WO2012132182A1 - 高温用エアフィルタ - Google Patents

高温用エアフィルタ Download PDF

Info

Publication number
WO2012132182A1
WO2012132182A1 PCT/JP2012/000555 JP2012000555W WO2012132182A1 WO 2012132182 A1 WO2012132182 A1 WO 2012132182A1 JP 2012000555 W JP2012000555 W JP 2012000555W WO 2012132182 A1 WO2012132182 A1 WO 2012132182A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
comb
filter medium
heat
temperature air
Prior art date
Application number
PCT/JP2012/000555
Other languages
English (en)
French (fr)
Inventor
林 嗣郎
山口 健
Original Assignee
日本無機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本無機株式会社 filed Critical 日本無機株式会社
Priority to EP12763008.5A priority Critical patent/EP2692409B1/en
Publication of WO2012132182A1 publication Critical patent/WO2012132182A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2003Glass or glassy material
    • B01D39/2017Glass or glassy material the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • B01D46/523Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material with means for maintaining spacing between the pleats or folds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/20High temperature filtration

Definitions

  • the present invention relates to a high-temperature air filter suitable for use in high-circulation air cleaning equipment attached to a dryer or the like that dries articles with high-temperature clean air such as a dryer of a tunnel-type drying sterilizer.
  • a high-temperature air filter for purifying circulating air.
  • a high-temperature air filter which is mainly composed of glass fiber, paper made using an organic binder, and is folded and folded in a zigzag manner in a frame body.
  • the organic binder in the paper constituting the filter medium is carbonized.
  • carbide on the outflow side surface and near the inside of the layer generate dust and scatter.
  • Such carbonization of the organic binder is accompanied by deterioration of bonding between glass fibers and deterioration of filter action.
  • the filter medium expands and contracts in the vertical direction as the ambient temperature changes during use, but the expansion and contraction does not maintain the airtight state of the upper and lower edges of the filter medium and the upper and lower frame bodies that accommodate and fix the filter medium.
  • the present applicant has disclosed a patent document as a high-temperature air filter that can be used stably over a long period of time without the occurrence of dusting and scattering of carbides even when the dryer is used repeatedly.
  • a zigzag filter body comprising a filter medium made of a glass fiber molded sheet not containing a binder and a heat-resistant mesh body sandwiching the filter medium from both side surfaces is formed between the upper and lower edges of the filter body and the frame body.
  • a high-temperature air filter was proposed in which a heat-resistant sealing material that maintains the airtightness between the filter body and the frame body is interposed between the filter body and the frame body.
  • a pair of comb-like pressing plates that horizontally sandwich the filter body from the upstream and downstream sides of the airflow are provided at the upper and lower edges of the filter body, and the upper and lower comb-teeth shapes are provided.
  • a plurality of rod-shaped spacers provided with a corrugated base provided with a space protection projection on a linear base to horizontally sandwich the filter body from the upstream and downstream sides of the airflow with a gap between the press plates. The shape of the filter body is maintained.
  • high-temperature air filters used in the dryers of tunnel-type dry sterilizers have been used in conventional 10 CMMs, but can be used in high air volumes because they can be sterilized in large quantities in a short time by using high air volumes.
  • the air filter for high temperature of patent document 1 has a filter medium area of less than 50 m 2 / m 3 , pressure loss due to filter medium resistance and filter medium deformation becomes too large during high air flow processing, There was a problem that the capacity was insufficient or a larger capacity had to be used.
  • the high-temperature air filter of the present invention has been made on the basis of such knowledge, and as described in claim 1, a filter medium comprising a glass fiber molded sheet not containing a binder and a heat-resistant network body sandwiching the filter medium from both sides.
  • a zigzag filter body comprising: a heat-resistant sealing material that maintains the airtightness of the filter body and the frame body between the upper and lower edges of the filter body and the frame body;
  • a high-temperature air filter that is housed and fixed and has a filter medium area of 50 to 65 m 2 / m 3 per unit filter volume, and the filter body is horizontally sandwiched from the upstream and downstream sides of the airflow at the upper and lower edges of the filter body.
  • a plurality of comb-shaped spacer plates that are provided with a pair of comb-shaped pressing plates and sandwich the filter body horizontally from the upstream and downstream sides of the airflow with a space of 90 to 120 mm between the upper and lower comb-shaped pressing plates.
  • the high temperature air filter according to claim 2 is characterized in that in the high temperature air filter according to claim 1, the glass fibers are made of glass fibers having an average fiber diameter of 0.6 to 0.8 ⁇ m.
  • the high temperature air filter according to claim 3 is the high temperature air filter according to claim 1 or 2, wherein the filter medium is a molded sheet having a thickness of 7.5 to 10.5 mm and a basis weight of 75 to 84 g / m 2 . It is characterized by comprising.
  • the high temperature air filter according to claim 4 is the high temperature air filter according to any one of claims 1 to 3, wherein the filter medium is a laminate of a plurality of the molded sheets. .
  • the air filter for high temperature comprises a zigzag filter body comprising a filter medium composed of a glass fiber molded sheet not containing a binder and a heat-resistant mesh body sandwiching the filter medium from both sides, and upper and lower edges of the filter body.
  • a heat-resistant sealing material that maintains the airtightness of the filter body and the frame body is interposed between the filter body and the frame body, and is housed and fixed in the frame body, and a filter medium area of 50 to 65 m 2 / m per unit filter volume.
  • the high-temperature air filter according to the present invention uses a molded sheet made only of glass fibers that does not contain a binder as a filter medium.
  • High temperature air can be circulated without generating.
  • the glass fiber is not softened and does not sag due to wind pressure, and it can be used for a long time without causing an increase in pressure loss due to density unevenness caused by the sag of the glass fiber.
  • a filter medium composed of the molded sheet since the zigzag-shaped filter body by sandwiching from both sides with a heat-resistant net body, the filter medium stably retained for a long period of time, and performs good high temperature filter effect over a long period be able to.
  • a pair of comb-like pressing plates that horizontally sandwich the filter body from the upstream and downstream sides of the air flow are provided at the upper and lower edges of the filter body, and the heat-resistant sealing material is connected to the frame body and the comb teeth. Because it is airtightly housed and fixed to the frame with a heat-resistant sealing material interposed between the upper and lower edge portions of the filter body, with the change in ambient temperature when using a high-temperature air filter Even when the filter medium expands and contracts in the vertical direction, the heat-resistant sealing material absorbs the expansion and contraction of the filter medium due to the buffering action of the heat-resistant sealing material interposed between the filter body and the frame body.
  • the airtightness between the upper and lower edges of the filter body and the frame body can be maintained and good sealing performance can be maintained over a long period of time, stable filter performance can be maintained over a long period of time without causing leakage problems.
  • the at intervals of 90 ⁇ 120 mm in the upper and lower comb-shaped retainer plates since the filter body provided with a plurality of pairs of comb-shaped spacer plate sandwiching horizontally from the upper and lower stream side of the air flow, these comb-like Combined with the shape retention of the filter body by the spacer plate, independent closed spaces can be formed between the comb-like spacer plates and between the comb-like presser plate and the comb-like spacer plates. Since a laminar flow can be formed, the shape of the filter can be reliably prevented from being deformed even at a high air flow rate.
  • the high-temperature filter of the present invention comprises a zigzag filter body comprising a filter medium made of a glass fiber molded sheet not containing a binder and a heat-resistant mesh body sandwiching the filter medium from both sides, and upper and lower edges of the filter body.
  • a heat-resistant sealing material that maintains the airtightness between the filter body and the frame body is interposed between the filter body and the frame body, and is housed and fixed in the frame body, and the filter medium area is 50 to 65 m 2 / m 3 per unit filter volume.
  • a high-temperature air filter is provided with a pair of comb-like pressing plates that horizontally sandwich the filter body from the upstream and downstream sides of the airflow at the upper and lower edges of the filter body, and the upper and lower comb-teeth shapes
  • a plurality of pairs of comb-like spacer plates for horizontally sandwiching the filter body from the upstream and downstream sides of the airflow are provided with a spacing of 90 to 120 mm between the pressing plates.
  • a filter medium made of a glass fiber molded sheet containing no binder is used as the filter medium composed of the molded sheet.
  • the filter medium using E glass (non-alkali glass, softening point 750 to 1100 ° C.) fiber is 500 ° C.
  • the filter medium that has been used can be used as a 400 ° C specification.
  • the glass fiber preferably has a softening point of 600 to 1100 ° C. This is because, when the softening point of the glass fiber is less than 600 ° C., the heat resistance is insufficient and the filter medium is subjected to wind pressure in a softened state when used at a high temperature, so the density of the filter medium increases and the pressure loss increases. If the softening point exceeds 1100 ° C., it is difficult to shorten the fiber by a flame method or the like, and there is a problem that a molded sheet cannot be formed.
  • the said glass fiber uses short fibers, such as C glass, E glass, and S glass.
  • short fibers such as C glass, E glass, and S glass.
  • the molded sheet is used as a filter medium for a high-temperature air filter of a dryer used at a high temperature of 400 to 500 ° C.
  • the glass fibers constituting the molded sheet are softened and drooped by wind pressure. Therefore, it is possible to prevent the occurrence of density unevenness caused by the sag of the glass fiber.
  • the molded sheet is preferably a sheet formed by short glass fibers spun from a glass melting furnace by a flame method, a centrifugal method, or the like so as to have a uniform density distribution in the width direction and the flow direction by a cotton collecting machine.
  • the glass fiber was felted by a cotton collecting machine, the felted glass fiber cotton was manually formed into a sheet-shaped filter medium in an unformed state without maintaining the shape of the sheet. Although uneven density occurred, as described above, the glass fiber was formed into a sheet shape so as to have a uniform density distribution in the width direction and the flow direction by a cotton collecting machine, and the shape of the molded sheet was maintained
  • the filter medium is preferably used as a filter medium having a uniform density distribution in both the width direction and the flow direction.
  • the rolled-up formed sheet is again formed into a sheet shape More preferably, it is used as a filter medium.
  • the filter medium used in the high temperature air filter preferably has a basis weight of 75 to 84 g / m 2 .
  • the filter medium is inferior in handleability during assembly when it is sandwiched between heat-resistant mesh bodies, and a desired efficiency of 90% or more (at 0.2 to 0) .5 ⁇ m) cannot be obtained.
  • the basis weight exceeds 84 g / m 2 , the pressure loss is high at a filter medium passing wind speed of 8 m / s, and 360 Pa or less cannot be obtained, and it is bulky and inferior in assemblability.
  • the filter medium preferably has a thickness of 7.5 to 10.5 mm.
  • the filter medium When the thickness of the filter medium is less than 7.5 mm, the filter medium is inferior in handleability during assembly when the filter medium is sandwiched between heat-resistant mesh bodies, and the desired efficiency is 90% or more (at 0.2 to 0). .5 ⁇ m) cannot be obtained.
  • the thickness of the filter medium exceeds 10.5 mm, the pressure loss is high at a filter medium passing air speed of 8 m / s, and 360 Pa or less cannot be obtained, and it is bulky and inferior in assemblability.
  • the thickness of the filter media may be set so that the thickness after lamination is in the range of 7.5 to 10.5 mm.
  • the filter medium used for the high-temperature air filter is inevitably generated in the molded sheet even when a molded sheet formed into a sheet shape with a uniform density distribution in the width direction and the flow direction is used by a cotton collecting machine.
  • a molded sheet having a basis weight of 25 to 28 g / m 2 it is preferable to use a molded sheet having a basis weight of 25 to 28 g / m 2 .
  • molding sheet at the time of assembling a filter body as a fabric weight is less than 25 g / m ⁇ 2 >.
  • the basis weight exceeds 28 g / m 2
  • the molded sheet is a high-temperature air filter having a desired collection efficiency and pressure loss by appropriately selecting the average fiber diameter of the glass fibers constituting the molded sheet and the basis weight when the molded sheet is used as a filter medium.
  • a suitable filter medium can be produced.
  • glass fibers constituting a molded sheet used for an air filter having a collection efficiency of 90% (at 0.2 to 0.5 ⁇ m) or more are short glass fibers having an average fiber diameter of 0.6 to 0.8 ⁇ m. It is preferable.
  • the average fiber diameter of the glass fiber is less than 0.6 ⁇ m, fiberization and sheeting are difficult, and when the average fiber diameter exceeds 0.8 ⁇ m, a filter medium made of a molded sheet formed from the glass fiber, This is because the desired collection efficiency cannot be obtained.
  • the heat-resistant net is preferably formed using a metal such as stainless steel that can withstand the heat of the dryer, a heat-resistant synthetic resin, or the like.
  • the heat-resistant net body preferably has as low a pressure loss as possible, and preferably has a fine mesh so that a filter medium made of a glass fiber molded sheet can be reliably held.
  • a wire mesh on the inflow side is 36 ⁇ 40 mesh wire diameter 0.193 mm, equal to the outflow side is composed of a wire mesh 38 ⁇ 60 mesh wire diameter 0.1524 mm, coarser mesh member on the inflow side, and a thick line, the outflow It is preferable to form the side densely and with a thin line.
  • the comb-shaped holding plate only needs to be able to sandwich the filter body horizontally from the upstream and downstream sides of the airflow at the upper and lower edges of the filter body, and the shape of the comb teeth corresponds to the zigzag shape of the filter medium.
  • a heat resistant material such as a metal plate such as a stainless steel plate or a synthetic resin plate.
  • the shape of the comb-teeth is Similar to the comb-teeth shape of the holding plate, it corresponds to the zigzag shape of the filter medium, and considering heat resistance, it is preferably composed of a heat-resistant material such as a metal plate such as a stainless steel plate or a heat-resistant synthetic resin plate. .
  • the comb-like spacer plate may have the same shape as the comb-like holding plate.
  • the distance between the comb-shaped spacer plates and the distance between the comb-shaped pressing plate and the comb-shaped spacer plates must be 90 to 120 mm. If the distance is less than 90 mm, the gap between the comb-like presser plate and the comb-like presser plate is increased, thereby forming an airtight (isolation) that forms an independent closed space between the comb-like presser plate and the comb-like presser plate.
  • the frame which comprises the high temperature air filter by this invention uses heat resistant materials, such as metal plates, such as stainless steel which can endure the atmospheric temperature of the dryer using a high temperature air filter, and a synthetic resin board.
  • a high-temperature air filter 1 includes a filter medium 2 formed of a glass fiber molded sheet not containing a binder and heat-resistant nets 3a and 3b sandwiching the filter medium 2 from both sides.
  • the zigzag filter body 4 is housed in the frame body 5 with heat-resistant sealing materials 8a, 8b, 8c for maintaining airtightness with the frame body 5 (5a, 5b, 5c, 5d) interposed therebetween. It has a fixed configuration.
  • the zigzag filter body 4 is inserted into the zigzag space of the filter body 3 and a pair of comb-like spacer plates 7 that contact the front and back surfaces of the filter body 3, that is, the upper and lower side surfaces of the airflow, Before and after the filter body 4, that is, horizontally inserted from the upstream and downstream sides of the airflow, 5 pairs of such comb-like spacer plates 7 are inserted at regular intervals in the vertical direction, so that the zigzag spacing of the filter body 4 is increased. It is fixed between the side frames 5a, 5a in a stable state.
  • the filter body 4 is airtightly fixed to the side frame bodies 5a and 5b with bolts (not shown) with a heat-resistant sealing material 8a interposed between the filter body 4 and the side frame bodies 5a and 5b.
  • the means for fixing the filter body 4 to the both side frames 5a and 5b via the heat-resistant sealing material 8a is not limited to bolts, and can be fixed by other fixing means.
  • a comb-like presser plate 9 that is inserted into a zigzag-shaped space of the filter body 4 and contacts the front and back surfaces of the filter body 4, that is, the upstream and downstream sides of the airflow.
  • a comb-like presser plate 9 that is inserted into a zigzag-shaped space of the filter body 4 and contacts the front and back surfaces of the filter body 4, that is, the upstream and downstream sides of the airflow.
  • a comb-like pressing plate 9 is interposed between the heat-resistant sealing material 8b filled and the upper and lower frame bodies 5c and 5d by interposing a heat-resistant sealing material 8c in which a plurality of molded sheets made of glass fibers similar to the filter medium 2 are laminated.
  • 9 and the upper and lower frame bodies 5c, 5d sandwich and press the heat-resistant sealing materials 8b, 8c as a whole, and the heat-resistant sealing materials 8b, 8c are interposed at the upper and lower edges of the filter body 4.
  • the filter body 4 is accommodated in the frame body 5 while being pressure-bonded to the upper and lower frame bodies 5b and 5b and maintaining the airtightness between the filter body 4 and the upper and lower frame bodies 5c and 5d by the buffering action of the heat-resistant sealing materials 8b and 8c. It is fixed. For this reason, even when the filter medium 2 expands and contracts in the vertical direction due to use at a high temperature, the heat-resistant sealing materials 8b and 8c interposed between the comb-like pressing plate 9 and the upper and lower frame bodies 5c and 5d. However, the expansion and contraction of the filter medium 2 is absorbed, and the airtightness between the upper and lower edges of the filter body 4 and the upper and lower frame bodies 5c and 5d can be maintained, and the high-temperature air filter 1 can maintain good sealing performance.
  • heat-resistant sealing materials 8a and 8c molded sheets having a basis weight of 25 g / m 2 made of C (containing ground glass) glass fibers having an average fiber diameter of 0.8 ⁇ m were used. Further, as the heat-resistant sealing material 8b, felt-like C (containing ground glass) glass fiber cotton having an average fiber diameter of 0.8 ⁇ m was used.
  • the same heat-resistant material as the filter medium 2 can be used as 8a, 8b, 8c, it is not limited to the case where a felt-like piece of glass cotton and a molded sheet similar to the filter medium 2 are used in combination as described above.
  • As a heat-resistant sealing material it is possible to use a felt-like lump of glass cotton as a whole, and cut or laminate so as to be able to be filled with the same molded sheet as the filter medium 2. Is possible.
  • the frame 5 (5a, 5a, 5b, 5b) can also be made of a metal such as stainless steel or a synthetic resin that can withstand the atmospheric temperature of a dryer using a high-temperature air filter.
  • Example 1 The high-temperature air filter according to the present embodiment has the structure shown in FIGS. 1 to 3 and uses only a C glass (alkali-containing glass) fiber having an average fiber diameter of 0.6 ⁇ m spun by a flame method as a filter medium.
  • the sheet was formed into a sheet having a basis weight of 25 g / m 2 by using a cotton collecting machine, and three sheets were formed to have a basis weight of 75 g / m 2 .
  • a heat-resistant net that sandwiches the filter medium from both sides in a zigzag shape, it consists of a stainless steel wire mesh with an inflow side of 36 ⁇ 40 mesh, a wire diameter of 0.193 mm, an outflow side of 38 ⁇ 60 mesh, and a wire diameter of 0.1524 mm was used to form a zigzag filter body with a filter medium area of 53.6 m 2 / m 3 (mountain folded filter medium area 5.6 m 2 / unit) per unit filter volume.
  • a heat-resistant sealing material 20 g / unit (610 ⁇ 290 mm) of a glass fiber cotton made of felt-like C glass fiber having an average fiber diameter of 0.6 ⁇ m and a molded sheet made of C glass fiber having an average fiber diameter of 0.6 ⁇ m. Were used in two places (upper and lower). Further, a heat-resistant sealing material in which C (containing ground glass) glass fiber having an average fiber diameter of 0.8 ⁇ m was formed into a molded sheet having a basis weight of 25 g / m 2 was used for the left and right side frames. Moreover, the said comb-shaped pressing board was provided in both the upper-and-lower-edge parts of the said filter body as illustration.
  • the comb-like spacer plates were fixed by sandwiching the filter bodies with a total of 5 pairs of 5 pieces on each side at intervals of about 100 mm.
  • the frame, the comb-shaped holding plate, and the comb-shaped spacer plate constituting the high-temperature air filter were all made of stainless steel.
  • Comparative Example 1 The high-temperature air filter of Comparative Example 1 is replaced with the five pairs of comb-like spacer plates, and a zigzag filter body is formed on a linear base horizontally fixed as described in Patent Document 1. Except that the heat-resistant spacer with the corrugated base provided with the space protection projections that keep the space of the space stable is fixed and the filter medium is sandwiched and fixed in 3 pairs of 3 on each side at intervals of about 150 mm. In the same manner as in Example 1, a high temperature air filter was obtained.
  • Comparative Example 2 The high-temperature air filter of Comparative Example 2 is replaced with the five pairs of comb-like spacer plates, and a zigzag filter body is formed on a linear base horizontally fixed as described in Patent Document 1. Except that the heat-resistant spacer with the corrugated base provided with the space-protecting protrusions that stably maintain the spacing of the space is fixed by sandwiching and fixing the filter body with 5 pairs of 5 pieces on each side at intervals of about 100 mm. In the same manner as in Example 1, a high temperature air filter was obtained.
  • Example 1 the air was passed through a high-temperature air filter having the dimensions of 610 ⁇ 610 ⁇ 290 mm in Example 1 and Comparative Examples 1, 2 and 3 obtained in this way at 400 ° C.
  • the pressure loss after a heat cycle test of 10 cycles at 1 ° C. was measured at room temperature, and the heat resistance performance of the high temperature air filter was evaluated. The results are shown in Table 1 below.
  • the pressure loss was measured as follows. [Pressure loss] The passage resistance when air was passed through each high temperature air filter at a passing wind speed of 8 m / s was measured with a manometer. Judgment criteria: ⁇ when the value after heat cycle test of pressure loss was 360 Pa or less, and over 360 Pa were marked as x.
  • Example 1 The results shown in Table 1 revealed the following.
  • the filter body is sandwiched and fixed by a total of five pairs of comb-like pressing plates, five on each side, and the comb-shaped pressing plate and the comb-shaped pressing plate are spaced at an interval of about 100 mm.
  • Comparative Example 1 is only fixed at approximately 150mm intervals nipping the filter body in heat spacer made of a total of three pairs each three side, the filter body in use because there is no airtight (isolated) structures as in Example 1
  • the result of the worst pressure loss of 850 Pa in the state after the heat cycle test (after ventilation) was obtained from the problem of the deterioration of the pressure loss caused by being deformed by being pushed by the wind pressure.
  • Comparative Example 2 only fixed at approximately 100mm intervals nipping the filter body in heat spacer made of five pairs each five side, since there is no airtight (isolated) structures as in Example 1, filtered in use although the body is slightly improved the deterioration problem of the pressure loss to cause it to deform by being pushed by the wind pressure, the result of poor pressure loss that 600Pa was obtained in a state after the heat cycle test (after ventilation) .
  • the filter medium is sandwiched and fixed by three pairs of comb-like pressing plates, three on each side, and the comb-shaped pressing plate and the comb-shaped pressing plate are spaced at an interval of about 150 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

【課題】高風量に対応して単位フィルタ容積当たり濾材面積50~65m/mと多くした場合でも、濾過体の形状維持が可能で圧力損失を大きくしない高温用エアフィルタを提供する。 【解決手段】バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定し、単位フィルタ容積当たり濾材面積50~65m/mとした高温用エアフィルタであって、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数対を設けたことを特徴とする。

Description

高温用エアフィルタ
 本発明は、トンネル型乾燥滅菌機の乾燥機のような高温清浄空気で物品を乾燥する乾燥機等に付設される高風量の循環空気清浄用として用いるのに好適な高温用エアフィルタに関する。
 近年、製薬工業、食品産業等に用いられる乾燥機には、循環空気を清浄化するための高温用エアフィルタが併設されるようになってきている。かかる高温用エアフィルタはガラス繊維を主体とし、有機バインダを用いて抄紙した紙を濾材として、枠体内にジグザグ状に折り曲げて、収容固定したものが使用されてきた。
 このような乾燥機に用いる高温用エアフィルタは、その使用において、例えば250~450℃の高温に加熱された空気が前記濾材に触れると、濾材を構成している紙中の有機バインダが炭化し、乾燥機の使用時ごとに、流出側表面及びこれに近い層内部の炭化物が発塵、飛散する不都合があった。出願人がその原因を追求したところ、次の事実が判明した。即ち、乾燥機を毎日所要時間運転する場合、その繰り返しの使用で有機バインダが炭化し、該有機バインダが炭化物として濾材内部に存在することとなる。前記乾燥機の運転開始と運転停止において、運転開始時に常温の空気が昇温し、運転停止時には高温空気の温度が常温まで下降するが、それに伴い濾材を構成している紙が膨張、収縮し、かかる紙の動揺によって、特に、紙の流出側表面及びそれよりやや深い流出側層中の炭化物が動き易くなり、濾材を通る空気流により持ち運ばれて、いわゆる発塵飛散の現象がみられるようになる。このような有機バインダの炭化は、同時にガラス繊維間の結合の劣化、フィルタ作用の劣化も伴う。また、使用時の雰囲気温度の変化に伴って、濾材が上下方向に伸縮するが、この伸縮により濾材の上下縁部と該濾材を収容固定している上下枠体の気密状態が維持されない。
 このため、本出願人は、上記問題点を解決するべく、乾燥機の繰り返し使用でも、炭化物の発塵、飛散が全くなく、且つ長期に亘り安定に使用し得る高温用エアフィルタとして、特許文献1において、バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定して成る高温用エアフィルタを提案した。尚、この高温用エアフィルタにおいては、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において間隔を存して、前記濾過体を気流の上下流側から水平に挟むために直線基杆にスペース保護用突起部を備えた波形状基杆を設けた棒状スペーサを複数個設けて前記濾過体の形状を維持するようにしている。
特開2008-260016号公報
 ところが、トンネル型乾燥滅菌機の乾燥機等で使用される高温用エアフィルタは、従来10CMMで使用されていたが、高風量で使用することで短時間に大量に滅菌処理できることから高風量で使用できるものが求められているが、特許文献1の高温用エアフィルタでは、濾材面積50m/m未満であるが、高風量処理時にろ材抵抗やろ材変形による圧力損失が大きくなりすぎ、送風機の能力が不足となったり、より大容量のものを使用しなくてはならない問題があった。
 本発明者等はかかる課題を解決するべく鋭意検討の結果、濾過体の上下端部のみならずその上下方向全体に亘り濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板で特定の間隔で保持し、これら櫛歯状スペーサ板間、並びに、櫛歯状押さえ板と櫛歯状スペーサ板間に独立した閉空間を形成することで前記課題を解決できることを知見した。
 本発明の高温用エアフィルタはかかる知見に基づき成されたもので、請求項1記載の通り、バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定し、単位フィルタ容積当たり濾材面積50~65m/mとした高温用エアフィルタであって、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数対を設けたことを特徴とする。
 また、請求項2記載の高温用エアフィルタは、請求項1記載の高温用エアフィルタにおいて、前記ガラス繊維は平均繊維径0.6~0.8μmのガラス繊維から成ることを特徴とする。
 また、請求項3記載の高温用エアフィルタは、請求項1又は2記載の高温用エアフィルタにおいて、前記濾材は、厚さ7.5~10.5mm、目付75~84g/mの成形シートから成ることを特徴とする。
 また、請求項4記載の高温用エアフィルタは、請求項1乃至3の何れかに記載の高温用エアフィルタにおいて、前記濾材は、前記成形シートを複数枚積層したものであることを特徴とする。
 本発明による高温用エアフィルタは、バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定し、単位フィルタ容積当たり濾材面積50~65m/mとした高温用エアフィルタであって、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数個を設けたことにより、610×610mm当たり30CMMの高風量で圧力損失360Pa以下の高温用エアフィルタを提供できる。
 即ち、本発明による高温用エアフィルタは、バインダを含まないガラス繊維のみから成る成形シートを濾材として用いるため、最高使用温度400~500℃の高温空気を通過させて使用する際にも、発塵を発生することなく、高温エアを循環させることができる。また、ガラス繊維が軟化して風圧によりへたることがなく、このガラス繊維のへたりによって生じる密度むらによる圧力損失の上昇を生じることなく、長期間の使用が可能となる。
 また、前記成形シートから成る濾材を、耐熱性網体で両側面から挟持してジグザグ状の濾過体としているため、濾材を長期に亘り安定に保持し、長期に亘り良好な高温フィルタ作用を行うことができる。
 また、前記濾過体の上下の各縁部において、気流の上下流側から前記濾過体を水平に挟む一対の櫛歯状押さえ板を設け、前記耐熱性シール材を、前記枠体及び前記櫛歯状押さえ板で挟み、前記濾過体の上下縁部の間に耐熱性シール材を介在させた状態で枠体に気密に収容固定しているため、高温エアフィルタ使用時の雰囲気温度の変化に伴って、濾材が上下方向に伸縮した場合であっても、前記濾過体と枠体との間に介在させた耐熱性シール材の緩衝作用によって、該耐熱性シール材が濾材の伸縮を吸収して濾過体の上下縁部と枠体との気密性を維持し、長期に亘り良好なシール性を保つことができるため、漏洩の問題を生じることなく、長期に亘り安定なフィルタ性能を維持できる。
 また、前記上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数対を設けたため、これら櫛歯状スペーサ板による濾過体の形状保持と相俟って、櫛歯状スペーサ板間、並びに、櫛歯状押さえ板と櫛歯状スペーサ板間に各独立した閉空間を形成でき、これら各閉空間内に層流を形成できるために高風量においても濾過体の形状変形を確実に防止できる。
本発明の製造方法による高温用エアフィルタの正面図である。 図1の高温用エアフィルタの一部破断面を含む平面図である。 図1の高温用エアフィルタの一部縦断面図である。
 以下、本発明の高温用エアフィルタの実施の形態につき説明する。
 本発明の高温用フィルタは、バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定し、単位フィルタ容積当たり濾材面積50~65m/mとした高温用エアフィルタであって、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数対を設けたことを特徴とするものである。
 前記濾過体の濾材としては、バインダを含まないガラス繊維の成形シートから成る濾材を用いる。前記成形シートから成る濾材としては、Eガラス(無アルカリガラス、軟化点750~1100℃)繊維を用いた濾材は500℃仕様、Cガラス(含アルカリガラス、軟化点600~750℃)繊維を用いた濾材は400℃仕様のものとして使用できる。前記ガラス繊維は軟化点600~1100℃のものが好ましい。これは、前記ガラス繊維の軟化点が600℃未満の場合は、耐熱性が不足して高温使用時に濾材が軟化した状態で風圧を受けるため、濾材の密度が上がり圧力損失の上昇となる問題があり、軟化点が1100℃を超える場合は、火炎法等による短繊維化が困難なため、成形シートを形成できない問題があるからである。また、前記ガラス繊維は、Cガラス、Eガラス、Sガラス等の短繊維を使用することが好ましい。前記成形シートは、400~500℃の高温で使用する乾燥機の高温用エアフィルタの濾材として用いた場合であっても、前記成形シートを構成しているガラス繊維が軟化して風圧によりへたることがなく、このガラス繊維のへたりによって生じる密度むらの発生を防止することができる。
 前記成形シートは、火炎法、遠心法等によりガラス溶融炉から紡糸したガラス短繊維を、集綿機により巾方向及び流れ方向に均一な密度分布となるようにシート状に形成したものが好ましい。即ち、従来、集綿機によりガラス繊維をフェルト状とした後、シートの形状を維持することなく未成形の状態で、フェルト化されたガラス繊維綿を手作業でシート形状の濾材としていたため、密度むらが発生していたが、前記した通り、前記ガラス繊維を集綿機により巾方向及び流れ方向共に均一な密度分布となるようにシート状に形成し、該成形シートの形状を保持したまま、巾方向及び流れ方向共に均一な密度分布を有する濾材として用いていることが好ましい。例えば、集綿機により巾方向及び流れ方向共に均一な密度分布となるようにシート状に形成した成形シートを、一旦ロール状に巻き取った後、巻き取ったロール状の成形シートを再びシート状に展開し、濾材として用いているとより好ましい。
 前記高温用エアフィルタに使用する濾材は、目付が75~84g/mのものが好ましい。濾材の目付が75g/m未満であると、該濾材を耐熱性網体で挟持して濾過体とする場合の組立時の取扱性に劣り、所望の効率90%以上(at0.2~0.5μm)が得られない問題がある。また、目付が84g/mを超えると濾材通過風速8m/sで圧力損失が高く360Pa以下を得られず、また、嵩張って組立性に劣るからである。
 また、前記濾材は、厚さ7.5~10.5mmのものが好ましい。濾材の厚さが7.5mm未満であると、該濾材を耐熱性網体で挟持して濾過体とする場合の組立時の取扱性に劣り、所望の効率90%以上(at0.2~0.5μm)が得られない問題がある。また、濾材の厚さが10.5mmを超えると濾材通過風速8m/sで圧力損失が高く360Pa以下を得られず、また、嵩張って組立性に劣るからである。
 尚、後記するように複数枚の濾材を積層して用いる場合の濾材の厚みは、積層後の厚みが前記7.5~10.5mmの範囲となるような厚みにすればよい。
 高温用エアフィルタに用いる濾材は、集綿機によって巾方向及び流れ方向共に均一な密度分布となるようにシート状に形成した成形シートを用いた場合であっても、成形シートに不可避的に生じる微少な密度むらを解消するため、目付の低い成形シートを複数枚、好ましくは3枚積層して濾材として使用することが好ましい。成形シートを複数枚積層して濾材とすることにより、濾材全体として成形シートの不可避的な密度むらを解消し、濾材密度のばらつきを低減して捕集効率の均一性を向上することができるためである。この場合、目付が25~28g/mの成形シートを使用することが好ましい。目付が25g/m未満であると、濾過体を組み立てる際の成形シートの取扱性に劣る問題がある。また、目付が28g/mを超えると成形シートを複数枚積層した場合に、84g/mを超えてしまい、圧力損失が高く、嵩張って組立性に劣るという問題があるからである。
 前記成形シートは、成形シートを構成するガラス繊維の平均繊維径及び成形シートを濾材として用いた場合の目付などを適宜選択することにより、所望の捕集効率及び圧力損失を有する高温用エアフィルタの濾材として好適なものを作製することができる。
 例えば、捕集効率90%(at0.2~0.5μm)以上のエアフィルタに使用する成形シートを構成するガラス繊維は、平均繊維径が0.6~0.8μmのガラス短繊維を使用することが好ましい。前記ガラス繊維の平均繊維径が0.6μm未満であると、繊維化及びシート化が困難であり、平均繊維径が0.8μmを超えると、該ガラス繊維により成形した成形シートから成る濾材は、所望の捕集効率が得られなくなるからである。
 前記耐熱性網体としては、乾燥機の熱に耐え得るステンレス等の金属や、耐熱性の合成樹脂等を用いて形成することが好ましい。また、前記耐熱性網体としては、できるだけ圧力損失が低いことが望ましく、且つガラス繊維の成形シートから成る濾材を確実に保持できる程度に網目が細かいことが望ましい。
 また、例えば、流入側が36×40メッシュ線径0.193mmの金網で、流出側が38×60メッシュ線径0.1524mmの金網で構成する等、流入側の網体を粗く、且つ太線で、流出側を密に、且つ、細線で構成するのが好ましい。
 前記櫛歯状押さえ板は、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟むことができればよいので、その櫛歯の形状は濾材のジグザグ形状に対応するものとなり、また、耐熱性を考慮するとステンレス板等の金属板や合成樹脂板等の耐熱材料で構成するのが好ましい。
 櫛歯状スペーサ板は、前記上下の櫛歯状押さえ板の間において間隔を存して、前記濾過体を気流の上下流側から水平に挟むことができればよいので、その櫛歯の形状は前記櫛歯状押さえ板の櫛歯の形状と同様に、濾材のジグザグ形状に対応するものとなり、また、耐熱性を考慮するとステンレス板等の金属板や耐熱合成樹脂板等の耐熱材料で構成するのが好ましい。
 尚、櫛歯状スペーサ板は、前記櫛歯状押さえ板と同一形状としても構わない。
 尚、前記櫛歯状スペーサ板間、並びに、前記櫛歯状押さえ板と前記櫛歯状スペーサ板間の間隔は90~120mmとする必要がある。これは90mm未満であると櫛歯状押さえ板と櫛歯状押さえ板の間隔が拡くなることにより、櫛歯状押さえ板と櫛歯状押さえ板間に独立した閉空間を形成する気密(隔離)効果がなくなり、使用時に濾過体が風圧で押されて変形することを要因とする圧力損失の悪化の問題があるからであり、また、120mmを越えると櫛歯状押さえ板と櫛歯状押さえ板間に独立した閉空間を形成する気密(隔離)効果が強くなりすぎ風の流れが制約されることを要因とする圧力損失の悪化の問題があるからである。
 また、本発明による高温用エアフィルタを構成する枠体は、高温用エアフィルタを用いる乾燥機の雰囲気温度に耐え得るステンレス等の金属板や合成樹脂板等の耐熱材料を使用することが好ましい。
 次に、本発明による高温用エアフィルタを図面を参照しつつ説明する。
 図1乃至図3に示すように、本発明による高温用エアフィルタ1は、バインダを含まないガラス繊維の成形シートから成る濾材2と該濾材2を両側面から挟持した耐熱性網体3a,3bとから成るジグザグ状の濾過体4を、枠体5(5a,5b,5c,5d)との気密性を維持する耐熱性シール材8a,8b,8cを介在させて前記枠体5内に収容固定した構成となっている。
 ジグザグ状の濾過体4は、該濾過体3のジグザグ状の空間内に挿入して濾過体3の表裏面、即ち、気流の上下流側面に当接する櫛歯状スペーサ板7の対を、該濾過体4の前後、即ち、気流の上下流側から水平に挿入され、このような櫛歯状スペーサ板7の5対を上下方向一定の間隔で挿入されて濾過体4のジグザグ状の間隔を安定に保持した状態で両側枠体5a,5a間に固定されている。
 濾過体4は、濾過体4と両側枠体5a,5bとの間に耐熱性シール材8aを介在させて、図略のボルトによって両側枠体5a,5bに気密に固定されている。尚、耐熱性シール材8aを介して濾過体4を両側枠体5a,5bに固定する手段は、ボルトに限られることなく、他の固定手段によって固定することも可能である。
 前記濾過体4の上下縁部の近辺には、該濾過体4のジグザグ状の空間内に挿入して濾過体4の表裏面、即ち、気流の上下流側面に当接する櫛歯状押さえ板9を各一対、濾過体4の前後、即ち、気流の上下流側から水平に挿入されている。この櫛歯状押さえ板9を挿入したことによって、各櫛歯状押さえ板9から前記濾過体4の上下縁部に至るまでの空間領域にフェルト状の耐熱性シール材8bを充填すると共に、該充填した耐熱性シール材8bと上下枠体5c,5dとの間に前記濾材2と同様のガラス繊維から成る成形シートを複数枚積層した耐熱性シール材8cを介在させ、櫛歯状押さえ板9,9と上下枠体5c,5dとで、耐熱性シール材8b,8cを全体的に挟んで押圧し、濾過体4の上下縁部を耐熱性シール材8b,8cが介在している状態で上下枠体5b,5bに圧着し、該耐熱性シール材8b,8cの緩衝作用によって濾過体4と上下枠体5c,5dとの気密性を維持した状態で濾過体4を枠体5に収容固定している。このため、高温での使用により濾材2が上下方向に伸縮した場合であっても、前記櫛歯状押さえ板9と上下枠体5c,5dの間に介在されている耐熱性シール材8b,8cが濾材2の伸縮を吸収して濾過体4の上下縁部と上下枠体5c,5dとの気密性を維持し、高温用エアフィルタ1の良好なシール性を保持することができる。
 前記耐熱シール材8a,8cとして、平均繊維径0.8μmのC(含アルスリガラス)ガラス繊維から成る目付25g/mの成形シートを用いた。
 また、前記耐熱性シール材8bとして、フェルト状の平均繊維径0.8μmのC(含アルスリガラス)ガラス繊維綿を用いた。
 8a,8b,8cとして濾材2と同一の耐熱性材料を使用することができるが、前述のようにフェルト状のガラス綿の塊と前記濾材2と同様の成形シートとを併用する場合に限らず、耐熱性シール材として、全体的にフェルト状のガラス綿の塊を用いることも可能であり、前記濾材2と同様の成形シートを充填可能となるように切断し、若しくは積層して用いることも可能である。
 また、前記枠体5(5a,5a,5b,5b)も、高温用エアフィルタを用いた乾燥機の雰囲気温度に耐え得るステンレス等の金属や合成樹脂等を使用することができる。
 次に、本発明の高温用エアフィルタの製造方法の具体的な実施例を比較例と共に説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
 本実施例による高温用エアフィルタは、図1乃至3に示す構造のものにおいて、濾材として、火炎法により紡糸された平均繊維径0.6μmのCガラス(含アルカリガラス)繊維のみをバインダを用いることなく集綿機により目付25g/mのシート状に成形し、この成形シートを3枚積層して目付75g/mとしたものを用いた。該濾材を両側面からジグザグ状に挟持する耐熱性網体として、流入側36×40メッシュ、線径0.193mm、流出側38×60メッシュ、線径0.1524mmのステンレス製の金網から成るものを用いて、単位フィルタ容積当たり濾材面積53.6m/m(山折り畳み濾材面積5.6m/台)のジグザグ状の濾過体を形成した。また、耐熱性シール材として、フェルト状の平均繊維径0.6μmのCガラス繊維から成るガラス繊維綿と、平均繊維径0.6μmのCガラス繊維から成る成形シートを20g/台(610×290mmを上下2箇所)用いた。また、平均繊維径0.8μmのC(含アルスリガラス)ガラス繊維を目付25g/mの成形シートにした耐熱性シール材を左右の側枠体に用いた。
 また、前記櫛歯状押さえ板は、図示の通り、前記濾過体の上下縁部の両方に設けた。
 また、櫛歯状スペーサ板は約100mm間隔で片側5本ずつ計5対で濾過体を挟みこみ固定した。
 前記高温用エアフィルタを構成する枠体、櫛歯状押さえ板、櫛歯状スペーサ板は、共にステンレス製のものを用いた。
(比較例1)
 比較例1の高温用エアフィルタは、前記5対の櫛歯状スペーサ板に替え、特許文献1に記載されたような、水平に横断して固定された直線基杆に、濾過体のジグザグ状の間隔を安定に保持するスペース保護用突起部を設けた波形状基杆を固定した耐熱製スペーサを約150mm間隔で片側3本ずつ計3対で濾過体を挟みこみ固定した以外は、前記実施例1と同様にして、高温用エアフィルタを得た。
(比較例2)
 比較例2の高温用エアフィルタは、前記5対の櫛歯状スペーサ板に替え、特許文献1に記載されたような、水平に横断して固定された直線基杆に、濾過体のジグザグ状の間隔を安定に保持するスペース保護用突起部を設けた波形状基杆を固定した耐熱製スペーサを約100mm間隔で片側5本ずつ計5対で濾過体を挟みこみ固定した以外は、前記実施例1と同様にして、高温用エアフィルタを得た。
(比較例3)
 比較例3の高温用エアフィルタは、前記5対の櫛歯状スペーサ板に替え、櫛歯状スペーサ板を約150mm間隔で片側3枚ずつ計3対で濾過体を挟みこみ固定した以外は、前記実施例1と同様にして、高温用エアフィルタを得た。
 次に、このようにして得られた実施例1及び比較例1、2、3の寸法610×610×290mmの大きさの高温用エアフィルタに400℃で通風し、1時間空焼き後、400℃1時間を10サイクルのヒートサイクル試験後の圧力損失を、常温で測定し、高温用エアフィルタの耐熱性能を評価した。その結果を下記表1に示す。
 尚、圧力損失は次のようにして測定した。
[圧力損失]
 各高温用エアフィルタに、通過風速8m/sで空気を通過させた時の通過抵抗をマノメーターにより測定した。
 判定基準:圧力損失のヒートサイクル試験後の値が360Pa以下を○、360Pa超を×とした。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から以下のことが分かった。
 実施例1は片側5本ずつ計5対の櫛歯状押さえ板で濾過体を挟みこみ固定すると共に、櫛歯状押さえ板と櫛歯状押さえ板を約100mm間隔とし、櫛歯状押さえ板と櫛歯状押さえ板間に独立した閉空間を形成して気密(隔離)化し、これら各閉空間内に層流を形成できるために高風量においても濾過体の形状変形を確実に防止できるため、ヒートサイクル試験後(通風後)の状態で360Paという優れた圧力損失の結果が得られた。
 比較例1は、片側3本ずつ計3対の耐熱製スペーサで濾過体を挟みこみ約150mm間隔で固定しただけで、実施例1のような気密(隔離)化構造がないため使用時に濾過体が風圧で押されて変形することを要因とする圧力損失の悪化の問題からヒートサイクル試験後(通風後)の状態で850Paという最も悪い圧力損失の結果が得られた。
 比較例2は、片側5本ずつ計5対の耐熱製スペーサで濾過体を挟みこみ約100mm間隔で固定しただけで、実施例1のような気密(隔離)化構造がないため、使用時に濾過体が風圧で押されて変形することを要因とする圧力損失の悪化の問題を僅かに改善されたものの、ヒートサイクル試験後(通風後)の状態で600Paという悪い圧力損失の結果が得られた。
 比較例3は、片側3枚ずつ計3対の櫛歯状押さえ板で濾過体を挟みこみ固定すると共に、櫛歯状押さえ板と櫛歯状押さえ板を約150mm間隔とし、櫛歯状押さえ板と櫛歯状押さえ板間に独立した閉空間を形成する気密(隔離)化構造としたが、実施例1に比べると気密(隔離)化による効果が小さくなり、ヒートサイクル試験後(通風後)の状態で800Paという悪い圧力損失の結果が得られた。
 1 高温用エアフィルタ
 2 濾材
 3a 耐熱性網体
 3b 耐熱性網体
 4 濾過体
 5 枠体
 5a 側枠体
 5b 側枠体
 5c 上枠体
 5d 下枠体
 7  櫛歯状スペーサ板
 8a 耐熱性シール材
 8b 耐熱性シール材
 8c 耐熱性シール材
 9 くし歯状押さえ板

Claims (4)

  1.  バインダを含まないガラス繊維の成形シートから成る濾材と該濾材を両側面から挟持した耐熱性網体とから成るジグザグ状の濾過体を、該濾過体の上下縁部と枠体との間に前記濾過体と前記枠体との気密性を維持する耐熱性シール材を介在させて前記枠体内に収容固定し、単位フィルタ容積当たり濾材面積50~65m/mとした高温用エアフィルタであって、前記濾過体の上下の各縁部において前記濾過体を気流の上下流側から水平に挟む一対の櫛歯状押さえ板を設けるとともに、これら上下の櫛歯状押さえ板の間において90~120mmの間隔を存して、前記濾過体を気流の上下流側から水平に挟む櫛歯状スペーサ板の複数対を設けたことを特徴とする高温用エアフィルタ。
  2.  前記ガラス繊維は平均繊維径0.6~0.8μmのガラス繊維から成ることを特徴とする請求項1記載の高温用エアフィルタ。
  3.  前記濾材は、厚さ7.5~10.5mm、目付75~84g/mの成形シートから成ることを特徴とする請求項1又は2記載の高温用エアフィルタ。
  4.  前記濾材は、前記成形シートを複数枚積層したものであることを特徴とする請求項1乃至3の何れかに記載の高温用エアフィルタ。
PCT/JP2012/000555 2011-03-31 2012-01-30 高温用エアフィルタ WO2012132182A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12763008.5A EP2692409B1 (en) 2011-03-31 2012-01-30 High temperature resistant air filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011080915A JP5805976B2 (ja) 2011-03-31 2011-03-31 高温用エアフィルタ
JP2011-080915 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012132182A1 true WO2012132182A1 (ja) 2012-10-04

Family

ID=46929979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000555 WO2012132182A1 (ja) 2011-03-31 2012-01-30 高温用エアフィルタ

Country Status (3)

Country Link
EP (1) EP2692409B1 (ja)
JP (1) JP5805976B2 (ja)
WO (1) WO2012132182A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104606983B (zh) * 2015-02-02 2016-03-02 苏州华泰空气过滤器有限公司 梯形通风通道式耐高温过滤器
CN105214411A (zh) * 2015-09-18 2016-01-06 广州金田瑞麟净化设备制造有限公司 一种处理pm2.5的空气过滤器装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662113U (ja) * 1979-10-17 1981-05-26
JPH0429710A (ja) * 1990-05-28 1992-01-31 Sanyo Electric Co Ltd エアフィルタ
JP2004313888A (ja) * 2003-04-14 2004-11-11 Nippon Muki Co Ltd 高温用エアフィルタ
JP2008260016A (ja) 2008-05-30 2008-10-30 Nippon Muki Co Ltd 高温用エアフィルタの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547950A (en) * 1984-05-29 1985-10-22 Honeywell Inc. Method of spacing the folds of a folded filter media
JP4640895B2 (ja) * 2001-03-29 2011-03-02 日本無機株式会社 ガスタービン吸気用高性能フィルタ及びそれを用いたガスタービン吸気用フィルタユニット
US7004989B2 (en) * 2003-08-22 2006-02-28 Camfil Farr, Inc. Filter assembly with compressed media edge seal
JP4662763B2 (ja) * 2004-12-28 2011-03-30 日本無機株式会社 清浄乾燥気体供給システム用エアフィルタ及び清浄乾燥気体供給システム
JP4825703B2 (ja) * 2007-03-06 2011-11-30 日本バイリーン株式会社 フィルタエレメントの製造方法、及びその製造に使用するフィルタエレメント製造用治具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662113U (ja) * 1979-10-17 1981-05-26
JPH0429710A (ja) * 1990-05-28 1992-01-31 Sanyo Electric Co Ltd エアフィルタ
JP2004313888A (ja) * 2003-04-14 2004-11-11 Nippon Muki Co Ltd 高温用エアフィルタ
JP2008260016A (ja) 2008-05-30 2008-10-30 Nippon Muki Co Ltd 高温用エアフィルタの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2692409A4 *

Also Published As

Publication number Publication date
EP2692409B1 (en) 2017-01-11
EP2692409A4 (en) 2015-08-12
EP2692409A1 (en) 2014-02-05
JP2012213722A (ja) 2012-11-08
JP5805976B2 (ja) 2015-11-10

Similar Documents

Publication Publication Date Title
US20140165517A1 (en) Filter medium for air filter, air filter unit, and method for producing filter medium for air filter
JP5966282B2 (ja) エアフィルタ用濾材及びエアフィルタユニット
JP6010360B2 (ja) エアフィルタユニット
JPH0549835A (ja) フイルタ及びその製造装置
US9174152B2 (en) Filter medium and method of fabricating the same
JP5805976B2 (ja) 高温用エアフィルタ
JP2014133200A (ja) 集塵デバイスおよびそれを用いた空気清浄装置
JP4315419B2 (ja) 高温用エアフィルタ
JP4722965B2 (ja) 高温用エアフィルタの製造方法
JP4110628B2 (ja) 布帛およびその製造方法
JP2002346319A (ja) タービン用吸気フィルタ濾材
JP2012170914A (ja) エレクトレットろ材
JP2014064969A (ja) エレクトレット濾材
JPH03293008A (ja) エレクトレットフィルター及びその製造方法
JP7117174B2 (ja) ガラスフィルタ
WO2020231535A1 (en) Inlaid nanofiber layers in supporting layers for air particulate filtration and filter construction method
JP4142991B2 (ja) 高温用エアフィルタ
JP2017077516A (ja) 気体フィルタ用濾材
JPH0626333Y2 (ja) 高温用エアフイルタ
JP4552249B2 (ja) 高温用エアフィルタ用濾材
JP6579876B2 (ja) 濾材及びこれを用いたフィルターユニット
JP4315433B2 (ja) 高温用エアフィルタ
JP7208464B2 (ja) エアフィルタ濾材の製造方法、エアフィルタパックの製造方法およびエアフィルタユニットの製造方法
JP7112228B2 (ja) エアフィルタ用濾材、及びエアフィルタ
JPH06257064A (ja) エレクトレットシートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012763008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012763008

Country of ref document: EP