WO2012130024A1 - 用于数据传输的方法及装置 - Google Patents

用于数据传输的方法及装置 Download PDF

Info

Publication number
WO2012130024A1
WO2012130024A1 PCT/CN2012/072040 CN2012072040W WO2012130024A1 WO 2012130024 A1 WO2012130024 A1 WO 2012130024A1 CN 2012072040 W CN2012072040 W CN 2012072040W WO 2012130024 A1 WO2012130024 A1 WO 2012130024A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
random access
bcf
cap
unit
Prior art date
Application number
PCT/CN2012/072040
Other languages
English (en)
French (fr)
Inventor
鲍东山
姚惠娟
周玉宝
于晓燕
雷俊
刘慎发
王竞
潘立军
闫志刚
Original Assignee
北京新岸线无线技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京新岸线无线技术有限公司 filed Critical 北京新岸线无线技术有限公司
Priority to CN201280012712.4A priority Critical patent/CN103688557B/zh
Publication of WO2012130024A1 publication Critical patent/WO2012130024A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems

Definitions

  • the present invention belongs to the field of wireless communications, and in particular, to a method and apparatus for data transmission. Background technique
  • wireless communication systems have developed rapidly, such as 802.11-based wireless LAN technology WiFi, 802.15-based Bluetooth systems, and Femto technology for indoor applications generated by mobile communication systems. A wide range of applications.
  • 802.11-based WiFi technology is one of the most widely used wireless network transmission technologies. Since the WiFi system uses the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism, the system efficiency is much higher than that of the wireless resources. The root cause of this problem is that the CSMA/CA mechanism is a contention-based random multiple access mechanism, between a central access point (CAP, Access Point) and a station (STA, Station), or different STAs. In the meantime, the right to use wireless resources will be competed through the CSMA/CA mechanism, and at the same time, the wireless channel will be competed, and collision will occur at this time, resulting in waste of wireless resources.
  • CAP central access point
  • STA station
  • the CSMA/CA mechanism requires that the CAP or STA need to randomly retreat when competing for the wireless channel.
  • the wireless channel is idle but not used, which is also the pole of the wireless channel.
  • 802.11 systems are less efficient.
  • the 802.l lg system physical layer peak rate can reach 54Mbps, but the TCP layer can reach no more than 30Mbps under the big packet download service.
  • the 802.11 system is flexible and does not rely on centralized control mechanisms, so it can achieve lower equipment costs.
  • the Femto technology based on the 3GPP standard is a new technology for indoor coverage that has evolved from a mobile communication system. Based on the statistics of 3G systems, about 70% of data services occur indoors, so indoor high-speed data access solutions are especially important.
  • Femto base station called pico Base station, small size and flexible deployment. Due to the evolution from mobile communication systems, Femto base stations have inherited almost all the characteristics of mobile communication systems. The Femto device only combines its limited coverage, fewer access users and other application scenarios, and reduces the processing power of the device, thereby reducing the cost of the device.
  • the duplex mode like the mobile communication system, the Femto base station can be divided into two types of duplex mechanisms: FDD and TDD.
  • the uplink and downlink carrier resources of the FDD are symmetric, and the asymmetric service characteristics of the uplink and downlink data traffic of the data service cause a certain waste of resources when the FDD system faces the data service.
  • the uplink and downlink of the TDD system work on the same carrier, and the time resources are allocated to allocate different radio resources to the uplink and downlink. Therefore, the FDD can better adapt to the asymmetric data service of the uplink and downlink services.
  • the TDD duplex mode of the mobile communication system including the Femto system
  • the static allocation of uplink and downlink resources, and the various types of data services with different demands, such as browsing web pages, mobile video, mobile games, etc. are difficult to realize business requirements and resources. Dynamic adaptation of the partition. Compared with Wi-Fi, since Femto uses a centralized control mechanism based on scheduling, there is no waste of radio resources between the base station or CAP and the terminal or terminal due to collision and random backoff, so the link efficiency is high.
  • a method for data transmission characterized in that the method comprises:
  • BCF broadcast information frame
  • the physical layer parameter includes one or more of the following:
  • a location of a downlink sounding channel indicating a position of the downlink sounding channel in the downlink transport channel;
  • a demodulation pilot time period indicating the number of OFDM symbols at the time of demodulation of the pilot;
  • a downlink protection indicating a transition time of the downlink and the uplink Interval DGI;
  • the upstream guard interval indicating the transition time of the uplink and downlink.
  • a method for data transmission comprising:
  • a device for data transmission comprising:
  • a generating unit configured to generate a broadcast information frame BCF, where the BCF carries a physical layer parameter indicating a physical frame structure configuration;
  • a sending unit configured to send the BCF.
  • the physical layer parameter includes one or more of the following:
  • a location of a downlink sounding channel indicating a position of the downlink sounding channel in the downlink transport channel;
  • a demodulation pilot time period indicating the number of OFDM symbols at the time of demodulation of the pilot;
  • a downlink protection indicating a transition time of the downlink and the uplink Interval DGI;
  • a device for data transmission comprising:
  • a generating unit configured to generate a broadcast information frame BCF, where the BCF carries a working channel and a working bandwidth of the CAP, and the STA determines a working subchannel of the CAP;
  • a sending unit configured to send the BCF.
  • FIG. 1 is a flow chart of a first method for data transmission in the present invention
  • FIG. 2 is a flow chart of a second method for data transmission in the present invention.
  • FIG. 3 is a flowchart of a method for accessing a wireless network in an embodiment of the present invention.
  • Figure 4 is a reference model for the EUHT system
  • Figure 5 is the composition of the access system of the EUHT system
  • FIG. 7 is a flowchart of a method for acquiring synchronization in an embodiment of the present invention.
  • Figure 8 is a flow chart of the STA maintaining synchronization
  • FIG. 9 is a flowchart of a method for random access in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of transmitting a random access sequence in an embodiment of the present invention.
  • 11 a 11 11 c are formats of an uplink random access channel in the embodiment of the present invention.
  • Figure 13 is a block diagram showing the structure of the first apparatus for data transmission in the present invention.
  • FIG. 14 is a schematic structural diagram of a device for accessing a wireless network in the embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of an apparatus for acquiring system synchronization according to an embodiment of the present invention
  • FIG. 17 is a schematic structural diagram of a first random access terminal side device according to an embodiment of the present invention
  • FIG. 18 is a schematic structural diagram of a capability negotiation terminal side device according to an embodiment of the present invention
  • FIG. 19 is a schematic structural diagram of a network side device accessing a wireless network in the present invention.
  • FIG. 20 is a schematic structural diagram of a first random access wireless network side device according to an embodiment of the present invention.
  • FIG. 21 is a schematic structural diagram of a capability negotiation network side device according to an embodiment of the present invention.
  • the present invention provides two methods for data transmission.
  • Step 11 Generate a BCF, where the BCF carries a physical layer parameter indicating a physical frame structure configuration.
  • Step 12 Send the BCF.
  • the method for transmitting a broadcast frame the physical layer parameter indicating the physical frame structure configuration is broadcasted, and the physical frame structure is dynamically configured, so that the receiving end of the broadcast frame is made. In this way, the structure of the physical frame is known.
  • Step 21 Generate a BCF, where the BCF carries a working channel and a working bandwidth of the CAP, and the STA determines a working subchannel of the CAP.
  • Step 22 Send the BCF.
  • the working channel and the working bandwidth of the CAP are broadcasted by means of transmitting a broadcast frame, and the STA is determined to provide a reference for determining the working subchannel of the CAP.
  • the following is an example of accessing a wireless network, and an enhanced ultra high speed wireless local area network (EUHT) system, exemplifying an alternative embodiment of the present invention.
  • EUHT enhanced ultra high speed wireless local area network
  • FIG. 3 is a flowchart of a method for accessing a wireless network in the present invention, where the process includes:
  • Step 31 Get system synchronization.
  • the acquisition system synchronization here is equivalent to the process of system initialization.
  • Step 32 Randomly access the CAP and perform capability negotiation with the CAP.
  • the random access procedure is performed based on the result performed in step 31, and the capability negotiation process will be performed using the result obtained after the random access is completed, and the specific content will be described in detail later.
  • Figure 4 shows the reference model for the EUHT system.
  • the system reference model shown in Figure 4 mainly refers to the air interface reference model, including: Media Access Control (MAC) layer and physical (PHY) layer.
  • MAC Media Access Control
  • PHY physical
  • the MAC layer includes an adaptation sublayer and a MAC sublayer.
  • MSDU refers to information delivered as a unit between MAC Service Access Points (SAP).
  • SAP MAC Service Access Points
  • MAC sublayer In addition to acting as a media access control function, it also includes management and control of the system and support for specific functions of the PHY layer.
  • PHY layer mainly provides PHY transmission mechanism for mapping MPDUs to corresponding physical channels, such as Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) technologies.
  • MPDU refers to the data unit exchanged between two peer MAC entities using the PHY layer service.
  • FIG. 5 shows the access system of the EUHT system, including the central access point (CAP) and the station (STA), where the STA can be various data devices, such as: PDA, notebook, camera, camera, mobile phone, tablet and pad. Wait.
  • STA1 and STA2 access the CAP through the air interface protocol.
  • the CAP establishes communication with the existing external network (such as IP backbone network, Ethernet) through wired or wireless.
  • the protocol component of the CAP includes a MAC layer and a PHY layer.
  • the STA protocol consists of an Application layer, a Transmission Control (TCP) layer, a Network (IP) layer, a MAC layer, and a PHY layer.
  • FIG. 6 shows the process of transmitting and receiving protocol data between the STA and the CAP.
  • the STA wants to send data to the CAP, and the STA first applies the application data (such as VoIP, video, etc.).
  • the application layer and the TCP/IP layer process and package, and send them to the IP adaptation sublayer in the form of IP packets, which are converted and mapped by the IP adaptation sublayer, and sent to the MAC sublayer, MAC.
  • the sublayer is sent to the PHY layer through fragmentation, encryption, framing, aggregation, etc., and finally mapped by the PHY to the wireless channel for data transmission.
  • step 11 can be implemented by the following sub-steps:
  • Sub-step 1 Find the physical frame on the current subchannel.
  • Sub-step 2 Parsing the system information channel (SICH) and the control channel (CCH) in the found physical frame, the SICH indicating the structure of the physical frame, and the CCH indicating the allocation of system resources.
  • SICH system information channel
  • CCH control channel
  • the method for accessing a wireless network in the present invention is directed to the case where the physical frame structure can be dynamically configured.
  • the SICH in the physical frame indicates the structural configuration of the physical frame, for example, indicating whether the channel in the physical frame is timely or not.
  • the CCH in the physical frame indicates the allocation of system resources, including an indication of the resources allocated for the system parameters.
  • Sub-step 3 Use the parsing result to get the system parameters from the physical frame.
  • the present invention achieves acquisition system synchronization for the case where the physical frame structure can be dynamically configured.
  • both STA and CAP can support 20MHz, 40MHz and 80MHz.
  • the system pre-determines the channel list to indicate the sub-channels of the system. These sub-channels can contain one or more working sub-channels of CAP.
  • the system synchronization is obtained in the embodiment of the present invention, including the process of acquiring synchronization shown in FIG. 7, where the process of acquiring synchronization includes:
  • Step 71 Find a physical frame on the current subchannel. Specifically, determine whether a frame header of the physical frame is detected on the current subchannel. If yes, go to step 72, otherwise continue to perform detection until the subchannel waiting time is exceeded. , Transfer to the next subchannel to continue to step 71.
  • Step 72 It is judged whether the SICH and CCH in the physical frame can be parsed, and if yes, step 73 is performed, otherwise step 71 is continued, until the waiting time of the subchannel is exceeded, and the process proceeds to the next subchannel to continue to step 71.
  • the positions of the preamble sequence and the SICH are preset in advance and are not dynamically configured.
  • the CCH is located adjacent to the SICH, and the duration of the CCH can be dynamically configured.
  • the SICH indicates the structural configuration of the physical frame, and specifically indicates the presence and/or duration of each channel in the current physical frame. For example, for some channels with fixed duration, the SICH can use 1 bit to indicate the presence or absence of the channel, which implicitly indicates the duration of the channel. For some channels with irregular duration, multiple bits can be used in the SICH to indicate CCH. For example, 6 bits can be used in the SICH, and a maximum of 63 OFDM symbols can be indicated. One OFDM symbol is a minimum resource allocation unit, for example, the 6 bits are 010000, and the converted decimal number is 16, that is, corresponding to 16 OFDM symbols.
  • the broadcast scheduling signaling is detected from the CCH in the physical frame to detect the resource allocated for the BCF.
  • An example of broadcast scheduling signaling is given in Table 3 below.
  • the BCF is transmitted in the signaling/feedback channel shown in Table 3, and the signaling/feedback channel is included in the transport channel.
  • b 3 b 2 b when b 0 is 0000, it is determined as the downlink signaling/feedback channel resource indication. If 0 is taken, it is determined that there is a BCF frame, 6 5 - 2 indicates the location of the resource, and ⁇ 7 indicates the length of the resource.
  • Step 73 Determine whether a broadcast information frame (BCF) is detected, if yes, implement downlink synchronization, otherwise return to step 71 until the waiting time of the subchannel is exceeded, and then proceed to step 71 to proceed to the next subchannel.
  • BCF broadcast information frame
  • the BCF is a broadcast configuration message, and is periodically broadcast by the CAP on all working subchannels, which carries the MAC address of the CAP, so that the STA identifies the sender of the BCF.
  • the system parameters are also carried in the BCF.
  • the system parameters carried by the BCF may include various parameters that indicate the subsequent processes of the network access or other processes after the network is completed.
  • BCF frame body carrying information is given in Table 4 below.
  • 0 means 1 antenna
  • the BCF interval 16 indicates the time period in which the BCF frame appears, in ms. Random access backoff 4 is used for random access backoff window control.
  • the minimum window value of the minimum window is 0 ⁇ 2 n - l
  • Scheduling request backoff 4 Minimum window system for the control of the backoff window based on the resource request of the competition, the minimum window value range 0 ⁇ 2 n - 1
  • Random access backoff 8 is used for random access backoff window control.
  • the maximum window value of the maximum window is 0 ⁇ 2 n - l
  • Scheduling request backoff 8 Maximum window system for the control of the backoff window based on the resource request of the competition, the maximum window value range is 0 ⁇ 2 n - l
  • the CAP transmit power is n dBm.
  • the guard interval is 2 OFDM symbol periods
  • guard interval is 4 OFDM symbol periods; 2 ⁇ 3: reserved
  • the guard interval is 2 OFDM symbol periods
  • guard interval is 4 OFDM symbol periods (processing delay);
  • the STA may determine other working subchannels of the CAP that broadcast the BCF in addition to the subchannels currently detecting the BCF.
  • Network alias indicating the network name, so that the STA can select the network to join.
  • the length of the network alias indicating the length of the network alias field.
  • the length of the network alias field is fixed to save overhead and reduce the resolution bias.
  • the STA Indicates the BCF interval of the BCF broadcast period. After the STA obtains the system parameters for the first time, the STA needs to continuously receive the SICH and the BCF to confirm that it is always in contact with the CAP. According to the BCF interval, the STA can obtain the BCF periodically.
  • Collision avoidance parameters including: a minimum window for random access backoff and a maximum window for random access backoff, and a minimum window for scheduling request backoff and a maximum window for scheduling request backoff.
  • the STA may perform backoff according to the minimum window of the random access evasion and the maximum window of the random access backoff when multiple STAs collide in the subsequent random access procedure.
  • the STA can also back off the minimum window according to the scheduling request and the maximum window of the scheduling request backoff, and perform backoff when the scheduling request conflicts. The specific method of performing backoff is described in detail later.
  • the transmit power of the CAP after successful access to the wireless network, the STA can perform open-loop power control according to the transmit power.
  • a DGI for indicating the transition time of the downlink and the uplink
  • a UGI for indicating the transition time of the uplink and the downlink
  • a location of a downlink sounding channel for indicating a starting position of the downlink sounding channel in the downlink transport channel
  • the physical frame structure parameter carried in the BCF frame indicates a part of the structure in the physical frame. This part of the structure generally does not change when the physical frame structure is dynamically configured. Therefore, it carries a unified indication in the BCF, so that there is no need to repeat the indication in the SICH. , saving the cost of SICH.
  • An uplink random access channel (UL-RACH) format for indicating a random access format.
  • U-RACH uplink random access channel
  • different uplink random access channel formats are set for different random access distances to support coverage of further distances, and STA selection and random access are indicated by indicating an uplink random access channel format in the BCF. The distance matches the format.
  • the CAP can carry one or several items of the information shown in Table 4 in the generated BCF, and then broadcast the generated BCF.
  • the STA After the STA acquires the system parameters on a certain subchannel, it will transfer to the next subchannel to continue to perform step 71 until a scan is performed on all the subchannels in the channel list to complete the process of acquiring synchronization.
  • the STA may acquire system parameters on one or more subchannels, which may be working subchannels of the same CAP, and may also include different The working subchannel of the CAP. STA will have obtained system parameters All subchannels are available as subchannels, and any one of them is selected as a subchannel for performing the synchronization process and the random access procedure, and also determines the CAP to be accessed.
  • the acquiring system synchronization in the embodiment of the present invention further includes a process of maintaining synchronization, including: continuing to search for a physical frame on the selected subchannel; parsing the SICH and CCH in the found physical frame; and using the parsing result from the found physics
  • the BCF is detected in the frame to obtain system parameters.
  • FIG. 8 is a flowchart of STA synchronization in an embodiment of the present invention.
  • the SICH timer and the BCF timer are set, and the STA continues to search for the physical frame on the selected subchannel, and starts the SICH timer and the BCF timer. If the SICH is successfully parsed before the SICH timer expires, the SICH timer is reset. If the BCF is successfully detected before the BCF timer expires, the BCF timer is reset and the physical frame is continued to be searched on the selected subchannel. When any of the two timers expires but the corresponding information is not successfully detected, the STA is considered to be out of synchronization and the channel needs to be scanned again.
  • the rescanning channel here specifically includes the following two implementations:
  • the process of re-execution acquisition synchronization according to the channel list is equivalent to scanning each channel in the channel list, and then selecting an available sub-channel to perform the process of maintaining synchronization again.
  • another available subchannel can be used as the selected subchannel, and the process of maintaining synchronization is performed again.
  • This implementation can be applied to the following application scenarios: After the process of acquiring synchronization ends, it is determined that more than one subchannel is available, and the current channel list has not expired. Of course, if there is no limit on the expiration of the channel list in the system, this implementation can also be used as a predetermined operation mode. When more than one available subchannel is determined when the process of acquiring synchronization is performed for the first time, the operation can be used. mode.
  • the timing of the SICH timer and the BCF timer can be flexibly set according to the application requirements. It can be seen that maintaining synchronization is a process in which the STA continuously searches for a physical frame on the selected subchannel, and continuously analyzes the SICH and detects the BCF. Since the SICH indicates the structure of the physical frame to which the subframe belongs, the STA can learn the start time of the next physical frame by using the parsing result of the current SICH while maintaining synchronization.
  • FIG. 9 is a flowchart of a method for random access in an embodiment of the present invention, where the process includes:
  • Step 91 Send a random access sequence to the CAP on any one of the subchannels.
  • the purpose of sending a random access sequence is to send an uplink transmission resource of a random access request to the CAP request.
  • any one of the subchannels herein refers to an available subchannel determined by the STA after the process of acquiring the synchronization of the system, and the selection of the channel is arbitrary, whereby multiple STAs can be dispersed in different subchannels.
  • Sending random access sequences avoids competition in one subchannel, reduces the probability of collisions, and improves the success rate of accessing the wireless network.
  • CAP_MAC refers to The lowest 7 bits of the MAC address of the CAP is the PN sequence index ( 0 ⁇ ⁇ 4 ), ⁇ is the cyclic shift parameter set, and _/ is the cyclic shift parameter index ( 0 ⁇ _ / ⁇ 8 ).
  • the random access sequence is transmitted in the uplink random access channel in the physical frame, using the uplink random access channel format indicated in the BCF.
  • Figure 11a to Figure 11c show the format of three uplink random access channels that can be selected in the embodiment of the present invention.
  • the selection of the uplink random access channel format includes the following cases:
  • Step 92 The CAP indicates the uplink transmission resource allocated according to the random access sequence.
  • the CAP uses broadcast signaling to indicate the allocated uplink transmission resources, and Table 5 below shows an example of the bits in the broadcast signal and their indication meanings.
  • the allocation 1 and the allocation 2 respectively correspond to one STA, and the allocation 1 is taken as an example.
  • the value of the STA passing the identification broadcast type is to allocate resources for the random access request frame, and the STA passes the random access sequence index and the random access sequence frequency domain loop.
  • the shift index and the system frame number of the random access occurrence of the lowest 3 bits and three items are used to find the corresponding uplink transmission resource from the broadcast signaling.
  • the PN sequence in Table 5 refers to a random access sequence
  • the signaling/feedback channel is a channel in the transmission channel for transmitting signaling and performing feedback.
  • the transmission timing advance in Table 5 indicates the amount by which the STA needs to advance timing when transmitting in the uplink. When the STA subsequently transmits all the uplink frames, the timing advance is performed according to the transmission timing advance amount. Table 5
  • the resource allocated by the random access request is indexed at the starting position of the signaling/feedback channel, the field value ranges from 1 to 63, and the field value is 0 indicates invalid indication bH b 33 b 32 , PN sequence index, 0 ⁇ 3
  • the STA If the STA does not receive the resource allocation information indicating the uplink transmission resource after the random access maximum frame interval is exceeded, the STA considers that the random access fails and needs to perform the random access procedure again.
  • the random access sequence is retransmitted on the current subchannel.
  • the frame number timing is used here, and the timing is more accurate than using the timer timing.
  • the time for resending the random access sequence is related to random access backoff.
  • the STA sends a random access sequence on a random access channel of any one of the subchannels;
  • the STA waits for the resource allocation information for the random access request in the subsequent CCH, that is, the allocation information of the uplink transmission resource carried in the foregoing broadcast signaling;
  • SS4 If the STA receives the resource allocation information, the processing ends, indicating that there is no contention conflict;
  • SS5 if the resource allocation information for the random access request is not detected in the CCH within the random access maximum waiting frame interval, Then the STA believes that the competition is a conflict;
  • the STA will randomly select the backoff value between [0 S ⁇ . C ⁇ mJ (the backoff window is not larger than the maximum backoff window), and the backoff unit is one frame, where m indicates the number of retransmissions;
  • the STA resends the random access sequence after the backoff counter is 0.
  • Step 93 Send a random access request frame to the CAP by using the uplink transmission resource allocated by the CAP.
  • the random access request encapsulation in the present invention is implemented in a random access request frame, and the following Table 6 gives an example of the frame body carrying information of the random access request frame.
  • the information carried by the frame body of the random access request frame includes the following:
  • Power control parameters including: power adjustment margin and STA current transmit power.
  • the STA is to perform closed-loop power control, which is often implemented by a separate power adjustment procedure.
  • carrying the power control parameter in the random access request frame the STA can perform closed-loop power control in the process of random access. .
  • the STA may generate a random access request frame and carry one or more of the information shown in Table 6, and then transmit the generated random access request frame.
  • Step 91 is executed. At this time, the random access sequence is resent on the current subchannel, and the retransmission time is related to the random backoff introduced in the foregoing.
  • Step 94 Receive a random access response frame sent by the CAP.
  • the CAP indicates, by the broadcast signaling, the downlink transmission resource that sends the random access response frame to the STA.
  • Table 7 gives an example of the bits in the broadcast signaling and their indications.
  • the allocations 1 to 3 in Table 7 correspond to one STA, respectively, with the allocation 1 as an example, and the STA passes ⁇ . Identifying the broadcast type is to allocate resources for the random access response frame, and the STA determines the corresponding by the random access sequence index, the random access sequence frequency domain cyclic shift index, and the system frame number of the random access occurrence of the lowest 3 bits.
  • the PN sequence in Table 7 refers to a random access sequence
  • the signaling/feedback channel refers to a channel in which downlink signaling and feedback for uplink traffic are transmitted in the downlink transmission channel.
  • the random access response encapsulation in this embodiment is implemented in a random access response frame.
  • the following Table 8 gives an example of the frame body carrying information of the corresponding random access response frame.
  • the information carried in the random access response frame includes the following:
  • the STA After receiving the random access response frame, the STA re-sends the random access sequence if it finds that the MAC address of the STA carried in it does not match its own address.
  • the temporary identifier TSTA ID assigned to the STA in the CAP range is used to identify the STA before the access to the wireless network is successful, and the STA is assigned an official identifier in the CAP range.
  • the resource indication broadcast signal may be in the capability negotiation phase.
  • the TSTA ID is used to identify the uplink transmission resource allocated by the CAP to the STA. Since the STA may not successfully access the wireless network for various reasons, if the STA is assigned an official identifier within the CAP range in the random access phase, the identification resource will be wasted.
  • the STA is selected to allocate a temporary identifier, and the temporary identifier may correspond to a collection period, which is greater than the time required for the STA to complete the network access, and the STA is assumed to be connected to the wireless network. If the subsequent process fails, the temporary ID assigned to the STA will be reclaimed after the collection cycle is reached.
  • the power control parameter adjustment value indicates how the STA should adjust the power control parameters.
  • the CAP determines the adjustment value according to the power control parameter carried in the random access request. Specifically, the CAP determines the power control parameter adjustment value according to the adjustment margin carried in the random access request.
  • the CAP determines the access status according to the measurement result of the uplink signal.
  • the access status may be determined according to information such as the signal quality of the uplink channel.
  • the CAP determines the access status as successful.
  • the CAP determines the access status as abandonment, and the random access fails.
  • the random access response frame does not carry the TSTA ID, or the TSTA ID is set to invalid data.
  • the STA may generate a random access response frame and carry one or more of the information shown in Table 8, and then transmit the generated random access response frame.
  • the power control parameters of the STAs in the system are fixed, and the power control parameters are not required to be carried in the random access request, correspondingly
  • the CAP also does not need to determine the power control parameter adjustment value.
  • the CAP may also delete the random access request frame sent by the STA after waiting for the random access maximum waiting frame interval. All the information corresponding to the STA, or the information corresponding to the random access sequence of the STA.
  • FIG. 12 is a flowchart of a method for capability negotiation according to an embodiment of the present invention, where the process includes:
  • Step 121 The CAP allocates an uplink transmission resource.
  • the CAP actively allocates an uplink transmission resource to the STA, and sends an allocation indication of the uplink transmission resource to the STA.
  • the foregoing allocation indication may be broadcast signaling, and the TSTA ID of the STA is used in the broadcast signaling to identify the uplink transmission resource allocated thereto.
  • the STA uses its own TSTA ID to find the uplink transmission resource allocated by the CAP from the above broadcast signaling, and uses the uplink transmission resource to send the terminal basic capability negotiation request.
  • the STA may wait for the maximum waiting frame interval of the basic capability negotiation request frame of the terminal, and if the CAP does not receive the allocation indication of the uplink transmission resource, the STA considers that the capability negotiation fails. , the random access process needs to be re-executed.
  • Step 122 Send a terminal basic capability negotiation request frame (SBC-REQ) to the CAP.
  • SBC-REQ terminal basic capability negotiation request frame
  • the terminal basic capability negotiation request in the embodiment is encapsulated in the terminal basic capability negotiation request frame, and an example of the frame body carrying information of the terminal basic capability negotiation request frame is given in Table 9 below. Table 9
  • STA supported tone 1 0 only supports time division scheduling degree mechanism 1 reserved
  • 40MHz and 80MHz terminals operate on multiple 20MHz subchannels. Reserved 4 , the default setting is 0
  • STA maximum transmission 3 0 indicates that the number of streams is 1
  • the number of streams 1 means that the number of 3 ⁇ 4 is 2
  • STA maximum reception 3 0 indicates that the number of streams is 1
  • the number of streams 1 means that the number of 3 ⁇ 4 is 2
  • STA MCS can 1 0 does not support 256-QAM force indication 1 support 256-QAM
  • UEQM capability refers to 1 support UEQM
  • STA LDPC can 1 0 does not support LDPC code length 1 Force indication 1 Support LDPC code length 1 STA Tx STBC 1 0 not supported
  • MU-MIMO can 1 support
  • Subcarrier grouping 3 indicates the number of subcarriers in the group:
  • Subcarrier (not grouped);
  • Feedback mode combination 001 CSI - MIMO feedback
  • Feed channel format 2 1 support
  • the information carried by the frame body of the terminal basic capability negotiation request frame includes the following: The number of antennas of the STA, which will be used in the process after accessing the wireless network. 2) The maximum working bandwidth of the STA, the STA reports its maximum working bandwidth, and the maximum working bandwidth can be used as one of the basis for the CAP to determine the 3 ⁇ 4 standard subchannel to be switched by the STA.
  • both STA and CAP may support 20MHz, 40MHz and 80MHz: ⁇ bandwidth, the system includes four 20MHz subchannels, and spectrum aggregation mode 1 represents 20MHz, 40MHz and 80MHz STAs can be scheduled in one or more Independent transmission on the 20MHz subchannel, spectrum aggregation mode 2 represents multiple consecutive subchannel aggregations, with continuous spectrum, and 40MHz and 80MHz STAs can be continuously transmitted in the frequency domain on the aggregation channel.
  • this parameter indicates the available subchannels selected by the STA during the system synchronization process, and these subchannels can be used as one of the basis for the CAP to determine the target subchannel to be switched by the STA.
  • the maximum number of transmitted streams of the STA and the maximum number of received streams of the STA can be used to know the number of supported streams and the number of received streams.
  • the unequal modulation pointer here uses different modulation schemes for different traffic flows.
  • a MU-MIMO indication of the STA indicating the MU-MIMO capability of the STA, by which the MU-MIMO capability of the STA can be known.
  • Subcarrier grouping s feedback capability is that the STA reports to the CAP the number of subcarriers between each two feedbacks it supports.
  • the MIMO feedback mode combination supported by the STA is that the STA reports its own supported MIMO feedback mode combination to the CAP.
  • Uplink Signaling/Feedback Channel Format 2 Support indication where the uplink signaling/feedback channel format 2 indicates an uplink signaling/feedback channel supporting frequency division.
  • the terminal basic capability negotiation request frame carries a plurality of parameters for the physical layer mode negotiation, including the STA supporting spectrum aggregation, the STA-supported scheduling mechanism, the STA maximum transmission stream number, the STA maximum received stream number, the STA UEQM capability indication, and the STA.
  • the negotiation facilitates the complexity of the constraint implementation.
  • the STA may carry one or several parameters in Table 9 according to the application requirement, and then send the terminal basic capability negotiation request frame.
  • the maximum waiting frame interval of the basic capability negotiation response frame of the terminal may be awaited. If the basic capability negotiation response frame is not received, the capability negotiation fails. Random access process.
  • Step 123 Receive a terminal basic capability negotiation response frame (SBC-RSP) sent by the CAP. Before transmitting the basic capability negotiation response frame of the terminal, the CAP instructs to receive the downlink transmission resource of the basic capability negotiation response of the terminal.
  • SBC-RSP terminal basic capability negotiation response frame
  • the terminal basic capability negotiation response is encapsulated in the terminal basic capability negotiation response frame.
  • An example of the frame body carrying information of the terminal basic capability negotiation response frame is given in Table 10 below. Table 10
  • STA maximum reception 3 0 indicates that the number of streams is 1
  • the number of streams 1 means that the number of 3 ⁇ 4 is 2
  • Feedback mode combination 001 CSI - MIMO feedback
  • Uplink signaling/feedback 1 0 Format is not supported 2
  • the information carried in the frame body of the terminal basic capability negotiation response frame includes the following:
  • the STA ID assigned to the STA in the CAP range. After the network is successfully accessed, the STA uses the STA ID to interact with the CAP. The TSTA ID assigned in the random access phase is invalid.
  • the CAP can determine the parameter according to the STA maximum working bandwidth and the STA working subchannel mapping in the terminal basic capability request frame. Further, the CAP can adjust the maximum working bandwidth reported by the STA according to the actual channel load and the like. For example, the STA reports its maximum working bandwidth to 80 MHz, and the CAP can be adjusted to 40 MHz or 20 MHz according to actual conditions.
  • the CAP determines, as far as possible, the subchannel indicated by the STA working subchannel mapping in the terminal basic capability negotiation request frame as the target subchannel to be switched by the STA, and also refers to the maximum working bandwidth of the STA or the maximum working bandwidth of the adjusted STA.
  • the final working subchannel mapping information is determined.
  • a spectrum aggregation mode indicating a relationship between the target subchannels in the working subchannel mapping, where the spectrum aggregation mode is determined according to the STA support frequency aggregation carried in the terminal basic capability negotiation request frame.
  • the scheduling mechanism is determined according to the scheduling mechanism supported by the STA carried in the request frame of the basic capability negotiation request of the terminal.
  • the MCS indication information, the UEQM indication information, the LDPC indication information, the Tx STBC information, and the Rx STBC information are respectively determined according to various parameters carried in the terminal basic capability negotiation request frame. For example, if the STA supports 256QAM and the CAP does not support 256QAM, the CAP will not allow the STA to support 256QAM.
  • the maximum number of STAs to be transmitted and the number of STAs to be received are determined according to the maximum number of STAs to be transmitted and the maximum number of STAs to be received in the frame of the basic capability negotiation request.
  • the Ns feedback capability is determined according to the subcarrier carrier Ns feedback capability carried in the terminal basic capability negotiation request frame, and the STA can perform feedback every few subcarriers, thereby saving feedback overhead.
  • the supported MIMO feedback mode combination is determined according to the MIMO feedback mode combination supported by the STA carried in the terminal basic capability negotiation request frame, and multiple MIMO feedback modes can be used.
  • Uplink signaling/feedback channel format 2 (10) Uplink signaling/feedback channel format 2.
  • the STA DGI requirement and the STA UGI requirement are determined according to the corresponding parameters carried in the terminal basic capability negotiation request frame.
  • the CAP may carry one or several parameters in the table 10 according to the application requirement, and then send the basic capability negotiation response frame of the terminal.
  • the STA may send an acknowledgment to the CAP when correctly receiving, and the STA may send an ACK.
  • the embodiment of the present invention provides a group acknowledgement (GroupAck) mode, where the group confirmation frame includes a management control frame indicator bit, and further includes a bitmap corresponding to different service flows of the same user, where the STA may be in the foregoing management control frame. An indication indicating whether the terminal basic capability negotiation response is correctly received or not is filled in the indicator bit. After the data transmission based on the service flow, the STA can send the acknowledgement for the different service flows to the CAP together using the bitmap in the group acknowledgement frame.
  • GroupAck group acknowledgement
  • the CAP waits for the maximum waiting frame interval of the basic capability negotiation response frame to be acknowledged. If the acknowledgment returned by the STA is not received, the capability negotiation fails.
  • the STA may be retransmitted to the STA.
  • Basic capability negotiation response frame In the case of a retransmission terminal basic capability negotiation response frame, the CAP waits for the maximum waiting frame interval of the terminal basic capability negotiation response frame acknowledgement only after transmitting the terminal basic capability negotiation response frame for the first time.
  • the STA After the capability negotiation ends, the STA will switch to the target subchannel indicated by the CAP.
  • the present invention provides two means for data transmission.
  • Figure 13 is a block diagram showing the structure of a first apparatus for data transmission in the present invention, the apparatus comprising: a generating unit 131 and a transmitting unit 132.
  • the generating unit 131 is configured to generate a broadcast information frame BCF, where the BCF carries a physical layer parameter indicating a physical frame structure configuration.
  • the sending unit 132 is configured to send the BCF.
  • the physical layer parameter includes one or more of the following: a downlink sounding pilot pattern; a location of the downlink sounding channel; and a demodulation pilot time domain period indicating the number of OFDM symbols of the demodulation pilot time domain interval; Downlink guard interval DGI of downlink and uplink transition time; uplink guard interval indicating transition times of uplink and downlink.
  • the second device for data transmission in the present invention has the same structure as the first device for data transmission, and also includes a generating unit and a transmitting unit, but the functions of the units are different, wherein the generating unit is used to generate
  • the BCF carries the working channel and the working bandwidth of the CAP, and the STA determines the other working subchannels of the CAP except the currently camped subchannel, and the sending unit is configured to send the BCF.
  • FIG. 14 is a schematic structural diagram of a terminal-side device accessing a wireless network according to the present invention.
  • the device includes: a device for acquiring system synchronization, a random access terminal-side device 142, and a capability negotiation terminal-side device 143.
  • the device 141 for acquiring system synchronization is used to perform a process of acquiring the system synchronization with the CAP.
  • the random access terminal side device 142 is configured to randomly access the CAP.
  • the capability negotiation terminal side device 143 is configured to perform capability negotiation with the CAP.
  • the device for acquiring system synchronization in the present invention includes: a module for acquiring synchronization, and the module for acquiring synchronization includes: a first detecting unit, a first analyzing unit, and a first acquiring unit.
  • the first detecting unit is configured to search for a physical frame on the current subchannel.
  • the first parsing unit is configured to parse the physical frame that is found by the first detecting unit
  • SICH indicates a structure of a physical frame
  • CCH indicates allocation of system resources
  • the first acquiring unit is configured to obtain a system parameter from a physical frame that is searched by the first detecting unit by using a result of the parsing by the first parsing unit.
  • FIG. 15 is a schematic structural diagram of an apparatus for acquiring system synchronization according to an embodiment of the present invention.
  • the apparatus includes: a module 151 for acquiring synchronization, and the module 151 for acquiring synchronization includes: a first detecting unit 1511, a first parsing unit 1512, and a first The acquisition unit 1513.
  • the first detecting unit 1511 is configured to search for a physical frame on the current subchannel.
  • the first parsing unit 1512 is configured to parse the SICH and the CCH in the physical frame that the first detecting unit 1511 finds, wherein the SICH indicates a structure of a physical frame, and the CCH indicates allocation of system resources.
  • the first obtaining unit 1513 is configured to obtain the system parameter from the physical frame found by the first detecting unit 1511 by using the result parsed by the first parsing unit 1512. Further, after acquiring the system parameters, the first acquiring unit 1513 may trigger the first detecting unit 1511 to transfer to the next subchannel to continue searching for physical frames until each subchannel in the predetermined channel list is traversed.
  • the first obtaining unit 1513 may use all subchannels that have acquired the system parameters as available subchannels, and select any one of the subchannels therefrom.
  • the first detecting unit 1511 finds a physical frame by detecting the frame header of the physical frame on the current subchannel.
  • the detecting unit 1511 when the first detecting unit 1511 does not detect the frame header on the current subchannel, the detecting unit continues to perform detection until the waiting time of the subchannel is exceeded, and shifts to the next subchannel to continue searching for the physical frame.
  • the first parsing unit 1512 parses the SICH and the CCH is unsuccessful, the first detecting unit 1511 is triggered to continue to perform the operation, and when the waiting time of the subchannel is exceeded, the first detecting unit 1511 is triggered to move to the next. A subchannel continues to look for physical frames.
  • the first obtaining unit 1513 detects the broadcast information frame BCF from the physical frame, and acquires system parameters from the BCF.
  • the first detecting unit 1511 is triggered to continue to perform the operation until the waiting time of the subchannel is exceeded, and the first detecting unit 1511 is triggered to transfer to the next subchannel to continue searching for the physical frame.
  • the device for acquiring synchronization in the embodiment of the present invention further includes a module 152 for maintaining synchronization, and the module 152 for maintaining synchronization includes: a second detecting unit 1521, a second analyzing unit 1522, and a second obtaining unit 1523.
  • the second detecting unit 1521 is configured to continue to search for a physical frame on the selected subchannel.
  • the second parsing unit 1522 is configured to parse the SICH and the CCH in the physical frame sought by the second detecting unit 1521.
  • the second obtaining unit 1523 is configured to detect the BCF from the physical frame sought by the second detecting unit 1521 by using the parsing result of the second parsing unit 1522 to obtain the system parameter.
  • the module 152 that maintains synchronization further includes: a SICH timer 1524, a BCF timer 1525, and a determination unit 1526.
  • the second detecting unit 1521 further starts the SICH timer 1524 and the BCF timer 1525 when starting to find the physical frame.
  • the determining unit 1526 is configured to determine whether the second parsing unit 1522 successfully parses the SICH before the SICH timer 1524 times out, and if so, resets the SICH timer 1524, otherwise the module 151 that triggers the acquisition synchronization re-executes the operation according to the channel list; Determining whether the second obtaining unit 1523 detects the BCF before the BCF timer 1525 times out, and if so, resetting the BCF timer 1525, and triggering the second detecting unit 1521 to continue searching for the physical frame on the selected subchannel, otherwise triggering acquisition
  • the synchronized module 151 re-executes operations in accordance with the channel list.
  • the module 151 for maintaining synchronization further includes: a SICH timer 1524, a BCF timer 1525, and a determining unit 1526.
  • the second detecting unit 1521 further starts the SICH timer 1524 and the BCF timer 1525 when starting to find the physical frame.
  • the determining unit 1526 is configured to determine whether the second parsing unit 1522 successfully parses the SICH before the SICH timer 1524 times out. If yes, reset the SICH timer 1524, otherwise the module 151 that triggers the acquisition synchronization starts with the selected subchannel. And re-performing the operation according to the channel list; determining whether the second obtaining unit 1523 detects the BCF before the BCF timer 1525 times out, and if so, resetting the BCF timer 1525, and triggering the second detecting unit 1521 to select the child. On the channel Continuing to find the physical frame, the module 151 that triggers the acquisition synchronization starts with the selected subchannel and re-executes the operation according to the channel list.
  • the first obtaining unit 1513 further triggers the synchronization-maintaining module 152 to re-execute the sub-channel as the selected sub-channel after acquiring the system parameters on one sub-channel in the process of re-executing the operation. .
  • the module 152 for maintaining synchronization further includes: a SICH timer 1524, a BCF timer 1525, and a judging unit 1526.
  • the second detecting unit 1521 further starts the SICH timer 1524 and the BCF timer 1525 when starting to find the physical frame.
  • the determining unit 1526 is configured to determine whether the second parsing unit 1522 successfully parses the SICH before the SICH timer 1524 times out, and if so, resets the SICH timer 1524, otherwise triggers the first acquiring unit 1513 to reselect one of the available subchannels. Determining whether the second obtaining unit 1523 detects the BCF before the BCF timer 1525 times out, and if so, resetting the BCF timer 1525, and triggering the second detecting unit 1521 to continue searching for the physical frame on the selected subchannel, otherwise triggering The first obtaining unit 1513 reselects one of the available subchannels.
  • the apparatus for acquiring the system synchronization may further include a module for determining whether the channel list is expired, and the module may monitor the acquisition synchronization.
  • the operation of the module 151 starts counting after it completes the channel list scan, and after reaching the set time, the result of the channel list expiration is obtained.
  • the module 152 that maintains synchronization can directly utilize the result of whether the channel list derived by the module has expired.
  • the second detecting unit 1521 may determine the start time of the next physical frame by using the SICH in the found current physical frame on the selected subchannel.
  • the apparatus for acquiring system synchronization in the embodiment of the present invention may further include: a synchronization unit that establishes synchronization with the CAP by using a system common clock in the system parameter.
  • the first random access terminal side device includes: a resource requesting unit, a random access requesting unit, and a random access response receiving unit.
  • the resource requesting unit is configured to send a random access sequence on any one of the subchannels.
  • the random access requesting unit is configured to send a random access request to the CAP by using the uplink transmission resource allocated by the CAP according to the random access sequence.
  • FIG. 17 is a schematic structural diagram of a first type of random access terminal side device according to an embodiment of the present invention, where the apparatus includes: a resource requesting unit 171, a random access requesting unit 172, and random access.
  • the resource requesting unit 171 is configured to send a random access sequence on any one of the subchannels, and receive an indication of the uplink transmission resource by the CAP within a set number of frames after the random access sequence is sent, if no indication of the uplink transmission resource is received, Resend the random access sequence.
  • the indication of the uplink transmission resource is carried in the system signaling, and the index of the random access sequence, the index of the frequency domain cyclic shift of the random access sequence, and the system frame number of the random access occurrence are identified. Further, the indication of the uplink transmission resource further carries a transmission timing advance amount.
  • the random access requesting unit 172 is configured to send a random access request to the CAP by using the uplink transmission resource allocated by the CAP according to the random access sequence. When the random access request unit 172 transmits a random access request to the CAP, the timing advance is performed in accordance with the transmission timing advance amount.
  • the random access response receiving unit 173 is configured to receive a random access response sent by the CAP. Further, the random access response may carry an access status indicating success or abandonment. When the access status indication is successful, the random access response may also carry the temporary target i allocated by the STA to which the device belongs in the CAP range. .
  • the first triggering unit 174 is configured to monitor the random access response receiving unit 173 within the set number of frames after the random access requesting unit 172 sends the random access request, if the random access response receiving unit 173 does not receive the random In response to the access, the trigger resource request unit 171 transmits a random access sequence.
  • the power control parameter reporting unit 175 is configured to notify the power access control parameter reported by the random access request unit 172 for being carried in the random access request.
  • the resource indication receiving unit 176 is configured to receive an indication that the CAP sends a downlink transmission resource that sends the random access response.
  • the indication of the downlink transmission resource is carried in the system signaling, and the index of the random access sequence, the random access sequence frequency i or the cyclically shifted index, and the system frame number identifier of the random access occurrence are used. .
  • the second triggering unit 177 is configured to compare the address carried in the random access response with the address of the associated STA. If not, the trigger resource requesting unit 171 resends the random access sequence to the CAP.
  • the power control parameter adjustment unit 178 is configured to adjust the power control parameter according to the power control parameter adjustment value in the random access response.
  • the first random access terminal side device in the embodiment of the present invention may include all the units shown in FIG. 17 , but may also include only some units shown in FIG. 17 according to application requirements. Therefore, FIG. 17 only shows an example of the structure of the random access terminal side device, and is not limited to its structure.
  • the second random access terminal side provided by the present invention includes: a random access request unit and a random access response connection unit.
  • the random access requesting unit is configured to send a random access request carrying a power control parameter to the CAP.
  • the random access response receiving unit is configured to receive a random access response sent by the CAP.
  • the second random access terminal side device of the present invention may further include: a resource requesting unit, configured to send a random access sequence to the CAP on any one of the subchannels, to request to send the uplink transmission resource of the random access request .
  • the second random access terminal side device of the present invention may have an internal structure similar to that shown in FIG. 17, but there is no separate power control parameter reporting unit, and the random access request unit The random access request carrying the power control parameters is directly sent, and the functions of other units are the same.
  • the capability negotiation terminal side device in the present invention includes: a capability negotiation request unit and a capability negotiation response receiving unit.
  • the capability negotiation requesting unit is configured to send, by using an uplink transmission resource allocated by the CAP, a terminal basic capability negotiation request to the CAP.
  • the capability negotiation response receiving unit is configured to receive a terminal basic capability negotiation response that is sent by the CAP and carries the working subchannel mapping information.
  • the above working subchannel mapping information indicates a target subchannel to which the STA is to handover.
  • FIG. 18 is a schematic structural diagram of a capability negotiation terminal side device according to an embodiment of the present invention.
  • the device includes: a capability negotiation requesting unit 181, a capability negotiation response receiving unit 182, a confirming unit 183, a first triggering unit 184, a second triggering unit 185, and The configuration parameter providing unit 186.
  • the capability negotiation requesting unit 181 is configured to receive an allocation indication of the uplink transmission resource, and send, by using an uplink transmission resource allocated by the CAP, a terminal basic capability negotiation request to the CAP.
  • the capability negotiation response receiving unit 182 is configured to receive a terminal basic capability negotiation response that carries the working subchannel mapping information sent by the CAP.
  • the above working subchannel mapping information indicates the target subchannel to which the STA is to handover.
  • the terminal basic capability negotiation response may further include spectrum aggregation mode information and/or an official identifier, where the spectrum aggregation mode information is used to indicate a relationship between the target subchannels, and the official identifier is that the STA is within the CAP range. The official identification of the distribution.
  • the confirming unit 183 is configured to send an acknowledgement to the CAP after the capability negotiation response receiving unit 182 correctly receives the terminal basic capability negotiation response.
  • the first triggering unit 184 is configured to: after the random access terminal side device completes the operation, the monitoring capability negotiation requesting unit 181, if the capability negotiation requesting unit 181 does not receive the indication of the uplink transmission resource, triggering the random access
  • the terminal side device re-executes the operation.
  • the second triggering unit 185 is configured to: after the capability negotiation requesting unit 181 sends the terminal basic capability negotiation request, the monitoring capability negotiation response receiving unit 182, if the capability negotiation response receiving unit 182 does not receive the terminal basic capability negotiation response , triggering the random access terminal side device to perform the operation again.
  • the configuration parameter providing unit 186 is configured to provide the maximum working bandwidth of the STA to the capability negotiation request unit 181 for sending in the terminal basic capability negotiation request. Further, the configuration parameter providing unit 186 is further configured to provide the subchannel information available to the STA to the capability negotiation request unit 181 for being sent in the terminal basic capability negotiation request.
  • the capability negotiation terminal side device in the embodiment of the present invention may include all the units shown in FIG. 18, but may also include only some of the units shown in FIG. 18 according to different application requirements, so FIG. 18 only gives An example of the structure of the capability negotiation terminal side device is not limited to its structure.
  • FIG. 19 is a schematic structural diagram of a network side device accessing a wireless network according to the present invention.
  • the device includes: a system parameter sending device 191, a random access network side device 192, and a capability negotiation network side device 193.
  • the system parameter sending device 191 is configured to send system parameters.
  • the random access network side device 192 is configured to permit random access of the terminal side device.
  • the capability negotiation network side device 193 is configured to perform capability negotiation with the terminal side device.
  • the first random access network side device includes: a resource allocation unit, a random access request receiving unit, and a random access response unit.
  • the resource allocation unit is configured to receive a random access sequence sent by the STA on any one of the subchannels, and allocate an uplink transmission resource according to the random access sequence.
  • the random access request receiving unit is configured to receive a random access request sent by the STA by using the uplink transmission resource.
  • the random access response unit is configured to send a random access response to the STA.
  • FIG. 20 is a schematic structural diagram of a first random access wireless network side device according to an embodiment of the present invention, where the device includes: a resource allocation unit 201, a random access request receiving unit 202, and a random connection.
  • the device includes: a resource allocation unit 201, a random access request receiving unit 202, and a random connection.
  • deletion unit 204, access status determination unit In response unit 203, deletion unit 204, access status determination unit
  • Temporary identifier assigning unit 206 Temporary identifier assigning unit 206, power control parameter adjustment value determining unit 207.
  • the resource allocation unit 201 is configured to receive, on any one of the subchannels, a random access sequence sent by the STA, and allocate an uplink transmission resource according to the random access sequence, and send the uplink transmission resource.
  • An indication of the source allocating a downlink transmission resource for the random access response, and transmitting the indication of the downlink transmission resource.
  • the indication of the uplink transmission resource is carried in the system signaling, and the index of the random sequence, the index of the frequency domain cyclic shift of the random access sequence, and the system frame number of the random access occurrence are identified. Further, the indication of the uplink transmission resource further carries a transmission timing advance amount, and indicates a timing advance amount at the time of uplink transmission.
  • the indication of the downlink transmission resource is carried in the system signaling, and is identified by an index of the random access sequence, an index of the random access sequence frequency i or a cyclic shift, and a system frame number generated by random access.
  • the random access request receiving unit 202 is configured to receive a random access request sent by using the uplink transmission resource.
  • the random access response unit 203 is configured to send a random access response to the STA.
  • the deleting unit 204 is configured to monitor the random access request receiving unit 202 within the set number of frames after the resource allocation unit 201 receives the random access sequence sent by the STA, if the random access request receiving unit 202 does not receive the Describe the random access request sent by the STA, delete all the information corresponding to the STA, or delete the information corresponding to the random access sequence.
  • the access state determining unit 205 is configured to determine, according to the measurement result of the uplink signal, that the access state of the STA is successful or abandoned, and send the access state to the random access response unit 203, where it is carried in the random connection. Sent in the response.
  • the temporary identifier allocation unit 206 is configured to: when the access state determining unit 205 determines that the access status indication is successful, allocate a temporary identifier to the STA in its own range, and send the temporary identifier to the random access response unit 203 for The bearer is sent in the random access response.
  • the power control parameter adjustment value determining unit 207 is configured to determine a power control parameter adjustment value according to the reported power control parameter carried in the random access request received by the random access request receiving unit 202, and send the power control parameter adjustment value to
  • the random access response unit 203 is configured to be carried in a random access response.
  • the random access network side device in the embodiment of the present invention may include all the units shown in FIG. 20, but may also include only some of the units shown in FIG. 20 according to application requirements, so FIG. 20 only gives An example of the structure of the random access network side device is not limited to its structure.
  • the second random access network side device includes: a random access request receiving unit and a random access response unit.
  • the random access request receiving unit is configured to receive a random access request that carries a power control parameter sent by the STA.
  • the random access response unit is configured to send a random access response to the STA.
  • the second random access network side device of the present invention may further include: a resource allocation unit, configured to receive a random access sequence sent by the STA on any one of the subchannels, and allocate the random access sequence according to the random access sequence Sending an uplink transmission resource of the random access request.
  • a resource allocation unit configured to receive a random access sequence sent by the STA on any one of the subchannels, and allocate the random access sequence according to the random access sequence Sending an uplink transmission resource of the random access request.
  • the internal structure of the second random access network side device provided by the embodiment of the present invention is the same as that shown in FIG. 20, and the functions of each unit are similar.
  • the capability negotiation network side device in the present invention comprises: a capability negotiation request receiving unit and a capability negotiation response unit.
  • the capability negotiation request receiving unit receives a terminal basic capability negotiation request sent by the STA by using the allocated uplink transmission resource.
  • the capability negotiation response unit sends a terminal basic capability negotiation response carrying the working subchannel mapping information, where the working subchannel mapping information indicates the target subchannel to which the STA is to be handed over.
  • FIG. 21 is a schematic structural diagram of a capability negotiation network side device according to an embodiment of the present disclosure, where the device includes: a capability negotiation request receiving unit 211, a capability negotiation response unit 212, and an acknowledgment receiving unit 213.
  • the capability negotiation request receiving unit 211 receives the terminal basic capability negotiation request sent by the STA by using the allocated uplink transmission resource.
  • the capability negotiation response unit 212 transmits a terminal basic capability negotiation response carrying the working subchannel mapping information, where the working subchannel mapping information indicates the target subchannel to which the STA is to be handed over.
  • the acknowledgment receiving unit 213 is configured to receive an acknowledgment sent by the STA after correctly receiving the basic capability negotiation response of the terminal.
  • the monitoring unit 214 is configured to monitor the acknowledgment receiving unit 213 in the set number of frames after the capability negotiation response unit 212 sends the terminal basic capability negotiation response, and notify the capability negotiation request receiving unit 211 if the acknowledgment receiving unit 213 does not receive the acknowledgment.
  • the capability negotiation response unit 212 ends this operation. Further, before being triggered by the monitoring unit 214, the capability negotiation response unit 212 may resend the terminal basic capability negotiation response to the STA.
  • the resource allocation unit 215 is configured to allocate, by the STA, an uplink transmission resource that sends a basic capability negotiation request of the terminal, and send an allocation indication of the uplink transmission resource.
  • the working subchannel mapping information determining unit 216 is configured to determine working subchannel mapping information, and send the working subchannel mapping information to the capability negotiation response unit 212 for carrying in the terminal basic capability negotiation response.
  • the sum of the bandwidths of the target subchannels indicated by the determined working subchannel mapping information is less than or equal to the maximum working bandwidth of the STA.
  • the working subchannel mapping information determining unit 216 may further adjust the maximum working bandwidth of the STA carried in the terminal basic capability negotiation request, and at this time, the working subchannel mapping information indicates the target subchannel.
  • the sum of the bandwidths is less than or equal to the adjusted maximum operating bandwidth of the STA.
  • the working subchannel mapping information determining unit 216 determines, in the target subchannel indicated by the working subchannel mapping information, one or more available subchannels of the STA.
  • the spectrum aggregation mode information providing unit 217 is configured to provide the frequency negotiation mode information indicating the relationship between the target subchannels to the capability negotiation response unit 212 for being carried in the terminal basic capability negotiation response.
  • the official identity assigning unit 218 is configured to allocate an official identifier to the STA of the basic terminal capability negotiation request of the transmitting terminal, and send the formal identifier to the capability negotiation response unit 212 for carrying the basic capability negotiation response of the terminal. Sent in.
  • the official identification assigning unit 218 can obtain the information of the STA that is currently requesting capability negotiation from the capability negotiation request receiving unit 211, and assign an official identifier to the STA within its own scope.
  • the capability negotiation network side device in the embodiment of the present invention may include all the units shown in FIG. 21, but may also include only some of the units shown in FIG. 21 according to application requirements, so FIG. 21 only gives An example of the structure of the capability negotiation network side device is not limited to its structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于数据传输的方法,该方法包括:生成广播信息帧BCF,所述BCF中携带指示物理帧结构配置的物理层参数;发送所述BCF。本发明还公开一种用于数据传输的装置。

Description

用于数据传输的方法及装置
本申请要求申请日为 2011年 3月 31 日, 申请号为 201110081288.6, 发 明名称为 "一种无线通信方法"的中国专利申请的优先权, 该在先申请的全部 内容均已在本申请中体现。
本申请要求申请日为 2011年 3月 31 日, 申请号为 201110081193.4, 发 明名称为 "一种无线通信方法、 ***与设备" 的中国专利申请的优先权, 该 在先申请的全部内容均已在本申请中体现。
本申请要求申请日为 2011年 5月 19 日, 申请号为 201110130194.3, 发 明名称为 "一种通信***"的中国专利申请的优先权, 该在先申请的全部内容 均已在本申请中体现。
本申请要求申请日为 2011年 7月 6 日, 申请号为 201110189248.3, 发明 名称为 "用于数据传输方法"的中国专利申请的优先权, 该在先申请的全部内 容均已在本申请中体现。
本申请要求申请日为 2012年 2月 16 日, 申请号为 201210035785.7, 发 明名称为 "用于数据传输的方法及装置"的中国专利申请的优先权, 该在先申 请的全部内容均已在本申请中体现。
本申请要求申请日为 2012年 2月 29 日, 申请号为 201210050629.8, 发 明名称为 "用于数据传输的方法及装置"的中国专利申请的优先权, 该在先申 请的全部内容均已在本申请中体现。 技术领域
本发明属于无线通信领域, 尤其涉及一种用于数据传输的方法及装置。 背景技术
近年来, 无线通信***迅速发展, 诸如基于 802.11标准的无线局域网技 术 WiFi、 基于 802.15的蓝牙 (Bluetooth ) ***以及由移动通信***^ "生而 来的面向室内应用的 Femto技术等等, 都得到了广泛的应用。
基于 802.11的 WiFi技术是当今使用最广的一种无线网络传输技术。 由 于 WiFi***釆用了载波侦听 /冲突避免 ( CSMA/CA, Carrier Sense Multiple Access with Collision Avoidance )机制, ***效率较 ^ [氐,对无线资源 -浪费较大。 导致这一问题的根本原因是 CSMA/CA机制是一种基于竟争的随机多址接入 机制, 中心接入点 (CAP, Access Point ) 和站点 ( STA, Station ) 之间, 或 者不同 STA之间, 会通过 CSMA/CA机制竟争无线资源的使用权, 同时竟争 无线信道,此时就发生碰撞,导致无线资源的浪费。为了避免碰撞, CSMA/CA 机制要求 CAP或 STA在竟争无线信道时需要随机退避,在所有 CAP和 STA 都退避时, 无线信道虽有空闲, 但并未被使用, 这也是对无线信道的极大浪 费。 由于上述原因, 802.11 ***效率较低。 例如: 802. l lg***物理层峰值速 率可达 54Mbps, 但 TCP层在大数据包下载业务下可达速率不高于 30Mbps。 虽然存在上述缺点, 但 802.11 ***灵活, 不依赖集中控制机制, 因此也能够 实现较低的设备成本。
基于 3GPP标准的 Femto技术是从移动通信***演进而来的一种面向室 内覆盖的新技术。 基于对 3G***的数据统计, 大约 70%的数据业务都发生 在室内, 因此室内高速率数据接入方案就尤为重要。 Femto基站, 称为微微 基站, 体积小巧, 部署灵活。 由于从移动通信***演进而来, Femto基站几 乎继承了移动通信***的所有特点。 Femto设备只是结合其有限的覆盖范围, 较少的接入用户等应用场景特征,将设备处理能力降低,进而降低设备成本。 从双工方式考虑, 与移动通信***相同, Femto基站可分为 FDD与 TDD两 类双工机制。 FDD上下行载波资源对称, 而数据业务上下行数据流量非对称 的业务特征使得 FDD***面对数据业务时存在一定的资源浪费。 TDD*** 上下行链路工作在同一载波上, 通过划分时间资源为上下行链路分配不同的 无线资源, 因此较 FDD能够更好的适配上下行业务需求非对称的数据业务。 然而, 移动通信*** (包括 Femto***) 的 TDD双工方式, 上下行资源静 态分配, 面对需求不同的各类数据业务, 例如: 浏览网页, 移动视频, 移动 游戏等,难以实现业务需求与资源划分的动态适配。与 Wi-Fi相比,由于 Femto 釆用了基于调度的集中控制机制,基站或 CAP和终端或者终端之间不存在由 于竟争冲突和随机退避导致的无线资源浪费, 因此链路效率较高。
针对无线通信***, 存在数据传输的需求。 发明内容
有鉴于此, 本发明的目的是提供用于数据传输的方法及装置。
为了对披露的实施例的一些方面有一个基本的理解, 下面给出了筒单的 概括。 该概括部分不是泛泛评述, 也不是要确定关键 /重要组成元素或描绘 这些实施例的保护范围。 其唯一目的是用筒单的形式呈现一些概念, 以此作 为后面的评细说明的序言。
本发明的技术方案是这样实现的:
一种用于数据传输的方法, 其特征在于, 该方法包括:
生成广播信息帧 (BCF ), 所述 BCF中携带指示物理帧结构配置的物理 层参数;
发送所述 BCF。
一种实施例中, 所述物理层参数包括如下一项或几项:
指示下行探测导频图像索引的下行探测导频图样;
指示下行探测信道在下行传输信道中的位置的下行探测信道的位置; 指示解调导频时间 隔的 OFDM符号个数的解调导频时^^周期; 指示下行与上行的转换时间的下行保护间隔 DGI;
指示上行与下行的转换时间的上行保护间隔。
一种用于数据传输的方法, 该方法包括:
生成广播信息帧 BCF, 所述 BCF中携带 CAP的工作信道和工作带宽, 供 STA确定 CAP的工作子信道;
发送所述 BCF。
一种用于数据传输的装置, 该装置包括:
生成单元, 用于生成广播信息帧 BCF, 所述 BCF中携带指示物理帧结 构配置的物理层参数;
发送单元, 用于发送所述 BCF。
一种实施例中, 所述物理层参数包括如下一项或几项:
指示下行探测导频图像索引的下行探测导频图样;
指示下行探测信道在下行传输信道中的位置的下行探测信道的位置; 指示解调导频时间 隔的 OFDM符号个数的解调导频时^^周期; 指示下行与上行的转换时间的下行保护间隔 DGI;
指示上行与下行的转换时间的上行保护间隔。 一种用于数据传输的装置, 该装置包括:
生成单元, 用于生成广播信息帧 BCF, 所述 BCF中携带 CAP的工作信 道和工作带宽, 供 STA确定 CAP的工作子信道;
发送单元, 用于发送所述 BCF。
为了上述以及相关的目的, 一个或多个实施例包括后面将详细说明并在 权利要求中特别指出的特征。下面的说明以及附图评细说明某些示例性方面, 并且其指示的仅仅是各个实施例的原则可以利用的各种方式中的一些方式。 其它的益处和新颖性特征将随着下面的详细说明结合附图考虑而变得明显, 所公开的实施例是要包括所有这些方面以及它们的等同。 附图说明
图 1是本发明中第一种用于数据传输的方法流程图;
图 2是本发明中第二种用于数据传输的方法流程图;
图 3是本发明实施例中接入无线网络的方法流程图;
图 4是为 EUHT***的参考模型;
图 5是 EUHT***的接入***组成;
图 6是 STA和 CAP之间协议数据的发送和接收的过程;
图 7是本发明实施例中获取同步的方法流程;
图 8是 STA保持同步的流程图;
图 9是本发明实施例中随机接入的方法流程图;
图 10是本发明实施例中发送随机接入序列的原理图;
图 11 a〜 11 c是本发明实施例中上行随机接入信道的格式;
图 12是本发明实施例中能力协商的方法流程图;
图 13是本发明中第一种用于数据传输的装置的结构示意图
图 14是本发明实施例中接入无线网络的终端侧设备的结构示意图; 图 15是本发明实施例中获取***同步的装置的一种结构示意图; 图 16是本发明实施例中获取***同步的装置的另一种结构示意图; 图 17是本发明实施例中第一种随机接入终端侧装置的结构示意图; 图 18是本发明实施例中能力协商终端侧装置的结构示意图;
图 19是本发明中接入无线网络的网络侧设备的结构示意图;
图 20是本发明实施例中第一种随机接入无线网络侧装置的结构示意图; 图 21是本发明实施例中能力协商网络侧装置的结构示意图。 具体实施方式
以下描述和附图充分地示出本发明的具体实施方案, 以使本领域的技术 人员能够实践它们。 其他实施方案可以包括结构的、 逻辑的、 电气的、 过程 的以及其他的改变。 实施例仅代表可能的变化。 除非明确要求, 否则单独的 组件和功能是可选的, 并且操作的顺序可以变化。 一些实施方案的部分和特 征可以被包括在或替换其他实施方案的部分和特征。 本发明的实施方案的范 围包括权利要求书的整个范围, 以及权利要求书的所有可获得的等同物。 在 本文中, 本发明的这些实施方案可以被单独地或总地用术语 "发明" 来表示, 这仅仅是为了方便, 并且如果事实上公开了超过一个的发明, 不是要自动地 限制该应用的范围为任何单个发明或发明构思。
本发明提供两种用于数据传输的方法。
图 1为本发明中第一种用于数据传输的方法流程图, 该流程包括: 步骤 11 : 生成 BCF, 所述 BCF中携带指示物理帧结构配置的物理层参 数。
步骤 12: 发送所述 BCF。
可见, 本发明提供的第一种用于数据传输的方法中, 通过发送广播帧的 方式, 广播指示物理帧结构配置的物理层参数, 针对物理帧结构动态配置的 情况, 使得广播帧的接收端通过这种方式获知物理帧的结构。
图 2为本发明中第二种用于数据传输的方法流程图, 该流程包括: 步骤 21 : 生成 BCF, 所述 BCF中携带 CAP的工作信道和工作带宽, 供 STA确定 CAP的工作子信道;
步骤 22: 发送所述 BCF。
可见, 本发明提供的第二种用于数据传输的方法中, 通过发送广播帧的 方式, 广播 CAP的工作信道和工作带宽, 为 STA确定 CAP的工作子信道提 供参考。
下面以接入无线网络的流程、 及增强型超高速无线局域网 (EUHT ) 系 统为例, 举出本发明的可选实施例。
图 3为本发明中接入无线网络的方法流程图, 该流程包括:
步骤 31 : 获取***同步。
这里的获取***同步, 包括获取***参数, 相当于进行***初始化的过 程。
步骤 32: 随机接入到 CAP, 并与所述 CAP进行能力协商。
本步骤中, 随机接入过程基于步骤 31 中执行的结果进行, 能力协商过 程将利用随机接入完成后得到的结果进行, 具体内容将在后文中详细描述。
图 4为 EUHT***的参考模型。
图 4所示的***参考模型主要是指空中接口参考模型, 包括: 媒体接入 控制 (MAC ) 层和物理 (PHY ) 层, 各层的主要功能筒述如下:
① MAC层包括适配子层和 MAC子层。
适配子层: 主要提供外部网络数据和 MAC层服务协议单元 ( MSDU ) 之间的映射和转换的功能。 MSDU指 MAC服务访问点 ( SAP ) 之间作为单 元而交付的信息。
MAC子层: 除了担当媒体接入控制功能外, 还包括对***的管理和控 制以及对 PHY层的特定功能的支持。
② PHY层: 主要提供将 MPDU映射到相应的物理信道的 PHY传输机 制, 例如正交频分复用 (OFDM ) 和多入多出 (MIMO )技术。 MPDU指两 个对等 MAC实体之间利用 PHY层服务所交换的数据单元。
图 5为 EUHT***的接入***组成, 包括中心接入点 (CAP ) 和站点 ( STA ), 其中 STA可以为各种数据设备, 例如: PDA、 笔记本、 照相机、 摄像机、 手机、 平板电脑和 pad等。 如图 5所示, STA1和 STA2 通过空中 接口协议接入 CAP, CAP通过有线或者无线与现有的外部网络 (如 IP骨千 网、以太网)建立通信。其中 CAP的协议组成包括 MAC层和 PHY层。 STA 协议组成包括应用 (Application ) 层、 传输控制 (TCP ) 层、 网络 (IP ) 层、 MAC层和 PHY层。
基于图 5所示的协议组成, 图 6给出了 STA和 CAP之间协议数据的发 送和接收的过程, 例如: STA想发送数据给 CAP, STA首先将应用数据(如 VoIP, 视频等) 经过应用层、 TCP/IP层处理并打包, 以 IP分组的形式发送 给 IP适配子层, 由 IP适配子层进行转换和映射, 发送给 MAC子层, MAC 子层经过分片、 加密、 成帧、 聚合等操作, 发给 PHY层, 最终由 PHY映射 到无线信道上进行数据传输。
下文实施例中涉及的异常处理可能用到如表 1所示的***设置参数, 这 里给出统一介绍。 表 1
Figure imgf000007_0001
作为一种可选的实施例, 图 1所示流程中的获取***同步的步骤, 即步 11可以通过如下子步骤实现:
子步骤 1 : 在当前子信道上寻找物理帧。
子步骤 2: 解析寻找到的物理帧中的***信息信道( SICH ) 和控制信道 ( CCH ), 所述 SICH指示所述物理帧的结构, 所述 CCH指示***资源的分 配。
本发明中用于接入无线网络的方法, 针对物理帧结构可动态配置的情况 提出, 物理帧中的 SICH指示物理帧的结构配置, 例如指示物理帧中各信道 的有无及时长。
物理帧中的 CCH指示***资源的分配, 其中包括为***参数分配的资 源的指示。
子步骤 3: 利用解析结果, 从物理帧中获取***参数。
可见, 本发明针对物理帧结构可动态配置的情况实现了获取***同步。
EUHT***中, STA和 CAP均可以支持 20MHz、 40MHz及 80MHz, 系 统预定信道列表指示***的子信道, 这些子信道中可包含一个或多个 CAP 的工作子信道。
下面的表 2给出了 2.4GHz频段下预定信道列表的一种举例。
表 2
Figure imgf000007_0002
5 2432
6 2437
7 2442
8 2447
9 2452
10 2457
11 2462
12 2467 本发明实施例中获取***同步, 包括图 7所示的获取同步的流程, 所述 获取同步的流程包括:
步骤 71 : 在当前子信道上寻找物理帧, 具体的, 判断在当前子信道上是 否检测到物理帧的帧头, 如果是, 执行步骤 72, 否则继续执行检测、 直至超 过子信道的等待时间时, 转移到下一个子信道继续执行步骤 71。
步骤 72: 判断是否能够解析物理帧中的 SICH和 CCH, 如果是, 执行步 骤 73, 否则继续执行步骤 71, 直至超过子信道的等待时间时, 转移到下一 个子信道继续执行步骤 71。
本发明所针对的物理帧中, 前导序列和 SICH的位置及时长预先设定, 不进行动态配置, CCH位于 SICH之后相邻的位置, CCH的时长可以动态配 置。
SICH指示物理帧的结构配置, 具体可以指示当前物理帧中各信道的有 无和 /或时长。 例如, 对于一些时长固定的信道, SICH中可以使用 1比特指 示该信道的有无, 隐含指示了该信道的时长; 对于一些时长不固定的信道, SICH中可以使用多比特进行指示, 以 CCH为例, SICH中可以使用 6比特, 最大可指示 63个 OFDM符号, 1个 OFDM符号为最小资源分配单位, 比如 这 6比特为 010000, 转换为十进制数是 16, 即对应 16个 OFDM符号。
通过解析 SICH可以确定 CCH在物理帧中的位置及时长,再从物理帧中 的 CCH检测广播调度信令, 以检测为 BCF分配的资源。 下面的表 3给出了 广播调度信令的一种举例, BCF在表 3中所示的信令 /反馈信道中传输, 信令 /反馈信道是包含在传输信道中的。 b3 b2 b, b0取 0000 时确定为下行信令 /反 馈信道资源指示,如果 取 0则确定有 BCF帧, 6 52指示资源的位置, ^ 7指示资源的长度。 表 3
Figure imgf000008_0001
Figure imgf000009_0001
步骤 73: 判断是否检测到广播信息帧 (BCF ), 如果是则实现下行同步, 否则返回执行步骤 71、 直至超过该子信道的等待时间时, 转移到下一个子信 道继续执行步骤 71。
BCF是广播配置消息、 由 CAP在所有工作子信道上周期性广播, 其中 携带 CAP的 MAC地址, 使得 STA识别 BCF的发送端。 BCF中还携带*** 参数。
BCF携带的***参数可能包括对入网后续流程或入网结束后其他流程 中起到指示作用的各种参数。
下面的表 4给出了 BCF的帧体携带信息的一种举例。
表 4
A^-自、 长度 (比
备注
特)
CAP MAC地 48
CAP的唯一标识
工作信道号 8 CAP占用的信道编号最小值
2 用于广播 CAP的工作带宽,
0表示 20MHz;
工作带宽 1 示 40MHz;
2 示 80MHz;
3 保留。
3 用于指示 CAP端最多的天线配置。
0表示 1根天线;
1表示 2才艮天线;
2表示 3根天线;
CAP端的天线
3表示 4才艮天线;
配置
4表示 5根天线;
5表示 6根天线;
6表示 7根天线;
7表示 8根天线; 预留 3 ,默认设置为 0
8 网络别名字段的有效长度, 取值范围 1-31, 网络别名长度
单位字节。
248 以字母或数字开头的字符串, 最大长度是 3 1 网络别名
字节。
64 提供一个 CAP内的公共时钟, 用于 STA初 时间戳
始化的***同步, 单位 us。
BCF间隔 16 指示 BCF帧出现的时间周期, 单位 ms。 随机接入退避 4 用于随机接入退避窗口的控制, 最小窗口取 的最小窗口 值范围 0〜2n- l
调度请求退避 4 用于基于竟争的资源请求的退避窗口的控 的最小窗口 制, 最小窗口取值范围 0〜2n- 1
随机接入退避 8 用于随机接入退避窗口的控制, 最大窗口取 的最大窗口 值范围 0〜2n- l
调度请求退避 8 用于基于竟争的资源请求的退避窗口的控 的最大窗口 制, 最大窗口取值范围 0〜2n- l
8 指示 CAP当前的发射功率
CAP发射功 该字段对应带符号的十进制数为 n, 率 n=- 128- 127 ( 负数部分以补码形式表示):
CAP发射功率为 n dBm。
预留 5 ,默认设置为 0
下行探测导频 3
指示下行探测导频图样索引
图样
8 指示下行探测信道在 DL-TCH信道中的位 下行探测信道 置。 该字段对应十进制数为 η, η=0〜255, 下 的位置 行探测信道将 DL-TCH信道分为前后两部 分, 后一部分共有 η个 OFDM符号。
解调导频时域 ^ 7 解调导频时间 i或间隔的 OFDM符号个数(短 间隔 0 间隔配置 )
解调导频时域 ^ 9 解调导频时间 i或间隔的 OFDM符号个数(长 间隔 1 间隔配置 )
2 下行与上行的转换时间方案
0: 保护间隔为 2个 OFDM符号周期;
DGI
1: 保护间隔为 4个 OFDM符号周期; 2〜3: 保留
2 上行与下行的转换时间方案
0: 保护间隔为 2个 OFDM符号周期;
UGI 1: 保护间隔为 4个 OFDM符号周期 (处理 延迟 );
2〜3: 保留
2 00: 随机接入格式 1
UL-RACH信 01 : 随机接入格式 2
道格式 10: 随机接入格式 3
11 : 保留
预留 10 ,默认设置为 0 如表 4所示, BCF中携带的信息可以分为以下几类:
I )CAP的 MAC地址, STA可以才艮据该 MAC地址识别发送 BCF的 CAP。 2 ) CAP的工作信道号和工作带宽, 结合这里的工作信道号和工作带宽,
STA可以确定除当前检测到 BCF的子信道外,广播该 BCF的 CAP的其他工 作子信道。
3 ) CAP的天线配置, STA将在接入无线网络成功后使用该参数。
4 ) 网络别名, 指示网络名称, 使得 STA可以选择要加入的网络。
5 ) 网络别名长度, 指示网络别名字段的长度, 网络别名字段的长度固 定可以节省开销, 降低解析偏差。
6 ) 指示***公共时钟的时间戳, STA可以根据该时间戳调整自己的时 钟。
7 )指示 BCF广播周期的 BCF间隔, STA在首次获取***参数后, STA 需要通过不断接收 SICH和 BCF来确认自己始终与 CAP保持联系, 根据该 BCF间隔, STA可以定期获取 BCF。
8 ) 冲突避免参数, 包括: 随机接入退避的最小窗口和随机接入退避的 最大窗口、 及调度请求退避的最小窗口和调度请求退避的最大窗口。 STA可 以根据随机接入规避的最小窗口和随机接入退避的最大窗口, 在后续的随机 接入流程中多个 STA发生冲突时, 进行退避。 STA还可以根据调度请求退避 的最小窗口和调度请求退避的最大窗口,在调度请求发生冲突时,进行退避。 具体执行退避的方法在后文中详述。
9 ) CAP的发射功率, 在接入无线网络成功后, STA才艮据该发射功率可 以进行开环功控。
10 ) 物理帧结构参数, 包括:
用于指示下行与上行的转换时间的 DGI、 用于指示上行与下行的转换时 间的 UGI;
用于指示下行探测信道在下行传输信道中的起始位置的下行探测信道的 位置;
用于指示下行探测导频图样像索引的下行探测导频图样;
及用于指示解调导频时间 i或间隔的解调导频时 i或间隔。
BCF帧中携带的物理帧结构参数, 指示了物理帧中的部分结构, 这部分 结构在动态配置物理帧结构时一般不会变化, 所以携带在 BCF中统一指示, 这样就无需在 SICH中重复指示, 节省了 SICH的开销。
I I )用于指示随机接入格式的上行随机接入信道(UL-RACH )格式。 本 发明中针对不同的随机接入距离设定了不同的上行随机接入信道的格式, 以 支持覆盖更远的距离, 通过在 BCF中指示上行随机接入信道格式,使得 STA 选择与随机接入距离匹配的格式。
才艮据具体的应用需求, CAP可以在生成的 BCF中携带表 4中所示信息 的一项或几项, 然后广播生成的 BCF。
STA在某个子信道上获取***参数后, 将转移到下一个子信道继续执行 步骤 71, 直至对信道列表中的所有子信道都执行过一次扫描, 完成获取同步 的流程。
在对信道列表中的每个子信道都执行过扫描之后, STA可能在一个或多 个子信道上都获取了***参数,这一个或多个子信道可能是同一个 CAP的工 作子信道, 也可能包括不同 CAP的工作子信道。 STA将已获取***参数的 所有子信道作为可用的子信道, 并从中选择出任意一个作为后续执行保持同 步流程及随机接入过程的子信道, 同时也确定出了要接入的 CAP。
本发明实施例中的获取***同步还包括保持同步的流程, 包括: 在选择 出的子信道上继续寻找物理帧; 解析寻找到的物理帧中的 SICH和 CCH; 利 用解析结果从寻找到的物理帧中检测 BCF, 以获取***参数。
具体的, 图 8为本发明实施例中 STA保持同步的流程图。 从图 8可以看 出, 在保持同步的流程中, 设置 SICH定时器和 BCF定时器, STA在选择出 的子信道上继续寻找物理帧, 并启动 SICH定时器和 BCF定时器。 如果在 SICH定时器超时前成功解析 SICH, 则重置 SICH定时器, 如果在 BCF定时 器超时前成功检测到 BCF, 则重置 BCF定时器、 并在选择出的子信道上继 续寻找物理帧。 当这两个定时器中的任意一个超时却未成功检测到相应信息 时, 则认为 STA失步, 需要再次扫描信道。 这里的再次扫描信道具体包括如 下两种实现方式:
第一、 以选择出的子信道为起点, 按照信道列表重新执行获取同步的流 程, 直至在一个子信道上获取***参数后, 直接将该子信道作为选择出的子 信道再次执行保持同步的流程, 如果扫描到信道列表的最后一个子信道仍没 有可用的子信道, 则继续扫描信道列表的第一个子信道;
第二、 按照信道列表重新执行获取同步的流程, 相当于对信道列表中的 各信道都进行扫描, 然后选择一个可用的子信道再次执行保持同步的流程。
以上两种实现方式, 可以应用在如下两种场景中:
1 ) 在获取同步的流程结束后, 只确定出一个可用的子信道;
2 ) 在获取同步的流程结束后, 如果超过设定时间, 就不再考虑该获取 同步流程中确定出的可用的子信道, 这种情况也称为信道列表过期。
当然, 以上两种实现方式, 并不是必然应用在这两种场景中, 其中任一 种实现方式都可以作为既定的操作模式。
作为可选的另一种实现方式, STA在失步后可以将另一个可用的子信道 作为选择出的子信道, 再次执行保持同步的流程。 这种实现方式, 可以应用 在如下应用场景: 获取同步的流程结束后确定出可用的子信道不止一个, 且 当前信道列表未过期。 当然, 如果***中不存在信道列表过期的限制, 这种 实现方式也可以作为既定的操作模式, 当在首次执行获取同步的流程时确定 出的可用的子信道不止一个时, 就可以使用该操作模式。
SICH定时器和 BCF定时器的定时时长, 可以才艮据应用需求灵活设置。 可以看出, 保持同步是 STA在选择出的子信道上不断寻找物理帧, 并不 断解析 SICH及检测 BCF的过程。由于 SICH指示了所属物理帧的结构, STA 可以在保持同步的过程中, 利用当前 SICH的解析结果, 获知下一个物理帧 的开始时间。
作为一种可选的实施例,图 9为本发明实施例中随机接入的方法流程图, 该流程包括:
步骤 91 : 在任意一个子信道向 CAP发送随机接入序列。
发送随机接入序列的目的在于向 CAP请求发送随机接入请求的上行传 输资源。
这里的任意一个子信道, 指的是前述获取***同步的流程之后, 由 STA 确定出来的一个可用的子信道, 该信道的选择具有任意性, 由此, 多个 STA 可以分散在不同的子信道发送随机接入序列, 避免在一个子信道竟争, 减少 了冲突发生的概率, 提高了接入无线网络的成功率。
发送随机接入序列时具体经过图 10所示的过程, 其中的 CAP— MAC指 CAP的 MAC地址的最低 7比特, 为 PN序列索引 ( 0≤ < 4 ), }为循环 移位参数集, _/为循环移位参数索引 ( 0≤_/ < 8 )。 随机接入序列在物理帧中 的上行随机接入信道中发送, 使用 BCF中指示的上行随机接入信道格式。
图 11a〜图 11 c给出了本发明实施例中可选的三种上行随机接入信道的格 式, 对应表 4中给出的 BCF的举例, 上行随机接入信道格式的选择包括如下 情况:
当 BCF中的 UL-RACH信道格式字段中指示 00时, 使用图 11 a中的信 道格式, at匕时 {(5CS } = {0 l.6us 3.2us 4 s 6Aus S.Ous 9.6us 1 1.2^} ;
当 BCF中的 UL-RACH信道格式字段中指示 01时, 使用图 l ib中的信 道格式, it匕时 es } = {0 3.2us 6Aus 9.6us } ;
当 BCF中的 UL-RACH信道格式字段中指示 10时, 使用图 11 c中的信 道格式, it匕时
Figure imgf000013_0001
= 0 6Aus } 0
步骤 92: CAP指示才艮据随机接入序列分配的上行传输资源。
CAP使用广播信令指示分配的上行传输资源, 如下表 5示出了该广播信 令中各比特及其指示含义的举例。 其中分配 1和分配 2分别对应一个 STA, 以分配 1为例, STA通过 的取值识别广播类型是为随机接入请求帧分 配资源, STA通过随机接入序列索引、 随机接入序列频域循环移位索引及随 机接入发生的***帧号最低 3比特三项从广播信令中查找对应自己的上行传 输资源。
表 5中的 PN序列指随机接入序列, 信令 /反馈信道是传输信道中用于传 输信令和进行反馈的信道。
表 5中的发射定时提前量指示 STA在上行发射时需进行定时提前的量。 STA在后续发送所有上行帧时, 依据该发射定时提前量进行定时提前。 表 5
比特 定义
广播类型
bAbibo
1 0 =0100, 随机接入请求 (为随机接入请求帧分配资源 ) bAbA 预留
, ΡΝ序列索引, 0〜3
bn A。, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32 ,依次类推 111循环移位 224 31 30 ' ' '¾ bl5bl4bl3, 随机接入发生的***帧号最 4氐 3比特
分配 1
b25b24 · · -bl6, 发射定时提前量
b3lb30 ---b26, 随机接入请求分配的资源在信令 /反馈信道的起始 位置索引, 域值取值范围 1〜63, 域值为 0表示无效指示 bH b33b32 , PN序列索引, 0〜3
分配 2 b36b35b34, PN序列频域循环移位索 1
000循环移位 0, 001循环移位 32 ,依次类推 111循环移位 224 b39b3,b37, 随机接入发生的***帧号最 4氐 3比特 b49b4&… , 发射定时提前量
Figure imgf000014_0001
如果 STA发送随机接入序列后,超过随机接入最大等待帧间隔后仍然没 有收到 CAP指示上行传输资源的资源分配信息, 则认为本次随机接入失败, 需要重新进行随机接入流程, 即在当前子信道重新发送随机接入序列。
这里使用帧号定时, 相比于使用定时器定时, 定时更为准确。
上述重新发送随机接入序列的时间, 与随机接入退避有关。
釆用二进制指数退避算法来处理碰撞冲突, 通过以下几个步骤说明完整 处理流程:
SS1 : 当 STA发送随机接入序列时, 设置其内部退避窗口等于 BCF帧中携带的 随机接入退避的最小窗口 CfFmin
SS2: STA在任意一个子信道的随机接入信道发送随机接入序列;
SS3: STA在随后的 CCH中等待用于随机接入请求的资源分配信息, 即上述广 播信令中携带的上行传输资源的分配信息;
SS4: 如果 STA接收到资源分配信息, 则处理过程结束, 表示未竟争冲突; SS5: 如果在随机接入最大等待帧间隔内没有在 CCH中检测到用于随机接入请 求的资源分配信息, 则 STA认为竟争冲突;
SS6: STA将在 [0 S^ . C^mJ间随机选择退避值(退避窗口不大于最大回退窗 口), 退避单位为一个帧, 其中 m表示重传次数;
SS7: STA在退避计数器为 0后, 重新发送随机接入序列。
重复上述 SS4-SS7四个步骤, 直至达到随机接入最大重试次数。
步骤 93:利用 CAP分配的上行传输资源,向 CAP发送随机接入请求帧。 本发明中的随机接入请求封装在随机接入请求帧中实现, 下面的表 6给 出了随机接入请求帧的帧体携带信息的一种举例。
表 6
Figure imgf000014_0002
Figure imgf000015_0001
如表 6所示, 随机接入请求帧的帧体携带的信息包括以下几种:
1 ) STA的 MAC地址, 使得 CAP可以识别发送随机接入请求帧的 STA; CAP将保存 STA的该唯一标识, 以备后续为该 STA分配 CAP范围内的临时 标识及正式标识。
2 ) CAP的 MAC地址, 使得 CAP可以识别自己为该随机接入请求帧的 接收端;
3 ) 功率控制参数, 包括: 功率调整余量和 STA当前发射功率。 STA要 进行闭环功率控制, 往往通过单独的功率调整流程来实现, 本发明实施例在 随机接入请求帧中携带功率控制此参数,将可以使 STA在随机接入的过程中 就进行闭环功率控制。
STA可以生成随机接入请求帧, 并携带表 6中所示信息的一种或几种, 然后发送生成的随机接入请求帧。
如果 STA在发送随机接入请求帧后,超过随机接入响应最大等待帧间隔 后仍然没有收到随机接入响应帧, 则认为本次随机接入失败, 需要重新进行 随机接入流程, 即重新执行步骤 91, 此时在当前子信道重新发送随机接入序 列, 重新发送的时间与前文介绍的随机退避有关。
步骤 94: 接收 CAP发送的随机接入响应帧。
CAP通过广播信令为 STA指示发送随机接入响应帧的下行传输资源。 表 7给出了该广播信令中各比特及其指示含义的举例。表 7中的分配 1〜分配 3分别对应一个 STA, 以分配 1为例, STA通过 ^。识别广播类型是为随 机接入响应帧分配资源, STA通过随机接入序列索引、 随机接入序列频域循 环移位索引、 及随机接入发生的***帧号最低 3比特这三项来确定对应自己 的随机接入响应帧的下行传输资源。 表 7中的 PN序列指随机接入序列, 信 令 /反馈信道指下行传输信道中传输下行信令和针对上行业务的反馈的信道。
Figure imgf000015_0002
Figure imgf000016_0001
本实施例中的随机接入响应封装在随机接入响应帧中实现。 对应表 6中 给出的随机接入请求帧携带信息的举例, 下面的表 8给出了对应的随机接入 响应帧的帧体携带信息的一种举例。 表 8
Figure imgf000016_0002
如表 8所示, 随机接入响应帧中携带的信息包括以下几种:
1 ) STA的 MAC地址。 STA在收到随机接入响应帧之后, 如果发现其中 携带的 STA的 MAC地址与自身地址不匹配, 则重新发送随机接入序列。
2 )在 CAP范围内为 STA分配的临时标识 TSTA ID, 用于在接入无线网 络成功、 给 STA分配 CAP范围内的正式标识前, 标识该 STA, 例如可以在 能力协商阶段的资源指示广播信令中, 使用 TSTA ID标识 CAP分配给 STA 的上行传输资源。 由于 STA可能由于各种原因无法成功接入无线网络, 因此 如果在随机接入阶段为 STA分配 CAP范围内的正式标识,将浪费标识资源。 为了既满足标识 STA的需求又不'浪费标识资源, 这里选择为 STA分配临时 标识, 该临时标识可以对应一个回收周期, 该回收周期大于 STA完成入网所 需的时间,假设 STA在接入无线网络的后续流程中失败,则到达回收周期后, 分配给该 STA的临时标识将被收回。
3 ) 功率控制参数调整值, 指示 STA应该对功率控制参数进行怎样的调 整。 CAP根据随机接入请求中携带的功率控制参数确定该调整值, 具体的, CAP根据随机接入请求中携带的调整余量来确定功率控制参数调整值。
4 )接入 态, 指示 STA成功或放弃。
CAP根据上行信号的测量结果来确定接入状态, 例如可以根据上行信道 的信号质量等信息来确定接入状态。
当信号质量在可接受的范围内时, CAP将接入状态确定为成功。
当信号质量不在可接受的范围内时, CAP将接入状态确定为放弃, 本次 随机接入失败。
当接入状态指示放弃时, 随机接入响应帧中不携带 TSTA ID,或将 TSTA ID置为无效数据。
STA可以生成随机接入响应帧, 并携带表 8中所示信息的一种或几种, 然后发送生成的随机接入响应帧。
作为一种可选的实施例, 如果在某些应用场景下不需要进行功率控制, 例如***中的 STA的功率控制参数固定,此时在随机接入请求中不需要携带 功率控制参数, 相应的, CAP也不需要确定功率控制参数调整值。
在本发明随机接入方法的实施例中, CAP在收到 STA发送的随机接入 序列后,如果等待随机接入最大等待帧间隔后没有收到 STA发送的随机接入 请求帧, 还可以删除该 STA对应的所有信息, 或者删除该 STA的随机接入 序列对应的信息。
作为一种可选的实施例, 图 12为本发明实施例中能力协商的方法流程 图, 该流程包括:
步骤 121: CAP分配上行传输资源。
本步骤中, CAP在随机接入完成之后, 会主动给 STA分配上行传输资 源,并给 STA发送上行传输资源的分配指示。上述分配指示可以是广播信令, 在广播信令中使用 STA的 TSTA ID标识为其分配的上行传输资源。 STA利 用自己的 TSTA ID从上述广播信令中找到 CAP为自己分配的上行传输资源, 并利用该上行传输资源发送终端基本能力协商请求。
可选的, STA收到 CAP发送的随机接入响应后, 可以等待终端基本能 力协商请求帧的最大等待帧间隔,如果没有收到 CAP对上行传输资源的分配 指示, 则认为本次能力协商失败, 需要重新执行随机接入过程。
步骤 122: 向 CAP发送终端基本能力协商请求帧 ( SBC-REQ )。
本实施例中的终端基本能力协商请求封装在终端基本能力协商请求帧 中,下面的表 9给出了终端基本能力协商请求帧的帧体携带信息的一种举例。 表 9
Figure imgf000017_0001
4表示 5根天线;
5表示 6 艮天线;
6表示 7根天线;
7表示 8根天线;
STA最大工作 2 0 20MHz
带宽 1 40MHz
2 80MHz
3 保留
STA支持频谱 2 0 不支持
聚合 1 支持频谱聚合模式 1
2 支持频谱聚合模式 2
3 支持频谱聚合模式 1和 2
STA支持的调 1 0 仅支持时分调度 度机制 1 保留
STA 工作子 4 0001 : 子信道 0
信道映射 0010: 子信道 1
0100: 子信道 2
1000: 子信道 3
对 Bitmap 或运算可指示
40MHz和 80MHz终端工作 在多个 20MHz子信道。 预留 4 ,默认设置为 0
STA最大发射 3 0表示流数为 1
流数 1表示¾ 数为 2
2表示流数为 3
3表示流数为 4
4表示流数为 5
5表示流数为 6
6表示流数为 7
7表示¾ 数为 8
STA最大接收 3 0表示流数为 1
流数 1表示¾ 数为 2
2表示流数为 3
3表示流数为 4
4表示流数为 5
5表示流数为 6
6表示流数为 7
7表示¾ 数为 8
STA MCS 能 1 0 不支持 256-QAM 力指示 1 支持 256-QAM
STA 1 0 不支持 UEQM
UEQM能力指 1 支持 UEQM
STA LDPC能 1 0 不支持 LDPC码长 1 力指示 1 支持 LDPC码长 1 STA Tx STBC 1 0 不支持
能力指示 1 支持
STA Rx STBC 1 0 不支持
能力指示 1 支持
STA 1 0 不支持
MU-MIMO 能 1 支持
力指示
预留 1 ,默认设置为 0
子载波分组 3 表示组内的子载波个数:
Ns反馈能力 0 组中包括 1 ( FPI=1 ) 个
子载波 (未分组);
1 组中包括 2 ( FPI=2 ) 个
子载波;
2 组中包括 4 ( FPI=4 ) 个
子载波;
3 组中包括 8 ( FPI=8 ) 个
子载波;
4 组中包括 16 ( FPI=16 )
个子载波;
5- ■7: 保留。
支持的 MIMO 3 000: 不支持反馈
反馈模式组合 001 : CSI— MIMO反馈
010: BFM— MIMO反馈
100: 保留
对 Bitmap 或运算可指示
STA支持多种反馈的组合
上行信令 /反 1 0 不支持
馈信道格式 2 1 支持
支持指示
STA DGI需求 2 0 需要 2个 OFDM符号保
指示 护
1 需要 4个 OFDM符号保
2' ~3: 保留
STA UGI需求 2 0 需要 2个 OFDM符号保
指示 护
1 需要 4个 OFDM符号保
~3: 保留
预留 64 ,默认设置为 0 表 9所示,终端基本能力协商请求帧的帧体携带的信息包括以下几种: ) STA的天线数, 在接入无线网络后的流程中将使用该参数。 2 ) STA的最大工作带宽, STA上报自己的最大工作带宽, 该最大工作 带宽可以作为 CAP确定出 STA要切换的 ¾标子信道的依据之一。
3 ) STA支持频语聚合, 通过该参数 CAP可以获知 STA支持频谐聚合翁 ί 情况。本发明实施例中, STA和 CAP都可能支持 20MHz, 40MHz和 80MHz :< 带宽,***中包括 4个 20MHz的子信道,频谱聚合模式 1代表 20MHz、 40MHz 和 80MHz STA可被调度在一个或多个 20MHz子信道上独立传输,频谱聚合 模式 2代表多个连续的子信道聚合、具有连续的频谱, 40MHz和 80MHz STA 可在聚合信道上频率域连续传输。
4 ) STA支持的调度机制, 通过该参数 CAP可以获知 STA支持调度机制 的情况。
5 ) STA工作子信道映射, 该参数指示 STA在获取***同步过程中选择 出的可用的子信道, 这些子信道可以作为 CAP确定出 STA要切换的目标子 信道的依据之一。
6 ) STA最大发射流数和 STA最大接收流数, 通过该参数 CAP可以获知 STA支持发射流数和接收流数的情况。
7 )指示 STA的 MCS能力的 MCS指示,通过该参数 CAP可以获知 STA 的 MCS能力。
8 )指示 STA的非等调制(UEQM )能力的 STA UEQM能力指示, 通过 该参数 CAP可以获知 STA的 UEQM能力。这里的非等调制指针对不同业务 流采用不同的调制方式。
9 )指示 STA的 LDPC能力的 LDPC能力指示,通过该参数 CAP可以获 知 STA的 LDPC能力。
10 )指示 STA空时编码能力的 STBC能力指示, 通过该参数 CAP可以 获知 STA的 STBC能力。
11 )指示 STA的 MU-MIMO能力的 STA的 MU-MIMO指示, 通过该参 数 CAP可以获知 STA的 MU-MIMO能力。
12 )子载波分组 s反馈能力,是 STA向 CAP上报自己支持的每两次反 馈之间的子载波数。
13 ) STA支持的 MIMO反馈模式组合, 是 STA向 CAP上报自己支持的 MIMO反馈模式组合。
14 )上行信令 /反馈信道格式 2支持指示, 这里的上行信令 /反馈信道格 式 2指示一种支持频分的上行信令 /反馈信道。
15 ) STA的 DGI需求指示和 STA的 UGI需求指示。
上述终端基本能力协商请求帧中携带多种用于物理层模式协商的参数, 包括 STA支持频谱聚合、 STA支持的调度机制、 STA最大发射流数和 STA 最大接收流数、 STA UEQM能力指示、 STA的 MU-MIMO指示、 上行信令 / 反馈信道格式 2支持指示、 STA的 DGI需求指示和 STA的 UGI需求指示, 这是因为 EUHT***中的物理层模式非常多,在能力协商阶段进行物理层模 式的协商, 有利于约束实现的复杂度。
STA在生成终端基本能力协商请求帧后, 可以根据应用需求在其中携带 表 9中的一项或几项参数, 然后发送该终端基本能力协商请求帧。
可选的, 在发送终端基本能力协商请求帧后, 可以等待终端基本能力协 商响应帧的最大等待帧间隔, 如果没有收到终端基本能力协商响应帧, 则认 为本次能力协商失败, 需要重新进行随机接入过程。
步驟 123: 接收 CAP发送的终端基本能力协商响应帧 (SBC-RSP )。 CAP在发送终端基本能力协商响应帧的前, 会指示接收该终端基本能力 协商响应的下行传输资源。
本实施例中,终端基本能力协商响应封装在终端基本能力协商响应帧中。 下面的表 10给出了终端基本能力协商响应帧的帧体携带信息的一种举例。 表 10
Figure imgf000021_0001
STA 最大接收 3 0表示流数为 1
流数 1表示¾ 数为 2
2表示流数为 3
3表示流数为 4
4表示流数为 5
5表示流数为 6
6表示流数为 7
7表示¾ 数为 8
MU-MIMO 1 0: 不支持
1: 支持
预留 1 ,默认设置为 0
子载波分组 Ns 3 表示组内的子载波个数: 反馈能力 0: 组中包括 1 ( FPI=1 ) 个 子载波 (未分组);
1: 组中包括 2 ( FPI=2 ) 个 子载波;
2: 组中包括 4 ( FPI=4 ) 个 子载波;
3: 组中包括 8 (FPI=8) 个 子载波;
4: 组中包括 16 (FPI=16) 个子载波;
5-7: 保留。
支持的 MIMO 3 000: 不支持反馈
反馈模式组合 001: CSI— MIMO反馈
010: BFM— MIMO反馈 100: 保留
对 Bitmap 或运算可确认 STA多种反馈的组合 上行信令 /反馈 1 0: 不支持格式 2 信道格式 2 1: 支持格式 2
预留 1 默认 0
STADGI需求 2 0: 需要 2个 OFDM符号保 护
1: 需要 4个 OFDM符号保 护
2〜3: 保留
STAUGI需求 2 0: 需要 2个 OFDM符号保 护
1: 需要 4个 OFDM符号保 护
2〜3: 保留
预留 68 默认 0 如表 10所示, 终端基本能力协商响应帧的帧体中携带的信息包括以下 几种:
1 ) 在 CAP范围内为 STA分配的正式标识 STA ID, 在入网成功之后, STA将使用该 STA ID与 CAP交互, 随机接入阶段分配的 TSTA ID失效。
2 ) 工作子信道映射, 指示 STA要切换到的目标子信道。 CAP可以才艮据 终端基本能力请求帧中的 STA最大工作带宽和 STA工作子信道映射确定该 参数。 进一步, CAP可以根据实际的信道负载等情况对 STA上报的最大工 作带宽进行调整, 例如 STA上报自己的最大工作带宽为 80MHz, CAP可以 才艮据实际情况调整为 40MHz或 20MHz。 CAP尽可能将终端基本能力协商请 求帧中 STA工作子信道映射指示的子信道确定为 STA要切换的目标子信道, 同时也会参考 STA的最大工作带宽, 或者调整后的 STA的最大工作带宽, 确定出最终的工作子信道映射信息。
3 ) 频谱聚合模式, 指示所述工作子信道映射中的目标子信道之间的关 系,这里的频谱聚合模式是根据终端基本能力协商请求帧中携带的 STA支持 频 i普聚合确定的。
4 ) 调度机制, 根据终端基本能力协商请求帧中携带的 STA支持的调度 机制确定。
5 ) MCS指示信息、 UEQM指示信息、 LDPC指示信息、 Tx STBC信息 和 Rx STBC信息, 分别根据终端基本能力协商请求帧中携带的各项参数确 定。 例如, 假设 STA支持 256QAM, 而 CAP不支持 256QAM, 则 CAP将不 允许 STA支持 256QAM。
6 ) STA最大发射流数和 STA最大接收流数, 分别根据终端基本能力协 商请求帧中携带的 STA最大发射流数和 STA最大接收流数确定。
7 ) MU-MIMO, 根据终端基本能力协商请求帧中携带的 STA支持的 MU-MIMO确定。
8 )子载波分组 Ns反馈能力, 根据终端基本能力协商请求帧中携带的子 载波分组 Ns反馈能力确定, STA可以每隔几个子载波进行一次反馈, 节省 了反馈开销。
9 ) 支持的 MIMO反馈模式组合, 根据终端基本能力协商请求帧中携带 的 STA支持的 MIMO反馈模式组合确定, 可以釆用多种 MIMO反馈模式。
10 )上行信令 /反馈信道格式 2、 STA DGI需求和 STA UGI需求, 分别根 据终端基本能力协商请求帧中携带的各项对应参数确定。
CAP在生成终端基本能力协商响应帧后, 可以根据应用需求在其中携带 表 10中的一项或几项参数, 然后发送该终端基本能力协商响应帧。
为了使 CAP获知 STA是否正确接收了终端基本能力协商响应帧, STA 可以在正确接收时向 CAP发送确认, STA可以发送 ACK。 或者, 本发明实 施例提出一种组确认( GroupAck )方式,组确认帧中包括管理控制帧指示位, 还包括对应同一用户不同业务流的位图 ( bitmap ), 这里 STA可以在上述管 理控制帧指示位中填写指示终端基本能力协商响应正确接收与否的指示。 后 续在基于业务流进行数据传输时, STA可以利用组确认帧中的 bitmap, 将针 对不同业务流的确认一起发送给 CAP。
可选的, CAP在发送终端基本能力协商响应帧后, 等待终端基本能力协 商响应帧确认的最大等待帧间隔, 如果未收到 STA返回的确认, 则认为本次 能力协商失败。
进一步, 在等待终端基本能力协商响应帧确认的最大等待帧间隔的过程 中, 如果 CAP有剩余下行资源可以分配给该 STA, 可以给该 STA重发终端 基本能力协商响应帧。 在涉及重发终端基本能力协商响应帧的情况中, CAP 只有首次发送终端基本能力协商响应帧之后, 才会等待终端基本能力协商响 应帧确认的最大等待帧间隔。
在能力协商结束后, STA将切换到 CAP指示的目标子信道上。
本发明提供两种用于数据传输的装置。
图 13为本发明中第一种用于数据传输的装置的结构示意图, 该装置包 括: 生成单元 131和发送单元 132。
生成单元 131, 用于生成广播信息帧 BCF, 所述 BCF中携带指示物理帧 结构配置的物理层参数。
发送单元 132, 用于发送所述 BCF。
其中, 所述物理层参数包括如下一项或几项: 下行探测导频图样; 下行 探测信道的位置;指示解调导频时间域间隔的 OFDM符号个数的解调导频时 域周期; 指示下行与上行的转换时间的下行保护间隔 DGI; 指示上行与下行 的转换时间的上行保护间隔。
本发明中第二种用于数据传输的装置, 与上述第一种用于数据传输的装 置具有相同的结构, 也包括生成单元和发送单元, 只是各单元的功能不同, 其中生成单元用于生成 BCF,所述 BCF中携带 CAP的工作信道和工作带宽, 供 STA确定除当前驻留子信道外的 CAP的其他工作子信道, 发送单元用于 发送所述 BCF。
对应本发明方法实施例中的接入无线网络的流程, 下面给出接入无线网 络的终端侧设备、 网络侧设备及这两个设备中的装置的可选实施例。
图 14为本发明中接入无线网络的终端侧设备的结构示意图, 该设备包 括: 获取***同步的装置 141、 随机接入终端侧装置 142和能力协商终端侧 装置 143。
获取***同步的装置 141, 用于与 CAP执行获取***同步的过程。
随机接入终端侧装置 142, 用于随机接入到上述 CAP。
能力协商终端侧装置 143, 用于与上述 CAP进行能力协商。
本发明中获取***同步的装置包括: 获取同步的模块, 所述获取同步的 模块包括: 第一检测单元、 第一解析单元和第一获取单元。
所述第一检测单元, 用于在当前子信道上寻找物理帧。
所述第一解析单元, 用于解析所述第一检测单元寻找到的物理帧中的
SICH和 CCH, 其中所述 SICH指示物理帧的结构, 所述 CCH指示***资源 的分配。
所述第一获取单元, 用于利用所述第一解析单元解析的结果, 从所述第 一检测单元寻找到的物理帧中获取***参数。
图 15为本发明实施例中获取***同步的装置的一种结构示意图, 该装 置包括:获取同步的模块 151,获取同步的模块 151 包括:第一检测单元 1511、 第一解析单元 1512和第一获取单元 1513。
第一检测单元 1511, 用于在当前子信道上寻找物理帧。
第一解析单元 1512, 用于解析第一检测单元 1511寻找到的物理帧中的 SICH和 CCH, 其中所述 SICH指示物理帧的结构, 所述 CCH指示***资源 的分配。
第一获取单元 1513, 用于利用第一解析单元 1512解析的结果, 从第一 检测单元 1511寻找到的物理帧中获取***参数。 进一步, 第一获取单元 1513可以在获取***参数之后, 触发第一检测 单元 1511转移到下一个子信道继续寻找物理帧,直至遍历预定信道列表中每 一个子信道。
再进一步, 第一获取单元 1513可以将已获取***参数的所有子信道作 为可用的子信道, 并从中选择出任意一个子信道。
作为一种可选的实施例,第一检测单元 1511通过在当前子信道上检测物 理帧的帧头, 来寻找物理帧。
进一步, 第一检测单元 1511在当前子信道上未检测到帧头时, 继续执行 检测、直至超过子信道的等待时间时,转移到下一个子信道继续寻找物理帧。
作为一种可选的实施例, 第一解析单元 1512解析 SICH和 CCH不成功 时, 触发第一检测单元 1511继续执行操作, 直至超过子信道的等待时间时, 触发第一检测单元 1511转移到下一个子信道继续寻找物理帧。
作为一种可选的实施例, 第一获取单元 1513从所述物理帧中检测广播 信息帧 BCF, 再从 BCF中获取***参数。
进一步, 第一获取单元 1513未检测到 BCF时, 触发第一检测单元 1511 继续执行操作, 直至超过子信道的等待时间时, 触发第一检测单元 1511转移 到下一个子信道继续寻找物理帧。
基于获取同步的模块 151, 本发明实施例中获取***同步的装置还包括 保持同步的模块 152, 保持同步的模块 152包括: 第二检测单元 1521、 第二 解析单元 1522和第二获取单元 1523。
第二检测单元 1521, 用于在选择出的子信道上继续寻找物理帧。
第二解析单元 1522, 用于在第二检测单元 1521寻找的物理帧中解析 SICH和 CCH。
第二获取单元 1523, 用于利用第二解析单元 1522的解析结果, 从第二 检测单元 1521寻找的物理帧中检测 BCF, 以获取***参数。
作为保持同步的模块 152的第一种可选的实施例, 保持同步的模块 152 还包括: SICH定时器 1524、 BCF定时器 1525和判断单元 1526。
第二检测单元 1521,进一步在开始寻找物理帧时,启动 SICH定时器 1524 和 BCF定时器 1525。
判断单元 1526, 用于判断第二解析单元 1522是否在 SICH定时器 1524 超时前成功解析 SICH, 如果是, 重置 SICH定时器 1524, 否则触发获取同 步的模块 151按照所述信道列表重新执行操作; 判断第二获取单元 1523是 否在 BCF定时器 1525超时前检测到 BCF, 如果是, 重置 BCF定时器 1525、 并触发第二检测单元 1521在选择出的子信道上继续寻找物理帧, 否则触发 获取同步的模块 151按照所述信道列表重新执行操作。
作为保持同步的模块 152的第二种可选的实施例, 如图 15所示, 所述 保持同步的模块 151还包括: SICH定时器 1524、 BCF定时器 1525和判断单 元 1526。
第二检测单元 1521,进一步在开始寻找物理帧时,启动 SICH定时器 1524 和 BCF定时器 1525。
判断单元 1526, 用于判断第二解析单元 1522是否在 SICH定时器 1524 超时前成功解析 SICH, 如果是, 重置 SICH定时器 1524, 否则触发获取同 步的模块 151以选择出的子信道为起点、并按照所述信道列表重新执行操作; 判断第二获取单元 1523是否在 BCF定时器 1525超时前检测到 BCF, 如果 是, 重置 BCF定时器 1525、 并触发第二检测单元 1521在选择出的子信道上 继续寻找物理帧, 否则触发获取同步的模块 151以选择出的子信道为起点、 并按照所述信道列表重新执行操作。
在此基础上, 第一获取单元 1513, 进一步在重新执行操作的过程中, 在 一个子信道上获取***参数后, 直接触发保持同步的模块 152以该子信道作 为选择出的子信道重新执行操作。
作为保持同步的模块 152的第三种可选的实施例, 如图 16所示, 所述 保持同步的模块 152还包括: SICH定时器 1524、 BCF定时器 1525和判断单 元 1526。
第二检测单元 1521,进一步在开始寻找物理帧时,启动 SICH定时器 1524 和 BCF定时器 1525。
判断单元 1526, 用于判断第二解析单元 1522是否在 SICH定时器 1524 超时前成功解析 SICH, 如果是, 重置 SICH定时器 1524, 否则触发第一获 取单元 1513重新在可用的子信道中选择一个; 判断第二获取单元 1523是否 在 BCF定时器 1525超时前检测到 BCF, 如果是, 重置 BCF定时器 1525、 并触发第二检测单元 1521在选择出的子信道上继续寻找物理帧, 否则触发 第一获取单元 1513重新在可用的子信道中选择一个。
在上述基于保持同步的模块 152的三种可选实施例中, 如果考虑信道列 表过期的应用场景限制, 获取***同步的装置中还可以包括确定信道列表是 否过期的模块, 该模块可以监控获取同步的模块 151的操作, 在其完成信道 列表扫描后开始计时, 到达设定时间后, 得出信道列表过期的结果。 或者, 如果终端侧本身具有确定信道列表是否过期的模块, 保持同步的模块 152可 以直接利用该模块得出的信道列表是否过期的结果。
在上述保持同步的模块 152的三种可选实施例中, 第二检测单元 1521 可以在选择出的子信道利用寻找到的当前物理帧中的 SICH, 确定下一物理 帧的开始时间。
同一个保持同步的模块, 可以集成图 15和图 16所示的三种实施例中的 结构和功能。
为了实现与 CAP建立时间同步,本发明实施例中获取***同步的装置中 还可以包括: 同步单元, 利用***参数中的***公共时钟与 CAP建立同步。
本发明提供的第一种随机接入终端侧装置包括: 资源请求单元、 随机接 入请求单元和随机接入响应接收单元。
所述资源请求单元, 用于在任意一个子信道发送随机接入序列。
所述随机接入请求单元,用于利用 CAP根据随机接入序列分配的上行传 输资源, 向 CAP发送随机接入请求。
所述随机接入响应接收单元, 用于接收 CAP发送的随机接入响应。 作为一种可选的实施例, 图 17为本发明实施例中第一种随机接入终端 侧装置的结构示意图, 该装置中包括: 资源请求单元 171、 随机接入请求单 元 172、 随机接入响应接收单元 173、 第一触发单元 174、 功率控制参数上报 单元 175、 资源指示接收单元 176、 第二触发单元 177和功率控制参数调整 单元 178。
资源请求单元 171, 用于在任意一个子信道发送随机接入序列; 在发送 随机接入序列后的设定帧数内接收 CAP对上行传输资源的指示,如果没有接 收到上行传输资源的指示, 重新发送随机接入序列。 这里的上行传输资源的 指示携带在***信令中, 并用所述随机接入序列的索引、 所述随机接入序列 频域循环移位的索引及随机接入发生的***帧号标识。 进一步, 所述上行传 输资源的指示中还携带发射定时提前量。 随机接入请求单元 172, 用于利用 CAP根据随机接入序列分配的上行传 输资源, 向 CAP发送随机接入请求。 随机接入请求单元 172在向 CAP发送 随机接入请求时, 将按照发射定时提前量进行定时提前。
随机接入响应接收单元 173, 用于接收 CAP发送的随机接入响应。 进一 步, 随机接入响应中可以携带指示成功或放弃的接入状态, 当接入状态指示 成功时, 随机接入响应中还可以携带为该装置所属的 STA在 CAP范围内分 配的临时标 i只。
第一触发单元 174, 用于在随机接入请求单元 172发送随机接入请求后 的设定帧数内监控随机接入响应接收单元 173, 如果随机接入响应接收单元 173没有接收到所述随机接入响应, 触发资源请求单元 171发送随机接入序 列。
功率控制参数上报单元 175, 用于通知随机接入请求单元 172上报的功 率控制参数, 供其携带在随机接入请求中发送。
资源指示接收单元 176, 用于接收所述 CAP对发送所述随机接入响应的 下行传输资源的指示。 这里对所述下行传输资源的指示在***信令中携带, 并用所述随机接入序列的索引、 所述随机接入序列频 i或循环移位的索引及随 机接入发生的***帧号标识。
第二触发单元 177, 用于比较所述随机接入响应中携带的地址与所属 STA的地址, 如果不匹配, 触发资源请求单元 171重新向所述 CAP发送随 机接入序列。
功率控制参数调整单元 178, 用于根据随机接入响应中的功率控制参数 调整值调整功率控制参数。
本发明实施例中的第一种随机接入终端侧装置, 其内部可以包括如图 17 所示的全部单元, 但也可以才艮据应用需求的不同, 只包括图 17所示的部分 单元, 因此图 17仅给出了随机接入终端侧装置的一种结构举例, 并不是对 其结构的限定。
本发明提供的第二种随机接入终端侧包括: 随机接入请求单元和随机接 入响应接) 单元。
所述随机接入请求单元,用于向 CAP发送携带功率控制参数的随机接入 请求。
所述随机接入响应接收单元, 用于接收所述 CAP发送的随机接入响应。 进一步, 本发明第二种随机接入终端侧装置中还可以包括: 资源请求单 元, 用于在任意一个子信道向 CAP发送随机接入序列, 以请求发送所述随机 接入请求的上行传输资源。
作为一种可选的实施例, 本发明第二种随机接入终端侧装置, 可以具有 与图 17所示类似的内部结构, 但其中没有单独的功率控制参数上报单元, 由随机接入请求单元直接发送携带功率控制参数的随机接入请求, 其他单元 的功能相同。
本发明中的能力协商终端侧装置包括: 能力协商请求单元和能力协商响 应接收单元。
所述能力协商请求单元, 用于利用 CAP分配的上行传输资源, 向 CAP 发送终端基本能力协商请求。
所述能力协商响应接收单元,用于接收 CAP发送的携带工作子信道映射 信息的终端基本能力协商响应。上述工作子信道映射信息指示 STA要切换的 目标子信道。 图 18为本发明实施例中能力协商终端侧装置的结构示意图, 该装置包 括: 能力协商请求单元 181、 能力协商响应接收单元 182、 确认单元 183、 第 一触发单元 184、 第二触发单元 185和配置参数提供单元 186。
能力协商请求单元 181, 用于接收所述上行传输资源的分配指示; 利用 CAP分配的上行传输资源, 向 CAP发送终端基本能力协商请求。
能力协商响应接收单元 182, 用于接收 CAP发送的携带工作子信道映射 信息的终端基本能力协商响应。上述工作子信道映射信息指示 STA要切换的 目标子信道。 进一步, 终端基本能力协商响应还可以携带频谱聚合模式信息 和 /或正式标识, 其中频谱聚合模式信息用于指示所述目标子信道之间的关 系, 正式标识是所述 STA在所述 CAP范围内分配的正式标识。
确认单元 183 , 用于在能力协商响应接收单元 182正确接收终端基本能 力协商响应后, 向 CAP发送确认。
第一触发单元 184, 用于在随机接入终端侧装置完成操作后的设定帧数 内监控能力协商请求单元 181, 如果能力协商请求单元 181没有收到上行传 输资源的指示, 触发随机接入终端侧装置重新执行操作。
第二触发单元 185, 用于在能力协商请求单元 181发送终端基本能力协 商请求后的设定帧数内监控能力协商响应接收单元 182, 如果能力协商响应 接收单元 182没有接收到终端基本能力协商响应, 触发随机接入终端侧装置 重新执行操作。
配置参数提供单元 186, 用于将所述 STA的最大工作带宽提供给能力协 商请求单元 181, 供其在终端基本能力协商请求中发送。 进一步, 配置参数 提供单元 186, 还用于将所述 STA可用的子信道信息提供给能力协商请求单 元 181, 供其在终端基本能力协商请求中发送。
本发明实施例中的能力协商终端侧装置, 其内部可以包括如图 18所示 的全部单元, 但也可以根据应用需求的不同, 只包括图 18所示的部分单元, 因此图 18仅给出了能力协商终端侧装置的一种结构举例, 并不是对其结构 的限定。
图 19为本发明中接入无线网络的网络侧设备的结构示意图, 该设备包 括: ***参数发送装置 191、 随机接入网络侧装置 192和能力协商网络侧装 置 193。
***参数发送装置 191, 用于发送***参数。
随机接入网络侧装置 192, 用于许可终端侧设备随机接入。
能力协商网络侧装置 193, 用于与终端侧设备进行能力协商。
本发明提供的第一种随机接入网络侧装置, 包括: 资源分配单元、 随机 接入请求接收单元和随机接入响应单元。
所述资源分配单元,用于在任意一个子信道上接收 STA发送的随机接入 序列, 并才艮据所述随机接入序列分配上行传输资源。
所述随机接入请求接收单元,用于接收所述 STA利用所述上行传输资源 发送的随机接入请求。
所述随机接入响应单元, 用于向所述 STA发送随机接入响应。
作为一种可选的实施例, 图 20为本发明实施例中第一种随机接入无线 网络侧装置的结构示意图, 该装置包括: 资源分配单元 201、 随机接入请求 接收单元 202、 随机接入响应单元 203、 删除单元 204、 接入状态确定单元
205、 临时标识分配单元 206、 功率控制参数调整值确定单元 207。
资源分配单元 201, 用于在任意一个子信道上接收 STA发送的随机接入 序列, 并根据所述随机接入序列分配上行传输资源; 发送对所述上行传输资 源的指示; 为随机接入响应分配下行传输资源, 并发送所述对下行传输资源 的指示。 这里对所述上行传输资源的指示携带在***信令中, 并用所述随机 序列的索引、 所述随机接入序列频域循环移位的索引及随机接入发生的*** 帧号标识。 进一步, 所述上行传输资源的指示中还携带发射定时提前量, 指 示上行发射时的定时提前量。这里对下行传输资源的指示在***信令中携带, 并用所述随机接入序列的索引、 所述随机接入序列频 i或循环移位的索引及随 机接入发生的***帧号标识。
随机接入请求接收单元 202, 用于接收利用所述上行传输资源发送的随 机接入请求。
随机接入响应单元 203, 用于向 STA发送随机接入响应。
删除单元 204, 用于在资源分配单元 201接收到所述 STA发送的随机接 入序列后的设定帧数内监控随机接入请求接收单元 202, 如果随机接入请求 接收单元 202未接收到所述 STA发送的随机接入请求, 删除所述 STA对应 的所有信息, 或者删除所述随机接入序列对应的信息。
接入状态确定单元 205, 用于才艮据上行信号的测量结果确定所述 STA的 接入状态为成功或放弃, 并将接入状态发送给随机接入响应单元 203, 供其 携带在随机接入响应中发送。
临时标识分配单元 206, 用于在接入状态确定单元 205确定接入状态指 示成功时, 为 STA在自身范围内分配临时标识, 并将所述临时标识发送给随 机接入响应单元 203 , 供其携带在随机接入响应中发送。
功率控制参数调整值确定单元 207,用于根据随机接入请求接收单元 202 接收的随机接入请求中携带的上报的功率控制参数, 确定功率控制参数调整 值, 并将功率控制参数调整值发送给随机接入响应单元 203, 供其携带在随 机接入响应中发送。
本发明实施例中的随机接入网络侧装置, 其内部可以包括如图 20所示 的全部单元, 但也可以根据应用需求的不同, 只包括图 20所示的部分单元, 因此图 20仅给出了随机接入网络侧装置的一种结构举例, 并不是对其结构 的限定。
本发明提供的第二种随机接入网络侧装置, 包括: 随机接入请求接收单 元和随机接入响应单元。
所述随机接入请求接收单元,用于接收 STA发送的携带功率控制参数的 随机接入请求。
所述随机接入响应单元, 用于向所述 STA发送随机接入响应。
进一步, 本发明第二种随机接入网络侧装置中还可以包括: 资源分配单 元, 用于在任意一个子信道上接收 STA发送的随机接入序列, 并才艮据所述随 机接入序列分配发送所述随机接入请求的上行传输资源。
作为一种可选的实施例, 本发明实施例提供的第二种随机接入网络侧装 置的内部结构与图 20所示的相同, 各单元的功能也类似。
本发明中能力协商网络侧装置包括: 能力协商请求接收单元和能力协商 响应单元。
所述能力协商请求接收单元,接收 STA利用分配的上行传输资源发送的 终端基本能力协商请求。
所述能力协商响应单元, 发送携带工作子信道映射信息的终端基本能力 协商响应, 这里的工作子信道映射信息指示所述 STA要切换的目标子信道。
图 21为本发明实施例中能力协商网络侧装置的结构示意图, 该装置包 括: 能力协商请求接收单元 211、 能力协商响应单元 212、确认接收单元 213、 监控单元 214、 资源分配单元 215、 工作子信道映射信息确定单元 216、 频谱 聚合模式信息提供单元 217、 正式标识分配单元 218。
能力协商请求接收单元 211, 接收 STA利用分配的上行传输资源发送的 终端基本能力协商请求。
能力协商响应单元 212, 发送携带工作子信道映射信息的终端基本能力 协商响应, 这里的工作子信道映射信息指示所述 STA要切换的目标子信道。
确认接收单元 213 , 用于接收所述 STA在正确接收终端基本能力协商响 应后发送的确认。
监控单元 214, 用于在能力协商响应单元 212发送终端基本能力协商响 应后的设定帧数内监控确认接收单元 213, 如果确认接收单元 213未收到所 述确认, 通知能力协商请求接收单元 211和能力协商响应单元 212结束本次 操作。 进一步, 在被监控单元 214触发之前, 能力协商响应单元 212可以向 所述 STA重新发送终端基本能力协商响应。
资源分配单元 215, 用于为所述 STA分配发送终端基本能力协商请求的 上行传输资源, 并发送所述上行传输资源的分配指示。
工作子信道映射信息确定单元 216, 用于确定工作子信道映射信息, 并 将所述工作子信道映射信息发送给能力协商响应单元 212, 供其携带在终端 基本能力协商响应中发送。 确定出的工作子信道映射信息指示的目标子信道 的带宽之和, 小于等于所述 STA的最大工作带宽。 在此基础上, 进一步, 工 作子信道映射信息确定单元 216还可以调整所述终端基本能力协商请求中携 带的所述 STA的最大工作带宽, 此时, 工作子信道映射信息指示的目标子信 道的带宽之和, 小于等于调整后的所述 STA的最大工作带宽。 在此基础上, 进一步, 工作子信道映射信息确定单元 216确定出的工作子信道映射信息指 示的目标子信道中, 包括 STA的一个或多个可用的子信道。
频谱聚合模式信息提供单元 217, 用于将指示目标子信道之间的关系的 频 i普模式信息提供给能力协商响应单元 212, 供其携带在终端基本能力协商 响应中发送。
正式标识分配单元 218, 用于给发送终端基本能力协商请求的所述 STA 在自身范围内分配一个正式标识, 并将该正式标识发送给能力协商响应单元 212, 供其携带在终端基本能力协商响应中发送。 正式标识分配单元 218可 以从能力协商请求接收单元 211获取当前请求能力协商的所述 STA的信息, 并为该 STA在自身范围内分配一个正式标识。
本发明实施例中的能力协商网络侧装置, 其内部可以包括如图 21所示 的全部单元, 但也可以根据应用需求的不同, 只包括图 21所示的部分单元, 因此图 21仅给出了能力协商网络侧装置的一种结构举例, 并不是对其结构 的限定。
应该明白,公开的过程中的步骤的特定顺序或层次是示例性方法的实例。 基于设计偏好, 应该理解, 过程中的步骤的特定顺序或层次可以在不脱离本 公开的保护范围的情况下得到重新安排。 所附的方法权利要求以示例性的顺 序给出了各种步骤的要素, 并且不是要限于所述的特定顺序或层次。
在上述的详细描述中, 各种特征一起组合在单个的实施方案中, 以筒化 本公开。 不应该将这种公开方法解释为反映了这样的意图, 即, 所要求保护 的主题的实施方案需要比清楚地在每个权利要求中所陈述的特征更多的特 征。 相反, 如所附的权利要求书所反映的那样, 本发明处于比所公开的单个 实施方案的全部特征少的状态。 因此, 所附的权利要求书特此清楚地被并入 详细描述中, 其中每项权利要求独自作为本发明单独的优选实施方案。 上文的描述包括一个或多个实施例的举例。 当然, 为了描述上述实施例 而描述部件或方法的所有可能的结合是不可能的, 但是本领域普通技术 应该认识到, 各个实施例可以做进一步的组合和排列。 因此, 本文中描¾|^ 实施例旨在涵盖落入所附权利要求书的保护范围内的所有这样的改变、 ^ 和变型。 此外, 就说明书或权利要求书中使用的术语 "包含", 该词的涵 方 式类似于术语 "包括", 就如同 "包括," 在权利要求中用作衔接词所解释的 ; 那样。 此外, 使用在权利要求书的说明书中的任何一个术语 "或者" 是要表 示 "非排它性的或者"。

Claims

权 利 要 求 书
1. 一种用于数据传输的方法, 其特征在于, 该方法包括:
生成广播信息帧 BCF, 所述 BCF中携带指示物理帧结构配置的物理层 参数;
发送所述 BCF。
2. 如权利要求 1所述的方法, 其特征在于, 所述物理层参数包括如下一 项或几项:
指示下行探测导频图像索引的下行探测导频图样;
指示下行探测信道在下行传输信道中的位置的下行探测信道的位置; 指示解调导频时间 隔的 OFDM符号个数的解调导频时^^周期; 指示下行与上行的转换时间的下行保护间隔 DGI;
指示上行与下行的转换时间的上行保护间隔。
3. 一种用于数据传输的方法, 其特征在于, 该方法包括:
生成广播信息帧 BCF, 所述 BCF中携带 CAP的工作信道和工作带宽, 供 STA确定 CAP的工作子信道;
发送所述 BCF。
4. 一种用于数据传输的装置, 其特征在于, 该装置包括:
生成单元, 用于生成广播信息帧 BCF, 所述 BCF中携带指示物理帧结 构配置的物理层参数;
发送单元, 用于发送所述 BCF。
5. 如权利要求 4所述的装置, 其特征在于, 所述物理层参数包括如下一 项或几项:
指示下行探测导频图像索引的下行探测导频图样;
指示下行探测信道在下行传输信道中的位置的下行探测信道的位置; 指示解调导频时间 隔的 OFDM符号个数的解调导频时^^周期; 指示下行与上行的转换时间的下行保护间隔 DGI;
指示上行与下行的转换时间的上行保护间隔。
6. 一种用于数据传输的装置, 其特征在于, 该装置包括:
生成单元, 用于生成广播信息帧 BCF, 所述 BCF中携带 CAP的工作信 道和工作带宽, 供 STA确定 CAP的工作子信道;
发送单元, 用于发送所述 BCF。
PCT/CN2012/072040 2011-03-31 2012-03-07 用于数据传输的方法及装置 WO2012130024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280012712.4A CN103688557B (zh) 2011-03-31 2012-03-07 用于数据传输的方法及装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201110081193.4 2011-03-31
CN201110081193 2011-03-31
CN201110081288 2011-03-31
CN201110081288.6 2011-03-31
CN201110130194.3 2011-05-19
CN201110130194 2011-05-19
CN201110189248 2011-07-06
CN201110189248.3 2011-07-06
CN201210035785.7 2012-02-16
CN201210035785 2012-02-16
CN201210050629.8 2012-02-29
CN 201210050629 CN102625248A (zh) 2011-03-31 2012-02-29 用于数据传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2012130024A1 true WO2012130024A1 (zh) 2012-10-04

Family

ID=46564895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072040 WO2012130024A1 (zh) 2011-03-31 2012-03-07 用于数据传输的方法及装置

Country Status (2)

Country Link
CN (2) CN102625248A (zh)
WO (1) WO2012130024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063305A1 (zh) * 2018-09-27 2020-04-02 维沃移动通信有限公司 接入控制方法、终端及网络侧设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923666B2 (en) * 2014-10-01 2018-03-20 Qualcomm, Incorporated Encoding in uplink multi-user MIMO and OFDMA transmissions
CN107005306A (zh) * 2014-11-27 2017-08-01 飞利浦灯具控股公司 分组化数据传输中利用减少开销的分组顺序识别
CN110418408B (zh) * 2018-04-28 2021-01-05 华为技术有限公司 信号传输的方法、中心接入点ap和远端射频单元rru
CN113228774B (zh) * 2019-12-06 2023-03-10 北京小米移动软件有限公司 通信连接配置方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050087449A (ko) * 2004-02-27 2005-08-31 삼성전자주식회사 이동통신시스템에서 넓은 셀 커버리지를 지원하기 위한장치 및 방법
CN1996784A (zh) * 2006-07-18 2007-07-11 北京邮电大学 一种应用感知导频信道汇集网络信息并向终端广播的方法
CN101047438A (zh) * 2007-03-27 2007-10-03 中兴通讯股份有限公司 Td-scdma中利用复帧收发mbms数据的方法
CN101431808A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 时分双工***的共存方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2576833C (en) * 2004-08-12 2014-10-28 Interdigital Technology Corporation Method and system for controlling access to a wireless communication medium
CN1960207A (zh) * 2005-11-01 2007-05-09 华为技术有限公司 基于fdd和tdd混合的无线中转通信***及方法
CN101414902B (zh) * 2007-10-16 2010-05-12 大唐移动通信设备有限公司 长期演进时分双工***的传输方法及装置
CN101420265B (zh) * 2007-10-26 2012-08-08 鼎桥通信技术有限公司 一种长期演进***中的数据传输方法、***及装置
FR2943882A1 (fr) * 2009-03-27 2010-10-01 Thomson Licensing Procede d'emission pour un reseau sans fil et procede de reception correspondant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050087449A (ko) * 2004-02-27 2005-08-31 삼성전자주식회사 이동통신시스템에서 넓은 셀 커버리지를 지원하기 위한장치 및 방법
CN1996784A (zh) * 2006-07-18 2007-07-11 北京邮电大学 一种应用感知导频信道汇集网络信息并向终端广播的方法
CN101047438A (zh) * 2007-03-27 2007-10-03 中兴通讯股份有限公司 Td-scdma中利用复帧收发mbms数据的方法
CN101431808A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 时分双工***的共存方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063305A1 (zh) * 2018-09-27 2020-04-02 维沃移动通信有限公司 接入控制方法、终端及网络侧设备
US11991618B2 (en) 2018-09-27 2024-05-21 Vivo Mobile Communication Co., Ltd. Access control method, terminal, and network side device

Also Published As

Publication number Publication date
CN103688557A (zh) 2014-03-26
CN103688557B (zh) 2017-04-26
CN102625248A (zh) 2012-08-01

Similar Documents

Publication Publication Date Title
JP6423078B2 (ja) 無線通信システムにおけるアップリンク転送方法及びそのために装置
JP6377858B2 (ja) 無線通信システムにおけるデータ送信方法及びこのための装置
KR102051028B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
KR102462973B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
KR102548620B1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10299261B2 (en) Method and device for downlink multi-user transmission in wireless communication system
CN107251469B (zh) 无线通信***中的数据发送方法和设备
US9363048B2 (en) Downlink OFDMA for service sets with mixed client types
WO2012130026A1 (zh) 用于接入无线网络的方法及装置
CN107925514B (zh) 使用触发信息的无线通信方法、和无线通信终端
WO2012130025A1 (zh) 用于接入无线网络的方法及装置
US20130294360A1 (en) System and Method for Acknowledging Multiple Frames from Multiple Communications Devices
US20170338910A1 (en) Data transmission method in wireless communication system and device therefor
CN111096054A (zh) 在无线通信***中发送和接收数据的方法和设备
EP2693825B1 (en) Method and device for accessing wireless network
WO2012130097A1 (zh) 一种用于资源请求的方法、站点和中心接入点
WO2012130024A1 (zh) 用于数据传输的方法及装置
WO2012130095A1 (zh) 一种用于资源请求的方法、站点和中心接入点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762809

Country of ref document: EP

Kind code of ref document: A1