance rollers 18a and 19a calculated by the detection unit 37. The rotational speed of 19a is determined.
  • the peripheral speed ratio between the plurality of transport roller pairs 18 and 19 is set to 1.0, for example, so that all the transport rollers 18a and 19a have the same peripheral speed.
  • the peripheral speed ratio set as a reference in this way is the peripheral speed ratio when the conventional glass ribbon B is gradually cooled without causing problems of scratches or shape deformation.
  • the reference peripheral speed distribution is stored and held in the speed determination unit 38 together with conditions such as the temperature, thermal expansion coefficient, thickness, width, and glass flow rate of the glass ribbon B. As will be described later, this peripheral speed ratio is set by correcting the reference peripheral speed distribution when conditions of slow cooling such as the temperature of the glass ribbon B change.
  • the relative speed between the conveyance speed of the glass ribbon B and the peripheral speed of the conveyance rollers 18a and 19a between the plurality of conveyance roller pairs 18 and 19 is more sure to slip between the glass ribbon B and the conveyance rollers 18a and 19a. From the viewpoint of preventing this, it is preferably 0.
  • the speed determination unit 38 corrects and sets the reference peripheral speed ratio according to the temperature, the thermal expansion coefficient, the thickness, the glass flow rate, and the like of the glass ribbon B. Specifically, a reference temperature in each pair of conveying rollers is set as a condition at that time in the peripheral speed ratio set as the reference peripheral speed distribution. Therefore, when the current temperature of the glass ribbon B changes with respect to this reference temperature, for example, when the temperature T 1 changes to T 2 , the difference in thermal expansion coefficient between the temperature difference between T 2 and T 1 is calculated. The speed determining unit 38 corrects the peripheral speed ratio set as the reference peripheral speed distribution. This is because the conveyance speed of the glass ribbon B changes depending on the coefficient of thermal expansion determined by the temperature of the glass ribbon B and the coefficient of thermal expansion.
  • the peripheral speed ratio may be more generally corrected using the difference in the thermal expansion coefficient in consideration of the thermal expansion coefficient and the temperature of the glass ribbon B.
  • Such a peripheral speed ratio is corrected and set by changes in conditions such as the thickness, width, and glass flow rate of the glass ribbon B in addition to the temperature dependency of the glass ribbon B and the thermal expansion coefficient. Therefore, the conditions of the reference peripheral speed ratio such as the temperature of the glass ribbon B, the temperature-dependent characteristics of the thermal expansion coefficient, the thickness, the width, and the glass flow rate are stored and held in advance in the speed determination unit 38.
  • the glass thermal expansion coefficient is determined from the composition of the molten glass.
  • the peripheral speeds of the respective transport roller pairs on the downstream side are calculated on the basis of the current peripheral speed of the transport roller pair on the most upstream side.
  • the peripheral speed ratio in accordance with the change in the state including the temperature of the glass ribbon B, it is possible to determine more appropriate rotation speeds of the transport rollers 18a and 19a.
  • the speed determination unit 38 determines the rotation speed of each of the transport rollers 18a and 19a according to the following formula based on the calculated peripheral speed of each of the transport rollers 18a and 19a.
  • Rotational speed peripheral speed / (diameter of thermally expanded conveying roller ⁇ ⁇ )
  • the detection unit 37 has the roller thermal expansion coefficient at the temperature of the conveyance rollers 18a and 19a and the conveyance roller 18a and 19a with respect to the conveyance rollers 18a and 19a whose temperature detected by the temperature sensor 34 has changed.
  • the speed determination unit 38 calculates a new rotation speed from the amount of change in the diameter of the conveyance roller 18a calculated by the detection unit 37 according to the following formula, assuming that the amount of change in the peripheral speed is 1, and the conveyance rollers 18a and 19a. Change the rotation speed.
  • New rotation speed (peripheral speed + change amount of peripheral speed) / ((change diameter of transport roller + change amount of transport roller diameter) ⁇ ⁇ )
  • the rotation speed determined by the speed determination unit 38 is sent to the drive unit 32, and the rotation of the transport rollers 18a and 19a is controlled.
  • the computer uses heating means in the slow cooling furnaces 12 and 13 so that the atmospheric temperature in the slow cooling furnaces 12 and 13 is maintained within a predetermined temperature range based on the ambient temperature detected by the temperature sensor 34. Automatic control.
  • the predetermined temperature range of the first slow cooling furnace 12 is set to, for example, 500 to 800 degrees.
  • the predetermined temperature range of the second slow cooling furnace 13 is set to 200 to 500 degrees, for example.
  • the speed determination unit 38 may determine the rotation speeds of the transport rollers 18a and 19a based on the content input by the operator.
  • the glass plate manufacturing apparatus 1 further includes an input unit (not shown) that receives an operator's input operation, and this input unit receives the rotation speeds of the transport rollers 18a and 19a input by the operator.
  • the storage unit 36 does not store temperature difference data, roller thermal expansion coefficient, peripheral speed distribution, reference values of the diameters of the transport rollers 18a and 19a, conditions for achieving the reference peripheral speed distribution, and the like. It is often calculated and input by an operator based on temperature difference data, roller thermal expansion coefficient, peripheral speed distribution, reference value of the diameter of each of the transport rollers 18a and 19a, conditions for achieving the reference peripheral speed distribution, etc.
  • the temperature difference data, the roller thermal expansion coefficient, the peripheral speed distribution, the reference value of the diameter of each of the transport rollers 18a and 19a, and the reference peripheral speed distribution may be calculated by an operator, and the calculated values are stored in the storage unit 36. May be remembered.
  • the plate-taking device 4 has a plate-making chamber (not shown) arranged on the downstream side of the second slow cooling furnace 13.
  • the glass ribbon B is cut at regular intervals, and the glass plate C is sampled.
  • the thickness of the glass plate C is, for example, 0.7 mm or less, or 0.5 mm or less.
  • flat panel displays have been required to be slim
  • flat display glass substrates such as liquid crystal displays and organic EL displays are also required to be thin.
  • the strength of the glass plate decreases as the thickness of the glass plate decreases, breakage easily occurs.
  • the thickness of the glass plate for flat display is preferably 0.01 to 1.0 mm, more preferably 0.05 to 0.7 mm, and 0.05 to 0.00 mm. More preferably, it is 5 mm.
  • strength falls as a thin glass plate, there exists a possibility that it may become easy to break by the damage
  • the length in the width direction of the glass plate C may be 1000 mm or more, 1500 mm or more, 2000 mm or more, 2500 mm or more
  • the length in the longitudinal direction may be 1000 mm or more, 1500 mm or more, 2000 mm or more, 2500 mm or more.
  • a relative speed difference slip
  • the relative speed difference tends to be easily generated, but the effect of preventing the relative speed difference from occurring is remarkable.
  • the effect of this invention becomes so useful that the length of the width direction of the glass plate C is 1500 mm or more, 2000 mm or more, 2500 mm or more.
  • the glass substrate for liquid crystal displays As a glass plate manufactured with the glass plate manufacturing method and glass plate manufacturing apparatus mentioned above, the glass substrate for liquid crystal displays is mentioned suitably, for example.
  • the following glass composition is illustrated as a glass composition of the glass substrate for liquid crystal displays. 50 to 70% by mass of SiO 2 B 2 O 3 0-15% by mass, Al 2 O 3 5 to 25% by mass, MgO 0-10% by mass, CaO 0-20% by mass, SrO 0-20% by mass, BaO 0-10% by mass, RO 5-20% by mass (provided that R is all components contained in the glass plate selected from Mg, Ca, Sr and Ba, and is at least one). It is preferable to contain.
  • non-alkali glass glass containing substantially no alkali component
  • a small amount of an alkali component may be included.
  • R ′ 2 O it exceeds 0.05% by mass and is 2.0% by mass or less, more preferably, R ′ 2 O exceeds 0.1% by mass and is 2.0% by mass or less (provided that R ′ is Li, Na And all components contained in the glass plate selected from K and K, which are at least one kind).
  • the rotational speed of each of the transport rollers 18a and 19a is controlled so as to compensate for the change in diameter that occurs in the transport rollers 18a and 19a. It is possible to suppress a difference in the relative speed between the peripheral speed of each of the transport rollers 18a and 19a and the transport speed of the glass ribbon B in the plurality of transport roller pairs 18 and 19 with higher accuracy. Thereby, the slip between the glass ribbon B and the conveyance rollers 18a and 19a can be prevented, and the quality of the glass plate surface can be improved.
  • the peripheral speed distribution of a plurality of pairs of transport rollers used for transporting the glass ribbon is corrected and set according to the temperature of the glass ribbon, so that the glass ribbon is not excessively prevented from being deformed. Moreover, it can prevent that a glass ribbon is pulled and a glass ribbon breaks because it becomes quicker than necessary.
  • Such an effect is obtained when the glass conveying speed is high (for example, when the conveying speed is 200 m / or more), or when the glass ribbon has a small strength and is easily deformed to a thickness of 0.5 mm or less, preferably 0.05 to This is more remarkable in the production of 0.5 mm thin glass.
  • the number of the plurality of conveying roller pairs is not particularly limited as long as it is at least two.
  • the temperature sensor detects the atmospheric temperature in the slow cooling furnaces 12 and 13 and uses this to calculate the glass ribbon temperature and the conveyance roller temperature, but the glass ribbon temperature and the conveyance roller temperature are directly measured. May be.
  • a radiation thermometer for continuously measuring the temperature of the glass ribbon may be used as the glass state detecting unit, and for continuously measuring the temperature of the conveying roller as the conveying roller state detecting unit.
  • the following thermometers may be used.
  • the peripheral speed ratio is not limited to that described above.
  • the speed determination unit 38 may calculate specific peripheral speeds of the transport rollers 18a and 19a as the peripheral speed distribution instead of the peripheral speed ratio.
  • the reference peripheral speed distribution and the corrected peripheral speed are also set as specific speed values.
  • the peripheral speed distribution in addition to adjusting the rotational speed so as to obtain a set peripheral speed distribution according to the change in the diameter of the transport roller, the peripheral speed distribution is changed to a reference peripheral speed distribution according to the temperature of the glass ribbon. Modify and set.
  • the reference peripheral velocity distribution need not be corrected in accordance with the current temperature of the glass ribbon.
  • the rotational speed of the transport rollers 18a and 19a is determined so as to compensate for the change in the diameter of the transport rollers that occurs in each roller of the transport roller pair 18 and 19, but in addition to the transport rollers 18a and 19a,
  • the rotational speed of each roller of the roller pair 17 is determined so as to compensate for the change in diameter of each roller of the roller pair 17 used as the cooling roller pair in the molding process.
  • Each roller of the roller pair 17 detects the state of each roller of the roller pair 17 using a detection unit such as the above-described conveyance roller state detection unit 37, and based on the detection result, each roller of the roller pair 17 is detected.
  • the rotational speed of each roller of the roller pair 17 is determined so as to compensate for the diameter change.
  • the peripheral speed of each roller of the roller pair 17 is set to an appropriate value so that the thickness distribution of the glass plate and the unevenness of the glass surface are minimized. Distribution and unevenness of the glass surface will be deteriorated. That is, when the peripheral speed of the roller pair 17 changes, the amount of the glass ribbon B stretched between the lower end of the molded body 10 and the roller pair 17 and the glass performed between the roller pair 17 and the conveying roller pair 18.
  • the rotational speed of each roller of the roller pair 17 is determined so as to compensate for a change in the diameter of each roller of the roller pair 17.
  • the rotational speed is determined so as to compensate for the change in the diameter of each roller of the roller pair 17 used as the cooling roller pair in the molding process in addition to the rollers of the transport roller pair 18 and 19, but
  • the rotational speed may be determined so as to compensate for a change in the diameter of each roller of at least one of the rollers of the roller pair 18, 19 and the roller pair 17.
  • slip of the glass ribbon B and the like can be suppressed, and generation of scratches on the surface of the glass ribbon B can be suppressed. If the glass is above the softening point, the glass ribbon B is not sufficiently solidified, so that slip is unlikely to occur. On the other hand, slip is likely to occur in the glass ribbon B below the softening point. For this reason, it is preferable to determine the rotational speed of the conveyance roller so as to compensate for the change in the diameter of the conveyance roller provided in the region where the central portion of the glass ribbon B is below the softening point.
  • At least the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided in a temperature region where the temperature of the glass ribbon B is at least the glass transition point and below the softening point.
  • the effect of suppressing the plastic deformation of the glass ribbon B is increased. Therefore, it is preferable to determine the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided in a temperature region in which at least the temperature of the central portion of the glass ribbon B is not less than the glass transition point and not more than the softening point.
  • the diameter of the conveyance roller provided in the temperature region where the temperature of the central portion of the glass ribbon B is not less than the glass transition point and not more than the softening point is likely to change, the diameter change of the conveyance roller provided in this region is compensated. It is preferable to determine the rotation speed of the transport roller. When the glass temperature is higher than the softening point, the compressive stress acting on the glass is instantly relieved, so that the glass ribbon B hardly undergoes wave-shaped plastic deformation. On the other hand, when the glass temperature is lower than the glass transition point, the viscosity of the glass ribbon B is sufficiently increased, so that the corrugated plastic deformation hardly occurs. Also, the upstream roller tends to change in roller diameter due to wear or thermal expansion. That is, it is preferable to determine the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided at least in a temperature region where the temperature is not less than the glass transition point and not more than the softening point.
  • the rotation speed of the conveyance roller is determined so as to compensate for the change in the diameter of the conveyance roller provided in the temperature region where the temperature of the central portion of the glass ribbon B is from the annealing point (strain point—50 ° C.), By rotating the transport roller, plastic deformation of the glass ribbon can be suppressed.
  • the location of the conveyance roller that determines the rotation speed so as to compensate for the change in the diameter of the roller varies depending on which characteristic of the glass ribbon B is to be improved.
  • the conveyance roller state detection unit 37 according to the first embodiment includes a temperature sensor 34 that detects the temperature of the conveyance roller.
  • the conveyance roller state detection unit (hereinafter also simply referred to as a detection unit) 47 according to the second embodiment is illustrated in FIG.
  • a distance measurement sensor 44 for detecting the wear amount of the transport roller is included.
  • FIG. 6 is a block diagram illustrating the configuration of a control system that controls the rotational driving of the transport roller pairs 18 and 19 according to the second embodiment.
  • elements indicated by the same reference numerals as those in the first embodiment are not different from the configurations described in the first embodiment.
  • a plurality of distance measuring sensors 44 are provided corresponding to the respective transport roller pairs 18 and 19.
  • the distance measuring sensor 44 detects the driving shaft interval.
  • the drive shaft spacing is such that the drive shafts 18b and 19b connect the conveying rollers 18a and 19a on the same side with respect to the glass ribbon B, and the drive shaft 18b disposed opposite to the drive shafts 18b and 19b. , 19b.
  • the pair of transport rollers 18 and 19 sandwich the glass ribbon B in a state where the pair of transport rollers 18a and 19a are urged to each other.
  • the amount of wear of each of the transport rollers 18a and 19a is caused by the amount of change of the roller radius calculated according to the following formula from the roller radius when new, due to the wear of the transport rollers 18a and 19a.
  • the speed determination unit 48 of the detection control unit 40 determines the peripheral speed ratio of the peripheral speeds of the transport rollers 18a and 19a caused by the change in the radius of the transport rollers 18a and 19a due to the detected wear of the transport rollers 18a and 19a.
  • the rotational speeds of the transport rollers 18a and 19a are determined so as to compensate for the deviation.
  • the radius change calculated based on the wear state is used as the diameter change of the transport rollers 18a and 19a.
  • the wear roller 18a, 19a used in the first embodiment uses this wear state. It can also be applied together with the temperature of 19a. In this case, the diameters of the transport rollers 18a and 19a vary with the amount of wear and also with thermal expansion.
  • the rotational speeds of the transport rollers 18a and 19a can be calculated so that the peripheral speed of the transport rollers that changes with the change in diameter is maintained at the peripheral speed ratio. Furthermore, in addition to changes in the diameters of the transport rollers 18a and 19a, a change in the transport speed of the glass ribbon B that changes according to the temperature of the glass ribbon B due to the thermal expansion of the glass ribbon B as a state of the glass ribbon B is integrated and applied. You can also
  • the distance measurement sensor 44 replaces the distance between the drive shafts 18b and 19b of the transport roller pair 18 and 19 with the origin of the drive shafts 18b and 19b of the transport roller pair 18 and 19. It may be configured to detect the amount of wear by reading the deviation from the position.
  • the origin position is a center position where the drive shafts 18b and 19b are located when the transport rollers 18a and 19a are new, and is stored in the storage unit 46.
  • the amount of wear of the transport rollers 18a and 19a is detected using the deviation of the drive shafts 18b and 19b from the origin position of the pair of transport rollers 18 and 19, and the roller diameter of the transport rollers thus worn can be calculated.
  • the diameters of the transport rollers 18a and 19a are not limited to being calculated by the detection unit 47, and may be calculated by an operator based on the amount of wear, for example. In this case, based on the diameters of the transport rollers 18a and 19a calculated by the operator and input to the speed determination unit 48, the rotation speeds of the transport rollers 18a and 19a are calculated by the speed determination unit 48.
  • the rotational speeds of the transport rollers 18a and 19a may be further calculated based on the diameters of the transport rollers 18a and 19a calculated by the operator, and the calculation result may be input to the speed determination unit 48.
  • the rotation speed calculated or input by the speed determination unit 48 is determined by the speed determination unit 48 and transmitted to the drive unit 32.
  • the wear amount and the origin position of the transport rollers 18 a and 19 a may be calculated by the operator, and the calculated values may be stored in the storage unit 46.
  • a change in the diameter of the conveyance roller calculated based on the number of days of use of the conveyance rollers 18a and 19a is counted as a change in the diameter of the conveyance rollers 18a and 19a.
  • An apparatus may be used.
  • the device that counts the diameter change sends the usage days of the transport rollers 18 a and 19 a to the speed determination unit 48.
  • the speed determination unit 48 replaces the amount of wear from the new roller diameter when the transport rollers 18a and 19a stored in the storage unit 46 of the speed determination unit 48 are replaced in the past. The amount of wear per day is calculated based on these and the number of days used.
  • roller diameter new diameter-(amount of wear per day x number of days used)
  • speed determination unit 48 stores past replacement results and roller diameters when new for each of the transport rollers 18a and 19a.
  • the deviation from the peripheral speed ratio of the peripheral speeds of the transport rollers 18a and 19a caused by the change in the diameter of the transport rollers 18a and 19a can be compensated by a simpler method.
  • the amount of wear per day can be calculated by an operator and stored in the storage unit 46.
  • the diameter change of the transport rollers 18a and 19a due to the wear amount may be calculated by the operator and transmitted to the detection control unit 40 or the drive unit 32. Further, the wear amount of the roller diameter when it was replaced in the past and the number of days used until the replacement may be calculated by the operator, and the calculated value may be stored in the storage unit 46.
  • the transport rollers 18a and 19a are rotationally driven based on the rotational speed of the rollers determined based on the number of days of use of the transport rollers 18a and 19a so as to compensate for the change in the diameter of the rollers.
  • the state of the transport roller is not detected by the transport roller state detection unit, and the roller rotation speed is not determined based on the detection result, but the transport roller 18a. , 19a is different from the first and second embodiments in that the roller rotational speed is sequentially determined based on the number of days used.
  • modified example of the first embodiment or the first embodiment and the modified example of the second embodiment or the second embodiment can be combined.
  • the modification of the first embodiment or the first embodiment with the modification of the second embodiment or the second embodiment, the modification of the first embodiment or the first embodiment, the second embodiment or the first embodiment.
  • the deviation from the peripheral speed ratio can be compensated more accurately than in the case where the modification of the second embodiment is applied alone.
  • a glass plate is manufactured according to the following method using a conventional glass plate manufacturing apparatus and the glass plate manufacturing apparatus of the present embodiment, and the wavy uneven deformation generated in the glass plate is measured. did.
  • all used the glass plate manufacturing apparatus is the glass plate manufacturing apparatus 1 by the downdraw method shown in FIG.3 and FIG.4, and the glass used the aluminosilicate glass containing the component shown below. SiO 2 60% by mass, Al 2 O 3 19.5 mass%, B 2 O 3 10% by mass, CaO 5 mass%, 5% by mass of SrO, SnO 2 0.5% by mass.
  • the speed determining unit 38 determines the rotational speed of each of the transport rollers 18a and 19a, and controls the rotational drive of each of the transport rollers 18a and 19a based on the determined rotational speed. Then, a glass substrate for a liquid crystal display having a thickness of 0.7 mm and a length of 2000 mm in the width direction and a length of 2500 mm in the length direction was manufactured. The peripheral speeds of the transport rollers 18a and 19a as the peripheral speed ratio are all the same. The temperature of the glass ribbon and the temperature of the conveying roller were measured using a contact-type temperature sensor.
  • Example 2 a glass substrate for a liquid crystal display was manufactured in the same manner as in Example 1 except that the rotational speeds of the transport rollers 18a and 19a were determined by the speed determination unit 48 according to the second embodiment described above. Specifically, the wear amount of the transport rollers 18 a and 19 a was calculated using the driving shaft interval measured by the distance measuring sensor 44. In addition to the amount of change in roller diameter due to the amount of wear of the transport rollers 18a and 19a, the rotational speed of the transport rollers 18a and 19a was calculated in consideration of the amount of change in roller diameter due to the temperature of the transport rollers 18a and 19a.
  • the peripheral speeds of the respective transport rollers 18a and 19a are all changed to 1.1 times that of the first embodiment, and a 0.5 mm thick liquid crystal display is used.
  • a glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that a glass substrate for production was produced.
  • the speed determination unit was under the same conditions as in Examples 1 and 2 except that the rotation speed based on the state of the glass ribbon and the diameter change of the transport rollers 18a and 19a was not performed. went.
  • the obtained glass substrates for liquid crystal displays of Examples 1 to 3 and Comparative Examples 1 and 2 were visually checked for the presence or absence of scratches on the surface of the glass substrate for liquid crystal displays, and the waveform deformation was measured using a thickness gauge. .
  • the wave shape was assumed to satisfy the surface quality if it was within 0.4 mm in the thickness direction.
  • a surface quality of 0.2 mm or less was satisfied in the thickness direction.
  • Example 1 had a deformation
  • Example 2 deformation of about 0.1 mm occurred in the thickness direction.
  • Example 3 deformation of 0.02 mm or less occurred in the thickness direction.
  • the above-described surface quality was satisfied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

When producing a glass sheet, a glass raw material is melted to create molten glass, the molten glass is molded using the downdraw method, a glass ribbon is formed, and the glass ribbon is drawn downwards and annealed while being sandwiched between a plurality of roller pairs disposed along the conveyance direction for the glass ribbon. During molding, both ends of the glass ribbon are cooled while the glass ribbon continues to be sandwiched between the roller pairs and drawn downwards. Each roller in a first roller pair, which is one of the roller pairs used either in molding or annealing, is rotatably driven on the basis of a roller rotation speed determined so as to compensate for roller diameter change.

Description

ガラス板の製造方法及びガラス板製造装置Glass plate manufacturing method and glass plate manufacturing apparatus
 本発明は、ガラス板の製造方法及びガラス板製造装置に関する。 The present invention relates to a glass plate manufacturing method and a glass plate manufacturing apparatus.
 ダウンドロー法を用いたガラス板の製造方法では、ガラスリボンが、搬送ローラ対で狭持されつつ下方向に引き込まれることで、所望の厚みに引き延ばされ、さらに、内部に歪みが発生しないように、またガラスリボンが反らないように、冷却が行われる。その後、ガラスリボンは、所定の寸法に切断され、合紙等を挟んでお互いに積載され、又は、さらに搬送され次工程において処理(例えば、形状加工、イオン交換による化学強化処理)が施される。 In the glass plate manufacturing method using the downdraw method, the glass ribbon is drawn down while being held by the pair of transport rollers, and thus is stretched to a desired thickness, and further, no distortion occurs inside. In addition, cooling is performed so that the glass ribbon does not warp. Thereafter, the glass ribbon is cut into a predetermined size and stacked on each other with an interleaf or the like interposed therebetween, or further conveyed and processed in the next process (for example, shape processing, chemical strengthening treatment by ion exchange). .
 従来のダウンドロー法を用いたガラス板の製造方法として、搬送ローラ対の各搬送ローラに同様の負荷がかかるようその回転駆動を制御し、搬送ローラ間での外径差に起因して生じるスリップを防止することで、一方の搬送ローラが空転するのを抑制することが知られている(特許文献1)。これによれば、ガラス表面及び搬送ローラの破損を防止できる、とされている。 As a conventional glass plate manufacturing method using the down draw method, the rotational drive is controlled so that the same load is applied to each of the transport rollers of the transport roller pair, and slip caused by the difference in outer diameter between the transport rollers It is known that one of the conveying rollers is prevented from idling by preventing this (Patent Document 1). According to this, the glass surface and the conveyance roller can be prevented from being damaged.
 ところで、ガラスリボンの搬送方向にわたり雰囲気温度およびガラスリボンの温度が変化する徐冷炉では、ガラスリボンの搬送方向の各位置に設けられた搬送ローラの周速度とガラスリボンの搬送速度との間の相対速度は0であることが望ましいが、ガラスの熱膨張係数と搬送ローラの熱膨張係数は異なり、しかもその温度依存性も異なるので、複数の搬送ローラ対の間で相対速度が0でないばかりか、相対速度に差が生じる。このような相対速度の差は、例えば、ガラスリボンの搬送速度や厚さの変化、徐冷炉内に生じた気流変動などにより、徐冷炉内の雰囲気温度やガラスリボンの温度が変化することによっても生じる。 By the way, in a slow cooling furnace in which the atmospheric temperature and the temperature of the glass ribbon change in the glass ribbon transport direction, the relative speed between the peripheral speed of the transport roller provided at each position in the glass ribbon transport direction and the transport speed of the glass ribbon. Is preferably 0, but the coefficient of thermal expansion of the glass and the coefficient of thermal expansion of the conveying roller are different, and the temperature dependency thereof is also different. There is a difference in speed. Such a difference in relative speed is also caused by, for example, changes in the atmospheric temperature in the slow cooling furnace and the temperature of the glass ribbon due to changes in the conveyance speed and thickness of the glass ribbon, fluctuations in the airflow generated in the slow cooling furnace, and the like.
 そのため、特許文献1のように、搬送ローラ対の各搬送ローラの負荷が同等となるように制御しても、複数の搬送ローラ対の間で生じた、ガラスリボンの実際の搬送速度である実搬送速度と搬送ローラの周速度との相対速度の差を解消することができず、スリップに起因するガラス表面のキズの発生を防止することができない。 Therefore, as in Patent Document 1, even if control is performed so that the loads on the conveyance rollers of the conveyance roller pair are equal, the actual conveyance speed of the glass ribbon generated between the plurality of conveyance roller pairs. The difference in the relative speed between the transport speed and the peripheral speed of the transport roller cannot be eliminated, and the occurrence of scratches on the glass surface due to slip cannot be prevented.
 また、複数の搬送ローラ対の間で、ガラスリボンの搬送の目標速度となる必要搬送速度と搬送ローラの周速度との間で相対速度が一定でない、すなわち相対速度の差が生じると、ガラスリボンの実搬送速度が必要搬送速度より遅い条件では、ガラスリボンが搬送ローラ対の上方で余り変形してしまうし、逆に実搬送速度が必要搬送速度より速い条件では、ガラスリボンは下方向に引っ張られ、その表面に生じた微細なキズにより割れてしまう虞がある。 In addition, if the relative speed is not constant between the required transport speed, which is the target speed of transport of the glass ribbon, and the peripheral speed of the transport roller, among the plurality of transport roller pairs, that is, if a difference in relative speed occurs, the glass ribbon If the actual transport speed is slower than the required transport speed, the glass ribbon will be deformed too much above the pair of transport rollers. Conversely, if the actual transport speed is faster than the required transport speed, the glass ribbon will be pulled downward. There is a risk of cracking due to fine scratches generated on the surface.
 また、ガラスリボンの成形及び徐冷を長期間連続して行うことにより、ガラス板の製造装置は経時変化する。このため、高品質(内部歪み、反りが小さい)のガラス板が製造できるように成形及び徐冷における製造条件が初期設定されても、長期間連続操業により必ずしも高品質のガラス板を維持できない。特に、ガラスリボンと接する搬送ローラは径変化が生じ、ガラス板の品質に大きな影響を与える。 Moreover, the glass plate manufacturing apparatus changes over time by continuously forming and slowly cooling the glass ribbon for a long period of time. For this reason, even if the manufacturing conditions in molding and slow cooling are initially set so that a high-quality (small internal strain and warpage) glass plate can be manufactured, it is not always possible to maintain a high-quality glass plate by continuous operation over a long period of time. In particular, the diameter of the conveying roller in contact with the glass ribbon changes and greatly affects the quality of the glass plate.
特表2008-501605号公報Special table 2008-501605
 そこで、本発明は、上記問題を解決するために、第1の目的として、長期間のガラス板の連続製造により、製造設備が経時変化しても、高品質のガラス板の製造を維持することができるガラス板の製造方法を提供する。第2の目的として、搬送ローラの径変化によって変化した搬送ローラの周速度を設定した周速度分布に維持して、複数の搬送ローラ対間で、搬送ローラの周速度とガラスリボンの搬送速度との相対速度に差が生じないようにすることができ、これにより、表面品質に優れたガラス板を製造することができるガラス板の製造方法およびガラス板製造装置を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention has as a first object to maintain the production of a high-quality glass plate even if the production equipment changes over time by continuous production of the glass plate for a long period of time. Provided is a method for producing a glass plate. The second purpose is to maintain the peripheral speed distribution of the transport roller changed by the change in the diameter of the transport roller in the set peripheral speed distribution, and between the transport roller pair, the peripheral speed of the transport roller and the transport speed of the glass ribbon. It is possible to prevent a difference in the relative speed of the glass plate, and thereby to provide a glass plate manufacturing method and a glass plate manufacturing apparatus capable of manufacturing a glass plate excellent in surface quality.
 本発明の一態様は、ガラス板の製造方法である。
 当該製造方法は、
 ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
 溶融ガラスをダウンドロー法を用いて成形し、ガラスリボンを形成する成形工程と、
 前記ガラスリボンを、前記ガラスリボンの搬送方向に沿って設けられた複数のローラ対で挟持しつつ下方向に引き抜いて徐冷を行う徐冷工程と、を有する。
 前記成形工程は、前記ガラスリボンをローラ対で挟持しつつ下方向に引き抜きつつ、前記ガラスリボンの両端部を冷却する工程を含む。
 前記成形工程及び前記徐冷工程のいずれか一方で用いる前記ローラ対のうち少なくともいずれか1つのローラ対である第1ローラ対の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて回転駆動されている。
One embodiment of the present invention is a method for manufacturing a glass plate.
The manufacturing method is
Melting process for melting glass raw material to make molten glass;
Molding a molten glass using a downdraw method to form a glass ribbon;
A slow cooling step in which the glass ribbon is slowly cooled by being pulled downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon.
The forming step includes a step of cooling both ends of the glass ribbon while pulling down the glass ribbon while sandwiching the glass ribbon with a pair of rollers.
Each roller of the first roller pair, which is at least one of the pair of rollers used in any one of the forming step and the slow cooling step, is determined to compensate for a change in the diameter of the roller. It is driven to rotate based on the rotational speed of.
 本発明の他の一態様は、ガラス板の製造方法である。
 当該製造方法は、
 ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
 溶融ガラスをダウンドロー法を用いて成形し、ガラスリボンを形成する成形工程と、
 前記ガラスリボンを、前記ガラスリボンの搬送方向に沿って設けられた複数のローラ対で挟持しつつ下方向に引き抜いて徐冷を行う徐冷工程と、を有する。
 前記徐冷工程は、
 前記ローラ対のうち少なくともいずれか1つのローラ対である第1ローラ対の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて、回転駆動されている。
Another embodiment of the present invention is a method for producing a glass plate.
The manufacturing method is
Melting process for melting glass raw material to make molten glass;
Molding a molten glass using a downdraw method to form a glass ribbon;
A slow cooling step in which the glass ribbon is slowly cooled by being pulled downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon.
The slow cooling step includes
Each roller of the first roller pair, which is at least one of the roller pairs, is driven to rotate based on the rotational speed of the roller determined so as to compensate for the change in the roller diameter.
 その際、前記徐冷工程は、
 前記ガラスリボンの搬送方向に沿って設けられた検出部により、前記第1ローラ対の各ローラの径変化を検出する検出工程と、
 検出された前記第1ローラ対の前記各ローラの径変化に基づいて前記各ローラの回転速度を決定し、前記第1ローラ対の前記各ローラを回転駆動させる速度制御工程と、を含むことが好ましい。
At that time, the slow cooling step,
A detection step of detecting a change in the diameter of each roller of the first roller pair by a detection unit provided along the conveyance direction of the glass ribbon;
And a speed control step of determining a rotational speed of each roller based on the detected diameter change of each roller of the first roller pair and rotationally driving each roller of the first roller pair. preferable.
 前記第1ローラ対の各ローラは、前記徐冷工程の少なくとも前記ガラスリボン中央部の温度がガラス転移点以上軟化点以下となる温度領域に設けられ、
 前記徐冷工程では、前記第1ローラ対の各ローラの径変化を補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させる、ことが好ましい。
Each roller of the first roller pair is provided in a temperature region in which the temperature of at least the center of the glass ribbon in the slow cooling step is a glass transition point or more and a softening point or less,
In the slow cooling step, the rotational speed of each roller of the first roller pair is determined so as to compensate for a change in the diameter of each roller of the first roller pair, and each roller of the first roller pair is driven to rotate. It is preferable.
 前記成形工程及び前記徐冷工程では、以下のように前記ガラスリボンの温度制御をすることが好ましい。
 前記ガラスリボンの中央部の温度がガラス軟化点以上の領域において、前記ガラスリボンの幅方向の端部が前記端部に挟まれた中央領域の温度より低く、且つ、前記中央領域の温度が略均一になるように制御する。
 さらに、前記ガラスリボンの中央部の温度が軟化点未満歪点近傍以上の領域において、前記ガラスリボンの中央部に搬送方向の引張り応力が働くように、前記ガラスリボンの幅方向の温度が前記ガラスリボンの中央部から端部に向かって低くなるように制御する。
 さらに、前記成形工程及び前記徐冷工程では、前記ガラスリボンのガラス歪点の近傍の温度領域において、前記ガラスリボンの幅方向の端部と中央部との温度勾配がなくなるように、前記ガラスリボンの温度分布を制御する。
In the molding step and the slow cooling step, it is preferable to control the temperature of the glass ribbon as follows.
In the region where the temperature of the central portion of the glass ribbon is equal to or higher than the glass softening point, the end portion in the width direction of the glass ribbon is lower than the temperature of the central region sandwiched between the end portions, and the temperature of the central region is approximately Control to be uniform.
Furthermore, the temperature in the width direction of the glass ribbon is such that the tensile stress in the transport direction acts on the center portion of the glass ribbon in the region where the temperature of the center portion of the glass ribbon is below the softening point and near the strain point. The ribbon is controlled so as to decrease from the center to the end.
Further, in the forming step and the slow cooling step, the glass ribbon is configured such that there is no temperature gradient between the end portion and the center portion in the width direction of the glass ribbon in the temperature region near the glass strain point of the glass ribbon. To control the temperature distribution.
 前記徐冷工程では、
 前記ガラスリボンの中央部の温度が歪点近傍未満の領域において、前記ガラスリボンの中央部に搬送方向の引張り応力が働くように前記ガラスリボンの幅方向の端部から中央部に向かって低くなるように、前記ガラスリボンの温度分布を制御する、ことが好ましい。
In the slow cooling step,
In the region where the temperature of the central portion of the glass ribbon is less than the vicinity of the strain point, the glass ribbon is lowered from the end in the width direction toward the central portion so that tensile stress in the transport direction acts on the central portion of the glass ribbon. Thus, it is preferable to control the temperature distribution of the glass ribbon.
 前記徐冷工程は、
 前記ガラスリボンの中央部の温度が、徐冷点になるまで、第1の平均冷却速度で冷却する第1の冷却工程と、
 前記中央部の温度が、前記徐冷点から歪点-50℃になるまで、第2の平均冷却速度で冷却する第2の冷却工程と、
 前記中央部の温度が、前記歪点-50℃から前記歪点-200℃になるまで、第3の平均冷却速度で冷却する第3の冷却工程と、を含むことが好ましい。
 その際、前記第1の平均冷却速度は、5.0℃/秒以上であり、前記第1の平均冷却速度は、前記第3の平均冷却速度より速く、前記第3の平均冷却速度は、前記第2の平均冷却速度より速い。
The slow cooling step includes
A first cooling step of cooling at a first average cooling rate until the temperature of the central portion of the glass ribbon reaches a slow cooling point;
A second cooling step of cooling at a second average cooling rate until the temperature of the central portion reaches a strain point of −50 ° C. from the annealing point;
It is preferable to include a third cooling step of cooling at a third average cooling rate until the temperature of the central portion becomes from the strain point of −50 ° C. to the strain point of −200 ° C.
In this case, the first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is: Faster than the second average cooling rate.
 前記第1ローラ対の各ローラの熱膨張に起因する前記第1ローラの各ローラの径変化によって生じた周速度のずれを補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させることが好ましい。 The rotational speed of each roller of the first roller pair is determined so as to compensate for the deviation of the peripheral speed caused by the change in the diameter of each roller of the first roller due to the thermal expansion of each roller of the first roller pair. Preferably, each roller of the first roller pair is driven to rotate.
 また、前記第1ローラ対の各ローラの磨耗に起因する前記第1ローラ対の各ローラの径変化により生じた周速度のずれを補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させることも同様に好ましい。 In addition, the rotational speed of each roller of the first roller pair is compensated for the deviation of the peripheral speed caused by the diameter change of each roller of the first roller pair due to the wear of each roller of the first roller pair. It is also preferable that each of the first roller pair is rotationally driven.
 前記複数のローラ対のうち、ローラの径変化を補償するように決定されたローラの回転速度に基づいて回転駆動されるローラを有するローラ対は、前記第1ローラ対の他に第2ローラ対を含み得る。
 この場合、前記製造方法は、前記ガラスリボンの搬送方向に沿って設けられた複数の検出部により、前記第1ローラ対及び前記第2ローラ対の各ローラの径変化を検出する検出工程を有する。そして、前記第1ローラ対の各ローラと前記第2ローラ対の各ローラの間で、ローラの周速度と前記ガラスリボンの搬送速度との相対速度が一定となるように、前記各ローラの径変化を補償するような前記各ローラの回転速度を決定する。
Among the plurality of roller pairs, a roller pair having a roller driven to rotate based on a rotation speed of the roller determined so as to compensate for a change in the diameter of the roller is a second roller pair in addition to the first roller pair. Can be included.
In this case, the manufacturing method includes a detection step of detecting a change in the diameter of each of the first roller pair and the second roller pair by a plurality of detection units provided along the conveyance direction of the glass ribbon. . The diameter of each roller is set so that the relative speed between the peripheral speed of the roller and the conveying speed of the glass ribbon is constant between each roller of the first roller pair and each roller of the second roller pair. The rotational speed of each roller that compensates for the change is determined.
 前記製造方法では、ガラスリボンの搬送方向に沿って設けられた、前記ガラスリボンの状態を検出するガラス状態検出部によって前記ガラスリボンの温度を検出し、
 検出された前記ガラスリボンの温度におけるガラス熱膨張係数を用いて、前記ガラスリボンの熱膨張に起因する前記ガラスリボンの搬送速度の変化を検出し、前記ガラスリボンの搬送速度とローラの周速度とのずれを補償するように前記第1ローラ対の各ローラの回転速度を決定することも好ましい。
In the manufacturing method, the temperature of the glass ribbon is detected by a glass state detection unit that detects the state of the glass ribbon provided along the conveyance direction of the glass ribbon,
Using the glass thermal expansion coefficient at the detected temperature of the glass ribbon, a change in the transport speed of the glass ribbon due to the thermal expansion of the glass ribbon is detected, and the transport speed of the glass ribbon and the peripheral speed of the roller It is also preferable to determine the rotational speed of each roller of the first roller pair so as to compensate for the deviation.
 前記ガラスリボンが徐冷されてなるガラス板の厚さは、例えば0.5mm以下である。 The thickness of the glass plate obtained by gradually cooling the glass ribbon is, for example, 0.5 mm or less.
 また、本発明の一態様は、ガラス板製造装置である。当該装置は、
 溶融ガラスからダウンドロー法を用いてガラスリボンを成形する成形装置と、
 前記ガラスリボンを複数の搬送ローラ対で挟持しつつ下方向に引き抜きながら徐冷する徐冷装置と、を有する。
 前記徐冷装置は、前記複数の搬送ローラ対と、検出制御部と、駆動部とを含む。
 前記複数の搬送ローラ対は、前記ガラスリボンの搬送方向に沿って設けられ、前記ガラスリボンを下方向に引き込むことでガラスリボンを搬送する。
 前記検出制御部は、前記ガラスリボンの搬送方向に沿って設けられ、前記搬送ローラ対の搬送ローラの径変化を検出する複数の搬送ローラ状態検出部を備える。
 前記駆動部は、前記複数の搬送ローラ対間で前記搬送ローラの周速度と前記ガラスリボンの搬送速度との相対速度が一定となるときの前記複数の搬送ローラ対間の周速度分布を保つように、検出された前記搬送ローラの径変化に基づいて決定された各前記搬送ローラの回転速度に基づいて、前記搬送ローラを回転駆動させる。
One embodiment of the present invention is a glass plate manufacturing apparatus. The device is
A molding apparatus for molding a glass ribbon from molten glass using a downdraw method;
And a slow cooling device that cools the glass ribbon while pulling it downward while sandwiching it with a plurality of pairs of transport rollers.
The slow cooling device includes the plurality of conveyance roller pairs, a detection control unit, and a drive unit.
The plurality of transport roller pairs are provided along the transport direction of the glass ribbon, and transport the glass ribbon by drawing the glass ribbon downward.
The said detection control part is provided along the conveyance direction of the said glass ribbon, and is provided with the some conveyance roller state detection part which detects the diameter change of the conveyance roller of the said conveyance roller pair.
The drive unit maintains a peripheral speed distribution between the plurality of transport roller pairs when a relative speed between the peripheral speed of the transport roller and the transport speed of the glass ribbon is constant between the plurality of transport roller pairs. Then, the transport roller is driven to rotate based on the rotation speed of each transport roller determined based on the detected diameter change of the transport roller.
 前記搬送ローラ状態検出部は、前記搬送ローラの温度に基づいて前記搬送ローラの径変化を検出し、
 前記駆動部は、前記搬送ローラの熱膨張に起因する前記ローラの径変化によって生じた前記搬送ローラの周速度の前記周速度分布からのずれを補償するように、検出された前記搬送ローラの温度におけるローラ熱膨張係数を用いて決定された前記各搬送ローラの回転速度に基づいて、前記搬送ローラを回転駆動させる、ことが好ましい。
The transport roller state detection unit detects a change in the diameter of the transport roller based on the temperature of the transport roller,
The drive unit detects the temperature of the transport roller so as to compensate for a deviation from the peripheral speed distribution of the peripheral speed of the transport roller caused by a change in the diameter of the roller due to thermal expansion of the transport roller. It is preferable that the transport roller is rotationally driven based on the rotational speed of each transport roller determined using the roller thermal expansion coefficient.
 前記検出部は、前記ガラスリボンの搬送方向に沿って設けられた、前記ガラスリボンの状態を検出する複数のガラス状態検出部をさらに備え、前記駆動部は、前記ガラスリボンの状態に基いて設定された前記周速度分布に基づいて、前記搬送ローラを回転駆動させることが好ましい。 The detection unit further includes a plurality of glass state detection units provided along a conveyance direction of the glass ribbon to detect the state of the glass ribbon, and the driving unit is set based on the state of the glass ribbon. It is preferable that the transport roller is driven to rotate based on the peripheral speed distribution.
 前記ガラス状態検出部は、前記ガラスリボンの温度を検出し、
 前記駆動部は、検出された前記ガラスリボンの温度におけるガラス熱膨張係数を用いて、前記ガラスリボンの熱膨張に起因する前記ガラスリボンの搬送速度変化に応じて設定された前記周速度分布、に基づいて前記搬送ローラを回転駆動させる、ことが好ましい。
The glass state detection unit detects the temperature of the glass ribbon,
The driving unit uses the glass thermal expansion coefficient at the detected temperature of the glass ribbon, and the peripheral speed distribution set according to the change in the conveyance speed of the glass ribbon due to the thermal expansion of the glass ribbon. It is preferable that the transport roller is rotationally driven based on the base.
 前記搬送ローラ状態検出部は、前記搬送ローラの磨耗量に基づいて前記搬送ローラの径変化を検出し、
 前記駆動部は、検出された前記搬送ローラの磨耗に起因する前記搬送ローラの径変化により生じた、前記搬送ローラの周速度の前記周速度分布からのずれを補償するように決定された前記各搬送ローラの回転速度に基づいて前記搬送ローラを回転駆動させる、ことが好ましい。
The transport roller state detection unit detects a change in the diameter of the transport roller based on an amount of wear of the transport roller,
The drive unit is determined to compensate for a deviation from the peripheral speed distribution of the peripheral speed of the transport roller, which is caused by a change in the diameter of the transport roller due to the detected wear of the transport roller. It is preferable that the transport roller is rotationally driven based on the rotational speed of the transport roller.
 前記ガラスリボンが徐冷されてなるガラス板の厚さは、例えば、0.5mm以下である。 The thickness of the glass plate obtained by gradually cooling the glass ribbon is, for example, 0.5 mm or less.
 上述のガラス板の製造方法では、長期間のガラス板の連続製造により、ガラスリボンが接する搬送ローラ等の製造設備が経時変化しても、高品質のガラス板の製造を維持することができる。また、上述のガラス板の製造方法及びガラス板製造装置は、搬送ローラの径変化によって変化した搬送ローラの周速度を設定した周速度分布に維持して、複数の搬送ローラ対間で、搬送ローラの周速度とガラスリボンの搬送速度との相対速度に差が生じないようにすることができる。これにより、表面品質に優れたガラス板を製造することができる。 In the above-described method for producing a glass plate, the production of a high-quality glass plate can be maintained even if the production equipment such as a conveyance roller in contact with the glass ribbon changes with time by continuous production of the glass plate for a long period of time. In addition, the glass plate manufacturing method and the glass plate manufacturing apparatus described above maintain a peripheral speed distribution in which the peripheral speed of the transport roller, which has changed due to a change in the diameter of the transport roller, is maintained, and a transport roller between a plurality of transport roller pairs. It is possible to prevent a difference from occurring in the relative speed between the peripheral speed and the glass ribbon transport speed. Thereby, the glass plate excellent in surface quality can be manufactured.
本実施形態のガラス板の製造方法のフローの一例を示す図である。It is a figure which shows an example of the flow of the manufacturing method of the glass plate of this embodiment. 徐冷工程のフローの一例を示す図である。It is a figure which shows an example of the flow of a slow cooling process. 本発明の第1実施形態のガラス板製造装置の内部を説明する平面図である。It is a top view explaining the inside of the glass plate manufacturing apparatus of 1st Embodiment of this invention. 図3のIV線矢視断面図である。FIG. 4 is a cross-sectional view taken along line IV in FIG. 3. 搬送ローラ対の回転駆動を制御する制御系の構成を説明するブロック図である。It is a block diagram explaining the structure of the control system which controls the rotational drive of a conveyance roller pair. 本発明の第2実施形態のガラス板製造装置の搬送ローラ対の回転駆動を制御する制御系の構成を説明するブロック図である。It is a block diagram explaining the structure of the control system which controls the rotational drive of the conveyance roller pair of the glass plate manufacturing apparatus of 2nd Embodiment of this invention.
 以下、本発明のガラス板の製造方法及びガラス板製造装置について詳細に説明する。
 本実施形態あるいはその変形例のガラス板の製造方法及び製造装置では、ガラス板の製造法の一工程である成形工程及び徐冷工程で用いるローラ対(冷却ローラ対、搬送ローラ対)のうち少なくともいずれか1つのローラ対(第1ローラ対)の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて回転駆動される。また、徐冷工程では、複数の搬送ローラ対のうち少なくとも1つのローラ対(第1のローラ対)の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて、回転駆動されている。このようなローラの回転速度は、第1ローラ対の各ローラの径変化が計測により検出されることにより、径変化を補償するように決定される。すなわち、ローラの径変化の検出結果に応じてローラの回転速度がフィードバック制御される。あるいは、ローラの回転速度は、第1ローラ対の各ローラの使用日数の情報に基づいて決定される。すなわち、各ローラの使用期間の情報に基づいて、シーケンシャルにローラの回転速度が決定される。「使用日数の情報」は、第1ローラ対の摩耗に基づくローラ直径の変化の換算に用いられ、このローラ直径の変化の換算値に基づいてローラの回転速度が決定される。このようなローラの回転速度が決定される第1ローラ対は単数であってもよく、また複数であってもよい。「ローラの径変化を補償する」とは、第1ローラ対の各ローラの直径が変化しても、この直径の変化を考慮して径変化前のローラの適正な周速度を維持することを意味する。
Hereinafter, the manufacturing method and glass plate manufacturing apparatus of the glass plate of this invention are demonstrated in detail.
In the manufacturing method and the manufacturing apparatus of the glass plate according to this embodiment or the modified example thereof, at least of the roller pair (cooling roller pair, conveying roller pair) used in the forming step and the slow cooling step which are one step of the glass plate manufacturing method. Each roller of any one roller pair (first roller pair) is rotationally driven based on the rotational speed of the roller determined so as to compensate for the change in the diameter of the roller. Further, in the slow cooling process, each roller of at least one of the plurality of transport roller pairs (first roller pair) is based on the rotational speed of the roller determined so as to compensate for the change in the roller diameter. , Is driven to rotate. The rotational speed of such a roller is determined so as to compensate for the diameter change by detecting the diameter change of each roller of the first roller pair by measurement. That is, the rotational speed of the roller is feedback controlled according to the detection result of the roller diameter change. Alternatively, the rotational speed of the rollers is determined based on information on the number of days used for each roller of the first roller pair. That is, the rotation speed of the rollers is sequentially determined based on information on the usage period of each roller. “Information on the number of days of use” is used for conversion of the change of the roller diameter based on the wear of the first roller pair, and the rotation speed of the roller is determined based on the conversion value of the change of the roller diameter. There may be a single first roller pair or a plurality of first roller pairs for determining the rotational speed of such rollers. “Compensating for changes in roller diameter” means that even if the diameter of each roller of the first roller pair changes, the appropriate peripheral speed of the roller before the diameter change is maintained in consideration of the change in diameter. means.
 また、本明細書における下記語句は、以下のように定める。
 徐冷点近傍とは、ガラスの粘度ηに関してlogη=12.5~13.5の範囲をいう。
 ガラスの徐冷点とは、ガラスの粘度ηに関してlogη=13となる温度をいう。
 ガラスの歪点とは、ガラスの粘度ηに関してlogη=14.5となる温度をいう。
 ガラスの歪点近傍とは、ガラスの粘度ηに関してlogη=14~15となる温度の範囲をいう。
 ガラスリボンの中央領域とは、ガラスリボンの幅方向の幅のうちガラスリボンの幅方向の中心から幅の85%以内の範囲をいう。
 ガラスリボンの中央部とは、ガラスリボンの幅方向の中心をいう。
 ガラスリボンの中央領域の温度が略均一とは、温度が±20℃の許容範囲に含まれることをいう。
 ガラスリボンの端部とは、ガラスリボンの幅方向の縁から200mm以内の範囲をいう。
Moreover, the following words and phrases in this specification are defined as follows.
The vicinity of the annealing point refers to a range of log η = 12.5 to 13.5 with respect to the viscosity η of the glass.
The annealing point of glass means a temperature at which log η = 13 with respect to the viscosity η of the glass.
The strain point of glass means a temperature at which log η = 14.5 with respect to the viscosity η of the glass.
The vicinity of the strain point of glass refers to a temperature range where log η = 14 to 15 with respect to the viscosity η of the glass.
The central region of the glass ribbon refers to a range within 85% of the width from the center in the width direction of the glass ribbon in the width in the width direction of the glass ribbon.
The center portion of the glass ribbon refers to the center in the width direction of the glass ribbon.
That the temperature in the central region of the glass ribbon is substantially uniform means that the temperature is within an allowable range of ± 20 ° C.
The edge part of a glass ribbon means the range within 200 mm from the edge of the width direction of a glass ribbon.
(ガラス板の製造方法)
 図1は、本実施形態のガラス板の製造方法のフローの一例を説明する図である。ガラス板の製造方法は、熔解工程(ステップS10)と、清澄工程(ステップS20)と、攪拌工程(ステップS30)と、成形工程(ステップS40)と、徐冷工程(ステップS50)と、採板工程(ステップS60)と、形状加工工程(ステップS70)と、を主に有する。
(Glass plate manufacturing method)
Drawing 1 is a figure explaining an example of the flow of the manufacturing method of the glass plate of this embodiment. The glass plate manufacturing method includes a melting step (step S10), a clarification step (step S20), a stirring step (step S30), a forming step (step S40), a slow cooling step (step S50), It mainly includes a process (step S60) and a shape processing process (step S70).
 熔解工程(ステップS10)では、図示されない熔解炉で、ガラス原料が、その上方からの間接加熱と、ガラス中に電流を流すことによる直接加熱とにより高温に加熱されて、溶融ガラスが作られる。ガラスの熔解は、これ以外の方法で行われてもよい。
 次に、清澄工程が行われる(ステップS20)。清澄工程では、溶融ガラスが図示されない液槽に貯留された状態で、例えば、熔解工程での加熱時よりも溶融ガラスの温度を上昇させることで、溶融ガラス中の気泡の脱泡が促進される。これにより、最終的に得られるガラス板中の気泡含有率を低減することができ、歩留まりを向上させることができる。
 清澄工程は、他の方法によって行われてもよく、例えば、溶融ガラスが液槽に貯留された状態で、溶融ガラス中の気泡が清澄剤を用いて取り除かれてもよい。清澄剤としては、特に制限されず、例えば、酸化スズ、酸化鉄等の金属酸化物が用いられる。この場合の清澄工程は、具体的には、溶融ガラス中で価数変動する金属酸化物の酸化還元反応によって行われる。高温時の溶融ガラスにおいて、金属酸化物は還元反応により酸素を放出し、この酸素がガスとなって、溶融ガラス中の気泡を成長させて液面に浮上させる。これにより、溶融ガラス中の気泡は脱泡される。あるいは、酸素ガスの気泡は、溶融ガラス中の他の気泡中のガスを取り込んで成長し、溶融ガラスの液面に浮上する。これにより、溶融ガラス中の気泡は脱泡される。さらに、金属酸化物は、溶融ガラスの温度が低下すると、酸化反応により溶融ガラス中に残存した酸素を吸収し、溶融ガラス中の気泡を減少させる。
 次に、攪拌工程が行われる(ステップS30)。攪拌工程では、ガラスの化学的および熱的均一性を保つために、攪拌装置により、溶融ガラスが機械的に攪拌される。これによって、脈理等のガラスの不均一性を抑制することができる。
In the melting step (step S10), in a melting furnace (not shown), the glass raw material is heated to a high temperature by indirect heating from above and direct heating by passing an electric current through the glass to produce molten glass. The melting of the glass may be performed by other methods.
Next, a clarification process is performed (step S20). In the clarification step, the defoaming of bubbles in the molten glass is promoted by increasing the temperature of the molten glass in a state where the molten glass is stored in a liquid tank (not shown), for example, compared with the heating in the melting step. . Thereby, the bubble content rate in the glass plate finally obtained can be reduced, and a yield can be improved.
The clarification step may be performed by other methods. For example, in the state where the molten glass is stored in the liquid tank, bubbles in the molten glass may be removed using a clarifier. The fining agent is not particularly limited, and for example, metal oxides such as tin oxide and iron oxide are used. Specifically, the clarification step in this case is performed by a redox reaction of a metal oxide whose valence fluctuates in the molten glass. In the molten glass at a high temperature, the metal oxide releases oxygen by a reduction reaction, and this oxygen becomes a gas, and bubbles in the molten glass grow and float on the liquid surface. Thereby, bubbles in the molten glass are defoamed. Or the bubble of oxygen gas takes in the gas in the other bubble in a molten glass, grows, and floats on the liquid level of a molten glass. Thereby, bubbles in the molten glass are defoamed. Further, when the temperature of the molten glass is lowered, the metal oxide absorbs oxygen remaining in the molten glass due to the oxidation reaction, and reduces bubbles in the molten glass.
Next, a stirring process is performed (step S30). In the stirring step, the molten glass is mechanically stirred by a stirring device in order to maintain the chemical and thermal uniformity of the glass. Thereby, nonuniformity of the glass such as striae can be suppressed.
 次に、成形工程が行われる(ステップS40)。成形工程では、ダウンドロー法が用いられる。オーバーフローダウンドローやスロットダウンドロー等を含むダウンドロー法は、例えば特許第3586142号公報や図3及び図4に示された装置を用いた公知の方法である。ダウンドロー法における成形工程については、後述する。これにより、所定の厚さ、幅を有するシート状のガラスリボンが成形される。成形方法としては、ダウンドロー法の中でも、オーバーフローダウンドローが最も好ましいが、スロットダウンドローでもよい。成形工程は、成形により形成されたガラスリボンをローラ対で挟持しつつ搬送方向の下方向(下流側の方向)に引き抜きつつ、ガラスリボンの両端部を冷却する工程を含む。 Next, a molding process is performed (step S40). In the molding process, a downdraw method is used. The down draw method including overflow down draw, slot down draw, and the like is a known method using, for example, Japanese Patent No. 3586142 or the apparatus shown in FIGS. The molding process in the downdraw method will be described later. Thereby, a sheet-like glass ribbon having a predetermined thickness and width is formed. As a molding method, an overflow downdraw is most preferable among the downdraw methods, but a slot downdraw may be used. The forming step includes a step of cooling both ends of the glass ribbon while drawing the glass ribbon formed by the forming with a pair of rollers and pulling it downward in the conveying direction (downstream direction).
 次に、徐冷工程が行われる(ステップS50)。徐冷工程では、シート状に成形されたガラスリボンは、歪みが発生しない又は低減するように冷却速度を制御して、図3及び図4に示す徐冷炉にて徐冷点以下に冷却される。具体的には、ガラスリボンの幅方向端部に幅方向に隣接する近傍領域が、ガラスリボンの搬送方向に少なくとも2以上設けられた複数の搬送ローラ対で挟持されつつ、予め設定された搬送速度にて下方向に引き抜かれながら徐冷される。
 図2は、徐冷工程のフローの一例を説明する図である。徐冷工程は、検出工程(ステップS51)と、速度決定工程(ステップS52)と、速度制御工程(ステップS53)とを含む。なお、本実施形態のガラス板の製造方法は、検出工程(ステップS51)を含むが、後述する変形例のように検出工程を行わず、徐冷工程は、速度決定工程(ステップS52)と、速度制御工程(ステップS53)とを含むこともできる。
Next, a slow cooling process is performed (step S50). In the slow cooling step, the glass ribbon formed into a sheet shape is cooled below the annealing point in the slow cooling furnace shown in FIGS. 3 and 4 by controlling the cooling rate so that distortion does not occur or is reduced. Specifically, a conveyance speed that is set in advance while the adjacent region adjacent to the width direction end of the glass ribbon in the width direction is sandwiched between a plurality of pairs of conveyance rollers provided in the conveyance direction of the glass ribbon. It is gradually cooled while being pulled down at.
FIG. 2 is a diagram illustrating an example of the flow of the slow cooling process. The slow cooling process includes a detection process (step S51), a speed determination process (step S52), and a speed control process (step S53). In addition, although the manufacturing method of the glass plate of this embodiment includes a detection process (step S51), a detection process is not performed like the modification mentioned later, and a slow cooling process is a speed determination process (step S52), And a speed control step (step S53).
 検出工程(ステップS51)では、ガラスリボンの搬送方向に沿って、それぞれ上述の複数の搬送ローラ対に対応させて設けられた複数の検出部により、複数の搬送ローラ対の各搬送ローラの径変化が検出される。搬送ローラの径変化として、例えば、搬送ローラの温度又は搬送ローラの磨耗量に基づいて算出された搬送ローラの径変化量が挙げられる。この場合の検出部は、例えば、後述する温度センサ又は距離測定センサと、これらセンサに接続されたコンピュータとを含む。径としては、搬送ローラの直径又は半径が上げられる。 In the detection step (step S51), the diameter change of each conveyance roller of the plurality of conveyance roller pairs is performed by the plurality of detection units provided corresponding to the plurality of conveyance roller pairs described above along the conveyance direction of the glass ribbon. Is detected. As the diameter change of the transport roller, for example, the diameter change amount of the transport roller calculated based on the temperature of the transport roller or the wear amount of the transport roller can be mentioned. The detection unit in this case includes, for example, a temperature sensor or a distance measurement sensor described later, and a computer connected to these sensors. As the diameter, the diameter or radius of the transport roller is increased.
 速度決定工程(ステップS52)は、複数の搬送ローラ対間で搬送ローラの周速度とガラスリボンの搬送速度との相対速度が一定、すなわち相対速度に差が生じないときの複数の搬送ローラ対間の周速度分布を設定し、検出された搬送ローラの径変化に基づいて、設定された周速度分布を保つように各搬送ローラの回転速度を決定する。周速度分布としては、例えば、複数の搬送ローラ対間での周速度比、各搬送ローラの具体的な周速度が用いられる。ここでガラスリボンがキズや形状変形が生じないときの相対速度は0であるため、相対速度に差が生じるとは、複数の搬送ローラ対の中で、ある対の相対速度は0であるが、別の対の相対速度は0でない、といったように相対速度が分布を持つことをいう。
 搬送ローラの径変化が、例えば、温度に基づいて算出される搬送ローラの熱膨張量(直径の変化量)である場合、具体的には、後述する検出部37及び速度決定部38により行われるように、検出された搬送ローラの温度におけるローラ熱膨張係数が用いられて、搬送ローラの熱膨張に起因するローラ直径の変化により生じた、搬送ローラの周速度の周速度分布からのずれを補償するように、すなわち、各搬送ローラの周速度が設定された周速度分布に維持されるように、搬送ローラの回転速度が決定される。搬送ローラの熱膨張係数は、速度決定部38に予め記憶されている。なお、搬送ローラの周速度は、例えば、形成されたガラスリボンが、製造するガラス板の板厚となるように調整することで決定される。
In the speed determination step (step S52), the relative speed between the peripheral speed of the transport roller and the transport speed of the glass ribbon is constant between the plurality of transport roller pairs, that is, when there is no difference in the relative speed. And the rotational speed of each transport roller is determined so as to maintain the set peripheral speed distribution based on the detected change in the diameter of the transport roller. As the peripheral speed distribution, for example, a peripheral speed ratio between a plurality of pairs of transport rollers and a specific peripheral speed of each transport roller are used. Here, since the relative speed when the glass ribbon is not scratched or deformed is 0, a difference in the relative speed means that the relative speed of a certain pair among the plurality of transport roller pairs is 0. This means that the relative speed of another pair has a distribution such that the relative speed is not zero.
When the change in the diameter of the conveyance roller is, for example, a thermal expansion amount (diameter change amount) of the conveyance roller calculated based on the temperature, specifically, the detection unit 37 and the speed determination unit 38 described later perform the change. As described above, the roller thermal expansion coefficient at the detected transport roller temperature is used to compensate for the deviation of the peripheral speed of the transport roller from the peripheral speed distribution caused by the change in the roller diameter caused by the thermal expansion of the transport roller. In other words, the rotational speed of the transport roller is determined so that the peripheral speed of each transport roller is maintained in the set peripheral speed distribution. The thermal expansion coefficient of the transport roller is stored in advance in the speed determination unit 38. In addition, the circumferential speed of a conveyance roller is determined by adjusting so that the formed glass ribbon may become the plate | board thickness of the glass plate to manufacture, for example.
 また、例えば、搬送ローラの径変化が、その磨耗量に基づいて算出される搬送ローラの半径の変化量である場合は、具体的には、後述する第2実施形態に従って行われるように、検出された搬送ローラの磨耗に起因する搬送ローラの半径の変化により生じた、搬送ローラの周速度の周速度分布からのずれが補償されるように、すなわち、各搬送ローラの周速度が設定された周速度分布に維持されるように、搬送ローラの回転速度が決定される。 Further, for example, when the change in the diameter of the transport roller is the amount of change in the radius of the transport roller calculated based on the amount of wear, specifically, detection is performed as in the second embodiment described later. The peripheral speed of each transport roller was set so as to compensate for the deviation from the peripheral speed distribution of the peripheral speed of the transport roller caused by the change in the radius of the transport roller due to wear of the transport rollers. The rotation speed of the transport roller is determined so that the peripheral speed distribution is maintained.
 なお、速度決定部38は、オペレータが入力した内容に基づいて各搬送ローラの回転速度を決定してもよい。この場合、オペレータは、検出された搬送ローラの径変化に基づいて、設定された周速度分布を保つように各搬送ローラの回転速度を算出してよい。例えば、搬送ローラの径変化が上述の熱膨張量である場合、オペレータは、検出された搬送ローラの温度に基づいて、搬送ローラの熱膨張に起因するローラ直径の変化により生じた、搬送ローラの周速度の周速度分布からのずれを補償するように、すなわち、各搬送ローラの周速度が設定された周速度分布に維持されるように、搬送ローラの回転速度を算出してよい。算出され、入力された各搬送ローラの回転速度は、速度決定部38により決定され、速度制御工程(ステップS53)において、搬送ローラの回転が制御される。 The speed determination unit 38 may determine the rotation speed of each transport roller based on the content input by the operator. In this case, the operator may calculate the rotation speed of each conveyance roller based on the detected change in the diameter of the conveyance roller so as to maintain the set peripheral speed distribution. For example, when the change in the diameter of the conveyance roller is the above-described amount of thermal expansion, the operator can change the diameter of the conveyance roller caused by the change in the roller diameter caused by the thermal expansion of the conveyance roller based on the detected temperature of the conveyance roller. The rotational speed of the transport roller may be calculated so as to compensate for the deviation of the peripheral speed from the peripheral speed distribution, that is, so that the peripheral speed of each transport roller is maintained at the set peripheral speed distribution. The rotation speed of each transport roller calculated and input is determined by the speed determination unit 38, and the rotation of the transport roller is controlled in the speed control step (step S53).
 速度制御工程(ステップS53)は、速度決定工程において決定された回転速度に基づいて、搬送ローラの回転を制御する。
 以上の徐冷工程の後、採板工程が行われる(ステップS60)。具体的に、連続的に生成されるガラスリボンは一定の長さ毎に切断され、ガラス板が採板される。
 この後、形状加工工程が行われる(ステップS70)。形状加工工程では、所定のガラス板のサイズや形状に切り出す他、ガラス端面の研削・研磨が行われる。形状加工は、カッターやレーザを用いた物理的手段を用いても、エッチングなどの化学的手段を用いてもよい。
In the speed control process (step S53), the rotation of the transport roller is controlled based on the rotation speed determined in the speed determination process.
After the above slow cooling process, a plate-making process is performed (step S60). Specifically, the glass ribbon produced | generated continuously is cut | disconnected for every fixed length, and a glass plate is sampled.
Thereafter, a shape processing step is performed (step S70). In the shape processing step, the glass end face is ground and polished in addition to cutting into a predetermined glass plate size and shape. For the shape processing, a physical means using a cutter or a laser may be used, or a chemical means such as etching may be used.
 また、成形工程及び徐冷工程では、ガラスリボンの中央部の温度がガラス軟化点以上の領域において、ガラスリボンの幅方向の収縮を抑制するために、ガラスリボンの幅方向の端部が前記端部に挟まれた中央領域の温度より低く、且つ、中央領域の温度が略均一になるようにガラスリボンの温度を制御することが好ましい。その際、ガラスリボンの中央部の温度が軟化点未満歪点近傍以上の領域において、ガラスリボンの中央部に搬送方向の引張り応力が働くように、ガラスリボンの幅方向の温度がガラスリボンの中央部から端部に向かって低くなるようにガラスリボンの温度を制御することがガラス板の反りを抑制する点で好ましい。さらに、ガラスリボンの温度が歪点の近傍となる温度領域において、ガラスリボンの幅方向の端部と中央部との温度勾配がなくなるように、ガラスリボンの温度分布を制御することがガラス板の内部歪みを抑制する点で、好ましい。 Further, in the forming step and the slow cooling step, in the region where the temperature of the central portion of the glass ribbon is equal to or higher than the glass softening point, in order to suppress shrinkage in the width direction of the glass ribbon, the end portion in the width direction of the glass ribbon is the end. It is preferable to control the temperature of the glass ribbon so that it is lower than the temperature of the central region sandwiched between the parts and the temperature of the central region is substantially uniform. At that time, the temperature in the width direction of the glass ribbon is the center of the glass ribbon so that the tensile stress in the transport direction acts on the center portion of the glass ribbon in the region where the temperature of the center portion of the glass ribbon is less than the softening point and near the strain point. It is preferable to control the temperature of the glass ribbon so as to decrease from the portion toward the end in terms of suppressing warpage of the glass plate. Furthermore, in the temperature region where the temperature of the glass ribbon is in the vicinity of the strain point, it is possible to control the temperature distribution of the glass ribbon so that there is no temperature gradient between the end portion in the width direction of the glass ribbon and the center portion. This is preferable in terms of suppressing internal distortion.
 さらに、ガラスリボンの中央部の温度が歪点近傍未満の領域において、ガラスリボンの中央部に搬送方向の引張り応力が働くようにガラスリボンの幅方向の端部から中央部に向かって低くなるように、ガラスリボンの温度分布を制御することが、ガラスリボンの搬送方向の反りを抑制する点で、好ましい。 Further, in the region where the temperature of the central portion of the glass ribbon is less than the vicinity of the strain point, the glass ribbon is lowered from the end in the width direction toward the central portion so that tensile stress in the transport direction acts on the central portion of the glass ribbon. In addition, it is preferable to control the temperature distribution of the glass ribbon in terms of suppressing warpage in the conveyance direction of the glass ribbon.
 さらに、徐冷工程は、ガラスリボンの中央部の温度が、徐冷点になるまで、第1の平均冷却速度で冷却する第1の冷却工程と、ガラスリボンの中央部の温度が、徐冷点から歪点-50℃になるまで、第2の平均冷却速度で冷却する第2の冷却工程と、ガラスリボンの中央部の温度が、歪点-50℃から歪点-200℃になるまで、第3の平均冷却速度で冷却する第3の冷却工程と、を含むことが好ましい。この場合、第1の平均冷却速度は、5.0℃/秒以上であり、第1の平均冷却速度は、第3の平均冷却速度より速く、第3の平均冷却速度は、第2の平均冷却速度より速い。すなわち、平均冷却速度は、高い順番に、第1の平均冷却速度、第3の平均冷却速度、第2の平均冷却速度となっている。ガラスリボンの搬送方向の冷却速度は、製造されるガラス板の熱収縮に影響を与える。しかし、上述のように徐冷工程において、冷却速度を設定することにより、ガラス板の製造量を向上させつつ、好適な熱収縮率を有するガラス板を得ることができる Further, the slow cooling step includes a first cooling step of cooling at the first average cooling rate until the temperature of the central portion of the glass ribbon reaches a slow cooling point, and the temperature of the central portion of the glass ribbon is gradually cooled. From the point until the strain point reaches −50 ° C., the second cooling step of cooling at the second average cooling rate and the temperature of the central portion of the glass ribbon reaches from the strain point −50 ° C. to the strain point −200 ° C. And a third cooling step of cooling at a third average cooling rate. In this case, the first average cooling rate is 5.0 ° C./second or more, the first average cooling rate is faster than the third average cooling rate, and the third average cooling rate is the second average cooling rate. Faster than the cooling rate. That is, the average cooling rate is, in descending order, the first average cooling rate, the third average cooling rate, and the second average cooling rate. The cooling rate in the conveyance direction of the glass ribbon affects the heat shrinkage of the glass plate to be manufactured. However, by setting the cooling rate in the slow cooling step as described above, it is possible to obtain a glass plate having a suitable heat shrinkage rate while improving the production amount of the glass plate.
 ガラス板の製造方法は、この他に、洗浄工程及び検査工程を有するが、これらの工程の説明は省略する。なお、清澄工程及び攪拌工程はそれぞれ省略できる。 The glass plate manufacturing method has a cleaning process and an inspection process in addition to this, but the description of these processes is omitted. The clarification step and the stirring step can be omitted.
(ガラス板製造装置)
 図3及び図4は、本発明の第1実施形態であるガラス板製造装置1の概略構成図である。本実施形態のガラス板製造装置1およびガラス板製造装置1を用いたガラス板の製造方法は、液晶表示装置あるいは有機EL表示装置等のフラットパネルディスプレイのガラス基板や携帯端末器の表示面のカバーガラスの製造に好適に適用される。これは、液晶表示装置あるいは有機EL表示装置等は近年、高精度、高画質が要求されており、それに使用されるガラス基板には高い表面品質が要求されているためである。また、カバーガラスは、装置の表示面などに適用されることから、それに使用されるガラス基板には極めて高い表面品質が要求されているためである。
 ガラス板製造装置1は、ダウンドロー法を用いて溶融ガラスAからガラス板Cを製造する。ガラス板製造装置1は、上下方向の3箇所に配された断熱板21,22,23によって間仕切りされてなる、炉室11、第1の徐冷炉12、第2の徐冷炉13、図示しない採板室を有している。断熱板21~23は、セラミックファイバ等の断熱材からなる板状部材である。断熱板21~23には、後述するガラスリボンBが下方に向かって通過するように、それぞれ搬送孔16が形成されている。断熱板21~23はそれぞれ、図3において、理解の容易さのため、後述する炉壁15に接する水平方向の2個所を除いて図示を省略しているが、ガラスリボンBに対し紙面前面側及び背面側において、水平方向の2個所同士は一体に繋がっている。なお、図3及び図4では、断熱板により3箇所で間仕切りがされている例が示されているが、断熱板の個数及び設置位置は特に限定されず、断熱板は1以上設けられていればよい。なお、断熱板の数は多いほど、独立して雰囲気温度を制御できる空間が多くなり、雰囲気温度の調整(徐冷条件の調整)が容易になるため、徐冷装置3は、断熱板が複数設けられ、複数空間に間仕切りされていることが好ましい。言い換えると、徐冷炉は1以上設けられていてればよいが、3以上設けられていることがさらに好ましい。
(Glass plate manufacturing equipment)
FIG.3 and FIG.4 is a schematic block diagram of the glass plate manufacturing apparatus 1 which is 1st Embodiment of this invention. The glass plate manufacturing apparatus 1 and the glass plate manufacturing method using the glass plate manufacturing apparatus 1 according to this embodiment include a glass substrate of a flat panel display such as a liquid crystal display device or an organic EL display device, and a display surface cover of a portable terminal. It is suitably applied to the production of glass. This is because liquid crystal display devices, organic EL display devices, and the like have recently been required to have high precision and high image quality, and a glass substrate used therefor is required to have high surface quality. Moreover, since the cover glass is applied to the display surface of the apparatus, the glass substrate used for the cover glass is required to have extremely high surface quality.
The glass plate manufacturing apparatus 1 manufactures the glass plate C from the molten glass A using the downdraw method. The glass plate manufacturing apparatus 1 includes a furnace chamber 11, a first slow cooling furnace 12, a second slow cooling furnace 13, and a sampling chamber (not shown) that are partitioned by heat insulating plates 21, 22, and 23 arranged in three locations in the vertical direction. Have. The heat insulating plates 21 to 23 are plate members made of a heat insulating material such as ceramic fiber. The heat insulating plates 21 to 23 are respectively formed with transport holes 16 so that a glass ribbon B, which will be described later, passes downward. The heat insulating plates 21 to 23 are not shown in FIG. 3 except for two places in the horizontal direction in contact with the furnace wall 15 which will be described later for easy understanding. On the back side, the two horizontal portions are connected together. 3 and 4 show an example in which partitioning is performed at three locations by a heat insulating plate, but the number and installation positions of the heat insulating plates are not particularly limited, and one or more heat insulating plates may be provided. That's fine. In addition, since the space which can control atmospheric temperature independently increases, so that there are many heat insulation plates, and adjustment of atmospheric temperature (adjustment of slow cooling conditions) becomes easy, the slow cooling apparatus 3 has two or more heat insulation plates. It is preferably provided and partitioned into a plurality of spaces. In other words, it is sufficient that one or more annealing furnaces are provided, but three or more are more preferably provided.
 ガラス板製造装置1は、成形装置2と、徐冷装置3と、採板装置4とを有する。
 成形装置2は、溶融ガラスAからダウンドロー法を用いてガラスリボンBを成形する装置である。成形装置2は、耐火物レンガやブロック状の電鋳柱耐火物等により組み立てられた炉壁15で囲まれた炉室11を有している。炉室11内には、成形体10と、ローラ対(冷却ローラ対)17とが設けられている。成形体10は、上方に向かって開放された溝10aを含み(図4参照)、溝10a内を溶融ガラスAが流れる。成形体10は、例えば煉瓦により構成されている。ローラ対17は、成形体10の下端で融合した溶融ガラスAの幅方向両側の端部に対応する位置にそれぞれ1対設けられ、溶融ガラスAを狭持し下方に向けて引き抜きつつ、ガラスリボンBの両端部を冷却する冷却ローラの対である。なお、図3中紙面内の左右方向及び図4中の紙面に垂直方向が、ガラスリボンBの幅方向である。図3及び図4中紙面内の上下方向が、ガラスリボンBの搬送方向である。なお、図3及び図4では、成形体10と、ローラ対17が、間仕切りされずに設置されているが、徐冷条件の調整を容易にするため、これらの間に断熱版を設けて間仕切りしてもよい。また、ローラ対17は、2対以上設置されていても良い。
The glass plate manufacturing apparatus 1 includes a forming device 2, a slow cooling device 3, and a plate-taking device 4.
The forming apparatus 2 is an apparatus for forming the glass ribbon B from the molten glass A using a downdraw method. The forming apparatus 2 has a furnace chamber 11 surrounded by a furnace wall 15 assembled with refractory bricks, block-shaped electroformed column refractories, or the like. In the furnace chamber 11, a molded body 10 and a roller pair (cooling roller pair) 17 are provided. The molded body 10 includes a groove 10a opened upward (see FIG. 4), and the molten glass A flows in the groove 10a. The molded body 10 is made of brick, for example. One pair of rollers 17 is provided at positions corresponding to both ends in the width direction of the molten glass A fused at the lower end of the molded body 10, and the glass ribbon is held while holding the molten glass A and pulling it downward. A pair of cooling rollers for cooling both ends of B. In addition, the left-right direction in the paper surface in FIG. 3 and the direction perpendicular to the paper surface in FIG. 3 and 4 is the transport direction of the glass ribbon B. 3 and 4, the molded body 10 and the roller pair 17 are installed without partitioning, but in order to facilitate adjustment of the slow cooling conditions, a partition plate is provided by providing a heat insulating plate therebetween. May be. Two or more pairs of rollers 17 may be installed.
 このとき、成形工程中の、ガラスリボンBの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、ガラスリボンの両端部に向かって張力を加えながら両端部の粘度ηに関して、logη=9.0~14.5になるように冷却することが好ましい。この冷却は、例えばローラ対17がガラスリボンBの両端部を挟持することで行われる。
 冷却ローラであるローラ対17の各ローラによってガラスリボン17の両端部を冷却することで両端部の粘度が上昇するので、ガラスリボンBの幅の収縮を抑制することができる。
At this time, during the molding process, when the temperature of the glass ribbon B is in a temperature range from a temperature higher than the softening point to the vicinity of the annealing point, the viscosity at both ends while applying tension toward both ends of the glass ribbon. Regarding η, cooling is preferably performed so that log η = 9.0 to 14.5. This cooling is performed, for example, by the roller pair 17 sandwiching both ends of the glass ribbon B.
By cooling both ends of the glass ribbon 17 by each roller of the roller pair 17 that is a cooling roller, the viscosity of both ends increases, so that the shrinkage of the width of the glass ribbon B can be suppressed.
(徐冷装置)
 徐冷装置3は、ガラスリボンBを複数の搬送ローラ対18,19で挟持しつつ下方に向けて引き抜きながら徐冷する。徐冷装置3は、炉室11の下方に隣接して設けられた第1の徐冷炉12及び第2の徐冷炉13を有している。第1の徐冷炉12及び第2の徐冷炉13は、炉室11をも構成する上述の炉壁15で囲まれてなる。徐冷装置3は、第1の徐冷炉12及び第2の徐冷炉13内に、ガラスリボンBの搬送方向に沿って配された、後述するコンピュータに自動制御される加熱手段が設けられている。加熱手段は、特に制限されず、例えば電気ヒータが用いられる。第1の徐冷炉12内には、ガラスリボンBの搬送方向に配された3つの搬送ローラ対18が設けられている。第2の徐冷炉13内には、ガラスリボンBの搬送方向に配された4つの搬送ローラ対19が設けられている。さらに、徐冷装置3は、検出制御部30と、駆動部32とを有している(図5参照)。なお、徐冷炉12,13内の搬送ローラ対18,19の設置数に制約は無く、少なくとも1以上設けられていればよい。
(Slow cooling device)
The slow cooling device 3 cools the glass ribbon B while pulling it downward while holding the glass ribbon B between the plurality of conveying roller pairs 18 and 19. The slow cooling device 3 has a first slow cooling furnace 12 and a second slow cooling furnace 13 provided adjacent to the lower part of the furnace chamber 11. The first slow cooling furnace 12 and the second slow cooling furnace 13 are surrounded by the furnace wall 15 that also constitutes the furnace chamber 11. The slow cooling device 3 is provided with heating means that are arranged in the first slow cooling furnace 12 and the second slow cooling furnace 13 along the conveying direction of the glass ribbon B and are automatically controlled by a computer to be described later. The heating means is not particularly limited, and for example, an electric heater is used. In the first slow cooling furnace 12, three conveyance roller pairs 18 arranged in the conveyance direction of the glass ribbon B are provided. In the second slow cooling furnace 13, four transport roller pairs 19 arranged in the transport direction of the glass ribbon B are provided. Furthermore, the slow cooling device 3 includes a detection control unit 30 and a drive unit 32 (see FIG. 5). In addition, there is no restriction | limiting in the installation number of the conveyance roller pairs 18 and 19 in the slow cooling furnaces 12 and 13, and at least 1 or more should just be provided.
 搬送ローラ対18,19は、ガラスリボンBを下方に向かって引き込むことでガラスリボンBを搬送する。各搬送ローラ対18は、ガラスリボンBの幅方向両端部に隣接する近傍領域を狭持するようガラスリボンBの両側に配された4つの搬送ローラ18aと、ガラスリボンBに対し同じ側にある2つの搬送ローラ18aを連結する、ガラスリボンBの両側に配された2本の駆動用シャフト18bとを有している。各搬送ローラ対19は、ガラスリボンBの幅方向両端部に隣接する近傍領域を狭持するようガラスリボンBの両側に配された4つの搬送ローラ19aと、ガラスリボンBに対し同じ側にある2つの搬送ローラ19aを連結する、ガラスリボンBの両側に配された2本の駆動用シャフト19bとを有している。図3において、駆動用シャフト18b,19bの両端部は、図示が省略されている。なお、図3では、搬送ローラ18a,19aは、上述のものに限定されない。例えば、搬送ローラ18a,19aは、ガラスリボンBに対し同じ面側にあるもの同士が、駆動用シャフトによって連結されずに、ローラ対17のローラと同様に、ガラスリボンBの幅方向両端部に独立して配置されたものであっても良い。 The conveyance roller pairs 18 and 19 convey the glass ribbon B by drawing the glass ribbon B downward. Each conveyance roller pair 18 is on the same side with respect to the glass ribbon B as the four conveyance rollers 18a arranged on both sides of the glass ribbon B so as to sandwich a neighboring region adjacent to both ends in the width direction of the glass ribbon B. It has two drive shafts 18b arranged on both sides of the glass ribbon B for connecting the two transport rollers 18a. Each conveyance roller pair 19 is on the same side with respect to the glass ribbon B as the four conveyance rollers 19a disposed on both sides of the glass ribbon B so as to sandwich a neighboring region adjacent to both ends in the width direction of the glass ribbon B. It has two drive shafts 19b arranged on both sides of the glass ribbon B for connecting the two transport rollers 19a. In FIG. 3, both ends of the drive shafts 18b and 19b are not shown. In FIG. 3, the transport rollers 18a and 19a are not limited to those described above. For example, the conveying rollers 18a and 19a on the same surface side with respect to the glass ribbon B are not connected to each other by the driving shaft, and at the both ends in the width direction of the glass ribbon B, like the rollers of the roller pair 17. It may be arranged independently.
 徐冷工程を行う徐冷装置3では、ガラスリボンBの温度プロファイルを幅方向で一山の分布とし、その後一山の分布が搬送方向下流側に進むにつれて徐々に小さくなるように、ガラスリボンBの周りに配置されるヒータ等の制御を行うことが好ましい。その際、ガラスリボンBの歪点近傍の温度領域において、一山の分布が平坦な直線状の分布、すなわち幅方向の温度分布が一定となるように、図示されないヒータ等の制御を行うことが好ましい。言い換えると、ガラスリボンBの徐冷点に150℃を足した温度から歪点までの温度領域において、ガラスリボンの幅方向における中央部の冷却速度を、幅方向の両端部の冷却速度よりも速くし、ガラスリボンBの幅方向における中央部の温度が両端部よりも高い状態から歪点近傍の温度領域で同じになるように、温度プロファイルが一定になるようにすることが好ましい。このような温度分布にすることにより、ガラスリボンの搬送方向の下流側に向けて引っ張り応力が作用する。このため、ガラスリボンBは搬送方向の反りを抑制することができる。また、歪点近傍の温度領域で均一な温度プロファイルにするので、ガラス板において内部歪を低減することができる。
 さらに、ガラスリボンBの温度が徐冷点から(歪点-50℃)となる温度において、他の温度域に比べてゆっくりガラスリボンBを徐冷することが好ましい。これにより、ガラスリボンBの熱収縮率を低減することができる。
 さらに、ガラスリボンBの温度が、歪点から、歪点から200℃引いた温度になる温度領域において、ガラスリボンBの温度プロファイルを幅方向に沿って谷になり、その谷の深さが搬送方向下流側に進むにつれて大きくなるように、すなわち、中央部の温度が両端部に比べて次第に低くなるように、図示されないヒータ等の制御を行うことが好ましい。このように、温度プロファイルにおいて徐々に谷を深くすることで、搬送方向下流側に向かって引っ張り応力を作用させることができるので、搬送方向の反りを抑制することができる。
In the slow cooling device 3 that performs the slow cooling process, the glass ribbon B has a temperature profile of the glass ribbon B with a single distribution in the width direction, and then gradually decreases as the distribution of the single peak progresses downstream in the conveyance direction. It is preferable to control a heater or the like disposed around the. At that time, in a temperature region in the vicinity of the strain point of the glass ribbon B, a heater or the like (not shown) can be controlled so that the distribution of peaks is a straight linear distribution, that is, the temperature distribution in the width direction is constant. preferable. In other words, in the temperature range from the temperature obtained by adding 150 ° C. to the annealing point of the glass ribbon B to the strain point, the cooling rate at the center in the width direction of the glass ribbon is faster than the cooling rate at both ends in the width direction. It is preferable that the temperature profile be constant so that the temperature of the central portion in the width direction of the glass ribbon B is the same in the temperature region near the strain point from a state where the temperature is higher than both ends. By setting it as such temperature distribution, tensile stress acts toward the downstream side of the conveyance direction of a glass ribbon. For this reason, the glass ribbon B can suppress the curvature of a conveyance direction. In addition, since the temperature profile is uniform in the temperature region near the strain point, the internal strain can be reduced in the glass plate.
Further, it is preferable that the glass ribbon B is gradually cooled at a temperature at which the temperature of the glass ribbon B becomes from the annealing point (strain point −50 ° C.) as compared with other temperature ranges. Thereby, the thermal contraction rate of the glass ribbon B can be reduced.
Furthermore, in the temperature region where the temperature of the glass ribbon B becomes a temperature obtained by subtracting 200 ° C. from the strain point, the temperature profile of the glass ribbon B becomes a valley along the width direction, and the depth of the valley is conveyed. It is preferable to control a heater or the like (not shown) so as to increase as it goes downstream in the direction, that is, so that the temperature at the center portion becomes gradually lower than both end portions. Thus, by gradually deepening the valleys in the temperature profile, a tensile stress can be applied toward the downstream side in the transport direction, so that warpage in the transport direction can be suppressed.
 検出制御部30は、図5に示すように、搬送ローラ状態検出部(以下、単に検出部ともいう)37及び速度決定部38として機能する図示されないコンピュータを備える。図5は、搬送ローラ対18,19の回転駆動を制御する制御系の構成を説明するブロック図である。検出部37は、搬送ローラ対18,19に対応して配された温度センサ(ガラス状態検出部)34を有している。速度決定部38は、駆動部32を介して搬送ローラ対18,19に接続されている。検出制御部30の詳細は、後述する。
 駆動部32は、速度決定部38により決定された各搬送ローラ18a,19aの回転速度に基づいて、搬送ローラ18a,19aを回転駆動させる。駆動部32は、各搬送ローラ対18,19に対応して設けられた、図示されないモータを有している。なお、モータは、各搬送ローラ対18,19に対応して設けられていなくてもよく、その数は、例えば、各搬送ローラ対18,19の数より少なくてもよい。この場合、複数の搬送ローラ18a,19aが1台のモータで駆動されるように、各搬送ローラ18a,19a間で速度比を変更できるギアを備えたものを用いることができる。この場合、モータからの駆動力は、例えば、ユニバーサルジョイントなどを介して搬送ローラ18a,19aに伝達される。
As shown in FIG. 5, the detection control unit 30 includes a computer (not shown) that functions as a conveyance roller state detection unit (hereinafter also simply referred to as a detection unit) 37 and a speed determination unit 38. FIG. 5 is a block diagram illustrating the configuration of a control system that controls the rotational drive of the transport roller pairs 18 and 19. The detection unit 37 includes a temperature sensor (glass state detection unit) 34 disposed in correspondence with the pair of conveyance rollers 18 and 19. The speed determining unit 38 is connected to the conveying roller pair 18 and 19 via the driving unit 32. Details of the detection control unit 30 will be described later.
The driving unit 32 rotationally drives the transport rollers 18a and 19a based on the rotational speeds of the transport rollers 18a and 19a determined by the speed determination unit 38. The drive unit 32 has a motor (not shown) provided corresponding to each of the conveyance roller pairs 18 and 19. In addition, the motor may not be provided corresponding to each conveyance roller pair 18, 19, and the number thereof may be smaller than the number of each conveyance roller pair 18, 19, for example. In this case, it is possible to use one having a gear that can change the speed ratio between the transport rollers 18a and 19a so that the plurality of transport rollers 18a and 19a are driven by a single motor. In this case, the driving force from the motor is transmitted to the transport rollers 18a and 19a via, for example, a universal joint.
(検出制御部)
 ここで、検出制御部30について、より詳細に説明する。なお、検出制御部30で行う検出工程(ステップS51)は、上述したように本実施形態では行われるが、後述する変形例のように検出工程を行わず、徐冷工程は、速度決定工程と、速度制御工程とを含むこともできる。この場合、検出制御部30は用いられない。
 温度センサ34は、搬送ローラ18a,19aの温度を検出する。温度センサ34としては、例えば、接触式又は非接触式のものが用いられる。ここで、搬送ローラ18a,19aの温度を検出することには、搬送ローラ18a,19aの温度を算出することも含まれる。各温度センサ34は、具体的に、第1の徐冷炉12及び第2の徐冷炉13内での配置位置における雰囲気温度をそれぞれ検出する。そして、検出された雰囲気温度における、速度決定部38の後述する記憶部36に記憶された温度差データを参照して、搬送ローラ18a,19aの温度を算出する。検出部37は、検出された搬送ローラ18a,19aの温度に基づいて、後述するように、搬送ローラ18a,19aの熱膨張量を直径の変化として算出する。
(Detection control unit)
Here, the detection control unit 30 will be described in more detail. In addition, although the detection process (step S51) performed by the detection control unit 30 is performed in the present embodiment as described above, the detection process is not performed as in the modified example described later, and the slow cooling process is a speed determination process. And a speed control step. In this case, the detection control unit 30 is not used.
The temperature sensor 34 detects the temperature of the transport rollers 18a and 19a. As the temperature sensor 34, for example, a contact type or a non-contact type is used. Here, detecting the temperatures of the transport rollers 18a and 19a includes calculating the temperatures of the transport rollers 18a and 19a. Each temperature sensor 34 specifically detects the ambient temperature at the arrangement position in the first slow cooling furnace 12 and the second slow cooling furnace 13. And the temperature of conveyance roller 18a, 19a is calculated with reference to the temperature difference data memorize | stored in the memory | storage part 36 mentioned later of the speed determination part 38 in the detected atmospheric temperature. Based on the detected temperatures of the transport rollers 18a and 19a, the detection unit 37 calculates the amount of thermal expansion of the transport rollers 18a and 19a as a change in diameter, as will be described later.
 速度決定部38は、記憶部36を有している。記憶部36は、温度差データを記憶する。温度差データは、徐冷炉12,13の設置時に予め測定された、徐冷炉12,13の雰囲気温度と各雰囲気温度での搬送ローラ18a,19aの温度(表面温度)との差のデータを含む。温度差データは、徐冷炉12,13の構造によって異なって記憶される。記憶部36には、搬送ローラ18a,19aの熱膨張係数(以下、ローラ熱膨張係数ともいう)がさらに記憶されている。ローラ熱膨張係数は、搬送ローラ18a,19aの材質から決定される。 The speed determination unit 38 has a storage unit 36. The storage unit 36 stores temperature difference data. The temperature difference data includes data on the difference between the atmospheric temperature of the slow cooling furnaces 12 and 13 and the temperature (surface temperature) of the transport rollers 18a and 19a at each atmospheric temperature, which is measured in advance when the slow cooling furnaces 12 and 13 are installed. The temperature difference data is stored differently depending on the structure of the slow cooling furnaces 12 and 13. The storage unit 36 further stores thermal expansion coefficients (hereinafter also referred to as roller thermal expansion coefficients) of the transport rollers 18a and 19a. The roller thermal expansion coefficient is determined from the material of the transport rollers 18a and 19a.
 記憶部36には、また、速度決定部38で決定された各搬送ローラ18a,19aの回転速度、複数の搬送ローラ対18,19間で設定された基準となる周速度分布、各搬送ローラ18a,19aの直径の基準値がさらに記憶される。各搬送ローラ18a,19aの直径の基準値は、それぞれ常温(例えば、25度)での新品時の直径である。また、記憶部36は、基準となる周速度分布を達成するときの条件(搬送ローラの温度、ガラスリボンの温度、ガラスリボンの熱膨張係数、ガラスリボンの厚さ、幅、ガラスリボンの流量等)を記憶する。 The storage unit 36 also includes a rotational speed of each of the transport rollers 18a and 19a determined by the speed determination unit 38, a reference peripheral speed distribution set between the plurality of transport roller pairs 18 and 19, and each transport roller 18a. , 19a are further stored. The reference value of the diameter of each of the transport rollers 18a and 19a is a diameter at the time of a new article at normal temperature (for example, 25 degrees). The storage unit 36 also has conditions for achieving a reference peripheral velocity distribution (conveying roller temperature, glass ribbon temperature, glass ribbon thermal expansion coefficient, glass ribbon thickness, width, glass ribbon flow rate, etc. ) Is memorized.
 速度決定部38は、複数の搬送ローラ対18,19間で搬送ローラ18a,19aの周速度とガラスリボンBの搬送速度との相対速度が一定であるときの複数の搬送ローラ対18,19間の周速度比(周速度分布)を設定する。次いで、速度決定部38は、検出部37により算出された搬送ローラ18a,19aの直径の変化に基づいて、複数の搬送ローラ対18,19間の周速度比を保つように各搬送ローラ18a,19aの回転速度を決定する。 The speed determination unit 38 is provided between the plurality of conveyance roller pairs 18 and 19 when the relative speed between the circumferential speed of the conveyance rollers 18a and 19a and the conveyance speed of the glass ribbon B is constant between the plurality of conveyance roller pairs 18 and 19. Set the peripheral speed ratio (peripheral speed distribution). Next, the speed determination unit 38 is configured to maintain the peripheral speed ratio between the plurality of conveyance roller pairs 18 and 19 based on the change in the diameter of the conveyance rollers 18a and 19a calculated by the detection unit 37. The rotational speed of 19a is determined.
((周速度比の設定))
 複数の搬送ローラ対18,19間の周速度比は、例えば、全ての搬送ローラ18a,19aが同じ周速度になるよう、すべて1.0に設定される。このように基準として設定される周速度比は、従来ガラスリボンBがキズや形状変形の問題が生じることなく徐冷されたときの周速度比である。この基準となる周速度分布は、ガラスリボンBの温度、熱膨張係数、厚み、幅、ガラス流量等の条件とともに、速度決定部38に記憶保持されている。この周速度比は、後述するように、ガラスリボンBの温度が変化するなどの徐冷時の条件が変化する場合に、基準となる周速度分布が修正されて設定される。
((Setting of peripheral speed ratio))
The peripheral speed ratio between the plurality of transport roller pairs 18 and 19 is set to 1.0, for example, so that all the transport rollers 18a and 19a have the same peripheral speed. The peripheral speed ratio set as a reference in this way is the peripheral speed ratio when the conventional glass ribbon B is gradually cooled without causing problems of scratches or shape deformation. The reference peripheral speed distribution is stored and held in the speed determination unit 38 together with conditions such as the temperature, thermal expansion coefficient, thickness, width, and glass flow rate of the glass ribbon B. As will be described later, this peripheral speed ratio is set by correcting the reference peripheral speed distribution when conditions of slow cooling such as the temperature of the glass ribbon B change.
 複数の搬送ローラ対18,19間で、ガラスリボンBの搬送速度と搬送ローラ18a,19aの周速度との相対速度は、ガラスリボンBと搬送ローラ18a,19aとの間でのスリップをより確実に防ぐ観点では、0であるのが好ましい。 The relative speed between the conveyance speed of the glass ribbon B and the peripheral speed of the conveyance rollers 18a and 19a between the plurality of conveyance roller pairs 18 and 19 is more sure to slip between the glass ribbon B and the conveyance rollers 18a and 19a. From the viewpoint of preventing this, it is preferably 0.
 また、速度決定部38は、ガラスリボンBの温度、熱膨張係数、厚み、ガラス流量等によって、基準の周速度比を修正して設定する。
 具体的には、基準の周速度分布として設定される周速度比には、そのときの条件として各搬送ローラ対における基準となる温度が設定されている。したがって、この基準となる温度に対して現在のガラスリボンBの温度が変化した場合、例えば、温度T1がT2に変化した場合、T2とT1の温度差における熱膨張率の差を用いて、速度決定部38は基準の周速度分布として設定されている周速度比を修正する。ガラスリボンBの搬送速度は、ガラスリボンBの温度と熱膨張係数によって定まる熱膨張率によって変化するからである。この場合、ガラスリボンBの種類によって熱膨張係数は異なるので、ガラスリボンBの熱膨張係数と温度を考慮した熱膨張率の違いを用いてより一般的に周速度比を修正してもよい。このような周速度比は、ガラスリボンBの温度および熱膨張係数の温度依存性のほかに、ガラスリボンBの厚み、幅、ガラス流量等の条件の変化によっても修正されて設定される。したがって、ガラスリボンBの温度、熱膨張係数の温度依存性の特性、厚み、幅、ガラス流量等の基準の周速度比における条件は、速度決定部38に予め記憶保持されている。ガラス熱膨張係数は、溶融ガラスの組成から決定される。設定された周速度比から、最上流側の搬送ローラ対の現在の周速度を基準として、下流側の各搬送ローラ対の周速度が算出される。
 このように、周速度比をガラスリボンBの温度を含む状態の変化に応じて修正することにより、より適切な搬送ローラ18a,19aの回転速度を決定できる
Further, the speed determination unit 38 corrects and sets the reference peripheral speed ratio according to the temperature, the thermal expansion coefficient, the thickness, the glass flow rate, and the like of the glass ribbon B.
Specifically, a reference temperature in each pair of conveying rollers is set as a condition at that time in the peripheral speed ratio set as the reference peripheral speed distribution. Therefore, when the current temperature of the glass ribbon B changes with respect to this reference temperature, for example, when the temperature T 1 changes to T 2 , the difference in thermal expansion coefficient between the temperature difference between T 2 and T 1 is calculated. The speed determining unit 38 corrects the peripheral speed ratio set as the reference peripheral speed distribution. This is because the conveyance speed of the glass ribbon B changes depending on the coefficient of thermal expansion determined by the temperature of the glass ribbon B and the coefficient of thermal expansion. In this case, since the thermal expansion coefficient differs depending on the type of the glass ribbon B, the peripheral speed ratio may be more generally corrected using the difference in the thermal expansion coefficient in consideration of the thermal expansion coefficient and the temperature of the glass ribbon B. Such a peripheral speed ratio is corrected and set by changes in conditions such as the thickness, width, and glass flow rate of the glass ribbon B in addition to the temperature dependency of the glass ribbon B and the thermal expansion coefficient. Therefore, the conditions of the reference peripheral speed ratio such as the temperature of the glass ribbon B, the temperature-dependent characteristics of the thermal expansion coefficient, the thickness, the width, and the glass flow rate are stored and held in advance in the speed determination unit 38. The glass thermal expansion coefficient is determined from the composition of the molten glass. From the set peripheral speed ratio, the peripheral speeds of the respective transport roller pairs on the downstream side are calculated on the basis of the current peripheral speed of the transport roller pair on the most upstream side.
Thus, by correcting the peripheral speed ratio in accordance with the change in the state including the temperature of the glass ribbon B, it is possible to determine more appropriate rotation speeds of the transport rollers 18a and 19a.
((搬送ローラの回転速度の決定))
 速度決定部38は、算出した各搬送ローラ18a,19aの周速度に基づいて、下記式に従って各搬送ローラ18a,19aの回転速度を決定する。
        回転速度=周速度/(熱膨張した搬送ローラの直径×π)
((Determination of the rotation speed of the transport roller))
The speed determination unit 38 determines the rotation speed of each of the transport rollers 18a and 19a according to the following formula based on the calculated peripheral speed of each of the transport rollers 18a and 19a.
Rotational speed = peripheral speed / (diameter of thermally expanded conveying roller × π)
 ここで、徐冷炉12,13内の各搬送ローラ対18,19の配置位置において検出された雰囲気温度が、上述した基準となる周速度比における搬送ローラ対の温度に対して変化していた場合は、上述の周速度比を保つように、搬送ローラ18a,19aの回転速度を決定する。
 具体的に、検出部37は、温度センサ34により検知された温度が変化していた搬送ローラ18a,19aについて、搬送ローラ18a,19aの温度におけるローラ熱膨張係数と、各搬送ローラ18a,19aの直径の基準値とを参照し、下記式に従ってこの搬送ローラ18aの膨張量(直径の変化量)を算出する。
        dD=β・D・ΔT
 dD:膨張量
 β:熱膨張係数
 D:搬送ローラの直径の基準値
 ΔT:基準の周速度比において設定される搬送ローラの温度との温度差
Here, when the ambient temperature detected at the arrangement position of each conveyance roller pair 18 and 19 in the slow cooling furnaces 12 and 13 has changed with respect to the temperature of the conveyance roller pair at the reference peripheral speed ratio described above. The rotational speeds of the transport rollers 18a and 19a are determined so as to maintain the above-described peripheral speed ratio.
Specifically, the detection unit 37 has the roller thermal expansion coefficient at the temperature of the conveyance rollers 18a and 19a and the conveyance roller 18a and 19a with respect to the conveyance rollers 18a and 19a whose temperature detected by the temperature sensor 34 has changed. With reference to the reference value of the diameter, the amount of expansion (the amount of change in diameter) of the transport roller 18a is calculated according to the following formula.
dD = β · D · ΔT
dD: Expansion amount β: Thermal expansion coefficient D: Reference value of the diameter of the transport roller ΔT: Temperature difference from the temperature of the transport roller set at the reference peripheral speed ratio
 速度決定部38は、検出部37により算出された搬送ローラ18aの直径の変化量から、下記式に従い、周速度の変化量が1であるとして新たな回転速度を算出し、搬送ローラ18a,19aの回転速度を変更する。
        新たな回転速度=(周速度+周速度の変化量)/((搬送ローラの直径+搬送ローラの直径の変化量)×π)
The speed determination unit 38 calculates a new rotation speed from the amount of change in the diameter of the conveyance roller 18a calculated by the detection unit 37 according to the following formula, assuming that the amount of change in the peripheral speed is 1, and the conveyance rollers 18a and 19a. Change the rotation speed.
New rotation speed = (peripheral speed + change amount of peripheral speed) / ((change diameter of transport roller + change amount of transport roller diameter) × π)
 速度決定部38により決定された回転速度は駆動部32に送られ、搬送ローラ18a,19aの回転が制御される。
 また、図示されないコンピュータは、温度センサ34で検出された雰囲気温度に基づいて、徐冷炉12,13内の雰囲気温度がそれぞれ所定の温度範囲内で維持されるよう、徐冷炉12,13内の加熱手段を自動制御する。第1の徐冷炉12の所定の温度範囲は、例えば、500~800度に設定されている。第2の徐冷炉13の所定の温度範囲は、例えば、200~500度に設定されている。このように徐冷炉12,13内の雰囲気温度が制御されても上述したようにガラスリボンBの温度や搬送ローラ18a,19aの温度は変化する。しかし、この変化は比較的小さいため、上述した基準となる周速度比が温度に応じて修正されても、その修正量は小さく、設定された基準となる周速度比の分布を大きく変えない。
The rotation speed determined by the speed determination unit 38 is sent to the drive unit 32, and the rotation of the transport rollers 18a and 19a is controlled.
Further, the computer (not shown) uses heating means in the slow cooling furnaces 12 and 13 so that the atmospheric temperature in the slow cooling furnaces 12 and 13 is maintained within a predetermined temperature range based on the ambient temperature detected by the temperature sensor 34. Automatic control. The predetermined temperature range of the first slow cooling furnace 12 is set to, for example, 500 to 800 degrees. The predetermined temperature range of the second slow cooling furnace 13 is set to 200 to 500 degrees, for example. Thus, even if the atmospheric temperature in the slow cooling furnaces 12 and 13 is controlled, the temperature of the glass ribbon B and the temperatures of the transport rollers 18a and 19a change as described above. However, since this change is relatively small, even if the above-described reference peripheral speed ratio is corrected in accordance with the temperature, the correction amount is small, and the distribution of the set reference peripheral speed ratio is not greatly changed.
 なお、速度決定部38は、オペレータが入力した内容に基づいて搬送ローラ18a,19aの回転速度を決定してもよい。この場合、ガラス板製造装置1は、オペレータの入力操作を受け付ける図示しない入力部をさらに有し、この入力部は、オペレータが入力する搬送ローラ18a,19a回転速度を受け付ける。記憶部36は、温度差データ、ローラ熱膨張係数、周速度分布、各搬送ローラ18a,19aの直径の基準値、基準となる周速度分布を達成するときの条件などを記憶するものでなくてよく、オペレータにより、温度差データ、ローラ熱膨張係数、周速度分布、各搬送ローラ18a,19aの直径の基準値、基準となる周速度分布を達成するときの条件などに基づいて算出され、入力された回転速度を記憶するものであればよい。これら温度差データ、ローラ熱膨張係数、周速度分布、各搬送ローラ18a,19aの直径の基準値、基準となる周速度分布は、オペレータによって算出されてよく、算出された値は記憶部36に記憶されてよい。 The speed determination unit 38 may determine the rotation speeds of the transport rollers 18a and 19a based on the content input by the operator. In this case, the glass plate manufacturing apparatus 1 further includes an input unit (not shown) that receives an operator's input operation, and this input unit receives the rotation speeds of the transport rollers 18a and 19a input by the operator. The storage unit 36 does not store temperature difference data, roller thermal expansion coefficient, peripheral speed distribution, reference values of the diameters of the transport rollers 18a and 19a, conditions for achieving the reference peripheral speed distribution, and the like. It is often calculated and input by an operator based on temperature difference data, roller thermal expansion coefficient, peripheral speed distribution, reference value of the diameter of each of the transport rollers 18a and 19a, conditions for achieving the reference peripheral speed distribution, etc. What is necessary is just to memorize | store the performed rotation speed. The temperature difference data, the roller thermal expansion coefficient, the peripheral speed distribution, the reference value of the diameter of each of the transport rollers 18a and 19a, and the reference peripheral speed distribution may be calculated by an operator, and the calculated values are stored in the storage unit 36. May be remembered.
 採板装置4は、第2の徐冷炉13の下流側に配された図示しない採板室を有している。採板室では、ガラスリボンBが一定の長さ毎に切断され、ガラス板Cが採板される。ガラス板Cの厚さは、例えば、0.7mm以下、あるいは、0.5mm以下である。また、近年フラットパネルディスプレイのスリム化が求められているため、液晶ディスプレイや有機ELディスプレイなどのフラットディスプレイ用ガラス基板も、薄板化が求められている。他方、ガラス板の厚みが薄くなるほどガラス板の強度が低下してしまうため、破損が生じやすくなる。これらのことを考慮すると、フラットディスプレイ用のガラス板の厚みは、0.01~1.0mmであることが好ましく、0.05~0.7mmであることがより好ましく、0.05~0.5mmであることがさらに好ましい。なお、薄いガラス板ほど強度が低下するため、ガラスリボンを搬送するローラとガラスリボンとの間のスリップによる傷などによって割れ易くなる虞がある。つまり、上述したようにローラとガラスリボンとの間のスリップを抑制することができる本実施形態は、例えば、0.05~0.7mmのガラス板の製造に好適であり、0.05~0.5mmの薄板ガラスの製造に特に好適である。
 また、例えば、ガラス板Cの幅方向長さは1000mm以上、1500mm以上、2000mm以上、2500mm以上であってもよく、長手方向長さは1000mm以上、1500mm以上、2000mm以上、2500mm以上であってもよい。ガラス板Cは、大型化するほどガラスリボンの自重により各搬送ローラ18a,19aとの間で相対速度差(スリップ)が生じやすくなる。そのため、ガラス板Cの幅方向長さが1000mm以上である場合には、上記相対速度差が生じやすくなる傾向にあるが、上記相対速度差の発生を防止するという効果が顕著となる。なお、ガラス板Cの幅方向長さは、1500mm以上、2000mm以上、2500mm以上であるほど本発明の効果が有用となる。
The plate-taking device 4 has a plate-making chamber (not shown) arranged on the downstream side of the second slow cooling furnace 13. In the plate-making chamber, the glass ribbon B is cut at regular intervals, and the glass plate C is sampled. The thickness of the glass plate C is, for example, 0.7 mm or less, or 0.5 mm or less. In recent years, since flat panel displays have been required to be slim, flat display glass substrates such as liquid crystal displays and organic EL displays are also required to be thin. On the other hand, since the strength of the glass plate decreases as the thickness of the glass plate decreases, breakage easily occurs. Considering these, the thickness of the glass plate for flat display is preferably 0.01 to 1.0 mm, more preferably 0.05 to 0.7 mm, and 0.05 to 0.00 mm. More preferably, it is 5 mm. In addition, since intensity | strength falls as a thin glass plate, there exists a possibility that it may become easy to break by the damage | wound by the slip between the roller and glass ribbon which convey a glass ribbon. That is, as described above, the present embodiment capable of suppressing the slip between the roller and the glass ribbon is suitable for manufacturing a glass plate having a thickness of 0.05 to 0.7 mm, for example. It is particularly suitable for the production of 5 mm thin glass.
Further, for example, the length in the width direction of the glass plate C may be 1000 mm or more, 1500 mm or more, 2000 mm or more, 2500 mm or more, and the length in the longitudinal direction may be 1000 mm or more, 1500 mm or more, 2000 mm or more, 2500 mm or more. Good. As the glass plate C increases in size, a relative speed difference (slip) tends to occur between the transport rollers 18a and 19a due to the weight of the glass ribbon. Therefore, when the length in the width direction of the glass plate C is 1000 mm or more, the relative speed difference tends to be easily generated, but the effect of preventing the relative speed difference from occurring is remarkable. In addition, the effect of this invention becomes so useful that the length of the width direction of the glass plate C is 1500 mm or more, 2000 mm or more, 2500 mm or more.
(ガラス板の組成)
 上述したガラス板製造方法及びガラス板製造装置で製造されるガラス板は、例えば液晶ディスプレイ用ガラス基板が好適に挙げられる。
 液晶ディスプレイ用ガラス基板のガラス組成は、以下のガラス組成が例示される。
SiO2 50~70質量%、
23 0~15質量%、
Al23 5~25質量%、
MgO 0~10質量%、
CaO 0~20質量%、
SrO 0~20質量%、
BaO 0~10質量%、
RO 5~20質量% (但し、RはMg、Ca,Sr及びBaから選ばれる、ガラス板に含有される全成分であって、少なくとも1種である)、
を含有することが好ましい。
 さらに、液晶ディスプレイ用ガラス基板に形成されるTFT(Thin Film Transistor)の破壊を抑制する観点からは、無アルカリガラス(アルカリ成分を実質的に含まないガラス)であることが好ましい。他方、溶融ガラスの熔解性及び清澄性を向上させるために、あえてアルカリ成分を微量含有させるようにしてもよい。この場合、
R’2Oについては、0.05質量%を超え2.0質量%以下、より好ましくはR’2O 0.1質量%を超え2.0質量%以下(但し、R’はLi、Na及びKから選ばれる、ガラス板に含有される全成分であって、少なくとも1種である)を含むことが好ましい。
(Composition of glass plate)
As a glass plate manufactured with the glass plate manufacturing method and glass plate manufacturing apparatus mentioned above, the glass substrate for liquid crystal displays is mentioned suitably, for example.
The following glass composition is illustrated as a glass composition of the glass substrate for liquid crystal displays.
50 to 70% by mass of SiO 2
B 2 O 3 0-15% by mass,
Al 2 O 3 5 to 25% by mass,
MgO 0-10% by mass,
CaO 0-20% by mass,
SrO 0-20% by mass,
BaO 0-10% by mass,
RO 5-20% by mass (provided that R is all components contained in the glass plate selected from Mg, Ca, Sr and Ba, and is at least one).
It is preferable to contain.
Furthermore, from the viewpoint of suppressing the destruction of TFT (Thin Film Transistor) formed on the glass substrate for liquid crystal display, non-alkali glass (glass containing substantially no alkali component) is preferable. On the other hand, in order to improve the meltability and clarity of the molten glass, a small amount of an alkali component may be included. in this case,
Regarding R ′ 2 O, it exceeds 0.05% by mass and is 2.0% by mass or less, more preferably, R ′ 2 O exceeds 0.1% by mass and is 2.0% by mass or less (provided that R ′ is Li, Na And all components contained in the glass plate selected from K and K, which are at least one kind).
 以上のように構成されたガラス板製造装置1によれば、搬送ローラ18a,19aに生じる径変化を考慮し、それを補償するように、各搬送ローラ18a,19aの回転速度が制御されるので、各搬送ローラ18a,19aの周速度とガラスリボンBの搬送速度との相対速度が、複数の搬送ローラ対18,19において差が生じるのを、より高い精度で抑制することができる。これにより、ガラスリボンBと搬送ローラ18a,19aとの間でのスリップを防ぎ、ガラス板表面の品質を向上させることができる。
 また、ガラスリボンを搬送するために用いる複数の搬送ローラ対の周速度分布をガラスリボンの温度に応じて修正して設定するので、ガラスリボンが余り、ガラスリボンが変形してしまうのを防ぐことができ、また、必要以上に速くなることで、ガラスリボンが引っ張られ、ガラスリボンが割れるのを防ぐことができる。このような効果は、ガラスの搬送速度が速い場合(例えば、搬送速度200m/以上の場合)や、ガラスリボンの強度が小さくて変形し易い厚さ0.5mm以下、好ましくは、0.05~0.5mmの薄板ガラスの製造において、より顕著である。
According to the glass plate manufacturing apparatus 1 configured as described above, the rotational speed of each of the transport rollers 18a and 19a is controlled so as to compensate for the change in diameter that occurs in the transport rollers 18a and 19a. It is possible to suppress a difference in the relative speed between the peripheral speed of each of the transport rollers 18a and 19a and the transport speed of the glass ribbon B in the plurality of transport roller pairs 18 and 19 with higher accuracy. Thereby, the slip between the glass ribbon B and the conveyance rollers 18a and 19a can be prevented, and the quality of the glass plate surface can be improved.
In addition, the peripheral speed distribution of a plurality of pairs of transport rollers used for transporting the glass ribbon is corrected and set according to the temperature of the glass ribbon, so that the glass ribbon is not excessively prevented from being deformed. Moreover, it can prevent that a glass ribbon is pulled and a glass ribbon breaks because it becomes quicker than necessary. Such an effect is obtained when the glass conveying speed is high (for example, when the conveying speed is 200 m / or more), or when the glass ribbon has a small strength and is easily deformed to a thickness of 0.5 mm or less, preferably 0.05 to This is more remarkable in the production of 0.5 mm thin glass.
 なお、複数の搬送ローラ対の数は、少なくとも2あればよく、特に制限されない。
 また、上述の例では、温度センサにおいて、徐冷炉12,13内の雰囲気温度が検出され、これを用いてガラスリボン温度及び搬送ローラ温度が算出されたが、ガラスリボン温度及び搬送ローラ温度は直接測定されてもよい。そのために、例えば、ガラス状態検出部として、ガラスリボンの温度を連続的に測定するための放射温度計が用いられてよく、搬送ローラ状態検出部として、搬送ローラの温度を連続的に測定するための温度計が用いられてよい。
 周速度比は、上述のものに制限されない。また、速度決定部38は、周速度分布として、周速度比に代えて、各搬送ローラ18a,19aの具体的な周速度を算出してもよい。この場合、基準となる周速度分布および修正後の周速度も具体的な速度の値として設定される。
 本実施形態では、搬送ローラの直径の変化に応じて、設定された周速度分布になるように回転速度を調整する他、周速度分布をガラスリボンの温度に応じて基準となる周速度分布を修正して設定する。しかし、基準となる周速度分布をガラスリボンの現在の温度に応じて修正しなくてもよい。しかし、表面品質に優れたガラス板を製造する点で、基準となる周速度分布をガラスリボンの現在の温度に応じて修正することが好ましい。
Note that the number of the plurality of conveying roller pairs is not particularly limited as long as it is at least two.
In the above-described example, the temperature sensor detects the atmospheric temperature in the slow cooling furnaces 12 and 13 and uses this to calculate the glass ribbon temperature and the conveyance roller temperature, but the glass ribbon temperature and the conveyance roller temperature are directly measured. May be. For this purpose, for example, a radiation thermometer for continuously measuring the temperature of the glass ribbon may be used as the glass state detecting unit, and for continuously measuring the temperature of the conveying roller as the conveying roller state detecting unit. The following thermometers may be used.
The peripheral speed ratio is not limited to that described above. Further, the speed determination unit 38 may calculate specific peripheral speeds of the transport rollers 18a and 19a as the peripheral speed distribution instead of the peripheral speed ratio. In this case, the reference peripheral speed distribution and the corrected peripheral speed are also set as specific speed values.
In this embodiment, in addition to adjusting the rotational speed so as to obtain a set peripheral speed distribution according to the change in the diameter of the transport roller, the peripheral speed distribution is changed to a reference peripheral speed distribution according to the temperature of the glass ribbon. Modify and set. However, the reference peripheral velocity distribution need not be corrected in accordance with the current temperature of the glass ribbon. However, it is preferable to correct the reference peripheral velocity distribution in accordance with the current temperature of the glass ribbon in terms of manufacturing a glass plate having excellent surface quality.
(第1実施形態の変形例)
 第1実施形態では、搬送ローラ対18,19の各ローラに生じる搬送ローラの径変化を補償するように、搬送ローラ18a,19aの回転速度が決定されるが、搬送ローラ18a,19aの他に、成形工程で冷却ローラ対として用いるローラ対17の各ローラの径変化を補償するように、ローラ対17の各ローラの回転速度が決定される。ローラ対17の各ローラは、上述した搬送ローラ状態検出部37のような検出部を用いて、ローラ対17の各ローラの状態を検出して、検出結果に基づいてローラ対17の各ローラの径変化を補償するように、ローラ対17の各ローラの回転速度が決定される。
 一般に、ローラ対17の各ローラの周速度は、ガラス板の厚み分布やガラス表面の凹凸が最も小さくなるように適切な値に設定しているので、その値からずれることは、ガラス板の厚み分布やガラス表面の凹凸を悪化させることになる。
 すなわち、ローラ対17の周速度が変化すると、成形体10の下端からローラ対17の間で行われるガラスリボンBの引伸ばしの量と、ローラ対17から搬送ローラ対18の間で行われるガラスリボンBの引伸ばしの量が変ることにより、(成形体10の下端~ローラ対17間でのガラスリボンBの幅方向の温度分布と、ローラ対17~搬送ローラ対18,19でのガラスリボンの幅方向温度分布の形態が、異なるため)製造されたガラス板の幅方向の厚味分布やガラス表面の凹凸の大きさが変化してしまう。このため、ローラ対17の各ローラの径変化を補償するように、ローラ対17の各ローラの回転速度が決定されることが好ましい。
(Modification of the first embodiment)
In the first embodiment, the rotational speed of the transport rollers 18a and 19a is determined so as to compensate for the change in the diameter of the transport rollers that occurs in each roller of the transport roller pair 18 and 19, but in addition to the transport rollers 18a and 19a, The rotational speed of each roller of the roller pair 17 is determined so as to compensate for the change in diameter of each roller of the roller pair 17 used as the cooling roller pair in the molding process. Each roller of the roller pair 17 detects the state of each roller of the roller pair 17 using a detection unit such as the above-described conveyance roller state detection unit 37, and based on the detection result, each roller of the roller pair 17 is detected. The rotational speed of each roller of the roller pair 17 is determined so as to compensate for the diameter change.
In general, the peripheral speed of each roller of the roller pair 17 is set to an appropriate value so that the thickness distribution of the glass plate and the unevenness of the glass surface are minimized. Distribution and unevenness of the glass surface will be deteriorated.
That is, when the peripheral speed of the roller pair 17 changes, the amount of the glass ribbon B stretched between the lower end of the molded body 10 and the roller pair 17 and the glass performed between the roller pair 17 and the conveying roller pair 18. By changing the amount of stretching of the ribbon B (the temperature distribution in the width direction of the glass ribbon B between the lower end of the molded body 10 and the roller pair 17 and the glass ribbon at the roller pair 17 to the conveying roller pairs 18 and 19) The thickness distribution in the width direction of the manufactured glass plate and the size of the irregularities on the glass surface are changed. For this reason, it is preferable that the rotational speed of each roller of the roller pair 17 is determined so as to compensate for a change in the diameter of each roller of the roller pair 17.
 なお、本変形例では、搬送ローラ対18,19の各ローラの他に、成形工程で冷却ローラ対として用いるローラ対17の各ローラの径変化を補償するように回転速度を決定したが、搬送ローラ対18,19及びローラ対17の各ローラの少なくともいずれか1つの各ローラについて各ローラの径変化を補償するように回転速度を決定してもよい。
 すなわち、冷却ローラや搬送ローラの径変化を補償するようにローラの回転速度を決定することは、全てのローラ(冷却ローラ、搬送ローラ)で行われる必要はなく、効果的なローラのみに対して行ってもよい。
In this modification, the rotational speed is determined so as to compensate for the change in the diameter of each roller of the roller pair 17 used as the cooling roller pair in the molding process in addition to the rollers of the transport roller pair 18 and 19, but The rotational speed may be determined so as to compensate for a change in the diameter of each roller of at least one of the rollers of the roller pair 18, 19 and the roller pair 17.
In other words, it is not necessary to determine the rotation speed of the roller so as to compensate for the change in the diameter of the cooling roller or the conveyance roller, and it is not necessary to perform it for all rollers (cooling roller, conveyance roller), You may go.
 例えば、ガラスリボンBの中央部が軟化点(粘度ηがlogη=7.65となる温度)以下の領域に設けられた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定し、搬送ローラを回転駆動させることで、ガラスリボンBのスリップなどを抑制することができ、ガラスリボンBの表面に傷が発生することを抑制できる。
 ガラスが軟化点以上であるとガラスリボンBは十分に固化していないためスリップは生じ難い。他方、軟化点以下のガラスリボンBではスリップが生じやすくなる。このため、ガラスリボンBの中央部が軟化点以下の領域に設けられた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定することが好ましい。
For example, the rotational speed of the transport roller is determined so as to compensate for the change in the diameter of the transport roller provided in the region where the central portion of the glass ribbon B is equal to or lower than the softening point (temperature at which the viscosity η is log η = 7.65), By rotating the transport roller, slip of the glass ribbon B and the like can be suppressed, and generation of scratches on the surface of the glass ribbon B can be suppressed.
If the glass is above the softening point, the glass ribbon B is not sufficiently solidified, so that slip is unlikely to occur. On the other hand, slip is likely to occur in the glass ribbon B below the softening point. For this reason, it is preferable to determine the rotational speed of the conveyance roller so as to compensate for the change in the diameter of the conveyance roller provided in the region where the central portion of the glass ribbon B is below the softening point.
 また、上述した徐冷工程の中で、少なくともガラスリボンBの中央部の温度がガラス転移点以上軟化点以下となる温度領域に設けた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定することで、ガラスリボンBの塑性変形の抑制効果は大きくなる。したがって、少なくともガラスリボンBの中央部の温度がガラス転移点以上軟化点以下となる温度領域に設けた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定することが好ましい。
 また、ガラスリボンBの中央部の温度がガラス転移点以上軟化点以下となる温度領域に設けた搬送ローラは、径変化が生じやいため、この領域に設けた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定することが好ましい。
 ガラス温度が軟化点より高温である場合には、ガラスに働く圧縮応力が瞬時に緩和されるため、ガラスリボンBに波形状の塑性変形は生じ難い。他方、ガラス温度がガラス転移点よりも低温である場合には、ガラスリボンBの粘度が十分に上昇しているため、波形状の塑性変形は生じ難い。
 また、上流側の搬送ローラほど磨耗や熱膨張によるローラ径変化が生じやすい。つまり、少なくとも温度がガラス転移点以上軟化点以下となる温度領域に設けた搬送ローラの径変化を補償するように搬送ローラの回転速度を決定することが好ましい。
Further, in the above-described slow cooling step, at least the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided in a temperature region where the temperature of the glass ribbon B is at least the glass transition point and below the softening point. The effect of suppressing the plastic deformation of the glass ribbon B is increased. Therefore, it is preferable to determine the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided in a temperature region in which at least the temperature of the central portion of the glass ribbon B is not less than the glass transition point and not more than the softening point.
Further, since the diameter of the conveyance roller provided in the temperature region where the temperature of the central portion of the glass ribbon B is not less than the glass transition point and not more than the softening point is likely to change, the diameter change of the conveyance roller provided in this region is compensated. It is preferable to determine the rotation speed of the transport roller.
When the glass temperature is higher than the softening point, the compressive stress acting on the glass is instantly relieved, so that the glass ribbon B hardly undergoes wave-shaped plastic deformation. On the other hand, when the glass temperature is lower than the glass transition point, the viscosity of the glass ribbon B is sufficiently increased, so that the corrugated plastic deformation hardly occurs.
Also, the upstream roller tends to change in roller diameter due to wear or thermal expansion. That is, it is preferable to determine the rotation speed of the conveying roller so as to compensate for a change in the diameter of the conveying roller provided at least in a temperature region where the temperature is not less than the glass transition point and not more than the softening point.
 また、ガラスリボンBの中央部の温度が徐冷点から(歪点―50℃)となる温度領域に設けられた搬送ローラの径変化を補償するように、搬送ローラの回転速度を決定し、前記搬送ローラを回転駆動させることで、ガラスリボンの塑性変形を抑制することができる。
 このように、ガラスリボンBのどの特徴を改善するかによって、ローラの径変化を補償するように回転速度を決定する搬送ローラの場所は異なる。
Further, the rotation speed of the conveyance roller is determined so as to compensate for the change in the diameter of the conveyance roller provided in the temperature region where the temperature of the central portion of the glass ribbon B is from the annealing point (strain point—50 ° C.), By rotating the transport roller, plastic deformation of the glass ribbon can be suppressed.
Thus, depending on which characteristic of the glass ribbon B is to be improved, the location of the conveyance roller that determines the rotation speed so as to compensate for the change in the diameter of the roller varies.
(第2実施形態)
 次に、本発明の第2実施形態であるガラス板製造装置について説明する。
 ここでは、上述の第1実施形態との相違に注目して説明する。
 第1実施形態の搬送ローラ状態検出部37は、搬送ローラの温度を検出する温度センサ34を含むが、第2実施形態の搬送ローラ状態検出部(以下、単に検出部ともいう)47は、図6に示すように、搬送ローラの磨耗量を検出するための距離測定センサ44を含む。図6は、第2実施形態の搬送ローラ対18,19の回転駆動を制御する制御系の構成を説明するブロック図である。なお、図6において、第1実施形態と同一の符号で示す要素は、第1実施形態で説明した構成と相違しない。
(Second Embodiment)
Next, the glass plate manufacturing apparatus which is 2nd Embodiment of this invention is demonstrated.
Here, the description will be made paying attention to the difference from the first embodiment.
The conveyance roller state detection unit 37 according to the first embodiment includes a temperature sensor 34 that detects the temperature of the conveyance roller. The conveyance roller state detection unit (hereinafter also simply referred to as a detection unit) 47 according to the second embodiment is illustrated in FIG. As shown in FIG. 6, a distance measurement sensor 44 for detecting the wear amount of the transport roller is included. FIG. 6 is a block diagram illustrating the configuration of a control system that controls the rotational driving of the transport roller pairs 18 and 19 according to the second embodiment. In FIG. 6, elements indicated by the same reference numerals as those in the first embodiment are not different from the configurations described in the first embodiment.
 距離測定センサ44は、各搬送ローラ対18,19に対応して複数設けられている。距離測定センサ44は、駆動用シャフト間隔を検出する。駆動用シャフト間隔は、ガラスリボンBに対し同じ側にある搬送ローラ18a,19a同士を連結する駆動用シャフト18b,19bと、この駆動用シャフト18b,19bと対向して配された駆動用シャフト18b,19bとの距離をいう。搬送ローラ対18,19は、対の搬送ローラ18a,19a間が互いに付勢された状態でガラスリボンBを挟む。したがって、検出部47では、各搬送ローラ18a,19aの磨耗量は、下記式に従って算出されるローラ半径の新品時のローラ半径からの変化量が、搬送ローラ18a,19aの磨耗に起因して生じたとして検出される。この式では、ガラスリボンBの厚みは、各搬送ローラ18a,19aの位置において一定であるため、駆動用シャフト18b,19b同士の間隔を測定することで、ローラ半径が算出される。
        ローラ半径=(駆動用シャフト間隔-ガラスリボン厚み)/2
A plurality of distance measuring sensors 44 are provided corresponding to the respective transport roller pairs 18 and 19. The distance measuring sensor 44 detects the driving shaft interval. The drive shaft spacing is such that the drive shafts 18b and 19b connect the conveying rollers 18a and 19a on the same side with respect to the glass ribbon B, and the drive shaft 18b disposed opposite to the drive shafts 18b and 19b. , 19b. The pair of transport rollers 18 and 19 sandwich the glass ribbon B in a state where the pair of transport rollers 18a and 19a are urged to each other. Therefore, in the detection unit 47, the amount of wear of each of the transport rollers 18a and 19a is caused by the amount of change of the roller radius calculated according to the following formula from the roller radius when new, due to the wear of the transport rollers 18a and 19a. Detected as In this equation, since the thickness of the glass ribbon B is constant at the positions of the transport rollers 18a and 19a, the roller radius is calculated by measuring the distance between the drive shafts 18b and 19b.
Roller radius = (drive shaft interval-glass ribbon thickness) / 2
 検出制御部40の速度決定部48は、検出された搬送ローラ18a,19aの磨耗に起因する搬送ローラ18a,19aの半径の変化により生じた、搬送ローラ18a,19aの周速度の周速度比からのずれを補償するように搬送ローラ18a,19aの回転速度を決定する。
 なお、第2実施形態では、搬送ローラ18a,19aの径変化として、磨耗の状態を基に算出された半径の変化を用いるが、この磨耗の状態を第1実施形態で用いた搬送ローラ18a,19aの温度とともに統合して適用することもできる。この場合、搬送ローラ18a,19aの径は、磨耗量によって変化すると共に、熱膨張により変化する。この径の変化に伴って変化した搬送ローラの周速度が周速度比に維持されるように、搬送ローラ18a,19aの回転速度を算出することができる。
 さらに、搬送ローラ18a,19aの径変化に加え、ガラスリボンの状態として、ガラスリボンBの熱膨張に起因しガラスリボンBの温度に応じて変化するガラスリボンBの搬送速度変化を統合して適用することもできる。
The speed determination unit 48 of the detection control unit 40 determines the peripheral speed ratio of the peripheral speeds of the transport rollers 18a and 19a caused by the change in the radius of the transport rollers 18a and 19a due to the detected wear of the transport rollers 18a and 19a. The rotational speeds of the transport rollers 18a and 19a are determined so as to compensate for the deviation.
In the second embodiment, the radius change calculated based on the wear state is used as the diameter change of the transport rollers 18a and 19a. However, the wear roller 18a, 19a used in the first embodiment uses this wear state. It can also be applied together with the temperature of 19a. In this case, the diameters of the transport rollers 18a and 19a vary with the amount of wear and also with thermal expansion. The rotational speeds of the transport rollers 18a and 19a can be calculated so that the peripheral speed of the transport rollers that changes with the change in diameter is maintained at the peripheral speed ratio.
Furthermore, in addition to changes in the diameters of the transport rollers 18a and 19a, a change in the transport speed of the glass ribbon B that changes according to the temperature of the glass ribbon B due to the thermal expansion of the glass ribbon B as a state of the glass ribbon B is integrated and applied. You can also
 以上の第2実施形態によれば、搬送ローラ18a,19aの磨耗による径変化による搬送ローラの周速度の周速度比からのずれを補償することができる。
 なお、このガラス板製造装置において、距離測定センサ44は、搬送ローラ対18,19の駆動用シャフト18b,19b同士の距離に代えて、搬送ローラ対18,19の駆動用シャフト18b,19bの原点位置からのずれを読み取って、磨耗量を検出するように構成されてもよい。原点位置は、搬送ローラ18a,19aの新品時に駆動用シャフト18b,19bが位置する中心位置であり、記憶部46において記憶される。搬送ローラ対18,19の駆動用シャフト18b,19bの原点位置からのずれを用いて、搬送ローラ18a,19aの磨耗量を検出し、これによって磨耗した搬送ローラのローラ径は算出され得る。
 なお、搬送ローラ18a,19aの径は、検出部47が算出することに限定されず、例えば、磨耗量に基づいてオペレータが算出してもよい。この場合、オペレータにより算出され、速度決定部48に入力された搬送ローラ18a,19aの径に基づいて、速度決定部48により搬送ローラ18a,19aの回転速度が算出される。あるいは、オペレータが算出した搬送ローラ18a,19aの径に基づいてさらに搬送ローラ18a,19aの回転速度を算出し、この算出結果を速度決定部48に入力してもよい。速度決定部48において算出されあるいは入力された回転速度は、速度決定部48により決定され、駆動部32に伝達される。また、搬送ローラ18a,19aの磨耗量、原点位置は、オペレータが算出してもよく、算出された値は記憶部46に記憶されてよい。
According to the second embodiment described above, it is possible to compensate for a deviation from the peripheral speed ratio of the peripheral speed of the transport roller due to a diameter change due to wear of the transport rollers 18a and 19a.
In this glass plate manufacturing apparatus, the distance measurement sensor 44 replaces the distance between the drive shafts 18b and 19b of the transport roller pair 18 and 19 with the origin of the drive shafts 18b and 19b of the transport roller pair 18 and 19. It may be configured to detect the amount of wear by reading the deviation from the position. The origin position is a center position where the drive shafts 18b and 19b are located when the transport rollers 18a and 19a are new, and is stored in the storage unit 46. The amount of wear of the transport rollers 18a and 19a is detected using the deviation of the drive shafts 18b and 19b from the origin position of the pair of transport rollers 18 and 19, and the roller diameter of the transport rollers thus worn can be calculated.
The diameters of the transport rollers 18a and 19a are not limited to being calculated by the detection unit 47, and may be calculated by an operator based on the amount of wear, for example. In this case, based on the diameters of the transport rollers 18a and 19a calculated by the operator and input to the speed determination unit 48, the rotation speeds of the transport rollers 18a and 19a are calculated by the speed determination unit 48. Alternatively, the rotational speeds of the transport rollers 18a and 19a may be further calculated based on the diameters of the transport rollers 18a and 19a calculated by the operator, and the calculation result may be input to the speed determination unit 48. The rotation speed calculated or input by the speed determination unit 48 is determined by the speed determination unit 48 and transmitted to the drive unit 32. Further, the wear amount and the origin position of the transport rollers 18 a and 19 a may be calculated by the operator, and the calculated values may be stored in the storage unit 46.
(第2実施形態の変形例)
 第2実施形態のガラス板製造装置の距離測定センサ44の代わりに、搬送ローラ18a,19aの使用日数に基づいて算出される搬送ローラの直径の変化を搬送ローラ18a,19aの径変化としてカウントする装置が用いられてもよい。例えば、この径変化をカウントする装置は、搬送ローラ18a,19aの使用日数を速度決定部48に送る。速度決定部48は、速度決定部48の記憶部46に記憶された、各搬送ローラ18a,19aについて過去の交換実績として、過去に交換した時のローラ直径のその新品時からの磨耗量と交換までの使用日数とを参照し、これらに基づいて1日あたりの磨耗量を算出する。次いで、記憶部46に記憶された新品時のローラ直径が参照され、下記式に従ってローラ直径が算出される。このとき、上記径変化をカウントする装置から送られた使用日数を用いて下記式に示すように、1日当りの磨耗量×使用日数の積が、搬送ローラ18a,19aの磨耗量に相当するとして検出される。
        ローラ直径=新品時の直径-(1日当りの磨耗量×使用日数)
 速度決定部48は、記憶部46において、各搬送ローラ18a,19aについて過去の交換実績、新品時のローラ直径を記憶する。
 この変形例によれば、より簡単な方法で、搬送ローラ18a,19aの直径の変化により生じた搬送ローラ18a,19aの周速度の周速度比からのずれを補償することができる。なお、1日あたりの磨耗量は、オペレータが算出して記憶部46に記憶させることもできる。また、上記磨耗量による搬送ローラ18a,19aの直径変化も、オペレータが算出して、検出制御部40あるいは駆動部32に伝達されるようにしてもよい。さらに、過去に交換した時のローラ直径のその新品時からの磨耗量、交換までの使用日数は、オペレータによって算出されてもよく、算出された値は記憶部46に記憶されてよい。
 このように、本変形例では、搬送ローラ18a,19aは、ローラの径変化を補償するように搬送ローラ18a,19aの使用日数に基づいて決定されたローラの回転速度に基づいて回転駆動される。本変形例では、第1実施形態及び第2実施形態のように、搬送ローラ状態検出部による搬送ローラの状態を検出しその検出結果に基づいてローラ回転速度を決定するのではなく、搬送ローラ18a,19aの使用日数に基づいてシーケンシャルにローラ回転速度を決定する点で、第1実施形態及び第2実施形態と異なる。
(Modification of the second embodiment)
Instead of the distance measuring sensor 44 of the glass plate manufacturing apparatus according to the second embodiment, a change in the diameter of the conveyance roller calculated based on the number of days of use of the conveyance rollers 18a and 19a is counted as a change in the diameter of the conveyance rollers 18a and 19a. An apparatus may be used. For example, the device that counts the diameter change sends the usage days of the transport rollers 18 a and 19 a to the speed determination unit 48. The speed determination unit 48 replaces the amount of wear from the new roller diameter when the transport rollers 18a and 19a stored in the storage unit 46 of the speed determination unit 48 are replaced in the past. The amount of wear per day is calculated based on these and the number of days used. Next, the new roller diameter stored in the storage unit 46 is referred to, and the roller diameter is calculated according to the following formula. At this time, it is assumed that the product of the amount of wear per day × the number of days of use corresponds to the amount of wear of the transport rollers 18a and 19a, as shown in the following formula using the number of days of use sent from the device for counting the diameter change. Detected.
Roller diameter = new diameter-(amount of wear per day x number of days used)
In the storage unit 46, the speed determination unit 48 stores past replacement results and roller diameters when new for each of the transport rollers 18a and 19a.
According to this modification, the deviation from the peripheral speed ratio of the peripheral speeds of the transport rollers 18a and 19a caused by the change in the diameter of the transport rollers 18a and 19a can be compensated by a simpler method. The amount of wear per day can be calculated by an operator and stored in the storage unit 46. The diameter change of the transport rollers 18a and 19a due to the wear amount may be calculated by the operator and transmitted to the detection control unit 40 or the drive unit 32. Further, the wear amount of the roller diameter when it was replaced in the past and the number of days used until the replacement may be calculated by the operator, and the calculated value may be stored in the storage unit 46.
Thus, in this modification, the transport rollers 18a and 19a are rotationally driven based on the rotational speed of the rollers determined based on the number of days of use of the transport rollers 18a and 19a so as to compensate for the change in the diameter of the rollers. . In this modification, as in the first and second embodiments, the state of the transport roller is not detected by the transport roller state detection unit, and the roller rotation speed is not determined based on the detection result, but the transport roller 18a. , 19a is different from the first and second embodiments in that the roller rotational speed is sequentially determined based on the number of days used.
 なお、第1実施形態あるいは第1実施形態の変形例と、第2実施形態あるいは第2実施形態の変形例は組み合わせることもできる。第1実施形態あるいは第1実施形態の変形例と、第2実施形態あるいは第2実施形態の変形例を組み合わせることで、第1実施形態あるいは第1実施形態の変形例又は第2実施形態あるいは第2実施形態の変形例を単独で適用する場合に比べ、より精度よく周速度比からのずれを補償することができる。 Note that the modified example of the first embodiment or the first embodiment and the modified example of the second embodiment or the second embodiment can be combined. By combining the modification of the first embodiment or the first embodiment with the modification of the second embodiment or the second embodiment, the modification of the first embodiment or the first embodiment, the second embodiment or the first embodiment. The deviation from the peripheral speed ratio can be compensated more accurately than in the case where the modification of the second embodiment is applied alone.
(実施例)
 本発明の効果を調べるために、従来のガラス板製造装置と本実施形態のガラス板製造装置とを用いて、それぞれ下記方法に従ってガラス板を製造して、ガラス板に生じる波状の凹凸変形を測定した。なお、用いたガラス板製造装置は、いずれも、図3及び図4に示すダウンドロー法によるガラス板製造装置1であり、ガラスは下記に示す成分を含有するアルミノシリケートガラスを用いた。
 SiO 60質量%、
 Al 19.5質量%、
 B 10質量%、
 CaO 5質量%、
 SrO 5質量%、
 SnO 0.5質量%。
(Example)
In order to investigate the effect of the present invention, a glass plate is manufactured according to the following method using a conventional glass plate manufacturing apparatus and the glass plate manufacturing apparatus of the present embodiment, and the wavy uneven deformation generated in the glass plate is measured. did. In addition, all used the glass plate manufacturing apparatus is the glass plate manufacturing apparatus 1 by the downdraw method shown in FIG.3 and FIG.4, and the glass used the aluminosilicate glass containing the component shown below.
SiO 2 60% by mass,
Al 2 O 3 19.5 mass%,
B 2 O 3 10% by mass,
CaO 5 mass%,
5% by mass of SrO,
SnO 2 0.5% by mass.
 実施例1では、上述の第1実施形態に従って、速度決定部38により各搬送ローラ18a,19aの回転速度を決定し、決定後の回転速度に基づいて各搬送ローラ18a,19aの回転駆動を制御し、0.7mm厚で幅方向長さ2000mm×長手方向長さ2500mmの大きさの液晶ディスプレイ用ガラス基板を製造した。周速度比としての各搬送ローラ18a,19aの周速度は全て同じとした。ガラスリボンの温度及び搬送ローラの温度は、接触式の温度センサを用いて測定した。 In Example 1, according to the first embodiment described above, the speed determining unit 38 determines the rotational speed of each of the transport rollers 18a and 19a, and controls the rotational drive of each of the transport rollers 18a and 19a based on the determined rotational speed. Then, a glass substrate for a liquid crystal display having a thickness of 0.7 mm and a length of 2000 mm in the width direction and a length of 2500 mm in the length direction was manufactured. The peripheral speeds of the transport rollers 18a and 19a as the peripheral speed ratio are all the same. The temperature of the glass ribbon and the temperature of the conveying roller were measured using a contact-type temperature sensor.
 実施例2では、上述の第2実施形態に従って、速度決定部48により各搬送ローラ18a,19aの回転速度を決定した点を除き、実施例1と同様に液晶ディスプレイ用ガラス基板を製造した。具体的には、搬送ローラ18a,19aの磨耗量は、距離測定センサ44により測定された駆動用シャフト間隔を用いて算出した。また、搬送ローラ18a,19aの磨耗量によるローラの直径の変化量のほかに、搬送ローラ18a,19aの温度によるローラ直径の変化量を考慮して搬送ローラ18a,19aの回転速度を算出した。 In Example 2, a glass substrate for a liquid crystal display was manufactured in the same manner as in Example 1 except that the rotational speeds of the transport rollers 18a and 19a were determined by the speed determination unit 48 according to the second embodiment described above. Specifically, the wear amount of the transport rollers 18 a and 19 a was calculated using the driving shaft interval measured by the distance measuring sensor 44. In addition to the amount of change in roller diameter due to the amount of wear of the transport rollers 18a and 19a, the rotational speed of the transport rollers 18a and 19a was calculated in consideration of the amount of change in roller diameter due to the temperature of the transport rollers 18a and 19a.
 実施例3では、搬送ローラ18a,19aの回転速度の決定において、各搬送ローラ18a,19aの周速度を全て実施例1の1.1倍に変更すること、さらに、0.5mm厚の液晶ディスプレイ用ガラス基板を製造することを除き、実施例1と同様の方法で液晶ディスプレイ用ガラス基板を製造した。 In the third embodiment, in determining the rotational speeds of the transport rollers 18a and 19a, the peripheral speeds of the respective transport rollers 18a and 19a are all changed to 1.1 times that of the first embodiment, and a 0.5 mm thick liquid crystal display is used. A glass substrate for a liquid crystal display was produced in the same manner as in Example 1 except that a glass substrate for production was produced.
 比較例1,2では、速度決定部において、ガラスリボンの状態及び搬送ローラ18a,19aの径変化に基づく回転速度の制御は行わなかった点を除き、それぞれ実施例1,2と同様の条件で行った。
 得られた実施例1~3、比較例1,2の液晶ディスプレイ用ガラス基板について、液晶ディスプレイ用ガラス基板表面の傷の有無を目視で確認し、波形状の変形をシックネスゲージを用いて計測した。波形状の変形は、厚み0.7mmの液晶ディスプレイ用ガラス基板においては、厚み方向に0.4mm以内のものを表面品質を満たしているとした。厚み0.5mmの液晶ディスプレイ用ガラス基板においては、厚み方向に0.2mm以内のものを表面品質を満たしているとした。
In Comparative Examples 1 and 2, the speed determination unit was under the same conditions as in Examples 1 and 2 except that the rotation speed based on the state of the glass ribbon and the diameter change of the transport rollers 18a and 19a was not performed. went.
The obtained glass substrates for liquid crystal displays of Examples 1 to 3 and Comparative Examples 1 and 2 were visually checked for the presence or absence of scratches on the surface of the glass substrate for liquid crystal displays, and the waveform deformation was measured using a thickness gauge. . In the case of a glass substrate for a liquid crystal display having a thickness of 0.7 mm, the wave shape was assumed to satisfy the surface quality if it was within 0.4 mm in the thickness direction. In a glass substrate for a liquid crystal display having a thickness of 0.5 mm, a surface quality of 0.2 mm or less was satisfied in the thickness direction.
 従来の製造装置を用いて得られた比較例1,2の液晶ディスプレイ用ガラス基板は、いずれも、目視でガラス表面に傷が確認された。また、いずれも、厚み方向に0.5mmの波形状の変形が生じていた。 In the glass substrates for liquid crystal displays of Comparative Examples 1 and 2 obtained using a conventional manufacturing apparatus, scratches were confirmed on the glass surface by visual observation. In both cases, a wave-shaped deformation of 0.5 mm occurred in the thickness direction.
 これに対し、本実施形態の製造装置1を用いて得られた実施例1~3の液晶ディスプレイ用ガラス基板は、いずれも、目視でガラス表面に傷は確認できなかった。また、波形状の変形について、実施例1は、厚み方向に0.2mm程度の変形が生じていた。実施例2は、厚み方向に0.1mm程度の変形が生じていた。実施例3は、厚み方向に0.02mm以下の変形が生じていた。実施例1~3は、いずれも、上述の表面品質を満たしていた。 On the other hand, in the glass substrates for liquid crystal displays of Examples 1 to 3 obtained by using the production apparatus 1 of the present embodiment, no scratch was visually confirmed on the glass surface. Moreover, about the deformation | transformation of a waveform, Example 1 had a deformation | transformation of about 0.2 mm in the thickness direction. In Example 2, deformation of about 0.1 mm occurred in the thickness direction. In Example 3, deformation of 0.02 mm or less occurred in the thickness direction. In all of Examples 1 to 3, the above-described surface quality was satisfied.
 以上、本発明のガラス板の製造方法及びガラス板製造装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんのことである。 As mentioned above, although the manufacturing method and glass plate manufacturing apparatus of the present invention were explained in detail, the present invention is not limited to the above-mentioned embodiment, and various improvements and changes are made without departing from the gist of the present invention. Of course.
1 ガラス板製造装置
2 成形装置
3 徐冷装置
18,19 搬送ローラ対
18a,19a 搬送ローラ
30,40 検出制御部
32 駆動部
34 温度センサ(ガラス状態検出部)
37,47 搬送ローラ状態検出部
38、48 速度決定部
A 溶融ガラス
B ガラスリボン
C ガラス板
S10 熔解工程
S40 成形工程
S50 徐冷工程
S51 検出工程
S52 速度決定工程
S53 速度制御工程
DESCRIPTION OF SYMBOLS 1 Glass plate manufacturing apparatus 2 Molding apparatus 3 Gradation apparatus 18, 19 Conveyance roller pair 18a, 19a Conveyance roller 30, 40 Detection control part 32 Drive part 34 Temperature sensor (glass state detection part)
37, 47 Conveyance roller state detection unit 38, 48 Speed determination unit A Molten glass B Glass ribbon C Glass plate S10 Melting step S40 Molding step S50 Slow cooling step S51 Detection step S52 Speed determination step S53 Speed control step

Claims (13)

  1.  ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
     溶融ガラスをダウンドロー法を用いて成形し、ガラスリボンを形成する成形工程と、
     前記ガラスリボンを、前記ガラスリボンの搬送方向に沿って設けられた複数のローラ対で挟持しつつ下方向に引き抜いて徐冷を行う徐冷工程と、を有し、
     前記成形工程は、前記ガラスリボンをローラ対で挟持しつつ下方向に引き抜きつつ、前記ガラスリボンの両端部を冷却する工程を含み、
     前記成形工程及び前記徐冷工程のいずれか一方で用いる前記ローラ対のうち少なくともいずれか1つのローラ対である第1ローラ対の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて回転駆動されている、ことを特徴とするガラス板の製造方法。
    Melting process for melting glass raw material to make molten glass;
    Molding a molten glass using a downdraw method to form a glass ribbon;
    A slow cooling step of slowly cooling the glass ribbon by pulling it downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon,
    The forming step includes a step of cooling both ends of the glass ribbon while pulling downward while sandwiching the glass ribbon with a pair of rollers.
    Each roller of the first roller pair, which is at least one of the pair of rollers used in any one of the forming step and the slow cooling step, is determined to compensate for a change in the diameter of the roller. A method for producing a glass plate, wherein the glass plate is driven to rotate based on the rotational speed of the glass plate.
  2.  ガラス原料を熔解して溶融ガラスをつくる熔解工程と、
     溶融ガラスをダウンドロー法を用いて成形し、ガラスリボンを形成する成形工程と、
     前記ガラスリボンを、前記ガラスリボンの搬送方向に沿って設けられた複数のローラ対で挟持しつつ下方向に引き抜いて徐冷を行う徐冷工程と、を有し、
     前記徐冷工程は、
     前記ローラ対のうち少なくともいずれか1つのローラ対である第1ローラ対の各ローラは、ローラの径変化を補償するように決定されたローラの回転速度に基づいて、回転駆動されている、ことを特徴とするガラス板の製造方法。
    Melting process for melting glass raw material to make molten glass;
    Molding a molten glass using a downdraw method to form a glass ribbon;
    A slow cooling step of slowly cooling the glass ribbon by pulling it downward while being sandwiched by a plurality of roller pairs provided along the conveying direction of the glass ribbon,
    The slow cooling step includes
    Each roller of the first roller pair, which is at least one of the roller pairs, is rotationally driven based on the rotational speed of the roller determined so as to compensate for the change in the roller diameter. The manufacturing method of the glass plate characterized by these.
  3.  前記徐冷工程は、
     前記ガラスリボンの搬送方向に沿って設けられた検出部により、前記第1ローラ対の各ローラの径変化を検出する検出工程と、
     検出された前記第1ローラ対の前記各ローラの径変化に基づいて前記各ローラの回転速度を決定し、前記第1ローラ対の前記各ローラを回転駆動させる速度制御工程と、を含む請求項1または2に記載のガラス板の製造方法。
    The slow cooling step includes
    A detection step of detecting a change in the diameter of each roller of the first roller pair by a detection unit provided along the conveyance direction of the glass ribbon;
    And a speed control step of determining a rotational speed of each roller based on the detected diameter change of each roller of the first roller pair and rotationally driving each roller of the first roller pair. The manufacturing method of the glass plate of 1 or 2.
  4.  前記第1ローラ対の各ローラは、前記徐冷工程の少なくとも前記ガラスリボン中央部の温度がガラス転移点以上軟化点以下となる温度領域に設けられ、
     前記徐冷工程では、前記第1ローラ対の各ローラの径変化を補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させる、請求項1~3のいずれか1項に記載のガラス板の製造方法。
    Each roller of the first roller pair is provided in a temperature region in which the temperature of at least the center of the glass ribbon in the slow cooling step is a glass transition point or more and a softening point or less,
    In the slow cooling step, the rotational speed of each roller of the first roller pair is determined so as to compensate for a change in the diameter of each roller of the first roller pair, and each roller of the first roller pair is driven to rotate. The method for producing a glass plate according to any one of claims 1 to 3.
  5.  前記成形工程及び前記徐冷工程では、
     前記ガラスリボンの中央部の温度がガラス軟化点以上の領域において、前記ガラスリボンの幅方向の端部が前記端部に挟まれた中央領域の温度より低く、且つ、前記中央領域の温度が略均一になるように制御し、
     前記ガラスリボンの中央部の温度が軟化点未満歪点近傍以上の領域において、前記ガラスリボンの中央部に搬送方向の引張り応力が働くように、前記ガラスリボンの幅方向の温度が前記ガラスリボンの中央部から端部に向かって低くなるように制御し、
     前記ガラスリボンのガラス歪点の近傍の温度領域において、前記ガラスリボンの幅方向の端部と中央部との温度勾配がなくなるように、前記ガラスリボンの温度分布を制御する、請求項1~4のいずれか1項に記載のガラス板の製造方法。
    In the molding step and the slow cooling step,
    In the region where the temperature of the central portion of the glass ribbon is equal to or higher than the glass softening point, the end portion in the width direction of the glass ribbon is lower than the temperature of the central region sandwiched between the end portions, and the temperature of the central region is approximately Control to be uniform,
    In the region where the temperature of the central portion of the glass ribbon is below the softening point and near the strain point, the temperature in the width direction of the glass ribbon is such that the tensile stress in the transport direction acts on the central portion of the glass ribbon. Control to lower from the center to the end,
    The temperature distribution of the glass ribbon is controlled so that there is no temperature gradient between the end portion and the center portion in the width direction of the glass ribbon in the temperature region near the glass strain point of the glass ribbon. The manufacturing method of the glass plate of any one of these.
  6.  前記徐冷工程では、
     前記ガラスリボンの中央部の温度が歪点近傍未満の領域において、前記ガラスリボンの中央部に搬送方向の引張り応力が働くように前記ガラスリボンの幅方向の端部から中央部に向かって低くなるように、前記ガラスリボンの温度分布を制御する、請求項1~5のいずれか1項に記載のガラス板の製造方法。
    In the slow cooling step,
    In the region where the temperature of the central portion of the glass ribbon is less than the vicinity of the strain point, the glass ribbon is lowered from the end in the width direction toward the central portion so that tensile stress in the transport direction acts on the central portion of the glass ribbon. The method for producing a glass plate according to claim 1, wherein the temperature distribution of the glass ribbon is controlled as described above.
  7.  前記徐冷工程は、
     前記ガラスリボンの中央部の温度が、徐冷点になるまで、第1の平均冷却速度で冷却する第1の冷却工程と、
     前記中央部の温度が、前記徐冷点から歪点-50℃になるまで、第2の平均冷却速度で冷却する第2の冷却工程と、
     前記中央部の温度が、前記歪点-50℃から前記歪点-200℃になるまで、第3の平均冷却速度で冷却する第3の冷却工程と、を含み、
     前記第1の平均冷却速度は、5.0℃/秒以上であり、
     前記第1の平均冷却速度は、前記第3の平均冷却速度より速く、
     前記第3の平均冷却速度は、前記第2の平均冷却速度より速い、請求項1~6のいずれか1項に記載のガラス板の製造方法。
    The slow cooling step includes
    A first cooling step of cooling at a first average cooling rate until the temperature of the central portion of the glass ribbon reaches a slow cooling point;
    A second cooling step of cooling at a second average cooling rate until the temperature of the central portion reaches a strain point of −50 ° C. from the annealing point;
    A third cooling step of cooling at a third average cooling rate until the temperature of the central portion becomes from the strain point of −50 ° C. to the strain point of −200 ° C.,
    The first average cooling rate is 5.0 ° C./second or more,
    The first average cooling rate is faster than the third average cooling rate;
    The method for producing a glass plate according to any one of claims 1 to 6, wherein the third average cooling rate is faster than the second average cooling rate.
  8.  前記第1ローラ対の各ローラの熱膨張に起因する前記第1ローラの各ローラの径変化によって生じた周速度のずれを補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させる、請求項1~7のいずれか1項に記載のガラス板の製造方法。 The rotational speed of each roller of the first roller pair is determined so as to compensate for the deviation of the peripheral speed caused by the change in the diameter of each roller of the first roller due to the thermal expansion of each roller of the first roller pair. The method for manufacturing a glass plate according to any one of claims 1 to 7, wherein each roller of the first roller pair is rotationally driven.
  9.  前記第1ローラ対の各ローラの磨耗に起因する前記第1ローラ対の各ローラの径変化により生じた周速度のずれを補償するように、前記第1ローラ対の各ローラの回転速度を決定し、前記第1ローラ対の各ローラを回転駆動させる、請求項1~8のいずれか1項に記載のガラス板の製造方法。 The rotational speed of each roller of the first roller pair is determined so as to compensate for the deviation of the peripheral speed caused by the diameter change of each roller of the first roller pair due to the wear of each roller of the first roller pair. The method for producing a glass plate according to any one of claims 1 to 8, wherein each roller of the first roller pair is rotationally driven.
  10.  前記複数のローラ対のうち、ローラの径変化を補償するように決定されたローラの回転速度に基づいて回転駆動されるローラを有するローラ対は、前記第1ローラ対の他に第2ローラ対を含み、
     前記ガラスリボンの搬送方向に沿って設けられた複数の検出部により、前記第1ローラ対及び前記第2ローラ対の各ローラの径変化を検出する検出工程を有し、
     前記第1ローラ対の各ローラと前記第2ローラ対の各ローラの間で、ローラの周速度と前記ガラスリボンの搬送速度との相対速度が一定となるように、前記各ローラの径変化を補償するような前記各ローラの回転速度を決定する、請求項1~9のいずれか1項に記載のガラス板の製造方法。
    Among the plurality of roller pairs, a roller pair having a roller driven to rotate based on a rotation speed of the roller determined so as to compensate for a change in the diameter of the roller is a second roller pair in addition to the first roller pair. Including
    A detection step of detecting a change in diameter of each roller of the first roller pair and the second roller pair by a plurality of detection units provided along the conveyance direction of the glass ribbon;
    Between each roller of the first roller pair and each roller of the second roller pair, the diameter of each roller is changed so that the relative speed between the peripheral speed of the roller and the conveying speed of the glass ribbon is constant. The method for producing a glass plate according to any one of claims 1 to 9, wherein a rotational speed of each roller to be compensated is determined.
  11.  ガラスリボンの搬送方向に沿って設けられた、前記ガラスリボンの状態を検出するガラス状態検出部によって前記ガラスリボンの温度を検出し、
     検出された前記ガラスリボンの温度におけるガラス熱膨張係数を用いて、前記ガラスリボンの熱膨張に起因する前記ガラスリボンの搬送速度の変化を検出し、前記ガラスリボンの搬送速度とローラの周速度とのずれを補償するように前記第1ローラ対の各ローラの回転速度を決定する、請求項1~10のいずれか1項に記載のガラス板の製造方法。
    The temperature of the glass ribbon is detected by a glass state detection unit that detects the state of the glass ribbon provided along the conveyance direction of the glass ribbon,
    Using the glass thermal expansion coefficient at the detected temperature of the glass ribbon, a change in the transport speed of the glass ribbon due to the thermal expansion of the glass ribbon is detected, and the transport speed of the glass ribbon and the peripheral speed of the roller The method of manufacturing a glass plate according to any one of claims 1 to 10, wherein a rotational speed of each roller of the first roller pair is determined so as to compensate for a deviation of the first roller pair.
  12.  前記ガラスリボンが徐冷されてなるガラス板の厚さは、0.5mm以下である、請求項1~11のいずれか1項に記載のガラス板の製造方法。 The method for producing a glass plate according to any one of claims 1 to 11, wherein a thickness of the glass plate formed by gradually cooling the glass ribbon is 0.5 mm or less.
  13.  溶融ガラスからダウンドロー法を用いてガラスリボンを成形する成形装置と、
     前記ガラスリボンを複数の搬送ローラ対で挟持しつつ下方向に引き抜きながら徐冷する徐冷装置と、を有し、
     前記徐冷装置は、前記複数の搬送ローラ対と、検出制御部と、駆動部とを含み、
     前記複数の搬送ローラ対は、前記ガラスリボンの搬送方向に沿って設けられ、前記ガラスリボンを下方向に引き込むことでガラスリボンを搬送し、
     前記検出制御部は、
     前記ガラスリボンの搬送方向に沿って設けられ、前記搬送ローラ対の搬送ローラの径変化を検出する複数の搬送ローラ状態検出部を備え、
     前記駆動部は、前記複数の搬送ローラ対間で前記搬送ローラの周速度と前記ガラスリボンの搬送速度との相対速度が一定となるときの前記複数の搬送ローラ対間の周速度分布を保つように、検出された前記搬送ローラの径変化に基づいて決定された各前記搬送ローラの回転速度に基づいて、前記搬送ローラを回転駆動させる、ことを特徴とするガラス板製造装置。
    A molding apparatus for molding a glass ribbon from molten glass using a downdraw method;
    A slow cooling device that slowly cools the glass ribbon while pulling it downward while sandwiching it with a plurality of pairs of transport rollers,
    The slow cooling device includes the plurality of conveying roller pairs, a detection control unit, and a driving unit,
    The plurality of conveyance roller pairs are provided along a conveyance direction of the glass ribbon, and convey the glass ribbon by drawing the glass ribbon downward.
    The detection control unit
    A plurality of conveyance roller state detection units that are provided along the conveyance direction of the glass ribbon and detect a change in the diameter of the conveyance roller of the conveyance roller pair,
    The drive unit maintains a peripheral speed distribution between the plurality of transport roller pairs when a relative speed between the peripheral speed of the transport roller and the transport speed of the glass ribbon is constant between the plurality of transport roller pairs. Further, the glass roller manufacturing apparatus is characterized in that the conveyance roller is driven to rotate based on the rotation speed of each of the conveyance rollers determined based on the detected diameter change of the conveyance roller.
PCT/JP2012/002144 2011-03-30 2012-03-28 Production method for glass sheet and glass sheet production device WO2012132425A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012516255A JP5288386B2 (en) 2011-03-30 2012-03-28 Glass plate manufacturing method and glass plate manufacturing apparatus
KR1020127010848A KR101300909B1 (en) 2011-03-30 2012-03-28 Method and apparatus for making glass sheet
CN2012800006628A CN102933514B (en) 2011-03-30 2012-03-28 Production method for glass sheet and glass sheet production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011075405 2011-03-30
JP2011-075405 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012132425A1 true WO2012132425A1 (en) 2012-10-04

Family

ID=46930199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002144 WO2012132425A1 (en) 2011-03-30 2012-03-28 Production method for glass sheet and glass sheet production device

Country Status (5)

Country Link
JP (2) JP5288386B2 (en)
KR (1) KR101300909B1 (en)
CN (1) CN102933514B (en)
TW (1) TWI428296B (en)
WO (1) WO2012132425A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512850A (en) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド Glass manufacturing apparatus and method
WO2015135721A1 (en) * 2014-03-13 2015-09-17 Schott Ag Method and apparatus for reducing the camber in thin glasses
KR20160080054A (en) 2014-12-29 2016-07-07 아반스트레이트 가부시키가이샤 Method for producing glass substrate
WO2016194922A1 (en) * 2015-06-01 2016-12-08 日本電気硝子株式会社 Glass product manufacturing apparatus
CN106292532A (en) * 2015-06-26 2017-01-04 鞍钢股份有限公司 The speed compensation method that a kind of continuous annealing line carbon set roller mill is damaged
JP2017014054A (en) * 2015-06-30 2017-01-19 AvanStrate株式会社 Production method of glass substrate
CN111039557A (en) * 2019-12-26 2020-04-21 中国建材国际工程集团有限公司 Transmission system and control method thereof
JP2021095312A (en) * 2019-12-18 2021-06-24 日本電気硝子株式会社 Method for manufacturing glass plate
CN113277719A (en) * 2021-04-30 2021-08-20 彩虹(合肥)液晶玻璃有限公司 Plate glass plate height control device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288386B2 (en) * 2011-03-30 2013-09-11 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
KR101977803B1 (en) * 2015-06-30 2019-05-13 주식회사 엘지화학 The estimate and control device of liquid crystal ribbon speed
CN105585242A (en) * 2016-03-21 2016-05-18 绵阳艾佳科技有限公司 Method and device for avoiding micro scratches caused by transitional roller table
KR20170132048A (en) * 2016-05-23 2017-12-01 코닝정밀소재 주식회사 Glass manufacturing apparatus and method
CN106746517B (en) * 2016-12-22 2019-10-29 李志文 Konilite glass and the preparation method and application thereof
KR102166471B1 (en) * 2017-09-20 2020-10-16 주식회사 엘지화학 Apparatus and Method for manufacturing glass substrate
TW202035313A (en) * 2018-12-21 2020-10-01 日商日本電氣硝子股份有限公司 Glass article production method and production device therefor
CN111186988B (en) * 2019-12-30 2021-11-09 彩虹显示器件股份有限公司 Method and system for controlling angular speed of short roller
CN111176165B (en) * 2019-12-30 2021-01-26 彩虹显示器件股份有限公司 Automatic adjusting system and method for substrate glass pulling roller
CN112227108B (en) * 2020-08-31 2022-11-11 东莞建晖纸业有限公司 Method for calibrating speed of paper machine after roll changing and speed reducer of transmission point
CN112592032A (en) * 2020-12-16 2021-04-02 成都中光电科技有限公司 Method and device for monitoring bow of glass substrate during liquid crystal glass forming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291827A (en) * 1997-04-16 1998-11-04 Hoya Corp Production of glass pane and apparatus for production therefor
WO2011007656A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate production method and production device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753230A (en) * 1993-08-18 1995-02-28 Asahi Glass Co Ltd Annealing device for sheet glass
JP3335291B2 (en) * 1997-04-16 2002-10-15 ホーヤ株式会社 Method and apparatus for manufacturing glass plate
JP3586142B2 (en) * 1999-07-22 2004-11-10 エヌエッチ・テクノグラス株式会社 Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device
JP4369695B2 (en) * 2003-07-25 2009-11-25 大享容器工業股▲分▼有限公司 Continuous forming equipment for crystallized glass
US7430880B2 (en) * 2004-06-02 2008-10-07 Corning Incorporated Pull roll assembly for drawing a glass sheet
EP1746076A1 (en) * 2005-07-21 2007-01-24 Corning Incorporated Method of making a glass sheet using rapid cooling
JP4621996B2 (en) * 2007-04-24 2011-02-02 日本電気硝子株式会社 Glass plate manufacturing method and glass plate manufacturing equipment
FR2918533B1 (en) * 2007-07-03 2009-12-04 Mcb Ind STRUCTURE OF ELECTRIC RESISTANCE
US8713967B2 (en) * 2008-11-21 2014-05-06 Corning Incorporated Stable glass sheet and method for making same
JP2010143800A (en) * 2008-12-19 2010-07-01 Nippon Electric Glass Co Ltd Apparatus for producing glass plate
JP5288386B2 (en) * 2011-03-30 2013-09-11 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10291827A (en) * 1997-04-16 1998-11-04 Hoya Corp Production of glass pane and apparatus for production therefor
WO2011007656A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate production method and production device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512850A (en) * 2012-02-29 2015-04-30 コーニング インコーポレイテッド Glass manufacturing apparatus and method
US11312649B2 (en) 2014-03-13 2022-04-26 Schott Ag Method and apparatus for reducing the camber in thin glasses
WO2015135721A1 (en) * 2014-03-13 2015-09-17 Schott Ag Method and apparatus for reducing the camber in thin glasses
KR20160080054A (en) 2014-12-29 2016-07-07 아반스트레이트 가부시키가이샤 Method for producing glass substrate
WO2016194922A1 (en) * 2015-06-01 2016-12-08 日本電気硝子株式会社 Glass product manufacturing apparatus
JP2016222503A (en) * 2015-06-01 2016-12-28 日本電気硝子株式会社 Apparatus for manufacturing glass article
CN106292532A (en) * 2015-06-26 2017-01-04 鞍钢股份有限公司 The speed compensation method that a kind of continuous annealing line carbon set roller mill is damaged
JP2017014054A (en) * 2015-06-30 2017-01-19 AvanStrate株式会社 Production method of glass substrate
JP2021095312A (en) * 2019-12-18 2021-06-24 日本電気硝子株式会社 Method for manufacturing glass plate
JP7417853B2 (en) 2019-12-18 2024-01-19 日本電気硝子株式会社 Glass plate manufacturing method
CN111039557A (en) * 2019-12-26 2020-04-21 中国建材国际工程集团有限公司 Transmission system and control method thereof
CN113277719A (en) * 2021-04-30 2021-08-20 彩虹(合肥)液晶玻璃有限公司 Plate glass plate height control device
CN113277719B (en) * 2021-04-30 2022-08-30 彩虹(合肥)液晶玻璃有限公司 Plate glass plate height control device

Also Published As

Publication number Publication date
CN102933514A (en) 2013-02-13
TWI428296B (en) 2014-03-01
CN102933514B (en) 2013-10-23
JPWO2012132425A1 (en) 2014-07-24
KR20120132674A (en) 2012-12-07
JP2013151415A (en) 2013-08-08
JP5288386B2 (en) 2013-09-11
KR101300909B1 (en) 2013-08-27
JP5779199B2 (en) 2015-09-16
TW201247566A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
JP5779199B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP5819870B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
CN102822102B (en) Glass substrate manufacturing method and glass substrate
TWI402223B (en) Manufacture method of glass plate and manufacturing apparatus for glass plate
EP2377821B1 (en) Float glass manufacturing apparatus and float glass manufacturing method
TWI422539B (en) Manufacturing method and apparatus for glass plate
WO2009093550A1 (en) Process for production of glass substrates and glass substrates
TWI659932B (en) Method for manufacturing glass substrate, and device for manufacturing glass substrate
TW201800353A (en) Alkali-free glass substrate and method for manufacturing alkali-free glass substrate
TWI600622B (en) Method of manufacturing glass plate and glass plate manufacturing apparatus
KR20170113368A (en) Method and apparatus for making glass substrate
TW201702193A (en) Method for manufacturing glass substrate which is capable of reducing the variations in the thickness of the glass substrate
JP2022098453A (en) Float glass production device, float glass production method, and float glass
CN114644446A (en) Float glass manufacturing device, float glass manufacturing method, and float glass
JP2017048074A (en) Manufacturing method of glass substrate, and manufacturing apparatus of glass substrate
TW201711968A (en) Method and apparatus for manufacturing glass substrate capable of suppressing deformation of a glass sheet (glass substrate) caused by creep deformation of a molded body

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000662.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012516255

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127010848

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763128

Country of ref document: EP

Kind code of ref document: A1