WO2012127563A1 - Lithium ion cell and electrode thereof - Google Patents

Lithium ion cell and electrode thereof Download PDF

Info

Publication number
WO2012127563A1
WO2012127563A1 PCT/JP2011/056564 JP2011056564W WO2012127563A1 WO 2012127563 A1 WO2012127563 A1 WO 2012127563A1 JP 2011056564 W JP2011056564 W JP 2011056564W WO 2012127563 A1 WO2012127563 A1 WO 2012127563A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
current collector
electrode
lithium ion
active material
Prior art date
Application number
PCT/JP2011/056564
Other languages
French (fr)
Japanese (ja)
Inventor
下井谷 良信
Original Assignee
アロイ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アロイ工業株式会社 filed Critical アロイ工業株式会社
Priority to PCT/JP2011/056564 priority Critical patent/WO2012127563A1/en
Publication of WO2012127563A1 publication Critical patent/WO2012127563A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery used for, for example, an automobile, a motorcycle, a medical device, a personal computer, and the like, and more particularly, to a lithium ion battery capable of achieving both high output density and high energy density.
  • a lithium ion battery is configured by laminating a positive electrode (positive electrode) and a negative electrode (negative electrode) obtained by applying an active material to a current collector made of metal foil with a separator interposed therebetween.
  • the mobility of ions and electrons that is, the output density, which is power
  • the energy that can be extracted per unit mass or unit volume of the battery that is, once It is desired that both energy densities, which are energy stored by charging, are high.
  • Patent Document 1 As a lithium ion battery that seeks to obtain a high output density, the battery of Patent Document 1 below has been proposed.
  • this battery based on the knowledge that it is necessary to reduce the coating thickness of the active material in order to increase the output, the output density increases but the volume ratio of the current collector and the separator is not related to the capacity of the battery. Therefore, in order to solve the problem that the capacity is reduced, a configuration in which an uneven shape is formed on the surface of the current collector is adopted. This uneven shape is a wavy wave having an average height of 20 ⁇ m and a pitch of 100 ⁇ m in a current collector having a thickness of 20 ⁇ m.
  • Patent Document 1 increases the area where the active material contacts the surface of the current collector due to such an uneven shape, so that the capacity is reduced even if the coating thickness of the active material is reduced to increase the output. You don't have to wake up.
  • the unevenness shape increases the output density because the contact area increases compared to when the current collector is flat, the unevenness shape has a longer pitch than the height and increases the energy density. It is not possible. It only suppresses the increase in the volume ratio between the current collector and the separator and suppresses the decrease in energy density.
  • Patent Document 2 also discloses a battery that increases the contact area between the current collector and the active material to improve the output of the battery.
  • this battery if there is a portion where the distance between the positive electrode and the negative electrode is small, lithium deposition is likely to occur in this portion, which causes the battery capacity to deteriorate.
  • it is comprised so that the rigidity of an electrode can be improved and the distance between electrodes can be kept constant. That is, after applying an active material having an uneven shape extending in the longitudinal direction of the current collector on both the front and back surfaces of the current collector, the current collector and the current collector are pressed in the thickness direction so that the current It is the structure of forming a shape.
  • the contact area between the current collector and the active material is increased compared to the case where the current collector is flat, the output can be improved, and the distance between the electrodes can be kept constant. It is said that the capacity deterioration can be suppressed by suppressing the precipitation.
  • the concavo-convex shape of Patent Document 2 also has a long pitch for the height and does not increase the energy density, like the concavo-convex shape of Patent Document 1. It is only to suppress the precipitation of lithium and suppress the decrease in energy density.
  • the main object of the present invention is to obtain a high output density and a high energy density.
  • the means for this is an electrode of a lithium ion battery having an active material on both the front and back sides of a sheet-like current collector, and a plurality of linearly extending grooves are equidistant on both sides of the current collector
  • the active material has a filling portion that fills the groove, and a covering portion that covers the surface of the current collector integrally with the filling portion.
  • channel is an electrode of the lithium ion battery whose equivalent or more than the width
  • Another means is a lithium ion battery in which the electrode is laminated via a separator and a tab is connected, and is covered with a laminate film together with an electrolytic solution.
  • a plurality of linearly extending grooves formed on both the front and back surfaces of the current collector increase the contact area between the current collector and the active material compared to a flat current collector.
  • the depth of the groove is equal to or greater than the width of the opening of the groove, the contact area between the current collector and the active material has a long pitch for the height, in other words, the collection area.
  • the electric current is greatly increased.
  • the amount of the active material in the groove, that is, the filling portion also increases.
  • electrons from a portion of the active material that is far from the current collector particularly from a portion of the filling portion that is far from the current collector, move slowly and in large quantities to the current collector, so that the energy density increases.
  • the shape, width, depth, and other dimensions of the current collector grooves are set according to the desired output density and energy density.
  • a lithium ion battery having high output density and high energy density can be obtained.
  • the perspective view of an electrode Explanatory drawing which shows schematic structure of the lithium ion battery using an electrode.
  • the expanded sectional view of an electrode Explanatory drawing which shows the manufacturing process of an electrode.
  • the expanded sectional view of the electrode which concerns on another example.
  • the expanded sectional view of the electrode which concerns on another example.
  • FIG. 1 is a perspective view showing an electrode 21 of a lithium ion battery 11 (see FIG. 2).
  • the electrode 21 has a structure in which active materials 23 are provided on both front and back surfaces of a sheet-like current collector 22 made of metal foil. It is.
  • a positive electrode (positive electrode 21a) and a negative electrode (negative electrode 21b) are prepared.
  • the separators 12 are sequentially stacked between the positive electrode 21a and the negative electrode 21b.
  • the tabs 13 and 14 are connected to one end of the electrode 21 and covered with a laminate film 15 together with an electrolytic solution (not shown) to constitute the lithium ion battery 11.
  • the materials of the current collector 22 and the active material 23 are different between the positive electrode 21a and the negative electrode 21b.
  • the current collector 22 is made of an aluminum foil, and the active material 23 is made of a lithium transition metal oxide such as lithium cobalt oxide.
  • the current collector 22 is made of copper foil, and the active material 23 is made of carbon.
  • the electrode structure of the present invention can be employed only for either the positive electrode 21a or the negative electrode 21b.
  • FIG. 3 is an enlarged cross-sectional view showing the structure of the negative electrode 21a (21).
  • the negative electrode 21a is formed by applying the active material 23 made of carbon on both the front and back surfaces of the current collector 22 made of copper foil as described above.
  • a plurality of linearly extending grooves 24 are arranged in parallel so that the phases are different at equal intervals. That is, the current collector 22 is formed in a shape in which the grooves 24 appear alternately on the front, back, front, and back in a side view.
  • the groove 24 is formed from end to end in the width direction of the current collector 22 (see FIG. 1).
  • the shape of the groove 24 is such that the depth d is equal to or greater than the width w1 of the opening of the groove 24. That is, the cross-sectional shape is formed in a semicircular, square, or nearly rectangular shape.
  • the groove 24 is formed in a substantially square or substantially U-shaped cross section, the depth d of the groove 24 is set to be equal to the width w1 of the opening, and the groove 24
  • the width w2 of the bottom is set slightly smaller than the width w1 of the opening. The reason why the width w2 of the bottom portion is reduced is that a draft angle when the groove 24 is formed is taken into consideration. If it adds about the depth d of the groove 24, it can be said that the depth d of the groove 24 is equivalent to the half of the pitch p of the groove 24.
  • FIG. The same applies to the examples shown in FIGS.
  • the depth d of the groove 24 is set deeper than the example of FIG. 3, and the depth d of the groove 24 is deeper than the opening width w1 or deeper than half the pitch p of the groove 24. May be.
  • the groove 24 has a substantially vertically rectangular or vertically long U-shaped cross section.
  • the depth d of the groove 24 is set to be deeper than 5 times the thickness t1 of the current collector 22. Since the thickness t1 of the current collector 22 is generally 10 ⁇ m to 20 ⁇ m, the depth d of the groove 24 is deeper than 50 ⁇ m or 100 ⁇ m. If the depth d of the groove 24 is shallow relative to the thickness t1 of the current collector 22, the active material 23 filled in the groove 24 for the increase in the contact area between the active material 23 and the current collector 22 is increased. This is because the amount of is small.
  • the thickness t1 of the current collector 22 is 20 ⁇ m
  • the width w1 of the opening of the groove 24 is about 280 ⁇ m
  • the width w2 of the bottom is about 270 ⁇ m
  • the depth d is about 320 ⁇ m
  • the pitch p is about 590 ⁇ m. Can do.
  • the current collector 22 having such a shape is formed on a copper foil 25 (see FIG. 4A) as a substrate to be conveyed, for example, a molding device such as a molding roll (not shown).
  • the groove 24 is formed on both the front and back surfaces (see FIG. 4B).
  • the groove 24 is formed in a portion other than the portion 22a where the tab 13 is welded (see FIG. 1).
  • an active material slurry to be the active material 23 is applied to both the front and back surfaces of the current collector 22.
  • the active material slurry is obtained by mixing a binder in addition to powdered carbon. This active material slurry is applied at a predetermined thickness t2 to the grooves 24 on both surfaces of the current collector 22 using a known coating device (not shown) (see FIG. 3).
  • the coating thickness t2 is set to an appropriate thickness such as 50 ⁇ m to 125 ⁇ m from the opening position of the groove 24.
  • the active material slurry is applied to one surface of the current collector 22 to dry the active material slurry, and then the active material slurry is applied to the other surface, followed by drying.
  • the surface of the active material 23 is flattened by a pressing device (not shown).
  • the active material 23 thus provided has a filling portion 23a filled in the groove 24 and a covering portion 23b that covers the surface of the current collector 22 integrally with the filling portion 23a. (See FIG. 4C). Since the portion where the filling portion 23a of the active material 23 is formed is the long and deep groove 24 as described above, the active material slurry is easy to enter, and high adhesion to the current collector 22 is obtained.
  • the negative electrode 21b and the positive electrode 21a are manufactured through necessary steps such as drying and cutting.
  • the negative electrode 21b and the positive electrode 21a are used as described above to manufacture the lithium ion battery 11 (see FIG. 2).
  • lithium atoms are ionized in the negative electrode 21b storing lithium atoms to generate lithium ions.
  • electrons are accumulated in the negative electrode 21b.
  • the electrons move through the tab 13 and a current flows.
  • the generated lithium ions move to the positive electrode 21a through the electrolytic solution, get electrons in the positive electrode 21a, return to lithium atoms, and are occluded in the positive electrode 21a.
  • the current collector 22 is formed with the large groove 24 for the thickness as described above, so that the contact area between the current collector 22 and the active material 23 is a flat current collector.
  • the depth d of the groove 24 is equal to or greater than the width w1 of the opening of the groove 24 as described above, the contact area can be reduced by 2 compared with the case where the current collector 22 is flat. It can be more than double. For this reason, a high output density is obtained.
  • the amount of the filling portion 23a of the active material 23 filled in the groove 24 is large, and the amount of the active material 23 is smaller than that in the case where the uneven shape is simply provided. Increase significantly. For this reason, the amount of accumulated electrons also increases, and electrons accumulated in a portion far from the current collector 22 move slowly and in large quantities, so that the energy density is also increased.
  • the degree of such high power density and high energy density can be appropriately set by changing the shape, width, depth, etc. of the groove 24 formed in the current collector 22.
  • the contact area can be increased, and the output density can be made higher than the energy density.
  • the depth d of the groove 24 is increased.
  • the groove 24 is shaped like a semicircular cross section as shown in FIG. 5, in other words, a shape like a sine curve, the increase in contact area is suppressed, and the energy density is higher than the output density. Can be increased. Also in this case, as shown in FIG. 6, the output density can be increased by making the depth d of the groove 24 deeper than in the example of FIG.
  • the pitch p of the groove 24 in FIG. 5 is about 50 ⁇ m
  • the depth D is about 230 ⁇ m
  • the radius r1 can be about 100 ⁇ m
  • the outer surface radius r2 can be about 120 ⁇ m.
  • the pitch p, the inner surface radius r1 and the outer surface radius r2 are the same as the groove 24 of FIG. 5, whereas the depth d can be about 300 ⁇ m.
  • the lithium ion battery 11 having a desired balance of output density and energy density can be obtained by setting the shape, width, depth, and the like of the groove 24 in this manner.
  • the groove of the current collector is made to be narrower than the width of the bottom, the groove
  • the cross-sectional shape becomes a shape like a dovetail, and the contact area between the current collector and the active material can be further increased.
  • different pitches of grooves formed on the current collector may be mixed, and there may be a portion where the grooves do not exist partially in the middle portion of the grooves in the arrangement direction.

Abstract

Provided is a lithium ion cell having a high output density and a high energy density so as to allow for favorable use in an automotive vehicle or other applications. An electrode (21) of a lithium ion cell (11) in which an active substance (23) is disposed on front and rear surfaces of a sheet-form collector (22) has a plurality of equidistantly spaced parallel grooves and ridges (24) extending linearly on the front and rear surfaces of the collector (22), the grooves and ridges being provided so as to differ in phase between the front and rear surfaces. The depth (d) of the grooves and ridges (24) is equal to or greater than the width (w1) of openings of the grooves and ridges (24). The active material (23) is provided as a filled portion (23a) for filling the interior of the grooves and ridges (24); and a covering portion (23b) for covering the surfaces of the collector (22), the covering portion being integrated with the filling portion (23a).

Description

リチウムイオン電池とその電極Lithium ion battery and its electrode
 この発明は、例えば自動車や自動二輪、医療機器、パーソナルコンピュータ等に用いられるリチウムイオン電池に関し、より詳しくは、高い出力密度と高いエネルギー密度の両立が図れるようなリチウムイオン電池に関する。 The present invention relates to a lithium ion battery used for, for example, an automobile, a motorcycle, a medical device, a personal computer, and the like, and more particularly, to a lithium ion battery capable of achieving both high output density and high energy density.
 リチウムイオン電池は、金属箔からなる集電体に活物質を塗布して得た正の電極(正極)と負の電極(負極)を、セパレータを介して積層して構成されている。 A lithium ion battery is configured by laminating a positive electrode (positive electrode) and a negative electrode (negative electrode) obtained by applying an active material to a current collector made of metal foil with a separator interposed therebetween.
 この電池においては、特に自動車で好適に使用できるようにするため、イオン・電子の移動しやすさ、つまりパワーである出力密度と、電池の単位質量もしくは単位体積あたりで取り出せるエネルギー、つまり一回の充電で蓄えられるエネルギーであるエネルギー密度の双方が高いことが望まれている。 In this battery, in order to make it particularly suitable for use in automobiles, the mobility of ions and electrons, that is, the output density, which is power, and the energy that can be extracted per unit mass or unit volume of the battery, that is, once It is desired that both energy densities, which are energy stored by charging, are high.
 しかし、高い出力密度(高出力)と高いエネルギー密度(高エネルギー)の両立を図れるリチウムイオン電池はなかった。 However, there was no lithium ion battery that could achieve both high power density (high power) and high energy density (high energy).
 高い出力密度を得ようとするリチウムイオン電池として、下記特許文献1の電池が提案されている。この電池では、出力を上げるためには活物質の塗布厚を薄くすればよいとの知見のもと、薄くすると出力密度は増えるものの電池の容量とは関係ない集電体とセパレータの体積比率が増えるので、容量低下を起こしてしまうという問題を解決するために、集電体の表面に凹凸形状を形成するという構成を採用している。この凹凸形状は、厚さ20μmの集電体において、平均高さが20μmでピッチが100μmの波状のうねりである。凹凸形状の具体的形状は不明だが、ローラの表面をエッチングやサンドブラストで加工するとの記述(特許文献1の段落[0007]参照)と総合して判断すると、無数の小さな凹凸が集電体の表面に無秩序に形成されていることがわかる。 As a lithium ion battery that seeks to obtain a high output density, the battery of Patent Document 1 below has been proposed. In this battery, based on the knowledge that it is necessary to reduce the coating thickness of the active material in order to increase the output, the output density increases but the volume ratio of the current collector and the separator is not related to the capacity of the battery. Therefore, in order to solve the problem that the capacity is reduced, a configuration in which an uneven shape is formed on the surface of the current collector is adopted. This uneven shape is a wavy wave having an average height of 20 μm and a pitch of 100 μm in a current collector having a thickness of 20 μm. Although the specific shape of the irregular shape is unknown, judging from the fact that the surface of the roller is processed by etching or sandblasting (see paragraph [0007] of Patent Document 1), innumerable small irregularities are the surface of the current collector. It can be seen that they are formed randomly.
 特許文献1の発明は、このような凹凸形状により、活物質が集電体の表面に接触する面積が増加するので、出力を上げるために活物質の塗布厚を薄くしても、容量低下を起こさずにすむというものである。 The invention of Patent Document 1 increases the area where the active material contacts the surface of the current collector due to such an uneven shape, so that the capacity is reduced even if the coating thickness of the active material is reduced to increase the output. You don't have to wake up.
 しかし、凹凸形状があることによって、集電体が平らである場合に比して接触面積は増加するため出力密度は向上するものの、凹凸形状は高さの割にピッチが長く、エネルギー密度を高めることはできない。あくまでも、集電体とセパレータの体積比率が増えるのを抑えて、エネルギー密度が低下するのを抑制しているだけである。 However, although the unevenness shape increases the output density because the contact area increases compared to when the current collector is flat, the unevenness shape has a longer pitch than the height and increases the energy density. It is not possible. It only suppresses the increase in the volume ratio between the current collector and the separator and suppresses the decrease in energy density.
 下記特許文献2にも、集電体と活物質との接触面積を増やして、電池の出力向上を図る電池が開示されている。この電池では、正極電極と負極電極との電極間距離が小さくなる箇所ができるとその部分にリチウムの析出が起こりやすくなって電池の容量劣化を引き起こす原因になるという観点から、集電体と活物質との接触面積を増やすとともに、電極の剛性を高めて電極間の距離を一定に保てるように構成されている。すなわち、集電体の表裏両面に、集電体の長手方向に延びる凹凸形状をなす活物質を塗布した後に、この活物質もろとも集電体を厚み方向にプレスして、集電体に凹凸形状を形成するという構成である。 Patent Document 2 below also discloses a battery that increases the contact area between the current collector and the active material to improve the output of the battery. In this battery, if there is a portion where the distance between the positive electrode and the negative electrode is small, lithium deposition is likely to occur in this portion, which causes the battery capacity to deteriorate. While increasing the contact area with a substance, it is comprised so that the rigidity of an electrode can be improved and the distance between electrodes can be kept constant. That is, after applying an active material having an uneven shape extending in the longitudinal direction of the current collector on both the front and back surfaces of the current collector, the current collector and the current collector are pressed in the thickness direction so that the current It is the structure of forming a shape.
 この構成により、集電体が平らである場合と比べて集電体と活物質との接触面積が増えて、出力向上が図れるとともに、電極間の距離を一定に保てることからリチウムの不必要な析出を抑えて容量劣化を抑制することができるとされている。 With this configuration, the contact area between the current collector and the active material is increased compared to the case where the current collector is flat, the output can be improved, and the distance between the electrodes can be kept constant. It is said that the capacity deterioration can be suppressed by suppressing the precipitation.
 しかし、特許文献2の凹凸形状も、特許文献1の凹凸形状と同様に、高さの割にピッチが長く、エネルギー密度を高めるものではない。あくまでも、リチウムの析出を抑えて、エネルギー密度が低下するのを抑制するのにとどまる。 However, the concavo-convex shape of Patent Document 2 also has a long pitch for the height and does not increase the energy density, like the concavo-convex shape of Patent Document 1. It is only to suppress the precipitation of lithium and suppress the decrease in energy density.
特開平8-195202号公報JP-A-8-195202 特開2010-225393号公報JP 2010-225393 A
 この発明は、高い出力密度と高いエネルギー密度を得られるようにすることを主な課題とする。 The main object of the present invention is to obtain a high output density and a high energy density.
 そのための手段は、シート状をなす集電体の表裏両面に活物質を有するリチウムイオン電池の電極であって、前記集電体の表裏両面に、線状に延びる複数本の溝条が等間隔で、表裏で位相が異なるように並設され、前記活物質が、前記溝条内に充填される充填部と、該充填部と一体となって前記集電体の面を覆う被覆部を有し、前記溝条の深さが、該溝条の開口部の幅と同等またはそれ以上であるリチウムイオン電池の電極である。 The means for this is an electrode of a lithium ion battery having an active material on both the front and back sides of a sheet-like current collector, and a plurality of linearly extending grooves are equidistant on both sides of the current collector The active material has a filling portion that fills the groove, and a covering portion that covers the surface of the current collector integrally with the filling portion. And the depth of the said groove | channel is an electrode of the lithium ion battery whose equivalent or more than the width | variety of the opening part of this groove | channel.
 別の手段は、前記電極がセパレータを介して積層されるとともにタブが接続されて、電解液とともにラミネートフィルムで被覆されたリチウムイオン電池である。 Another means is a lithium ion battery in which the electrode is laminated via a separator and a tab is connected, and is covered with a laminate film together with an electrolytic solution.
 前記電極では、集電体の表裏両面に形成された線状に延びる複数本の溝条が、集電体と活物質との接触面積を、平らな集電体である場合に比して増大させる。しかも、溝条の深さが、溝条の開口部の幅と同等またはそれ以上であるので、集電体と活物質との接触面積は、高さの割にピッチが長い、換言すれば集電体の厚さの割に深さが浅い従来の凹凸形状を有する集電体を有する場合に比して、大幅に増大する。同時に、溝条内の活物質、つまり充填部の量も多くなる。 In the electrode, a plurality of linearly extending grooves formed on both the front and back surfaces of the current collector increase the contact area between the current collector and the active material compared to a flat current collector. Let In addition, since the depth of the groove is equal to or greater than the width of the opening of the groove, the contact area between the current collector and the active material has a long pitch for the height, in other words, the collection area. Compared with the case where a current collector having a conventional concavo-convex shape having a shallow depth relative to the thickness of the electric body is provided, the electric current is greatly increased. At the same time, the amount of the active material in the groove, that is, the filling portion also increases.
 このため集電体を覆っている活物質のうち集電体に近い部分から集電体への電子の移動が円滑かつ大量に行えるので、出力密度が高まる。 Because of this, electrons can move smoothly and in large quantities from a portion close to the current collector of the active material covering the current collector, so that the output density is increased.
 一方、活物質のうち集電体から遠い部分、特に充填部のうち集電体から遠い部分からの電子は、緩やかにかつ大量に集電体に移動するので、エネルギー密度が高まる。 On the other hand, electrons from a portion of the active material that is far from the current collector, particularly from a portion of the filling portion that is far from the current collector, move slowly and in large quantities to the current collector, so that the energy density increases.
 集電体の溝条の形状や幅、深さなどの寸法は、所望する出力密度とエネルギー密度によって設定される。 The shape, width, depth, and other dimensions of the current collector grooves are set according to the desired output density and energy density.
 この発明によれば、出力密度もエネルギー密度も高いリチウムイオン電池を得ることができる。 According to the present invention, a lithium ion battery having high output density and high energy density can be obtained.
電極の斜視図。The perspective view of an electrode. 電極を用いたリチウムイオン電池の概略構造を示す説明図。Explanatory drawing which shows schematic structure of the lithium ion battery using an electrode. 電極の拡大断面図。The expanded sectional view of an electrode. 電極の製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of an electrode. 他の例に係る電極の拡大断面図。The expanded sectional view of the electrode which concerns on another example. 他の例に係る電極の拡大断面図。The expanded sectional view of the electrode which concerns on another example.
 この発明を実施するための一形態を、以下図面を用いて説明する。 
 図1は、リチウムイオン電池11(図2参照)の電極21を示す斜視図であり、この電極21は金属箔からなるシート状の集電体22の表裏両面に活物質23が設けられた構造である。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a perspective view showing an electrode 21 of a lithium ion battery 11 (see FIG. 2). The electrode 21 has a structure in which active materials 23 are provided on both front and back surfaces of a sheet-like current collector 22 made of metal foil. It is.
 前記電極21は、正の電極(正極21a)と負の電極(負極21b)が用意され、図2に示したように、正極21aと負極21bの間にセパレータ12を介装して順次積層され、電極21の一端部にタブ13,14が接続されて、電解液(図示せず)とともにラミネートフィルム15で被覆されて、リチウムイオン電池11を構成する。 As the electrode 21, a positive electrode (positive electrode 21a) and a negative electrode (negative electrode 21b) are prepared. As shown in FIG. 2, the separators 12 are sequentially stacked between the positive electrode 21a and the negative electrode 21b. The tabs 13 and 14 are connected to one end of the electrode 21 and covered with a laminate film 15 together with an electrolytic solution (not shown) to constitute the lithium ion battery 11.
 正極21aと負極21bでは集電体22と活物質23の材料が異なる。正極21aでは集電体22がアルミ箔で構成され、活物質23にはコバルト酸リチウムなどのリチウム遷移金属酸化物が用いられる。一方、負極21bでは集電体22が銅箔で構成され、活物質23には炭素が用いられる。 The materials of the current collector 22 and the active material 23 are different between the positive electrode 21a and the negative electrode 21b. In the positive electrode 21a, the current collector 22 is made of an aluminum foil, and the active material 23 is made of a lithium transition metal oxide such as lithium cobalt oxide. On the other hand, in the negative electrode 21b, the current collector 22 is made of copper foil, and the active material 23 is made of carbon.
 しかし、正極21aと負極21bの構造は同一であるので、一方のみを説明して、他方の説明は省略する。前記リチウムイオン電池11を構成するに際しては、正極21aまたは負極21bのいずれか一方のみに本発明の電極構造を採用することもできる。 However, since the structures of the positive electrode 21a and the negative electrode 21b are the same, only one of them will be described and the description of the other will be omitted. When the lithium ion battery 11 is configured, the electrode structure of the present invention can be employed only for either the positive electrode 21a or the negative electrode 21b.
 図3は負極21a(21)の構造を示す拡大断面図である。負極21aは、前記のように銅箔からなる集電体22の表裏両面に、炭素からなる活物質23が塗布されて形成される。活物質23が塗布される前記集電体22の表裏両面には、線状に延びる複数本の溝条24が等間隔で、表裏で位相が異なるように並設されている。つまり、集電体22は側面視で溝条24が表、裏、表、裏と、交互にあらわれる形状に形成される。またこの溝条24は、集電体22の幅方向の端から端まで形成されている(図1参照)。 FIG. 3 is an enlarged cross-sectional view showing the structure of the negative electrode 21a (21). The negative electrode 21a is formed by applying the active material 23 made of carbon on both the front and back surfaces of the current collector 22 made of copper foil as described above. On both the front and back surfaces of the current collector 22 to which the active material 23 is applied, a plurality of linearly extending grooves 24 are arranged in parallel so that the phases are different at equal intervals. That is, the current collector 22 is formed in a shape in which the grooves 24 appear alternately on the front, back, front, and back in a side view. The groove 24 is formed from end to end in the width direction of the current collector 22 (see FIG. 1).
 前記溝条24の形状は、深さdが溝条24の開口部の幅w1と同等またはそれ以上の深さになる形状である。つまり、断面形状が半円形、正方形もしくは縦長長方形状に近い形に形成されている。 The shape of the groove 24 is such that the depth d is equal to or greater than the width w1 of the opening of the groove 24. That is, the cross-sectional shape is formed in a semicircular, square, or nearly rectangular shape.
 図3に示した例では、溝条24は断面略正方形状または略U字状に形成され、溝条24の深さdは開口部の幅w1と同等に設定されるとともに、溝条24の底部の幅w2が開口部の幅w1より若干小さく設定されている。底部の幅w2を小さくするのは、溝条24を形成するときの抜き勾配を考慮しているからである。溝条24の深さdについて付言すれば、溝条24の深さdは溝条24のピッチpの半分と同等であるともいえる。図5、図6に示した例でも同様である。 In the example shown in FIG. 3, the groove 24 is formed in a substantially square or substantially U-shaped cross section, the depth d of the groove 24 is set to be equal to the width w1 of the opening, and the groove 24 The width w2 of the bottom is set slightly smaller than the width w1 of the opening. The reason why the width w2 of the bottom portion is reduced is that a draft angle when the groove 24 is formed is taken into consideration. If it adds about the depth d of the groove 24, it can be said that the depth d of the groove 24 is equivalent to the half of the pitch p of the groove 24. FIG. The same applies to the examples shown in FIGS.
 溝条24の深さdを図3の例よりも深く設定して、溝条24の深さdは開口部の幅w1と同等より深く、または溝条24のピッチpの半分と同等より深くしてもよい。この場合は、溝条24は断面略縦長長方形または縦長略U字状となる。 The depth d of the groove 24 is set deeper than the example of FIG. 3, and the depth d of the groove 24 is deeper than the opening width w1 or deeper than half the pitch p of the groove 24. May be. In this case, the groove 24 has a substantially vertically rectangular or vertically long U-shaped cross section.
 また、溝条24の深さdは集電体22の厚さt1の5倍より深く設定される。集電体22の厚さt1は一般に10μm~20μmであるので、溝条24の深さdは、50μmまたは100μmより深いものとなる。溝条24の深さdが集電体22の厚さt1の割に浅いと、活物質23と集電体22との接触面積の増加の割に溝条24内に充填される活物質23の量が少ないからである。 Further, the depth d of the groove 24 is set to be deeper than 5 times the thickness t1 of the current collector 22. Since the thickness t1 of the current collector 22 is generally 10 μm to 20 μm, the depth d of the groove 24 is deeper than 50 μm or 100 μm. If the depth d of the groove 24 is shallow relative to the thickness t1 of the current collector 22, the active material 23 filled in the groove 24 for the increase in the contact area between the active material 23 and the current collector 22 is increased. This is because the amount of is small.
 具体的な数値例をあげる。集電体22の厚さt1が20μmである場合、溝条24の開口部の幅w1を約280μm、底部の幅w2を約270μm、深さdを約320μm、ピッチpを約590μmとすることができる。 * Give specific numerical examples. When the thickness t1 of the current collector 22 is 20 μm, the width w1 of the opening of the groove 24 is about 280 μm, the width w2 of the bottom is about 270 μm, the depth d is about 320 μm, and the pitch p is about 590 μm. Can do.
 このような形状の集電体22は、図4に示したように、搬送される基材としての銅箔25(図4(a)参照)に対して、例えば図示しない成形ロール等の成形装置によって、前記溝条24を表裏両面に形成して得られる(図4(b)参照)。溝条24はタブ13を溶接する部分22a以外の部分に形成される(図1参照)。 As shown in FIG. 4, the current collector 22 having such a shape is formed on a copper foil 25 (see FIG. 4A) as a substrate to be conveyed, for example, a molding device such as a molding roll (not shown). Thus, the groove 24 is formed on both the front and back surfaces (see FIG. 4B). The groove 24 is formed in a portion other than the portion 22a where the tab 13 is welded (see FIG. 1).
 このあと、集電体22の表裏両面に前記活物質23となる活物質スラリーが塗布される。 Thereafter, an active material slurry to be the active material 23 is applied to both the front and back surfaces of the current collector 22.
 活物質スラリーは、粉末状の炭素のほかに結着剤などを混合して得られる。この活物質スラリーは、周知の塗布装置(図示せず)を用いて集電体22の両面における溝条24部分に所定の厚さt2で塗布される(図3参照)。塗布厚t2は、溝条24の開口位置から、例えば50μm~125μmなどの適宜の厚さに設定される。 The active material slurry is obtained by mixing a binder in addition to powdered carbon. This active material slurry is applied at a predetermined thickness t2 to the grooves 24 on both surfaces of the current collector 22 using a known coating device (not shown) (see FIG. 3). The coating thickness t2 is set to an appropriate thickness such as 50 μm to 125 μm from the opening position of the groove 24.
 塗布は片面ずつ行う。まず集電体22の片面に活物質スラリーを塗布して活物質スラリーを乾燥させ、つぎにもう一方の面に活物質スラリーを塗布してから乾燥を行う。 ¡Apply one side at a time. First, the active material slurry is applied to one surface of the current collector 22 to dry the active material slurry, and then the active material slurry is applied to the other surface, followed by drying.
 集電体22の両面に活物質スラリーが塗布されて活物質23が形成されたあとは、図示しないプレス装置によって活物質23の表面を平らに仕上げる。 After the active material slurry is applied to both surfaces of the current collector 22 to form the active material 23, the surface of the active material 23 is flattened by a pressing device (not shown).
 このようにして設けられた活物質23は、前記溝条24内に充填される充填部23aと、この充填部23aと一体となって集電体22の面を覆う被覆部23bとを有することになる(図4(c)参照)。活物質23の充填部23aができる部分は前記のように長く深さのある大きな溝条24であるので、活物質スラリーは入り易く、集電体22に対する高い密着度が得られる。 The active material 23 thus provided has a filling portion 23a filled in the groove 24 and a covering portion 23b that covers the surface of the current collector 22 integrally with the filling portion 23a. (See FIG. 4C). Since the portion where the filling portion 23a of the active material 23 is formed is the long and deep groove 24 as described above, the active material slurry is easy to enter, and high adhesion to the current collector 22 is obtained.
 このあと乾燥やカットなどの必要な工程を経て、負極21bと正極21aは製造される。 Thereafter, the negative electrode 21b and the positive electrode 21a are manufactured through necessary steps such as drying and cutting.
 これら負極21bと正極21aは前記のようにして用いられて、前記リチウムイオン電池11が製造される(図2参照)。 The negative electrode 21b and the positive electrode 21a are used as described above to manufacture the lithium ion battery 11 (see FIG. 2).
 このように構成された電極21を用いたリチウムイオン電池11では、充電時には、正極21aでは電子が欠乏状態となり、正極21aのコバルト酸リチウム中のリチウムがリチウムイオンとなる。つまり、リチウムイオンが発生する。このリチウムイオンは、電解液を介して負極21bに引き寄せられて、負極21bにおいてリチウム原子に戻り、負極21bに吸蔵される。 In the lithium ion battery 11 using the electrode 21 configured as described above, at the time of charging, electrons are deficient in the positive electrode 21a, and lithium in the lithium cobalt oxide of the positive electrode 21a becomes lithium ions. That is, lithium ions are generated. This lithium ion is attracted to the negative electrode 21b through the electrolytic solution, returns to the lithium atom in the negative electrode 21b, and is occluded in the negative electrode 21b.
 一方、放電時には、リチウム原子を吸蔵している負極21bにおいてリチウム原子がイオン化して、リチウムイオンを発生する。このとき負極21bに電子が蓄積される。電子はタブ13を介して移動し、電流が流れることになる。発生したリチウムイオンは、電解液を介して正極21aに移動し、正極21aでは電子をもらってリチウム原子に戻り、正極21aに吸蔵される。 On the other hand, at the time of discharge, lithium atoms are ionized in the negative electrode 21b storing lithium atoms to generate lithium ions. At this time, electrons are accumulated in the negative electrode 21b. The electrons move through the tab 13 and a current flows. The generated lithium ions move to the positive electrode 21a through the electrolytic solution, get electrons in the positive electrode 21a, return to lithium atoms, and are occluded in the positive electrode 21a.
 このようにして充放電がなされるので、放電時には、負極21bに蓄積された電子が円滑かつ大量に集電体に移動すると、高出力が得られることになる。この点、集電体22には前記のように厚さの割に大きな溝条24が形成されているので、集電体22と活物質23との接触面積は、平らな集電体を用いた場合と比べてはもちろんのこと、単に凹凸形状をつけた場合と比べても大幅に増大する。前記のように溝条24の深さdが、溝条24の開口部の幅w1と同等またはそれ以上であるので、集電体22が平らである場合と比較して、接触面積をその2倍以上とすることができる。このため、高い出力密度が得られる。 Since charging / discharging is performed in this manner, high output can be obtained when electrons accumulated in the negative electrode 21b move smoothly and in large quantities to the current collector during discharging. In this respect, the current collector 22 is formed with the large groove 24 for the thickness as described above, so that the contact area between the current collector 22 and the active material 23 is a flat current collector. Of course, it is greatly increased as compared with the case where the uneven shape is simply applied. Since the depth d of the groove 24 is equal to or greater than the width w1 of the opening of the groove 24 as described above, the contact area can be reduced by 2 compared with the case where the current collector 22 is flat. It can be more than double. For this reason, a high output density is obtained.
 しかも、活物質23の厚さt2を薄くしても、溝条24内に充填された活物質23の充填部23aの量は多く、単に凹凸形状をつけた場合よりも活物質23の量は大幅に増大する。このため、蓄積される電子の量も多くなり、集電体22から遠い部分に蓄積された電子は、緩やかにかつ大量に移動するので、エネルギー密度も高められる。 Moreover, even if the thickness t2 of the active material 23 is reduced, the amount of the filling portion 23a of the active material 23 filled in the groove 24 is large, and the amount of the active material 23 is smaller than that in the case where the uneven shape is simply provided. Increase significantly. For this reason, the amount of accumulated electrons also increases, and electrons accumulated in a portion far from the current collector 22 move slowly and in large quantities, so that the energy density is also increased.
 このような高い出力密度と高いエネルギー密度の程度は、集電体22に形成される前記溝条24の形状や幅、深さなどの変更により適宜設定できる。 The degree of such high power density and high energy density can be appropriately set by changing the shape, width, depth, etc. of the groove 24 formed in the current collector 22.
 例えば、溝条24の形状を断面が正方形または長方形に近い形にすれば、接触面積の増加が図れることになり、出力密度のほうをエネルギー密度よりも高めるようにすることができる。溝条24の深さdを深くする場合も同様である。溝条24の形状を、図5のように、断面が半円形に近い形、換言すれば正弦曲線のような形にすれば、接触面積の増加を抑えて、出力密度よりもエネルギー密度のほうの増加を図ることができる。この場合も、図6に示したように、溝条24の深さdを図5の例の場合よりも深くすることによって、出力密度を高めることができる。 For example, if the groove 24 has a cross-sectional shape close to a square or rectangle, the contact area can be increased, and the output density can be made higher than the energy density. The same applies to the case where the depth d of the groove 24 is increased. If the groove 24 is shaped like a semicircular cross section as shown in FIG. 5, in other words, a shape like a sine curve, the increase in contact area is suppressed, and the energy density is higher than the output density. Can be increased. Also in this case, as shown in FIG. 6, the output density can be increased by making the depth d of the groove 24 deeper than in the example of FIG.
 図5と図6の電極21の数値例をあげると、集電体22の厚さが20μmである場合、図5の溝条24のピッチpを約50μm、深さDを約230μm、内面の半径r1を約100μm、外面の半径r2を約120μmとすることができる。図6の溝条24では、ピッチpと内面の半径r1と外面の半径r2は図5の溝条24と同一であるのに対して、深さdを約300μmとすることができる。 5 and 6, when the thickness of the current collector 22 is 20 μm, the pitch p of the groove 24 in FIG. 5 is about 50 μm, the depth D is about 230 μm, and the inner surface The radius r1 can be about 100 μm, and the outer surface radius r2 can be about 120 μm. In the groove 24 of FIG. 6, the pitch p, the inner surface radius r1 and the outer surface radius r2 are the same as the groove 24 of FIG. 5, whereas the depth d can be about 300 μm.
 このように溝条24の形状や幅、深さなどの設定によって、出力密度とエネルギー密度を所望のバランスで有するリチウムイオン電池11得ることもできる。 Thus, the lithium ion battery 11 having a desired balance of output density and energy density can be obtained by setting the shape, width, depth, and the like of the groove 24 in this manner.
 以上はこの発明を実施するための一形態であって、この発明は前記の構成のみに限定されるものではなく、その他の構成を採用することができる。 The above is one embodiment for carrying out the present invention, and the present invention is not limited to the above-described configuration, and other configurations can be adopted.
 例えば、集電体に対して活物質スラリーを塗布した後で行うプレス装置によるプレスで、集電体の溝条の開口部の幅が底部の幅よりも狭くなるように強く行えば、溝条の断面形状がアリ溝のような形状となって、集電体と活物質の接触面積をさらに増やすことができる。 For example, in a press using a press apparatus that is performed after applying the active material slurry to the current collector, if the width of the opening of the groove of the current collector is made to be narrower than the width of the bottom, the groove The cross-sectional shape becomes a shape like a dovetail, and the contact area between the current collector and the active material can be further increased.
 また、集電体に形成される溝条のピッチは異なるものが混在していてもよく、溝条の配列方向の中間部分に溝条が部分的に存在しない部分があってもよい。 Also, different pitches of grooves formed on the current collector may be mixed, and there may be a portion where the grooves do not exist partially in the middle portion of the grooves in the arrangement direction.
 11…リチウムイオン電池
 12…セパレータ
 13,14…タブ
 15…ラミネートフィルム
 21…電極
 22…集電体
 23…活物質
 23a…充填部
 23b…被覆部
 24…溝条
 w1…溝条の開口部の幅
 w2…溝条の底部の幅
 d…溝条の深さ
 t1…集電体の厚さ
 p…溝条のピッチ
DESCRIPTION OF SYMBOLS 11 ... Lithium ion battery 12 ... Separator 13,14 ... Tab 15 ... Laminate film 21 ... Electrode 22 ... Current collector 23 ... Active material 23a ... Filling part 23b ... Covering part 24 ... Groove w1 ... Width of groove opening w2 ... width of the bottom of the groove d ... depth of the groove t1 ... thickness of the current collector p ... pitch of the groove

Claims (5)

  1.  シート状をなす集電体の表裏両面に活物質を有するリチウムイオン電池の電極であって、
    前記集電体の表裏両面に、線状に延びる複数本の溝条が等間隔で、表裏で位相が異なるように並設され、
    前記活物質が、前記溝条内に充填される充填部と、該充填部と一体となって前記集電体の面を覆う被覆部を有し、
    前記溝条の深さが、該溝条の開口部の幅と同等またはそれ以上である
    リチウムイオン電池の電極。
    An electrode of a lithium ion battery having an active material on both front and back sides of a sheet-like current collector,
    On both the front and back surfaces of the current collector, a plurality of linearly extending grooves are arranged at equal intervals so that the phases are different on the front and back sides,
    The active material has a filling portion filled in the groove, and a covering portion that covers the surface of the current collector integrally with the filling portion,
    An electrode of a lithium ion battery, wherein the depth of the groove is equal to or greater than the width of the opening of the groove.
  2.  前記溝条の深さが前記溝条のピッチの半分と同等またはそれ以上である
    請求項1に記載のリチウムイオン電池の電極。
    2. The electrode of a lithium ion battery according to claim 1, wherein a depth of the groove is equal to or more than half of a pitch of the groove.
  3.  前記溝条の深さが前記集電体の厚さの5倍より深く形成された
    請求項1または請求項2に記載のリチウムイオン電池の電極。
    The lithium ion battery electrode according to claim 1 or 2, wherein the groove has a depth deeper than five times the thickness of the current collector.
  4.  前記溝条の底部の幅が、前記溝条のピッチの半分と同等である
    請求項1から請求項3のうちのいずれか一項に記載のリチウムイオン電池の電極。
    The electrode of the lithium ion battery according to any one of claims 1 to 3, wherein a width of a bottom portion of the groove is equal to half of a pitch of the groove.
  5.  前記請求項1から請求項4のうちのいずれか一項に記載の電極がセパレータを介して積層されるとともにタブが接続されて、電解液とともにラミネートフィルムで被覆された
    リチウムイオン電池。
    A lithium ion battery in which the electrode according to any one of claims 1 to 4 is laminated via a separator, a tab is connected, and the electrode is covered with a laminate film together with an electrolytic solution.
PCT/JP2011/056564 2011-03-18 2011-03-18 Lithium ion cell and electrode thereof WO2012127563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056564 WO2012127563A1 (en) 2011-03-18 2011-03-18 Lithium ion cell and electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056564 WO2012127563A1 (en) 2011-03-18 2011-03-18 Lithium ion cell and electrode thereof

Publications (1)

Publication Number Publication Date
WO2012127563A1 true WO2012127563A1 (en) 2012-09-27

Family

ID=46878762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056564 WO2012127563A1 (en) 2011-03-18 2011-03-18 Lithium ion cell and electrode thereof

Country Status (1)

Country Link
WO (1) WO2012127563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534127A (en) * 2015-06-12 2018-01-02 宁德时代新能源科技股份有限公司 Secondary cell battery core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272726A (en) * 1994-03-30 1995-10-20 Yuasa Corp Manufacture of metallic current collector
JP2001085016A (en) * 1999-09-09 2001-03-30 Sony Corp Non-aqueous electrolyte battery
JP2008153015A (en) * 2006-12-15 2008-07-03 Sony Corp Anode and battery
JP2008270153A (en) * 2006-11-15 2008-11-06 Matsushita Electric Ind Co Ltd Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010118164A (en) * 2008-11-11 2010-05-27 Mazda Motor Corp Electrode of secondary battery
JP2010225393A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Method of manufacturing electrode of battery, manufacturing device, and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272726A (en) * 1994-03-30 1995-10-20 Yuasa Corp Manufacture of metallic current collector
JP2001085016A (en) * 1999-09-09 2001-03-30 Sony Corp Non-aqueous electrolyte battery
JP2008270153A (en) * 2006-11-15 2008-11-06 Matsushita Electric Ind Co Ltd Method for manufacturing collector for nonaqueous secondary battery, method for manufacturing electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2008153015A (en) * 2006-12-15 2008-07-03 Sony Corp Anode and battery
JP2010118164A (en) * 2008-11-11 2010-05-27 Mazda Motor Corp Electrode of secondary battery
JP2010225393A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Method of manufacturing electrode of battery, manufacturing device, and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534127A (en) * 2015-06-12 2018-01-02 宁德时代新能源科技股份有限公司 Secondary cell battery core
CN107534127B (en) * 2015-06-12 2020-07-07 宁德时代新能源科技股份有限公司 Secondary battery core

Similar Documents

Publication Publication Date Title
KR101103499B1 (en) Electrode assembly for battery and manufacturing thereof
CN109792089B (en) Secondary battery
KR102094662B1 (en) Three dimensional co-extruded battery electrodes
JP4301286B2 (en) Power storage device
JP6210868B2 (en) High performance, high output, high energy battery electrodes manufactured by coextrusion printing
US20190296332A1 (en) Electrochemical cells having one or more multilayer electrodes
JP4402134B2 (en) Multilayer secondary battery and manufacturing method thereof
US20220140350A1 (en) Electrode plate of an electrochemical battery and electrochemical battery comprising such electrode plate
JP5309909B2 (en) Secondary battery electrode
KR101850180B1 (en) Secondary Battery Comprising Current Collector with Through Hole
US11876218B2 (en) Electrochemical cells having one or more multilayer electrodes
JP5724916B2 (en) Power storage device, vehicle, and electrode body manufacturing method
JP5347428B2 (en) Secondary battery
JP2013008523A (en) Electrode for battery and method for manufacturing the same
JP2010225393A (en) Method of manufacturing electrode of battery, manufacturing device, and battery
TWI520414B (en) Secondary battery comprising insulator
KR20160016173A (en) Irregular secondary battery and method for manufacturing the same
KR101811834B1 (en) Battery Cell Comprising Current Collector Having Convexo-Concave Structure
JP5534370B2 (en) Method for manufacturing battery electrode
WO2012127563A1 (en) Lithium ion cell and electrode thereof
JP2004207253A (en) Non-aqueous electrolyte rechargeable battery
CN110858662A (en) Lithium ion battery of sandwich construction and method for producing same
JP6683089B2 (en) Power storage device
JP5949485B2 (en) Power storage device having electrolytic solution, secondary battery, and method for manufacturing electrode of power storage device having electrolytic solution
JP2011258435A (en) Electrode for battery, electrode for bipolar battery and bipolar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP