WO2012128300A1 - Method for producing sugar, sugar, and device for producing sugar - Google Patents

Method for producing sugar, sugar, and device for producing sugar Download PDF

Info

Publication number
WO2012128300A1
WO2012128300A1 PCT/JP2012/057241 JP2012057241W WO2012128300A1 WO 2012128300 A1 WO2012128300 A1 WO 2012128300A1 JP 2012057241 W JP2012057241 W JP 2012057241W WO 2012128300 A1 WO2012128300 A1 WO 2012128300A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
sugar
residue
gelling agent
pva
Prior art date
Application number
PCT/JP2012/057241
Other languages
French (fr)
Japanese (ja)
Inventor
誠二 秦
仲前 昌人
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2013505996A priority Critical patent/JP5889872B2/en
Publication of WO2012128300A1 publication Critical patent/WO2012128300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/60Sugars, e.g. mono-, di-, tri-, tetra-saccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis

Definitions

  • the present invention relates to a sugar production method, sugar and sugar production apparatus using cellulosic biomass as a raw material.
  • Biomass refers to bio-based renewable resources and can be defined as “renewable, bio-derived organic resources excluding fossil resources”. Among these biomass, effective utilization of unused plant biomass such as wood from thinned wood, rice straw, wheat straw, rice husks, stalks of starch-based crops such as corn and sugarcane, and oil palm empty bunch (EFB) is required. .
  • unused plant biomass such as wood from thinned wood, rice straw, wheat straw, rice husks, stalks of starch-based crops such as corn and sugarcane, and oil palm empty bunch (EFB) is required. .
  • cellulose has the following multiple structure in the cell wall.
  • the cellulose that forms the cell wall has a quasicrystalline structure that adheres in a straight line, most often referred to as microfibrils.
  • the celluloses (microfibrils) having this quasicrystalline structure are bonded to each other via non-cellulose components such as hemicellulose and lignin. These cellulose components (microfibrils) and non-cellulose components are arranged as a larger structure generally referred to as fibrils. These fibrils are usually laminated in a sheet form to constitute a cell wall.
  • the polymer chains of cellulose are strongly bound by hydrogen bonding. This hydrogen bond causes the plant to have a strong cell wall.
  • the apparatus for causing the cellulose-based biomass fine particles to exist as a floating body becomes complicated, and a great amount of energy is consumed when this technique is used, so that the productivity is high. It can not be said.
  • a certain degree of easily hydrolyzable improvement of the cellulosic biomass is recognized by using a water-soluble polymer for imparting viscosity to the aqueous solution.
  • the use of water-soluble polymers, gelling agents, and the like increases the cost of raw materials, waste treatment, wastewater treatment, and the like, so that productivity is low and practical use for sugar production has not been achieved.
  • the present invention has been made on the basis of the above-described circumstances, and includes a method for producing a highly productive sugar using cellulosic biomass as a raw material, a sugar obtained by this production method, and a device for producing this sugar.
  • the purpose is to provide.
  • the method for producing the sugar of the present invention made to solve the above problems is as follows.
  • a method for producing sugar from cellulosic biomass A mixing step of obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
  • sugar can be easily obtained as a sugar solution from the mixture by the first separation step. Moreover, since the said manufacturing method recycles at least one part of the 1st residue containing the cellulosic biomass, hydrophilic polymer, etc. which were not decomposed
  • the aqueous solvent used in the second separation step is acidic.
  • an acidic aqueous solvent (aqueous solution) in the second separation step the resolution between the solution and the solid content is increased, and recyclability, productivity, and the like can be improved.
  • the mixture in the mixing step further includes a gelling agent.
  • a gelling agent By adding a gelling agent to this mixture and making it gel, the mixture has a high viscosity from the initial stage of kneading in the subsequent dividing step, so that the physical action of kneading is effectively transmitted to the cellulosic biomass.
  • the biomass can be efficiently divided at the molecular level.
  • the gel-like aqueous solution can enter and stay between the broken cellulose chains, so that re-crystallization of the cellulose chains can be prevented. This will improve the splitting ability.
  • At least a part of the mixture that has undergone the saccharification step is brought into contact with a hydrogel or ion-exchange resin mainly composed of a polyvinyl alcohol-based polymer (hereinafter also referred to as “PVA”), and the gelling agent is converted from the mixture. It is preferable to further have a gelling agent separating step for separating the.
  • PVA polyvinyl alcohol-based polymer
  • a gelling agent when the water-containing gel which has PVA as a main component is used, a gelling agent can be isolate
  • the adsorbed gelling agent (borate, etc.) can be desorbed from the hydrogel by making it acidic, and the hydrogel adsorbed by the gelling agent can be directly used in the mixing step. It can be efficient.
  • the gelling agent separation step it is preferable that at least a part of the mixture brought into contact with the hydrogel or the ion exchange resin is at least a part of the first residue. In this way, by separating the gelling agent from at least a part of the first residue, it is possible to remove impurities in at least a part of the first residue and widen the range of utilization of the hydrophilic polymer solution and the like. it can.
  • the hydrophilic polymer solution is more preferable as at least a part of the first residue used in the gelling agent separation step.
  • the gelatinizer can be efficiently separated by bringing the hydrophilic polymer solution from which solids and the like have been removed into contact with the hydrogel or ion exchange resin.
  • the separation liquid is preferably used as at least a part.
  • the aqueous solvent is acidic.
  • an acidic aqueous solvent aqueous solution
  • the separation ability between the solution and the solid content is increased, and recyclability, productivity, and the like can be improved.
  • gelling agent recycling step in which at least a part of the gelling agent separated in the gelling agent separation step is added to the mixture in the mixing step.
  • the hydrated gel is formed by chemical cross-linking of PVA.
  • a water-containing gel made of chemically cross-linked PVA the durability of the water-containing gel is increased, and the productivity can be further increased.
  • the hydrophilic polymer is PVA.
  • PVA the hydrophilic polymer
  • work efficiency and the like in the dividing step are improved, so that productivity can be further increased.
  • boric acid or borate is preferable.
  • the mixture can be gelled in a suitable state, so that the productivity of sugar in the production method can be further increased.
  • the inorganic salt may be at least one selected from the group consisting of sulfate, carbonate, nitrate, phosphate and bicarbonate.
  • the above mixing step, fragmentation step, saccharification step, first separation step and reuse step may be repeated a plurality of times in this order. By repeating this series of steps a plurality of times, recyclability can be improved, and further cost reduction and high productivity can be achieved.
  • the sugar of the present invention is obtained by the production method. Since the sugar is obtained under mild conditions without going through a heating process or the like, the content of high value-added components such as xylose is also high.
  • the sugar production apparatus of the present invention comprises: Mixing means for obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water; A dividing means for applying shearing force to the mixture to divide the cellulosic biomass; A saccharification means for saccharifying the fragmented cellulosic biomass with a cellulolytic enzyme; A sugar production apparatus comprising: a first separation means for adding an inorganic salt to a mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue.
  • sugar can be efficiently produced using cellulosic biomass as a raw material.
  • separation means to the mixture in a mixing means, and the cost reduction by recycling and the reduction of a waste can be aimed at.
  • the “part” of the first residue, the mixture or the hydrophilic polymer solution includes a part of the components contained in the first residue and the like. That is, for example, “a part of the first residue” may be a part of the first residue as it is obtained through the first separation step, or from the first residue to the second separation step, etc. It may be a part of the product (for example, a hydrophilic polymer solution, etc.) obtained by refining.
  • sugar can be obtained with high productivity using cellulosic biomass as a raw material. Therefore, according to the present invention, plant-based biomass materials can be efficiently used as food and energy resources, and the practicality of biomass utilization can be enhanced.
  • the sugar production method of the present invention uses cellulosic biomass as a raw material, A mixing step of obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water; A dividing step of adding shearing force to the mixture to divide the cellulosic biomass; A saccharification step of saccharifying the cellulosic biomass with the cellulose-degrading enzyme; A first separation step of adding an inorganic salt to the mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue; A recycling step of further adding at least a part of the first residue to the mixture in the mixing step.
  • sugar can be easily obtained as a sugar solution from the mixture by the first separation step. Moreover, since the said manufacturing method recycles at least one part of the 1st residue containing the cellulosic biomass, hydrophilic polymer, etc. which were not decomposed
  • the manufacturing method is A second separation step of diluting at least a part of the first residue obtained in the first separation step with an aqueous solvent and separating it into a hydrophilic polymer solution and a second residue; It is preferable that at least a part of the first residue added in the reuse step is at least a part of the hydrophilic polymer solution separated in the second separation step.
  • the hydrophilic polymer contained in the hydrophilic polymer solution and the gelling agent added as a suitable component can be efficiently reused.
  • the production method further includes a gelling agent separation step of contacting at least a part of the mixture that has undergone the saccharification step with a hydrogel containing PVA as a main component or an ion exchange resin, and separating the gelling agent from the mixture. It is preferable to have.
  • a gelling agent separation step it is possible to reuse the separated gelling agent, reduce waste to be disposed of, reduce impurities in the waste water (for example, boric acid and the like), and the like. Therefore, according to the production method having this gelling agent separation step, the total cost for sugar production can be further reduced and the productivity is excellent.
  • a gelling agent when the water-containing gel which has PVA as a main component is used, a gelling agent can be isolate
  • the adsorbed gelling agent (borate, etc.) can be desorbed from the hydrogel by making it acidic, and the hydrogel adsorbed by the gelling agent can be directly used in the mixing step. It is possible and efficient.
  • the production method further includes a third separation step in which the second residue is diluted with an aqueous solvent and separated into a separated liquid and a third residue.
  • the hydrogel or ion exchange resin It is preferable to use the separation liquid as at least a part of the mixture to be contacted. By passing through such a process, the recovery rate of the gelling agent can be increased, and the boric acid concentration in the waste water (for example, the separated liquid after the third separation process) in this system can be reduced.
  • gelling agent recycling step in which at least a part of the gelling agent separated in the gelling agent separation step is added to the mixture in the mixing step.
  • the manufacturing method further precedes the mixing step, Cellulosic biomass raw material cutting step (raw material cutting step) by cutting the cellulosic biomass raw material to make the cellulosic biomass suitable particles It is preferable to have.
  • the cellulosic biomass raw material cutting step in order to make the processing in the subsequent steps efficient, the cellulosic biomass raw material is cut into particles of an appropriate size.
  • the cellulosic biomass material used here is not particularly limited, and plant-derived biomass can be preferably used. Specifically, for example, wood such as thinned wood, rice straw, straw, rice husk, bagasse, corn and sugarcane. Examples thereof include stalks of iso-starch crops, empty palm bunch (EFB), and coconut shells.
  • Such a cellulosic biomass raw material is reduced to particles by various cutting means such as shearing and beating after removing unnecessary components such as soil as much as possible.
  • a breaker described in JP-T-2004-526008, an apparatus used for producing pulp chips, and the like can be suitably used.
  • the size of the cellulosic biomass particles having undergone this cutting step is preferably 2 mm or less, more preferably 1 mm or less, particularly preferably 100 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 70 ⁇ m or less.
  • the subsequent mixing step, particularly the dividing step can be efficiently performed, and cellulose having excellent hydrolyzability can be obtained in a short time.
  • Aqueous solution preparation step In this step, the hydrophilic polymer is dissolved in water to obtain an aqueous solution.
  • the concentration of the hydrophilic polymer aqueous solution is not particularly limited, but is preferably 3% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less. By setting the concentration of the hydrophilic polymer aqueous solution within the above range, an appropriate viscosity can be imparted to the aqueous solution.
  • the concentration of the aqueous solution in the above range, when kneading, the physical force is effectively transmitted to the cellulosic biomass through the aqueous solution, that is, the cellulose chain is peeled off by the aqueous solution, The molecular level fragmentation of biomass can be performed effectively.
  • concentration of the hydrophilic polymer aqueous solution is less than 3% by mass, the aqueous solution does not have an appropriate viscosity, and there is a possibility that the dividing function due to physical action is not sufficiently exhibited.
  • the concentration of the hydrophilic polymer aqueous solution exceeds 30% by mass, the viscosity of the aqueous solution is so high that it becomes difficult to knead, so that the workability in the dividing step may be lowered.
  • the gelling agent Prior to mixing the cellulose-based biomass particles obtained by the above-described cellulose-based biomass raw material cutting step and the hydrophilic polymer aqueous solution, the gelling agent is added to the hydrophilic polymer aqueous solution. Is preferably gelled.
  • the gel-like hydrophilic polymer aqueous solution since the mixture has a high viscosity from the initial stage of kneading in the subsequent dividing step, the physical action of kneading is effectively transmitted to the cellulosic biomass.
  • Cellulosic biomass can be efficiently divided at the molecular level.
  • the gel-like aqueous solution can enter and stay between the separated cellulose polymer chains, thereby preventing re-crystallization of the cellulose polymer chains. This will improve the ability to split.
  • the gelling agent is not particularly limited as long as it can gel the hydrophilic polymer aqueous solution, and known ones can be used.
  • boric acid, borate, titanium acetate examples thereof include salts and other metal salts.
  • boric acid or borate is preferable.
  • hydrophilic polymer aqueous solution When the hydrophilic polymer aqueous solution is gelated by adding borate, for example, 1 to 10 mass of a saturated aqueous solution of sodium tetraborate is added to 100 mass parts of the 5 mass% hydrophilic polymer aqueous solution. This can be done by adding parts and mixing.
  • the hydrophilic polymer aqueous solution thus gelled has a suitable viscosity in the production method, and the viscosity does not easily rise (harden) even if it is mixed and kneaded with the cellulose-based biomass. Kneading can be performed easily and efficiently.
  • this gel-like hydrophilic polymer aqueous solution is acidic, and specifically, it is preferable that pH is 4 or more and less than 7.
  • the cellulose-based biomass cut into a preferred size in the above step is mixed with the hydrophilic polymer aqueous solution gelled in the above step to obtain a mixture containing these.
  • the cellulose-based biomass may be mixed with a non-gelled hydrophilic polymer aqueous solution without passing through the gelation step to obtain a mixture.
  • the mixing amount of the cellulosic biomass is not particularly limited, but the mixing amount of the cellulosic biomass with respect to the entire mixture is preferably 5% by mass or more and 50% by mass or less, and preferably 10% by mass or more and 40% by mass or less. Further preferred.
  • the mixing amount of the cellulosic biomass is less than 5% by mass, the viscosity of the mixture is low and there is a possibility that the function of dividing by the physical action may not be sufficiently exhibited. descend.
  • the mixing amount of the cellulosic biomass exceeds 50% by mass, the water absorption by the biomass is strong, the viscosity of the mixture is too high, and kneading becomes difficult, so that workability is lowered.
  • the viscosity of the mixture is preferably, for example, from 5.0 ⁇ 10 4 mPa ⁇ s to 1.0 ⁇ 10 6 mPa ⁇ s.
  • the mixture should always have a favorable viscosity from the first stage of application of shearing force.
  • the cellulosic biomass can be efficiently divided at the molecular level.
  • the method for applying a shearing force to the mixture in the dividing step is not particularly limited, and examples thereof include a method of kneading the mixture.
  • the apparatus used in the dividing step is not particularly limited, but a twin screw extruder generally used for molding a thermoplastic resin or the like is preferably used.
  • the time required for this dividing step is appropriately set according to the amount of the mixture and the like, and is, for example, about 30 minutes to 10 hours.
  • the viscosity may be appropriately adjusted by adding a sodium tetraborate aqueous solution or the like.
  • Saccharification process In this process, a cellulose-degrading enzyme is added to the mixture containing the cellulosic biomass divided through the above-mentioned fragmentation process, and saccharification is performed.
  • the cellulosic biomass is easily decomposed (saccharified) into glucose and dissolved in an aqueous solution.
  • hemicellulose-derived xylose and the like contained in the cellulosic biomass are also dissolved in the aqueous solution.
  • the lignin contained in the cellulosic biomass may exist as insoluble particles, but this lignin can be separated by, for example, filtration or centrifugation.
  • the saccharides such as soluble glucose thus obtained can be converted to ethanol by fermentation and can be suitably used as a fuel resource.
  • the cellulose-degrading enzyme is not particularly limited, and a known one can be used.
  • cellulase pectinase, hemicellulase, ⁇ -glucanase, xylanase, mannase, amylase, mecellulase, acremonium cellulase (from Acremonium cellulolyticus bacterium) Obtained cellulase). These can be used alone or in combination of two or more.
  • the amount of the cellulose-degrading enzyme added is preferably 0.1 to 10 parts by mass, and more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the cellulose-based biomass.
  • the stirring time can be, for example, 1 hour or more and 12 hours or less.
  • the temperature of the mixture in this saccharification step can be appropriately set depending on the type of enzyme and the like, and is, for example, 30 ° C. or higher and 70 ° C. or lower, and preferably 40 ° C. or higher and 60 ° C. or lower.
  • the pH of the mixture in this saccharification step may be adjusted as appropriate depending on the type of enzyme and the like, for example, preferably 5 to 7.
  • the pH can be adjusted by adding to a known acid or base mixture.
  • First Separation Step an inorganic salt is added to the mixture that has undergone the saccharification step, and the mixture is separated into a sugar solution and a first residue (solid content).
  • the hydrophilic polymer and the gelling agent dissolved in the mixture are precipitated, and these precipitates, undecomposed cellulose biomass and the like are agglomerated and precipitated.
  • the inorganic salt is not particularly limited, but is preferably at least one selected from the group consisting of sulfate, carbonate, nitrate, phosphate and bicarbonate.
  • sulfate is more preferable, and ammonium sulfate is more preferable in view of high solubility in water, precipitation and aggregation precipitation more efficiently.
  • the sugar solution and the first residue can be separated using a known means (such as filtration).
  • the separated sugar solution is an aqueous solution in which sugars such as glucose and xylose are dissolved.
  • This sugar solution can be separated into sugars and used separately, or fermented and used as ethanol.
  • Second Separation Step In this step, at least a part of the first residue is diluted with an aqueous solvent and separated into a hydrophilic polymer solution and a second residue (solid content).
  • a gelling agent in addition to the hydrophilic polymer, the gelling agent is also dissolved in the hydrophilic polymer solution as a solute.
  • boric acid or borate when boric acid or borate is used as a gelling agent, these easily dissolve as solutes in the hydrophilic polymer solution, so boric acid and borate are also efficiently separated from the second residue. can do.
  • aqueous solvent examples include water and a mixed solvent of water and another solvent (for example, alcohol such as ethanol), but water is preferable from the viewpoint of ease of handling and cost.
  • the aqueous solvent is acidic.
  • the separation ability between the hydrophilic polymer solution (including a gelling agent such as boric acid) and the second residue is increased, and the productivity can be increased.
  • the pH of the mixed solution diluted with the aqueous solvent is preferably 3 or more and 5 or less.
  • Examples of means for acidifying the aqueous solvent include a method of adding a known acid to the aqueous solvent. That is, an acidic aqueous solution may be used as the aqueous solvent.
  • Examples of the acid include inorganic acids such as sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, nitric acid, perchloric acid, perbromic acid, hydrochloric acid, carboxylic acid, phthalic acid, maleic acid, paratoluenesulfonic acid, and methanesulfonic acid.
  • an organic acid such as phenol sulfonic acid
  • an inorganic acid is preferable, and sulfuric acid is more preferable.
  • this addition of an acid may be performed with respect to the aqueous solvent before diluting a 1st residue, and may be performed with respect to the liquid mixture of the state which diluted the 1st residue with the aqueous solvent.
  • the usage ratio of the aqueous solvent is not particularly limited, but is, for example, about 1 to 100 times in terms of mass ratio with respect to the solid content of the first residue.
  • the mixed solution it is preferable to stir the mixed solution by a known method after adding an aqueous solvent to the first residue in order to enhance the separation ability. After the stirring, if necessary, the mixture is allowed to stand for a certain period of time, and the hydrophilic polymer solution and the second residue (solid content) are separated by using known means (filtration, centrifugation, etc.). Can do.
  • Gelling agent separation step (I) In this step, the gelling agent is separated from the hydrophilic polymer solution (at least part of the mixture that has undergone the saccharification step) obtained by the second separation step.
  • the separating means include a method of bringing the hydrophilic polymer solution into contact with a hydrogel containing PVA as a main component or an ion exchange resin.
  • the method for contacting the hydrophilic polymer solution and the hydrogel is not particularly limited.
  • a method of immersing the hydrogel in a tank containing the hydrophilic polymer solution or an adsorption tower filled with the hydrogel examples include a method of passing through the liquid.
  • the hydrophilic polymer solution to be brought into contact with the water-containing gel is preferably alkaline and specifically has a pH of 8 to 12.
  • the adsorptivity of the gelling agent such as boric acid to the hydrous gel is increased.
  • the desorption of the gelling agent such as boric acid from the hydrogel after adsorption can be easily performed by immersing the hydrogel in an acidic aqueous solution.
  • the pH of the acidic aqueous solution is preferably 2 to 6, for example.
  • the desorbed boric acid and the like can be reused in a reuse process described later. Further, by removing boric acid or the like, the hydrogel can be used multiple times.
  • desorption to the hydrogel of gelatinizers, such as a boric acid can be easily performed by controlling liquidity.
  • the average degree of polymerization of PVA that is the main component of the hydrated gel is preferably 1,000 or more and 10,000 or less, and more preferably 1,500 or more and 5,000 or less.
  • the degree of saponification of PVA that is the main component of the hydrated gel is preferably 95 mol% or more, and more preferably 98 mol% or more.
  • the water-containing gel is not particularly limited as long as it contains PVA as a main component, but is preferably a crosslinked PVA.
  • PVA polyvinyl alcohol
  • the cross-linked PVA By using the cross-linked PVA, the durability of the hydrogel is improved.
  • Examples of the cross-linking of PVA include radiation cross-linking with electron beams and ⁇ rays, physical cross-linking with repeated freezing, and chemical cross-linking with aldehyde compounds and boric acid.
  • the hydrated gel is preferably formed by chemical crosslinking of PVA.
  • PVA acetalized PVA crosslinked with an aldehyde compound
  • PVA acetalized PVA crosslinked with an aldehyde compound
  • elution of PVA from the hydrogel is reduced and durability is also increased.
  • an example of a specific method for producing a hydrogel formed by chemical crosslinking of PVA using an aldehyde compound will be described.
  • the water-containing gel can be obtained by freezing a PVA aqueous solution at ⁇ 5 ° C. or lower.
  • concentration of the aqueous PVA solution is preferably higher from the viewpoint of gel strength, and is preferably lower from the desorbability of boric acid or the like. Therefore, the concentration of the PVA aqueous solution is preferably 1 to 40% by mass, and more preferably 3 to 20% by mass.
  • an aldehyde compound is added to the PVA gelled by freezing to acetalize (chemical crosslinking).
  • This acetalization reaction may be kept frozen, but is preferably performed after thawing once. Further, in order to strengthen the network structure, freeze-thaw may be repeated, or partial dehydration may be performed by reducing the pressure in a frozen state.
  • aldehyde compound examples include glyoxal, formaldehyde, benzaldehyde, succinaldehyde, malondialdehyde, glutaraldehyde, adipine aldehyde, terephthalaldehyde, and nonane dial.
  • the degree of acetalization (formalization degree) of PVA is preferably 10 to 50 mol%, more preferably 20 to 40 mol%. If the degree of acetalization (degree of formalization) is too low, the water resistance is insufficient. Conversely, if the degree of acetalization (degree of formalization) is too high, PVA is hydrophobized and the network structure collapses. Sometimes.
  • the said hydrogel may contain well-known components other than PVA in the range which does not inhibit the gelatinization of PVA.
  • a water-soluble polymer polysaccharide may be added to form a hydrogel into an arbitrary shape.
  • water-soluble polymeric polysaccharides capable of gelation by contact with cations such as alkali metal salts of alginic acid, carrageenan, mannan, chitosan and the like.
  • alkaline earth metal ions such as calcium ions, magnesium ions, strontium ions and barium ions, polyvalent metal ions such as aluminum ions, nickel ions and cerium ions, potassium
  • the hydrogel may be brought into contact with a cation that gels water-soluble polymer polysaccharides such as ions and ammonium ions.
  • the shape of the hydrated gel is not particularly limited, and an arbitrary shape such as a spherical shape, a fibrous shape, a dice shape, a film shape, or a cylindrical shape can be appropriately selected.
  • a spherical shape such as a spherical shape, a fibrous shape, a dice shape, a film shape, or a cylindrical shape.
  • the obtained acetalized PVA hydrogel has a network structure, it has good desorption properties such as boric acid, and the elution of PVA from the hydrogel is drastically reduced. Further, the water-containing gel is hardly deteriorated, and the durability is improved.
  • the method for contacting the hydrophilic polymer solution with the ion exchange resin is not particularly limited. Examples thereof include a method in which the hydrophilic polymer solution is passed through an adsorption tower packed with an ion exchange resin. Can do.
  • the space velocity (SV) at the time of passing through the adsorption tower is preferably 1 to 10 / hour.
  • ion exchange resin known ones can be used as appropriate.
  • a boron selective ion exchange resin can be suitably used.
  • the boron selective ion exchange resin is not particularly limited as long as it is an ion exchange resin having boron adsorption performance, but a boron adsorption resin having an N-methylglucamine group as an exchange group is preferable.
  • ion exchange resins having an N-methylglucamine group include Diaion (registered trademark; manufactured by Mitsubishi Chemical Corporation) CRB01 and CRB02, Amberlite (registered trademark; manufactured by Rohm Haas) IRA743, Duolite (registered trademark). ; Manufactured by Sumitomo Chemical Co., Ltd.) A368 and the like.
  • the ion exchange resin whose adsorptivity is reduced by contact with a hydrophilic polymer solution containing borate or the like is appropriately regenerated.
  • This regeneration process is performed, for example, by bringing a boron desorption solution into contact with an ion exchange resin.
  • the boron desorbing solution is preferably a dilute mineral acid aqueous solution, more preferably a hydrochloric acid or sulfuric acid aqueous solution having a concentration of about 1 to 10% by mass.
  • a hydrophilic polymer solution in which the pH is adjusted to 6 to 12 by removing a salt by electrodialysis and adding a basic compound.
  • a hydrophilic polymer solution By using such a hydrophilic polymer solution, the separation ability of the gelling agent such as boric acid can be further enhanced.
  • the electrodialysis can be performed using a polyvalent anion permeable membrane or the like.
  • caustic soda etc. can be used as said basic compound.
  • Reuse step In this step, the gelling agent separated in the gelling agent separation step and / or at least a part of the hydrophilic polymer solution from which the gelling agent has been separated are mixed in the mixing step. Add to more.
  • the hydrophilic polymer and / or the gelling agent is reused, raw material costs and waste disposal costs can be suppressed.
  • the hydrophilic polymer and the gelling agent are separated in the gelation and separation step, only one of them can be reused, or the ratio can be appropriately changed and reused. You can also. Furthermore, these can also be used for uses other than the said manufacturing method.
  • the hydrophilic polymer or gelling agent used in the mixing step may be entirely covered from this recycled one, or a new hydrophilic polymer or gelling agent may be partially added to the mixture. Good.
  • the step of adding at least a part of the gelling agent separated in the gelling agent separation step to the mixture in the mixing step is particularly referred to as a “gelling agent recycling step”.
  • the gelling agent added to the mixture in the gelling agent recycling step is derived from the first residue (that is, the gelling agent recycling step is performed as part of the recycling step).
  • sugar of this invention may have only any one of a gelatinizer reuse process and the other reuse process, you may have both processes.
  • Third separation step and gelling agent separation step (II)
  • the third separation step the second residue separated in the second separation step is diluted with an aqueous solvent and separated into a separation liquid and a third residue.
  • the second residue is mainly composed of components to be treated as waste.
  • the gelling agent such as boric acid and the remaining undissolved hydrophilic are contained in the separated liquid.
  • the functional polymer can be taken out, the recyclability can be improved, and the environmental load can be reduced.
  • a part of the first residue that has not been used in the second separation step may be used in addition to the second residue.
  • the said 3rd residue contains the cellulose biomass which was not decomposed
  • This third residue may be disposed of as waste, or may be used as fertilizer or fuel, for example.
  • the specific method (type of aqueous solvent, acidity, etc.) in the third separation step is the same as in the second separation step described above.
  • the gelling agent separation step (II) the gelling agent is separated by bringing the separation liquid separated in the third separation step into contact with the hydrogel or ion exchange resin.
  • the specific method of the gelling agent separation step (II) (the type of hydrogel and ion exchange resin, etc.) is the same as the gelling agent separation step (I) described above.
  • the separation liquid to be brought into contact with the hydrogel is preferably alkaline, specifically pH 8-12.
  • the adsorptivity of the gelling agent such as boric acid to the hydrogel is increased.
  • the desorption of the gelling agent such as boric acid from the hydrogel after adsorption can be easily performed by immersing the hydrogel in an acidic aqueous solution.
  • the pH of the acidic aqueous solution is preferably 2 to 6, for example.
  • the removed boric acid or the like can be reused in a reuse process or the like. Further, by removing boric acid or the like, the hydrogel can be used multiple times.
  • the concentration of the gelling agent (boric acid or the like) in the separated liquid can be lowered, and the treatment as waste water can be performed efficiently.
  • the standards for boric acid discharge in wastewater in Japan are 10 ppm for terrestrial water and 230 ppm for seawater.
  • the concentration of boric acid in the separated liquid can be lowered below these concentrations, for example, 8 ppm or less.
  • the hydrophilic polymer is not particularly limited, and examples thereof include polyvinyl alcohol polymer (PVA), ethylene-vinyl acetate copolymer, polyvinyl pyrrolidone and the like. Among these, PVA is preferable. By using PVA as the hydrophilic polymer, work efficiency and the like in the dividing step are improved, so that productivity can be further increased.
  • PVA polyvinyl alcohol polymer
  • PVA polyvinyl alcohol-type polymer
  • PVA polyvinyl alcohol
  • vinyl ester monomers represented by vinyl acetate or vinyl ester monomers and ethylene are used in various methods (bulk polymerization, PVA obtained by polymerization by a known method (alkali saponification, acid saponification, etc.) after polymerization by methanol (solvent polymerization, emulsion polymerization, suspension polymerization, etc.) is used.
  • vinyl acetate, vinyl formate, vinyl propionate, vinyl versatate, vinyl pivalate and the like can be used as the vinyl ester monomer.
  • the PVA used in the present invention can be copolymerized by allowing a monomer capable of copolymerization with a vinyl ester monomer to coexist within a range not impairing the effects of the present invention.
  • monomers include olefins such as ethylene, propylene, 1-butene and isobutene; acrylic acid; acrylic acid esters; methacrylic acid; methacrylic acid esters; methyl vinyl ether, n-propyl vinyl ether, i -Vinyl ethers such as propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; allyl compounds such as vinyl chloride and allyl chloride; Carboxyl group-containing compounds such as acid, maleic acid, itaconic acid, maleic
  • a terminal modified product obtained by polymerizing a vinyl ester monomer such as vinyl acetate in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid and saponifying it can be used.
  • a thiol compound such as thiol acetic acid or mercaptopropionic acid and saponifying it
  • conventionally known post-reaction PVA obtained by modifying various PVAs by post-reaction such as acetoacetylated PVA can also be used.
  • the PVA is used for producing hydrolyzable cellulose using cellulosic biomass as a raw material. Specifically, as described above, an aqueous solution of PVA is mixed with a cellulosic biomass to form a mixture, and a shearing force is applied by kneading the mixture to make the cellulosic biomass at a molecular level (quasicrystal). It is used for fine division at the structure level. Under the present circumstances, the viscosity of the said mixture can be maintained in a suitable state by using this PVA aqueous solution.
  • the cellulose polymer chain is easily peeled off by a viscous aqueous solution, and water and PVA efficiently enter the interior of the polymer chain having a quasicrystalline structure. Can weaken the hydrogen bond. Furthermore, recrystallization of this structure can be prevented by the PVA entering between the polymer chains thus torn.
  • segmented in this molecular level is easily decomposed
  • the average degree of polymerization of the PVA is preferably from 200 to 5,000, more preferably from 1,000 to 4,000, further preferably from 1,800 to 3,500, and from 2,000 to 3,000. Particularly preferred.
  • This PVA when this PVA is used as an aqueous solution and mixed with cellulosic biomass or the like, it can be mixed efficiently and uniformly with a suitable viscosity. Cellulose polymer chains can be efficiently divided so that hydrolysis can be easily performed. Further, by using PVA having a high average degree of polymerization in this way, it can be gelled with a small amount of gelling agent (boric acid or the like).
  • the average degree of polymerization of the PVA is less than 200, the molecular weight is too small. Therefore, even if the concentration is adjusted to some extent, sufficient viscosity cannot be imparted to the aqueous solution, and the cellulose chains are physically separated during kneading. The pulling force may be weakened. On the contrary, when the average degree of polymerization exceeds 5,000, the viscosity is too high and workability and handling properties in the fragmentation process are lowered, and the molecular weight is too large to enter between the cellulose polymer chains, resulting in hydrogen bonding. There is a risk that the action of weakening the strength will be reduced.
  • the lower limit of the saponification degree of the PVA is preferably 70 mol%, more preferably 75 mol%, further preferably 80 mol%, and particularly preferably 85 mol%.
  • the upper limit of the degree of saponification is preferably 99.9 mol%, more preferably 99.5 mol%, and even more preferably 99.0 mol%.
  • degree of saponification is a value measured according to JIS K6726.
  • the degree of saponification of the PVA When the degree of saponification of the PVA is less than 70 mol%, the water solubility is lowered and sufficient viscosity cannot be obtained, and the cellulose separating ability during kneading may be lowered. On the other hand, even if the degree of saponification exceeds 99.9 mol%, the molecular level breaking ability of the cellulose polymer chain reaches its peak and the handling property may be lowered.
  • the lower limit of the molecular weight distribution of the PVA is preferably 2, more preferably 2.2, and even more preferably 2.25.
  • the upper limit of this molecular weight distribution is preferably 5, more preferably 4, and particularly preferably 3.5.
  • molecular weight distribution is a value calculated by mass average molecular weight (Mw) / number average molecular weight (Mn).
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) were obtained at 40 ° C. using hexafluoroisopropanol containing 20 mmol / liter sodium trifluoroacetate as a mobile phase using monodisperse polymethyl methacrylate as a standard. It is a value obtained by performing gel permeation chromatography (GPC) measurement.
  • GPC gel permeation chromatography
  • the molecular weight distribution of the PVA When the molecular weight distribution of the PVA is less than the above lower limit, the molecular weight variation is small and it cannot enter corresponding to the gaps of quasicrystalline structures of various sizes, and the function of weakening hydrogen bonds may not be sufficiently exhibited. is there. On the contrary, when the molecular weight distribution of PVA exceeds the above upper limit, the variation in molecular weight is too large, so that it does not correspond to the gap between the quasicrystalline structures, the proportion of PVA that cannot enter is increased, and the function of weakening hydrogen bonds is sufficient. There is a risk that it will not be demonstrated.
  • the molecular weight distribution of the PVA for example, it can be adjusted by the following method. That is, (1) a method of preparing by mixing PVA having different polymerization degrees, (2) a method of saponifying a mixture of polyvinyl esters having different polymerization degrees, and (3) polymerization of aldehyde, alkyl halide, mercaptan, etc.
  • a method of polymerizing a polyvinyl ester using a regulator and saponifying the obtained polyvinyl ester (4) A method of polymerizing a polyvinyl ester in multiple stages while adjusting the degree of polymerization, and saponifying the resulting polyvinyl ester (5) A method of polymerizing polyvinyl ester by adjusting the polymerization rate and saponifying the obtained polyvinyl ester.
  • the PVA that has been used more than once is reused by having a reuse step.
  • PVA suitably used in the production method can more efficiently divide cellulosic biomass at the molecular level by specifying the three factors of average polymerization degree, saponification degree, and molecular weight distribution in the above range. it can.
  • the average degree of polymerization and the degree of saponification to give a suitable viscosity for exerting physical action to the aqueous solution, while specifying the molecular weight distribution, to exert the chemical action
  • the PVA can exert a physical balance and a chemical action in a more balanced manner in the molecular division of the cellulosic biomass. Cellulose to be degraded can be obtained.
  • the sugar of the present invention is obtained by the production method. Since the sugar is obtained under mild conditions without going through a heating process or the like, the content of high value-added components such as xylose is also high.
  • This sugar can be used after being separated into glucose, xylose or the like, or fermented to ethanol and used as a fuel resource.
  • the sugar production apparatus of the present invention comprises: Mixing means for obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water; A dividing means for applying shearing force to the mixture to divide the cellulosic biomass; A saccharification means for saccharifying the fragmented cellulosic biomass with a cellulolytic enzyme; A sugar production apparatus comprising: a first separation means for adding an inorganic salt to a mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue.
  • sugar can be efficiently produced using cellulosic biomass as a raw material.
  • the production apparatus preferably includes second separation means for diluting at least a part of the first residue with an aqueous solvent and separating it into a hydrophilic polymer solution and a second residue. Recyclability etc. can be improved more by providing this 2nd separation means.
  • the production apparatus includes a gelling agent separating unit that contacts at least a part of the saccharified mixture with a hydrogel or ion exchange resin mainly composed of PVA and separates the gelling agent from the mixture. It is preferable.
  • a gelling agent separation means By providing such a gelling agent separation means, when a mixture containing a gelling agent is used, wastewater treatment or the like is facilitated by separation of the gelling agent, and productivity is further increased.
  • a known device or the like can be used.
  • the mixing means, saccharification means, first and second separation means and gelling agent separation means for example, a known mixing tank provided with an inlet and an outlet, etc., for example, as the dividing means, for example, a known biaxial extrusion molding A machine or the like can be used.
  • one device may be provided with a plurality of means. Furthermore, the equipment corresponding to each means may be connected or separated.
  • the sugar production method, sugar and sugar production apparatus of the present invention are not limited to the above embodiment.
  • the gelling agent separation step may be directly performed on the mixture after the saccharification step without passing through the separation step. In this case, it is possible to widen the range of variations in the manufacturing process, such as firstly separating the gelling agent from the mixture and then removing it from the sugar. Further, the first residue obtained in the first separation step may be subjected to a gelling agent separation step.
  • the second separation step and / or the gelling agent separation step which are not essential steps, are omitted, at least one of the unseparated first residue itself or the hydrophilic polymer solution from which the gelling agent is not separated.
  • the part may be reused in the reuse step as appropriate. By doing in this way, at least some hydrophilic polymers etc. can be reused.
  • the alkali molar ratio (ratio of the molar amount of NaOH to the molar amount of vinyl ester units of the PVAc polymer) is 0.11, and the alkaline solution (10% NaOH methanol solution) 51.1 g is added to 333 g of PVAc solution (PVAc 100 g).
  • PVAc 100 g PVAc 100 g
  • saponify PVAc After maintaining the temperature at 60 ° C. and proceeding with the saponification reaction for 1 hour, the product (including the gelled product during the saponification reaction, which was appropriately removed from the reaction vessel and crushed with a grinder) was filtered, A solid was obtained.
  • This white solid was mixed with 1000 g of methanol and washed by leaving it at room temperature for 3 hours. This washing was performed three times, the white solid was centrifuged, and then dried at 70 ° C. for 2 days in a dryer to obtain PVA1.
  • This PVA1 had an average degree of polymerization of 1700, a degree of saponification of 98.8 mol%, and a molecular weight distribution (Mw / Mn) of 2.24.
  • PVA2 was prepared in the same manner as in Synthesis Example 1 except that 32.5 g of an alkali solution was added so that the alkali molar ratio (ratio of molar amount of NaOH to molar amount of vinyl ester unit of PVAc polymer) was 0.07. Obtained.
  • This PVA2 had an average degree of polymerization of 1740, a degree of saponification of 86.2 mol%, and a molecular weight distribution (Mw / Mn) of 2.30.
  • PVA7 50 parts by mass of PVA-217 (manufactured by Kuraray Co., Ltd.) and 50 parts by mass of PVA-205 (manufactured by Kuraray Co., Ltd.) were mixed to obtain PVA7.
  • This PVA7 had an average degree of polymerization of 1740, a degree of saponification of 88.2 mol%, and a molecular weight distribution (Mw / Mn) of 2.75.
  • Tables 1 and 2 also show the average degree of polymerization, degree of saponification, and molecular weight distribution of PVA-217 and PVA-205, which are PVA polymers manufactured by Kuraray Co., Ltd.
  • Example 1-1 PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution. This aqueous PVA solution was slightly more viscous than water. After cooling 100 g of this aqueous solution to room temperature, 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed. The pH of the obtained aqueous solution was 5.0. Further, 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel. The gel-like body had a pH of 6.5.
  • H 3 BO 3 boric acid
  • EFB particles having a diameter of 20 to 70 ⁇ m
  • EFB cellulosic biomass particles
  • a solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours. After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
  • Examples 1-2 to 1-15 were carried out in the same manner as Example 1-1 except that PVA was changed from PVA1 to the other PVA in Table 1 and each inorganic salt in Table 1 was used as the inorganic salt. A sugar solution was obtained.
  • Example 2-1 PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A).
  • This PVA aqueous solution (A) was slightly more viscous than water.
  • 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed.
  • the pH of the obtained aqueous solution was 5.0.
  • 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel.
  • the gel-like body had a pH of 6.5.
  • EFB particles having a diameter of 20 to 70 ⁇ m
  • EFB cellulosic biomass particles
  • a solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
  • Examples 2-2 to 2-15 were carried out in the same manner as in Example 2-1, except that the PVA and inorganic salts listed in Table 2 were used to obtain sugar solutions.
  • Examples 2-16 and 2-17 were the same as Example 2-1 except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 2. To obtain a sugar solution.
  • Example 2-1 In the second and third rounds, the same operation as in Example 2-1 was performed except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A sugar solution was obtained.
  • This plate-shaped molded product was immersed in an aqueous solution of formaldehyde 30 g / L, sulfuric acid 200 g / L, and sodium sulfate 150 g / L for 30 minutes, washed with water, cut into 5 mm squares, and a formalization degree of 19 mol. % Hydrous gel (I) was obtained.
  • Example 3-1 PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A).
  • This PVA aqueous solution (A) was slightly more viscous than water.
  • 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed.
  • the pH of the obtained aqueous solution was 5.0.
  • 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel.
  • the gel-like body had a pH of 6.5.
  • EFB particles having a diameter of 20 to 70 ⁇ m
  • EFB cellulosic biomass particles
  • a solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
  • the amount of PVA aqueous solution (A) used was 10 g (10% of the first usage), and the amount of saturated aqueous solution of boric acid was 0.2 mL (the amount of the first usage). 10%), and the PVA solution (B) separated in the last final step was added to the PVA aqueous solution (A) before gelation. That is, in the second and third rounds, the amount of unused PVA and boric acid was made 10% of the first, and the separated PVA solution (B) was added to recycle PVA and boric acid. The total amount of PVA and boric acid was supplemented.
  • Examples 3-2 to 3-3 were carried out in the same manner as in Example 3-1, except that each inorganic salt shown in Table 3 was used, to obtain a sugar solution.
  • Examples 3-4 to 3-5 were the same as Example 3-1, except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 3. To obtain a sugar solution.
  • Example 3-1 In the second and third times, the same operation as in Example 1 was carried out except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A liquid was obtained.
  • Example 3-6 was performed in the same manner as in Example 3-1, except that the hydrogel (II) was used instead of the hydrogel (I).
  • Reference Example 3-1 was performed in the same manner as in Example 3-1, except that a commercially available ceramic adsorbent (particle size: 3 to 5 mm) was used instead of the hydrogel (I).
  • Reference Example 3-2 was performed in the same manner as in Example 3-1, except that a commercially available activated carbon adsorbent (particle size: 3 to 5 mm) was used instead of the hydrogel (I).
  • boric acid concentration in Examples 3-1 and 3-6 and Reference Examples 3-1 and 3-2, the boric acid concentration (in terms of boric acid) of the waste liquid (C) in the first operation was measured. The evaluation results are shown in Table 4. Note that the boric acid concentration in the separation liquid before addition of the hydrogel or the adsorbent was 490 ppm.
  • Example 4-1 PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A).
  • This PVA aqueous solution (A) was slightly more viscous than water.
  • 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed.
  • the pH of the obtained aqueous solution was 5.0.
  • 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel.
  • the gel-like body had a pH of 6.5.
  • EFB particles having a diameter of 20 to 70 ⁇ m
  • EFB cellulosic biomass particles
  • a solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
  • Examples 4-2 to 4-3 were carried out in the same manner as in Example 4-1, except that each inorganic salt shown in Table 5 was used, and sugar solutions were obtained.
  • Examples 4-4 to 4-5 were carried out in the same manner as in Example 4-1, except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 5. To obtain a sugar solution.
  • Example 4-1 In the second and third times, the same operation as in Example 4-1 was performed except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A sugar solution was obtained.
  • Example 4-1 the boric acid concentration (in terms of boric acid) of the separated liquid before and after passing through the adsorption tower was measured.
  • the boric acid concentration before passing through was 490 ppm
  • the boric acid concentration after passing through was 4.2 ppm.
  • plant-based biomass raw materials can be efficiently used as food and energy resources, and the feasibility of utilizing biomass can be enhanced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Colloid Chemistry (AREA)

Abstract

Provided are a method for producing a sugar at a high productivity using a cellulose-based biomass as a starting material, a sugar obtained by the production method, and a device for producing the sugar. The method according to the present invention for producing a sugar using a cellulose-based biomass as a starting material is characterized by comprising: a mixing step for obtaining a mixture which contains the cellulose-based biomass, a hydrophilic polymer and water; a dividing step for applying a shear force to the mixture to divide the cellulose-based biomass; a saccharifying step for saccharifying the divided cellulose-based biomass with a cellulose-digesting enzyme; a first separation step for adding an inorganic salt to the mixture having been treated in the saccharifying step and thus separating the mixture into a sugar solution and a first residue; and a reusing step for adding at least a portion of the first residue to the mixture in the aforesaid mixing step.

Description

糖の製造方法、糖及び糖の製造装置Sugar production method, sugar and sugar production apparatus
 本発明は、セルロース系バイオマスを原料とした糖の製造方法、糖及び糖の製造装置に関する。 The present invention relates to a sugar production method, sugar and sugar production apparatus using cellulosic biomass as a raw material.
 バイオマスとは、生物由来の再生可能な資源をいい、「再生可能な、生物由来の有機性資源で化石資源を除いたもの」と定義することができる。このバイオマスの中でも、間伐材等の木材、稲わら、麦わら、籾殻、トウモロコシやサトウキビ等澱粉系作物の茎、アブラヤシの空房(EFB)など、未利用の植物系バイオマスの有効活用が求められている。 Biomass refers to bio-based renewable resources and can be defined as “renewable, bio-derived organic resources excluding fossil resources”. Among these biomass, effective utilization of unused plant biomass such as wood from thinned wood, rice straw, wheat straw, rice husks, stalks of starch-based crops such as corn and sugarcane, and oil palm empty bunch (EFB) is required. .
 このような植物系バイオマスの成分の中でも、澱粉等の多くの多糖類は、酵素等により容易に単糖類に分解され、エネルギー源や食料等として利用されている。そこで、植物系バイオマスの有効活用のためには、植物細胞中の存在比率が高いセルロースをメタンや単糖類(グルコース)に分解し、エネルギー源や食料等として利用することが重要とされている。ただし、セルロースは細胞壁の大部分を形成していることからもわかるように、強固な構造を有し分解されにくいため、有効活用されていないのが実情である。 Among such plant biomass components, many polysaccharides such as starch are easily decomposed into monosaccharides by enzymes and the like, and are used as energy sources, foods, and the like. Therefore, for effective utilization of plant-based biomass, it is important to break down cellulose, which has a high abundance ratio in plant cells, into methane and monosaccharides (glucose) and use them as an energy source, food, and the like. However, as can be seen from the fact that cellulose forms most of the cell wall, cellulose is not effectively utilized because it has a strong structure and is not easily decomposed.
 具体的にはセルロースは、細胞壁中で以下のような多重構造を有している。細胞壁を形成するセルロースは、大部分がミクロフィブリルと言われる直線状に密着した準結晶構造を有している。この準結晶構造を有するこのセルロース(ミクロフィブリル)同士は、ヘミセルロースやリグニン等の非セルロース成分を介して互いに結合している。これらのセルロース成分(ミクロフィブリル)及び非セルロース成分は、一般的にフィブリルと言われる更に大きな構造体として配列されている。このフィブリルは、通常、シート状に積層されて、細胞壁を構成している。上述の準結晶構造を有するセルロース(ミクロフィブリル)において、セルロースのポリマー鎖は、水素結合によって強く結びついている。この水素結合により、植物は強固な細胞壁を備えることとなる。 Specifically, cellulose has the following multiple structure in the cell wall. The cellulose that forms the cell wall has a quasicrystalline structure that adheres in a straight line, most often referred to as microfibrils. The celluloses (microfibrils) having this quasicrystalline structure are bonded to each other via non-cellulose components such as hemicellulose and lignin. These cellulose components (microfibrils) and non-cellulose components are arranged as a larger structure generally referred to as fibrils. These fibrils are usually laminated in a sheet form to constitute a cell wall. In cellulose (microfibril) having the above-described quasicrystalline structure, the polymer chains of cellulose are strongly bound by hydrogen bonding. This hydrogen bond causes the plant to have a strong cell wall.
 このような構造を有するセルロースをメタンに分解する手段としては、嫌気性微生物の分解消化による方法などがある。しかしながら、微生物を利用したセルロースの分解は、反応制御が複雑である等の理由から、実用性が十分ではない。 As a means for decomposing cellulose having such a structure into methane, there is a method by decomposing and digesting anaerobic microorganisms. However, the degradation of cellulose using microorganisms is not sufficiently practical due to the complex reaction control.
 一方、触媒や酵素を用いて、セルロースを単糖類に加水分解することも、化学的には可能である。セルロースの化学的分解により得られた単糖類は、例えば醗酵によってエタノールに変換され、既存の内燃機関やタービンにエネルギー源として用いることができる。しかしながら、植物由来のセルロース系バイオマスを化学的に直接加水分解することは、上述のような細胞壁におけるセルロースの分子構造上、効率的ではない。これはセルロースの強固な構造が、水及び酵素等の準結晶構造内部への進入を妨げ、セルロース分解酵素の作用を大きく遅らせることに起因すると考えられる。すなわち酵素は、水素結合によって強く結びついた準結晶構造の内部に容易には進入できないため、グリコシド結合を直接には分解することができない。従って、酵素はセルロースの準結晶構造の表面から徐々に分解していくことしかできないため、セルロース系バイオマスを直接、酵素によって加水分解することは効率が高くない。 On the other hand, it is also chemically possible to hydrolyze cellulose into monosaccharides using a catalyst or an enzyme. Monosaccharides obtained by chemical decomposition of cellulose are converted into ethanol by fermentation, for example, and can be used as an energy source for existing internal combustion engines and turbines. However, chemical direct hydrolysis of cellulosic biomass derived from plants is not efficient due to the molecular structure of cellulose in the cell wall as described above. This is considered to be because the strong structure of cellulose hinders the entry of water and enzymes into the quasicrystalline structure and greatly delays the action of the cellulolytic enzyme. That is, the enzyme cannot easily break into a glycosidic bond because it cannot easily enter the interior of the quasicrystalline structure that is strongly bound by hydrogen bonding. Therefore, since the enzyme can only be gradually decomposed from the surface of the quasicrystalline structure of cellulose, it is not efficient to directly hydrolyze the cellulosic biomass with the enzyme.
 そこで、セルロース系バイオマスを酵素等による加水分解前に予め細かく分断して、加水分解しやすいセルロースを製造する方法が提案されている。この方法は、基本的には、準結晶構造を有するセルロースを徐々に水和させ、この水和によって隣接するセルロースのポリマー鎖間の水素結合を弱めるという化学的な作用と、セルロース系バイオマスに叩解、混練等により機械的に力を付与してセルロースポリマー鎖を分断するという物理的な作用とを利用するものである。この方法の具体的内容として、例えば(1)容器内でセルロース系バイオマス粒子を攪拌して粒子の浮遊体を生成した後、攪拌を継続しながら粒子の浮遊体の温度を上昇させると共に水を徐々に供給して水和させることによって微細な粉末を製造する技術(特表2004-526008号公報)、(2)セルロース系バイオマス粒子を粘性のある水溶性ポリマー水溶液と混ぜて撹拌することで、撹拌により生じる機械的な力を効率的にセルロースポリマー鎖に伝え、セルロースポリマー鎖を互いに引き離すように分断する技術(国際公開第2009/124072号パンフレット)等が提案されている。 Therefore, a method has been proposed in which cellulosic biomass is finely divided in advance before hydrolysis with enzymes or the like to produce cellulose that is easily hydrolyzed. In this method, basically, cellulose having a quasicrystalline structure is gradually hydrated, and this hydration weakens the hydrogen bond between the polymer chains of adjacent celluloses. The physical action of mechanically applying force by kneading or the like to break the cellulose polymer chain is utilized. As specific contents of this method, for example, (1) after the cellulosic biomass particles are agitated in a container to produce a floating body of particles, the temperature of the floating body of the particles is raised while continuing stirring, and water is gradually added. Technology for producing fine powders by supplying them to hydrate (Japanese Patent Publication No. 2004-526008), (2) stirring by mixing the cellulose-based biomass particles with a viscous water-soluble polymer aqueous solution A technique (International Publication No. 2009/124072 pamphlet) that efficiently transmits the mechanical force generated by the above to the cellulose polymer chain and divides the cellulose polymer chain so as to be separated from each other has been proposed.
 しかしながら、(1)の技術では、セルロース系バイオマスの微粒子を浮遊体として存在させるための装置が複雑なものとなり、また、この技術の使用の際に多大なエネルギーを消費するため、生産性が高いとは言えない。一方、(2)の技術では、水溶液に粘性を付与するための水溶性高分子の使用により、セルロース系バイオマスの一定程度の易加水分解性の向上が認められる。しかしながら、水溶性高分子やゲル化剤等を使用することで原料や廃棄物処理、排水処理等にかかるコスト高となるため生産性が低く、糖の製造のための実用化には至っていない。 However, in the technique (1), the apparatus for causing the cellulose-based biomass fine particles to exist as a floating body becomes complicated, and a great amount of energy is consumed when this technique is used, so that the productivity is high. It can not be said. On the other hand, in the technique (2), a certain degree of easily hydrolyzable improvement of the cellulosic biomass is recognized by using a water-soluble polymer for imparting viscosity to the aqueous solution. However, the use of water-soluble polymers, gelling agents, and the like increases the cost of raw materials, waste treatment, wastewater treatment, and the like, so that productivity is low and practical use for sugar production has not been achieved.
特表2004-526008号公報Special Table 2004-526008 国際公開第2009/124072号パンフレットInternational Publication No. 2009/124072 Pamphlet
 本発明は、上述のような事情に基づいてなされたものであり、セルロース系バイオマスを原料とした生産性の高い糖の製造方法、この製造方法により得られた糖、及びこの糖の製造装置を提供することを目的とする。 The present invention has been made on the basis of the above-described circumstances, and includes a method for producing a highly productive sugar using cellulosic biomass as a raw material, a sugar obtained by this production method, and a device for producing this sugar. The purpose is to provide.
 上記課題を解決するためになされた本発明の糖の製造方法は、
 セルロース系バイオマスを原料とした糖の製造方法であって、
 セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合工程と、
 上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断工程と、
 分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化工程と、
 上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離工程と、
 上記第一残渣の少なくとも一部を、上記混合工程における混合物にさらに加える再利用工程と
 を有することを特徴とする。
The method for producing the sugar of the present invention made to solve the above problems is as follows.
A method for producing sugar from cellulosic biomass,
A mixing step of obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
A dividing step of adding shearing force to the mixture to divide the cellulosic biomass;
A saccharification step of saccharifying the cellulosic biomass with the cellulose-degrading enzyme;
A first separation step of adding an inorganic salt to the mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue;
A recycling step of further adding at least a part of the first residue to the mixture in the mixing step.
 当該製造方法によれば、第一分離工程により混合物から容易に糖液として糖を得ることができる。また、当該製造方法は、分解されなかったセルロース系バイオマス、親水性重合体等を含む第一残渣の少なくとも一部を再利用するため、原材料費及び廃棄物処理費等を抑えることができる。従って、当該製造方法は生産性に優れる。 According to the production method, sugar can be easily obtained as a sugar solution from the mixture by the first separation step. Moreover, since the said manufacturing method recycles at least one part of the 1st residue containing the cellulosic biomass, hydrophilic polymer, etc. which were not decomposed | disassembled, raw material costs, waste disposal costs, etc. can be held down. Therefore, the manufacturing method is excellent in productivity.
 上記第一分離工程で得られた第一残渣の少なくとも一部を水系溶媒で希釈し、親水性重合体溶液と第二残渣とに分離する第二分離工程
 をさらに有し、
 上記再利用工程で加える第一残渣の少なくとも一部が上記第二分離工程で分離した親水性重合体溶液の少なくとも一部であることが好ましい。このような第二分離工程を経ることで、この親水性重合体溶液に含まれる親水性重合体等を効率的に再利用等することができる。
Further comprising a second separation step of diluting at least a part of the first residue obtained in the first separation step with an aqueous solvent to separate the hydrophilic polymer solution and the second residue;
It is preferable that at least a part of the first residue added in the reuse step is at least a part of the hydrophilic polymer solution separated in the second separation step. By passing through such a second separation step, the hydrophilic polymer and the like contained in the hydrophilic polymer solution can be efficiently reused.
 上記第二分離工程で用いられる水系溶媒が酸性であることが好ましい。第二分離工程において酸性の水系溶媒(水溶液)を用いることで、溶液と固形分との分解能が高まり、リサイクル性や生産性等を高めることができる。 It is preferable that the aqueous solvent used in the second separation step is acidic. By using an acidic aqueous solvent (aqueous solution) in the second separation step, the resolution between the solution and the solid content is increased, and recyclability, productivity, and the like can be improved.
 上記混合工程における混合物がゲル化剤をさらに含むことが好ましい。この混合物にゲル化剤を加え、ゲル化させることで、後の分断工程において混合物が混練の初期段階から高い粘性を有するため、混練の物理的作用がセルロース系バイオマスに効果的に伝わり、このセルロース系バイオマスを分子レベルで効率的に分断することができる。さらには、ゲル状の親水性重合体水溶液を用いることで、分断されたセルロース鎖間にこのゲル状水溶液が進入し、かつ留まることができるため、セルロース鎖の再準結晶化を防ぐことができ、分断能が向上することとなる。 It is preferable that the mixture in the mixing step further includes a gelling agent. By adding a gelling agent to this mixture and making it gel, the mixture has a high viscosity from the initial stage of kneading in the subsequent dividing step, so that the physical action of kneading is effectively transmitted to the cellulosic biomass. The biomass can be efficiently divided at the molecular level. Furthermore, by using a gel-like hydrophilic polymer aqueous solution, the gel-like aqueous solution can enter and stay between the broken cellulose chains, so that re-crystallization of the cellulose chains can be prevented. This will improve the splitting ability.
 上記糖化工程を経た混合物の少なくとも一部と、ポリビニルアルコール系重合体(以下、「PVA」ともいう。)を主成分とする含水ゲル、又はイオン交換樹脂とを接触させ、上記混合物からゲル化剤を分離するゲル化剤分離工程をさらに有することが好ましい。上記ゲル化剤分離工程を有することで、この分離されたゲル化剤の再利用、処分する廃棄物の削減、排水中の不純物(例えば、ホウ酸等)の削減等を行うことができる。従って、このゲル化剤分離工程を有する当該製造方法によれば、糖製造にかかるトータルコストをさらに削減でき、生産性に優れる。また、このゲル化剤分離工程において、PVAを主成分とする含水ゲルを用いた場合、この含水ゲルにゲル化剤を吸着させることによりゲル化剤を分離することができる。この場合、吸着したゲル化剤(ホウ酸塩等)は酸性状態とすることで含水ゲルから脱離させることができ、また、ゲル化剤が吸着した含水ゲルをそのまま混合物工程に利用することができるなど、効率的である。 At least a part of the mixture that has undergone the saccharification step is brought into contact with a hydrogel or ion-exchange resin mainly composed of a polyvinyl alcohol-based polymer (hereinafter also referred to as “PVA”), and the gelling agent is converted from the mixture. It is preferable to further have a gelling agent separating step for separating the. By having the gelling agent separation step, it is possible to reuse the separated gelling agent, reduce waste to be disposed of, reduce impurities in the waste water (for example, boric acid and the like), and the like. Therefore, according to the production method having this gelling agent separation step, the total cost for sugar production can be further reduced and the productivity is excellent. Moreover, in this gelling agent separation process, when the water-containing gel which has PVA as a main component is used, a gelling agent can be isolate | separated by making a gelling agent adsorb | suck to this water-containing gel. In this case, the adsorbed gelling agent (borate, etc.) can be desorbed from the hydrogel by making it acidic, and the hydrogel adsorbed by the gelling agent can be directly used in the mixing step. It can be efficient.
 上記ゲル化剤分離工程において、上記含水ゲル又はイオン交換樹脂と接触させる混合物の少なくとも一部が上記第一残渣の少なくとも一部であることが好ましい。このようにして上記第一残渣の少なくとも一部からゲル化剤を分離することで、第一残渣の少なくとも一部中の不純物を除去し、親水性重合体溶液等の活用の幅を広げることができる。 In the gelling agent separation step, it is preferable that at least a part of the mixture brought into contact with the hydrogel or the ion exchange resin is at least a part of the first residue. In this way, by separating the gelling agent from at least a part of the first residue, it is possible to remove impurities in at least a part of the first residue and widen the range of utilization of the hydrophilic polymer solution and the like. it can.
 上記ゲル化剤分離工程において用いられる第一残渣の少なくとも一部としては、上記親水性重合体溶液がより好ましい。このように固形物等が除去された親水性重合体溶液を含水ゲルやイオン交換樹脂と接触させることで、効率的にゲル化剤の分離を行うことができる。 The hydrophilic polymer solution is more preferable as at least a part of the first residue used in the gelling agent separation step. Thus, the gelatinizer can be efficiently separated by bringing the hydrophilic polymer solution from which solids and the like have been removed into contact with the hydrogel or ion exchange resin.
 上記第二残渣を水系溶媒で希釈し、分離液と第三残渣とに分離する第三分離工程をさらに有し、上記ゲル化剤分離工程において、上記含水ゲル又はイオン交換樹脂と接触させる混合物の少なくとも一部として上記分離液を用いることが好ましい。このような工程を経ることで、ゲル化剤の回収率を高め、この系における排水(例えば、第三分離工程を経た分離液)中のホウ酸濃度の低減を図ることなどができる。 A second separation step of diluting the second residue with an aqueous solvent and separating the second residue into a separation liquid and a third residue; and in the gelling agent separation step, the mixture to be brought into contact with the water-containing gel or the ion exchange resin. The separation liquid is preferably used as at least a part. By passing through such a process, the recovery rate of the gelling agent can be increased, and the boric acid concentration in the waste water (for example, the separated liquid after the third separation process) in this system can be reduced.
 上記水系溶媒が酸性であることが好ましい。第三分離工程において酸性の水系溶媒(水溶液)を用いることで、溶液と固形分との分離能が高まり、リサイクル性や生産性等を高めることができる。 It is preferable that the aqueous solvent is acidic. By using an acidic aqueous solvent (aqueous solution) in the third separation step, the separation ability between the solution and the solid content is increased, and recyclability, productivity, and the like can be improved.
 上記ゲル化剤分離工程で分離したゲル化剤の少なくとも一部を、上記混合工程における混合物に加えるゲル化剤再利用工程を有することが好ましい。上記ゲル化剤再利用工程を有することでゲル化剤を再利用することとなり、コスト削減等による生産性がさらに向上する。 It is preferable to have a gelling agent recycling step in which at least a part of the gelling agent separated in the gelling agent separation step is added to the mixture in the mixing step. By having the gelling agent recycling step, the gelling agent is reused, and the productivity due to cost reduction and the like is further improved.
 上記含水ゲルが、PVAの化学架橋により形成されたものであることが好ましい。化学架橋されたPVAからなる含水ゲルを用いることで、この含水ゲルの耐久性等が高まり、生産性をより高めることができる。 It is preferable that the hydrated gel is formed by chemical cross-linking of PVA. By using a water-containing gel made of chemically cross-linked PVA, the durability of the water-containing gel is increased, and the productivity can be further increased.
 上記親水性重合体がPVAであるとよい。上記親水性重合体としてPVAを用いることで、分断工程における作業効率等が向上するため、より生産性を高めることができる。 It is preferable that the hydrophilic polymer is PVA. By using PVA as the hydrophilic polymer, work efficiency and the like in the dividing step are improved, so that productivity can be further increased.
 上記ゲル化剤としては、ホウ酸又はホウ酸塩が好ましい。ゲル化剤としてホウ酸又はホウ酸塩を用いることで、混合物を好適な状態にゲル化することができるため、当該製造方法における糖の生産性をより高めることができる。 As the gelling agent, boric acid or borate is preferable. By using boric acid or borate as the gelling agent, the mixture can be gelled in a suitable state, so that the productivity of sugar in the production method can be further increased.
 上記無機塩が、硫酸塩、炭酸塩、硝酸塩、リン酸塩、炭酸水素塩からなる群より選ばれる少なくとも1種であるとよい。上記種類の無機塩を用いることで、親水性重合体やゲル化剤の析出と、この析出物及び分解されなかったセルロース系バイオマス等の凝集沈殿とを効率的に行うことができ、糖の生産性を高めることができる。 The inorganic salt may be at least one selected from the group consisting of sulfate, carbonate, nitrate, phosphate and bicarbonate. By using the above-mentioned types of inorganic salts, it is possible to efficiently carry out precipitation of hydrophilic polymers and gelling agents, and agglomeration and precipitation of this precipitate and cellulose-based biomass that has not been decomposed. Can increase the sex.
 上記混合工程、分断工程、糖化工程、第一分離工程及び再利用工程を、この順に複数回繰り返すとよい。この一連の工程を複数回繰り返すことで、リサイクル性を高め、さらなる低コスト化及び高生産性を達成できる。 The above mixing step, fragmentation step, saccharification step, first separation step and reuse step may be repeated a plurality of times in this order. By repeating this series of steps a plurality of times, recyclability can be improved, and further cost reduction and high productivity can be achieved.
 本発明の糖は、当該製造方法により得られたものである。当該糖は、加熱プロセス等を経ることなく穏和な条件で得られているため、例えばキシロース等の高付加価値成分の含有量も高い。 The sugar of the present invention is obtained by the production method. Since the sugar is obtained under mild conditions without going through a heating process or the like, the content of high value-added components such as xylose is also high.
 本発明の糖の製造装置は、
 セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合手段と、
 上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断手段と、
 分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化手段と、
 上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離手段と
 を備える糖の製造装置である。当該製造装置によれば、セルロース系バイオマスを原料として糖を効率的に生産することができる。また、当該製造装置によれば、分離手段で分離された第一残渣を混合手段における混合物にさらに加えることを容易にし、リサイクルによるコスト削減や、廃棄物の低減を図ることができる。
The sugar production apparatus of the present invention comprises:
Mixing means for obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
A dividing means for applying shearing force to the mixture to divide the cellulosic biomass;
A saccharification means for saccharifying the fragmented cellulosic biomass with a cellulolytic enzyme;
A sugar production apparatus comprising: a first separation means for adding an inorganic salt to a mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue. According to the production apparatus, sugar can be efficiently produced using cellulosic biomass as a raw material. Moreover, according to the said manufacturing apparatus, it is easy to further add the 1st residue isolate | separated by the isolation | separation means to the mixture in a mixing means, and the cost reduction by recycling and the reduction of a waste can be aimed at.
 ここで、第一残渣、混合物又は親水性重合体溶液の「一部」とは、第一残渣等に含まれる成分の一部も含む。すなわち、例えば「第一残渣の一部」とは、第一分離工程を経て得られた状態のままの第一残渣の一部であってもよいし、この第一残渣から第二分離工程等により精製して得られたもの(例えば、親水性重合体溶液等)の一部であってもよい。 Here, the “part” of the first residue, the mixture or the hydrophilic polymer solution includes a part of the components contained in the first residue and the like. That is, for example, “a part of the first residue” may be a part of the first residue as it is obtained through the first separation step, or from the first residue to the second separation step, etc. It may be a part of the product (for example, a hydrophilic polymer solution, etc.) obtained by refining.
 以上説明したように、本発明の糖の製造方法によれば、セルロース系バイオマスを原料として高い生産性で糖を得ることができる。従って、本発明によれば、植物系のバイオマス原料を、効率よく食物やエネルギー資源として活用することができ、バイオマス活用の実用性を高めることができる。 As described above, according to the sugar production method of the present invention, sugar can be obtained with high productivity using cellulosic biomass as a raw material. Therefore, according to the present invention, plant-based biomass materials can be efficiently used as food and energy resources, and the practicality of biomass utilization can be enhanced.
本発明の一実施形態にかかる糖の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the sugar concerning one Embodiment of this invention.
 以下、本発明の糖の製造方法、糖及び糖の製造方法の実施の形態について詳説する。 Hereinafter, embodiments of the sugar production method, the sugar and the sugar production method of the present invention will be described in detail.
 <糖の製造方法>
 本発明の糖の製造方法は、セルロース系バイオマスを原料とし、
 セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合工程と、
 上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断工程と、
 分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化工程と、
 上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離工程と、
 上記第一残渣の少なくとも一部を、上記混合工程における混合物にさらに加える再利用工程と
 を有する。
<Method for producing sugar>
The sugar production method of the present invention uses cellulosic biomass as a raw material,
A mixing step of obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
A dividing step of adding shearing force to the mixture to divide the cellulosic biomass;
A saccharification step of saccharifying the cellulosic biomass with the cellulose-degrading enzyme;
A first separation step of adding an inorganic salt to the mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue;
A recycling step of further adding at least a part of the first residue to the mixture in the mixing step.
 当該製造方法によれば、第一分離工程により混合物から容易に糖液として糖を得ることができる。また、当該製造方法は、分解されなかったセルロース系バイオマス、親水性重合体等を含む第一残渣の少なくとも一部を再利用するため、原材料費及び廃棄物処理費等を抑えることができる。従って、当該製造方法は生産性に優れる。 According to the production method, sugar can be easily obtained as a sugar solution from the mixture by the first separation step. Moreover, since the said manufacturing method recycles at least one part of the 1st residue containing the cellulosic biomass, hydrophilic polymer, etc. which were not decomposed | disassembled, raw material costs, waste disposal costs, etc. can be held down. Therefore, the manufacturing method is excellent in productivity.
 当該製造方法は、
 上記第一分離工程で得られた第一残渣の少なくとも一部を水系溶媒で希釈し、親水性重合体溶液と第二残渣とに分離する第二分離工程
 を有し、
 上記再利用工程で加える第一残渣の少なくとも一部が上記第二分離工程で分離した親水性重合体溶液の少なくとも一部であることが好ましい。このように第二分離工程を経ることで、この親水性重合体溶液に含まれる親水性重合体及び好適成分として添加されるゲル化剤を効率的に再利用等することができる。
The manufacturing method is
A second separation step of diluting at least a part of the first residue obtained in the first separation step with an aqueous solvent and separating it into a hydrophilic polymer solution and a second residue;
It is preferable that at least a part of the first residue added in the reuse step is at least a part of the hydrophilic polymer solution separated in the second separation step. Thus, by passing through the second separation step, the hydrophilic polymer contained in the hydrophilic polymer solution and the gelling agent added as a suitable component can be efficiently reused.
 当該製造方法は、さらに
 上記糖化工程を経た混合物の少なくとも一部と、PVAを主成分とする含水ゲル、又はイオン交換樹脂とを接触させ、上記混合物からゲル化剤を分離するゲル化剤分離工程
 を有することが好ましい。上記ゲル化剤分離工程を有することで、この分離されたゲル化剤の再利用、処分する廃棄物の削減、排水中の不純物(例えば、ホウ酸等)の削減等を行うことができる。従って、このゲル化剤分離工程を有する当該製造方法によれば、糖製造にかかるトータルコストをさらに削減でき、生産性に優れる。また、このゲル化剤分離工程において、PVAを主成分とする含水ゲルを用いた場合、この含水ゲルにゲル化剤を吸着させることによりゲル化剤を分離することができる。この場合、吸着したゲル化剤(ホウ酸塩等)は酸性状態とすることで含水ゲルから脱離させることができ、また、ゲル化剤が吸着した含水ゲルをそのまま混合物工程に利用することができる等、効率的である。
The production method further includes a gelling agent separation step of contacting at least a part of the mixture that has undergone the saccharification step with a hydrogel containing PVA as a main component or an ion exchange resin, and separating the gelling agent from the mixture. It is preferable to have. By having the gelling agent separation step, it is possible to reuse the separated gelling agent, reduce waste to be disposed of, reduce impurities in the waste water (for example, boric acid and the like), and the like. Therefore, according to the production method having this gelling agent separation step, the total cost for sugar production can be further reduced and the productivity is excellent. Moreover, in this gelling agent separation process, when the water-containing gel which has PVA as a main component is used, a gelling agent can be isolate | separated by making a gelling agent adsorb | suck to this water-containing gel. In this case, the adsorbed gelling agent (borate, etc.) can be desorbed from the hydrogel by making it acidic, and the hydrogel adsorbed by the gelling agent can be directly used in the mixing step. It is possible and efficient.
 当該製造方法は、さらに
 上記第二残渣を水系溶媒で希釈し、分離液と第三残渣とに分離する第三分離工程
を有し、上記ゲル化剤分離工程において、上記含水ゲル又はイオン交換樹脂と接触させる混合物の少なくとも一部として上記分離液を用いることが好ましい。このような工程を経ることで、ゲル化剤の回収率を高め、この系における排水(例えば、第三分離工程を経た分離液)中のホウ酸濃度の低減を図ることなどができる。
The production method further includes a third separation step in which the second residue is diluted with an aqueous solvent and separated into a separated liquid and a third residue. In the gelling agent separation step, the hydrogel or ion exchange resin It is preferable to use the separation liquid as at least a part of the mixture to be contacted. By passing through such a process, the recovery rate of the gelling agent can be increased, and the boric acid concentration in the waste water (for example, the separated liquid after the third separation process) in this system can be reduced.
 上記ゲル化剤分離工程で分離したゲル化剤の少なくとも一部を、上記混合工程における混合物に加えるゲル化剤再利用工程を有することが好ましい。上記ゲル化剤再利用工程を有することでゲル化剤を再利用することとなり、コスト削減等による生産性がさらに向上する。 It is preferable to have a gelling agent recycling step in which at least a part of the gelling agent separated in the gelling agent separation step is added to the mixture in the mixing step. By having the gelling agent recycling step, the gelling agent is reused, and the productivity due to cost reduction and the like is further improved.
 なお、上記混合工程、分断工程、糖化工程、第一分離工程及び再利用工程を、この順に複数回繰り返すとよい。この一連の工程を複数回繰り返すことで、リサイクル性を高め、さらなる低コスト化及び高生産性を達成できる。なお、好ましい工程として、第二分離工程、ゲル化剤分離工程、第三分離工程及びゲル化剤再利用工程を有する場合、これらも併せて複数回繰り返すことが好ましい。 In addition, it is good to repeat the said mixing process, a parting process, a saccharification process, a 1st isolation | separation process, and a reuse process in this order in multiple times. By repeating this series of steps a plurality of times, recyclability can be improved, and further cost reduction and high productivity can be achieved. In addition, when it has a 2nd isolation | separation process, a gelatinizer isolation | separation process, a 3rd isolation | separation process, and a gelatinizer reuse process as a preferable process, it is preferable to repeat these several times collectively.
 当該製造方法は、さらに上記混合工程に先駆けて、
 セルロース系バイオマス原料を切断して、セルロース系バイオマスを適当なサイズの粒子とするセルロース系バイオマス原料切断工程(原料切断工程)
を有することが好ましい。
The manufacturing method further precedes the mixing step,
Cellulosic biomass raw material cutting step (raw material cutting step) by cutting the cellulosic biomass raw material to make the cellulosic biomass suitable particles
It is preferable to have.
 以下、図1を参照に、当該製造方法の一例を製造工程に沿って順に説明する。 Hereinafter, an example of the manufacturing method will be described in order along the manufacturing process with reference to FIG.
 (1)セルロース系バイオマス原料切断工程
 本工程においては、以降の工程における処理を効率的にするために、セルロース系バイオマス原料を切断し、適当なサイズの粒子とする。ここで用いられるセルロース系バイオマス原料としては特に限定されず、植物由来のバイオマスを好ましく用いることができ具体的には、例えば、間伐材等の木材、稲わら、麦わら、籾殻、バガス、トウモロコシやサトウキビ等澱粉系作物の茎、アブラヤシの空房(EFB)、ヤシの実の殻などを挙げることができる。このようなセルロース系バイオマス原料を、可能な限り土等の不要分を取り除いた後、剪断、叩解等の各種切断手段により、粒子状に小さくする。この切断工程においては、例えば、特表2004-526008号公報に記載の分断器や、パルプチップを製造する際に用いられる装置等を好適に採用することができる。
(1) Cellulosic biomass raw material cutting step In this step, in order to make the processing in the subsequent steps efficient, the cellulosic biomass raw material is cut into particles of an appropriate size. The cellulosic biomass material used here is not particularly limited, and plant-derived biomass can be preferably used. Specifically, for example, wood such as thinned wood, rice straw, straw, rice husk, bagasse, corn and sugarcane. Examples thereof include stalks of iso-starch crops, empty palm bunch (EFB), and coconut shells. Such a cellulosic biomass raw material is reduced to particles by various cutting means such as shearing and beating after removing unnecessary components such as soil as much as possible. In this cutting step, for example, a breaker described in JP-T-2004-526008, an apparatus used for producing pulp chips, and the like can be suitably used.
 この切断工程を経たセルロース系バイオマス粒子のサイズとしては、平均粒径2mm以下が好ましく、1mm以下がさらに好ましく、100μm以下が特に好ましく、20μm以上70μm以下がさらに特に好ましい。セルロース系バイオマス粒子の平均粒径を2mm以下とすることで、以降の混合工程や、特に分断工程を効率よく行うことができ、短時間で加水分解性の優れたセルロースを得ることができる。 The size of the cellulosic biomass particles having undergone this cutting step is preferably 2 mm or less, more preferably 1 mm or less, particularly preferably 100 μm or less, and particularly preferably 20 μm or more and 70 μm or less. By setting the average particle size of the cellulose-based biomass particles to 2 mm or less, the subsequent mixing step, particularly the dividing step can be efficiently performed, and cellulose having excellent hydrolyzability can be obtained in a short time.
 (2)混合工程
 本工程においては、セルロース系バイオマス、親水性重合体及び水を混合させて、これらの混合物を得る。なお、この混合物は、その他の成分をさらに含有していてもよい。この混合方法としては、特に限定されないが、例えば(2-1)親水性重合体を水に溶かして水溶液とし(水溶液調製工程)、(2-2)この水溶液に必要に応じてゲル化剤を加えてゲル化させ(ゲル化工程)、(2-3)この親水性重合体水溶液にセルロース系バイオマスを添加する(添加工程)方法を採用することができる。
(2) Mixing step In this step, cellulosic biomass, hydrophilic polymer and water are mixed to obtain a mixture thereof. This mixture may further contain other components. The mixing method is not particularly limited. For example, (2-1) a hydrophilic polymer is dissolved in water to form an aqueous solution (aqueous solution preparation step), and (2-2) a gelling agent is added to the aqueous solution as necessary. In addition, gelation (gelation step) and (2-3) a method of adding cellulosic biomass to this hydrophilic polymer aqueous solution (addition step) can be employed.
 (2-1)水溶液調製工程
 本工程においては、親水性重合体を水に溶解して水溶液とする。この親水性重合体水溶液の濃度としては、特に限定されないが、3質量%以上30質量%以下が好ましく、5質量%以上20質量%以下がさらに好ましい。親水性重合体水溶液の濃度を上記範囲とすることで、水溶液に適当な粘性を付与することができる。従って、水溶液の濃度を上記範囲とすることで、混練の際に、水溶液を介してセルロース系バイオマスへ物理的な力が効果的に伝わる、すなわち水溶液によってセルロース鎖が引き剥がされることで、セルロース系バイオマスの分子レベルの分断を効果的に行うことができる。親水性重合体水溶液の濃度が3質量%未満の場合は、水溶液が適当な粘性を有さず物理的な作用による分断機能が十分に発揮されないおそれがある。逆に、親水性重合体水溶液の濃度が30質量%を超えると、水溶液の粘性が高すぎて混練しにくくなるため、分断工程における作業性が低下するおそれがある。
(2-1) Aqueous solution preparation step In this step, the hydrophilic polymer is dissolved in water to obtain an aqueous solution. The concentration of the hydrophilic polymer aqueous solution is not particularly limited, but is preferably 3% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less. By setting the concentration of the hydrophilic polymer aqueous solution within the above range, an appropriate viscosity can be imparted to the aqueous solution. Therefore, by setting the concentration of the aqueous solution in the above range, when kneading, the physical force is effectively transmitted to the cellulosic biomass through the aqueous solution, that is, the cellulose chain is peeled off by the aqueous solution, The molecular level fragmentation of biomass can be performed effectively. When the concentration of the hydrophilic polymer aqueous solution is less than 3% by mass, the aqueous solution does not have an appropriate viscosity, and there is a possibility that the dividing function due to physical action is not sufficiently exhibited. On the other hand, when the concentration of the hydrophilic polymer aqueous solution exceeds 30% by mass, the viscosity of the aqueous solution is so high that it becomes difficult to knead, so that the workability in the dividing step may be lowered.
 (2-2)ゲル化工程
 上述したセルロース系バイオマス原料切断工程によって得られたセルロース系バイオマスの粒子と、親水性重合体水溶液とを混合するに先駆けて、この親水性重合体水溶液にゲル化剤を加え、ゲル化することが好ましい。このようなゲル状の親水性重合体水溶液を用いることで、後の分断工程において混合物が混練の初期段階から高い粘性を有するため、混練の物理的作用がセルロース系バイオマスに効果的に伝わり、このセルロース系バイオマスを分子レベルで効率的に分断することができる。さらには、ゲル状の親水性重合体水溶液を用いることで、分断されたセルロースポリマー鎖間にこのゲル状水溶液が進入し、かつ留まることができるため、セルロースポリマー鎖の再準結晶化を防ぐことができ、分断能が向上することとなる。
(2-2) Gelation Step Prior to mixing the cellulose-based biomass particles obtained by the above-described cellulose-based biomass raw material cutting step and the hydrophilic polymer aqueous solution, the gelling agent is added to the hydrophilic polymer aqueous solution. Is preferably gelled. By using such a gel-like hydrophilic polymer aqueous solution, since the mixture has a high viscosity from the initial stage of kneading in the subsequent dividing step, the physical action of kneading is effectively transmitted to the cellulosic biomass. Cellulosic biomass can be efficiently divided at the molecular level. Furthermore, by using a gel-like hydrophilic polymer aqueous solution, the gel-like aqueous solution can enter and stay between the separated cellulose polymer chains, thereby preventing re-crystallization of the cellulose polymer chains. This will improve the ability to split.
 上記ゲル化剤としては、親水性重合体水溶液をゲル化させることができるものであれば特に限定されず、公知のものを用いることができるが、例えば、ホウ酸や、ホウ酸塩、チタニウム酢酸塩、その他の金属塩等を挙げることができる。これらの中でも、ホウ酸又はホウ酸塩が好ましい。ゲル化剤としてホウ酸又はホウ酸塩を用いることで、混合物を好適な状態にゲル化することができるため、糖の生産性をより高めることができる。 The gelling agent is not particularly limited as long as it can gel the hydrophilic polymer aqueous solution, and known ones can be used. For example, boric acid, borate, titanium acetate Examples thereof include salts and other metal salts. Among these, boric acid or borate is preferable. By using boric acid or borate as the gelling agent, the mixture can be gelled in a suitable state, so that the productivity of sugar can be further increased.
 ホウ酸塩を添加して親水性重合体水溶液をゲル化させる場合には、例えば、5質量%の親水性重合体水溶液100質量部に対して、四ホウ酸ナトリウムの飽和水溶液を1~10質量部加えて混ぜ合わせることで行うことができる。このようにしてゲル状にされた親水性重合体水溶液は、当該製造方法において好適な粘性を有し、また、セルロース系バイオマスと混ぜ合わされて混練され続けても粘度が上昇(硬化)しにくいため容易かつ効率的に混練を行うことができる。なお、このゲル状の親水性重合体水溶液は、酸性であることが好ましく、具体的にはpHが4以上7未満であることが好ましい。 When the hydrophilic polymer aqueous solution is gelated by adding borate, for example, 1 to 10 mass of a saturated aqueous solution of sodium tetraborate is added to 100 mass parts of the 5 mass% hydrophilic polymer aqueous solution. This can be done by adding parts and mixing. The hydrophilic polymer aqueous solution thus gelled has a suitable viscosity in the production method, and the viscosity does not easily rise (harden) even if it is mixed and kneaded with the cellulose-based biomass. Kneading can be performed easily and efficiently. In addition, it is preferable that this gel-like hydrophilic polymer aqueous solution is acidic, and specifically, it is preferable that pH is 4 or more and less than 7.
 (2-3)添加工程
 次いで、上記工程にてゲル状にされた親水性重合体水溶液に、上記工程にて好ましいサイズに切断されたセルロース系バイオマスを混合して、これらを含む混合物を得る。なお、(2-2)ゲル化工程を経ず、ゲル化されていない親水性重合体水溶液に上記セルロース系バイオマスを混合して混合物を得てもよい。
(2-3) Addition Step Next, the cellulose-based biomass cut into a preferred size in the above step is mixed with the hydrophilic polymer aqueous solution gelled in the above step to obtain a mixture containing these. Note that (2-2) the cellulose-based biomass may be mixed with a non-gelled hydrophilic polymer aqueous solution without passing through the gelation step to obtain a mixture.
 セルロース系バイオマスの混合量としては、特に限定されないが、混合物全体に対するセルロース系バイオマスの混合量が5質量%以上50質量%以下であることが好ましく、10質量%以上40質量%以下であることがさらに好ましい。セルロース系バイオマスの混合量が5質量%未満の場合は、混合物の粘性が低く物理的な作用による分断機能が十分に発揮されないおそれがあると共に、セルロース系バイオマスの処理量が低いため、作業効率が低下する。逆にセルロース系バイオマスの混合量が50質量%を超えると、バイオマスによる吸水性が強く、混合物の粘性が高すぎて、混練しにくくなるため、作業性が低下する。この混合物の粘度としては、例えば5.0×10mPa・s以上1.0×10mPa・s以下が好ましい。 The mixing amount of the cellulosic biomass is not particularly limited, but the mixing amount of the cellulosic biomass with respect to the entire mixture is preferably 5% by mass or more and 50% by mass or less, and preferably 10% by mass or more and 40% by mass or less. Further preferred. When the mixing amount of the cellulosic biomass is less than 5% by mass, the viscosity of the mixture is low and there is a possibility that the function of dividing by the physical action may not be sufficiently exhibited. descend. On the other hand, when the mixing amount of the cellulosic biomass exceeds 50% by mass, the water absorption by the biomass is strong, the viscosity of the mixture is too high, and kneading becomes difficult, so that workability is lowered. The viscosity of the mixture is preferably, for example, from 5.0 × 10 4 mPa · s to 1.0 × 10 6 mPa · s.
 (3)分断工程
 本工程においては、上述の混合工程にて得られた混合物に剪断力を付加することによって、セルロース系バイオマスを分子レベル(準結晶構造レベル)で分断する。つまり、準結晶構造を有するセルロースが部分的に水和され、また、親水性重合体が進入し、このセルロース分子間の水素結合が弱まり、加えて、剪断力の付加による物理的な力により、分子間の結合が弱まった状態でセルロースポリマー同士が互いに引き離されることで、細胞壁の微視的な構造が分断されることとなる。
(3) Splitting step In this step, cellulosic biomass is split at the molecular level (quasicrystalline structure level) by applying a shearing force to the mixture obtained in the mixing step. That is, cellulose having a quasicrystalline structure is partially hydrated, and a hydrophilic polymer enters, hydrogen bonds between the cellulose molecules are weakened. In addition, due to physical force due to the addition of shearing force, Cellulose polymers are separated from each other with weak intermolecular bonds, so that the microscopic structure of the cell wall is disrupted.
 ここで、ゲル化剤を加えて、ゲル状とされた親水性重合体水溶液(混合物)を用いた場合は特に、剪断力の付加の最初の段階から常に好ましい粘性を有した混合物とすることができ、セルロース系バイオマスの分子レベルの分断を効率的に行うことができる。 Here, especially when a hydrophilic polymer aqueous solution (mixture) that has been made into a gel by adding a gelling agent is used, the mixture should always have a favorable viscosity from the first stage of application of shearing force. The cellulosic biomass can be efficiently divided at the molecular level.
 この分断工程における混合物に剪断力を付加する方法としては特に限定されず、例えば、混合物を練り混ぜる方法などが挙げられる。また、この分断工程に用いられる装置としては、特に限定されないが、熱可塑性樹脂の成形の際に一般的に使用される二軸押出成形機等が好適に用いられる。この分断工程に要する時間としては、混合物の量等に応じて適宜設定されるが、例えば30分以上10時間以内程度である。なお、この分断工程の際、粘度が減少した場合は、適宜、四ホウ酸ナトリウム水溶液の添加などによって、粘性を調整するとよい。 The method for applying a shearing force to the mixture in the dividing step is not particularly limited, and examples thereof include a method of kneading the mixture. In addition, the apparatus used in the dividing step is not particularly limited, but a twin screw extruder generally used for molding a thermoplastic resin or the like is preferably used. The time required for this dividing step is appropriately set according to the amount of the mixture and the like, and is, for example, about 30 minutes to 10 hours. In addition, when the viscosity decreases during the dividing step, the viscosity may be appropriately adjusted by adding a sodium tetraborate aqueous solution or the like.
 (4)糖化工程
 本工程においては、上記分断工程を経て、分断されたセルロース系バイオマスを含む混合物にセルロース分解酵素を添加し、糖化を行う。この糖化により、セルロース系バイオマスは容易にグルコースに分解(糖化)され、水溶液中に溶け出す。またセルロース系バイオマス中に含まれるヘミセルロース由来のキシロース等も、併せて水溶液中に溶け出す。この際、セルロース系バイオマスに含まれるリグニンが不溶な粒子として存在することがあるが、このリグニンは、例えば、ろ過や遠心分離によって分離することができる。このようにして得られた可溶性のグルコース等の糖類は、醗酵によってエタノールとし、燃料資源などとして好適に使用することができる。
(4) Saccharification process In this process, a cellulose-degrading enzyme is added to the mixture containing the cellulosic biomass divided through the above-mentioned fragmentation process, and saccharification is performed. By this saccharification, the cellulosic biomass is easily decomposed (saccharified) into glucose and dissolved in an aqueous solution. Further, hemicellulose-derived xylose and the like contained in the cellulosic biomass are also dissolved in the aqueous solution. At this time, the lignin contained in the cellulosic biomass may exist as insoluble particles, but this lignin can be separated by, for example, filtration or centrifugation. The saccharides such as soluble glucose thus obtained can be converted to ethanol by fermentation and can be suitably used as a fuel resource.
 上記セルロース分解酵素としては、特に限定されず、公知のものを用いることができ、例えば、セルラーゼ、ペクチナーゼ、ヘミセルラーゼ、β-グルカナーゼ、キシラナーゼ、マンナーゼ、アミラーゼ、メイセラーゼ、アクレモニウムセルラーゼ(Acremonium cellulolyticus菌から得られるセルラーゼ)等を挙げることができる。これらは、1種又は2種以上を混合して用いることができる。 The cellulose-degrading enzyme is not particularly limited, and a known one can be used. For example, cellulase, pectinase, hemicellulase, β-glucanase, xylanase, mannase, amylase, mecellulase, acremonium cellulase (from Acremonium cellulolyticus bacterium) Obtained cellulase). These can be used alone or in combination of two or more.
 上記セルロース分解酵素の添加量としては、例えばセルロース系バイオマス100質量部に対して、0.1質量部以上10質量部以下が好ましく、0.3質量部以上5質量部以下がより好ましい。 The amount of the cellulose-degrading enzyme added is preferably 0.1 to 10 parts by mass, and more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the cellulose-based biomass.
 なお、セルロース分解酵素を混合物に添加後、撹拌し、糖化を進めることが好ましい。この撹拌時間としては例えば、1時間以上12時間以下とすることができる。 In addition, it is preferable to stir the cellulose-degrading enzyme after adding it to the mixture to promote saccharification. The stirring time can be, for example, 1 hour or more and 12 hours or less.
 この糖化工程における混合物の温度としては、酵素の種類等によって適宜設定することができるが、例えば30℃以上70℃以下であり、40℃以上60℃以下が好ましい。 The temperature of the mixture in this saccharification step can be appropriately set depending on the type of enzyme and the like, and is, for example, 30 ° C. or higher and 70 ° C. or lower, and preferably 40 ° C. or higher and 60 ° C. or lower.
 また、この糖化工程における混合物のpHも、酵素の種類等によって適宜調整すればよく、例えばpH5~7とすることが好ましい。このpHの調整は、公知の酸又は塩基の混合物への添加により行うことができる。 In addition, the pH of the mixture in this saccharification step may be adjusted as appropriate depending on the type of enzyme and the like, for example, preferably 5 to 7. The pH can be adjusted by adding to a known acid or base mixture.
 (5)第一分離工程
 本工程においては、上記糖化工程を経た混合物に無機塩を添加し、この混合物を糖液と第一残渣(固形分)とに分離する。上記無機塩の添加により、混合物中に溶解していた親水性重合体及びゲル化剤は析出し、これら析出物及び分解されなかったセルロース系バイオマス等が凝集沈殿する。
(5) First Separation Step In this step, an inorganic salt is added to the mixture that has undergone the saccharification step, and the mixture is separated into a sugar solution and a first residue (solid content). By the addition of the inorganic salt, the hydrophilic polymer and the gelling agent dissolved in the mixture are precipitated, and these precipitates, undecomposed cellulose biomass and the like are agglomerated and precipitated.
 上記無機塩としては、特に限定されないが、硫酸塩、炭酸塩、硝酸塩、リン酸塩、炭酸水素塩からなる群より選ばれる少なくとも1種が好ましい。上記種類の無機塩を用いることで、親水性重合体やゲル化剤の析出と、この析出物及び分解されなかったセルロース系バイオマス等の凝集沈殿とを効率的に行うことができ、糖の生産性を高めることができる。 The inorganic salt is not particularly limited, but is preferably at least one selected from the group consisting of sulfate, carbonate, nitrate, phosphate and bicarbonate. By using the above-mentioned types of inorganic salts, it is possible to efficiently carry out precipitation of hydrophilic polymers and gelling agents, and agglomeration and precipitation of this precipitate and cellulose-based biomass that has not been decomposed. Can increase the sex.
 これらの無機塩の中でも、水への高い溶解度、析出及び凝集沈殿をより効率的に行える点で硫酸塩がより好ましく、硫酸アンモニウムがさらに好ましい。 Among these inorganic salts, sulfate is more preferable, and ammonium sulfate is more preferable in view of high solubility in water, precipitation and aggregation precipitation more efficiently.
 なお、無機塩添加後、一定時間静置した後は、糖液と第一残渣(固形分)とを公知の手段(濾過等)を用いて、分離することができる。 In addition, after adding an inorganic salt and allowing to stand for a certain period of time, the sugar solution and the first residue (solid content) can be separated using a known means (such as filtration).
 分離された糖液には、グルコースや、キシロース等の糖が溶解された水溶液である。この糖液は、各糖に分離して、それぞれ利用することもできるし、醗酵させてエタノールとして利用することもできる。 The separated sugar solution is an aqueous solution in which sugars such as glucose and xylose are dissolved. This sugar solution can be separated into sugars and used separately, or fermented and used as ethanol.
 (6)第二分離工程
 本工程においては、上記第一残渣の少なくとも一部を水系溶媒で希釈し、親水性重合体溶液と第二残渣(固形分)とに分離する。なお、ゲル化剤を用いている場合、この親水性重合体溶液には、親水性重合体に加えて上記ゲル化剤も溶質として溶け込んでいる。特に、ホウ酸やホウ酸塩等をゲル化剤として使用した場合、これらは上記親水性重合体溶液に溶質として容易に溶け込むため、ホウ酸及びホウ酸塩等も第二残渣と効率的に分離することができる。
(6) Second Separation Step In this step, at least a part of the first residue is diluted with an aqueous solvent and separated into a hydrophilic polymer solution and a second residue (solid content). In the case where a gelling agent is used, in addition to the hydrophilic polymer, the gelling agent is also dissolved in the hydrophilic polymer solution as a solute. In particular, when boric acid or borate is used as a gelling agent, these easily dissolve as solutes in the hydrophilic polymer solution, so boric acid and borate are also efficiently separated from the second residue. can do.
 上記水系溶媒としては、水や、水と他の溶媒(例えばエタノール等のアルコール等)との混合溶媒を挙げることができるが、取扱いの容易性やコストの面から水が好ましい。 Examples of the aqueous solvent include water and a mixed solvent of water and another solvent (for example, alcohol such as ethanol), but water is preferable from the viewpoint of ease of handling and cost.
 上記水系溶媒が酸性であることが好ましい。本工程において、このように酸性の水系溶媒を用いることで、親水性重合体溶液(ホウ酸等のゲル化剤を含む)と第二残渣との分離能が高まり、生産性を高めることができる。この水系溶媒で希釈した状態の混合液のpHとしては、3以上5以下が好ましい。上記混合液のpHを上記範囲とすることで、親水性重合体溶液と第二残渣との分離能をさらに高めることができる。 It is preferable that the aqueous solvent is acidic. In this step, by using an acidic aqueous solvent in this manner, the separation ability between the hydrophilic polymer solution (including a gelling agent such as boric acid) and the second residue is increased, and the productivity can be increased. . The pH of the mixed solution diluted with the aqueous solvent is preferably 3 or more and 5 or less. By making pH of the said liquid mixture into the said range, the separation ability of a hydrophilic polymer solution and a 2nd residue can further be improved.
 上記水系溶媒を酸性にする手段としては、水系溶媒に公知の酸を添加する方法を挙げることができる。すなわち、上記水系溶媒として酸性の水溶液を用いればよい。上記酸としては、硫酸、亜硫酸、リン酸、亜リン酸、硝酸、過塩素酸、過臭素酸、塩酸等の無機酸や、カルボン酸、フタル酸、マレイン酸、パラトルエンスルホン酸、メタンスルホン酸、フェノールスルホン酸等の有機酸を添加する方法を挙げることができるが、取扱性や分離性の点から、無機酸が好ましく、硫酸がさらに好ましい。なお、この酸の添加は、第一残渣を希釈する前の水系溶媒に対して行ってもよいし、第一残渣を水系溶媒で希釈した状態の混合液に対して行ってもよい。 Examples of means for acidifying the aqueous solvent include a method of adding a known acid to the aqueous solvent. That is, an acidic aqueous solution may be used as the aqueous solvent. Examples of the acid include inorganic acids such as sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, nitric acid, perchloric acid, perbromic acid, hydrochloric acid, carboxylic acid, phthalic acid, maleic acid, paratoluenesulfonic acid, and methanesulfonic acid. Further, a method of adding an organic acid such as phenol sulfonic acid can be mentioned, but from the viewpoint of handleability and separability, an inorganic acid is preferable, and sulfuric acid is more preferable. In addition, this addition of an acid may be performed with respect to the aqueous solvent before diluting a 1st residue, and may be performed with respect to the liquid mixture of the state which diluted the 1st residue with the aqueous solvent.
 上記水系溶媒の使用割合としては特に限定されないが、例えば第一残渣の固形分に対して、質量比で1~100倍程度である。 The usage ratio of the aqueous solvent is not particularly limited, but is, for example, about 1 to 100 times in terms of mass ratio with respect to the solid content of the first residue.
 この希釈においては、分離能を高めるために、第一残渣に水系溶媒を添加した後、公知の方法でこの混合液を撹拌させることが好ましい。上記撹拌後、必要に応じこの混合液を一定時間静置し、親水性重合体溶液と第二残渣(固形分)とを公知の手段(濾過、遠心分離等)を用いることで、分離することができる。 In this dilution, it is preferable to stir the mixed solution by a known method after adding an aqueous solvent to the first residue in order to enhance the separation ability. After the stirring, if necessary, the mixture is allowed to stand for a certain period of time, and the hydrophilic polymer solution and the second residue (solid content) are separated by using known means (filtration, centrifugation, etc.). Can do.
 (7)ゲル化剤分離工程(I)
 この工程においては、第二分離工程により得られ、ゲル化剤を含む親水性重合体溶液(糖化工程を経た混合物の少なくとも一部)からゲル化剤を分離する。この分離手段としては、上記親水性重合体溶液と、PVAを主成分とする含水ゲル、又はイオン交換樹脂とを接触させる方法等を挙げることができる。
(7) Gelling agent separation step (I)
In this step, the gelling agent is separated from the hydrophilic polymer solution (at least part of the mixture that has undergone the saccharification step) obtained by the second separation step. Examples of the separating means include a method of bringing the hydrophilic polymer solution into contact with a hydrogel containing PVA as a main component or an ion exchange resin.
 (PVAを主成分とする含水ゲルを用いる場合)
 上記親水性重合体溶液と上記含水ゲルとの接触方法としては、特に限定されないが、例えば親水性重合体溶液が入った槽に含水ゲルを浸漬する方法や、含水ゲルが充填された吸着塔に通液して行う方法などを挙げることができる。
(When using a hydrogel containing PVA as a main component)
The method for contacting the hydrophilic polymer solution and the hydrogel is not particularly limited. For example, a method of immersing the hydrogel in a tank containing the hydrophilic polymer solution or an adsorption tower filled with the hydrogel. Examples include a method of passing through the liquid.
 上記含水ゲルと接触させるときの親水性重合体溶液は、アルカリ性であることが好ましく、具体的にはpH8~12であることが好ましい。親水性重合体溶液(糖化工程を経た混合物の少なくとも一部)をアルカリ性とすることで、ホウ酸等のゲル化剤の含水ゲルへの吸着性が高まる。一方、吸着後、含水ゲルからホウ酸等のゲル化剤を脱離は、酸性水溶液中へ含水ゲルを浸漬することで容易に行うことができる。この際、上記酸性水溶液のpHとしては、例えば2~6が好ましい。この脱離されたホウ酸等は、後述する再利用工程等で再利用することができる。また、ホウ酸等を脱離することで、含水ゲルの複数回の使用を可能とする。このように、当該製造方法によれば、液性を制御することで、ホウ酸等のゲル化剤の含水ゲルへの脱着を容易に行うことができる。 The hydrophilic polymer solution to be brought into contact with the water-containing gel is preferably alkaline and specifically has a pH of 8 to 12. By making the hydrophilic polymer solution (at least part of the mixture that has undergone the saccharification step) alkaline, the adsorptivity of the gelling agent such as boric acid to the hydrous gel is increased. On the other hand, the desorption of the gelling agent such as boric acid from the hydrogel after adsorption can be easily performed by immersing the hydrogel in an acidic aqueous solution. At this time, the pH of the acidic aqueous solution is preferably 2 to 6, for example. The desorbed boric acid and the like can be reused in a reuse process described later. Further, by removing boric acid or the like, the hydrogel can be used multiple times. Thus, according to the said manufacturing method, desorption to the hydrogel of gelatinizers, such as a boric acid, can be easily performed by controlling liquidity.
 上記含水ゲルの主成分となるPVAの平均重合度としては、1,000以上10,000以下が好ましく、1,500以上5,000以下がより好ましい。上記範囲の平均重合度からなるPVAを用いることで、耐久性及び吸着性が優れた含水ゲルとなる。 The average degree of polymerization of PVA that is the main component of the hydrated gel is preferably 1,000 or more and 10,000 or less, and more preferably 1,500 or more and 5,000 or less. By using PVA having an average degree of polymerization in the above range, a hydrous gel having excellent durability and adsorptivity is obtained.
 上記含水ゲルの主成分となるPVAのケン化度としては、95モル%以上が好ましく、98モル%以上がさらに好ましい。このPVAのケン化度を上記範囲とすることで、ホウ酸等の吸着性を高めることができる。 The degree of saponification of PVA that is the main component of the hydrated gel is preferably 95 mol% or more, and more preferably 98 mol% or more. By setting the degree of saponification of this PVA within the above range, it is possible to enhance the adsorptivity of boric acid and the like.
 上記含水ゲルは、PVAを主成分とするものであれば特に限定されないが、PVAが架橋されたものが好ましい。架橋されたPVAを用いることで、含水ゲルの耐久性が向上する。 The water-containing gel is not particularly limited as long as it contains PVA as a main component, but is preferably a crosslinked PVA. By using the cross-linked PVA, the durability of the hydrogel is improved.
 上記PVAの架橋としては、電子線やγ線による放射線架橋、凍結繰り返しなどによる物理架橋、アルデヒド化合物やホウ酸等を用いた化学架橋などが挙げられる。上記含水ゲルが、PVAの化学架橋により形成されたものであることが好ましい。化学架橋されたPVAからなる含水ゲルを用いることで、この含水ゲルの耐久性等が高まり、糖の生産性をより高めることができる。 Examples of the cross-linking of PVA include radiation cross-linking with electron beams and γ rays, physical cross-linking with repeated freezing, and chemical cross-linking with aldehyde compounds and boric acid. The hydrated gel is preferably formed by chemical crosslinking of PVA. By using a water-containing gel made of chemically cross-linked PVA, the durability of the water-containing gel is increased, and the sugar productivity can be further increased.
 さらに、化学架橋の中でも、アルデヒド化合物により架橋されたPVA(アセタール化されたされたPVA)が好ましい。PVAがアルデヒド化合物により架橋されていることで、含水ゲルからのPVAの溶出が低減され、かつ、耐久性も高まる。以下、アルデヒド化合物を用いたPVAの化学架橋により形成された含水ゲルの具体的製造方法の一例について説明する。 Furthermore, among chemical crosslinking, PVA (acetalized PVA) crosslinked with an aldehyde compound is preferable. Since PVA is crosslinked with an aldehyde compound, elution of PVA from the hydrogel is reduced and durability is also increased. Hereinafter, an example of a specific method for producing a hydrogel formed by chemical crosslinking of PVA using an aldehyde compound will be described.
 上記含水ゲルは、PVA水溶液を-5℃以下で凍結させることにより得られる。PVA水溶液の濃度としては、ゲルの強度面からは高いほうが好ましく、ホウ酸等の脱着性からは低いほうが好ましい。したがって、PVA水溶液の濃度は、1~40質量%が好ましく、3~20質量%がより好ましい。 The water-containing gel can be obtained by freezing a PVA aqueous solution at −5 ° C. or lower. The concentration of the aqueous PVA solution is preferably higher from the viewpoint of gel strength, and is preferably lower from the desorbability of boric acid or the like. Therefore, the concentration of the PVA aqueous solution is preferably 1 to 40% by mass, and more preferably 3 to 20% by mass.
 続いて、凍結によりゲル化されたPVAにアルデヒド化合物を加えることで、アセタール化(化学架橋)される。このアセタール化反応は、凍結したままでもよいが、一旦解凍した後の方が好ましい。また、網目構造を強固にするために、凍結解凍を反復してもよいし、凍結状態で減圧にして部分的に脱水してもよい。 Subsequently, an aldehyde compound is added to the PVA gelled by freezing to acetalize (chemical crosslinking). This acetalization reaction may be kept frozen, but is preferably performed after thawing once. Further, in order to strengthen the network structure, freeze-thaw may be repeated, or partial dehydration may be performed by reducing the pressure in a frozen state.
 上記アルデヒド化合物としては、グリオキザール、ホルムアルデヒド、ベンズアルデヒド、スクシンアルデヒド、マロンジアルデヒド、グルタルアルデヒド、アジピンアルデヒド、テレフタルアルデヒド、ノナンジアールなどが挙げられる。 Examples of the aldehyde compound include glyoxal, formaldehyde, benzaldehyde, succinaldehyde, malondialdehyde, glutaraldehyde, adipine aldehyde, terephthalaldehyde, and nonane dial.
 PVAのアセタール化度(ホルマール化度)としては10~50モル%が好ましく、20~40モル%がより好ましい。アセタール化度(ホルマール化度)が低すぎると、耐水性が不十分であり、逆に、アセタール化度(ホルマール化度)が高すぎると、PVAが疎水化され、網目構造が崩壊してしまうことがある。 The degree of acetalization (formalization degree) of PVA is preferably 10 to 50 mol%, more preferably 20 to 40 mol%. If the degree of acetalization (degree of formalization) is too low, the water resistance is insufficient. Conversely, if the degree of acetalization (degree of formalization) is too high, PVA is hydrophobized and the network structure collapses. Sometimes.
 なお、上記含水ゲルは、PVAのゲル化を阻害しない範囲で、PVA以外の公知の成分を含有してもよい。 In addition, the said hydrogel may contain well-known components other than PVA in the range which does not inhibit the gelatinization of PVA.
 例えば、含水ゲルを任意の形状に成形するために、水溶性高分子多糖類を添加してもよい。具体的には、アルギン酸のアルカリ金属塩、カラギーナン、マンナン、キトサン等、陽イオンとの接触によってゲル化する能力のある水溶性高分子多糖類が挙げられる。この場合、含水ゲルを任意の形状に成形するために、カルシウムイオン、マグネシウムイオン、ストロンチウムイオン、バリウムイオンなどのアルカリ土類金属イオン、アルミニウムイオン、ニッケルイオン、セリウムイオンなどの多価金属イオン、カリウムイオン、アンモニウムイオンなどの水溶性高分子多糖類をゲル化させる陽イオンに、含水ゲルを接触させてもよい。 For example, a water-soluble polymer polysaccharide may be added to form a hydrogel into an arbitrary shape. Specific examples include water-soluble polymeric polysaccharides capable of gelation by contact with cations, such as alkali metal salts of alginic acid, carrageenan, mannan, chitosan and the like. In this case, in order to form a hydrous gel into an arbitrary shape, alkaline earth metal ions such as calcium ions, magnesium ions, strontium ions and barium ions, polyvalent metal ions such as aluminum ions, nickel ions and cerium ions, potassium The hydrogel may be brought into contact with a cation that gels water-soluble polymer polysaccharides such as ions and ammonium ions.
 上記含水ゲルの形状は特に限定されるものではなく、球状、繊維状、サイコロ状、フィルム状、円筒状などの任意の形状を適宜適択することができる。このようにして、得られたアセタール化PVA含水ゲルは、網目構造を有するためホウ酸等の脱着性がよく、かつ含水ゲルからのPVAの溶出が激減する。また、含水ゲルの劣化も起こりにくく耐久性が向上する。 The shape of the hydrated gel is not particularly limited, and an arbitrary shape such as a spherical shape, a fibrous shape, a dice shape, a film shape, or a cylindrical shape can be appropriately selected. Thus, since the obtained acetalized PVA hydrogel has a network structure, it has good desorption properties such as boric acid, and the elution of PVA from the hydrogel is drastically reduced. Further, the water-containing gel is hardly deteriorated, and the durability is improved.
 (イオン交換樹脂を用いる場合)
 上記親水性重合体溶液と上記イオン交換樹脂との接触方法としては、特に限定されないが、例えば親水性重合体溶液をイオン交換樹脂が充填された吸着塔に通液して行う方法などを挙げることができる。なお、この吸着塔への通液の際の空間速度(SV)としては1~10/時間が好ましい。
(When using ion exchange resin)
The method for contacting the hydrophilic polymer solution with the ion exchange resin is not particularly limited. Examples thereof include a method in which the hydrophilic polymer solution is passed through an adsorption tower packed with an ion exchange resin. Can do. The space velocity (SV) at the time of passing through the adsorption tower is preferably 1 to 10 / hour.
 上記イオン交換樹脂としては、公知のものを適宜用いることができ、ゲル化剤としてホウ酸又はホウ酸塩を用いた場合は、ホウ素選択性イオン交換樹脂を好適に用いることができる。上記ホウ素選択性イオン交換樹脂としては、ホウ素吸着性能を有するイオン交換樹脂であれば特に限定されないが、交換基としてN-メチルグルカミン基を有するホウ素吸着性樹脂が好ましい。N-メチルグルカミン基を有するイオン交換樹脂としては、例えばダイヤイオン(登録商標;三菱化学株式会社製)CRB01及びCRB02、アンバーライト(登録商標;ローム・ハース社製)IRA743、デュオライト(登録商標;住友化学工業株式会社製)A368などが挙げられる。 As the ion exchange resin, known ones can be used as appropriate. When boric acid or borate is used as the gelling agent, a boron selective ion exchange resin can be suitably used. The boron selective ion exchange resin is not particularly limited as long as it is an ion exchange resin having boron adsorption performance, but a boron adsorption resin having an N-methylglucamine group as an exchange group is preferable. Examples of ion exchange resins having an N-methylglucamine group include Diaion (registered trademark; manufactured by Mitsubishi Chemical Corporation) CRB01 and CRB02, Amberlite (registered trademark; manufactured by Rohm Haas) IRA743, Duolite (registered trademark). ; Manufactured by Sumitomo Chemical Co., Ltd.) A368 and the like.
 なお、ホウ酸塩等を含む親水性重合体溶液との接触により、吸着能が低下したイオン交換樹脂は、適宜再生処理を行うことが好ましい。この再生処理としては、例えばホウ素脱離液をイオン交換樹脂と接触させることにより行われる。上記ホウ素脱離液としては、希薄鉱酸水溶液が好ましく、濃度1~10質量%程度の塩酸又は硫酸水溶液がより好ましい。 In addition, it is preferable that the ion exchange resin whose adsorptivity is reduced by contact with a hydrophilic polymer solution containing borate or the like is appropriately regenerated. This regeneration process is performed, for example, by bringing a boron desorption solution into contact with an ion exchange resin. The boron desorbing solution is preferably a dilute mineral acid aqueous solution, more preferably a hydrochloric acid or sulfuric acid aqueous solution having a concentration of about 1 to 10% by mass.
 また、この際の親水性重合体溶液は、電気透析により塩を除去し、塩基性化合物を加えること等によりpHを6~12に調整したものを用いることが好ましい。このような親水性重合体溶液を用いることで、ホウ酸等ゲル化剤の分離能をさらに高めることができる。上記電気透析としては、多価アニオン透過膜等を用いて行うことができる。また、上記塩基性化合物としては、苛性ソーダ等を用いることができる。 In addition, it is preferable to use a hydrophilic polymer solution in which the pH is adjusted to 6 to 12 by removing a salt by electrodialysis and adding a basic compound. By using such a hydrophilic polymer solution, the separation ability of the gelling agent such as boric acid can be further enhanced. The electrodialysis can be performed using a polyvalent anion permeable membrane or the like. Moreover, caustic soda etc. can be used as said basic compound.
 (8)再利用工程
 この工程においては、上記ゲル化剤分離工程で分離したゲル化剤、及び/又はゲル化剤を分離した上記親水性重合体溶液の少なくとも一部を、上記混合工程における混合物にさらに加える。この工程により、親水性重合体及び/又はゲル化剤を再利用するため、原材料費及び廃棄物処理費等を抑えることができる。なお、上記ゲル化分離工程において、親水性重合体とゲル化剤とを分離しているため、どちらかのみを再利用することができるし、これらの割合を適宜変更して再利用することなどもできる。さらには、これらを当該製造方法以外の他の用途に使用することもできる。
(8) Reuse step In this step, the gelling agent separated in the gelling agent separation step and / or at least a part of the hydrophilic polymer solution from which the gelling agent has been separated are mixed in the mixing step. Add to more. By this step, since the hydrophilic polymer and / or the gelling agent is reused, raw material costs and waste disposal costs can be suppressed. In addition, since the hydrophilic polymer and the gelling agent are separated in the gelation and separation step, only one of them can be reused, or the ratio can be appropriately changed and reused. You can also. Furthermore, these can also be used for uses other than the said manufacturing method.
 この際、混合工程に用いられる親水性重合体やゲル化剤は、このリサイクルされたものから全てまかなってもよいし、新たな親水性重合体やゲル化剤を混合物に一部投入してもよい。 At this time, the hydrophilic polymer or gelling agent used in the mixing step may be entirely covered from this recycled one, or a new hydrophilic polymer or gelling agent may be partially added to the mixture. Good.
 なお、本明細書において、ゲル化剤分離工程で分離したゲル化剤の少なくとも一部を上記混合工程における混合物に加える工程を、特に「ゲル化剤再利用工程」と称する。ここで当該ゲル化剤再利用工程において混合物に加えられるゲル化剤は、上記第一残渣に由来するものである(すなわち、当該ゲル化剤再利用工程が上記再利用工程の一環として行われる)ことが好ましいが、糖液と第一残渣とに分離する前の上記糖化工程を経た混合物に由来するものであってもよい。本発明の糖の製造方法は、ゲル化剤再利用工程とそれ以外の再利用工程のうちのいずれか一方のみを有していてもよいが、両工程を共に有していてもよい。 In the present specification, the step of adding at least a part of the gelling agent separated in the gelling agent separation step to the mixture in the mixing step is particularly referred to as a “gelling agent recycling step”. Here, the gelling agent added to the mixture in the gelling agent recycling step is derived from the first residue (that is, the gelling agent recycling step is performed as part of the recycling step). Although it is preferable, it may be derived from the mixture that has undergone the saccharification step before separation into the sugar solution and the first residue. Although the manufacturing method of the saccharide | sugar of this invention may have only any one of a gelatinizer reuse process and the other reuse process, you may have both processes.
 (9)第三分離工程及びゲル化剤分離工程(II)
 第三分離工程においては、上記第二分離工程で分離された第二残渣を水系溶媒で希釈し、分離液と第三残渣とに分離する。上記第二残渣は、廃棄物として処理される成分が大部分とされるものであるが、この第三分離工程を経ることで、分離液中にホウ酸等のゲル化剤及び溶け残りの親水性重合体を取り出すことができ、リサイクル性を高め、また、環境負荷の低減を図ることができる。なお、この第三分離工程においては、第二分離工程に用いられなかった第一残渣の一部を第二残渣に加えて使用することなどもできる。
(9) Third separation step and gelling agent separation step (II)
In the third separation step, the second residue separated in the second separation step is diluted with an aqueous solvent and separated into a separation liquid and a third residue. The second residue is mainly composed of components to be treated as waste. By passing through the third separation step, the gelling agent such as boric acid and the remaining undissolved hydrophilic are contained in the separated liquid. The functional polymer can be taken out, the recyclability can be improved, and the environmental load can be reduced. In the third separation step, a part of the first residue that has not been used in the second separation step may be used in addition to the second residue.
 なお、上記第三残渣は、分解されなかったセルロース系バイオマスや、分解されないリグニン等を含む。この第三残渣は、廃棄物として処分してもよいし、例えば肥料や燃料として利用することもできる。 In addition, the said 3rd residue contains the cellulose biomass which was not decomposed | disassembled, the lignin etc. which are not decomposed | disassembled. This third residue may be disposed of as waste, or may be used as fertilizer or fuel, for example.
 第三分離工程における具体的方法(水系溶媒の種類、酸性度等)は、上述した第二分離工程と同様である。 The specific method (type of aqueous solvent, acidity, etc.) in the third separation step is the same as in the second separation step described above.
 ゲル化剤分離工程(II)においては、第三分離工程で分離された分離液を含水ゲルやイオン交換樹脂と接触させて、ゲル化剤を分離する。ゲル化剤分離工程(II)の具体的方法(含水ゲル及びイオン交換樹脂の種類等)については、上述したゲル化剤分離工程(I)と同様である。 In the gelling agent separation step (II), the gelling agent is separated by bringing the separation liquid separated in the third separation step into contact with the hydrogel or ion exchange resin. The specific method of the gelling agent separation step (II) (the type of hydrogel and ion exchange resin, etc.) is the same as the gelling agent separation step (I) described above.
 このゲル化剤分離工程(II)において含水ゲルを用いる場合、この含水ゲルと接触させるときの分離液は、アルカリ性であることが好ましく、具体的にはpH8~12であることが好ましい。分離液(糖化工程を経た混合物の少なくとも一部)をアルカリ性とすることで、ホウ酸等のゲル化剤の含水ゲルへの吸着性が高まる。一方、吸着後、含水ゲルからホウ酸等のゲル化剤を脱離は、酸性水溶液中へ含水ゲルを浸漬することで容易に行うことができる。この際、上記酸性水溶液のpHとしては、例えば2~6が好ましい。この脱離されたホウ酸等は、再利用工程等で再利用することができる。また、ホウ酸等を脱離することで、含水ゲルの複数回の使用を可能とする。 In the case of using a hydrogel in the gelling agent separation step (II), the separation liquid to be brought into contact with the hydrogel is preferably alkaline, specifically pH 8-12. By making the separation liquid (at least a part of the mixture that has undergone the saccharification step) alkaline, the adsorptivity of the gelling agent such as boric acid to the hydrogel is increased. On the other hand, the desorption of the gelling agent such as boric acid from the hydrogel after adsorption can be easily performed by immersing the hydrogel in an acidic aqueous solution. At this time, the pH of the acidic aqueous solution is preferably 2 to 6, for example. The removed boric acid or the like can be reused in a reuse process or the like. Further, by removing boric acid or the like, the hydrogel can be used multiple times.
 このゲル化剤分離工程(II)を経ることにより、分離液中のゲル化剤(ホウ酸等)濃度を下げることができ、排水としての処理も効率的に行うことができる。具体的には、日本における排水中のホウ酸排出基準は、陸水域10ppm、海水域230ppmであるが、これらの濃度以下に、例えば8ppm以下に分離液中のホウ酸濃度を下げることもできる。 By passing through this gelling agent separation step (II), the concentration of the gelling agent (boric acid or the like) in the separated liquid can be lowered, and the treatment as waste water can be performed efficiently. Specifically, the standards for boric acid discharge in wastewater in Japan are 10 ppm for terrestrial water and 230 ppm for seawater. However, the concentration of boric acid in the separated liquid can be lowered below these concentrations, for example, 8 ppm or less.
 (親水性重合体)
 ここで、本発明の糖の製造に用いられる親水性重合体について詳説する。上記親水性重合体としては、特に限定されないが、例えば、ポリビニルアルコール系重合体(PVA)、エチレン-酢酸ビニル共重合体、ポリビニルピロリドン等を挙げることができる。これらの中でも、PVAが好ましい。上記親水性重合体としてPVAを用いることで、分断工程における作業効率等が向上するため、より生産性を高めることができる。
(Hydrophilic polymer)
Here, it explains in full detail about the hydrophilic polymer used for manufacture of the saccharide | sugar of this invention. The hydrophilic polymer is not particularly limited, and examples thereof include polyvinyl alcohol polymer (PVA), ethylene-vinyl acetate copolymer, polyvinyl pyrrolidone and the like. Among these, PVA is preferable. By using PVA as the hydrophilic polymer, work efficiency and the like in the dividing step are improved, so that productivity can be further increased.
 (PVA)
 ここで、本発明の糖の製造に好適に用いられるPVAについて、詳説する。なお、PVA(ポリビニルアルコール系重合体)とは、ポリビニルアルコール及びビニルアルコール共重合体をいう。
(PVA)
Here, PVA suitably used for the production of the sugar of the present invention will be described in detail. In addition, PVA (polyvinyl alcohol-type polymer) means polyvinyl alcohol and a vinyl alcohol copolymer.
 このPVAとしては、特に制限なく各種のものを使用することができるが、通常は、酢酸ビニルに代表されるビニルエステル系単量体又はビニルエステル単量体とエチレンとを各種方法(塊状重合、メタノール等を溶媒とする溶液重合、乳化重合、懸濁重合等)で重合した後、公知の方法(アルカリケン化、酸ケン化等)によりケン化することによって得られるPVAが用いられる。なお上記のビニルエステル単量体としては、酢酸ビニル以外に、ギ酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル、ピバリン酸ビニル等を用いることもできる。 Various types of PVA can be used without any particular limitation. Usually, vinyl ester monomers represented by vinyl acetate or vinyl ester monomers and ethylene are used in various methods (bulk polymerization, PVA obtained by polymerization by a known method (alkali saponification, acid saponification, etc.) after polymerization by methanol (solvent polymerization, emulsion polymerization, suspension polymerization, etc.) is used. In addition to vinyl acetate, vinyl formate, vinyl propionate, vinyl versatate, vinyl pivalate and the like can be used as the vinyl ester monomer.
 また、本発明に用いるPVAは、本発明の効果を損なわない範囲でビニルエステル系単量体との共重合が可能な単量体を共存させ、共重合することも可能である。このような単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等のオレフィン類;アクリル酸;アクリル酸エステル類;メタクリル酸;メタクリル酸エステル類;メチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、塩化アリル等のアリル化合物;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水フタル酸、無水トリメット酸、無水イタコン酸等のカルボキシル基含有化合物及びそのエステル;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有化合物;ジアセトンアクリルアミド、ジアセトンアクリレート、ジアセトンメタクリレート等のジアセトン基含有化合物;ビニルトリメトキシシラン等のビニルシラン化合物;酢酸イソプロペニル;3-(メタ)アクリルアミドプロピルトリメチルアンモニウムクロライド等が挙げられる。 In addition, the PVA used in the present invention can be copolymerized by allowing a monomer capable of copolymerization with a vinyl ester monomer to coexist within a range not impairing the effects of the present invention. Examples of such monomers include olefins such as ethylene, propylene, 1-butene and isobutene; acrylic acid; acrylic acid esters; methacrylic acid; methacrylic acid esters; methyl vinyl ether, n-propyl vinyl ether, i -Vinyl ethers such as propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; allyl compounds such as vinyl chloride and allyl chloride; Carboxyl group-containing compounds such as acid, maleic acid, itaconic acid, maleic anhydride, phthalic anhydride, trimetic anhydride, itaconic anhydride and esters thereof; ethylenesulfonic acid, allylsulfonic acid Sulfonic acid group-containing compounds such as methallylsulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid; diacetone group-containing compounds such as diacetone acrylamide, diacetone acrylate and diacetone methacrylate; vinylsilane compounds such as vinyltrimethoxysilane; Examples include isopropenyl acetate; 3- (meth) acrylamidopropyltrimethylammonium chloride.
 また、チオール酢酸、メルカプトプロピオン酸などのチオール化合物存在下で、酢酸ビニルなどのビニルエステル系単量体を重合し、それをケン化することによって得られる末端変性物も用いることができる。さらには、アセトアセチル化PVA等、各種PVAを後反応により変性した従来公知の後反応PVA等も用いることができる。 Also, a terminal modified product obtained by polymerizing a vinyl ester monomer such as vinyl acetate in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid and saponifying it can be used. Furthermore, conventionally known post-reaction PVA obtained by modifying various PVAs by post-reaction such as acetoacetylated PVA can also be used.
 上記PVAは、セルロース系バイオマスを原料とした加水分解性セルロースの製造に用いられるものである。具体的には、上述したように、PVAの水溶液と、セルロース系バイオマス等とを混合して混合物とし、この混合物を練り混ぜることなどにより剪断力を付加し、セルロース系バイオマスを分子レベル(準結晶構造レベル)で細かく分断するために用いられる。この際、このPVA水溶液を用いることで上記混合物の粘性を好適な状態に保つことができる。その結果、混合物の混練等の際、粘り気のある水溶液によってセルロースポリマー鎖を容易に引き剥がし、また、準結晶構造を有するポリマー鎖の内部に水及びPVAが効率的に進入することでポリマー鎖間の水素結合を弱めていくことができる。さらには、このように引き裂かれたポリマー鎖間にPVAが進入することで、この構造の再結晶化を防ぐことができる。なお、このように分子レベルで分断されたセルロースは、加水分解酵素等によって容易に分解される。 The PVA is used for producing hydrolyzable cellulose using cellulosic biomass as a raw material. Specifically, as described above, an aqueous solution of PVA is mixed with a cellulosic biomass to form a mixture, and a shearing force is applied by kneading the mixture to make the cellulosic biomass at a molecular level (quasicrystal). It is used for fine division at the structure level. Under the present circumstances, the viscosity of the said mixture can be maintained in a suitable state by using this PVA aqueous solution. As a result, when kneading the mixture, the cellulose polymer chain is easily peeled off by a viscous aqueous solution, and water and PVA efficiently enter the interior of the polymer chain having a quasicrystalline structure. Can weaken the hydrogen bond. Furthermore, recrystallization of this structure can be prevented by the PVA entering between the polymer chains thus torn. In addition, the cellulose divided | segmented in this molecular level is easily decomposed | disassembled by a hydrolase etc.
 上記PVAの平均重合度は、200以上5,000以下が好ましく、1,000以上4,000以下がより好ましく、1,800以上3,500以下がさらに好ましく、2,000以上3,000以下が特に好ましい。用いるPVAの平均重合度を上記範囲とすることで、このPVAを水溶液として用い、セルロース系バイオマス等と混合した際に、好適な粘性で効率よく、かつ均一に混ぜ合わせることができ、その結果、セルロースポリマー鎖を効率的に分断し、加水分解を容易に行うことができる状態とすることができる。また、このように平均重合度の高いPVAを用いることで、少ない量のゲル化剤(ホウ酸等)でゲル化させることができる。 The average degree of polymerization of the PVA is preferably from 200 to 5,000, more preferably from 1,000 to 4,000, further preferably from 1,800 to 3,500, and from 2,000 to 3,000. Particularly preferred. By setting the average degree of polymerization of the PVA to be used in the above range, when this PVA is used as an aqueous solution and mixed with cellulosic biomass or the like, it can be mixed efficiently and uniformly with a suitable viscosity. Cellulose polymer chains can be efficiently divided so that hydrolysis can be easily performed. Further, by using PVA having a high average degree of polymerization in this way, it can be gelled with a small amount of gelling agent (boric acid or the like).
 ここで、「平均重合度」とは、JIS K6726に準じて測定した粘度平均重合度(P)の値である。すなわち、ケン化度が99.5モル%未満の場合は、ポリビニルアルコール系重合体をケン化度99.5モル%以上に再ケン化し、精製した後、30℃の水中で測定した極限粘度[η](デシリットル/g)から下記式(1)により求めた値である。
  P=([η]×1000/8.29)(1/0.62)  (1)
Here, the “average polymerization degree” is a value of the viscosity average polymerization degree (P) measured according to JIS K6726. That is, when the saponification degree is less than 99.5 mol%, the polyvinyl alcohol polymer is re-saponified to a saponification degree of 99.5 mol% or more and purified, and then the intrinsic viscosity measured in water at 30 ° C. [ η] (deciliter / g) is a value obtained by the following formula (1).
P = ([η] × 1000 / 8.29) (1 / 0.62) (1)
 上記PVAの平均重合度が200未満の場合は、分子量が小さすぎるため、ある程度濃度を調整しても十分な粘性を水溶液に付与することができず、混練の際にセルロース鎖同士を物理的に引き離す力が弱くなる場合がある。逆に、この平均重合度が5,000を超えると粘性が高すぎて分断工程における作業性やハンドリング性が低下すると共に、分子量が大きすぎることでセルロースポリマー鎖間に進入し難くなり、水素結合を弱める作用が低下するおそれがある。 When the average degree of polymerization of the PVA is less than 200, the molecular weight is too small. Therefore, even if the concentration is adjusted to some extent, sufficient viscosity cannot be imparted to the aqueous solution, and the cellulose chains are physically separated during kneading. The pulling force may be weakened. On the contrary, when the average degree of polymerization exceeds 5,000, the viscosity is too high and workability and handling properties in the fragmentation process are lowered, and the molecular weight is too large to enter between the cellulose polymer chains, resulting in hydrogen bonding. There is a risk that the action of weakening the strength will be reduced.
 上記PVAのケン化度の下限としては、70モル%が好ましく、75モル%がより好ましく、80モル%がさらに好ましく、85モル%が特に好ましい。一方、このケン化度の上限としては、99.9モル%が好ましく、99.5モル%がより好ましく、99.0モル%がさらに好ましい。用いられるPVAのケン化度を上記範囲とすることで、このPVAを水溶液として用い、セルロース系バイオマスと混合した際に、好適な粘性で効率よくかつ均一に混ぜ合わせることができ、その結果、セルロース鎖を効率的に分断し、加水分解を容易に行うことができる状態とすることができる。 The lower limit of the saponification degree of the PVA is preferably 70 mol%, more preferably 75 mol%, further preferably 80 mol%, and particularly preferably 85 mol%. On the other hand, the upper limit of the degree of saponification is preferably 99.9 mol%, more preferably 99.5 mol%, and even more preferably 99.0 mol%. By setting the degree of saponification of PVA to be in the above range, when this PVA is used as an aqueous solution and mixed with cellulosic biomass, it can be mixed efficiently and uniformly with a suitable viscosity. As a result, cellulose The chain can be efficiently divided so that hydrolysis can be easily performed.
 ここで、「ケン化度」とはJIS K6726に準じて測定した値である。 Here, “degree of saponification” is a value measured according to JIS K6726.
 上記PVAのケン化度が70モル%未満の場合は水溶性が落ちると共に、十分な粘性が得られず、混練等の際のセルロース分断能が低下する場合がある。逆に、このケン化度が99.9モル%を超えても、セルロースポリマー鎖の分子レベルの分断能は頭打ちとなるとともにハンドリング性が低下するおそれがある。 When the degree of saponification of the PVA is less than 70 mol%, the water solubility is lowered and sufficient viscosity cannot be obtained, and the cellulose separating ability during kneading may be lowered. On the other hand, even if the degree of saponification exceeds 99.9 mol%, the molecular level breaking ability of the cellulose polymer chain reaches its peak and the handling property may be lowered.
 上記PVAの分子量分布の下限は2が好ましく、2.2がより好ましく、2.25がさらに好ましい。一方、この分子量分布の上限は、5が好ましく、4がさらに好ましく、3.5が特に好ましい。上記PVAの分子量分布を上記範囲とすることで、このPVAを水溶液として用い、セルロース系バイオマス等と混合した際に、好適な粘性で効率よく、かつ均一に混ぜ合わせることができるとともに、様々なサイズを有するセルロースの準結晶構造の隙間に効果的に進入することができ、その結果、セルロースポリマー鎖を効果的に分断し、加水分解を容易に行うことができる状態とすることができる。 The lower limit of the molecular weight distribution of the PVA is preferably 2, more preferably 2.2, and even more preferably 2.25. On the other hand, the upper limit of this molecular weight distribution is preferably 5, more preferably 4, and particularly preferably 3.5. By making the molecular weight distribution of the PVA within the above range, when this PVA is used as an aqueous solution and mixed with cellulosic biomass, etc., it can be mixed efficiently and uniformly with a suitable viscosity and various sizes. It is possible to effectively enter the gap between the quasi-crystal structures of cellulose having a structure, and as a result, the cellulose polymer chain can be effectively divided and the hydrolysis can be easily performed.
 ここで、「分子量分布」とは、質量平均分子量(Mw)/数平均分子量(Mn)により算出される値である。なお、質量平均分子量(Mw)及び数平均分子量(Mn)は、単分散ポリメチルメタクリレートを標品とし、トリフルオロ酢酸ナトリウムを20ミリモル/リットル含有するヘキサフルオロイソプロパノールを移動相に用いて40℃でゲルパーミエーションクロマトグラフィ(GPC)測定を行い、得られた値である。 Here, “molecular weight distribution” is a value calculated by mass average molecular weight (Mw) / number average molecular weight (Mn). The mass average molecular weight (Mw) and number average molecular weight (Mn) were obtained at 40 ° C. using hexafluoroisopropanol containing 20 mmol / liter sodium trifluoroacetate as a mobile phase using monodisperse polymethyl methacrylate as a standard. It is a value obtained by performing gel permeation chromatography (GPC) measurement.
 上記PVAの分子量分布が上記下限未満の場合は、分子量のバラツキが小さく様々なサイズの準結晶構造の隙間に対応して進入することができず、水素結合を弱める機能が十分に発揮されないおそれがある。逆に、PVAの分子量分布が上記上限を超える場合も、分子量のバラツキが大きすぎるため、準結晶構造間の隙間に対応せず、進入できないPVAの割合が高まり、水素結合を弱める機能が十分に発揮されないおそれがある。 When the molecular weight distribution of the PVA is less than the above lower limit, the molecular weight variation is small and it cannot enter corresponding to the gaps of quasicrystalline structures of various sizes, and the function of weakening hydrogen bonds may not be sufficiently exhibited. is there. On the contrary, when the molecular weight distribution of PVA exceeds the above upper limit, the variation in molecular weight is too large, so that it does not correspond to the gap between the quasicrystalline structures, the proportion of PVA that cannot enter is increased, and the function of weakening hydrogen bonds is sufficient. There is a risk that it will not be demonstrated.
 このPVAの分子量分布を調整する場合は、例えば、以下のような方法で調整することができる。すなわち、(1)異なる重合度を有するPVAを混合して調製する方法、(2)異なる重合度を有するポリビニルエステルの混合物をケン化する方法、(3)アルデヒド、ハロゲン化アルキル、メルカプタン等の重合調整剤を用いてポリビニルエステルを重合し、得られたポリビニルエステルをケン化する方法、(4)重合度を調整しながら多段階でポリビニルエステルを重合し、得られたポリビニルエステルをケン化する方法、(5)重合速度を調整してポリビニルエステルを重合し、得られたポリビニルエステルをケン化する方法等である。 When adjusting the molecular weight distribution of the PVA, for example, it can be adjusted by the following method. That is, (1) a method of preparing by mixing PVA having different polymerization degrees, (2) a method of saponifying a mixture of polyvinyl esters having different polymerization degrees, and (3) polymerization of aldehyde, alkyl halide, mercaptan, etc. A method of polymerizing a polyvinyl ester using a regulator and saponifying the obtained polyvinyl ester, (4) A method of polymerizing a polyvinyl ester in multiple stages while adjusting the degree of polymerization, and saponifying the resulting polyvinyl ester (5) A method of polymerizing polyvinyl ester by adjusting the polymerization rate and saponifying the obtained polyvinyl ester.
 また、当該糖の製造方法においては、再利用工程を有することで、一度以上使用されたPVAを再利用することとなる。この場合、PVA全体の分子量分布が上記範囲になるように、再利用するPVAと、新たに投入するPVAとの配合比等を調整することが好ましい。 In addition, in the sugar production method, the PVA that has been used more than once is reused by having a reuse step. In this case, it is preferable to adjust the blending ratio of the PVA to be reused and the newly added PVA so that the molecular weight distribution of the entire PVA is in the above range.
 当該製造方法に好適に用いられるPVAは、平均重合度、ケン化度及び分子量分布の三要素を上記の範囲で特定することで、より効率的にセルロース系バイオマスの分子レベルの分断を行うことができる。つまり、平均重合度とケン化度とを特定することで、物理的作用を発揮させるための好適な粘性を水溶液に付与しつつ、分子量分布を特定することで、化学的な作用を発揮させるための準結晶構造間へのPVAの進入の確率を高め、バランスよくセルロースポリマー鎖の水素結合を弱めることができることができる。つまり、上記PVAは上記三要素を特定することで、セルロース系バイオマスの分子的な分断を物理的な作用及び化学的な作用をより一層バランスよく発揮させることができるため、酵素等で容易に加水分解されるセルロースを得ることができる。 PVA suitably used in the production method can more efficiently divide cellulosic biomass at the molecular level by specifying the three factors of average polymerization degree, saponification degree, and molecular weight distribution in the above range. it can. In other words, by specifying the average degree of polymerization and the degree of saponification, to give a suitable viscosity for exerting physical action to the aqueous solution, while specifying the molecular weight distribution, to exert the chemical action It is possible to increase the probability of PVA entering between the quasicrystalline structures of the two and weaken the hydrogen bonds of the cellulose polymer chain in a balanced manner. In other words, by specifying the above three elements, the PVA can exert a physical balance and a chemical action in a more balanced manner in the molecular division of the cellulosic biomass. Cellulose to be degraded can be obtained.
 <糖>
 本発明の糖は、当該製造方法により得られたものである。当該糖は、加熱プロセス等を経ることなく穏和な条件で得られているため、例えばキシロース等の高付加価値成分の含有量も高い。
<Sugar>
The sugar of the present invention is obtained by the production method. Since the sugar is obtained under mild conditions without going through a heating process or the like, the content of high value-added components such as xylose is also high.
 この糖は、グルコースやキシロース等に分離して利用することもできるし、醗酵させてエタノールとし、燃料資源などとして使用することもできる。 This sugar can be used after being separated into glucose, xylose or the like, or fermented to ethanol and used as a fuel resource.
 <糖の製造装置>
 本発明の糖の製造装置は、
 セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合手段と、
 上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断手段と、
 分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化手段と、
 上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離手段と
 を備える糖の製造装置である。当該製造装置によれば、セルロース系バイオマスを原料として糖を効率的に生産することができる。また、当該製造装置によれば、第一分離手段で分離された第一残渣を混合手段における混合物にさらに加えることを容易にし、リサイクルによるコスト削減や、廃棄物の低減を図ることができる。
<Sugar production equipment>
The sugar production apparatus of the present invention comprises:
Mixing means for obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
A dividing means for applying shearing force to the mixture to divide the cellulosic biomass;
A saccharification means for saccharifying the fragmented cellulosic biomass with a cellulolytic enzyme;
A sugar production apparatus comprising: a first separation means for adding an inorganic salt to a mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue. According to the production apparatus, sugar can be efficiently produced using cellulosic biomass as a raw material. Moreover, according to the said manufacturing apparatus, it is easy to further add the 1st residue isolate | separated by the 1st separation means to the mixture in a mixing means, and the cost reduction by recycling and the reduction of a waste can be aimed at.
 当該製造装置は、上記第一残渣の少なくとも一部を水系溶媒で希釈し、親水性重合体溶液と第二残渣とに分離する第二分離手段を備えることが好ましい。この第二分離手段を備えることで、リサイクル性等をより高めることができる。 The production apparatus preferably includes second separation means for diluting at least a part of the first residue with an aqueous solvent and separating it into a hydrophilic polymer solution and a second residue. Recyclability etc. can be improved more by providing this 2nd separation means.
 また、当該製造装置は、上記糖化を経た混合物の少なくとも一部と、PVAを主成分とする含水ゲル又はイオン交換樹脂とを接触させ、混合物からゲル化剤を分離するゲル化剤分離手段を備えることが好ましい。このようなゲル化剤分離手段を備えることで、ゲル化剤を含む混合物を用いた場合、ゲル化剤の分離により排水処理等を容易にし、生産性がより高まる。 In addition, the production apparatus includes a gelling agent separating unit that contacts at least a part of the saccharified mixture with a hydrogel or ion exchange resin mainly composed of PVA and separates the gelling agent from the mixture. It is preferable. By providing such a gelling agent separation means, when a mixture containing a gelling agent is used, wastewater treatment or the like is facilitated by separation of the gelling agent, and productivity is further increased.
 上記各手段は、公知の機器等を用いることができる。上記混合手段、糖化手段、第一及び第二分離手段並びにゲル化剤分離手段としては、例えば投入口及び排出口等を備える公知の混合槽を、上記分断手段としては例えば公知の二軸押出成形機等を用いることができる。 For each of the above means, a known device or the like can be used. As the mixing means, saccharification means, first and second separation means and gelling agent separation means, for example, a known mixing tank provided with an inlet and an outlet, etc., for example, as the dividing means, for example, a known biaxial extrusion molding A machine or the like can be used.
 また、一つの機器が複数の手段を備えていてもよい。さらには、各手段に対応する機器は連結されていてもよいし、分離されていてもよい。 Moreover, one device may be provided with a plurality of means. Furthermore, the equipment corresponding to each means may be connected or separated.
 なお、本発明の糖の製造方法、糖及び糖の製造装置は、上記実施形態に限定されるものではない。例えば、糖化工程後の混合物に対し、分離工程を経ることなく直接ゲル化剤分離工程を行ってもよい。この場合、混合物からまず、ゲル化剤を分離し、この後、糖と取り出すことができるなど、製造工程のバリエーションの幅を広げることができる。また、第一分離工程で得られた第一残渣をゲル化剤分離工程に供してもよい。 Note that the sugar production method, sugar and sugar production apparatus of the present invention are not limited to the above embodiment. For example, the gelling agent separation step may be directly performed on the mixture after the saccharification step without passing through the separation step. In this case, it is possible to widen the range of variations in the manufacturing process, such as firstly separating the gelling agent from the mixture and then removing it from the sugar. Further, the first residue obtained in the first separation step may be subjected to a gelling agent separation step.
 また、必須工程ではない第二分離工程及び/又はゲル化剤分離工程を省略した場合などは、分離されていない第一残渣自体やゲル化剤が分離されていない親水性重合体溶液の少なくとも一部を適宜再利用工程において、再利用してもよい。このようにすることで、少なくとも一部の親水性重合体等を再利用することができる。 In addition, when the second separation step and / or the gelling agent separation step, which are not essential steps, are omitted, at least one of the unseparated first residue itself or the hydrophilic polymer solution from which the gelling agent is not separated. The part may be reused in the reuse step as appropriate. By doing in this way, at least some hydrophilic polymers etc. can be reused.
 以下、合成例及び実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to synthesis examples and examples, but the present invention is not limited to these examples.
 [合成例1](PVA1)
 70.0kgの酢酸ビニルと30.0kgのメタノールとを、撹拌器、窒素挿入口及び開始剤挿入口を備える250リットル反応容器に投入し、60℃に加熱した。反応容器内は、30分の窒素置換により窒素雰囲気とした。その後、重合開始剤として、2,2’-azobisisobutyronitrile(AIBN)を反応容器に加えた。重合温度を60℃に維持したまま4時間重合を行い、仕込酢酸ビニルに対し30%が重合された。その後、冷却し、重合を止め、未反応の酢酸ビニルモノマーを減圧して除去し、ポリ酢酸ビニル(PVAc)のメタノール溶液を得た。
[Synthesis Example 1] (PVA1)
70.0 kg of vinyl acetate and 30.0 kg of methanol were charged into a 250 liter reaction vessel equipped with a stirrer, nitrogen inlet and initiator inlet and heated to 60 ° C. The reaction vessel was purged with nitrogen for 30 minutes to create a nitrogen atmosphere. Thereafter, 2,2′-azobisisobutyronitrile (AIBN) was added to the reaction vessel as a polymerization initiator. Polymerization was performed for 4 hours while maintaining the polymerization temperature at 60 ° C., and 30% of the charged vinyl acetate was polymerized. Then, it cooled, polymerization was stopped, the unreacted vinyl acetate monomer was removed under reduced pressure, and the methanol solution of polyvinyl acetate (PVAc) was obtained.
 メタノールを上述のPVAc溶液に加え、PVAc溶液の濃度が30質量%となるように調整した。アルカリモル比(PVAcポリマーのビニルエステル単位のモル量に対するNaOHのモル量の比)が0.11となるように、PVAc溶液333g(PVAc100g)に、アルカリ溶液(10%NaOHメタノール溶液)51.1gを加え、PVAcのケン化を行った。60℃に温度を保ち、1時間ケン化反応を進めた後、生成物(ケン化反応中、ゲル化したものを適宜反応容器から取り出してグラインダーで粉砕したものを含む)をろ過し、白色の固体を得た。この白色固体をメタノール1000gに混ぜ、室温で3時間放置することで洗浄を行った。この洗浄を3回行い、白色固体を遠心分離した後、乾燥機にて70℃二日間乾燥して、PVA1を得た。このPVA1の平均重合度は1700、ケン化度は98.8モル%、分子量分布(Mw/Mn)は2.24であった。 Methanol was added to the above-mentioned PVAc solution, and the concentration of the PVAc solution was adjusted to 30% by mass. The alkali molar ratio (ratio of the molar amount of NaOH to the molar amount of vinyl ester units of the PVAc polymer) is 0.11, and the alkaline solution (10% NaOH methanol solution) 51.1 g is added to 333 g of PVAc solution (PVAc 100 g). Was added to saponify PVAc. After maintaining the temperature at 60 ° C. and proceeding with the saponification reaction for 1 hour, the product (including the gelled product during the saponification reaction, which was appropriately removed from the reaction vessel and crushed with a grinder) was filtered, A solid was obtained. This white solid was mixed with 1000 g of methanol and washed by leaving it at room temperature for 3 hours. This washing was performed three times, the white solid was centrifuged, and then dried at 70 ° C. for 2 days in a dryer to obtain PVA1. This PVA1 had an average degree of polymerization of 1700, a degree of saponification of 98.8 mol%, and a molecular weight distribution (Mw / Mn) of 2.24.
 [合成例2](PVA2)
 アルカリモル比(PVAcポリマーのビニルエステル単位のモル量に対するNaOHのモル量の比)が0.07となるようにアルカリ溶液を32.5g加えたこと以外は、合成例1と同様にしてPVA2を得た。このPVA2の平均重合度は1740、ケン化度は86.2モル%、分子量分布(Mw/Mn)は2.30であった。
[Synthesis Example 2] (PVA2)
PVA2 was prepared in the same manner as in Synthesis Example 1 except that 32.5 g of an alkali solution was added so that the alkali molar ratio (ratio of molar amount of NaOH to molar amount of vinyl ester unit of PVAc polymer) was 0.07. Obtained. This PVA2 had an average degree of polymerization of 1740, a degree of saponification of 86.2 mol%, and a molecular weight distribution (Mw / Mn) of 2.30.
 [合成例3~10](PVA3~6、8~11)
 重合条件及びケン化条件を変えた以外は、PVA1と同様にしてPVA3~6及びPVA8~11を得た。これらの平均重合度、ケン化度及び分子量分布は、上述のPVA1及びPVA2の値と共に以下の表1及び表2に示す。
[Synthesis Examples 3 to 10] (PVA 3 to 6, 8 to 11)
PVA 3 to 6 and PVA 8 to 11 were obtained in the same manner as PVA 1 except that the polymerization conditions and the saponification conditions were changed. The average degree of polymerization, degree of saponification, and molecular weight distribution are shown in Table 1 and Table 2 below together with the values of PVA1 and PVA2 described above.
 [調製例1](PVA7)
 50質量部のPVA-217(株式会社クラレ製)と50質量部のPVA-205(株式会社クラレ製)とを混合してPVA7を得た。このPVA7の平均重合度は1740、ケン化度は88.2モル%、分子量分布(Mw/Mn)は2.75であった。
[Preparation Example 1] (PVA7)
50 parts by mass of PVA-217 (manufactured by Kuraray Co., Ltd.) and 50 parts by mass of PVA-205 (manufactured by Kuraray Co., Ltd.) were mixed to obtain PVA7. This PVA7 had an average degree of polymerization of 1740, a degree of saponification of 88.2 mol%, and a molecular weight distribution (Mw / Mn) of 2.75.
 また、株式会社クラレ製のPVA系重合体であるPVA-217及びPVA-205についての平均重合度、ケン化度及び分子量分布を併せて表1及び表2に示す。 Tables 1 and 2 also show the average degree of polymerization, degree of saponification, and molecular weight distribution of PVA-217 and PVA-205, which are PVA polymers manufactured by Kuraray Co., Ltd.
 [実施例1-1]
 蒸留水にPVA1を添加し、撹拌しながら90℃まで加熱することで10質量%のPVA水溶液を調製した。このPVA水溶液は水より僅かに粘性を有するものであった。この水溶液100gを室温まで冷却した後、ホウ酸(HBO)の飽和水溶液2mLを加えて混合した。得られた水溶液のpHは5.0であった。更にこの水溶液に四ホウ酸ナトリウムの飽和水溶液0.5mLを加えて混合することで、水溶液を粘性のあるゲル状体とした。このゲル状体のpHは6.5であった。次に、セルロース系バイオマス粒子としてEFB(直径20~70μmの粒子)50gをこのゲル状体に加えて、室温下でミキサー型混練機を用いて練り混ぜた。この混合物は、混練当初は比較的低粘性を有していたが、混練を続けるうちに、EFB(セルロース系バイオマス粒子)が水を吸収し、若干粘度が向上した。この混合物はローラで容易に伸ばし、練ることができた。一定時間混練を行う毎に、混合物の一部を取り出し、顕微鏡によって粒子サイズを確認した。この分断工程を進めるにつれて、粒子のサイズが減少すること、及び細胞構造が分断されることが観察できた。
[Example 1-1]
PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution. This aqueous PVA solution was slightly more viscous than water. After cooling 100 g of this aqueous solution to room temperature, 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed. The pH of the obtained aqueous solution was 5.0. Further, 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel. The gel-like body had a pH of 6.5. Next, 50 g of EFB (particles having a diameter of 20 to 70 μm) as cellulosic biomass particles was added to the gel and kneaded using a mixer-type kneader at room temperature. This mixture had a relatively low viscosity at the beginning of kneading, but as the kneading continued, EFB (cellulosic biomass particles) absorbed water and the viscosity was slightly improved. This mixture could be easily stretched and kneaded with a roller. Each time kneading for a certain time, a part of the mixture was taken out and the particle size was confirmed by a microscope. It was observed that the particle size decreased and the cell structure was fragmented as the fragmentation process proceeded.
 混練によるセルロースの分断が十分にされたことを顕微鏡により確認し、加水分解性セルロースの水溶液を得た。この後、混合物に蒸留水を添加し、粘性を低下させた。加水分解酵素の至適pHに調製するため、この混合物に更に水酸化ナトリウム溶液を添加し、pHを6.0に調製した。この混合物は、溶けたチョコレート程度の粘性を有した。この混合物に、加水分解酵素として、メイセラーゼ(明治製菓株式会社製)及びアクレモニウムセルラーゼ(Acremonium cellulolyticus菌から得られるセルラーゼ:明治製菓株式会社製)をEFB100質量部に対してそれぞれ0.5質量部ずつ添加し、50℃の温度で反応容器内で撹拌した。酵素を加えた後数十分で、この混合物の粘性は目立って減少した。この撹拌を6時間行い、糖液(混合物)を得た。 It was confirmed with a microscope that the cellulose was sufficiently divided by kneading, and an aqueous solution of hydrolyzable cellulose was obtained. Thereafter, distilled water was added to the mixture to reduce the viscosity. In order to adjust to the optimum pH of the hydrolase, sodium hydroxide solution was further added to this mixture to adjust the pH to 6.0. This mixture was as viscous as melted chocolate. In this mixture, 0.5 parts by mass of Mecelase (manufactured by Meiji Seika Co., Ltd.) and Acremonium cellulase (cellulase obtained from Acremonium cellulolyticus): 100 parts by mass of EFB as hydrolases, respectively. Added and stirred in a reaction vessel at a temperature of 50 ° C. A few tens of minutes after the enzyme was added, the viscosity of this mixture decreased markedly. This stirring was performed for 6 hours to obtain a sugar solution (mixture).
 得られた糖液(混合物)に無機塩として硫酸アンモニウム16gを水24gに溶解したものを添加し、撹拌させた後、3時間静置した。静置後、上記混合物をろ過し、分離された糖の溶液(糖液)を得た。 A solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours. After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
 この操作を3回繰り返した。なお、2回目及び3回目は、PVA水溶液の使用量を10g(1回目の使用量の10%)とし、前回の最終工程で分離された残渣(固形分)の90%をゲル化前のPVA水溶液に添加した。すなわち、2回目及び3回目においては、未使用のPVAの量を1回目の10%とし、これに残渣を加えてPVAを再利用することで、全体のPVAの量を補った。 This operation was repeated 3 times. In the second and third rounds, the amount of PVA aqueous solution used was 10 g (10% of the first usage), and 90% of the residue (solid content) separated in the last final step was PVA before gelation. Added to aqueous solution. That is, in the second time and the third time, the amount of unused PVA was set to 10% of the first time, and the residue was added to this and PVA was reused to supplement the total amount of PVA.
 [実施例1-2~1-15]
 PVAをPVA1から表1の他のPVAにかえ、無機塩を表1の各無機塩を用いたこと以外は実施例1-1と同様にして、実施例1-2~1-15を行い、糖液を得た。
[Examples 1-2 to 1-15]
Examples 1-2 to 1-15 were carried out in the same manner as Example 1-1 except that PVA was changed from PVA1 to the other PVA in Table 1 and each inorganic salt in Table 1 was used as the inorganic salt. A sugar solution was obtained.
 [比較例1-1]
 2回目及び3回目で、前回の最終工程で分離された残渣をゲル化前のPVA水溶液に添加しなかったこと以外は、実施例1-1と同様の操作を行い、糖液を得た。
[Comparative Example 1-1]
In the second and third times, a sugar solution was obtained in the same manner as in Example 1-1 except that the residue separated in the previous final step was not added to the PVA aqueous solution before gelation.
 [評価]
 ろ過後分離された溶液(糖液)に蒸留水を加えて400mLとした後、このグルコース溶液のサンプル溶液を2mL(全溶液の0.5%)採取し、100℃にて5分間殺菌した。サンプル溶液を冷却した後、遠心分離器を用いて3000rpmで30分間遠心分離し、ろ過して、固形物を取り除いた後、ろ液を液体クロマトグラフィーに供して単糖類(グルコースなど)を検量した。用いたEFB(50g)に占めるセルロース及びヘミセルロースの質量比を50%と定め、以下の計算式にて糖化効率(%)を求めた。測定結果を表1に示す。
 糖化効率=〔サンプル溶液中の単糖類質量(g)/{50(g)×0.005×0.5}〕×100(%)
[Evaluation]
Distilled water was added to the solution (sugar solution) separated after filtration to 400 mL, and 2 mL (0.5% of the total solution) of this glucose solution sample was collected and sterilized at 100 ° C. for 5 minutes. After cooling the sample solution, it was centrifuged at 3000 rpm for 30 minutes using a centrifuge, filtered to remove solids, and then the filtrate was subjected to liquid chromatography to calibrate monosaccharides (such as glucose). . The mass ratio of cellulose and hemicellulose in the used EFB (50 g) was determined to be 50%, and saccharification efficiency (%) was determined by the following formula. The measurement results are shown in Table 1.
Saccharification efficiency = [mass of monosaccharides in sample solution (g) / {50 (g) × 0.005 × 0.5}] × 100 (%)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1-1~1-15は、いずれもPVA及び未分解セルロースを含む残渣をリサイクルすることで、1回目から3回目まで高い糖化効率を維持できることがわかる。なお、再利用される残渣中に未分解のバイオマスセルロース等が含まれていることで、2回目以降、見かけの糖化効率が上昇していると考えられる。 As shown in Table 1, it can be seen that in Examples 1-1 to 1-15, high saccharification efficiency can be maintained from the first time to the third time by recycling the residue containing PVA and undegraded cellulose. In addition, it is thought that apparent saccharification efficiency is rising after the 2nd time by including undecomposed biomass cellulose etc. in the residue to be reused.
 [実施例2-1]
 蒸留水にPVA1を添加し、撹拌しながら90℃まで加熱することで10質量%のPVA水溶液(A)を調製した。このPVA水溶液(A)は水より僅かに粘性を有するものであった。この水溶液(A)100gを室温まで冷却した後、ホウ酸(HBO)の飽和水溶液2mLを加えて混合した。得られた水溶液のpHは5.0であった。更にこの水溶液に四ホウ酸ナトリウムの飽和水溶液0.5mLを加えて混合することで、水溶液を粘性のあるゲル状体とした。このゲル状体のpHは6.5であった。次に、セルロース系バイオマス粒子としてEFB(直径20~70μmの粒子)50gをこのゲル状体に加えて、室温下でミキサー型混練機を用いて練り混ぜた。この混合物は、混練当初は比較的低粘性を有していたが、混練を続けるうちに、EFB(セルロース系バイオマス粒子)が水を吸収し、若干粘度が向上した。この混合物はローラで容易に伸ばし、練ることができた。一定時間混練を行う毎に、混合物の一部を取り出し、顕微鏡によって粒子サイズを確認した。この分断工程を進めるにつれて、粒子のサイズが減少すること、及び細胞構造が分断されることが観察できた。
[Example 2-1]
PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A). This PVA aqueous solution (A) was slightly more viscous than water. After cooling 100 g of this aqueous solution (A) to room temperature, 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed. The pH of the obtained aqueous solution was 5.0. Further, 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel. The gel-like body had a pH of 6.5. Next, 50 g of EFB (particles having a diameter of 20 to 70 μm) as cellulosic biomass particles was added to the gel and kneaded using a mixer-type kneader at room temperature. This mixture had a relatively low viscosity at the beginning of kneading, but as the kneading continued, EFB (cellulosic biomass particles) absorbed water and the viscosity was slightly improved. This mixture could be easily stretched and kneaded with a roller. Each time kneading for a certain time, a part of the mixture was taken out and the particle size was confirmed by a microscope. It was observed that the particle size decreased and the cell structure was fragmented as the fragmentation process proceeded.
 混練によるセルロースの分断が十分にされたことを顕微鏡により確認し、加水分解性セルロースの水溶液を得た。この後、混合物に蒸留水を添加し、粘性を低下させた。加水分解酵素の至適pHに調製するため、この混合物に更に水酸化ナトリウム溶液を添加し、pHを6.0に調製した。この混合物は、溶けたチョコレート程度の粘性を有した。この混合物に、加水分解酵素として、メイセラーゼ(明治製菓株式会社製)及びアクレモニウムセルラーゼ(Acremonium cellulolyticus菌から得られるセルラーゼ:明治製菓株式会社製)をEFB100質量部に対してそれぞれ0.5質量部ずつ添加し、50℃の温度で反応容器内で撹拌した。酵素を加えた後数十分で、この混合物の粘性は目立って減少した。この撹拌を6時間行い、糖液(混合物)を得た。 It was confirmed with a microscope that the cellulose was sufficiently divided by kneading, and an aqueous solution of hydrolyzable cellulose was obtained. Thereafter, distilled water was added to the mixture to reduce the viscosity. In order to adjust to the optimum pH of the hydrolase, sodium hydroxide solution was further added to this mixture to adjust the pH to 6.0. This mixture was as viscous as melted chocolate. In this mixture, 0.5 parts by mass of Mecelase (manufactured by Meiji Seika Co., Ltd.) and Acremonium cellulase (cellulase obtained from Acremonium cellulolyticus): 100 parts by mass of EFB as hydrolases, respectively. Added and stirred in a reaction vessel at a temperature of 50 ° C. A few tens of minutes after the enzyme was added, the viscosity of this mixture decreased markedly. This stirring was performed for 6 hours to obtain a sugar solution (mixture).
 得られた糖液(混合物)に無機塩として硫酸アンモニウム16gを水24gに溶解したものを添加し、撹拌させた後、3時間静置し、残渣(第一残渣)の沈殿を確認した。静置後、上記混合物をろ過し、分離された糖の溶液(糖液)を得た。 A solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
 分離された上記第一残渣(固形分)の90%に水90gを添加し、さらに希硫酸を用いてpH4.0の混合物とした。この混合物を2時間撹拌して第一残渣を分散させ、その後、濾過し、分離されたPVA溶液(B)を得た。 90 g of water was added to 90% of the separated first residue (solid content), and the mixture was further adjusted to pH 4.0 using dilute sulfuric acid. The mixture was stirred for 2 hours to disperse the first residue, and then filtered to obtain a separated PVA solution (B).
 この操作を3回繰り返した。なお、2回目及び3回目は、PVA水溶液(A)の使用量を10g(1回目の使用量の10%)、ホウ酸の飽和水溶液の使用量を0.2mL(1回目の使用量の10%)とし、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加した。すなわち、2回目及び3回目においては、未使用のPVA及びホウ酸の量を1回目の10%とし、これに分離されたPVA溶液(B)を加えてPVA及びホウ酸を再利用することで、全体のPVA及びホウ酸の量を補った。 This operation was repeated 3 times. In the second and third rounds, the amount of PVA aqueous solution (A) used was 10 g (10% of the first usage), and the amount of saturated aqueous solution of boric acid was 0.2 mL (10% of the first usage). %), And the PVA solution (B) separated in the previous final step was added to the PVA aqueous solution (A) before gelation. That is, in the second and third rounds, the amount of unused PVA and boric acid was made 10% of the first, and the separated PVA solution (B) was added to recycle PVA and boric acid. The total amount of PVA and boric acid was supplemented.
 [実施例2-2~2-15]
 PVA及び無機塩として、表2に記載されているものを用いたこと以外は実施例2-1と同様にして、実施例2-2~2-15を行い、糖液を得た。
[Examples 2-2 to 2-15]
Examples 2-2 to 2-15 were carried out in the same manner as in Example 2-1, except that the PVA and inorganic salts listed in Table 2 were used to obtain sugar solutions.
 [実施例2-16及び2-17]
 第一残渣の水による希釈後の希硫酸の使用量を調整し、混合物のpHを表2のとおりとしたこと以外は実施例2-1と同様にして、実施例2-16及び2-17を行い、糖液を得た。
[Examples 2-16 and 2-17]
Examples 2-16 and 2-17 were the same as Example 2-1 except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 2. To obtain a sugar solution.
 [比較例2-1]
 2回目及び3回目において、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加しなかったこと以外は、実施例2-1と同様の操作を行い、糖液を得た。
[Comparative Example 2-1]
In the second and third rounds, the same operation as in Example 2-1 was performed except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A sugar solution was obtained.
 [評価]
 上記と同様の方法で糖化効率(%)を求めた。測定結果を表2に示す。
[Evaluation]
Saccharification efficiency (%) was determined by the same method as above. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例2-1~2-17は、いずれもPVA及びホウ酸を含む残渣をリサイクルすることで、1回目から3回目まで高い糖化効率を維持できることがわかる。 As shown in Table 2, it can be seen that in Examples 2-1 to 2-17, high saccharification efficiency can be maintained from the first time to the third time by recycling the residue containing PVA and boric acid.
 [製造例3-1]含水ゲル(I)
 クラレ社製のPVA(平均重合度1,700、ケン化度99.8モル%)を40℃の温水で約1時間洗浄後、PVA濃度が8%となるように、PVAに水を加え、オートクレーブで121℃、30分間処理しPVAを溶解した。これを厚さ5mmとなるようにトレーに流延し、-20℃の冷凍庫で12時間凍結させ、室温で解凍させた。この板状成形物を、ホルムアルデヒド30g/L、硫酸200g/L、硫酸ナトリウム150g/Lの40℃の水溶液に30分間浸漬した後、水洗し、これを5mm角に切断してホルマール化度19モル%の含水ゲル(I)を得た。
[Production Example 3-1] Hydrous Gel (I)
After washing Kuraray PVA (average polymerization degree 1,700, saponification degree 99.8 mol%) with hot water at 40 ° C. for about 1 hour, water was added to PVA so that the PVA concentration was 8%, PVA was dissolved by treatment in an autoclave at 121 ° C. for 30 minutes. This was cast on a tray to a thickness of 5 mm, frozen in a freezer at −20 ° C. for 12 hours, and thawed at room temperature. This plate-shaped molded product was immersed in an aqueous solution of formaldehyde 30 g / L, sulfuric acid 200 g / L, and sodium sulfate 150 g / L for 30 minutes, washed with water, cut into 5 mm squares, and a formalization degree of 19 mol. % Hydrous gel (I) was obtained.
 [製造例3-2]含水ゲル(II)
 製造例1と同様のPVA8%水溶液を厚さ5mmとなるようにトレーに流延し、-20℃の冷凍庫で12時間凍結させ、室温で解凍させ、板状成形物を得た。これを5mm角に切断して含水ゲル(II)を得た。
[Production Example 3-2] Hydrous Gel (II)
The same 8% PVA aqueous solution as in Production Example 1 was cast on a tray to a thickness of 5 mm, frozen in a freezer at −20 ° C. for 12 hours, and thawed at room temperature to obtain a plate-like molded product. This was cut into 5 mm square to obtain a hydrogel (II).
 [実施例3-1]
 蒸留水にPVA1を添加し、撹拌しながら90℃まで加熱することで10質量%のPVA水溶液(A)を調製した。このPVA水溶液(A)は水より僅かに粘性を有するものであった。この水溶液(A)100gを室温まで冷却した後、ホウ酸(HBO)の飽和水溶液2mLを加えて混合した。得られた水溶液のpHは5.0であった。更にこの水溶液に四ホウ酸ナトリウムの飽和水溶液0.5mLを加えて混合することで、水溶液を粘性のあるゲル状体とした。このゲル状体のpHは6.5であった。次に、セルロース系バイオマス粒子としてEFB(直径20~70μmの粒子)50gをこのゲル状体に加えて、室温下でミキサー型混練機を用いて練り混ぜた。この混合物は、混練当初は比較的低粘性を有していたが、混練を続けるうちに、EFB(セルロース系バイオマス粒子)が水を吸収し、若干粘度が向上した。この混合物はローラで容易に伸ばし、練ることができた。一定時間混練を行う毎に、混合物の一部を取り出し、顕微鏡によって粒子サイズを確認した。この分断工程を進めるにつれて、粒子のサイズが減少すること、及び細胞構造が分断されることが観察できた。
[Example 3-1]
PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A). This PVA aqueous solution (A) was slightly more viscous than water. After cooling 100 g of this aqueous solution (A) to room temperature, 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed. The pH of the obtained aqueous solution was 5.0. Further, 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel. The gel-like body had a pH of 6.5. Next, 50 g of EFB (particles having a diameter of 20 to 70 μm) as cellulosic biomass particles was added to the gel and kneaded using a mixer-type kneader at room temperature. This mixture had a relatively low viscosity at the beginning of kneading, but as the kneading continued, EFB (cellulosic biomass particles) absorbed water and the viscosity was slightly improved. This mixture could be easily stretched and kneaded with a roller. Each time kneading for a certain time, a part of the mixture was taken out and the particle size was confirmed by a microscope. It was observed that the particle size decreased and the cell structure was fragmented as the fragmentation process proceeded.
 混練によるセルロースの分断が十分にされたことを顕微鏡により確認し、加水分解性セルロースの水溶液を得た。この後、混合物に蒸留水を添加し、粘性を低下させた。加水分解酵素の至適pHに調製するため、この混合物に更に水酸化ナトリウム溶液を添加し、pHを6.0に調製した。この混合物は、溶けたチョコレート程度の粘性を有した。この混合物に、加水分解酵素として、メイセラーゼ(明治製菓株式会社製)及びアクレモニウムセルラーゼ(Acremonium cellulolyticus菌から得られるセルラーゼ:明治製菓株式会社製)をEFB100質量部に対してそれぞれ0.5質量部ずつ添加し、50℃の温度で反応容器内で撹拌した。酵素を加えた後数十分で、この混合物の粘性は目立って減少した。この撹拌を6時間行い、糖液(混合物)を得た。 It was confirmed with a microscope that the cellulose was sufficiently divided by kneading, and an aqueous solution of hydrolyzable cellulose was obtained. Thereafter, distilled water was added to the mixture to reduce the viscosity. In order to adjust to the optimum pH of the hydrolase, sodium hydroxide solution was further added to this mixture to adjust the pH to 6.0. This mixture was as viscous as melted chocolate. In this mixture, 0.5 parts by mass of Mecelase (manufactured by Meiji Seika Co., Ltd.) and Acremonium cellulase (cellulase obtained from Acremonium cellulolyticus): 100 parts by mass of EFB as hydrolases, respectively. Added and stirred in a reaction vessel at a temperature of 50 ° C. A few tens of minutes after the enzyme was added, the viscosity of this mixture decreased markedly. This stirring was performed for 6 hours to obtain a sugar solution (mixture).
 得られた糖液(混合物)に無機塩として硫酸アンモニウム16gを水24gに溶解したものを添加し、撹拌させた後、3時間静置し、残渣(第一残渣)の沈殿を確認した。静置後、上記混合物をろ過し、分離された糖の溶液(糖液)を得た。 A solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
 分離された上記第一残渣(固形分)の90%に水90gを添加し、さらに希硫酸を用いてpH4.0の混合物とした。この混合物を2時間撹拌して第一残渣を分散させ、その後、濾過し、分離されたPVA溶液(B)を得た。 90 g of water was added to 90% of the separated first residue (solid content), and the mixture was further adjusted to pH 4.0 using dilute sulfuric acid. The mixture was stirred for 2 hours to disperse the first residue, and then filtered to obtain a separated PVA solution (B).
 一方、残りの10%の第一残渣、及びPVA溶液(B)から分離された第二残渣を合わせ、これに水を34g加え、撹拌した。この分散液を濾過し、分離液と第三残渣とに分離した。この分離液を上記含水ゲル(I)中に添加し2時間放置した。その後、含水ゲルを取り出して、残りを廃液(C)とした。一方、取り出した含水ゲルを水中に添加し、さらに硫酸の添加によりpHを4以下にして、吸着されたホウ酸を脱離させた。 Meanwhile, the remaining 10% of the first residue and the second residue separated from the PVA solution (B) were combined, and 34 g of water was added thereto and stirred. This dispersion was filtered to separate into a separated liquid and a third residue. This separated solution was added to the hydrous gel (I) and allowed to stand for 2 hours. Then, the hydrogel was taken out and the remainder was made into the waste liquid (C). On the other hand, the extracted hydrogel was added to water, and the pH was adjusted to 4 or less by addition of sulfuric acid to desorb the adsorbed boric acid.
 この操作を3回繰り返した。なお、2回目及び3回目は、PVA水溶液(A)の使用量を10g(1回目の使用量の10%)、ホウ酸の飽和水溶液の使用量を0.2mL(1回めの使用量の10%)とし、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加した。すなわち、2回目及び3回目においては、未使用のPVA及びホウ酸の量を1回目の10%とし、これに分離されたPVA溶液(B)を加えてPVA及びホウ酸を再利用することで、全体のPVA及びホウ酸の量を補った。 This operation was repeated 3 times. In the second and third rounds, the amount of PVA aqueous solution (A) used was 10 g (10% of the first usage), and the amount of saturated aqueous solution of boric acid was 0.2 mL (the amount of the first usage). 10%), and the PVA solution (B) separated in the last final step was added to the PVA aqueous solution (A) before gelation. That is, in the second and third rounds, the amount of unused PVA and boric acid was made 10% of the first, and the separated PVA solution (B) was added to recycle PVA and boric acid. The total amount of PVA and boric acid was supplemented.
 [実施例3-2~3-3]
 無機塩を表3の各無機塩を用いたこと以外は実施例3-1と同様にして、実施例3-2~3-3を行い、糖液を得た。
[Examples 3-2 to 3-3]
Examples 3-2 to 3-3 were carried out in the same manner as in Example 3-1, except that each inorganic salt shown in Table 3 was used, to obtain a sugar solution.
 [実施例3-4~3-5]
 第一残渣の水による希釈後の希硫酸の使用量を調整し、混合物のpHを表3のとおりとしたこと以外は実施例3-1と同様にして、実施例3-4及び3-5を行い、糖液を得た。
[Examples 3-4 to 3-5]
Examples 3-4 and 3-5 were the same as Example 3-1, except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 3. To obtain a sugar solution.
 [比較例3-1]
 2回目及び3回目において、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加しなかったこと以外は、実施例1と同様の操作を行い、糖液を得た。
[Comparative Example 3-1]
In the second and third times, the same operation as in Example 1 was carried out except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A liquid was obtained.
 [実施例3-6]
 含水ゲル(I)の代わりに、含水ゲル(II)を用いたこと以外は、実施例3-1と同様にして、実施例3-6を行った。
[Example 3-6]
Example 3-6 was performed in the same manner as in Example 3-1, except that the hydrogel (II) was used instead of the hydrogel (I).
 [参考例3-1]
 含水ゲル(I)の代わりに、市販のセラミックス吸着剤(粒径3~5mm)を用いたこと以外は、実施例3-1と同様にして、参考例3-1を行った。
[Reference Example 3-1]
Reference Example 3-1 was performed in the same manner as in Example 3-1, except that a commercially available ceramic adsorbent (particle size: 3 to 5 mm) was used instead of the hydrogel (I).
 [参考例3-2]
 含水ゲル(I)の代わりに、市販の活性炭吸着剤(粒径3~5mm)を用いたこと以外は、実施例3-1と同様にして、参考例3-2を行った。
[Reference Example 3-2]
Reference Example 3-2 was performed in the same manner as in Example 3-1, except that a commercially available activated carbon adsorbent (particle size: 3 to 5 mm) was used instead of the hydrogel (I).
 [評価]
 (糖化効率)
 上記と同様の方法で糖化効率(%)を求めた。測定結果を表3に示す。
[Evaluation]
(Saccharification efficiency)
Saccharification efficiency (%) was determined by the same method as above. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (ホウ酸濃度)
 実施例3-1及び3-6、並びに参考例3-1及び3-2において、1回目の操作における廃液(C)のホウ酸濃度(ホウ酸換算)を測定した。評価結果を表4に示す。なお、含水ゲル又は吸着剤の添加前の分離液のホウ酸濃度はいずれも490ppmであった。
(Boric acid concentration)
In Examples 3-1 and 3-6 and Reference Examples 3-1 and 3-2, the boric acid concentration (in terms of boric acid) of the waste liquid (C) in the first operation was measured. The evaluation results are shown in Table 4. Note that the boric acid concentration in the separation liquid before addition of the hydrogel or the adsorbent was 490 ppm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示されるように、実施例3-1~3-5は、いずれもPVA及びホウ酸を含む残渣をリサイクルすることで、1回目から3回目まで高い糖化効率を維持できることがわかる。また、表4に示されるように、PVA含水ゲルを用いて処理することで、ホウ酸濃度を日本の排出基準(陸水域10ppm、海水域230ppm)に対応可能なほどの低濃度にできることがわかる。 As shown in Table 3, it can be seen that in Examples 3-1 to 3-5, high saccharification efficiency can be maintained from the first time to the third time by recycling the residue containing PVA and boric acid. In addition, as shown in Table 4, it can be seen that the boric acid concentration can be made low enough to meet Japanese emission standards (land water area 10 ppm, seawater area 230 ppm) by treating with PVA hydrous gel. .
 [実施例4-1]
 蒸留水にPVA1を添加し、撹拌しながら90℃まで加熱することで10質量%のPVA水溶液(A)を調製した。このPVA水溶液(A)は水より僅かに粘性を有するものであった。この水溶液(A)100gを室温まで冷却した後、ホウ酸(HBO)の飽和水溶液2mLを加えて混合した。得られた水溶液のpHは5.0であった。更にこの水溶液に四ホウ酸ナトリウムの飽和水溶液0.5mLを加えて混合することで、水溶液を粘性のあるゲル状体とした。このゲル状体のpHは6.5であった。次に、セルロース系バイオマス粒子としてEFB(直径20~70μmの粒子)50gをこのゲル状体に加えて、室温下でミキサー型混練機を用いて練り混ぜた。この混合物は、混練当初は比較的低粘性を有していたが、混練を続けるうちに、EFB(セルロース系バイオマス粒子)が水を吸収し、若干粘度が向上した。この混合物はローラで容易に伸ばし、練ることができた。一定時間混練を行う毎に、混合物の一部を取り出し、顕微鏡によって粒子サイズを確認した。この分断工程を進めるにつれて、粒子のサイズが減少すること、及び細胞構造が分断されることが観察できた。
[Example 4-1]
PVA1 was added to distilled water, and it heated to 90 degreeC, stirring, and prepared 10 mass% PVA aqueous solution (A). This PVA aqueous solution (A) was slightly more viscous than water. After cooling 100 g of this aqueous solution (A) to room temperature, 2 mL of a saturated aqueous solution of boric acid (H 3 BO 3 ) was added and mixed. The pH of the obtained aqueous solution was 5.0. Further, 0.5 mL of a saturated aqueous solution of sodium tetraborate was added to and mixed with this aqueous solution, whereby the aqueous solution was made into a viscous gel. The gel-like body had a pH of 6.5. Next, 50 g of EFB (particles having a diameter of 20 to 70 μm) as cellulosic biomass particles was added to the gel and kneaded using a mixer-type kneader at room temperature. This mixture had a relatively low viscosity at the beginning of kneading, but as the kneading continued, EFB (cellulosic biomass particles) absorbed water and the viscosity was slightly improved. This mixture could be easily stretched and kneaded with a roller. Each time kneading for a certain time, a part of the mixture was taken out and the particle size was confirmed by a microscope. It was observed that the particle size decreased and the cell structure was fragmented as the fragmentation process proceeded.
 混練によるセルロースの分断が十分にされたことを顕微鏡により確認し、加水分解性セルロースの水溶液を得た。この後、混合物に蒸留水を添加し、粘性を低下させた。加水分解酵素の至適pHに調製するため、この混合物に更に水酸化ナトリウム溶液を添加し、pHを6.0に調製した。この混合物は、溶けたチョコレート程度の粘性を有した。この混合物に、加水分解酵素として、メイセラーゼ(明治製菓株式会社製)及びアクレモニウムセルラーゼ(Acremonium cellulolyticus菌から得られるセルラーゼ:明治製菓株式会社製)をEFB100質量部に対してそれぞれ0.5質量部ずつ添加し、50℃の温度で反応容器内で撹拌した。酵素を加えた後数十分で、この混合物の粘性は目立って減少した。この撹拌を6時間行い、糖液(混合物)を得た。 It was confirmed with a microscope that the cellulose was sufficiently divided by kneading, and an aqueous solution of hydrolyzable cellulose was obtained. Thereafter, distilled water was added to the mixture to reduce the viscosity. In order to adjust to the optimum pH of the hydrolase, sodium hydroxide solution was further added to this mixture to adjust the pH to 6.0. This mixture was as viscous as melted chocolate. In this mixture, 0.5 parts by mass of Mecelase (manufactured by Meiji Seika Co., Ltd.) and Acremonium cellulase (cellulase obtained from Acremonium cellulolyticus): 100 parts by mass of EFB as hydrolases, respectively. Added and stirred in a reaction vessel at a temperature of 50 ° C. A few tens of minutes after the enzyme was added, the viscosity of this mixture decreased markedly. This stirring was performed for 6 hours to obtain a sugar solution (mixture).
 得られた糖液(混合物)に無機塩として硫酸アンモニウム16gを水24gに溶解したものを添加し、撹拌させた後、3時間静置し、残渣(第一残渣)の沈殿を確認した。静置後、上記混合物をろ過し、分離された糖の溶液(糖液)を得た。 A solution obtained by dissolving 16 g of ammonium sulfate in 24 g of water as an inorganic salt was added to the obtained sugar solution (mixture), stirred, and allowed to stand for 3 hours to confirm precipitation of the residue (first residue). After standing, the mixture was filtered to obtain a separated sugar solution (sugar solution).
 分離された上記第一残渣(固形分)の90%に水90gを添加し、さらに希硫酸を用いてpH4.0の混合物とした。この混合物を2時間撹拌して第一残渣を分散させ、その後、濾過し、分離されたPVA溶液(B)を得た。 90 g of water was added to 90% of the separated first residue (solid content), and the mixture was further adjusted to pH 4.0 using dilute sulfuric acid. The mixture was stirred for 2 hours to disperse the first residue, and then filtered to obtain a separated PVA solution (B).
 一方、残りの10%の第一残渣、及びPVA溶液(B)から分離された第二残渣を合わせ、これに水を34g加え、撹拌した。この分散液を濾過し、分離液と第三残渣とに分離した。この分離液を蒸留水で洗浄したホウ素選択性イオン交換樹脂(ダイヤイオン(登録商標)CRB02、三菱化学社製)250mLを充填した吸着塔に通液した。 Meanwhile, the remaining 10% of the first residue and the second residue separated from the PVA solution (B) were combined, and 34 g of water was added thereto and stirred. This dispersion was filtered to separate into a separated liquid and a third residue. The separated liquid was passed through an adsorption tower packed with 250 mL of boron selective ion exchange resin (Diaion (registered trademark) CRB02, manufactured by Mitsubishi Chemical Corporation) washed with distilled water.
 この操作を3回繰り返した。なお、2回目及び3回目は、PVA水溶液(A)の使用量を10g(1回目の使用量の10%)、ホウ酸の飽和水溶液の使用量を0.2mL(1回目の使用量の10%)とし、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加した。すなわち、2回目及び3回目においては、未使用のPVA及びホウ酸の量を1回目の10%とし、これに分離されたPVA溶液(B)を加えてPVA及びホウ酸を再利用することで、全体のPVA及びホウ酸の量を補った。 This operation was repeated 3 times. In the second and third rounds, the amount of PVA aqueous solution (A) used was 10 g (10% of the first usage), and the amount of saturated aqueous solution of boric acid was 0.2 mL (10% of the first usage). %)) And the PVA solution (B) separated in the previous final step was added to the PVA aqueous solution (A) before gelation. That is, in the second and third rounds, the amount of unused PVA and boric acid was made 10% of the first, and the separated PVA solution (B) was added to recycle PVA and boric acid. The total amount of PVA and boric acid was supplemented.
 [実施例4-2~4-3]
 無機塩を表5の各無機塩を用いたこと以外は実施例4-1と同様にして、実施例4-2~4-3を行い、糖液を得た。
[Examples 4-2 to 4-3]
Examples 4-2 to 4-3 were carried out in the same manner as in Example 4-1, except that each inorganic salt shown in Table 5 was used, and sugar solutions were obtained.
 [実施例4-4~4-5]
 第一残渣の水による希釈後の希硫酸の使用量を調整し、混合物のpHを表5のとおりとしたこと以外は実施例4-1と同様にして、実施例4-4及び4-5を行い、糖液を得た。
[Examples 4-4 to 4-5]
Examples 4-4 and 4-5 were carried out in the same manner as in Example 4-1, except that the amount of dilute sulfuric acid used after dilution of the first residue with water was adjusted and the pH of the mixture was as shown in Table 5. To obtain a sugar solution.
 [比較例4-1]
 2回目及び3回目において、前回の最終工程で分離されたPVA溶液(B)をゲル化前のPVA水溶液(A)に添加しなかったこと以外は、実施例4-1と同様の操作を行い、糖液を得た。
[Comparative Example 4-1]
In the second and third times, the same operation as in Example 4-1 was performed except that the PVA solution (B) separated in the last final step was not added to the PVA aqueous solution (A) before gelation. A sugar solution was obtained.
 [評価]
 (糖化効率)
 上記と同様の方法で糖化効率(%)を求めた。測定結果を表5に示す。
[Evaluation]
(Saccharification efficiency)
Saccharification efficiency (%) was determined by the same method as above. Table 5 shows the measurement results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (ホウ酸濃度)
 実施例4-1において、吸着塔に通液する前後の分離液のホウ酸濃度(ホウ酸換算)を測定した。通液前のホウ酸濃度は490ppmであり、通液後のホウ酸濃度は4.2ppmであった。
(Boric acid concentration)
In Example 4-1, the boric acid concentration (in terms of boric acid) of the separated liquid before and after passing through the adsorption tower was measured. The boric acid concentration before passing through was 490 ppm, and the boric acid concentration after passing through was 4.2 ppm.
 表5に示されるように、実施例4-1~4-5は、いずれもPVA及びホウ酸を含む残渣をリサイクルすることで、1回目から3回目まで高い糖化効率を維持できることがわかる。また、イオン交換樹脂を用いて処理することで、ホウ酸濃度を日本の排出基準(陸水域10ppm、海水域230ppm)に対応可能なほどの低濃度にできることがわかる。 As shown in Table 5, it can be seen that in Examples 4-1 to 4-5, high saccharification efficiency can be maintained from the first time to the third time by recycling the residue containing PVA and boric acid. Moreover, it turns out that it can make the boric acid density | concentration low enough to respond | correspond to the discharge | emission standard (land water area 10ppm, seawater area 230ppm) by processing using an ion exchange resin.
 以上説明したように、本発明によれば、植物系のバイオマス原料を、効率よく食物やエネルギー資源として活用することができ、バイオマスの活用の実現性を高めることができる。 As described above, according to the present invention, plant-based biomass raw materials can be efficiently used as food and energy resources, and the feasibility of utilizing biomass can be enhanced.

Claims (17)

  1.  セルロース系バイオマスを原料とした糖の製造方法であって、
     セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合工程と、
     上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断工程と、
     分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化工程と、
     上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離工程と、
     上記第一残渣の少なくとも一部を、上記混合工程における混合物にさらに加える再利用工程と
     を有することを特徴とする糖の製造方法。
    A method for producing sugar from cellulosic biomass,
    A mixing step of obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
    A dividing step of adding shearing force to the mixture to divide the cellulosic biomass;
    A saccharification step of saccharifying the cellulosic biomass with the cellulose-degrading enzyme;
    A first separation step of adding an inorganic salt to the mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue;
    A recycling step of further adding at least a part of the first residue to the mixture in the mixing step.
  2.  上記第一分離工程で得られた第一残渣の少なくとも一部を水系溶媒で希釈し、親水性重合体溶液と第二残渣とに分離する第二分離工程
     をさらに有し、
     上記再利用工程で加える第一残渣の少なくとも一部が上記第二分離工程で分離した親水性重合体溶液の少なくとも一部である請求項1に記載の糖の製造方法。
    Further comprising a second separation step of diluting at least a part of the first residue obtained in the first separation step with an aqueous solvent to separate the hydrophilic polymer solution and the second residue;
    The method for producing sugar according to claim 1, wherein at least a part of the first residue added in the recycling step is at least a part of the hydrophilic polymer solution separated in the second separation step.
  3.  上記第二分離工程で用いられる水系溶媒が酸性である請求項2に記載の糖の製造方法。 The method for producing sugar according to claim 2, wherein the aqueous solvent used in the second separation step is acidic.
  4.  上記混合工程における混合物がゲル化剤をさらに含む請求項1、請求項2又は請求項3に記載の糖の製造方法。 The method for producing sugar according to claim 1, 2 or 3, wherein the mixture in the mixing step further contains a gelling agent.
  5.  上記糖化工程を経た混合物の少なくとも一部と、ポリビニルアルコール系重合体を主成分とする含水ゲル、又はイオン交換樹脂とを接触させ、上記混合物からゲル化剤を分離するゲル化剤分離工程
     をさらに有する請求項4に記載の糖の製造方法。
    A gelling agent separation step of contacting at least a part of the mixture that has undergone the saccharification step with a hydrogel having a polyvinyl alcohol polymer as a main component or an ion exchange resin to separate the gelling agent from the mixture; The method for producing sugar according to claim 4.
  6.  上記ゲル化剤分離工程において、上記含水ゲル又はイオン交換樹脂と接触させる混合物の少なくとも一部が上記第一残渣の少なくとも一部である請求項5に記載の糖の製造方法。 6. The method for producing a sugar according to claim 5, wherein in the gelling agent separation step, at least a part of the mixture brought into contact with the hydrogel or the ion exchange resin is at least a part of the first residue.
  7.  上記ゲル化剤分離工程において用いられる第一残渣の少なくとも一部が、上記親水性重合体溶液である請求項6に記載の糖の製造方法。 The method for producing sugar according to claim 6, wherein at least a part of the first residue used in the gelling agent separation step is the hydrophilic polymer solution.
  8.  上記第二残渣を水系溶媒で希釈し、分離液と第三残渣とに分離する第三分離工程
     をさらに有し、
     上記ゲル化剤分離工程において、上記含水ゲル又はイオン交換樹脂と接触させる混合物の少なくとも一部が上記分離液である請求項5、請求項6又は請求項7に記載の糖の製造方法。
    A second separation step of diluting the second residue with an aqueous solvent and separating the second residue into a separated liquid and a third residue;
    The method for producing a sugar according to claim 5, 6 or 7, wherein at least a part of the mixture to be brought into contact with the hydrogel or ion exchange resin in the gelling agent separation step is the separation liquid.
  9.  上記第三分離工程で用いられる水系溶媒が酸性である請求項8に記載の糖の製造方法。 The method for producing sugar according to claim 8, wherein the aqueous solvent used in the third separation step is acidic.
  10.  上記含水ゲルが、ポリビニルアルコール系重合体の化学架橋により形成されている請求項5から請求項9のいずれか1項に記載の糖の製造方法。 The method for producing a saccharide according to any one of claims 5 to 9, wherein the hydrated gel is formed by chemical crosslinking of a polyvinyl alcohol polymer.
  11.  上記ゲル化剤分離工程で分離したゲル化剤の少なくとも一部を、上記混合工程における混合物に加えるゲル化剤再利用工程
     を有する請求項5から請求項10のいずれか1項に記載の糖の製造方法。
    The sugar agent according to any one of claims 5 to 10, further comprising a gelling agent recycling step of adding at least a part of the gelling agent separated in the gelling agent separation step to the mixture in the mixing step. Production method.
  12.  上記親水性重合体がポリビニルアルコール系重合体である請求項1から請求項11のいずれか1項に記載の糖の製造方法。 The method for producing a sugar according to any one of claims 1 to 11, wherein the hydrophilic polymer is a polyvinyl alcohol polymer.
  13.  上記ゲル化剤が、ホウ酸又はホウ酸塩である請求項4から請求項12のいずれか1項に記載の糖の製造方法。 The method for producing a sugar according to any one of claims 4 to 12, wherein the gelling agent is boric acid or a borate.
  14.  上記無機塩が、硫酸塩、炭酸塩、硝酸塩、リン酸塩、炭酸水素塩からなる群より選ばれる少なくとも1種である請求項1から請求項13のいずれか1項に記載の糖の製造方法。 The method for producing a sugar according to any one of claims 1 to 13, wherein the inorganic salt is at least one selected from the group consisting of sulfate, carbonate, nitrate, phosphate, and bicarbonate. .
  15.  上記混合工程、分断工程、糖化工程、第一分離工程及び再利用工程を、この順に複数回繰り返す請求項1から請求項14のいずれか1項に記載の糖の製造方法。 The method for producing sugar according to any one of claims 1 to 14, wherein the mixing step, the fragmentation step, the saccharification step, the first separation step, and the reuse step are repeated a plurality of times in this order.
  16.  請求項1から請求項15のいずれか1項に記載の糖の製造方法により得られた糖。 A saccharide obtained by the saccharide production method according to any one of claims 1 to 15.
  17.  セルロース系バイオマス、親水性重合体及び水を含む混合物を得る混合手段と、
     上記混合物に剪断力を付加してセルロース系バイオマスを分断する分断手段と、
     分断された上記セルロース系バイオマスをセルロース分解酵素により糖化する糖化手段と、
     上記糖化工程を経た混合物に無機塩を添加し、糖液と第一残渣とに分離する第一分離手段と
     を備える糖の製造装置。
    Mixing means for obtaining a mixture comprising cellulosic biomass, a hydrophilic polymer and water;
    A dividing means for applying shearing force to the mixture to divide the cellulosic biomass;
    A saccharification means for saccharifying the fragmented cellulosic biomass with a cellulolytic enzyme;
    A sugar production apparatus comprising: first separation means for adding an inorganic salt to the mixture that has undergone the saccharification step and separating the mixture into a sugar solution and a first residue.
PCT/JP2012/057241 2011-03-23 2012-03-21 Method for producing sugar, sugar, and device for producing sugar WO2012128300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013505996A JP5889872B2 (en) 2011-03-23 2012-03-21 Sugar production method and sugar production apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-064869 2011-03-23
JP2011064869 2011-03-23
JP2011-071228 2011-03-28
JP2011071228 2011-03-28
JP2011071221 2011-03-28
JP2011071114 2011-03-28
JP2011-071221 2011-03-28
JP2011-071114 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012128300A1 true WO2012128300A1 (en) 2012-09-27

Family

ID=46879441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057241 WO2012128300A1 (en) 2011-03-23 2012-03-21 Method for producing sugar, sugar, and device for producing sugar

Country Status (3)

Country Link
JP (1) JP5889872B2 (en)
TW (1) TWI554611B (en)
WO (1) WO2012128300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247985A (en) * 1975-08-22 1977-04-16 Bio Ind Inc Production of ethanol from fibrous material
JP2009528033A (en) * 2006-02-27 2009-08-06 イーデンスペース システムズ コーポレイション Energy crops for improved biofuel feedstock
WO2009124072A1 (en) * 2008-04-01 2009-10-08 Biomass Conversions, Llc Simplified method for digestion of cellulosic biomass
JP2010017084A (en) * 2008-07-08 2010-01-28 Oji Paper Co Ltd Saccharification and fermentation system
JP2011019483A (en) * 2009-07-17 2011-02-03 Jgc Corp Saccharified solution preparation method and saccharification reaction device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247985A (en) * 1975-08-22 1977-04-16 Bio Ind Inc Production of ethanol from fibrous material
JP2009528033A (en) * 2006-02-27 2009-08-06 イーデンスペース システムズ コーポレイション Energy crops for improved biofuel feedstock
WO2009124072A1 (en) * 2008-04-01 2009-10-08 Biomass Conversions, Llc Simplified method for digestion of cellulosic biomass
JP2010017084A (en) * 2008-07-08 2010-01-28 Oji Paper Co Ltd Saccharification and fermentation system
JP2011019483A (en) * 2009-07-17 2011-02-03 Jgc Corp Saccharified solution preparation method and saccharification reaction device

Also Published As

Publication number Publication date
TW201245449A (en) 2012-11-16
TWI554611B (en) 2016-10-21
JPWO2012128300A1 (en) 2014-07-24
JP5889872B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Yu et al. Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose
Rehman et al. Use of ultrasound in the production of bioethanol from lignocellulosic biomass
CN103748231B (en) The ethanol manufacture method being raw material with cellulose-based biomass
AU2016320216B2 (en) Process for the purification of biomass hydrolysate
CN102046876A (en) Simplified method for digestion of cellulosic biomass
JP2012504936A (en) Treatment of lignocellulosic materials using disc refining and enzymatic hydrolysis
JP5019421B2 (en) Method for producing sugar
JP5812991B2 (en) Polyvinyl alcohol polymer and method for producing hydrolyzable cellulose using the same
JP5889872B2 (en) Sugar production method and sugar production apparatus
JP5798907B2 (en) Polyvinyl alcohol polymer and method for producing hydrolyzable cellulose using the same
JP2013124317A (en) Polyvinyl alcohol-based polymer and method for producing hydrolyzable cellulose using the same
Tan et al. Efficient Physical and Chemical Pretreatment of Lignocellulosic Biomass
JP2013023679A (en) Polyvinyl alcohol polymer and method for producing hydrolysis cellulose using the same
JP5816680B2 (en) Viscosity-imparting agent and method for producing hydrolyzable cellulose using the same
JP2013124318A (en) Polyvinyl alcohol-based polymer and method for producing hydrolyzable cellulose using the same
JP2013124320A (en) Composition including alkyl-modified vinyl alcohol-based polymer and method for producing hydrolyzable cellulose using the same
Hou et al. Impact of dilute acid treatment on improving the selectivity of lignin and hemicellulose removals from pre-hydrolysis liquor
WO2018069575A1 (en) A method and an apparatus for an enzymatic hydrolysis, a liquid fraction and a lignin fraction
CN114790319B (en) Process for preparing degradable gel film material by alkali pretreatment liquid one-pot method
JP2013023680A (en) Polyvinyl alcohol polymer and method for producing hydrolysis cellulose using the same
JP2013018808A (en) Polyvinyl alcohol-based polymer, and method of manufacturing hydrolysis cellulose using the same
JP2013023681A (en) Polyvinyl alcohol polymer and method for producing hydrolysis cellulose using the same
JP2013091740A (en) Polyvinyl alcohol-based polymer and manufacturing method of hydrolysis cellulose using the same
CN115109426A (en) Preparation method of wood fiber all-component super-hydrophobic aerogel material
CN116535530A (en) Preparation method of amorphous cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505996

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12761061

Country of ref document: EP

Kind code of ref document: A1