WO2012129617A1 - Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos - Google Patents

Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos Download PDF

Info

Publication number
WO2012129617A1
WO2012129617A1 PCT/BR2011/000081 BR2011000081W WO2012129617A1 WO 2012129617 A1 WO2012129617 A1 WO 2012129617A1 BR 2011000081 W BR2011000081 W BR 2011000081W WO 2012129617 A1 WO2012129617 A1 WO 2012129617A1
Authority
WO
WIPO (PCT)
Prior art keywords
tibial
femoral
graft
fixation
tunnel
Prior art date
Application number
PCT/BR2011/000081
Other languages
English (en)
French (fr)
Inventor
George Guarany Philot
Antônio Alberto AFFONSO FILHO
Fábio Augusto CAPORRINO
Marcelo Apparicio Fernandes JUSTINO
Original Assignee
Medvale Pesquisa E Desenvolvimento Das Ciências Físicas E Naturais Ltda.
Espaço Dumont Pesquisa E Desenvolvimento Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medvale Pesquisa E Desenvolvimento Das Ciências Físicas E Naturais Ltda., Espaço Dumont Pesquisa E Desenvolvimento Ltda. filed Critical Medvale Pesquisa E Desenvolvimento Das Ciências Físicas E Naturais Ltda.
Priority to PCT/BR2011/000081 priority Critical patent/WO2012129617A1/pt
Publication of WO2012129617A1 publication Critical patent/WO2012129617A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0805Implements for inserting tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1714Guides or aligning means for drills, mills, pins or wires for applying tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8886Screwdrivers, spanners or wrenches holding the screw head
    • A61B17/8891Screwdrivers, spanners or wrenches holding the screw head at its periphery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0404Buttons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/044Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors with a threaded shaft, e.g. screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B2017/0496Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0817Structure of the anchor
    • A61F2002/0823Modular anchors comprising a plurality of separate parts
    • A61F2002/0835Modular anchors comprising a plurality of separate parts with deformation of anchor parts, e.g. expansion of dowel by set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0847Mode of fixation of anchor to tendon or ligament
    • A61F2002/0858Fixation of tendon or ligament between anchor and bone, e.g. interference screws, wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/08Muscles; Tendons; Ligaments
    • A61F2/0811Fixation devices for tendons or ligaments
    • A61F2002/0876Position of anchor in respect to the bone
    • A61F2002/0882Anchor in or on top of a bone tunnel, i.e. a hole running through the entire bone

Definitions

  • ACL rupture is a highly prevalent lesion, with about 200,000 primary surgeries and 20,000 revisions (surgery after re-ligation of a reconstructed ligament) per year in the US 1,2,3 .
  • the first reference to the treatment of ACL injury is from 1900, when Battle reports a case of primary repair, with two-year follow-up and good results 4 .
  • repairing a ligament injury means suturing the ruptured ligament stumps to reconstruct its anatomy. When it comes to ligament reconstruction, this means creating a new structure that produces a function similar to that of the ruptured structure.
  • Mclntosh creates an extra-articular reconstruction with a tape of the tibial ilium tract (TIT), the lateral thigh muscle (known as Mclntosh I).
  • Torg also in 1976, describes the clinical importance of the Lachman maneuver, which evaluates the anterior displacement of the tibia in relation to the femur in the ACL lesion, and is still currently used 17 .
  • Intra-articular reconstruction procedures closer to the anatomical ACL are then sought.
  • Mclntosh modifies his original procedure, and passes a TIT tape, attached to his tibial insertion, over the top position (behind the lateral femoral condyle), into the joint, and back to the tibia in an intra-articular tunnel. Creating the technique of McIntosh II.
  • Campbell used the medial third of the patellar tendon, trapping it in the anterior tibial tuberosity, and passing it through a tibial and femoral tunnel, attaching it to the side of the femur.
  • intra-articular techniques were developed, with two incisions, one in the anterior knee and one in the lateral thigh, and fixation on the post.
  • the concept of the femoral tunnel position is fixed at about two millimeters from the posterior cortex.
  • the clock face metaphor is created, with the femoral tunnel originating between 10 am and noon for the right knee and noon and 2 hours for the left. This position is based on the isometric point of the knee (the one in which, regardless of the position of this joint, the distance between the femur and the tibia will be the same, preventing graft stretching) rather than the anatomical position of the ACL.
  • biomechanical evaluations show that both ACL bands are tense at different times during knee flexion and extension.
  • the medial antero band remains tense during almost the entire range of motion of the knee joint, while the posterolateral band presents tension close to the extension and rotates around the medial antero band, thus being an important rotational restrictor.
  • Double-band reconstruction is closer to the normal anatomy of the anterior cruciate ligament, but is technically more laborious and time consuming, (
  • the new and original proposed devices allow the reconstruction of the ACL through a technique that reproduces the two bands of this ligament, with different and independent tensions, through a single tunnel in the femur and tibia.
  • the first stage of surgery is to select and remove the graft that will replace the ruptured ligament, and prepare it for use.
  • flexor tendons In the case of flexor tendons, the tendons of the semitendineus and gracilis muscle are removed through an anteroid medial incision in the knee. These tendons are cleared of all muscle tissue, leaving only its tendon part. It is then sutured so that the tendon acquires a tubular appearance with a high strength surgical thread.
  • This suturing is performed by means of anchored stitches at each end of the graft, leaving the ends of the suture threads left over, so that there is a double cable of threads at each end of the graft. This is done with the tendon of each muscle separately.
  • the tendon preparation will be the same except that two different colored threads will be used to suture the ends of the tendons. tendons, so that each tendon has a different color at each end.
  • the graft is then subjected to tension, tendon and suture to achieve its full potential for plastic deformation, and to cause any slippage that may exist at the tendon and suture interface, thereby causing the graft to reach its length. maximum before use.
  • the main surgeon While the graft is prepared by an assistant, the main surgeon, through two portals (incisions at the knee joint line), introduces the arthroscope into the knee, makes the joint inventory, and treats the meniscus and cartilage injuries. that are associated with ACL injury, and dries out the ruptured ligament remnants.
  • the second surgical time consists in the confection of the tibial tunnel.
  • a guidewire is positioned across the tibia and a positioning guide may be used for this.
  • a cannulated drill of varying diameter is aligned with the guidewire and pierces the tibial tunnel from the anterior tibial cortex to the intraarticular space. The drill and guide wire are then removed.
  • this tunnel varies with the diameter of the graft that will be used. And in double band reconstructions two tunnels with a diameter of 5 to 7mm are drilled, with outlets in the inserts of the two bands of the ACL.
  • the tibial tunnel will always have a diameter of 11 mm, avoiding considerations about the graft caliber, using the same drilling technique.
  • the 11 mm diameter tunnel encompasses, in a single hole, most of the insertion area of the two bands in the tibia.
  • the third time of surgery is to make the femoral tunnel.
  • a guidewire is positioned at the desired location for the origin of the ACL in the femur, with or without the use of a trans-tibial guide.
  • a cannulated drill of varying diameter aligned with the guide wire pierces the femoral tunnel to the desired depth. The drill is removed and the guidewire may or may not be left attached to the femur, depending on the surgical technique used.
  • this tunnel will always have a diameter of 10 mm and a depth of 30mm. Simplifying, once again, the surgical procedure.
  • the fourth surgical time is to position the graft in the tunnels, which is currently done by traction of the guidewire, attached to the proximal end of the graft, in most types of femoral fixation (interference screw, "Endobutton”, tie in post, "Rigid-Fix”, “Ezlock”, “AperFix”).
  • the graft may be located by a steel wire through the femur and then pulled down through the femoral tunnel, joint and tibial tunnel out of the tibia. The graft hangs on the steel wire, and rises when the ends of the wire are pulled in opposite directions.
  • fixation is made by transverse screws, or "rigid-fix"
  • a specific guide will be used to make the tunnels on the side of the femur so that they cross transversely the already perforated femoral tunnel.
  • the femoral guidewire is left in position; a second cannulated, 4.5mm drill is aligned to it and drills the rest of the femur in addition to the already drilled 30mm tunnel.
  • the guidewire is removed, and the total length of this tunnel is measured.
  • the guidewire is reattached through the tibial tunnel and femur and is carried through the thigh muscles out of the patient.
  • the proximal end of the graft is fixed, which, through traction of the guidewire, rises through the tibia and joint space, entering the femoral tunnel.
  • the new technique uses a variation of this same procedure, which is already known and widely used by surgeons.
  • the fifth surgical time is femoral graft fixation.
  • Pole tying requires an accessory incision on the side of the thigh to fix a screw on the side of the femur, increasing surgical time and surgery morbidity;
  • Transverse, spongy fixation screws are one of the most popular fixations, but require an external guide and an accessory incision in the thigh to make the screw hole so that it crosses the femoral tunnel.
  • This technique in addition to longer surgical times and the accessory lateral approach, depends on the accuracy of the external guide, which if not correct, will not allow the screw to cross the graft, and still has the risk of cutting it at the moment of its placement;
  • Rigid Fix also depends on an external guide, which must position two pins through the center of the graft, crossing the femoral tunnel, leading to the same risks;
  • the proposed femoral fixation device for double-band reconstruction in a single tunnel, allows a secure fixation without the need for accessory lateral access (necessary in the transverse screws and post tie), without depending on the posterior cortex for fixation. (required for jamming screws), and without opening or overturning any mechanism (such as "Endobutton”, anchors, "Ezlock” and "AperFix”).
  • the femoral cortex is capable of resisting 400N per mm of cortical thickness.
  • a standard 4.5mm cortical screw anchored in only one femoral cortex (on one of the femur walls), can support about 2500N 29 .
  • the innovative device will fix by anchoring the femoral cortex with a standard 4.5mm thread. Therefore, the expected resistance to the device is at least 2500N. And this resistance is increased by the spongy fixation to be made on the bone between the end of the tunnel and the anterior cortical wall of the femur, and by the compression of the graft against the tunnel wall when the device enters it.
  • fixation is performed in the anterior cortex or lateral anterum of the femur, without risk of reaching blood vessels or nerves in the posterior knee (which may occur with transverse fixations if the surgical technique is not correct).
  • the device proposed here allows the creation of two bands with a single tunnel and a single fixation, making the procedure faster, simpler, safer, and cheaper.
  • This innovative device fixes the graft near the articular surface, preventing graft movement within the tunnel, preventing enlargement from occurring.
  • the device still keeps the graft away from the screw thread, protecting it.
  • it separates the two graft bundles by the diameter of the device, which places them in the center of the original insertion of the two ACL bands, which are anatomically 10mm apart.
  • the surgical technique for the use of the device is very similar to the conventional femoral fixation techniques, with which surgeons are accustomed, however, it allows the reconstruction of the two ACL bands with a single tunnel, which is the great and distinct differential, without the risk of injuring the graft during fixation, and allows review in a single time.
  • the device despite creating two independent bands in the femur, can be used without any harm in a single band reconstruction while retaining all of its fixation advantages.
  • the last surgical time of reconstruction is to tension the graft and fix it on the tibia.
  • the graft is tensioned through the tibial tunnel, and once the desired tension is reached, the tibia is placed in an anatomical position relative to the femur (because in ligament injury it is forward) and the graft is fixed by the desired method.
  • Post fixation lets the screw head protrude into the medial anterum of the tibia and this can lead to constant patient discomfort.
  • the mobility of the graft within the tunnel increases, allowing its widening 30 .
  • This type of fixation still has the risk of reaching blood vessels in the posterior tibial region when bicortical fixation is performed 33 .
  • Interference screws and "Intrafix" allow the tunnel to be obliterated, reducing the movement of the graft inside, thus reducing the chances of tunnel widening.
  • the interference screw when compressing the graft against the tunnel wall, has the risk of cutting it with its thread.
  • Intrafix also compresses the graft against the tunnel wall, but protects the graft through a bushing around the screw.
  • This groove is intended to guide the device, separating the tibial tunnel into two halves, and is performed shortly after drilling the femoral tunnel, just before placing the graft in the tunnels.
  • the graft cables will be removed at the tunnel entrance, and the tibial fixation device will be introduced into the tibial tunnel, with the aid of a specific instrument, dividing it in two with its central plate, separating a graft cable into each half of the tunnel.
  • the knee should be placed in the position of fixation of the medial anterior band, between 45 and 60 degrees of flexion. And this band will be subjected to a desired tension with the use of a dynamometer.
  • the device By inserting the screw corresponding to this half of the tunnel, the device will expand only from this side, securing the first graft band with bending stress.
  • the central plate of the device resting on the bone around the tunnel, keeps the second graft cable free of pressure.
  • the posterolateral band With the knee positioned between zero and ten degrees of flexion, the posterolateral band is tensioned and fixed in the same manner by the introduction of the second screw, which expands the remaining half of the sleeve.
  • the device proposed here also allows a security fixation, made through a graft tie in a plate that is supported on the cortical tibia, and also attaches to the central dividing plate of the tibial device by means of another tie. With this, the device is anchored in the anterior cortical of the tibia, as well as the graft cables.
  • Figure 01 Exploded perspective view of the femoral fixation assembly
  • Figure 02 Perspective view of the assembled femoral fixation assembly
  • Figure 03 Inverted perspective view of the assembled femoral fixation assembly
  • Figure 04 Exploded perspective view of the tibial fixation device
  • Figure 5 Detail of the connection between the snap-on cover and the compression domes
  • Figure 6 Detail of the mounting of the tibial fixation device and the fit between the central plate of the device and the compression domes;
  • Figure 7 Perspective view of the tendon preparation base
  • Figure 8 Perspective view showing the beginning of tibial tunnel perforation, with positioning of the guidewire;
  • Figure 9 Perspective view showing the beginning of tibial tunnel drilling with the cannulated drill
  • Figure 10 Perspective view showing the tibial tunnel perforation with the cannulated drill piercing the tibial bone
  • Figure 11 Perspective view showing the completed tibial tunnel and placement of the femoral guidewire with the aid of the trans-tibial guidewire;
  • Figure 12 Perspective view showing the trans-tibial femoral guide orienting the guidewire entry point into the femur;
  • Figure 13 Perspective view showing the guidewire running through the entire femur
  • Figure 14 Perspective view showing the guidewire held in the same position as the previous figure, with the removal of the femoral guide and introduction of the cannulated drill to the femur;
  • Figure 15 Lateral view showing the guidewire through the femur and the 10mm cannulated drill bit piercing a 30mm deep tunnel and preserving 2mm of intact bone on the posterior wall of the femur;
  • Figure 16 Side view showing the guidewire held in the same position at the femur, and a 4.5mm cannulated drill bit piercing the remainder of the femur beyond the 30mm tunnel;
  • Figure 17 Sectional view showing detail of the femoral tunnel
  • Figure 18 Perspective view showing introduction of graduated ruler through tibial and femoral tunnels
  • Figure 19 Perspective view showing the two lateral and opposite tears made in the tibial inlet cortical, with detail of the notch;
  • Figure 20 Perspective view showing the guidewire detailing the holes at its distal end and the traction wires of the femoral device
  • Figure 21 Perspective view showing the complementary ends of the wires running through the femoral fixation assembly, returning to the remaining holes of the guidewire, and carried through the tunnels;
  • Figure 22 Perspective view showing fixation of the femoral joint by means of the cortical-cancellous screw pulled by the wires;
  • Figure 23 Perspective view of traction wire removal after fixation of the femoral device
  • Figure 24 perspective view of the femoral joint fixed to the femur with the bands crossing the tibial tunnel, with correct positioning of the screw, capsule and graft, showing detail;
  • Figure 25 Perspective view showing the tibial device in relation to the two graft bands
  • Figure 26 Perspective view showing the tibial device being inserted into the tunnel in relation to the two graft bands and with its central metal plate aligned with the groove made in the anterior tibial cortex;
  • Figure 27 Perspective view showing the tibial assembly coupled to a hammer that fits into the central plate of the tibial assembly;
  • Figure 28 Perspective view showing end of socket hammer showing detail
  • Figure 29 Perspective view showing the tibial joint near the tunnel, being impacted with the aid of a hammer
  • Figure 30 Perspective view showing the placement of screws in the tibial device
  • Figure 31 Perspective view showing the use of a hand-held dynamometer that grasps one of the graft bands by forceps while this graft band is tensioned and independently fixed with the knee flexed;
  • Figure 32 Perspective view showing the use of the same manual dynamometer securing the other graft band through its tweezers while this graft band is tensioned and independently fixed with the knee positioned in a position close to the extension;
  • Figure 33 Perspective view showing the devices in their proper place, showing the excess cut of the bands with scalpel aid
  • Figure 34 Perspective view showing the closure of the graft fixation procedure
  • Figure 35 Perspective view showing reinforcement plate placement, without cutting the excess tendons
  • Figure 36 Perspective view showing the tie-up of the reinforcement plate in the central plate of the tibial device
  • Figure 37 Perspective view showing the end of the procedure detailing the binding of the two graft bands on the reinforcement plate
  • Figure 38 Perspective view showing the tibial puller of the tibial fixation device
  • Figure 39 Perspective view showing details of the tibial extractor
  • Figure 40 Perspective view showing impaction of hammer puller opposite tibia showing detail
  • Figure 41 Perspective view showing the hexagon socket wrench to unscrew the femoral screw
  • Figure 42 Perspective view showing the wrench attached to the femoral screw puller
  • Figure 43 Perspective view showing the femoral screw puller attached to the wrench, removing the femoral screw in detail;
  • Figure 44 Perspective view showing extraction key handling femoral artery and screw connection details.
  • the first device (D1) ie the femoral fixation assembly
  • the first device (D1) is composed of a cortical - cancellous screw (2) coupled to a graft support base (3), which will also compress it against the bone, to be used in the femur.
  • Figures 01, 02 and 03 show the femoral fixation assembly (D1), with its flat-head, flat-head hexagonal slotted screw (2) (6), with a proximal screw thread.
  • variable length for cancellous tissue (R1) (according to the size of the screw) and a distal cortical bone thread (R2), about 4mm in length, these two threads (R1 and R2) being discontinuous.
  • the screw (2) has a hole (7) in the tip for passing the "ethibonde" wires (8) used to pull the device.
  • This screw (2) has its length previously determined by the measuring procedure with a graduated ruler (9) shown in Figure 18. It connects to the support base (3) of the graft (4), which is fixed to the assembly by a sturdy suture (10) as shown in detail in figure 2.
  • the ends of the tendons that form the graft (4) will be sutured with high strength and biocompatible "ethibond n ° 2" or similar wire at their ends with distinct colors (C1 and C2) on opposite sides forming a bundle. double, identified by the different colors in the suture (C1 and C2). Near the vertex of this tendon bundle (4), another bandage is made, with the same thread of different colors in order to mark the tendon cords (E1 and E2) in their part. near the support base (3).
  • the second device (D2) is similar to a wall bushing, but with independent expansion of each of its halves (11), which will make the spongy and compressive fixation of the tibial graft, coupled to a plate (12) fixation in the tibial cortex.
  • FIGs 4, 5 and 6 best demonstrate the second device (D2) of the tibial assembly, which consists of two hexagon socket screws (13), a plug and receive circular cap (14), two wires (15) of " ethibonde "number 5, for securing, a hemisphere divider metal plate (16) and two semi-circular compression domes (11) which function as bushings.
  • the domes (11) must be inclined (a) to be mounted and integrated with the circular cover (14) together with the hemisphere divider metal plate (16).
  • the metal plate (16) has two protrusions (17) distal inclined 0 to 90 in order to fit accurately in the holes (18) of the semicircular dome (11).
  • Figure 6 demonstrates, in detail, the configuration of the domes engagement (11) next to the circular cover (14). This device causes the set to become indivisible when closed in the shape of the tibial fixation set (D2).
  • the devices (D1 and D2) are usable for ligament reconstruction of the anterior cruciate ligament based on known surgical techniques as described below:
  • an incision of about 5 cm is made in the anteromedial region of the tibia, over the insertion of the hamstring muscles, also called goose paw.
  • the tendons of the gracilis and semitendinosus muscles are isolated by dissection, and these tendons are removed for use as a graft (4), with the aid of a tendon puller, an instrument commonly used in this type of procedure.
  • the tendons are then brought to a base (B) for preparation where they are tensioned ( Figure 7).
  • This base (B) allows the alignment of the two tendons, forming the graft (4) which are sutured with high strength wire and biocompatible, "ethibond n ° 2", or similar, at their ends, with distinct colors (C1 and C2) on opposite sides, forming a double bundle, identified by the different colors in the suture.
  • C1 and C2 distinct colors
  • another alignment is made with the same wire of different colors (E1 and E2) in order to mark the tendon cords at this other end, so that they can be individualized. when they are fixed to the femoral tunnel.
  • This tendon bundle is positioned at the base (B) by means of the separator (19) and its tips are attached to two tweezers (20) on the opposite side by their handles (21).
  • the beam at this stage is fixed by the handle (22).
  • the graft (4) should be gradually stretched under the control of a dynamometer (23) through the hook (G) in order to maintain a constant numerical tension while waiting for its use in surgery, ensuring that There is no risk of variation in length and no residual slip at the tendon and suture interfaces. This procedure is called pretensioning.
  • the surgeon makes two skin incisions, about 1 cm, at the knee joint, one medial and one lateral, which will be used for the entrance of the graft. arthroscopy and surgical materials in the knee, since the ligament reconstruction procedure is all performed by arthroscopy.
  • a guide wire (24) with a 3.2 mm diameter drill tip is installed using a bone perforator in the center of the tibial insertion of the anterior cruciate ligament, with or without the aid of a specific guide.
  • the tibial bone (25) is punctured until the tip of the guidewire (24) reaches the articular surface (A) of the tibia (25) through the cartilaginous tissue without advancing to other structures, precisely accompanied by arthroscopic vision. .
  • the guidewire (24) is held in its previous position and a cannulated drill (26) and graduated, 11 mm in diameter, is introduced aligned with it, piercing it. the tibial tunnel (T), as shown in figure 10.
  • a cannulated drill 26) and graduated, 11 mm in diameter
  • both the guidewire (24) and the cannulated drill (26) are removed from the tibia (25), leaving only the tunnel (T), free for the next surgical time.
  • the femoral tunnel guidewire (27) is introduced through the tibial tunnel (T) itself, with or without the aid of the trans-tibial guide (28). , being placed in the femur bone (29) at the desired point for the origin of the anterior cruciate ligament to be reconstructed. This point should be in an isometric position at the knee joint, and should be positioned so that the tunnel to be drilled is about 2 mm from the posterior cortical of the femur.
  • Figure 12 demonstrates the trans-tibial femoral guide (28) orienting the guide wire entry point (30) into the femur (29).
  • the guide wire (27) should traverse the entire interior of the femur bone (29) until it ruptures its anterior cortical surface.
  • Figure 14 demonstrates that the guidewire (27) is held in this same position while the femoral guide (28) is withdrawn, and thereafter, aligned with the guidewire (27), a cannulated and graded drill 10 is introduced. mm in diameter (31). As shown in Fig. 15 this cannulated drill bit 31 will progress around the guidewire 27, drilling a 30mm deep femoral tunnel 29, keeping 2mm of intact bone wall in the posterior region of the femur.
  • FIG.16 the 10mm cannulated drill bit (31) is removed and replaced by another 4.5mm diameter cannulated drill bit (32), also aligned with the guidewire (27), which advances by drilling around it. of this wire until it breaks the anterior cortical of the femur, thus creating the widening of the entire canal left by the guide wire (27).
  • Figure 17 shows, in section, the detail of the femoral tunnel and the diameter of the channel prepared in such a way (33) for later insertion of a screw.
  • a L-shaped graduated ruler 9 is introduced to measure the total size of the femoral tunnel (equal to the sum of the 10mm diameter and 4.5mm ,
  • the next step is to make two opposing lateral (R3) tears in the tibial inlet cortical through the double chisel (34) impacted by the hammer (35), just enough to penetrate the cortical wall of the bone. tibial (see detail of fig.19), creating a notch (R3).
  • a new surgical time begins with the reintroduction of the arthroscope and, under visual control, the graft guidewire (36) is introduced through the tibial tunnel (T), joint and tunnel (T). femoral. This guidewire (36) is pushed toward the femur (29) until it punctures the thigh muscles and skin.
  • the guidewire (36) has at its lower end four holes (F1, F2, F3, F4)). In two of these holes (F1 and F2) two "ethibonde" number 5 wires (8) are introduced for traction of the femoral device by the guide wire (36).
  • the other two ends of the wires (8) pass through the femoral fixation assembly (D1) through the hole (7) at the tip of the cancellous cortical screw (2) already attached to its base (3) and the graft (4), and re-drill the remaining two holes (F3 and F4) of the guide wire (36) (fig.21). Then, the guidewire (36), exposed on the side of the patient's thigh, is pulled by the surgeon through the tibial tunnel and the femur tunnel, leading and exposing on the outside of the thigh the four segments of the " ethibonde "number 5 (8).
  • the graft (4) is attached to the base (3) of the femoral fixation device (D1) by means of a tie (10) with number 2 "ethibonde” wire (Fig.02), seen in detail along with the sutures (E1). and E2) identifying the two graft cables.
  • Figure 3 shows the details of the graft curvature (4) and its attachment to the support base (3).
  • the next surgical time (Fig. 22) is the fixation of the femoral joint (D1) to the femur (29) through the cortical-cancellous screw (2).
  • the screw (2) is pulled by the number 5 "ethibonde" wires (8), externalized on the side of the thigh, and screwed ,
  • the cancellous thread (R1) discontinued with the cortical thread (R2) of the screw (2) will prevent its progression when it reaches the cortical bone. This prevents it from advancing through the cortex beyond the 4mm of its specific bone thread (R2) (the average thickness of this cortical is 4mm), thus preventing the progression of the tip of the screw (2) from disturbing it. the thigh muscles.
  • Figure 24 shows the detail of the correct positioning of the screw (2), support base (3) and graft (4), inside the femoral tunnel (T).
  • the markings (E1 and E2) can be observed through the arthroscope, identifying the two graft bands, called anteromedial and posterolateral, at the entrance of the femoral tunnel (T).
  • the result of this procedure will be the creation of two graft bands (38) by the two tendon bundles attached to the femur (29) which will traverse the joint, replacing the two bands of the ruptured anterior cruciate ligament.
  • bands (38) will pass through the tibial tunnel (T), and will exit through the entrance hole in the anterior tibial cortex (25), being apparent from the outside (T) of the Tibial tunnel.
  • the metal plate (16) has two distal protrusions inclined at 90 0 (17) so as to fit accurately in the holes (18) of the semicircular dome (11).
  • This configuration allows the assembly to be introduced into the tibial tunnel (25) without the hemisphere-dividing metal plate (16) disengaging from the intended direction.
  • the tibial fixation assembly (D2) is pressed close to the existing tibial tunnel, aligning the hemisphere-dividing metal plate (16) with the two slots (R3) at the entrance to the tibial tunnel ( fig.26).
  • the tibial fixation assembly (D2) is impacted with the aid of a hammer (39) of ,
  • Figure 29 demonstrates the impaction of the tibial joint (D2) into the tunnel with the aid of a hammer (35) and hammer (39). This impaction should be sufficient to conceal the entire tibial fixation assembly (D2) within the tibial tunnel (T) flush with the external face of the tibia (25).
  • the screws (13) are responsible for the fixation and constant pressure of the two graft bands close to the spongy wall of the tibial bone (25), separated by the hemisphere dividing metal plate (16), in two bands ( 38) distinct within a single tunnel (T) with independent voltages.
  • a manual dynamometer (41) With the knee between 45 and 60 ° of flexion (fig.31), a manual dynamometer (41) is used that holds the anteromedial band of the graft through its forceps and handle (42), identified by marking through a color suture. (C1), referring to its position, and allowing its identification, both inside the joint, near the femoral fixation (E1), and outside the tibial tunnel.
  • the first screw (13) is tightened with the hexagonal tibial wrench (43), the force vector direction can be observed in the second image of figure 31.
  • suture (C2 and E2) by firmly tightening its corresponding screw (13) with the hex wrench (43) after subjecting this band to the desired tension with the dynamometer (41).
  • the excess of the band ends (38) is cut with the scalpel (44) (fig.33), and the ethibond auxiliary wires are removed (15). ) from inside the tibial fixation assembly (D2).
  • the graft fixation procedure is completed, as shown in the drawing in figure 34.
  • Surgical wound closure and surgical wound dressing are performed according to standard techniques.
  • a reinforcement accessory is used to ensure that the tibial joint (D2) does not slip into the tibial tunnel (T), nor the tendons that form the two bands (38).
  • FIG.35 the excess tendon cut-out is not cut as in Fig. 33.
  • a four-hole rectangular cortical support plate (12) is used through which the four ends of number 5 ethibonde wires (5) pass through. 15) which are attached to the hemisphere divider metal plate (16) of the tibial fixation device (D2).
  • a triple knot (45) is then made in each pair of wires over the cortical support plate (12), as shown in figure 36.
  • the tibial device (D2) attaches to the support plate.
  • cortical (12) which rests on the tibial cortex, prevents the migration of the joint into the tunnel.
  • the surgical wound is closed and the surgical wound is dressed according to the usual techniques.
  • the tibial puller (46) will be used, composed of a handle with an impact resistant quadrangular longitudinal bar (fig. 38), with holes coinciding with the two holes of the circular cover (14).
  • the bar Through the holes of the bar are introduced two puller pins (47), which will be screwed into the exit holes of the safety "ethibonde” (15).
  • These pins are knurled at one end and have the self-tapping end at the other to initiate threading in the circular cap (14).
  • the pull-out pin has a hexagonal recess in its head to accommodate the hexagonal wrench (43), which allows it to force the opening of its retaining thread through its self-tapping ends (48), as shown in figure 39. .
  • Fig. 40 demonstrates the impact of the hammer (35) on the tibial puller (46), which extracts the tibial assembly (D2), through the puller pins (47).
  • a hexagon socket wrench (49) will be introduced to unscrew the femoral screw (2) until its inner face is more than 5mm back from the component capsule (3) femoral (D1) (fig.41). Then the hexagon socket wrench (49) is removed from the knee, and the femoral screw extractor (50) is introduced to grasp the inner face of the screw head (fig.42). The hex wrench (49) is then inserted, this time into the screw puller, engaging the screw head and puller cable to form a single screw-puller assembly, facilitating removal with rotation and pull in the withdrawal direction (fig.43). See detail in figure 43 of the screw fitted to the puller and the wrench. This prevents the screw from falling into the joint during its removal.
  • Figure 44 shows the management of the femoral extraction key (49), the extractor (50) and details of its connection to the screw (2).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Rheumatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Rehabilitation Therapy (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

Consistem em dispositivos (Dl e D2) de fixação córtico-esponjoso-compressiva, em que o dispositivo (Dl) é utilizado na fixação femoral e outro dispositivo (D2) na fixação tibial, ambos aplicados em cirurgia de reconstrução ligamentar do ligamento cruzado anterior (LCA) do joelho, em dupla banda com único túnel tibial e femoral. O conjunto de fixação femoral (Dl) é composto por um parafuso (2) cortico-esponjoso de cabeça plana, com fenda sextavada, de corpo liso (6), com uma rosca proximal de comprimento variável para tecido esponjoso e uma rosca distai para osso cortical (RI e R2); o parafuso (2) tem um orifício (7) na ponta para passagem de fios (8); e se conecta à base de alojamento (3) dos tendões (4). O conjunto de fixação tibial é composto de dois parafusos de seção sextavada (13), uma tampa (14) circular de encaixe e recepção, dois fios (15) para fixação de segurança, uma placa metálica (16) divisora de hemisférios e dois domes semicirculares (11) de compressão, que funcionam como buchas; a placa metálica (16) possui duas proeminências (17) distais, inclinadas a 90 °, de forma a se encaixarem nos orifícios (18) dos domes semicirculares (11).

Description

"DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS"
Trata a presente solicitação de Patente de Invenção de inéditos "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS", notadamente de dispositivos, tibial e femoral, a serem utilizados na fixação do enxerto na cirurgia de reconstrução do ligamento cruzado anterior (LCA) que permitem uma técnica cirúrgica simples de alta reprodutibilidade, com baixo potencial de complicações, não havendo necessidade de outras vias de acesso para a fixação femoral, sem a dependência de guias externos, do capotamento ou da abertura de mecanismos de fixação. Estes dispositivos fixam-se ao osso com resistência maior do que qualquer outro dispositivo conhecido, com a possibilidade de fixação do enxerto de maneira mais próxima da anatomia normal do LCA, e com menor custo, quando comparado com as técnicas de reconstrução em dupla banda atuais.
A rotura do LCA é uma lesão altamente prevalente, com cerca de 200.000 cirurgias primárias e 20.000 revisões (cirurgia após nova rotura de um ligamento reconstruído) por ano nos EUA1,2,3.
A primeira referência ao tratamento da lesão do LCA é de 1900, quando Battle reporta um caso de reparação primária, com acompanhamento de dois anos e bons resultados4.
Em 1903, Robson publica um caso de reparo (sutura de um ligamento roto) com sucesso, e oito anos de evolução5.
Hey Groves, em 1917, considera que o reparo do ligamento por sutura é praticamente impossível, e acredita que a reconstrução do ligamento é necessária6.
Note-se que reparo de uma lesão ligamentar significa suturar os cotos do ligamento rompido, de forma a reconstituir sua anatomia. Quando se fala em reconstrução de um ligamento, isto significa criar uma nova estrutura, que produza função semelhante a aquela da estrutura rompida.
Naquela época ainda não se sabia da importância do LCA como restritor primário da translação anterior do joelho. Discutia-se a necessidade de tratamento cirúrgico para o ligamento, acreditando-se que o tratamento das lesões meniscais associadas à lesão ligamentar já seria suficiente. Assim se permaneceu até o inicio dos anos 70, quando Feagin apresentou os resultados iniciais de reparo dessas lesões em cadetes de West Point, no Congresso da Academia Americana de Cirurgia Ortopédica.
Entretanto, em 1976, o mesmo autor publica no American Journal of Sports Medicine a evolução de cinco anos daqueles cadetes, com resultados desanimadores, com perda funcional e instabilidade do joelho.
Mclntosh publica no Journal of Bone and Joint Surgery, em 1977, uma nova técnica com sutura do ligamento atrás do côndilo femoral lateral. Marshall faz algumas modificações neste procedimento criando a cirurgia de escolha da época.
Nos anos 70, ficou claro que a deficiência do LCA levava a perda funcional, sendo necessário reconstruí-lo. Iniciaram-se, então, estudos biomecânicos, com secção seriada dos diversos ligamentos do joelho7,8,9 , não podendo deixar de ser mencionado o trabalho clássico de Slocum10, criando o conceito de instabilidade rotacional do joelho.
Surgiram, então, técnicas de reconstrução extra articulares, que visavam tratar a instabilidade rotatória ântero medial, e não o ligamento cruzado anterior, evitando a subluxação da tíbia e mantendo-a reduzida em rotação interna.
Diversos procedimentos foram criados:
-Transferência da pata de ganso10;
-Retensionamento da cápsula póstero medial;
-Avanço do ligamento colateral medial, para mais proximal e posterior;
Após este tipo de procedimento, o paciente permanecia longo tempo imobilizado, o que levava a resultados com grande limitação de movimento. Mesmo assim, essas técnicas foram muito populares nos anos 70.
Em 1970, Jones descreve o uso do terço central do tendão patelar como enxerto11.
Kennedy & Fowler em 1971 demonstram que o LCA pode sofrer lesão, sem envolvimento das estruturas mediais12.
Em 1972, Galway descreve o "Pivot Shift", teste clínico usado até hoje, e que demonstra a instabilidade rotatória do joelho, e que é considerado patognomônico da insuficiência do LCA13. Franke, em 1976, descreve o uso de enxerto livre, osso-tendão-osso, do tendão patelar, e sua efetividade clinica14. Este tipo de enxerto foi originalmente desenvolvido na Alemanha, embora sua popularização tenha se dado por Clancy nos EUA15.
Hugston, em 1976, cria o conceito de instabilidade rotatória ântero lateral do joelho16. E então passa a ser dada ênfase aos procedimentos na região lateral do joelho, para limitar a subluxação anterior da tíbia.
Mclntosh cria uma reconstrução extra-articular, com uma fita do trato ílio tibial (TIT), o músculo lateral da coxa (conhecida como Mclntosh I).
Torg, também em 1976, descreve a importância clínica da manobra de Lachman, que avalia o deslocamento anterior da tíbia em relação ao fémur na lesão do LCA, e ainda é utilizada atualmente17.
E no final dos anos 70, Losee & Ellison descrevem outras técnicas com uso do TIT. E Andrews cria um procedimento com duas fitas desta estrutura, que pela primeira vez leva em consideração tensões diferentes na flexão e na extensão do joelho18'19.
Todas as reconstruções extra-articulares diminuíam o "Pivot Shift" (a instabilidade rotatória do joelho) inicialmente, mas não funcionavam dinamicamente, afrouxando com o tempo e evoluindo com mau resultado ao longo prazo. Os pacientes voltavam a sentir instabilidade no joelho, sem contar a rigidez articular, devida aos longos períodos de imobilização pós-operatória.
Por volta dos anos 80, o tratamento da instabilidade do joelho devida à lesão do LCA passou a focar o próprio ligamento.
Butler e Noyes, em 1980, descrevem o LCA como restritor primário de translação anterior da tíbia20.
Buscam-se, então, procedimentos de reconstrução intra-articular mais próximos do LCA anatómico.
Insall, em 1981 , é o primeiro autor a passar o enxerto de forma intra-articular. Baseado no trabalho de Ellison19, uma fita do TIT era levada por dentro da articulação e fixada na região anterior da tíbia21.
Em 1982, Marshall abandona a técnica de reparação primária e passa a utilizar uma técnica de reconstrução com fáscia lata22. t
Mclntosh, então, modifica seu procedimento original, e passa uma fita do TIT, presa em sua inserção tibial, pela posição "over the top" (por trás do côndilo femoral lateral), para dentro da articulação e de volta para a tíbia, em um túnel intra-articular. Criando a técnica de Mclntosh II.
O mesmo autor cria a técnica de Mclntosh III, utilizando uma fita de tendão quadriceptal e patelar, presa na tuberosidade anterior da tíbia, que era levada para o espaço intra-articular através de um túnel na tíbia, sendo passada pelo intercôndilo na posição "over the top" e fixada na lateral do fémur.
Campbell utilizou o terço medial do tendão patelar deixando-o preso na tuberosidade anterior da tíbia, e passando-o através de um túnel tibial e femoral, fixando-o na lateral do fémur.
A partir daí, desenvolveram-se as técnicas intra-articulares, com duas incisões, uma na região anterior do joelho e outra na região lateral da coxa, e fixação em poste.
Clancy, nos EUA, populariza o uso do enxerto do tendão patelar, originalmente desenvolvido na Alemanha, como já mencionado15.
Fixa-se o conceito da posição do túnel femoral a cerca de dois milímetros da cortical posterior. Para definir a posição do ligamento no fémur, cria-se a metáfora do mostrador do relógio, com o túnel femoral originando-se entre 10 horas e meio dia para o joelho direito e meio dia e 2 horas para o esquerdo. Posição esta, baseada no ponto isométrico do joelho (aquele no qual, independente da posição desta articulação, a distância entre o fémur e a tíbia será a mesma, impedindo o estiramento do enxerto) e não na posição anatómica do LCA. Estes conceitos ainda são utilizados atualmente.
Em 1986, Zarins & Rowe, popularizaram o uso dos tendões flexores (tendões dos músculos grácil e semitendineo) como enxerto24. Este tipo de enxerto foi descrito originalmente por Macey25, e utilizado inicialmente por Cho em 1975 (enxerto do semitendineo) e depois por Lipscomb em 1979 (Semitendineo e Grácil).
Por volta da metade dos anos 80, popularizaram-se as técnicas de vídeo cirurgia. Com a evolução da técnica, do instrumental cirúrgico e dos aparatos de fixação, nos anos 90, a reconstrução do LCA passou a ser feita por incisão única, na região anterior do joelho, por via trans-tibial, através de artroscopia, técnica utilizada atualmente. Com essas técnicas, os resultados mostram que cerca de 85% dos pacientes sentem-se com joelho normal ou muito próximo do normal, e 70% dos pacientes operados conseguem voltar ao nível de atividade física de antes da cirurgia.
Apesar de toda evolução técnica, ainda tem-se nos dias de hoje cerca de 10 a 15% de resultados insatisfatórios nas cirurgias de reconstrução do LCA. Seja porque a reconstrução se dá em uma única banda, seja por mau posicionamento dos túneis ou por falhas na fixação do enxerto.
Alguns autores reportam que 70% ou mais dos maus resultados se devem a falhas técnicas26.
Além disso, o seguimento de longo prazo das reconstruções do LCA mostra que, mesmo nos pacientes sem queixa de instabilidade, ocorre progressão para artrose do joelho em mais de 50% dos casos, como se pode ver nas publicações dos autores abaixo:
Autor e ano Seguimento em meses Sinais radiológicos de artrose
Bach et al. 92 79 89%
Shelbourne & Gray 95 103 78%
Ruiz et al. 84 84 50%
Jomha et al. 2003 84 57%
Jarvela et al. 2004 84 47%
Aglietti et al. 2005 84 61 %
Cohen et al. 2007 10 a 15 anos 70%
Devido a essa percentagem de insucessos, por volta do ano 2000, buscando uma reconstrução mais próxima da anatomia normal do ligamento cruzado anterior, começaram os estudos sobre reconstrução em dupla banda, uma vez que dados anatómicos demonstram a existência destas bandas desde o feto.
Além disso, avaliações biomecânicas mostram que as duas bandas do LCA apresentam-se tensas em momentos diferentes durante a flexão e extensão do joelho. A banda ântero medial se mantém tensa durante quase todo o arco de movimento da articulação do joelho, enquanto a banda póstero lateral apresenta tensão próximo da extensão e roda ao redor da banda ântero medial, sendo desta forma importante restritor rotacional.
A reconstrução em dupla banda é mais próxima da anatomia normal do ligamento cruzado anterior, porem, é tecnicamente mais trabalhosa e demorada, (
6/32
com maior possibilidade de gerar complicações peri-operatórias (tanto durante a cirurgia, quanto depois dela). Temos de lembrar que até 70% dos maus resultados podem estar relacionados a problemas técnicos, mesmo sendo a reconstrução feita em banda única, como já mencionado acima26. E cabe ainda, salientar que nos EUA, 85% destas cirurgias são realizadas por cirurgiões não especialistas, que fazem menos de 10 reconstruções por ano, o que aumenta muito o risco de complicações e maus resultados27.
Outro fator a ser lembrado é o custo do procedimento cirúrgico, pois duas bandas significam o dobro de material de fixação para o ligamento, e praticamente o dobro do tempo cirúrgico, o que automaticamente eleva o custo da cirurgia e os riscos de trombose, infecção e complicações anestésicas.
Considerando essas dificuldades e riscos, e que a maioria dos cirurgiões encontra-se confortável com a reconstrução em banda única, com seus tempos cirúrgicos, com a técnica e o instrumental disponível, e que seus resultados clínicos são bastante bons, a transição para reconstrução em dupla banda tem sido questionada. Mesmo os melhores cirurgiões não a indicam de rotina.
Entretanto, não se pode negar a existência das duas bandas do LCA. E, ainda que não possa duplicar a estrutura complexa deste ligamento (que é um conjunto de múltiplas bandas, sendo que em dissecações anatómicas são evidenciadas, em muitos casos até 3 bandas principais, ântero medial, póstero lateral e intermediaria), pode-se tentar duplicar a origem no fémur, de dois feixes principais e a inserção destes feixes na tíbia, reproduzindo assim as duas principais bandas do LCA.
Estas duas bandas apresentam tensões em momentos diferentes durante o movimento do joelho, assim, na reconstrução do ligamento em dupla banda, precisam ser submetidas à tensão independentemente.
Até agora, a única maneira desta técnica ser realizada é por meio de reconstrução com dois túneis independentes na tíbia, com dois parafusos, ou quaisquer outros meios de fixação, que permitam submeter as duas bandas a tensões independentes.
A técnica cirúrgica de reconstrução do ligamento cruzado anterior, atualmente, se divide nos seguintes tempos cirúrgicos principais:
1- retirada e preparação do enxerto;
2- confecção do túnel tibial; 3- confecção do túnel femoral;
4- posicionamento do enxerto nos túneis;
5- fixação do enxerto no fémur;
6- fixação do enxerto na tíbia após submetê-lo a tensão.
Nota-se que na reconstrução em dupla banda, ao criarmos dois túneis tibiais, fazemos duas vezes os tempos 2, 3, 4, 5, e 6 , praticamente dobrando todos os passos da cirurgia, com todas as possibilidades de complicações características de cada tempo cirúrgico sendo duplicadas também.
Em um cenário ideal, teríamos uma técnica cirúrgica simples, de alta reprodutibilidade, de baixo custo, que permitisse a criação de um novo ligamento com estrutura próxima a anatomia normal do LCA. E com um baixo potencial de complicações cirúrgicas, através de um mínimo de intervenção no paciente.
Os inéditos e originais dispositivos propostos permitem reconstruir o LCA através de uma técnica que reproduz as duas bandas deste ligamento, com tensões diferentes e independentes, através de um único túnel no fémur e na tíbia.
No atual estado da técnica de reconstrução do LCA, o primeiro tempo da cirurgia consiste em escolher e retirar o enxerto que substituirá o ligamento rompido, e prepará-lo para ser utilizado.
No caso dos tendões flexores, são retirados os tendões do músculo semitendineo e do músculo grácil, através de uma incisão ântero medial no joelho. Estes tendões são limpos de todo tecido muscular, deixando apenas sua parte tendinosa. Esta é então suturada de maneira que o tendão adquira um aspecto tubular, com um fio cirúrgico de alta resistência.
Esta sutura é realizada por meio de pontos ancorados em cada uma das extremidades do enxerto, deixando as extremidades dos fios de sutura sobrando, de forma que se tenha um cabo duplo de fios em cada extremidade do enxerto. Isto é feito com o tendão de cada músculo, separadamente.
Na reconstrução ligamentar do LCA, o uso de enxerto dos tendões flexores é uma das técnicas mais difundidas, muito bem aceita, e talvez a mais utilizada hoje em dia.
Na técnica inovada, o preparo do tendão será o mesmo, exceto que serão utilizados dois fios de cores diferentes para realizar a sutura nas extremidades dos tendões, de modo que cada tendão tenha uma cor diferente em cada uma de suas extremidades.
Estes tendões são preparados em uma mesa de apoio especial, sendo dobrados sobre si mesmos uma vez, formando assim uma extremidade com quatro cabos e outra com dois "loops".
O enxerto então é submetido à tensão, do tendão e da sutura, com o objetivo de atingir todo seu potencial de deformação plástica, e de provocar todo escorregamento que possa existir na interface tendão e sutura, fazendo com isso, que o enxerto atinja seu comprimento máximo antes de ser utilizado.
Enquanto o enxerto é preparado por um auxiliar, o cirurgião principal, através de dois portais (incisões na altura da linha da articulação do joelho), realiza a introdução do artroscópio no joelho, faz o inventario da articulação e trata as lesões de menisco e cartilagem que estejam associadas à lesão do LCA, e resseca os restos do ligamento rompido.
O segundo tempo cirúrgico consiste na confecção do túnel tibial.
Um fio guia é posicionado através da tíbia, podendo para isso ser utilizado um guia de posicionamento.
Uma vez escolhida a posição do fio guia, que corresponde à inserção do LCA na tíbia, uma broca canulada de diâmetro variável é alinhada com o fio guia e perfura o túnel tibial, da cortical anterior da tíbia até o espaço intra-articular. A broca e o fio guia são, então, retirados.
Nas técnicas atuais o diâmetro deste túnel varia com o diâmetro do enxerto que será utilizado. E nas reconstruções em dupla banda são perfurados dois túneis com diâmetro de 5 a 7mm, com saídas nas inserções das duas bandas do LCA.
Na técnica inovada, o túnel tibial será sempre de diâmetro 11 mm, evitando considerações sobre o calibre do enxerto, sendo utilizada a mesma técnica de perfuração.
Deve-se observar que o túnel de diâmetro de 11 mm engloba, em um único orifício, a maior parte da área de inserção das duas bandas na tíbia.
O terceiro tempo da cirurgia consiste em fazer o túnel femoral.
Na técnica padrão, um fio guia é posicionado no local desejado para a origem do LCA no fémur, com ou sem o uso de um guia trans-tibial. Com o fio guia em posição, uma broca canulada de diâmetro variável, alinhada com o fio guia, perfura o túnel femoral na profundidade desejada. A broca é retirada e o fio guia pode ou não ser deixado fixado ao fémur, dependendo da técnica cirúrgica utilizada.
Na técnica inovada, este túnel será sempre de diâmetro de 10 mm e profundidade de 30mm. Simplificando, mais uma vez, o procedimento cirúrgico.
O quarto tempo cirúrgico consiste em posicionar o enxerto nos túneis, o que atualmente é feito pela tração do fio guia, preso a extremidade proximal do enxerto, na maioria dos tipos de fixação femoral (parafuso de interferência, "Endobutton", amarria em poste, "Rigid-Fix", "Ezlock", "AperFix" ). No caso dos parafusos transversos, o enxerto pode ser locado por de um fio de aço que atravessa o fémur, e então é puxado para baixo através do túnel femoral, articulação e túnel tibial, para fora da tíbia. O enxerto é pendurado no fio de aço, e sobe quando as extremidades do fio são puxadas em sentidos opostos.
Caso a fixação seja feita por parafusos transversos, ou "Rigid-Fix", um guia especifico será usado para fazer os túneis na lateral do fémur, de forma que atravessem transversalmente o túnel femoral já perfurado.
Caso a fixação escolhida seja o "Endobutton", o fio guia femoral é deixado em posição; uma segunda broca canulada, de 4,5mm é alinhada a ele e perfura o restante do fémur, além do túnel de 30mm já perfurado. Na sequência, o fio guia é retirado, e é feita a medida do comprimento total deste túnel. Então, o fio guia é novamente recolocado através do túnel da tíbia e do fémur, sendo levado através da musculatura da coxa, para fora do paciente. Em sua extremidade distai, fixa-se a extremidade proximal do enxerto, que pela tração do fio guia, sobe através da tíbia e do espaço articular, entrando no túnel femoral.
Na nova técnica utiliza-se uma variação deste mesmo procedimento, que já é conhecido e muito utilizado pelos cirurgiões.
O quinto tempo cirúrgico é a fixação femoral do enxerto.
Nas técnicas cirúrgicas atuais, para a fixação deste tipo enxerto (tendões flexores) no fémur, podem ser utilizados vários tipos de dispositivos, que através de diferentes formas de fixação, mantém o enxerto em sua posição até que ocorra a integração ao osso. Como por exemplo:
• Fixação por suspensão cortical - "Ligament Ancor", "Endobutton", amarria em poste e "Ezlock"; • Fixação por suspensão esponjosa - "Linx HT" e "AperFix";
• Fixação por suspensão córtico-esponjosa - parafusos transversos;
• Fixação por compressão - parafusos de interferência;
• Fixação por expansão - "Rigid-Fix";
Porém, cada uma destas técnicas apresenta dificuldades especificas:
• As âncoras e o Ezlock apresentam dificuldades técnicas em sua abertura e fixação;
• A amarria em poste exige uma incisão acessória na lateral da coxa para a fixação de um parafuso na lateral do fémur, aumentando o tempo cirúrgico e a morbidade da cirurgia;
• O "Endobutton" depende do capotamento do aparato de forma que fique apoiado no osso, na saída do túnel femoral, na região lateral da coxa. Muitas vezes, o capotamento ocorre no meio da musculatura, comprometendo a fixação e exigindo que uma incisão acessória seja feita na lateral da coxa para posicioná-lo. O maior problema é que, muitas vezes, isso não é percebido durante a cirurgia, e compromete o resultado do procedimento, com o afrouxamento do enxerto;
• Os aparatos de fixação exclusiva na esponjosa apresentam menor resistência de fixação do enxerto, e não foram popularizados no meio;
• Os parafusos transversos, de fixação córtico-esponjosa, são uma das fixações mais populares, porém, exigem um guia externo, e uma incisão acessória na coxa para a confecção do furo do parafuso, de forma que este cruze com o túnel femoral. Esta técnica, além de mais tempos cirúrgicos e da via lateral acessória, depende da precisão do guia externo, que se não estiver correto, não permitirá que o parafuso cruze o enxerto, e ainda apresenta risco de cortá-lo no momento de sua colocação;
• Os aparatos de fixação por compressão (Rigid Fix) também dependem de um guia externo, que deve posicionar dois pinos através do centro do enxerto, cruzando o túnel femoral, levando aos mesmos riscos;
• E os parafusos de interferência, que fazem a fixação do enxerto por compressão deste contra a parede do túnel, apresentam dificuldades técnicas em sua colocação, que deve ser paralela ao enxerto, sob pena de cortá-lo. Além disso, dependem da integridade da cortical posterior do fémur, pois, se a parede posterior do túnel quebrar durante a sua perfuração ou na colocação do parafuso, este não conseguirá comprimir o enxerto e ainda corre o risco de cair na fossa poplítea, atrás do joelho, gerando dificuldades extremas para sua recuperação.
Tais dificuldades levaram-nos a buscar um tipo de fixação femoral que possa ser considerado definitivo, e que, além disso, possa criar duas bandas de enxerto com inserções femorais separadas.
O, aqui proposto, dispositivo de fixação femoral, para reconstrução com dupla banda em um único túnel, permite uma fixação segura, sem necessidade de via lateral acessória (necessária nos parafusos transversos e amarria em poste), sem depender da cortical posterior para a fixação (necessária para os parafusos de interferência), e sem necessidade de abertura ou capotamento de nenhum mecanismo (como o "Endobutton", as âncoras, o "Ezlock" e o "AperFix").
De igual forma também, não depende de guias externos, que podem levar a desencontros entre o mecanismo de fixação e o enxerto (parafusos transversos e "Rigid-Fix"). Além disso, torna a cirurgia mais rápida, porque a fixação se dá no mesmo tempo cirúrgico da subida do enxerto, enquanto na maioria dos outros métodos a fixação se faz em um tempo próprio.
Com relação à resistência da fixação, na tabela a seguir são apresentadas as características de diversos dispositivos de fixação femoral28:
Método de fixação Alonga/o Alonga/ após Failure load Stiffness
máximo 20 ciclos (Carga de falha) (Rigidez) Em milímetros Em % max. Em Newtons Em Newtons
Bioscrew 11 ,8/5,83 38,3 407,2/145,4 121 ,4/40,7
RCI screw 8,62/4,6 41,9 392,5/122.2 117,8/83,9
Rigidfix 4,62/1,13 46,5 994,4/233,6 138,4/20,8
Lig anchor 6,33/1,78 62,1 340,1/79,9 91 ,2/12,2
Endobutton 4,19/1,32 58,4 850/189,8 112,5/9,7
Swingbridge 3,2/2,29 61,2 1359/214,1 162,6/45,8
Linx ht 4,18/2,08 55,8 439,7/136,7 115,7/21,5
Transfix 2,75/1,45 69 1469,7/315,5 206,7/29,7
Bio-transfix 2,62/1,39 70,3 1491,6/87,6 210,1/67,9
LCA 1 ,5/0,46 70 1025,5/201 ,8 173,2/18,2
Ext lat dedos duplo 1 ,71/0,43 74,4 1987,1/374,7 619/65,4 „
12/32 l
Atualmente, as fixações mais resistentes são as córtico-esponjosas (parafusos transversos), com resistência ao arrancamento, em média, a 1500N (Newton).
O córtex femoral é capaz de resistir a 400N por mm de espessura cortical.
Um parafuso cortical padrão de 4,5mm, ancorado em apenas um córtex femoral (em uma das paredes do fémur), é capaz de suportar cerca de 2500N29.
O dispositivo inovado realizará a fixação por meio de ancoragem no córtex femoral, com uma rosca padrão de 4,5mm. Portanto, a expectativa de resistência para o dispositivo é, no mínimo, de 2500N. E essa resistência é incrementada pela fixação esponjosa, a se realizar no osso existente entre o fim do túnel e a parede cortical anterior do fémur, e pela compressão do enxerto contra a parede do túnel, quando o dispositivo adentrar nele.
Além disso, a fixação é realizada na cortical anterior ou ântero lateral do fémur, sem riscos de atingir os vasos sanguíneos ou nervos na região posterior do joelho (o que pode ocorrer com fixações transversas, se a técnica cirúrgica não for correta).
Cabe ainda ressaltar, que na opção por reconstrução em duas bandas, com dois túneis femorais, estes túneis devem estar separados por uma parede de osso de 1mm a 2mm de espessura, para evitar o colapso entre eles. A perfuração de túneis tão próximos é tecnicamente difícil, com maior chance de complicações, com o aumento do tempo e do custo cirúrgico30,31.
O dispositivo aqui proposto permite a criação de duas bandas com um único túnel e uma única fixação, tornando o procedimento mais rápido, simples, seguro, e mais barato.
Outro problema que os cirurgiões enfrentam nas reconstruções do LCA, é o alargamento dos túneis ósseos após a cirurgia. Isso ocorre principalmente na fixação com parafusos transversos e "Endobuttons". Nesses casos, a fixação é realizada de maneira suspensiva, longe da superfície articular, permitindo movimento do enxerto dentro do túnel, o que provoca a reabsorção óssea em suas paredes, e o consequente alargamento do túnel.
Este dispositivo inovador fixa o enxerto próximo à superfície articular, impedindo o movimento do enxerto dentro do túnel, evitando que o alargamento ocorra. O dispositivo ainda mantém o enxerto longe da rosca do parafuso, protegendo-o. Além disso, separa os dois feixes do enxerto pelo diâmetro do dispositivo, o que os coloca no centro da inserção original das duas bandas do LCA, que anatomicamente distam cerca de 10mm uma da outra.32
Por fim, nos casos de nova lesão ligamentar, a retirada deste novo dispositivo preserva excelente estoque ósseo, permitindo uma nova reconstrução ligamentar no mesmo tempo cirúrgico de sua retirada, seja o dispositivo metálico, osteoindutor ou bioabsorvível. Isso muitas vezes não é possível com os parafusos de interferência, que quando retirados deixam um espaço morto que impede a perfuração de um novo túnel, obrigando o cirurgião a fazer dois tempos cirúrgicos, um para retirada do parafuso da primeira cirurgia, e outro, depois de 6 meses ou mais (tempo necessário para que o orifício do parafuso se feche com osso novo), para refazer novamente o ligamento.
No caso de necessidade de retirada do dispositivo de fixação femoral, foi desenvolvido um instrumental especifico que fixa o parafuso enquanto ele é desparafusado, permite a extração do restante do dispositivo, e impede sua queda dentro da articulação.
Desta forma, tem-se uma fixação femoral segura, de baixo custo (mesmo no caso de dupla banda), tecnicamente mais rápida e fácil, sem necessidade de vias acessórias ou de guias externos e com menor morbidade peri-operatória.
A técnica cirúrgica para a utilização do dispositivo é muito semelhante às técnicas de fixação femoral convencionais, com as quais os cirurgiões estão habituados, entretanto, ela permite reconstruir as duas bandas do LCA com um único túnel, sendo esse o grande e distinto diferencial, sem o risco de lesar o enxerto durante a fixação, e permite revisão em um tempo único.
Além disso, apresenta resistência de fixação maior que qualquer outro tipo de fixação femoral.
O dispositivo, apesar de criar duas bandas independentes no fémur, pode ser utilizado sem nenhum prejuízo em uma reconstrução em banda única, mantendo todas suas vantagens de fixação.
O último tempo cirúrgico da reconstrução é dar tensão ao enxerto e fixá-lo na tíbia. No atual estado da técnica de reconstrução em banda única, o enxerto é submetido a tensão através do túnel tibial, e uma vez atingida a tensão desejada, a tíbia é colocada em uma posição anatómica em relação ao fémur (pois na lesão do ligamento ela se desloca para a frente) e o enxerto é fixado através do método desejado.
Entre as diversas opções tem-se:
- fixação em poste;
- parafuso de interferência;
- "Washerlock";
- "Intrafix";
- agrafes.
Todas as opções são bem aceitas e muito utilizadas, mas cada uma delas com suas particularidades:
- A fixação em poste deixa a cabeça do parafuso saliente na região ântero medial da tíbia e isso pode levar a um incómodo constante ao paciente. Além disso, por fazer a fixação fora do túnel, a mobilidade do enxerto dentro dele aumenta, propiciando seu alargamento30. Este tipo de fixação ainda tem o risco de atingir vasos sanguíneos na região posterior da tíbia, quando se faz a fixação bicortical33.
- A "Washerlock" e os agrafes apresentam as mesmas características. E alguns autores relatam que a compressão dos agrafes leva a necrose dos enxertos sob ele34.
- Os parafusos de interferência e o "Intrafix" permitem a obliteração do túnel, diminuindo o movimento do enxerto em seu interior, reduzindo assim, as chances de alargamento do túnel. Porém, o parafuso de interferência, ao comprimir o enxerto contra a parede do túnel, tem o risco de cortá-lo com sua rosca.
- O "Intrafix", também faz a compressão do enxerto contra a parede do túnel, mas protege o enxerto através de uma bucha ao redor do parafuso.
Entretanto, nenhum deles permite tensão independente entre os cabos do enxerto dentro de um mesmo túnel.
Sendo assim, no atual estado da arte, a reconstrução em dupla banda com tensões diferentes entre elas, exige a perfuração de dois túneis na tíbia, e a utilização de dois dispositivos de fixação, aumentando com isso os riscos, o tempo cirúrgico e o custo do procedimento. Buscamos, então, uma nova maneira de fixar as duas bandas do novo LCA na tíbia, com tensões independentes, mas em um mesmo túnel.
Para tanto se criou um inédito e inovador dispositivo de fixação tibial semelhante a uma bucha de parede, porém, na qual, cada metade expande de maneira independente, o que permite a fixação das bandas em diferentes tensões e separadamente.
Para sua utilização, a única diferença em relação às técnicas atuais será a criação de um sulco na cortical tibial, na entrada do túnel. Para o que se desenvolveu um formão específico.
Este sulco tem como fim guiar o dispositivo, separando o túnel tibial em duas metades, sendo realizado logo após a perfuração do túnel femoral, imediatamente antes de posicionarmos o enxerto nos túneis.
Após a fixação femoral, os cabos do enxerto serão afastados na entrada do túnel, e o dispositivo de fixação tibial será introduzido no túnel tibial, com auxílio de instrumento específico, dividindo-o em dois com sua placa central, separando um cabo do enxerto em cada metade do túnel.
O joelho deve ser colocado na posição de fixação da banda ântero medial, entre 45 e 60 graus de flexão. E esta banda será submetida a uma tensão desejada, com o uso de um dinamômetro.
Através da inserção do parafuso correspondente a esta metade do túnel, o dispositivo expandirá unicamente deste lado, fixando a primeira banda do enxerto, com tensão em flexão.
Enquanto isso, a placa central do dispositivo, apoiada no osso ao redor do túnel, mantém o segundo cabo do enxerto e livre de pressão.
Com o joelho posicionado entre zero e dez graus de flexão, a banda póstero lateral é submetida à tensão e fixada da mesma maneira, pela introdução do segundo parafuso, que expande a metade restante da bucha.
Muitos cirurgiões não confiam apenas na fixação por compressão dentro do túnel. Utilizam a fixação do enxerto com um parafuso de interferência, seguida de uma fixação de garantia com uma amarria em poste, amarria trans-óssea ou agrafes.
O dispositivo aqui proposto também permite uma fixação de garantia, feita através de uma amarria do enxerto em uma placa que fica apoiada na cortical anterior da tíbia, e também se fixa na placa divisora central do dispositivo tibial, por meio de outra amarria. Com isso, o dispositivo fica ancorado na cortical anterior da tíbia, bem como os cabos do enxerto.
Em caso de necessidade de retirada do dispositivo, desenvolvemos um instrumental especifico que se encaixa nele, após a retirada da placa de apoio cortical, e permite sua extração do túnel tibial.
A seguir, explica-se a invenção com referência aos desenhos anexos, a título de exemplo ilustrativo e não limitativo:
Figura 01 : Vista em perspectiva explodida do conjunto de fixação femoral;
Figura 02: Vista em perspectiva do conjunto de fixação femoral montado;
Figura 03: Vista em perspectiva invertida do conjunto de fixação femoral montado;
Figura 04: Vista em perspectiva explodida do dispositivo de fixação tibial;
Figura 5: Detalhe da conexão entre a tampa circular de encaixe e os domes de compressão;
Figura 6: Detalhe da montagem do dispositivo de fixação tibial e do encaixe entre a placa central do dispositivo e os domes de compressão;
Figura 7: Vista em perspectiva da base para preparo dos tendões;
Figura 8: Vista em perspectiva mostrando o início da perfuração do túnel tibial, com o posicionamento do fio guia;
Figura 9: Vista em perspectiva mostrando o inicio da perfuração do túnel tibial com a broca canulada;
Figura 10: Vista em perspectiva mostrando a perfuração do túnel tibial com a broca canulada transpassando o osso da tíbia;
Figura 11 : Vista em perspectiva mostrando o túnel tibial concluído e colocação do fio guia femoral com o auxílio do guia trans-tibial;
Figura 12: Vista em perspectiva mostrando o guia femoral trans-tibial orientando o ponto de entrada do fio guia no fémur;
Figura 13: Vista em perspectiva mostrando o fio guia transpassando todo o fémur;
Figura 14: Vista em perspectiva mostrando o fio guia mantido na mesma posição da figura anterior, com a retirada do guia femoral e introdução da broca canulada para o fémur; Figura 15: Vista lateral mostrando o fio guia através do fémur e a broca canulada de 10mm perfurando um túnel, de 30 milímetros de profundidade e preservando 2 milímetros de osso intacto na parede posterior do fémur;
Figura 16: Vista lateral mostrando o fio guia mantido na mesma posição no fémur, e uma broca canulada de 4,5mm perfurando o restante do fémur além do túnel de 30 milímetros;
Figura 17: Vista em corte mostrando detalhe do túnel femoral;
Figura 18: Vista em perspectiva mostrando introdução de régua graduada através dos túneis tibial e femoral;
Figura 19: Vista em perspectiva mostrando os dois rasgos laterais e opostos realizados na cortical de entrada do canal tibial, com detalhe do entalhe;
Figura 20: Vista em perspectiva mostrando o fio guia com detalhe dos furos em sua extremidade distai e os fios de tração do dispositivo femoral;
Figura 21 : Vista em perspectiva mostrando as pontas complementares dos fios que transpassam o conjunto de fixação femoral voltando para os furos restantes do fio guia, e levados através dos túneis;
Figura 22: Vista em perspectiva mostrando a fixação do conjunto femoral por meio do parafuso cortico-esponjoso tracionado pelos fios;
Figura 23: Vista em perspectiva da remoção dos fios de tração após a fixação do dispositivo femoral;
Figura 24: vista em perspectiva do conjunto femoral fixado ao fémur com as bandas transpassando o túnel da tíbia, com correto posicionamento do parafuso, cápsula e enxerto, mostrando detalhe;
Figura 25: Vista em perspectiva mostrando o dispositivo tibial em relação às duas bandas de enxerto;
Figura 26: Vista em perspectiva mostrando o dispositivo tibial sendo inserido no túnel em relação às duas bandas de enxerto e com a sua placa metálica central alinhada ao sulco feito na cortical anterior da tíbia;
Figura 27: Vista em perspectiva mostrando o conjunto tibial acoplado a um martelete com encaixe na placa central do conjunto tibial;
Figura 28: Vista em perspectiva mostrando a extremidade do martelete de encaixe, mostrando detalhe;
Figura 29: Vista em perspectiva mostrando o conjunto tibial junto ao túnel, sendo impactado com o auxílio de um martelo;
Figura 30: Vista em perspectiva mostrando a colocação dos parafusos no dispositivo tibial;
Figura 31 : Vista em perspectiva mostrando a utilização de um dinamômetro manual que prende uma das bandas do enxerto através de uma pinça enquanto esta banda do enxerto é submetida à tensão e fixada independentemente com o joelho posicionado em flexão;
Figura 32: Vista em perspectiva mostrando a utilização do mesmo dinamômetro manual prendendo a outra banda do enxerto através de sua pinça enquanto esta banda do enxerto é submetidas à tensão e fixada independentemente com o joelho posicionado em uma posição próxima da extensão;
Figura 33: Vista em perspectiva mostrando os dispositivos em seus devidos lugares, mostrando o corte do excesso das bandas com auxílio de bisturi;
Figura 34: Vista em perspectiva mostrando o encerramento do procedimento de fixação do enxerto;
Figura 35: Vista em perspectiva mostrando colocação de placa de reforço, não sendo realizado o corte do excesso dos tendões;
Figura 36: Vista em perspectiva mostrando a amarração da placa de reforço na placa central do dispositivo tibial;
Figura 37: Vista em perspectiva mostrando final do procedimento com detalhe da amarração das duas bandas do enxerto sobre a placa de reforço;
Figura 38: Vista em perspectiva mostrando o extrator tibial do dispositivo de fixação tibial;
Figura 39: Vista em perspectiva mostrando detalhes do extrator tibial;
Figura 40: Vista em perspectiva mostrando a impacção do extrator com martelo em sentido oposto à tíbia, mostrando detalhe;
Figura 41 : Vista em perspectiva mostrando a chave de punho sextavada para desparafusar o parafuso femoral;
Figura 42: Vista em perspectiva mostrando a chave de punho acoplada ao extrator do parafuso femoral;
Figura 43: Vista em perspectiva mostrando o extrator do parafuso femoral acoplado à chave de punho, retirando o parafuso femoral, com detalhe;
Figura 44: Vista em perspectiva mostrando o manejo da chave de extração femoral e detalhes da conexão ao parafuso.
Os "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS", objeto desta solicitação de Patente de Invenção, consistem essencialmente de dispositivos (D1 e D2) de fixação cortico-esponjoso-compressiva, em que o dispositivo (D1) é utilizado na fixação femoral e outro dispositivo (D2) na fixação tibial, ambos aplicados em cirurgia de reconstrução ligamentar do ligamento cruzado anterior (LCA) do joelho, em dupla banda com único túnel tibial e femoral.
Basicamente, o primeiro dispositivo (D1), ou seja, o conjunto de fixação femoral é composto de um parafuso (2) córtico - esponjoso acoplado a uma base (3) de apoio para o enxerto (4), que fará também sua compressão contra o osso, a ser usado no fémur.
As figuras 01 , 02 e 03, demonstram o conjunto de fixação femoral (D1), com seu parafuso (2) cortico-esponjoso de cabeça plana (5), com fenda sextavada, de corpo liso (6), com uma rosca proximal de comprimento variável para tecido esponjoso (R1), (de acordo com o tamanho do parafuso) e uma rosca distai para osso cortical (R2), de cerca de 4mm de comprimento, sendo que estas duas roscas (R1 e R2) são descontínuas. O parafuso (2) tem um orifício (7) na ponta para passagem dos fios (8) de "ethibonde", usados para tração do dispositivo. Este parafuso (2) tem seu comprimento previamente determinado pelo procedimento de medição com uma régua graduada (9) que esta demonstrada na figura 18. Ele se conecta à base de apoio (3) do enxerto (4), que é fixado ao conjunto por uma sutura de fio resistente (10) como é demonstrado em detalhe na figura 2.
As extremidades dos tendões que formam o enxerto (4) serão suturadas com fio de grande resistência e biocompatível, "ethibond n° 2", ou similar, em suas extremidades, com cores (C1 e C2) distintas em lados opostos, formando um feixe duplo, identificado pelas cores diferentes na sutura (C1 e C2). Próximo ao vértice deste feixe de tendões (4) é realizado outro alinhavo, com o mesmo fio de cores distintas com o objetivo de marcar os cabos do tendão (E1 e E2) em sua parte próxima da base de apoio (3).
O segundo dispositivo (D2) é semelhante a uma bucha de parede, porém com dilatação independente de cada uma de suas metades (11), que fará a fixação esponjosa e compressiva do enxerto na tíbia, acoplada a uma placa (12) de fixação na cortical tibial.
As figuras 4, 5 e 6 melhor demonstram o segundo dispositivo (D2) do conjunto tibial, que se compõe de dois parafusos de seção sextavada (13), uma tampa (14) circular de encaixe e recepção, dois fios (15) de "ethibonde" número 5, para fixação de segurança, uma placa (16) metálica divisora de hemisférios e dois domes (11) semi-circulares de compressão que funcionam como buchas. Os domes (11) devem estar inclinados (a) para serem montados e integrados à tampa circular (14), junto com a placa metálica divisora de hemisférios (16).
A placa metálica (16) possui duas proeminências (17) distais, inclinadas a 90 0 de forma a se encaixarem com exatidão nos orifícios (18) dos domes semicirculares (11).
A figura 6 demonstra, em detalhe, a configuração do encaixe dos domes (11) junto à tampa circular (14). Este artifício faz com que o conjunto torne-se indivisível quando fechado no formato do conjunto de fixação tibial (D2).
Mais particularmente, os dispositivos (D1 e D2) são passíveis de utilização para a reconstrução ligamentar do ligamento cruzado anterior, com base nas técnicas cirúrgicas conhecidas, conforme descrição abaixo:
Após o paciente estar devidamente preparado na mesa cirúrgica, em decúbito dorsal horizontal, uma incisão de cerca de 5 cm é realizada na região ântero - medial da tíbia, sobre a inserção dos músculos ísquiotibiais, também denominados de pata de ganso. São isolados, por dissecção, os tendões dos músculos grácil e semitendíneo, e estes tendões são retirados para uso como enxerto (4), com o auxílio de um extrator de tendão, instrumento de uso habitual neste tipo de procedimento.
Estes tendões são limpos de todo tecido muscular, deixando apenas o tendão em si.
Os tendões são então levados a uma base (B) para preparo onde são submetidos à tensão (Figura 7). Esta base (B) permite o alinhamento dos dois tendões, formando o enxerto (4) que são suturados com fio de grande resistência e biocompatível, "ethibond n° 2", ou similar, em suas extremidades, com cores (C1 e C2) distintas em lados opostos, formando um feixe duplo, identificado pelas cores diferentes na sutura. Próximo ao vértice deste feixe de tendões, que será denominado enxerto (4) é realizado outro alinhavo com o mesmo fio de cores distintas (E1 e E2) com o objetivo de marcar os cabos do tendão nesta outra extremidade, de maneira que possam ser individualizados quando forem fixados ao túnel do fémur.
Este feixe de tendões é posicionado na base (B) por meio do separador (19) e suas pontas são presas a duas pinças (20) do lado oposto, através de seus manípulos (21). O feixe, nesta fase, é fixado através do manipulo (22). Após devidamente preparado, o enxerto (4) deve ser esticado gradualmente, sob o controle de um dinamômetro (23) através do gancho (G) com o objetivo de manter uma tensão numérica e constante durante a espera para sua utilização na cirurgia, garantindo que não ocorra risco de variação de seu comprimento e nem escorregamento residual nas interfaces tendão e sutura. Esse procedimento é denominado pré-tensionamento.
Concomitantemente à preparação do enxerto (4), que é realizada por um auxiliar, o cirurgião realiza duas incisões na pele, de cerca de 1 cm, na altura da articulação do joelho, uma medial e outra lateral, que serão utilizadas para a entrada do artroscópio e dos materiais cirúrgicos no joelho, uma vez que o procedimento de reconstrução ligamentar é todo realizado por artroscopia.
Após o inventário da articulação e o tratamento das lesões meniscais e condrais que possam estar associadas à lesão ligamentar, inicia-se a perfuração do túnel tibial (figura 8). Um fio guia (24) com ponta de broca de 3,2 mm de diâmetro, é instalado, com o uso de um perfurador ósseo, no centro da inserção tibial do ligamento cruzado anterior, com ou sem o auxílio de um guia especifico.
O osso da tíbia (25) é perfurado até que a ponta do fio guia (24) atinja a superfície articular (A) da tíbia (25), através do tecido cartilaginoso, sem avançar para outras estruturas, acompanhado com precisão através de visão artroscópica. Em seguida (fig.9), o fio guia (24) é mantido em sua posição anterior e, uma broca (26) canulada (furada em seu interior) e graduada, de 11 mm de diâmetro, é introduzida alinhada a ele, perfurando o túnel tibial (T), como é demonstrado na figura 10. ,
22/32
Deve-se ter o mesmo cuidado para não avançar com a broca em outras estruturas, como o ligamento cruzado posterior, ou o osso e cartilagem femorais, sendo o cirurgião sempre guiado pela visão artroscópica.
Após esse procedimento, tanto o fio guia (24) quanto a broca canulada (26) são removidos da tíbia (25) restando apenas o túnel (T), livre para o próximo tempo cirúrgico.
Logo após o túnel tibial (T) ser concluído (f ig .11), o fio guia do túnel femoral (27) é introduzido através do túnel tibial (T) propriamente dito, com ou sem auxílio do guia trans-tibial (28), sendo colocado no osso do fémur (29) no ponto desejado para a origem do ligamento cruzado anterior a ser reconstruído. Este ponto deve estar em uma posição isométrica na articulação do joelho, e deve estar posicionado de forma que o túnel a ser perfurado esteja a cerca de 2 mm da cortical posterior do fémur.
A figura 12 demonstra o guia femoral trans-tibial (28) orientando o ponto de entrada (30) do fio guia no fémur (29).
Quando o guia femoral (28) estiver cuidadosamente posicionado (fig.13), o fio guia (27) deverá atravessar todo o interior do osso do fémur (29) até romper sua superfície cortical anterior.
A figura 14 demonstra que o fio guia (27) é mantido nesta mesma posição, enquanto o guia femoral (28) é retirado, e na sequência, é introduzida, alinhada com o fio guia (27), uma broca canulada e graduada de 10 mm de diâmetro (31). Conforme demonstrado na fig.15 esta broca canulada (31) progredirá ao redor do fio guia (27), perfurando um túnel no fémur (29) de 30 mm de profundidade, mantendo 2mm de parede óssea intacta na região posterior do fémur.
Em seguida (fig.16), a broca canulada (31) de 10mm é retirada e substituída por uma outra broca canulada de 4,5mm de diâmetro (32), também alinhada com o fio guia (27), que avança perfurando ao redor deste fio até romper a cortical anterior do fémur, criando dessa forma, o alargamento de todo o canal deixado pelo fio guia (27). A figura 17 demonstra, em corte, o detalhe do túnel femoral e o diâmetro do canal preparado de tal forma (33), para inserção posterior de um parafuso.
Através dos túneis tibial e femoral (fig.18) é introduzida uma régua (9) graduada com batente em "L", que tem como objetivo medir o tamanho total do túnel femoral (igual à somatória do comprimento dos furos de 10mm de diâmetro e 4,5mm ,
23/32
de diâmetro). Esta medida determina o tamanho do parafuso femoral a ser utilizado. Todo o instrumental é então retirado do joelho.
O próximo passo (fig.19) é fazer dois rasgos (R3) laterais e opostos na cortical de entrada do canal tibial, através do formão duplo (34) impactado pelo martelo (35), o suficiente apenas para penetrar a parede cortical do osso tibial (vide detalhe da fig.19), criando um entalhe (R3).
Inicia-se então, novo tempo cirúrgico (fig. 20), com a reintrodução do artroscópio, e, sob controle visual, o fio guia do enxerto (36) é introduzido através do túnel (T) tibial, articulação e túnel (T) femoral. Este fio guia (36) é empurrado em direção ao fémur (29), até perfurar a musculatura e a pele da coxa.
O fio guia (36) tem em sua extremidade inferior quatro furos (F1 , F2, F3, F4)). Em dois destes furos (F1 e F2) são introduzidos dois fios (8) de "ethibonde" número 5 para a tração do dispositivo femoral, pelo fio guia (36).
As outras duas pontas dos fios (8) transpassam o conjunto de fixação femoral (D1), através do orifício (7) na ponta do parafuso córtico esponjoso (2) já acoplado à sua base (3) e ao enxerto (4), e voltam a transpassar os dois furos (F3 e F4) restantes do fio guia (36) (fig.21). Em seguida, o fio guia (36), exposto na lateral da coxa do paciente, é tracionado pelo cirurgião, atravessando o túnel da tíbia e o túnel do fémur, conduzindo e deixando expostos na parte externa da coxa os quatro seguimentos dos fios de "ethibonde" número 5 (8).
O enxerto (4) é preso à base (3) do dispositivo de fixação femoral (D1) por meio de uma amarração (10) com fio "ethibonde" numero 2 (fig.02), vista no detalhe junto com as suturas (E1 e E2) de identificação dos dois cabos do enxerto.
Note-se, na figura 1 , que o orifício central da base de apoio do enxerto (3) é menor que o diâmetro da rosca (R1) para osso esponjoso do parafuso (2), o que torna o conjunto parafuso (2) e base de apoio (3) indivisível, caso ele tenha de ser retirado do osso.
Na figura 3 demonstra-se o encaixe, em detalhes, da curvatura do enxerto (4) e amarração deste na base de apoio (3).
O próximo tempo cirúrgico (fig. 22) é a fixação do conjunto femoral (D1) ao fémur (29), através do parafuso cortico-esponjoso (2). O parafuso (2) é tracionado pelos fios "ethibonde" número 5 (8), exteriorizados na lateral da coxa, e aparafusado ,
24/32 f f
com uma chave de cabeça sextavada (37), que entra através do túnel tibial e se encaixa na cabeça deste parafuso (2).
A rosca esponjosa (R1) em descontinuidade com a rosca cortical (R2) do parafuso (2) impedirá a progressão do mesmo, quando atingir o osso cortical. Isso evita que ele avance pela cortical, além dos 4mm de sua rosca (R2) específica para este tipo de osso (a espessura média desta cortical é de 4mm), desta forma, impedindo que a progressão da ponta do parafuso (2) possa incomodar a musculatura da coxa.
Após sua fixação (fig.23), os fios "ethibonde" número 5 (8) devem ser removidos totalmente do interior do parafuso (2) e do campo cirúrgico, através de tração de cada cabo independentemente.
A figura 24 demonstra o detalhe do posicionamento correto do parafuso (2), base de apoio (3) e enxerto (4), dentro do túnel (T) femoral. As marcações (E1 e E2) podem ser observadas através do artroscópio, identificando as duas bandas do enxerto, denominadas ântero-medial e póstero-lateral, na entrada do túnel (T) femoral. O resultado deste procedimento será a criação de duas bandas (38) de enxerto, pelos dois feixes dos tendões fixados ao fémur (29), os quais atravessarão a articulação, substituindo as duas bandas do ligamento cruzado anterior rompido. Estes dois feixes de tendão, daqui em diante chamados de bandas (38), atravessarão o túnel (T) tibial, e sairão através do orifício de entrada na cortical anterior da tíbia (25), ficando aparentes do lado de fora (T) do túnel tibial.
Nesta fase (fig.25) é preparada a introdução do conjunto tibial (D2), mantendo-se afastadas as duas bandas (38) do enxerto.
Como já foi descrito na figura 4, a placa metálica (16) possui duas proeminências distais, inclinadas a 90 0 (17), de forma a se encaixarem com exatidão nos orifícios (18) dos domes semicirculares (11).
Esta configuração permite que o conjunto seja introduzido dentro do túnel da tíbia (25) sem que a placa metálica (16) divisora de hemisférios se desalinhe da direção pretendida.
Após as duas bandas (38) serem afastadas, o conjunto de fixação tibial (D2) é pressionado junto ao túnel tibial existente, alinhando a placa (16) metálica divisora de hemisférios com os dois rasgos (R3), na entrada do túnel tibial (fig.26). O conjunto de fixação tibial (D2) é impactado com auxílio de um martelete (39) de ,
25/32
encaixe em sua placa central (16) (fig.27), cuja extremidade (40) se encaixa e envolve a superfície da aresta desta placa (16) metálica divisora de hemisférios, de forma a conduzir o conjunto sem que haja o risco de escape, até sua posição ideal, como pode ser visto em detalhes na figura 28.
A figura 29 demonstra a impacção do conjunto tibial (D2) para o interior do túnel, com o auxilio de um martelo (35) e do martelete (39). Esta impacção deve ser suficiente para ocultar todo o conjunto de fixação tibial (D2) dentro do túnel (T) tibial, rente à face externa da tíbia (25).
Após a impacção (fig.30), são introduzidos, nos dois orifícios da tampa circular (14), dois parafusos de seção sextavada (13) com o objetivo de expandir os dois hemisférios (11) do conjunto de fixação tibial (D2), empurrando-os em sentidos opostos, de maneira semelhante à abertura de uma bucha de parede, porém, com cada hemisfério expandindo-se independentemente.
Reiterando, os parafusos (13) são responsáveis pela fixação e pressão constante das duas bandas do enxerto junto à parede esponjosa do osso da tíbia (25), separadas através da placa (16) metálica divisora de hemisférios (11), em duas bandas (38) distintas, dentro de um único túnel (T), com tensões independentes.
Com o joelho entre 45 e 60° de flexão (fig.31) é utilizado um dinamômetro manual (41) que prende a banda ântero - medial do enxerto através de sua pinça e manipulo (42), identificada pela marcação através de sutura de cor distinta (C1), referente à sua posição, e que permite identificá-la, tanto dentro da articulação, próxima à fixação femoral (E1), quanto na parte externa do túnel tibial. Com esta banda do enxerto submetida à tensão desejada pelo cirurgião, o primeiro parafuso (13) é apertado com a chave tibial de seção sextavada (43), o direcionamento do vetor de força pode ser observado na segunda imagem da figura 31.
Quando o parafuso (13) expande este hemisfério (11) do conjunto de fixação tibial (D2), ele comprime a banda ântero - medial contra a parede do túnel (T) tibial, exclusivamente deste lado do túnel, fixando-a firmemente. Note-se, tensionada com o joelho em flexão.
A placa metálica (16) divisora de hemisférios (11), apoiada no osso cortical e esponjoso, mantém a outra metade do túnel tibial ainda livre de compressão.
Com o joelho entre 0 e 10° de extensão (fig.32), será repetido o mesmo procedimento com a banda póstero - lateral, identificada com a cor diferenciada da „
26/32
sutura (C2 e E2), apertando-se firmemente seu parafuso (13) correspondente com a chave sextavada (43), após submeter esta banda à tensão desejada com o dinamômetro (41).
Após certificar-se de que os dois parafusos (13) estão devidamente apertados, são realizados movimentos de flexão e extensão passiva do membro operado, e testa-se a estabilidade do joelho através de exame clínico especifico (testes de Lachman, gaveta anterior e pivot shift).
Caso o cirurgião esteja satisfeito com a fixação obtida, faz-se o corte do excesso das pontas das bandas (38), com auxílio do bisturi (44) (fig.33), e são retirados os fios auxiliares de "ethibond" (15) do interior do conjunto de fixação tibial (D2).
Está encerrado o procedimento de fixação do enxerto, como demonstra o desenho da figura 34.
É feito o fechamento da ferida cirúrgica e o curativo da ferida operatória, de acordo com as técnicas habituais.
Quando a estrutura óssea da tíbia apresenta indícios de fragilidade, deixando dúvidas quanto à resistência da fixação, ou quando o cirurgião deseja uma fixação de garantia, é utilizado um acessório de reforço, para garantir que o conjunto tibial (D2) não escorregue para dentro do túnel (T) tibial, nem os tendões que formam as duas bandas (38).
Neste caso, (fig.35) não é feito o corte do excesso dos tendões como na figura 33. É utilizada uma placa de apoio cortical (12) retangular com quatro furos, por onde passam as quatro pontas dos fios de ethibonde número 5 (15), os quais estão presos na placa (16) metálica divisora de hemisférios (11) do dispositivo de fixação tibial (D2). É feito, então, um nó triplo (45) em cada par de fios, sobre a placa de apoio cortical (12), como pode ser visto na figura 36. Com isso, o dispositivo tibial (D2) fixa-se à placa apoio cortical (12), que apoiada na cortical da tíbia, impede a migração do conjunto para dentro do túnel. Para finalizar o procedimento (fig.37), as pontas dos tendões que sobram para fora do túnel são suturadas sobre a placa (12), como demonstrado no detalhe da figura 37, ou no caso de não haver sobra de tendões, os cabos (C1 e C2) são amarrados sobre ela, impedindo a migração proximal do enxerto. Corta-se o excesso dos tendões ou dos cabos de sutura. Logo ,
27/32
após, é feito o fechamento da ferida cirúrgica e o curativo da ferida operatória de acordo com as técnicas habituais.
Em caso da necessidade da retirada dos dispositivos de fixação, será realizado o corte dos tendões, suturas e remoção da placa retangular com quatro furos (12), caso tenha sido utilizada. Em seguida, serão retirados, com a chave sextavada (43), os parafusos (13) expansores dos domes (11).
Será utilizado então, o extrator tibial (46), composto de uma manopla com uma barra longitudinal de seção quadrangular resistente a impactos (fig. 38), com furação coincidente com os dois orifícios da tampa circular (14). Através dos furos da barra são introduzidos dois pinos extratores (47), que serão atarrachados nos orifícios de saída do "ethibonde" de segurança (15). Estes pinos são recartilhados em uma de suas extremidades, e tem a ponta auto-atarrachante na outra, para iniciar a abertura da rosca na tampa circular (14). O pino extrator possui, em sua cabeça, uma reentrância sextavada para recepcionar a chave de cabeça sextavada (43), que permite forçar a abertura de sua rosca de fixação, através de suas extremidades auto-atarrachantes (48), conforme detalha a figura 39.
Esse extrator será impactado com o martelo (35) em sentido oposto à tíbia (fig.40), de forma a extrair o conjunto tibial (D2) de dentro do túnel ósseo. O detalhe da figura 40 demonstra a impacção do martelo (35) no extrator tibial (46), que extrai o conjunto tibial (D2), através dos pinos extratores (47).
Para a retirada do conjunto femoral (D1), serão retirados os restos dos enxertos danificados.
Através do novo túnel tibial, ou por um portal de acesso articular, será introduzida uma chave de punho sextavada (49) para desparafusar o parafuso femoral (2) até que sua face interna esteja a mais de 5mm recuada da cápsula (3) do componente femoral (D1) (fig.41). Em seguida, a chave de punho sextavada (49) é retirada do joelho, e é introduzido o extrator do parafuso femoral (50), com objetivo de agarrar a face interna da cabeça do parafuso (fig.42). A chave sextavada (49) é, então, introduzida, desta vez por dentro do extrator do parafuso, encaixando-se na cabeça do parafuso e no cabo do extrator, formando um conjunto único parafuso- extrator-chave, facilitando sua remoção com a rotação e tração no sentido de retirada (fig.43). Vide detalhe na figura 43 do parafuso encaixado no extrator e na chave. Desta forma, impede-se que o parafuso caia na articulação durante sua remoção. A figura 44 demonstra o manejo da chave de extração femoral (49), do extrator (50) e detalhes de sua conexão ao parafuso (2).
Assim, fica demonstrada a finalização do procedimento de remoção do enxerto e de seus dispositivos de fixação.
Referências bibliográficas:
1- J W Xerogeanes - 11 Curso de Cirurgia de Joelho de Campinas, 2009.
2- Bradley JP et al; Arthroscopy, vol 18- 5; may-june, 2002: 502-509.
3- Prodromos C et al; Arthroscopy, vol 23-12; dec 2007: 1320-1325.
4- Battle W H; Clin Soe London Trans, 1900.
5- Mayo Robson A W ; Ann Surg, 1903.
6- Hey Groves E W; Br J Surg, 1917.
7- Gergis F G; CORR, 1975.
8- Kennedy JC; JBJS Am, 1971.
9- Noyes F R; JBJS Am, 1974.
10- Slocum DB; JBJS Am, 1968.
11- Jones KG; JBJS Am, 1970.
12- Kennedy JC e Fowler PJ; JBJS Am, 1971.
13- Galway RD; JBJS Br, 1972.
14- Franke K; Orthop Clin North Am, 1976.
15- Clancy WG; JBJS Am, 1982.
16- Hugston JC; JBJS AM, 1976.
17- Torg JS; Am J Sports Med, 1976.
18- Losee RE; JBJS Am, 1978.
19- Ellison AE; JBJS Am, 1979.
20- Butler DL , Noyes FR; JBJS Am, 1980.
1- lnsall J; JBJS Am, 1981.
2- Marshall; Am J Sports Med, 1982.
3- Clancy WG; JBJS Am, 1982.
4- Zarins B, Rowe CR; JBJS Am , 1986.
5- Macey H; Joint Surg Gynecol Obstet, 1939.
6- George et al; Am J Sports Med, 2007.
7- Zantop T et al ; Arthroscopy; vol 23-9: 938-947 , set 2007. - Milano G et al ; Arthroscopy ; vol 22 -6 ; 660-668, jun 2006.
- Manual de Osteossíntese AO-ASIF, pg. 45, terceira edição M.E. Muller et al.- Brucker PU et al ; Arthroscopy; 22 -11 1250 , nov 2006.
- Makino et al ; Arthroscopy; 22-6 684e1-685e5, jun 2006.
- Rainer S et al ; Arthroscopy; 24 -5 : 585:592, may 2008.
- William R; Arthroscopy; 17, 3 :244-247. mar 2000.
- Lahav and Burks; Sports Med Arthrosc Rev. 2005; 13: 8-16.

Claims

REIVINDICAÇÕES
1) "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E Tl BI AL ÚNICOS", caracterizado por dispositivos (D1 e D2) de fixação cortico-esponjoso- compressiva, em que o dispositivo (D1) é utilizado na fixação femoral e outro dispositivo (D2) na fixação tibial.
2) "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS", de acordo com a reivindicação
1 , caracterizado pelo primeiro dispositivo (D1), ou seja, o conjunto de fixação femoral (D2) ser composto de um parafuso (2) cortiço - esponjoso acoplado a uma base (3) de apoio para o enxerto, que fará também sua compressão contra o osso.
3) "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS", de acordo com a reivindicação
2, caracterizado pelo parafuso (2) cortico-esponjoso de cabeça plana, com fenda sextavada, de corpo liso (6), com uma rosca proximal de comprimento variável para tecido esponjoso e uma rosca distai para osso cortical, de cerca de 4mm de comprimento, sendo que estas duas roscas (R1 e R2) são descontínuas; o parafuso (2) tem um orifício (7) na ponta para passagem dos fios (8) de "ethibonde"; este parafuso (2) tem seu comprimento previamente determinado pelo procedimento de medição com a régua graduada (9), e se conecta à base de alojamento (3) dos tendões (4).
4) "DISPOSITIVOS DE FIXAÇÃO CÓRTICO-ESPONJOSA-COMPRESSIVA PARA CIRURGIA DE RECONSTRUÇÃO LIGAMENTAR DO JOELHO COM DUPLA BANDA E TÚNEIS FEMORAL E TIBIAL ÚNICOS", de acordo com a reivindicação 2, caracterizado pelo segundo dispositivo (D2) do conjunto tibial se compor de dois parafusos de seção sextavada (13), uma tampa (14) circular de encaixe e recepção, dois fios (15) de "ethibonde" número 5, para fixação de segurança, uma placa (16) metálica divisora de hemisférios e dois domes (11) semi-circulares de compressão que funcionam como buchas; a placa metálica (16) possui duas proeminências (17) distais, inclinadas a 90 0 de forma a se encaixarem com exatidão nos orifícios (18) dos domes semicirculares (11).
PCT/BR2011/000081 2011-03-28 2011-03-28 Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos WO2012129617A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/BR2011/000081 WO2012129617A1 (pt) 2011-03-28 2011-03-28 Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2011/000081 WO2012129617A1 (pt) 2011-03-28 2011-03-28 Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos

Publications (1)

Publication Number Publication Date
WO2012129617A1 true WO2012129617A1 (pt) 2012-10-04

Family

ID=46929228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000081 WO2012129617A1 (pt) 2011-03-28 2011-03-28 Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos

Country Status (1)

Country Link
WO (1) WO2012129617A1 (pt)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9056003B2 (en) 2013-01-25 2015-06-16 Smith & Nephew, Inc. Tissue graft fixation
CN105055048A (zh) * 2015-09-19 2015-11-18 施晓明 交叉韧带重建术滑翔伞状固定板装置
EP3020372A1 (en) * 2014-10-23 2016-05-18 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
EP3020371A3 (en) * 2014-10-23 2016-08-24 DePuy Synthes Products, Inc. Biceps tenodesis implants and delivery tools
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129902A (en) * 1990-04-20 1992-07-14 Marlowe Goble E Endosteal ligament retainer and process
US5968045A (en) * 1997-10-14 1999-10-19 Frazier; John K. Intra-articular tendon sling fixation screw
US6235057B1 (en) * 1995-01-24 2001-05-22 Smith & Nephew, Inc. Method for soft tissue reconstruction
WO2001089422A1 (en) * 2000-05-24 2001-11-29 Sklar Joseph H Method and apparatus for making a ligament repair using compressed tendons
US6833005B1 (en) * 2001-02-02 2004-12-21 John P. Mantas Ligament graft system and method
US20050065533A1 (en) * 2001-05-31 2005-03-24 Magen Hugh E. Apparatus for assembling anterior cruciate ligament reconstruction system
US7468074B2 (en) * 2004-10-29 2008-12-23 Arthrex, Inc. Ligament fixation using graft harness
US20100298936A1 (en) * 2009-05-19 2010-11-25 Meira Corporation Tensile force-adjustable fixing tool for fixing tendon graft and ligament reconstruction method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129902A (en) * 1990-04-20 1992-07-14 Marlowe Goble E Endosteal ligament retainer and process
US6235057B1 (en) * 1995-01-24 2001-05-22 Smith & Nephew, Inc. Method for soft tissue reconstruction
US5968045A (en) * 1997-10-14 1999-10-19 Frazier; John K. Intra-articular tendon sling fixation screw
WO2001089422A1 (en) * 2000-05-24 2001-11-29 Sklar Joseph H Method and apparatus for making a ligament repair using compressed tendons
US6833005B1 (en) * 2001-02-02 2004-12-21 John P. Mantas Ligament graft system and method
US20050065533A1 (en) * 2001-05-31 2005-03-24 Magen Hugh E. Apparatus for assembling anterior cruciate ligament reconstruction system
US7468074B2 (en) * 2004-10-29 2008-12-23 Arthrex, Inc. Ligament fixation using graft harness
US20100298936A1 (en) * 2009-05-19 2010-11-25 Meira Corporation Tensile force-adjustable fixing tool for fixing tendon graft and ligament reconstruction method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9463086B2 (en) 2013-01-25 2016-10-11 Smith & Nephew, Inc. Tissue graft fixation
US9056003B2 (en) 2013-01-25 2015-06-16 Smith & Nephew, Inc. Tissue graft fixation
US10076374B2 (en) 2014-10-23 2018-09-18 Medos International Sárl Biceps tenodesis delivery tools
US11576769B2 (en) 2014-10-23 2023-02-14 Medos International Sarl Method for anchoring biceps tenodesis
EP3020371A3 (en) * 2014-10-23 2016-08-24 DePuy Synthes Products, Inc. Biceps tenodesis implants and delivery tools
EP3020372A1 (en) * 2014-10-23 2016-05-18 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
US11622848B2 (en) 2014-10-23 2023-04-11 Medos International Sarl Biceps tenodesis anchor implants
US10034742B2 (en) 2014-10-23 2018-07-31 Medos International Sarl Biceps tenodesis implants and delivery tools
US10869751B2 (en) 2014-10-23 2020-12-22 Medos International Sarl Biceps tenodesis implants and delivery tools
CN105769272A (zh) * 2014-10-23 2016-07-20 德普伊新特斯产品公司 二头肌肌腱固定术递送工具
US11284877B2 (en) 2014-10-23 2022-03-29 Medos International Sarl Biceps tenodesis implants and delivery tools
US10709488B2 (en) 2014-10-23 2020-07-14 Medos International Sárl Biceps tenodesis delivery tools
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
EP3888593A1 (en) * 2014-10-23 2021-10-06 DePuy Synthes Products, Inc. Biceps tenodesis delivery tools
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US10758337B2 (en) 2015-04-22 2020-09-01 Medos International Sarl Biceps repair device
US11672647B2 (en) 2015-04-22 2023-06-13 Medos International Sarl Biceps repair device
CN105055048A (zh) * 2015-09-19 2015-11-18 施晓明 交叉韧带重建术滑翔伞状固定板装置
US11065104B2 (en) 2016-04-08 2021-07-20 Medos International Sarl Tenodesis anchoring systems and tools
US11071621B2 (en) 2016-04-08 2021-07-27 Medos International Sarl Tenodesis implants and tools
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US11793624B2 (en) 2016-04-08 2023-10-24 Medos International Sarl Tenodesis implants and tools

Similar Documents

Publication Publication Date Title
WO2012129617A1 (pt) Dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos
US10959832B2 (en) Methods and systems for material fixation
US7819917B2 (en) Method for creating a double bundle ligament orientation in a single bone tunnel during knee ligament reconstruction
US8206446B1 (en) Method for surgically repairing a damaged ligament
US8465545B2 (en) Devices, systems, and methods for material fixation
US5374269A (en) Method and instruments for ACL reconstruction
US9265519B2 (en) Tunnel notcher and guidewire delivery device
US20070250067A1 (en) Method of ACL reconstruction using dual-sided rotary drill cutter
US9452042B2 (en) Methods and systems for material fixation
Howell et al. Endoscopic fixation of a double-looped semitendinosus and gracilis anterior cruciate ligament graft using bone mulch screw
US11786358B2 (en) Apparatus and method for anatomic ACL reconstruction
BRPI0904819A2 (pt) dispositivos de fixação córtico-esponjosa-compressiva para cirurgia de reconstrução ligamentar do joelho com dupla banda e túneis femoral e tibial únicos
Johnson Bone compaction techniques in knee ligament reconstruction
Schumacher All-Inside anterior cruciate ligament reconstruction
Sklar et al. 80 Hamstring Anterior Cruciate Ligament Reconstruction with INTRAFIX and BioINTRAFIX
Re Stratis ST Femoral Fixation System
Prodromos Cortical Screw Post Femoral Fixation Using Whipstitches, Fabric Loop, or Endobutton: The Universal Salvage
Sklar Hamstring Anterior Cruciate Ligament Reconstruction with IntraFix Tibial
Howell EZLoc Femoral Fixation of a Soft Tissue
AU2013200756A1 (en) Devices, systems, and methods for material fixation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862660

Country of ref document: EP

Kind code of ref document: A1