WO2012129935A1 - 设备内共存干扰的处理方法及装置 - Google Patents

设备内共存干扰的处理方法及装置 Download PDF

Info

Publication number
WO2012129935A1
WO2012129935A1 PCT/CN2011/084006 CN2011084006W WO2012129935A1 WO 2012129935 A1 WO2012129935 A1 WO 2012129935A1 CN 2011084006 W CN2011084006 W CN 2011084006W WO 2012129935 A1 WO2012129935 A1 WO 2012129935A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio communication
interference
communication module
frequency point
coexistence interference
Prior art date
Application number
PCT/CN2011/084006
Other languages
English (en)
French (fr)
Inventor
姚君
施小娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012129935A1 publication Critical patent/WO2012129935A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a method and apparatus for processing coexistence interference in a device.
  • UE User Equipment
  • 1 is a schematic diagram of a UE in which three radio technologies coexist according to the related art. As shown in FIG. 1, in the UE, a Long-Term Evolution (LTE) technology module 101 is used, and IEEE Std 802.11 is used.
  • LTE Long-Term Evolution
  • the wireless local area network (WLAN) technology module 102 which is a wireless local area network (Wireless Local Area Networks Station, WLAN-STA for short), uses the Bluetooth module 103 specified by the IEEE Std 802.15 specification. .
  • the modules 101, 102, and 103 are connected by an inter-radio interface.
  • the 101 module and the 102 module are connected by L101
  • the 102 module and the 103 module are connected by L102
  • the 101 module and the 103 module are connected by L103; or, the 101, 102, 103 three modules are controlled by a common control module 104.
  • the three modules 101, 102, and 103 respectively perform wireless communication with their corresponding peer devices through respective radio technologies, for example, 101 and an evolved base station (LTE eNB, E-UTRAN NodeB) 105 perform wireless communication through the air interface, 102.
  • LTE eNB evolved base station
  • E-UTRAN NodeB evolved base station
  • 103 and another Bluetoothl 07 wirelessly communicate over the air interface.
  • the spatial distance between these modules is bound to be small, for example, only a few centimeters or even a few millimeters.
  • the spatial isolation between the antenna ports corresponding to these modules is small, resulting in out of band emission, spurious emissions, and when these modules operate in adjacent frequency bands.
  • FIG. 2 is a schematic diagram of an ISM band and an LTE band distribution according to the related art. Assume that WLAN and Bluetooth work in the ISM band, and the frequency band is 2.4 GHz - 2.5 GHz.
  • the WLAN channel uses the 2.4 GHz to 2.4835 GHz band in the ISM band, and the Bluetooth channel uses 2.4 GHz in the ISM band. 2.497 GHz band.
  • LTE's Time Division Duplex (TDD) mode operates in Band 40 (Band 40) and Band 38 (Band 38)
  • Band 40 has a frequency range of 2.3 GHz to 2.4 GHz
  • Band 38 has a frequency band of 2.57 GHz. ⁇ 2.62GHz.
  • the LTE frequency division duplex (FDD) mode uplink transmission Uplink Transmission, that is, UE transmission to eNB
  • Band 7 Band 7 in the frequency band of 2.5 GHz to 2.57 GHz, FDD mode.
  • the downlink transmission (Downlink Transmission, ie, the eNB transmits to the UE) works in the Band 2.62GHz to 2.69GHz band. Since the ISM band in Figure 2 is adjacent to the Band 40 in the LTE TDD mode, if the 101 module uses the TDD mode and uses the Band 40, then the 101 module and the 102 module, 103 module will be leaked due to out-of-band, spurious emissions. , the receiver is blocked, etc., causing coexistence interference within the device. Since the ISM band in Figure 2 is adjacent to the uplink transmission band of the LTE FDD mode Band 7, if the 101 module uses the FDD mode and uses Band 7, the uplink transmission of the 101 module will be due to out-of-band leakage, spurious emissions, and receiver blocking.
  • the present invention provides a method and apparatus for processing in-device coexistence interference to at least solve the problem that in-device coexistence interference in a UE coexisting in multiple radio communication modules affects communication quality.
  • a processing method of coexistence interference in an apparatus is provided.
  • the method for processing in-device coexistence interference includes: determining whether a interference state of a first radio communication module in a UE at a working frequency point changes and/or determining a working frequency of the first radio communication module in the UE Whether the interference state at other frequency points is changed, wherein the interference state is used to indicate that the first radio communication module suffers from in-device coexistence interference from the second radio communication module in the UE, or is used to indicate the first radio communication
  • the in-device coexistence interference generated by the module if the determination result is yes, the interference level and/or other frequency points on the working frequency point are reported to the network side, where the interference level is used to indicate that the first radio communication module suffers from the UE.
  • the working frequency is the central frequency point of the current serving cell of the first radio communication module.
  • Reporting the other frequency points to the network side includes: reporting the frequency point identifiers of the other frequency points to the network side, where the frequency point identifier includes one of the following: the measurement object identifier, the measurement identifier, the frequency index index pre-negotiated by the UE and the network side, and the UE The radio frequency channel number that is pre-negotiated with the network side.
  • the in-device coexistence interference from the second one of the UEs that the first radio communication module suffers is determined by a parameter including at least one of: an interval of operating frequency points between the first radio communication module and the second radio communication module
  • the in-device coexistence interference generated by the first radio communication module is determined by a parameter including at least one of: an interval of a frequency of operation between the first radio communication module and the second radio communication module, and a transmission power of the second radio communication module.
  • the change of the interference state includes at least one of the following: the first radio communication module changes from not suffering from in-device coexistence interference to suffer from in-device coexistence interference; the interference experienced by the first radio communication module is enhanced; and the interference experienced by the first radio communication module is weakened; The first radio communication module is changed from being subjected to in-device coexistence interference to not suffering from in-device coexistence interference; the first radio communication module is changed by not generating in-device coexistence interference to generate in-device coexistence interference; and the interference generated by the first radio communication module is enhanced; The interference generated by the first radio communication module is weakened; the first radio communication module changes from generating in-device coexistence interference to not generating in-device coexistence interference.
  • the method further includes: receiving, by the network side, an interference level and/or other frequency points; and determining, by the network side, the working frequency of the UE according to the interference level. And/or configuring a time division multiplexed operating mode for the first radio communication module and the second radio communication module, and/or reducing a transmission power of the radio communication module that generates in-device coexistence interference.
  • a processing apparatus for coexistence interference in an apparatus is provided, which apparatus can be applied to a UE.
  • the processing device for coexistence interference in the device includes: a judging module configured to determine whether the interference state of the first radio communication module in the user equipment UE at the operating frequency point changes and/or determine the first radio in the UE Whether the interference state of the communication module other than the operating frequency point changes, wherein the interference state is used to indicate that the first radio communication module suffers from in-device coexistence interference from the second radio communication module in the UE, or
  • the device is configured to indicate the in-device coexistence interference generated by the first radio communication module
  • the reporting module is configured to report the interference level and/or other frequency points on the working frequency point to the network side when the determination result is yes, where the interference level The strength of the in-device coexistence interference from the second radio communication module in the UE that is received by the first radio communication module, or the strength of the in-device coexistence interference generated by the first radio communication module.
  • the working frequency is the central frequency point of the current serving cell of the first radio communication module.
  • the reporting module includes: a reporting sub-module, configured to report a frequency point identifier of another frequency point to the network side, where the frequency point identifier includes at least one of the following: a measurement object identifier, a measurement identifier, and a frequency index number pre-negotiated by the UE and the network side.
  • FIG. 1 is a schematic diagram of a UE in which three radio technologies coexist according to the related art
  • FIG. 2 is a schematic diagram of an ISM band and an LTE band distribution according to the related art
  • FIG. 3 is an in-device coexistence according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for processing in-device coexistence interference according to a preferred embodiment of the present invention
  • FIG. 5 is a flowchart of a method for processing in-device coexistence interference according to a preferred embodiment 3 of the present invention
  • FIG. 6 is a structural block diagram of a processing apparatus for coexistence interference in an apparatus according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. The invention will be described in detail below with reference to the drawings in conjunction with the embodiments. The embodiment of the invention provides a processing method for coexistence interference in a device.
  • FIG. 1 provides a processing method for coexistence interference in a device.
  • Step S302 determining whether the interference state of the first radio communication module in the UE changes at the operating frequency point and/or determining the interference state of the first radio communication module in the UE except the working frequency point. Whether the state changes, wherein the interference state is used to indicate in-device coexistence interference from the second radio communication module in the UE that the first radio communication module suffers, or to indicate in-device coexistence interference generated by the first radio communication module.
  • Step S304 if the result of the determination is yes, report the interference level and/or other frequency points on the working frequency point to the network side, where the interference level is used to indicate that the first radio communication module suffers from the second radio communication module from the UE.
  • intra-device coexistence interference exists in a UE coexisting in a plurality of radio communication modules.
  • the network side can ensure that the intra-device coexistence interference in the UE is timely grasped, and then the network side adjusts according to the severity of the coexistence interference in the device.
  • the working frequency of the UE can reduce the coexistence interference in the device and improve the communication quality.
  • the working frequency is the central frequency point of the current serving cell of the first radio communication module.
  • the reporting of the other frequency points to the network side includes: reporting the frequency point identifier of the other frequency points to the network side, where the frequency point identifier includes one of the following: the measurement object identifier, the measurement identifier, and the frequency index index pre-negotiated by the UE and the network side. No., the radio frequency channel number pre-negotiated by the UE and the network side.
  • the in-device coexistence interference from the second radio communication module of the UE that the first radio communication module suffers is determined by a parameter including at least one of: a working frequency between the first radio communication module and the second radio communication module The interval of the point, the transmit power of the second radio communication module, the received signal quality measured by the UE, and the packet error rate measured by the UE.
  • the in-device coexistence interference generated by the first radio communication module is determined by a parameter including at least one of: an interval of a working frequency point between the first radio communication module and the second radio communication module, and a second radio communication module Transmit power.
  • the change of the interference state comprises at least one of the following: the first radio communication module changes from not suffering from in-device coexistence interference to suffer from in-device coexistence interference; the interference experienced by the first radio communication module is enhanced; the first radio communication module suffers The interference is weakened; the first radio communication module changes from being subjected to in-device coexistence interference to not suffering from in-device coexistence interference; the first radio communication module is changed by not generating in-device coexistence interference to generate in-device coexistence interference; the first radio communication module generates The interference is enhanced; the interference generated by the first radio communication module is weakened; the first radio communication module changes from generating in-device coexistence interference to not generating in-device coexistence interference.
  • the interference level change of the first radio communication module may be caused by a change in the transmit power of the second radio communication module that generates the interference, or may be due to the first radio communication module and/or the second radio communication module.
  • the frequency of work changes.
  • the method further includes: the network side receives the interference level and/or other frequency points; and the network side adjusts the UE according to the interference level.
  • the UE includes one of the following: a mobile phone, a smart phone, a portable communication device, and a Personal Digital Assistant (PDA).
  • the first radio communication module can adopt LTE technology, universal mobile communication system (Universal
  • the frequency of the operating frequency or its harmonics employed by the first radio communication module may overlap or be adjacent to the Industrial, Scientific, and Medical (ISM) band.
  • the second radio communication module may adopt a Wireless Local Area Network (WLAN) technology, a Bluetooth technology, and a Zigbee technology using the IEEE 802.15.4 specification.
  • the working frequency used by the second radio communication module may be the ISM band.
  • the LTE sub-device and the peer network The interaction is taken as an example, that is, the first radio technology is an LTE technology, which illustrates that the present invention implements a communication method in which multiple radio technologies coexist in a terminal, but does not constitute an improper limitation of the present invention.
  • the method of the present invention is also applicable to LTE and the same. Communication when other radio technologies coexist, and communication when UMTS coexists with other radio technologies.
  • the network described in the present invention refers to e B, which corresponds to the UMTS sub-device, and the network refers to B (Node B.
  • FIG. 4 is a flowchart of a method for processing in-device coexistence interference according to a preferred embodiment of the present invention. As shown in FIG. 4, the following steps S402 to S406 are included. Step S402, the intra-device coexistence interference state of the UE changes. Step S404, the UE reports the interference level of the working frequency point to the network side. In step S406, the network side gives an appropriate decision.
  • the UE may also report the frequency point information of the other frequency points that is interfered or interfered with by the network side.
  • the following takes the downlink working frequency of LTE as an example to introduce the concept of other frequency points known to the UE.
  • the uplink and downlink center frequency points of the cell are the central working frequency points of the uplink and downlink of the UE, and one cell has only one set of uplink and downlink center frequency points. Due to the instability of the radio link and the dynamic scheduling and guaranteeing the QoS level of the UE, the network side usually configures the same frequency measurement and different frequency for the UE according to the network deployment situation and the network load condition of the current UE.
  • Measurement and measurement by different systems When the network configures the measurement for the UE, it will inform the UE of the information of the different frequency point in the form of a measurement object. When the network thinks that the UE does not need to perform some frequency measurement, it will also be in the measurement configuration. These frequencies are deleted. A dynamic measurement object list is maintained in the UE. Each measurement object entry has a unique identifier, which is called the Measurement Object ID. The measurement object identifier is also configured on the network side. Therefore, the network side can be configured according to the network. This identifier locates the specific information of the frequency point. When the network needs to perform measurement on a certain frequency point and report the measurement result, the UE only needs to configure a measurement ID (Measure ID) for the UE. This measurement ID associates a measurement object stored by the UE with the measurement reporting configuration (Reporting Configuration). .
  • Measurement ID Measurement ID
  • the UE When the UE reports the changed interference level at the working frequency point to the network side, it can notify the network of other frequency points that are known by itself and also the frequency of coexistence interference in the device, so that the network can further improve the user communication experience. It is not necessary to configure the UE to interfere with the inter-frequency frequency point measurement or not to switch the UE to the interfered inter-frequency frequency point, thereby improving the network side working efficiency and saving the UE power.
  • the network side receives the information reported by the UE, and may
  • the interference situation suffered by the UE and the available resources of the network make appropriate decisions. Specifically, the network side determines that the interference received by the UE is serious, and may switch the UE according to the channel quality of the UE at other frequency points, the UE's own capability, and the current load status of the network side. To other frequency points that will not suffer from coexistence interference in the device, to ensure that the UE has a good communication experience; Or configure other measurements for the UE to find other LTE working frequency points that can provide QoS guarantee or the working frequency of other wireless access technologies. The network side can determine that the interference received by the UE is serious, but the resources on the network side are relatively tight at this time, and the in-device coexistence interference cannot be suppressed by switching the UE to other known cells.
  • the network side can notify the UE to adopt the time division complex.
  • the working mode that is, LTE technology and other ISM wireless technologies work alternately to avoid mutual interference in the frequency domain.
  • the network side determines that if the UE is no longer subject to in-device coexistence interference, the UE may increase the UE transmit power or perform the UE's transmission according to the normal procedure, for example, to find a serving cell with better communication quality.
  • the network side determines that the interference received by the UE is not serious at this time, that is, the interference level is low, and the resources of the network side are very tight at this time. With a certain resource scheduling algorithm, the network side may not take the in-device coexistence interference received by the UE. Any suppression measures.
  • the method for reporting the frequency point information of the present invention is described in detail below by using a specific embodiment.
  • the preferred embodiment is the same as the LTE technology and the WLAN technology in the UE shown in Figure 1, and the WLAN technology interferes with the LTE technology as an example, through the interface L101 or The control sub-module 104, the UE can know the working status of the WLAN and the LTE technology, including the frequency, power, transceiver indicator and the like used by the WLAN and the LTE.
  • the interference level may be based on a working frequency interval between the WLAN and the LTE, and/or a transmit power level of the WLAN submodule, and/or a received signal quality level measured by the UE, and/or a packet error rate measured by the UE. Defined.
  • the UE may maintain a mapping table inside the device, if the two are spaced apart. If the transmission of the WLAN is less than 50 MHz, the transmission of the WLAN may interfere with the reception of the LTE, and the working frequency of the LTE of the UE suffers from coexistence interference in the device.
  • the interference is graded at intervals of 10 MHz, as shown in Table 1: Table 1 Interference Rating Table Defined by Frequency Interval
  • the WLAN sub-module of the UE is enabled and in the transmitting state, and the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as typical values as given above. If the operating frequency of the WLAN is 2.412 GHz, the operating frequency of the LTE changes, causing the frequency spacing from the WLAN to change from greater than 50 MHz to less than 50 MHz, for example to 25 MHz.
  • the current measurement object list of the UE is as shown in Table 2, and the current measurement identifier list 3 of the UE is shown, wherein the report configuration is not directly related to the present invention, and therefore will not be introduced, and only a schematic is given in the table. Table 2 Example of the measurement object list of the UE
  • the content reported by the UE to the network side may be:
  • the interference level of the working frequency ie level 3 or
  • the interference level of the working frequency level is 3 and the frequency information of the other frequency points that are subject to interference, that is, the working frequency interference level 3 and EUTRAN 2.39 GHz and EUTRAN 2.365 GHz.
  • the reporting method of the frequency point information EUTRAN 2.39 GHz and the EUTRAN 2.365 GHz can be reported by using the measurement object identifiers corresponding to the frequency points EUTRAN 2.39 GHz and EUTRAN 2.365 GHz shown in Table 2, that is, 2 and 4.
  • the measurement flags corresponding to the frequency points EUTRAN 2.39 GHz and EUTRAN 2.365 GHz shown in Table 3, that is, 2 and 3 can be reported.
  • the frequency index number shared by the UE and the network side may be used for reporting.
  • the frequency index number of the UE and the network side may be "evolved UMTS absolute radio frequency channel number (EARFCN, E-UTRA Absolute Radio). Frequency Channel Number) ", which is the EARFCN corresponding to EUTRAN 2.39GHz and EUTRAN 2.365GHz. If the frequency to be reported is the frequency of the UTRAN, the "UMTSCN, UTRA Absolute Radio Frequency Channel Number" is used.
  • the transmit power of the WLAN is 20 dBm and the antenna isolation is 15 dB
  • the packet error rate PL of the LTE technology measured by the UE is used as a standard for measuring the interference level
  • the UE can maintain a mapping table inside the device to use the normal voice service of the LTE.
  • the packet error rate is greater than 10-2, LTE is receiving data, and the WLAN is transmitting data, it is considered that the UE's LTE working frequency point suffers from in-device coexistence interference.
  • the interference level defined by the error packet rate is shown in Table 4: Table 4 Interference level table defined by the packet error rate
  • the WLAN sub-module of the UE is enabled and in the transmitting state, and the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as typical values as given above. If the working frequency of LTE in the UE has suffered from in-device coexistence interference, the packet error rate measured by the UE is changed from 0.03 to 0.08, and the interference level is changed from level 2 to level 4.
  • the content reported by the UE to the network side may be:
  • the interference level of the working frequency ie level 4, or
  • the interference level of the working frequency level 4 and the known frequency information of the other frequency points that are subject to interference namely EUTRAN 2.39 GHz and EUTRAN 2.3 GHz.
  • the specific reporting method of other frequency point information is as described above.
  • the received signal of the LTE technology measured by the UE is used as a standard for measuring the interference level
  • the received signal to interference and noise ratio of the cell reference signal or the block error rate parameter of the PDCCH may be used as the definite parameter.
  • the received signal-to-noise ratio of the reference signal of the cell is used as a standard for measuring the interference level.
  • the transmit power of the WLAN is 20 dBm and the antenna isolation is 15 dB
  • the received signal-to-noise ratio of the cell reference signal is used as a measure of the interference level.
  • the UE can maintain a mapping table inside the device, if the UE is connected
  • the SINR of the received signal is less than 3dB, LTE is receiving data, and the WLAN is transmitting data, then the UE is considered to be
  • the LTE working frequency suffers from coexistence interference within the device.
  • the interference level defined by the signal to interference and noise ratio of the received signal is divided as shown in Table 5: Table 5 Interference level table defined by the signal to interference and noise ratio of the received signal
  • the WLAN sub-module of the UE is enabled and in the transmitting state, and the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as typical values as given above. If the WLAN technology is turned off or other reasons, the signal-to-interference ratio of the cell reference signal measured by the UE changes from -6dB to lldB, that is, the UE's LTE working frequency point no longer suffers from in-device coexistence interference.
  • the content reported by the UE to the network side is:
  • the UE currently has an interference level of 0 at the LTE working frequency point, that is, it no longer suffers from in-device coexistence interference.
  • B. The BER error rate is used as the standard for measuring the interference level. When the WLAN transmission power is 20 dBm and the antenna isolation is 15 dB, if the UE measures the PDCCH block error rate as the standard for measuring the interference level, the UE can be internally maintained.
  • a mapping table if the PDCCH's block error rate detected by the UE is higher than 2%, the LTE is receiving data, and the WLAN is transmitting data, it is considered that the UE's LTE working frequency point suffers from in-device coexistence interference.
  • the error block rate of the PDCCH is defined as the interference level division as shown in Table 6: Table 6
  • the WLAN sub-module of the UE is enabled and in the transmitting state, the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as shown in the above. If the power consumption of the PDCCH is reduced from 0.05 to 0.01 due to the WLAN power reduction or other reasons, the UE's LTE working frequency point is no longer subject to in-device coexistence interference.
  • the content reported by the UE to the network side is: The UE currently has an interference level of 0 at the LTE working frequency point, that is, it no longer suffers from in-device coexistence interference.
  • the antenna isolation of the WLAN and the LTE is 12 dB, the frequency interval between the WLAN and the LTE is 43 dB.
  • the UE can maintain a mapping table inside the device.
  • the transmit power of the WLAN is greater than 14.5 dBm.
  • the LTE is receiving data and the WLAN is transmitting data.
  • the LTE working frequency of the UE is considered to be coexisting interference within the device.
  • the interference level defined by the WLAN transmission power is as shown in Table 7: Table 7
  • the WLAN sub-module of the UE is enabled and in the transmitting state, and the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as typical values as given above.
  • the transmit power of the WLAN is changed from 14.5 dBm to 16 dBm, the UE's working frequency point never suffers from in-device coexistence interference and suffers from coexistence interference in the device.
  • the content reported to the network side can be:
  • the interference level of the working frequency point that is, level 1.
  • the interference level of the working frequency point and the frequency information of the known other frequency points that suffer from in-device coexistence interference that is, the frequency of the LTE technical working frequency point in the list of measurement objects given in Table 2 is higher than the UE.
  • All of the above parameters defining the interference level division of the LTE interference may also be used in combination of two, or three, or four.
  • the frequency interval and the error rate are simultaneously used as the indicators for defining the interference level.
  • the typical parameters of the antenna isolation can be different frequency intervals when dividing the interference level. Combine with the packet error rate to define a new interference level standard.
  • the frequency interval may be greater than 50 MHz and the error packet rate is less than 0.01, and the frequency interval is within the interval [40 MHz, 50 MHz) and the error packet rate is set to 1 level within (0.1, 0.2). Within the interval [40MHz, 50MHz) and the packet error rate is set to 2 in (0.2, 0.4), and so on.
  • the in-device coexistence interference level at the UE's working frequency changes, the UE goes to the network side.
  • the network side follows step S406. The appropriate decision is made.
  • Preferred Embodiment 2 As shown in FIG.
  • the LTE technology and the WLAN technology coexist in the UE, and the LTE technology interferes with the WLAN technology as an example.
  • the UE can know the working status of the WLAN and the LTE technology, including the WLAN and the LTE. Frequency, power, transceiver indicators and other information.
  • the LTE working frequency of the UE changes from no interference to interference to the WLAN sub-module, or the interference level of the WLAN sub-module is changed at the working frequency of the LTE, or the interference occurs at the working frequency of the LTE.
  • the UE reports the changed interference level to the network side.
  • the interference level may be defined according to parameters such as a working frequency interval between the WLAN and the LTE, and/or a transmission power level of the LTE submodule.
  • the transmit power of the LTE is 23 dBm and the antenna isolation is 15 dB
  • the working frequency interval f between the WLAN technology and the LTE technology is used as a standard for measuring the interference level
  • the UE may maintain a mapping table inside the device, if the two are spaced apart. If the transmission of LTE is less than 52MHz, the transmission of LTE may interfere with the reception of LTE, and the working frequency of the LTE of the UE suffers from coexistence interference in the device.
  • the interference is graded at intervals of 10 MHz, as shown in Table 8. Table 8 Interference Rating Table Defined by Frequency Interval
  • the WLAN sub-module of the UE is enabled and in the receiving state, the LTE sub-module is in the transmitting state, and the operating parameters such as the LTE technology transmission power and the antenna isolation are as typical values given above. If the operating frequency of the WLAN is 2.412 GHz, the operating frequency of the LTE changes, causing the frequency separation from the WLAN to be changed from greater than 50 MHz to less than 50 MHz, for example, to 25 MHz. At the same time, the current measurement object list of the UE is as shown in Table 2. The content reported by the UE to the network side may be:
  • the working frequency interference level of LTE is 3, or 2.
  • the working frequency interference level of LTE is 3, and the frequency information of interference generated in other frequency points, that is, the working frequency interference level 3 and EUTRAN 2.39 GHz and EUTRAN 2.3 GHz, the specific reporting method can use the channel number or the upper and lower limits of the frequency range of the interference.
  • the frequency interval between the WLAN and the LTE is 26 dB.
  • the LTE transmission power Ptx is used as the standard for measuring the interference level, the UE can maintain a mapping table inside the device.
  • the transmission power of LTE is greater than OdBm, LTE is transmitting data, and the number of WLANs is receiving. According to this, it is considered that the UE's LTE working frequency point generates in-device coexistence interference to the WLAN.
  • the interference level defined by the transmission power of LTE is as shown in Table 9: Table 9 Interference level table defined by the transmission power of LTE
  • the WLAN sub-module of the UE is enabled and in the transmitting state, and the LTE sub-module is in the receiving state, and the operating parameters such as the WLAN technology transmission power and the antenna isolation are as typical values as given above.
  • the WLAN transmission power is changed from OBm to 14dBm, the UE's working frequency point never suffers from in-device coexistence interference and suffers from in-device coexistence interference.
  • the content reported to the network side can be:
  • the interference level of the working frequency ie level 1, or
  • the interference level of the working frequency is 1 level, and the frequency information of the known other frequency points that suffer from in-device coexistence interference, that is, the frequency of the uplink working frequency of the LTE technology higher than the UE in the measurement object list given in Table 2 Point, the specific reporting method can use the channel number or the upper and lower limits of the frequency range of the interference. All of the above parameters defining the interference level division of LTE-generated interference can also be used in combination.
  • the coexistence interference level of the device changes at the working frequency of the UE, the UE reports the updated interference level to the network side, or the updated interference level and the frequency information of the other frequency points that are subject to interference, and wait for the network to do Give further instructions.
  • FIG. 5 is a flowchart of a method for processing in-device coexistence interference according to a preferred embodiment 3 of the present invention. As shown in FIG. 5, the following steps S502 to S506 are included. Step S502, determining whether the inter-frequency point of the UE operating frequency point has a frequency point that suffers or may generate coexistence interference in the device. When the UE works at a working frequency point far from the ISM band, the WLAN technology is transmitting.
  • the UE can pass the frequency interval given in the preferred embodiment 1.
  • the WLAN transmit power, or the received signal quality of the inter-frequency point, and the like determine whether there is a frequency point in the inter-frequency interference that is known to the UE, and the UE may pass the LTE according to the preferred embodiment 2.
  • Transmit power, the frequency interval parameter determines whether some inter-frequency points will interfere with the WLAN technology that is receiving. If not, the process of the present invention ends, the UE performs a normal operation; if yes, the process goes to step S504.
  • step S504 when the UE reports the measurement result to the network side, the UE notifies the network side of the different frequency point information that is subjected to or may cause interference in step S502.
  • the network side in order to ensure that the UE has the best user experience, the network side usually configures the adjacent frequency measurement for the UE according to the network deployment situation and the network load situation of the current UE.
  • the measurement configured by the network side for the UE may include A different frequency point that is suffering from coexistence interference within the device.
  • the existing RRM measurement mechanism since the RSRP measurement is the reception power of the detection frequency point, the in-device coexistence interference cannot be detected, and conversely, the channel quality of the interfering frequency point that is being interfered may be obtained.
  • Step S506 When the network makes a handover decision, the UE does not switch to the inter-frequency point in step S502.
  • the network After receiving the measurement report reported by the UE, the network includes frequency information that is suffering or may cause coexistence interference in the device. Then, when the network side makes a handover decision, it can avoid switching the UE to those frequencies that have problems or may cause problems.
  • FIG. 6 is a structural block diagram of a processing apparatus for coexistence interference in a device according to an embodiment of the present invention. As shown in FIG.
  • the method includes a judging module 62 and a reporting module 64.
  • the structure is described in detail below.
  • the determining module 62 is configured to determine whether the interference state of the first radio communication module in the user equipment UE at the operating frequency point changes and/or determine other frequencies of the first radio communication module in the UE except the working frequency point.
  • the interference state at the point changes, wherein the interference state is used to indicate that the first radio communication module suffers from in-device coexistence interference from the second radio communication module in the UE, or is used to indicate the device generated by the first radio communication module
  • the coexistence interference module is connected to the judging module 62, and is configured to report the interference level and/or other frequency points on the working frequency point to the network side when the judgment module 62 determines that the result is yes, wherein the interference level is used for the interference level. Indicates the strength of in-device coexistence interference from the second one of the UEs that the first radio communication module suffers, or the strength of the in-device coexistence interference generated by the first radio communication module.
  • the working frequency is the central frequency point of the current serving cell of the first radio communication module.
  • the reporting module 64 includes: a reporting sub-module 642, configured to report a frequency point identifier of the other frequency points to the network side, where the frequency point identifier includes at least one of the following: the measurement object identifier, the measurement identifier, and the UE and the network side pre-negotiate The frequency index number, the radio frequency channel number pre-negotiated by the UE and the network side.
  • a method and apparatus for processing coexistence interference in a device are provided.
  • the invention obtains the interference level of the UE at the working frequency point in time, and ensures that the network side can timely grasp the coexistence interference of the device in the UE, and then adjust the working frequency of the UE in time according to the severity of the coexistence interference in the device. Points can reduce coexistence interference within the device and improve communication quality.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

设备内共存干扰的处理方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种设备内共存干扰的处理方法及装置。 背景技术 随着无线电技术与智能用户设备的发展, 为了支持用户的不同通信需求, 需要在 同一用户设备 (User Equipment, 简称为 UE) 内集成多种无线电技术。 图 1是根据相关技术的三种无线电技术共存的 UE的示意图, 如图 1所示, 在该 UE中, 分别使用长期演进 (Long-Term Evolution, 简称为 LTE) 技术模块 101, 使用 IEEE Std 802.11规范规定的无线局域网(Wireless Local Area Network,简称为 WLAN) 技术模块 102, 即无线局域网站点 (Wireless Local Area Networks Station, 简称为 WLAN-STA),使用 IEEE Std 802.15规范规定的蓝牙(Bluetooth)模块 103。其中, 101、 102、 103三个模块之间通过无线电技术之间的接口 (inter-radio interface) 相连, 例如 101模块与 102模块之间通过 L101相连, 102模块与 103模块之间通过 L102相连, 101模块与 103模块之间通过 L103相连; 或者, 101、 102、 103三个模块受控于一个 公共的控制模块 104。 另外, 101、 102、 103三个模块分别通过各自的无线电技术与其 对应的对端设备进行无线通信,例如 101与演进型基站(LTE eNB, E-UTRAN NodeB ) 105通过空中接口进行无线通信, 102与另一个 WLAN STA106通过空中接口进行无线 通信, 103与另一个 Bluetoothl07通过空中接口进行无线通信。 在同一 UE内共存多种无线电技术模块时, 由于 UE的体积有限, 势必使得这些 模块之间的空间距离很小, 例如只有几厘米甚至几毫米。 进而, 这些模块所对应的天 线端口之间的空间隔离度很小, 从而导致当这些模块工作于相邻的频带时, 由于带外 泄露(Out of band emission )、 杂散发射( Spurious emissions )、 接收机阻塞(Blocking) 等原因, 当其中一个无线电技术子模块发射信号时, 将干扰另一个无线电技术子模块 的信号接收, 从而影响各无线电技术子模块的通信质量, 本领域中称这种干扰现象为 "设备内共存干扰" (ICO, In-device Coexistence Interference )。 下面通过如图 1所示的 UE对上述产生设备内共存干扰的过程进行详细分析。 图 2是根据相关技术的 ISM频带和 LTE频带分布的示意图。 假设 WLAN和 Bluetooth工作于 ISM频带,频段为 2.4GHz - 2.5GHz,其中 WLAN 信道(WLAN Channel)使用 ISM频带中的 2.4GHz〜 2.4835GHz频段, Bluetooth信道 (Bluetooth Channel) 使用 ISM频带中的 2.4GHz 〜 2.497GHz频段。 假设 LTE的时分 双工 (Time Division Duplex, 简称为 TDD) 模式工作于频带 40 (Band 40) 和频带 38 (Band 38 ), Band 40 的频段为 2.3GHz 〜 2.4GHz, Band 38 的频段为 2.57GHz ~ 2.62GHz。 假设 LTE的频分双工 (Frequency Division Duplex, 简称为 FDD)模式的上 行传输 (Uplink Transmission, 即 UE向 eNB的传输) 工作于频带 7 (Band 7) 的频段 为 2.5GHz ~ 2.57GHz, FDD模式的下行传输 (Downlink Transmission, 即 eNB向 UE 传输) 工作于 Band 7的 2.62GHz〜 2.69GHz频段。 由于图 2中的 ISM频带与 LTE TDD模式的 Band 40相邻, 因此, 如果 101模块 使用 TDD模式且使用 Band 40, 那么 101模块与 102模块、 103模块之间将由于带外 泄露、 杂散发射、 接收机阻塞等原因, 产生设备内共存干扰。 由于图 2中的 ISM频带 与 LTE FDD模式 Band 7的上行传输频段相邻, 如果 101模块使用 FDD模式且使用 Band 7, 那么 101模块的上行发射将由于带外泄露、 杂散发射、 接收机阻塞等原因, 产生设备内共存干扰, 从而干扰 102模块或 103模块的下行接收。 SP, 上述设备内共 存干扰会影响通信质量。 发明内容 本发明提供了一种设备内共存干扰的处理方法及装置, 以至少解决共存多种无线 电通信模块的 UE内的设备内共存干扰会影响通信质量的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种设备内共存干扰的处理 方法。 根据本发明的设备内共存干扰的处理方法包括: 判断 UE中的第一无线电通信模 块在工作频点上的干扰状态是否发生变化和 /或判断 UE中的第一无线电通信模块的除 工作频点之外的其它频点上的干扰状态是否发生变化, 其中干扰状态用于指示第一无 线电通信模块遭受的来自 UE中的第二无线电通信模块的设备内共存干扰, 或者用于 指示第一无线电通信模块产生的设备内共存干扰; 如果判断结果为是, 则向网络侧上 报工作频点上的干扰等级和 /或其它频点,其中干扰等级用于指示第一无线电通信模块 遭受的来自 UE中的第二无线电通信模块的设备内共存干扰的强度, 或者用于指示第 一无线电通信模块产生的设备内共存干扰的强度。 工作频点为第一无线电通信模块当前服务小区的中心频点。 向网络侧上报其它频点包括: 向网络侧上报其它频点的频点标识, 其中频点标识 包括以下之一: 测量对象标识、 测量标识、 UE与网络侧预先协商的频点索引号、 UE 与网络侧预先协商的无线频点信道号。 通过包括以下至少之一的参数确定第一无线电通信模块遭受的来自 UE中的第二 无线电通信模块的设备内共存干扰: 第一无线电通信模块与第二无线电通信模块之间 的工作频点的间隔、 第二无线电通信模块的发射功率、 UE测量到的接收信号质量、 UE测量到的误包率。 通过包括以下至少之一的参数确定第一无线电通信模块产生的设备内共存干扰: 第一无线电通信模块与第二无线电通信模块之间的工作频点的间隔、 第二无线电通信 模块的发射功率。 干扰状态发生变化包括以下至少之一: 第一无线电通信模块由不遭受设备内共存 干扰变化为遭受设备内共存干扰; 第一无线电通信模块遭受的干扰增强; 第一无线电 通信模块遭受的干扰减弱; 第一无线电通信模块由遭受设备内共存干扰变化为不遭受 设备内共存干扰; 第一无线电通信模块由不产生设备内共存干扰变化为产生设备内共 存干扰; 第一无线电通信模块产生的干扰增强; 第一无线电通信模块产生的干扰减弱; 第一无线电通信模块由产生设备内共存干扰变化为不产生设备内共存干扰。 在向网络侧上报工作频点上的干扰等级和 /或其它频点之后, 上述方法还包括: 网 络侧接收到干扰等级和 /或其它频点; 网络侧根据干扰等级, 调整 UE的工作频点, 和 /或为第一无线电通信模块与第二无线电通信模块配置时分复用的工作模式,和 /或降低 产生设备内共存干扰的无线电通信模块的发射功率。 为了实现上述目的, 根据本发明的另一个方面, 提供了一种设备内共存干扰的处 理装置, 该装置可以应用于 UE。 根据本发明的设备内共存干扰的处理装置包括: 判断模块, 设置为判断用户设备 UE中的第一无线电通信模块在工作频点上的干扰状态是否发生变化和 /或判断 UE中 的第一无线电通信模块的除工作频点之外的其它频点上的干扰状态是否发生变化, 其 中干扰状态用于指示第一无线电通信模块遭受的来自 UE中的第二无线电通信模块的 设备内共存干扰, 或者用于指示第一无线电通信模块产生的设备内共存干扰; 上报模 块, 设置为在判断结果为是的情况下, 向网络侧上报工作频点上的干扰等级和 /或其它 频点, 其中干扰等级用于指示第一无线电通信模块遭受的来自 UE中的第二无线电通 信模块的设备内共存干扰的强度, 或者用于指示第一无线电通信模块产生的设备内共 存干扰的强度。 工作频点为第一无线电通信模块当前服务小区的中心频点。 上报模块包括: 上报子模块, 设置为向网络侧上报其它频点的频点标识, 其中频 点标识包括以下至少之一: 测量对象标识、测量标识、 UE与网络侧预先协商的频点索 引号、 UE与网络侧预先协商的无线频点信道号。 本发明通过及时获取并上报 UE在工作频点上的干扰等级, 可以保证网络侧及时 掌握 UE内部的设备内共存干扰, 进而通过网络侧根据该设备内共存干扰的严重程度 及时调整 UE的工作频点, 可以降低设备内共存干扰, 提高通信质量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的三种无线电技术共存的 UE的示意图; 图 2是根据相关技术的 ISM频带和 LTE频带分布的示意图; 图 3是根据本发明实施例的设备内共存干扰的处理方法的流程图; 图 4是根据本发明优选实施例的设备内共存干扰的处理方法的流程图; 图 5是根据本发明优选实施例三的设备内共存干扰的处理方法的流程图; 图 6是根据本发明实施例的设备内共存干扰的处理装置的结构框图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明实施例提供了一种设备内共存干扰的处理方法。 图 3是根据本发明实施例 的设备内共存干扰的处理方法的流程图, 如图 3所示, 包括如下的步骤 S302至步骤 S304。 步骤 S302, 判断 UE中的第一无线电通信模块在工作频点上的干扰状态是否发生 变化和 /或判断 UE中的第一无线电通信模块的除工作频点之外的其它频点上的干扰状 态是否发生变化, 其中干扰状态用于指示第一无线电通信模块遭受的来自 UE中的第 二无线电通信模块的设备内共存干扰, 或者用于指示第一无线电通信模块产生的设备 内共存干扰。 步骤 S304,如果判断结果为是,则向网络侧上报工作频点上的干扰等级和 /或其它 频点, 其中干扰等级用于指示第一无线电通信模块遭受的来自 UE中的第二无线电通 信模块的设备内共存干扰的强度, 或者用于指示第一无线电通信模块产生的设备内共 存干扰的强度。 相关技术中, 共存多种无线电通信模块的 UE内部存在设备内共存干扰。 本发明 实施例中, 通过及时获取并上报 UE在工作频点上的干扰等级, 可以保证网络侧及时 掌握 UE内部的设备内共存干扰, 进而通过网络侧根据该设备内共存干扰的严重程度 及时调整 UE的工作频点, 可以降低设备内共存干扰, 提高通信质量。 优选地, 工作频点为第一无线电通信模块当前服务小区的中心频点。 优选地, 向网络侧上报其它频点包括: 向网络侧上报其它频点的频点标识, 其中 频点标识包括以下之一: 测量对象标识、测量标识、 UE与网络侧预先协商的频点索引 号、 UE与网络侧预先协商的无线频点信道号。 优选地, 通过包括以下至少之一的参数确定第一无线电通信模块遭受的来自 UE 中的第二无线电通信模块的设备内共存干扰: 第一无线电通信模块与第二无线电通信 模块之间的工作频点的间隔、第二无线电通信模块的发射功率、 UE测量到的接收信号 质量、 UE测量到的误包率。 优选地, 通过包括以下至少之一的参数确定第一无线电通信模块产生的设备内共 存干扰: 第一无线电通信模块与第二无线电通信模块之间的工作频点的间隔、 第二无 线电通信模块的发射功率。 优选地, 干扰状态发生变化包括以下至少之一: 第一无线电通信模块由不遭受设 备内共存干扰变化为遭受设备内共存干扰; 第一无线电通信模块遭受的干扰增强; 第 一无线电通信模块遭受的干扰减弱; 第一无线电通信模块由遭受设备内共存干扰变化 为不遭受设备内共存干扰; 第一无线电通信模块由不产生设备内共存干扰变化为产生 设备内共存干扰; 第一无线电通信模块产生的干扰增强; 第一无线电通信模块产生的 干扰减弱;第一无线电通信模块由产生设备内共存干扰变化为不产生设备内共存干扰。 需要说明的是, 第一无线电通信模块的干扰等级改变可以是由于产生干扰的第二 无线电通信模块的发射功率改变导致的, 也可以是由于第一无线电通信模块和 /或第二 无线电通信模块的工作频点改变导致的。 优选地, 在向网络侧上报工作频点上的干扰等级和 /或其它频点之后, 上述方法还 包括: 网络侧接收到干扰等级和 /或其它频点; 网络侧根据干扰等级, 调整 UE的工作 频点,和 /或为第二无线电通信模块配置时分复用的工作模式,和 /或降低第二无线电通 信模块的发射功率。 优选地, 上述 UE包括以下之一: 移动电话、 智能手机、 便携式通信设备、 个人 数据处理机 (Personal Digital Assistant, 简称为 PDA)。 优选地, 第一无线电通信模块可以采用 LTE技术、 通用移动通信*** (Universal
Mobile Telecommunication System, 简称为 UMTS) 技术或者使用 IEEE 802.16规范的 微波接入全球互通 (Worldwide Interoperability for Microwave Access, 简称为 WiMAx) 技术。 第一无线电通信模块采用的工作频点或其谐波的频点可以与工业、 科学及医疗 (Industrial Scientific and Medical, 简称为 ISM) 频带有重叠或毗邻。 优选地, 第二无线电通信模块可以采用无线局域网(Wireless Local Area Network, 简称为 WLAN) 技术、 Bluetooth技术、 使用 IEEE 802.15.4规范的 Zigbee技术。 第二 无线电通信模块采用的工作频点可以是 ISM频带。 下面将结合实例对本发明实施例的实现过程进行详细描述。 本发明适用于至少两种无线电技术共存于 UE内时, 该 UE实现通信的方法, 以 下所有实施方式中, 均以 LTE与 WLAN或 Bluetooth共存于同一 UE内时, LTE子设 备与对端网络的交互为例, 即第一种无线电技术为 LTE技术, 说明本发明实现终端内 多种无线电技术共存的通信方法, 但并不构成对本发明专利的不当限定, 比如本发明 方法也同样适用于 LTE与其他无线电技术共存时的通信,以及 UMTS与其他无线电技 术共存时的通信。 对应于 LTE 子设备, 本发明专利中所述的网络是指 e B, 对应于 UMTS子设备, 所述网络是指 B (Node B 本发明的基本思想是: 当 UE内设备内共存干扰状态发生变化时, UE向网络侧上 报当前工作频点的干扰等级,或者 UE向网络侧上报当前工作频点的干扰等级以及 UE 的其他频点中被干扰或产生干扰的频点信息。 图 4是根据本发明优选实施例的设备内共存干扰的处理方法的流程图, 如图 4所 示, 包括如下的步骤 S402至步骤 S406。 步骤 S402, UE的设备内共存干扰状态改变。 步骤 S404, UE向网络侧上报工作频点的干扰等级。 步骤 S406, 网络侧给出合适决策。 优选地, 在步骤 S404之后, UE还可以向网络侧上报其他频点中被干扰或产生干 扰的频点信息。 下面以 LTE的下行工作频点为例, 介绍一下 UE已知的其他频点的概 念。 当 UE选定一个小区进行驻留后, 该小区配套的上行和下行中心频点就是 UE上 下行的中心工作频点, 并且一个小区只有一组上下行中心频点。 由于无线链路的不稳 定性以及出于动态调度和保证 UE的 QoS等级的考虑, 网络侧通常会根据当前 UE所 处地区的布网情况、 网络负载情况等为 UE配置同频测量、异频测量以及异***测量。 当网络为 UE 配置测量的时候, 便会以测量对象 (Measurement Object) 的形式告知 UE异频频点的信息, 当网络认为 UE不需要进行某些频点的测量时, 同样会在测量配 置中将这些频点删除。 在 UE内部将维护一个动态的测量对象列表, 每一条测量对象 条目都有一个唯一的标识, 称为测量对象标识 (Measurement Object ID ), 这个测量对 象标识也是网络侧配置的, 因此网络侧可以根据该标识定位到频点的具体信息。 网络 需要 UE执行某个频点的测量并上报测量结果时, 只需要为 UE 配置一个测量标识 ( Measurement ID ) , 这个测量 ID 将 UE 存储的某个测量对象与测量上报配置 (Reporting Configuration) 关联起来。
UE 向网络侧上报工作频点上改变后的干扰等级时, 可以将自己已知的其他频点 中, 同时也受到设备内共存干扰的频点告知网络, 以便网络进行后续提升用户通信体 验的措施时, 不必为 UE配置那些被干扰的异频频点测量或不会把 UE切换到那些被 干扰的异频频点上, 提高网络侧工作效率, 节省 UE的功率。 优选地, 网络侧给出合适决策包括网络侧收到 UE上报的信息后, 可以根据当前
UE遭受的干扰情况, 以及网络的可用资源情况做出合适的决策。 具体地, 网络侧判断若 UE受到的干扰比较严重, 并且根据网络侧已经掌握的该 UE在其他频点上的信道质量情况, UE的自身能力, 以及网络侧当前的负载情况, 可 以将 UE切换到其他不会遭受设备内共存干扰的频点, 保证 UE有较好的通信体验; 或者为 UE配置其他测量,寻找可以提供 QoS保证的其他 LTE工作频点或者其他无线 接入技术的工作频点。 网络侧判断若 UE受到的干扰比较严重, 但是网络侧此时资源也比较紧张, 并不 能采用通过把 UE切换到其他已知小区的办法抑制设备内共存干扰, 那么网络侧可以 通知 UE采用时分复用的工作方式, 即 LTE技术和其他 ISM无线技术交替工作, 避免 在频域的相互干扰。 网络侧判断若此时 UE不再经受设备内共存干扰, 可以根据 UE 目前通信情况, 增加 UE发射功率或为按照正常程序调度 UE的传输, 例如寻找通信质量更好的服务 小区等。 网络侧判断若此时 UE受到的干扰并不严重, 即干扰等级较低, 同时网络侧此时 资源非常紧张, 通过一定的资源调度算法, 网络侧可以不对该 UE所受到的设备内共 存干扰采取任何抑制措施。 下面通过具体实施例对本发明的频点信息上报方法做出详细说明: 优选实施例一 以如图 1所示的 UE中 LTE技术与 WLAN技术共存, WLAN技术干扰 LTE技术 为例, 通过接口 L101或者控制子模块 104, UE可以知道 WLAN和 LTE技术的工作 状况, 包括 WLAN和 LTE使用的频点, 功率, 收发机指标等信息。 当 UE的 LTE的 工作频点从不遭受干扰变为遭受 WLAN子模块的干扰, 或者 LTE的工作频点上遭受 WLAN子模块的干扰等级改变,或者 LTE的工作频点上从遭受干扰变为不再遭受干扰 时, UE将改变后的干扰等级上报给网络侧。干扰等级可以根据 WLAN与 LTE之间的 工作频点间隔, 和 /或 WLAN子模块的发射功率大小, 和 /或 UE测量到的接收信号质 量等级, 和 /或 UE测量到的误包率等参数进行界定。 当 WLAN的发送功率为 20dBm, 天线隔离度为 15dB, 若以 WLAN技术与 LTE 技术之间的工作频点间隔 f作为衡量干扰级别的标准, UE可以在设备内部维护一个映 射表, 若两者间隔小于 50MHz, WLAN的发送便会干扰 LTE的接收, UE的 LTE的 工作频点遭受设备内共存干扰。 以 10MHz为间隔对干扰进行等级划分, 如表 1所示: 表 1 以频点间隔界定的干扰等级表
频点间隔 干扰等级
f> 50MHz 0
40MHz≤f< 50MHz 1 30MHz≤f < 40MHz 2
20MHz≤f < 30MHz 3
10MHz≤f < 20MHz 4
f < 10MHz 5
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率,天线隔离度等工作参数如上文中给出的典型值。若 WLAN的工作频点为 2.412GHz, LTE的工作频点变化, 导致与 WLAN的频点间隔从大于 50MHz变为小于 50MHz, 例如变为 25MHz。 同时, UE当前的测量对象列表如表 2所示, UE当前的测 量标识列表 3所示, 其中上报配置与本发明并无直接关系, 因此不再介绍, 表中只是 给出一个示意。 表 2 UE的测量对象列表实例表
Figure imgf000011_0001
表 3 UE的测量标识列表
Figure imgf000011_0002
当 LTE技术与 WLAN技术的频点间隔变为 25MHz时, UE向网络侧上报的内容 可以为:
1.工作频点的干扰等级, 即 3级, 或者
2.工作频点的干扰等级 3 级以及已知的其他频点中遭受干扰的频点信息, 即工作 频点干扰等级 3级以及 EUTRAN 2.39GHz和 EUTRAN 2.365GHz。 进一步的,频点信息 EUTRAN 2.39GHz和 EUTRAN 2.365GHz的上报方式可以采 用表 2所示的频点 EUTRAN 2.39GHz和 EUTRAN 2.365GHz所对应的测量对象标识, 即 2和 4进行上报。 或者可以采用表 3所示的频点 EUTRAN 2.39GHz和 EUTRAN 2.365GHz所对应的 测量标识, 即 2和 3进行上报。 或者可以采用 UE与网络侧共知的频点索引号进行上报, 所述 UE与网络侧共知 的频点索引号可以是"演进的 UMTS绝对无线频点信道号(EARFCN,E-UTRA Absolute Radio Frequency Channel Number) ", 即 EUTRAN 2.39GHz和 EUTRAN 2.365GHz所 对应的 EARFCN。 若需要上报的频点为 UTRAN的频点, 则采用 "UMTS绝对无线频 点信道号 (UARFCN, UTRA Absolute Radio Frequency Channel Number) "。 当 WLAN的发送功率为 20dBm, 天线隔离度为 15dB, 若以 UE测量的 LTE技术 的误包率 PL作为衡量干扰级别的标准, UE可以在设备内部维护一个映射表, 以 LTE 的普通的语音业务为例, 若误包率大于 10-2, LTE正在接收数据, WLAN正在发送数 据, 则认为 UE的 LTE工作频点遭受到设备内共存干扰。 以误包率为界定的干扰等级 划分如表 4所示: 表 4 以误包率界定的干扰等级表
Figure imgf000012_0001
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率, 天线隔离度等工作参数如上文中给出的典型值。 若 UE中 LTE的工作频 点已经遭受了设备内共存干扰, UE测量到的误包率由 0.03变为 0.08, 干扰等级从 2 级变为 4级。 UE向网络侧上报的内容可以为:
1.工作频点的干扰等级, 即 4级, 或者
2.工作频点的干扰等级 4 级以及已知的其他频点中遭受干扰的频点信息, 即 EUTRAN 2.39GHz和 EUTRAN 2.3GHz。 其他频点信息的具体上报方法如上文所述。 当以 UE测量的 LTE技术的接收信号作为衡量干扰级别的标准时, 可以采用小区 参考信号的接收信干噪比, 或者 PDCCH的误块率 (block error rate) 参数作为界定参 数。
A、 以小区参考信号的接收信干噪比作为衡量干扰级别的标准 当 WLAN的发送功率为 20dBm, 天线隔离度为 15dB, 若以小区参考信号的接收 信干噪比作为衡量干扰级别的标准, UE可以在设备内部维护一个映射表, 若 UE的接 收信号的 SINR小于 3dB, LTE正在接收数据, WLAN正在发送数据, 则认为 UE的
LTE工作频点遭受到设备内共存干扰。 以接收信号的信干噪比为界定的干扰等级划分 如表 5所示: 表 5 以接收信号的信干噪比界定的干扰等级表
Figure imgf000013_0001
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率,天线隔离度等工作参数如上文中给出的典型值。若由于 WLAN技术关闭 或其他原因, UE测量到的小区参考信号的信干噪比从 -6dB变为 lldB, 即 UE的 LTE 工作频点不再遭受设备内共存干扰。 UE向网络侧上报的内容为:
UE目前 LTE工作频点的干扰等级为 0, 即不再遭受设备内共存干扰。 B、 以 PDCCH的误块率作为衡量干扰级别的标准 当 WLAN的发送功率为 20dBm, 天线隔离度为 15dB, 若以 UE测量 PDCCH的 误块率作为衡量干扰级别的标准, UE可以在设备内部维护一个映射表, 若 UE检测的 PDCCH的误块率高于 2%, LTE正在接收数据, WLAN正在发送数据, 则认为 UE的 LTE工作频点遭受到设备内共存干扰。 以 PDCCH的误块率作为界定的干扰等级划分 如表 6所示: 表 6 以 PDCCH的误块率 Eb为界定的干扰等级表
Figure imgf000013_0002
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率,天线隔离度等工作参数如上文中给出的典型值。若由于 WLAN降低功率 或其他原因, UE检测到的 PDCCH的误块率由 0.05降低为 0.01, 即此时 UE的 LTE 工作频点不再遭受设备内共存干扰。 UE向网络侧上报的内容为: UE目前 LTE工作频点的干扰等级为 0, 即不再遭受设备内共存干扰。 当 WLAN和 LTE的天线隔离度为 12dB, WLAN与 LTE之间的频点间隔为 43dB, 若以 WLAN的发送功率 Ptx作为衡量干扰级别的标准, UE可以在设备内部维护一个 映射表, 若 UE中 WLAN的发送功率大于 14.5dBm, LTE正在接收数据, WLAN正在 发送数据,则认为 UE的 LTE工作频点遭受到设备内共存干扰。以 WLAN的发送功率 为界定的干扰等级划分如表 7所示: 表 7 以 WLAN的发送功率为界定的干扰等级表
Figure imgf000014_0001
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率,天线隔离度等工作参数如上文中给出的典型值。当 WLAN的发送功率从 14.5dBm变为 16dBm时, UE的工作频点上从不遭受设备内共存干扰变为遭受设备内 共存干扰, 向网络侧上报的内容可以为:
1.工作频点的干扰等级, 即 1级。
2.工作频点的干扰等级以及已知的其他频点中遭受设备内共存干扰的频点信息, 即表 2给出的测量对象列表中高于 UE的 LTE技术工作频点的频点。 上述所有界定 LTE遭受干扰的干扰等级划分的参数也可以两个, 或者三个, 或者 四个结合使用。 例如将频点间隔和误包率同时作为界定干扰等级的衡量指标, 按照上 文中给出的 WLAN技术的发送功率,天线隔离度的典型参数,可以在划分干扰等级时, 为不同的频点区间与误包率组合界定新的干扰等级标准。 例如可以将频点间隔大于 50MHz且误包率小于 0.01定为 0级,频点间隔在区间 [40MHz,50MHz)之内且误包率在 (0.1,0.2]之内定为 1级, 频点间隔在区间 [40MHz,50MHz)之内且误包率在 (0.2,0.4]之内 定为 2级, 以此类推。 当 UE的工作频点上的设备内共存干扰等级发生改变时, UE向网络侧上报更新后 的干扰等级, 或者更新后的干扰等级以及其他频点中遭受干扰的频点信息, 并等待网 络做出进一步的指示。 网络侧收到 UE上报的当前干扰等级后, 按照步骤 S406中所述做出合适的决策。 优选实施例二 以如图 1所示的 UE中 LTE技术与 WLAN技术共存, LTE技术干扰 WLAN技术 为例, 通过接口 L101或者控制子模块 104, UE可以知道 WLAN和 LTE技术的工作 状况, 包括 WLAN和 LTE使用的频点, 功率, 收发机指标等信息。 当 UE的 LTE的 工作频点从不产生干扰变为产生对 WLAN子模块的干扰, 或者 LTE的工作频点上产 生对 WLAN子模块的干扰等级改变, 或者 LTE的工作频点上从产生干扰变为不再产 生对 WLAN子模块的干扰时, UE将改变后的干扰等级上报给网络侧。 干扰等级可以 根据 WLAN与 LTE之间的工作频点间隔, 和 /或 LTE子模块的发射功率大小等参数进 行界定。 当 LTE的发送功率为 23dBm, 天线隔离度为 15dB, 若以 WLAN技术与 LTE技 术之间的工作频点间隔 f作为衡量干扰级别的标准, UE可以在设备内部维护一个映射 表, 若两者间隔小于 52MHz, LTE的发送便会干扰 LTE的接收, UE的 LTE的工作频 点遭受设备内共存干扰。 以 10MHz为间隔对干扰进行等级划分, 如表 8所示。 表 8 以频点间隔界定的干扰等级表
Figure imgf000015_0001
UE的 WLAN子模块开启并处于接收状态, LTE子模块处于发送状态, LTE技术 发送功率, 天线隔离度等工作参数如上文中给出的典型值。 若 WLAN 的工作频点为 2.412GHz, LTE的工作频点变化, 导致与 WLAN的频点间隔从大于 50MHz变为小于 50MHz, 例如变为 25MHz。 同时, UE当前的测量对象列表如表 2所示, UE向网络侧 上报的内容可以为:
1.LTE的工作频点干扰等级为 3级, 或者 2.LTE的工作频点干扰等级为 3级, 以及其他频点中产生干扰的频点信息, 即工 作频点干扰等级 3级以及 EUTRAN 2.39GHz和 EUTRAN 2.3GHz, 具体上报方式可以 使用信道号或者干扰的频点范围的上限和下限的方式。 当 WLAN和 LTE的天线隔离度为 12dB, WLAN与 LTE之间的频点间隔为 26dB, 若以 LTE的发送功率 Ptx作为衡量干扰级别的标准, UE可以在设备内部维护一个映 射表, 若 UE中 LTE的发送功率大于 OdBm, LTE正在发送数据, WLAN正在接收数 据, 则认为 UE的 LTE工作频点产生对 WLAN的设备内共存干扰。 以 LTE的发送功 率为界定的干扰等级划分如表 9所示: 表 9 以 LTE的发送功率为界定的干扰等级表
Figure imgf000016_0001
UE的 WLAN子模块开启并处于发送状态, LTE子模块处于接收状态, WLAN技 术发送功率,天线隔离度等工作参数如上文中给出的典型值。当 WLAN的发送功率从 OBm变为 14dBm时, UE的工作频点上从不遭受设备内共存干扰变为遭受设备内共存 干扰, 向网络侧上报的内容可以为:
1.工作频点的干扰等级, 即 1级, 或者
2.工作频点的干扰等级 1 级, 以及已知的其他频点中遭受设备内共存干扰的频点 信息, 即表 2给出的测量对象列表中高于 UE的 LTE技术上行工作频点的频点, 具体 上报方式可以使用信道号或者干扰的频点范围的上限和下限的方式。 上述所有界定 LTE产生干扰的干扰等级划分的参数也可以结合使用。 当 UE的工作频点上的设备内共存干扰等级发生改变时, UE向网络侧上报更新后 的干扰等级, 或者更新后的干扰等级以及其他频点中遭受干扰的频点信息, 并等待网 络做出进一步的指示。 网络侧收到 UE上报的当前干扰等级后, 按照步骤 S406中所述做出合适的决策。 优选实施例三 本优选实施例三以 LTE技术与 WLAN技术共存为例。 图 5是根据本发明优选实施例三的设备内共存干扰的处理方法的流程图, 如图 5 所示, 包括如下的步骤 S502至步骤 S506。 步骤 S502, 判定 UE工作频点的异频点是否有遭受或可能产生设备内共存干扰的 频点。 当 UE工作于距离 ISM频带较远的工作频点, WLAN技术正在进行发送, 虽然 UE的工作频点当前并不遭受设备内共存干扰,但是 UE可以通过优选实施例一中给出 的频点间隔, 或者 WLAN发送功率, 或者异频点的接收信号质量等参数判定 UE已知 的异频点中是否有正在遭受设备内共存干扰的频点; UE可以通过优选实施例二中给出 的 LTE 的发送功率, 频点间隔参数判定某些异频点是否会对正在进行接收的 WLAN 技术产生干扰。 若没有, 则本发明流程结束, UE执行正常的操作; 若存在, 则转至步 骤 S504,。 步骤 S504, UE向网络侧上报测量结果时将步骤 S502中所述遭受或可能产生干扰 的异频点信息告知网络侧。 现有 LTE技术中, 网络侧为了保证 UE有最好的用户体验, 通常会根据当前 UE 所处位置的布网情况、 网络负载情况为 UE配置邻频测量, 网络侧为 UE配置的测量 可能包括正在遭受设备内共存干扰的异频点。 现有的 RRM测量机制中, 由于 RSRP 测量是检测频点的接收功率情况, 因此无法检测出设备内共存干扰, 相反, 可能得到 该正在遭受干扰的异频点的信道质量较好的结果。 若网络侧据此将 UE切换到该正在 遭受干扰的异频点, 那么 UE的通信质量一定受到影响, 因此需要避免这种情况的发 生。 另外, 若网络侧把 UE切换到会对 WLAN产生干扰的频点时, 会影响 WLAN技 术的通信质量, 同样导致用户的通信体验受到影响, 这种情况也需要尽量避免。 所以 UE在进行测量上报时,将步骤 S502中所述的遭受或可能产生设备内共存干 扰的异频点信息告知网络, 期望网络不会把自己切换到所述异频点上。 步骤 S506, 网络做切换决策时不将 UE切换到步骤 S502中所述异频点。 网络接收到 UE上报的测量报告后, 若里面包含正在遭受或可能产生设备内共存 干扰的频点信息。 则网络侧在做出切换决策时, 可以避免将 UE切换到那些有问题或 可能产生问题的频点上。 以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护范围, 凡 在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。 需要说明的是, 在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的 计算机***中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但是在某些情况下, 可 以以不同于此处的顺序执行所示出或描述的步骤。 本发明实施例提供了一种设备内共存干扰的处理装置, 该设备内共存干扰的处理 装置可以应用于用户设备 UE,该设备内共存干扰的处理装置可以用于实现上述设备内 共存干扰的处理方法。 图 6是根据本发明实施例的设备内共存干扰的处理装置的结构 框图, 如图 6所示, 包括判断模块 62和上报模块 64。 下面对其结构进行详细描述。 判断模块 62, 设置为判断用户设备 UE中的第一无线电通信模块在工作频点上的 干扰状态是否发生变化和 /或判断 UE中的第一无线电通信模块的除工作频点之外的其 它频点上的干扰状态是否发生变化, 其中干扰状态用于指示第一无线电通信模块遭受 的来自 UE中的第二无线电通信模块的设备内共存干扰, 或者用于指示第一无线电通 信模块产生的设备内共存干扰; 上报模块 64, 连接至判断模块 62, 设置为在判断模块 62判断结果为是的情况下, 向网络侧上报工作频点上的干扰等级和 /或其它频点,其中 干扰等级用于指示第一无线电通信模块遭受的来自 UE中的第二无线电通信模块的设 备内共存干扰的强度, 或者用于指示第一无线电通信模块产生的设备内共存干扰的强 度。 优选地, 工作频点为第一无线电通信模块当前服务小区的中心频点。 优选地, 上报模块 64包括: 上报子模块 642, 设置为向网络侧上报其它频点的频 点标识, 其中频点标识包括以下至少之一: 测量对象标识、测量标识、 UE与网络侧预 先协商的频点索引号、 UE与网络侧预先协商的无线频点信道号。 需要说明的是, 装置实施例中描述的设备内共存干扰的处理装置对应于上述的方 法实施例, 其具体的实现过程在方法实施例中已经进行过详细说明, 在此不再赘述。 综上,根据本发明的上述实施例,提供了一种设备内共存干扰的处理方法及装置。 本发明通过及时获取并上报 UE在工作频点上的干扰等级, 可以保证网络侧及时掌握 UE内部的设备内共存干扰,进而通过网络侧根据该设备内共存干扰的严重程度及时调 整 UE的工作频点, 可以降低设备内共存干扰, 提高通信质量。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 或者将它们分别制作成各个集成电路模 块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明 不限制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种设备内共存干扰的处理方法, 包括:
判断用户设备 UE中的第一无线电通信模块在工作频点上的干扰状态是否 发生变化和 /或判断所述 UE中的第一无线电通信模块的除所述工作频点之外的 其它频点上的干扰状态是否发生变化, 所述干扰状态用于指示所述第一无线电 通信模块遭受的来自所述 UE中的第二无线电通信模块的设备内共存干扰, 或 者用于指示所述第一无线电通信模块产生的设备内共存干扰;
如果判断结果为是,则向网络侧上报所述工作频点上的干扰等级和 /或所述 其它频点,所述干扰等级用于指示所述第一无线电通信模块遭受的来自所述 UE 中的第二无线电通信模块的设备内共存干扰的强度, 或者用于指示所述第一无 线电通信模块产生的设备内共存干扰的强度。
2. 根据权利要求 1所述的方法, 其中, 所述工作频点为所述第一无线电通信模块 当前服务小区的中心频点。
3. 根据权利要求 1所述的方法, 其中, 向所述网络侧上报所述其它频点包括: 向 所述网络侧上报所述其它频点的频点标识, 其中所述频点标识包括以下之一: 测量对象标识、 测量标识、 所述 UE与所述网络侧预先协商的频点索引号、 所 述 UE与所述网络侧预先协商的无线频点信道号。
4. 根据权利要求 1所述的方法, 其中, 通过包括以下至少之一的参数确定所述第 一无线电通信模块遭受的来自所述 UE中的第二无线电通信模块的设备内共存 干扰: 所述第一无线电通信模块与所述第二无线电通信模块之间的工作频点的 间隔、所述第二无线电通信模块的发射功率、所述 UE测量到的接收信号质量、 所述 UE测量到的误包率。
5. 根据权利要求 1所述的方法, 其中, 通过包括以下至少之一的参数确定所述第 一无线电通信模块产生的设备内共存干扰: 所述第一无线电通信模块与所述第 二无线电通信模块之间的工作频点的间隔、 所述第二无线电通信模块的发射功 率。
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述干扰状态发生变化包括 以下至少之一: 所述第一无线电通信模块由不遭受设备内共存干扰变化为遭受设备内共存 干扰;
所述第一无线电通信模块遭受的干扰增强;
所述第一无线电通信模块遭受的干扰减弱;
所述第一无线电通信模块由遭受设备内共存干扰变化为不遭受设备内共存 干扰;
所述第一无线电通信模块由不产生设备内共存干扰变化为产生设备内共存 干扰;
所述第一无线电通信模块产生的干扰增强;
所述第一无线电通信模块产生的干扰减弱;
所述第一无线电通信模块由产生设备内共存干扰变化为不产生设备内共存 干扰。 根据权利要求 1至 5中任一项所述的方法, 其中, 在向网络侧上报所述工作频 点上的干扰等级和 /或所述其它频点之后, 所述方法还包括:
所述网络侧接收到所述干扰等级和 /或所述其它频点;
所述网络侧根据所述干扰等级, 调整所述 UE的工作频点, 和 /或为所述第 一无线电通信模块与第二无线电通信模块配置时分复用的工作模式,和 /或降低 产生设备内共存干扰的无线电通信模块的发射功率。 一种设备内共存干扰的处理装置, 应用于用户设备 UE, 包括:
判断模块, 设置为判断用户设备 UE中的第一无线电通信模块在工作频点 上的干扰状态是否发生变化和 /或判断所述 UE中的第一无线电通信模块的除所 述工作频点之外的其它频点上的干扰状态是否发生变化, 其中所述干扰状态用 于指示所述第一无线电通信模块遭受的来自所述 UE中的第二无线电通信模块 的设备内共存干扰, 或者用于指示所述第一无线电通信模块产生的设备内共存 干扰;
上报模块, 设置为在判断结果为是的情况下, 向网络侧上报所述工作频点 上的干扰等级和 /或所述其它频点,其中所述干扰等级用于指示所述第一无线电 通信模块遭受的来自所述 UE中的第二无线电通信模块的设备内共存干扰的强 度, 或者用于指示所述第一无线电通信模块产生的设备内共存干扰的强度。 根据权利要求 8所述的装置, 其中, 所述工作频点为所述第一无线电通信模块 当前服务小区的中心频点。 根据权利要求 8所述的装置, 其中, 所述上报模块包括: 上报子模块, 设置为向所述网络侧上报所述其它频点的频点标识, 其中所 述频点标识包括以下至少之一: 测量对象标识、 测量标识、 所述 UE与所述网 络侧预先协商的频点索引号、 所述 UE与所述网络侧预先协商的无线频点信道 号。
PCT/CN2011/084006 2011-03-29 2011-12-14 设备内共存干扰的处理方法及装置 WO2012129935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110076606.X 2011-03-29
CN201110076606XA CN102724671A (zh) 2011-03-29 2011-03-29 设备内共存干扰的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2012129935A1 true WO2012129935A1 (zh) 2012-10-04

Family

ID=46929392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084006 WO2012129935A1 (zh) 2011-03-29 2011-12-14 设备内共存干扰的处理方法及装置

Country Status (2)

Country Link
CN (1) CN102724671A (zh)
WO (1) WO2012129935A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106358223A (zh) * 2016-08-31 2017-01-25 广东欧珀移动通信有限公司 通信方法、装置及移动终端
WO2018102999A1 (zh) * 2016-12-07 2018-06-14 深圳前海达闼云端智能科技有限公司 调制解调器控制方法、装置、电子设备和计算机程序产品
US12010715B2 (en) 2017-07-07 2024-06-11 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for coordinating interference, base station and user equipment
JP7071997B2 (ja) * 2017-07-19 2022-05-19 北京小米移動軟件有限公司 情報伝送の方法、装置、プログラム及び記憶媒体
CN110035138A (zh) * 2018-01-11 2019-07-19 联发科技股份有限公司 无线通信芯片组、移动通信设备、天线隔离度的检测方法
CN111526572B (zh) 2019-02-02 2021-12-28 华为技术有限公司 设备内共存idc指示消息的发送方法及设备
CN110740465B (zh) * 2019-10-23 2022-10-25 Oppo(重庆)智能科技有限公司 多个无线通信装置共存的方法和***
CN112118021B (zh) * 2019-12-30 2021-10-19 中兴通讯股份有限公司 降低共存干扰方法、通讯设备和可读存储介质
CN112272071A (zh) * 2020-11-24 2021-01-26 惠州Tcl移动通信有限公司 一种干扰优化控制方法、装置及用户设备
CN114499576B (zh) * 2022-01-24 2024-06-04 中国人民解放军93209部队 一种用于电子设备的精细化收发控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1429431A (zh) * 2000-05-18 2003-07-09 艾利森电话股份有限公司 一种双无线电设备通信装置及其操作方法
CN1951022A (zh) * 2004-05-26 2007-04-18 诺基亚公司 用于干扰检测的方法和***
US20100029204A1 (en) * 2008-07-30 2010-02-04 Jie Gao Techniques to improve the radio co-existence of wireless signals
CN102170644A (zh) * 2011-05-23 2011-08-31 新邮通信设备有限公司 一种终端设备内共存干扰避免的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9042479B2 (en) * 2008-10-16 2015-05-26 Qualcomm Incorporated Method and apparatus for avoiding interference between coexisting wireless systems
US8200161B2 (en) * 2009-04-22 2012-06-12 Broadcom Corporation Method and system for dynamic selection of a coexistence method and transmit power level based on calibration data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1429431A (zh) * 2000-05-18 2003-07-09 艾利森电话股份有限公司 一种双无线电设备通信装置及其操作方法
CN1951022A (zh) * 2004-05-26 2007-04-18 诺基亚公司 用于干扰检测的方法和***
US20100029204A1 (en) * 2008-07-30 2010-02-04 Jie Gao Techniques to improve the radio co-existence of wireless signals
CN102170644A (zh) * 2011-05-23 2011-08-31 新邮通信设备有限公司 一种终端设备内共存干扰避免的方法

Also Published As

Publication number Publication date
CN102724671A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2012129935A1 (zh) 设备内共存干扰的处理方法及装置
KR102280639B1 (ko) 미허가된 스펙트럼에서 효율적인 롱텀 이볼루션 (lte) 동작을 위한 기회적 캐리어 집성 프레임워크
CN106576351B (zh) 共享频谱中的信道选择度量
EP3064020B1 (en) Wireless communications deferral based on transmission opportunity
US8837422B2 (en) Low-cost LTE system with distributed carrier aggregation on the unlicensed band
JP6490813B2 (ja) 高利得ユーザ機器のための無線アクセス技術間ハンドオーバを管理するための技法
US11882494B2 (en) Mobile devices, network nodes and methods of operating the same
WO2017028440A1 (zh) 一种不同通信网络共存使用免授权频段的方法
WO2012019369A1 (zh) 一种终端设备实现通信的方法及***
WO2012094933A1 (zh) 一种实现干扰信息上报的方法、***及ue
CN104160769A (zh) 无线通信***、通信方法、基站装置以及通信终端
WO2022084955A1 (en) L1/l2-centric mobility - neighbour cell measurements
KR20110122454A (ko) 이동통신시스템에서 복수 개의 캐리어들이 집적된 단말기의 캐리어들에 대한 효율적인 메저먼트 방법
US11096076B2 (en) Prioritized cell identification and measurement method
WO2012136090A1 (zh) 一种测量处理方法及***
US20220095321A1 (en) Wireless communications system, scheduling method, wireless communications method, and apparatus
US20240106610A1 (en) Systems, methods, and devices for dynamic adaption of different attenna configuration communications
WO2017077522A1 (en) Handling in-device coexistence issues
CA3201753A1 (en) Simultaneous transmit and receive (str) multi-link operation
WO2016014438A2 (en) Wireless communications energy aware power sharing radio resources method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862528

Country of ref document: EP

Kind code of ref document: A1