WO2012127531A1 - Turbine housing - Google Patents

Turbine housing Download PDF

Info

Publication number
WO2012127531A1
WO2012127531A1 PCT/JP2011/001703 JP2011001703W WO2012127531A1 WO 2012127531 A1 WO2012127531 A1 WO 2012127531A1 JP 2011001703 W JP2011001703 W JP 2011001703W WO 2012127531 A1 WO2012127531 A1 WO 2012127531A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
gas introduction
inlet
introduction passage
turbine
Prior art date
Application number
PCT/JP2011/001703
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 明
Original Assignee
アイシン高丘株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン高丘株式会社 filed Critical アイシン高丘株式会社
Priority to JP2013505616A priority Critical patent/JP5667286B2/en
Priority to PCT/JP2011/001703 priority patent/WO2012127531A1/en
Publication of WO2012127531A1 publication Critical patent/WO2012127531A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • F01N13/143Double-walled exhaust pipes or housings with air filling the space between both walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/20Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device

Definitions

  • the present invention relates to a turbine housing, that is, a housing for an exhaust turbine in a turbocharger.
  • an exhaust gas purification catalyst is disposed in an exhaust system of an automobile engine.
  • a turbine housing which is a kind of exhaust system component, is also required to be thin, that is, to have a low heat capacity.
  • Traditional turbine housing is a cast product by casting.
  • the advantages of the cast housing are that the degree of freedom in setting the shape is large and the productivity is good, and that the use of heat-resistant steel and high rigidity are easy and the durability is excellent.
  • the disadvantages of cast housings are that they are generally heavy and have limitations on thinning.
  • the turbine housing In order to eliminate the disadvantages of the cast housing, it has been proposed to configure the turbine housing with a metal plate (see, for example, published patent No. 55-37508).
  • the advantage of the sheet metal housing is that the heat capacity can be reduced by reducing the thickness.
  • a sheet metal housing having a single wall structure is inferior in heat resistance and heat retention
  • a sheet metal housing having a double wall structure having an outer tube and an inner tube made of sheet metal has also been proposed.
  • the sheet metal housing having a double wall structure has a disadvantage that the productivity is low and the cost is high due to the large number of parts.
  • An object of the present invention is to provide a new turbine housing that combines the advantages of a cast housing and the advantages of a sheet metal housing having a double wall structure.
  • the present invention proposes an application range and a holding structure of a tubular body used to realize a double wall structure.
  • the present invention is a turbine housing for a turbocharger in which a scroll portion, an inlet portion and an inlet flange are integrally cast.
  • the scroll portion has a turbine chamber that houses the exhaust turbine, and a part of the turbine chamber forms an exhaust gas passage.
  • An outlet port for exhausting exhaust gas from the turbine chamber is provided at the front side center of the scroll portion.
  • the inlet portion is provided at a side portion of the scroll portion, and defines a gas introduction passage for introducing exhaust gas into the turbine chamber.
  • the inlet flange is provided at the outer end of the inlet portion so as to correspond to a connection flange provided in the engine head or the exhaust manifold.
  • the turbine housing of the present invention is characterized by the following three aspects (Aspects).
  • a tubular body for securing an air gap between the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion.
  • the tubular body has an annular plate portion at or near its outer end.
  • the tubular body is supported in the gas introduction passage by the annular plate portion being sandwiched between the inlet flange and the connection flange of the engine head or the exhaust manifold.
  • a tubular body for securing an air gap between the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion.
  • the tubular body has an annular ridge at or near its outer end.
  • the inlet has an annular groove formed in the inner wall of the gas introduction passage in the vicinity of the outer end of the gas introduction passage.
  • the tubular body is supported in the gas introduction passage by the annular protrusion being engaged with the annular groove.
  • a part of the inner wall forming the gas introduction passage of the inlet portion is configured as a tapered wall portion formed in a conical shape.
  • a tubular body for securing an air gap between the gas introduction passage and the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion.
  • the tubular body includes a small diameter portion formed on the inner end side and a large diameter portion formed on the outer end side, and the large diameter portion has a larger diameter than the small diameter portion.
  • the tubular body is supported in the gas introduction passage by the outer end portion of the large-diameter portion being pressed by the connection flange and the inner end portion of the large-diameter portion contacting the tapered wall portion. Has been.
  • an air gap is secured between the tubular body and the inner wall of the gas introduction passage by inserting the tubular body into the gas introduction passage of the inlet portion, and the gas introduction passage is substantially formed. It becomes a double wall structure. As a result, the heat resistance and heat retention of the gas introduction passage are improved.
  • the housing main body including the inlet portion is made by casting, the turbine housing of the present invention is more productive than the all-sheet metal housing.
  • the exhaust gas that has passed through the gas introduction passage can contribute to the early activation of the exhaust gas purification catalyst when the engine is started at a low temperature.
  • the tubular body is supported in the gas introduction passage mainly through a structural portion (for example, an annular plate portion) on the outer end side thereof, the tubular body can be easily attached to and detached from the housing body, and can be appropriately replaced as necessary. is there. Therefore, the turbine housing of the present invention is excellent in maintainability.
  • FIG. 1 is a schematic diagram of a turbocharger structure.
  • 2A is a front view of the turbine housing
  • FIG. 2B is a longitudinal sectional view of the turbine housing.
  • FIG. 3A is a plan view showing the connection between the turbine housing and the exhaust manifold
  • FIG. 3B is a plan view showing the connection between the turbine housing and the engine head.
  • FIG. 4 is a graph showing the temperature distribution at the inlet of the turbine housing.
  • FIG. 5A is a cross-sectional view showing an example of the inlet portion of the turbine housing
  • FIG. 5B is a cross-sectional view showing another example of the inlet portion of the turbine housing.
  • FIG. 6 (A), (B), (C) and (D) are radial cross-sectional views showing examples of the inlet portion of the turbine housing.
  • FIG. 7A is a radial cross-sectional view showing an example of the inlet portion of the turbine housing
  • FIG. 7B is a front view showing the inlet flange.
  • FIGS. 8A and 8B are radial cross-sectional views showing examples of the inlet portion of the turbine housing.
  • FIG. 9 is a radial cross-sectional view showing an example of an inlet portion of the turbine housing.
  • FIG. 10 is a radial cross-sectional view showing another example of the inlet portion of the turbine housing.
  • FIG. 11 is a radial cross-sectional view showing still another example of the inlet portion of the turbine housing.
  • a turbocharger 1 for an automobile engine includes an exhaust turbine 3 and a compressor 4 that are coaxially connected via a connecting shaft 2, and three housings (5, 6, 7) that accommodate these.
  • the turbine housing 6 accommodates the exhaust turbine 3, the compressor housing 7 accommodates the compressor 4, and the center housing 5 disposed between the turbine and the compressor housing accommodates the connecting shaft 2.
  • a waste gate port 8 is set in the exhaust gas introduction region of the turbine housing 6, and the port 8 connects the outlet side of the turbine housing 6 (that is, the turbine housing 6 and the catalytic converter 12 for purifying exhaust gas) via the bypass passage 11. It is connected to the downstream exhaust passage 13).
  • the waste gate port 8 is opened and closed by a waste gate valve 9, and the valve 9 is operated by a known supercharging pressure control actuator (not shown).
  • a waste gate valve 9 is operated by a known supercharging pressure control actuator (not shown).
  • the turbine housing 6 includes a cast housing body in which a scroll portion 21, an inlet portion 25 and an inlet flange 27 are integrally cast.
  • the scroll part 21 has a turbine chamber 22 that houses an exhaust turbine.
  • a scroll-like exhaust gas passage 23 is defined by the peripheral area of the turbine chamber 22.
  • An outlet port 24 for discharging exhaust gas from the turbine chamber 22 is provided in the center of the front side of the scroll portion 21.
  • the inlet portion 25 is provided at a side portion of the scroll portion 21, and defines a gas introduction passage 26 for introducing exhaust gas into the turbine chamber 22.
  • a waste gate port 8 is set at the latter half position of the gas introduction passage 26.
  • An inlet flange 27 is provided at the outer end of the inlet portion 25.
  • the gas introduction passage 26 has an outer end located on the inlet flange 27 side and an inner end located on the turbine chamber 22 side.
  • the inlet flange 27 is configured as a counterpart flange corresponding to the connection flange 17 provided in the engine head 15 or the exhaust manifold 16.
  • a substantially cylindrical tubular body 30 is inserted and arranged in the gas introduction passage 26.
  • An air gap 31 is secured between the outer peripheral surface of the tubular body 30 and the inner wall of the gas introduction passage 26.
  • the gas introduction passage 26 has a substantially double wall structure, and various advantages such as those described in the above “Effects of the Invention” column, such as improvement in heat resistance and heat retention of the gas introduction passage, are brought about.
  • the tubular body 30 is preferably made by subjecting a metal plate such as a stainless steel plate to mechanical processing such as bending.
  • the tubular body 30 is preferably long enough to occupy the area between the inlet flange 27 and the wastegate port 8. It is not preferable that the tubular body 30 is disposed at a position that shields the waste gate port 8.
  • FIG. 3 (A) when the turbine housing of the present invention is connected to the exhaust manifold 16, the tongue portion 28 (FIG. 2 (B)) in the turbine housing 6 from the piping assembly portion of the exhaust manifold 16 is provided.
  • the surface temperature of the gas passage wall existing in the range up to (see) can be reduced as compared with the case where the tubular body 30 is not provided. And durability and reliability of a turbine housing can be improved.
  • FIG. 3B when the turbine housing of the present invention is connected to the engine head 15, there is an advantage different from the connection to the exhaust manifold 16.
  • the temperature of the head mounting surface is considerably low, whereas the region from the turbine housing inlet port to the tongue portion 28 is considerably hotter than the head mounting surface. is there. For this reason, as shown in the graph of FIG. 4, in the conventional example (in the case where there is no tubular body), the temperature distribution in the range from the inlet port to the tongue 28 is steep.
  • the tubular body 30 is applied to the inlet portion 25
  • the temperature distribution in the range from the inlet port to the tongue portion 28 is generally lower than that of the conventional example, and the temperature gradient is made gentle. be able to. Therefore, according to the present invention, durability and reliability of the turbine housing can be improved.
  • the tubular body 30 shown in FIG. 5 (A) has an annular plate portion 32 (for example, a ridge) formed at the outer end thereof.
  • the annular plate portion 32 is sandwiched between the inlet flange 27 and the connection flange 17 of the engine head or the exhaust manifold, so that the tubular body 30 is supported in the gas introduction passage 26 of the inlet portion 25.
  • the diameter of the main body portion of the tubular body 30 is set smaller than the inner diameter of the gas introduction passage 26, and an air gap 31 is secured between the outer peripheral surface of the main body portion of the tubular body 30 and the inner wall of the gas introduction passage 26.
  • An annular member 40 made of a metal mesh is fitted on the outside of the main body portion of the tubular body 30 and is fixed by spot welding.
  • the metal mesh annular member 40 is interposed between the tubular body 30 and the inner wall of the gas introduction passage 26 and supports the central portion or the inner end portion of the tubular body 30. That is, the metal mesh annular member 40 serves as a support member that supports a part of the tubular body 30 and serves as a spacer that secures the air gap 31 having a predetermined width. According to the structure of FIG. 5A, the tubular body 30 is stably held by the annular plate portion 32 sandwiched between the two flanges and the metal mesh annular member 40 that contacts the inner wall of the gas introduction passage 26. Is done. Further, since the high-temperature exhaust gas from the engine does not directly hit the inlet flange 27, it is possible to prevent or suppress the heat quantity from being taken from the exhaust gas through the inlet flange 27 having a large heat capacity.
  • FIG. 5 (B) shows the tubular body 30 when the gas introduction passage 26 is bent at the back of the inlet portion 25.
  • the inner end portion is formed as a curved portion 33. Since the flow of the exhaust gas is guided by the curved portion 33, the high-temperature exhaust gas does not directly hit the curved inner wall 26a of the gas introduction passage 26, and the curved inner wall 26a is a heat spot (a portion heated excessively). Can be avoided.
  • FIG. 6 (A) to 6 (D) show a support structure for the central portion or the inner end portion of the tubular body 30 that can replace the metal mesh annular member 40.
  • FIG. 6 and other drawings indicate the center axis of the tubular body 30 and the gas introduction passage 26.
  • a part of the inner wall forming the gas introduction passage 26 of the inlet 25 is formed as a conical surface and is provided as an inner wall 26b having a tapered longitudinal section. ing.
  • the peripheral edge 34 of the inner end of the tubular body 30 abuts on the tapered inner wall portion 26b, and supports the inner end portion of the tubular body 30.
  • a part of the inner wall forming the gas introduction passage 26 of the inlet portion 25 is provided as an inner wall portion 26b having a conical surface shape and a tapered longitudinal section.
  • the tubular body 30 has a protrusion 35 that protrudes radially outward from the outer peripheral surface of the main body.
  • the protrusion 35 may be a single annular protrusion, or a group of a plurality of protrusions arranged in the circumferential direction. And the single or several protrusion part 35 contact
  • the inner wall forming the gas introduction passage 26 of the inlet 25 extends substantially straight.
  • the tubular body 30 has a protrusion 35 that is disposed in the vicinity of the inner end thereof and protrudes radially outward from the outer peripheral surface thereof.
  • the protrusion 35 may be a single annular protrusion, or a group of a plurality of protrusions arranged in the circumferential direction. The single or plural protrusions 35 abut against the inner wall of the gas introduction passage 26 to support the inner end portion of the tubular body 30.
  • the inner wall forming the gas introduction passage 26 of the inlet 25 extends substantially straight.
  • the tubular body 30 has a bent end 36 formed by bending the inner end portion radially outward at the inner end thereof.
  • the bent end 36 may be a single annular body or a collection of a plurality of bent pieces arranged in the circumferential direction. The single or plural bent ends 36 abut against the inner wall of the gas introduction passage 26 to support the inner end portion of the tubular body 30.
  • FIG. 7 shows a modified example of the sandwiching structure of the annular plate portion 32.
  • the thickness t1 of the annular plate portion 32 is preferably set to 0.8 to 1.5 mm. Therefore, a clearance having a width corresponding to the thickness t1 exists between the flange facing surfaces of the connection flange 17 and the inlet flange 27.
  • an annular stepped portion 27a having a height t2 (t2 ⁇ t1) is provided on the flange facing surface of the inlet flange 27, an annular stepped portion 27a having a height t2 (t2 ⁇ t1) is provided on the flange facing surface of the inlet flange 27, an annular stepped portion 27a having a height t2 (t2 ⁇ t1) is provided on the flange facing surface of the inlet flange 27, an annular stepped portion 27a having a height t2 (t2 ⁇ t1) is provided on the flange facing surface of the inlet flange 27, an annular stepped portion 27a
  • the inlet flange 27 is provided with at least one positioning hole 27b (two in this example).
  • a positioning hole corresponding to the positioning hole 27b is provided in the connection flange 17, and a positioning hole corresponding to the positioning hole 27b is also formed through the annular plate portion 32.
  • the positioning hole 27b of the inlet flange 27, the positioning hole of the annular plate portion 32, and the positioning hole of the connection flange 17 are matched, and a positioning pin 42 (see FIG. 7A) penetrating these holes is attached.
  • positioning and rotation prevention of the tubular body 30 with respect to the inlet portion 25 and the inlet flange 27 can be achieved.
  • a structure using slits (notched recesses) 27c as shown in FIG. 7B is employed instead of or together with the structure of positioning and rotation prevention of the tubular body using the positioning pins 42. Also good. That is, the slit 27 c is formed in a part of the annular step portion 27 a of the inlet flange 27. An engaging protrusion that can engage with the slit 27 c is formed on the outer peripheral portion of the annular plate portion 32 of the tubular body 30. And the positioning and rotation prevention of the tubular body 30 are achieved by engaging the engagement protrusion of the annular plate portion 32 with the slit 27c.
  • FIG. 8A shows an example of a change in the sandwiching structure of the annular plate portion 32.
  • an annular stepped portion 27a is provided on the flange-facing surface of the inlet flange 27 as in the design of FIG.
  • An annular plate portion 32 of the tubular body 30 and a metal mesh ring 43 are sandwiched between the connection flange 17 and the inlet flange 27.
  • the metal mesh ring 43 is disposed between the annular plate portion 32 and the inlet flange 27.
  • the metal mesh constituting the ring 43 is preferably a stainless steel mesh.
  • the metal mesh ring 43 functions as a spacer that expands or contracts according to a temperature change. The use of the metal mesh ring 43 improves the durability and reliability of the tubular body 30 itself and its mounting structure.
  • FIG. 8B shows an example of a change in the sandwiching structure of the annular plate portion 32.
  • an annular stepped portion 27a is provided on the flange-facing surface of the inlet flange 27 as in the design of FIG.
  • the annular plate portion 32 of the tubular body 30 has a curled portion 32a processed into a spiral shape at the outer peripheral end thereof.
  • the curled portion 32a provides a thickness larger than the original thickness of the annular plate portion 32 (in this example, about three times the thickness).
  • the thickened curled portion 32 a is sandwiched between the connection flange 17 and the inlet flange 27.
  • FIG. 9 shows a modification example of the main body of the tubular body 30.
  • the body of the tubular body 30 may have an extended outer end 37 that extends into the inner region of the connection flange 17 of the engine head or exhaust manifold.
  • the annular plate portion 32 is fixed to the tubular body 30 by welding its inner peripheral edge portion 32b to the outer peripheral wall of the tubular body main body.
  • the exhaust gas purification catalyst is activated early by the high-temperature exhaust gas supplied to the catalytic converter 12 via the waste gate port 8, the bypass passage 11 and the downstream exhaust passage 13.
  • a turbine housing according to the second aspect of the present invention will be described with reference to FIG. It should be noted that common or common components of the turbine housing that have already been described are not redundantly described.
  • a tubular body 30 for securing an air gap 31 between the gas introduction passage 26 and the inner wall of the gas introduction passage 26 is inserted into the gas introduction passage 26 of the inlet 25 of the turbine housing.
  • the tubular body 30 in FIG. 10 has an annular ridge 51 formed so as to extend in the circumferential direction at the outer end thereof.
  • the annular protrusion 51 is provided as an annular rim or an annular plate portion.
  • the inlet portion 25 has an annular groove 52 formed on the inner wall of the gas introduction passage 26 in the vicinity of the outer end of the gas introduction passage 26.
  • the width of the annular groove 52 substantially corresponds to the width of the annular protrusion 51.
  • the depth of the annular groove 52c is set to 0.5 to 2.0 mm.
  • the tubular body 30 is supported in the gas introduction passage 26 by the annular protrusion 51 being engaged with the annular groove 52.
  • a tapered guide surface 53 formed in a conical surface is formed on the inner peripheral portion of the inlet flange 27. The tapered guide surface 53 acts to squeeze the annular ridge 51 toward the center when the tubular body 30 is inserted into the gas introduction passage 26, so that the annular ridge 51 enters the annular groove 52. Promotes smooth mating.
  • a metal mesh annular member 40 is adopted as an auxiliary structure for supporting the tubular body 30.
  • a support structure at the center or inner end of the tubular body 30 as shown in FIGS. 6 (A) to (D) may be adopted.
  • a turbine housing according to the third aspect of the present invention will be described with reference to FIG. It should be noted that common or common components of the turbine housing that have already been described are not redundantly described.
  • the inner peripheral portion of the inlet flange 27 is configured as a tapered wall portion 61 formed in a conical shape.
  • the tapered wall portion 61 is also a part of the inner wall that forms the gas introduction passage 26 of the inlet portion 25.
  • a tubular body 30 for securing an air gap 31 between the gas introduction passage 26 and the inner wall of the gas introduction passage 26 is inserted into the gas introduction passage 26.
  • the tubular body 30 in FIG. 11 includes a small diameter portion 62 formed on the inner end side, a large diameter portion 64 formed on the outer end side, and an intermediate portion 63 that connects the small diameter portion 62 and the large diameter portion 64. It is out.
  • the large diameter portion 64 has a larger diameter than the small diameter portion 62.
  • the outer end portion 64 a of the large diameter portion 64 is pressed from the connection flange 17. Then, the inner end portion 64 b of the large diameter portion 64 (that is, the boundary portion between the large diameter portion 64 and the intermediate portion 63) is forcibly brought into contact with the tapered wall portion 61. As a result, the large-diameter portion 64 is sandwiched between the connection flange 17 and the tapered wall portion 61, and the tubular body 30 is supported in the gas introduction passage 26.
  • a metal mesh annular member 40 is employed as an auxiliary structure for supporting the tubular body 30.
  • a support structure at the center or inner end of the tubular body 30 as shown in FIGS. 6 (A) to (D) may be adopted.
  • the turbine housing of the present invention can be applied to a turbocharger for an internal combustion engine such as an automobile engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Exhaust Silencers (AREA)

Abstract

Disclosed is a turbine housing comprising a scroll section, an inlet section (25), and an inlet flange (27) which are integrally casted. The inlet section (25) defines and forms a gas introduction path (26) for introducing exhaust gas into a turbine chamber within the scroll section. A tube-like body (30) for ensuring an air gap (31) between the tube-like body (30) and the inner wall of the gas introduction path (26) is inserted in the gas introduction path (26). The tube-like body (30) has an annular plate section (32) at the outer end thereof. The annular plate section (32) of the tube-like body (30) is gripped between the inlet flange (27) and the connection flange (17) of an engine head or of an exhaust manifold, and thus, the tube-like body (30) is supported within the gas introduction path (26). Because the air gap (31) is ensured between the tube-like body and the inner wall of the gas introduction path, the gas introduction path (26) has a substantially double-wall structure, and as a result, the heat-resisting properties and heat-retaining properties of the turbine housing are improved.

Description

タービンハウジングTurbine housing
 本発明は、タービンハウジング、つまりターボチャージャーにおける排気タービン用のハウジングに関するものである。 The present invention relates to a turbine housing, that is, a housing for an exhaust turbine in a turbocharger.
 一般に、自動車用エンジンの排気系には排気ガス浄化触媒が配設されている。今日ではエンジンの低温始動時における排気ガス浄化触媒の早期活性化を図るという観点から、排気系部品の一種であるタービンハウジングについても薄肉化、つまり低熱容量化が求められるようになっている。 Generally, an exhaust gas purification catalyst is disposed in an exhaust system of an automobile engine. Today, from the viewpoint of early activation of an exhaust gas purification catalyst at the time of low-temperature start of an engine, a turbine housing, which is a kind of exhaust system component, is also required to be thin, that is, to have a low heat capacity.
 伝統的なタービンハウジングは、鋳造による鋳物製品である。鋳物製ハウジングの長所は、形状設定の自由度が大きく生産性が良好なこと、並びに、耐熱鋼の使用および高剛性化が容易で耐久性に優れることである。他方で、鋳物製ハウジングの短所は、概して重いこと、及び、薄肉化に限界があることである。 Traditional turbine housing is a cast product by casting. The advantages of the cast housing are that the degree of freedom in setting the shape is large and the productivity is good, and that the use of heat-resistant steel and high rigidity are easy and the durability is excellent. On the other hand, the disadvantages of cast housings are that they are generally heavy and have limitations on thinning.
 鋳物製ハウジングの欠点を解消するために、タービンハウジングを金属板で構成することが提案されている(例えば、公開特許・昭和55-37508号公報参照)。板金製ハウジングの長所は、肉厚を薄くして熱容量を小さくできる点にある。但し、単一壁構造の板金製ハウジングは耐熱性および保温性に劣るため、板金製の外管および内管を具備した二重壁構造の板金製ハウジングも提案されている。しかしながら、二重壁構造の板金製ハウジングには、部品点数の多さゆえに、生産性が悪くコストも高いという欠点がある。 In order to eliminate the disadvantages of the cast housing, it has been proposed to configure the turbine housing with a metal plate (see, for example, published patent No. 55-37508). The advantage of the sheet metal housing is that the heat capacity can be reduced by reducing the thickness. However, since a sheet metal housing having a single wall structure is inferior in heat resistance and heat retention, a sheet metal housing having a double wall structure having an outer tube and an inner tube made of sheet metal has also been proposed. However, the sheet metal housing having a double wall structure has a disadvantage that the productivity is low and the cost is high due to the large number of parts.
 また、ハウジングの軽量化、並びに、耐熱性および保温性の向上を図るため、インナーケースを金属板のプレス加工によって形成し、アウターシェルを鋳造により形成した二重壁構造のタービンハウジングも提案されている(公開実用新案・昭和57-30332号公報参照)。この実用新案に係るタービンハウジングでは、板金製インナーケースの一部が鋳物製のアウターシェルに鋳包まれる。 In addition, in order to reduce the weight of the housing and improve heat resistance and heat retention, a double-walled turbine housing in which the inner case is formed by pressing a metal plate and the outer shell is formed by casting has been proposed. (See Public Utility Model, Showa 57-30332). In the turbine housing according to this utility model, a part of the sheet metal inner case is encased in a cast outer shell.
特開昭55-37508号公報JP-A-55-37508 実開昭57-30332号公報Japanese Utility Model Publication No.57-30332
 本発明の目的は、鋳物製ハウジングの長所と、二重壁構造の板金製ハウジングの長所とを兼ね備えた新型のタービンハウジングを提供することにある。特に本発明は、二重壁構造を実現すべく使用される管状体の適用範囲と保持構造を提案するものである。 An object of the present invention is to provide a new turbine housing that combines the advantages of a cast housing and the advantages of a sheet metal housing having a double wall structure. In particular, the present invention proposes an application range and a holding structure of a tubular body used to realize a double wall structure.
 本発明は、スクロール部、入口部および入口フランジが一体鋳造されてなるターボチャージャー用のタービンハウジングである。スクロール部は、排気タービンを収容するタービン室を有すると共に、そのタービン室の一部が排気ガス通路を形成する。スクロール部の正面側中央には前記タービン室から排気ガスを排出するための出口ポートが設けられている。入口部は、前記スクロール部の側部に設けられて、前記タービン室に排気ガスを導入するためのガス導入通路を区画形成する。入口フランジは、エンジンヘッド又は排気マニホールドに設けられた接続フランジに対応するように、前記入口部の外端に設けられている。そして、本発明のタービンハウジングは、次の3つの観点(Aspects)によって特徴付けられる。 The present invention is a turbine housing for a turbocharger in which a scroll portion, an inlet portion and an inlet flange are integrally cast. The scroll portion has a turbine chamber that houses the exhaust turbine, and a part of the turbine chamber forms an exhaust gas passage. An outlet port for exhausting exhaust gas from the turbine chamber is provided at the front side center of the scroll portion. The inlet portion is provided at a side portion of the scroll portion, and defines a gas introduction passage for introducing exhaust gas into the turbine chamber. The inlet flange is provided at the outer end of the inlet portion so as to correspond to a connection flange provided in the engine head or the exhaust manifold. The turbine housing of the present invention is characterized by the following three aspects (Aspects).
 本発明の第1の観点(First Aspect)によれば、前記入口部のガス導入通路内には、そのガス導入通路の内壁との間にエアギャップを確保するための管状体が挿入されている。管状体は、その外端部又はその近傍において環状板部を有している。そして、管状体は、その環状板部が前記入口フランジと前記エンジンヘッド又は排気マニホールドの接続フランジとの間に挟まれることにより、前記ガス導入通路内に支持されている。 According to the first aspect of the present invention (First Aspect), a tubular body for securing an air gap between the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion. . The tubular body has an annular plate portion at or near its outer end. The tubular body is supported in the gas introduction passage by the annular plate portion being sandwiched between the inlet flange and the connection flange of the engine head or the exhaust manifold.
 本発明の第2の観点(Second Aspect)によれば、前記入口部のガス導入通路内には、そのガス導入通路の内壁との間にエアギャップを確保するための管状体が挿入されている。管状体は、その外端部又はその近傍において環状突条を有している。前記入口部は、前記ガス導入通路の外端近傍において当該ガス導入通路の内壁に形成された環状溝を有している。そして、管状体は、その環状突条が前記環状溝に係合されることにより、前記ガス導入通路内に支持されている。 According to the second aspect of the present invention (Second Aspect), a tubular body for securing an air gap between the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion. . The tubular body has an annular ridge at or near its outer end. The inlet has an annular groove formed in the inner wall of the gas introduction passage in the vicinity of the outer end of the gas introduction passage. The tubular body is supported in the gas introduction passage by the annular protrusion being engaged with the annular groove.
 本発明の第3の観点(Third Aspect)によれば、前記入口部のガス導入通路を形成する内壁の一部は、円錐面状に形成されたテーパーな壁部として構成されている。前記入口部のガス導入通路内には、そのガス導入通路の内壁との間にエアギャップを確保するための管状体が挿入されている。管状体は、その内端側に形成された小径部および外端側に形成された大径部を含むと共に、前記大径部は前記小径部よりも大きな直径を有している。そして、管状体は、その大径部の外端部が前記接続フランジによる押圧を受けて当該大径部の内端部が前記テーパーな壁部に当接することにより、前記ガス導入通路内に支持されている。 According to the third aspect (Third Aspect) of the present invention, a part of the inner wall forming the gas introduction passage of the inlet portion is configured as a tapered wall portion formed in a conical shape. A tubular body for securing an air gap between the gas introduction passage and the inner wall of the gas introduction passage is inserted into the gas introduction passage of the inlet portion. The tubular body includes a small diameter portion formed on the inner end side and a large diameter portion formed on the outer end side, and the large diameter portion has a larger diameter than the small diameter portion. The tubular body is supported in the gas introduction passage by the outer end portion of the large-diameter portion being pressed by the connection flange and the inner end portion of the large-diameter portion contacting the tapered wall portion. Has been.
 本発明の更に好ましい態様や追加的構成要素は、後記「発明を実施するための形態」欄において説明される。 Further preferred aspects and additional components of the present invention will be described in the “Mode for Carrying Out the Invention” section below.
 本発明によれば、入口部のガス導入通路内に管状体を挿入することで、管状体とガス導入通路の内壁との間にエアギャップ(隙間)が確保され、ガス導入通路が実質的な二重壁構造となる。その結果、ガス導入通路の耐熱性および保温性が改善される。その一方で、入口部を含むハウジング本体は鋳造で作られるので、本発明のタービンハウジングは、オール板金製のハウジングに比べて生産性が良い。 According to the present invention, an air gap (gap) is secured between the tubular body and the inner wall of the gas introduction passage by inserting the tubular body into the gas introduction passage of the inlet portion, and the gas introduction passage is substantially formed. It becomes a double wall structure. As a result, the heat resistance and heat retention of the gas introduction passage are improved. On the other hand, since the housing main body including the inlet portion is made by casting, the turbine housing of the present invention is more productive than the all-sheet metal housing.
 ガス導入通路を実質的な二重壁構造としたことで、高温の排気ガスがタービンハウジングの入口部の壁面に直接当たることがない。特にタービンハウジング内のヒートスポットの温度を、単一壁構造の場合よりも低下させることができる。それ故、従来に比べ、ハウジング本体を構成する金属の材質グレードを下げて、製造コストを低減できる。 ¡By adopting a substantially double wall structure for the gas introduction passage, high-temperature exhaust gas does not directly hit the wall surface of the inlet of the turbine housing. In particular, the temperature of the heat spot in the turbine housing can be made lower than in the case of a single wall structure. Therefore, the manufacturing cost can be reduced by lowering the material grade of the metal constituting the housing body as compared with the conventional case.
 ガス導入通路を通過する排気ガスの温度低下が抑制されるため、ガス導入通路を通過した排気ガスは、エンジンの低温始動時における排気ガス浄化触媒の早期活性化に貢献することができる。 Since the temperature drop of the exhaust gas that passes through the gas introduction passage is suppressed, the exhaust gas that has passed through the gas introduction passage can contribute to the early activation of the exhaust gas purification catalyst when the engine is started at a low temperature.
 管状体は、主としてその外端側の構造部位(例えば環状板部)を介してガス導入通路内に支持されるため、ハウジング本体に対し容易に着脱可能であり、必要に応じて適宜交換可能である。従って、本発明のタービンハウジングは保守管理性に優れている。 Since the tubular body is supported in the gas introduction passage mainly through a structural portion (for example, an annular plate portion) on the outer end side thereof, the tubular body can be easily attached to and detached from the housing body, and can be appropriately replaced as necessary. is there. Therefore, the turbine housing of the present invention is excellent in maintainability.
図1は、ターボチャージャーの構造の概略図。FIG. 1 is a schematic diagram of a turbocharger structure. 図2(A)は、タービンハウジングの正面図、図2(B)は、タービンハウジングの縦断面図。2A is a front view of the turbine housing, and FIG. 2B is a longitudinal sectional view of the turbine housing. 図3(A)は、タービンハウジングと排気マニホールドとの連結を示す平面図、図3(B)は、タービンハウジングとエンジンヘッドとの連結を示す平面図。FIG. 3A is a plan view showing the connection between the turbine housing and the exhaust manifold, and FIG. 3B is a plan view showing the connection between the turbine housing and the engine head. 図4は、タービンハウジングの入口部における温度分布を示すグラフ。FIG. 4 is a graph showing the temperature distribution at the inlet of the turbine housing. 図5(A)は、タービンハウジングの入口部の一例を示す断面図、図5(B)は、タービンハウジングの入口部の別例を示す断面図。FIG. 5A is a cross-sectional view showing an example of the inlet portion of the turbine housing, and FIG. 5B is a cross-sectional view showing another example of the inlet portion of the turbine housing. 図6(A),(B),(C)及び(D)は、タービンハウジングの入口部の例を示す半径方向断面図。6 (A), (B), (C) and (D) are radial cross-sectional views showing examples of the inlet portion of the turbine housing. 図7(A)は、タービンハウジングの入口部の一例を示す半径方向断面図、図7(B)は、入口フランジを示す正面図。FIG. 7A is a radial cross-sectional view showing an example of the inlet portion of the turbine housing, and FIG. 7B is a front view showing the inlet flange. 図8(A)及び(B)は、タービンハウジングの入口部の例を示す半径方向断面図。FIGS. 8A and 8B are radial cross-sectional views showing examples of the inlet portion of the turbine housing. 図9は、タービンハウジングの入口部の一例を示す半径方向断面図。FIG. 9 is a radial cross-sectional view showing an example of an inlet portion of the turbine housing. 図10は、タービンハウジングの入口部の別の一例を示す半径方向断面図。FIG. 10 is a radial cross-sectional view showing another example of the inlet portion of the turbine housing. 図11は、タービンハウジングの入口部の更なる別の一例を示す半径方向断面図。FIG. 11 is a radial cross-sectional view showing still another example of the inlet portion of the turbine housing.
 最初に、ターボチャージャーの概略構造および本発明のタービンハウジングの基礎的構造について説明する。図1に示すように、自動車エンジン用のターボチャージャー1は、連結軸2を介して同軸連結された排気タービン3及びコンプレッサ4、並びに、これらを収容する三つのハウジング(5,6,7)を備える。タービンハウジング6は排気タービン3を収容し、コンプレッサハウジング7はコンプレッサ4を収容し、タービン及びコンプレッサハウジングの間に配置されたセンターハウジング5は連結軸2を収容する。タービンハウジング6の排気ガス導入領域にはウェイストゲートポート8が設定され、当該ポート8はバイパス通路11を介してタービンハウジング6の出口側(即ちタービンハウジング6と排気ガス浄化用触媒コンバータ12とを結ぶ下流側排気通路13)に接続されている。ウェイストゲートポート8はウェイストゲートバルブ9によって開閉され、当該バルブ9は公知の過給圧制御アクチュエータ(図示略)によって作動される。ウェイストゲートバルブ9によってウェイストゲートポート8が開かれると、エンジンからの排気ガスの多くが、ウェイストゲートポート8及びバイパス通路11を経由して触媒コンバータ12に供給される。 First, the general structure of the turbocharger and the basic structure of the turbine housing of the present invention will be described. As shown in FIG. 1, a turbocharger 1 for an automobile engine includes an exhaust turbine 3 and a compressor 4 that are coaxially connected via a connecting shaft 2, and three housings (5, 6, 7) that accommodate these. Prepare. The turbine housing 6 accommodates the exhaust turbine 3, the compressor housing 7 accommodates the compressor 4, and the center housing 5 disposed between the turbine and the compressor housing accommodates the connecting shaft 2. A waste gate port 8 is set in the exhaust gas introduction region of the turbine housing 6, and the port 8 connects the outlet side of the turbine housing 6 (that is, the turbine housing 6 and the catalytic converter 12 for purifying exhaust gas) via the bypass passage 11. It is connected to the downstream exhaust passage 13). The waste gate port 8 is opened and closed by a waste gate valve 9, and the valve 9 is operated by a known supercharging pressure control actuator (not shown). When the waste gate port 8 is opened by the waste gate valve 9, much of the exhaust gas from the engine is supplied to the catalytic converter 12 via the waste gate port 8 and the bypass passage 11.
 図2に示すように、本発明に従うタービンハウジング6は、スクロール部21、入口部25および入口フランジ27が一体鋳造されてなる鋳物製のハウジング本体を備える。スクロール部21は、排気タービンを収容するタービン室22を有している。タービン室22に排気タービンが収容されると、そのタービン室22の周辺域によってスクロール状の排気ガス通路23が区画形成される。スクロール部21の正面側中央には、タービン室22から排気ガスを排出するための出口ポート24が設けられている。入口部25は、スクロール部21の側部に設けられて、タービン室22に排気ガスを導入するためのガス導入通路26を区画形成する。このガス導入通路26の後半位置には、ウェイストゲートポート8が設定されている。入口部25の外端には入口フランジ27が設けられている。ガス導入通路26は、入口フランジ27側に位置する外端と、タービン室22側に位置する内端とを有する。図3に示すように、入口フランジ27は、エンジンヘッド15又は排気マニホールド16に設けられた接続フランジ17に対応した相手側フランジとして構成されている。 As shown in FIG. 2, the turbine housing 6 according to the present invention includes a cast housing body in which a scroll portion 21, an inlet portion 25 and an inlet flange 27 are integrally cast. The scroll part 21 has a turbine chamber 22 that houses an exhaust turbine. When the exhaust turbine is accommodated in the turbine chamber 22, a scroll-like exhaust gas passage 23 is defined by the peripheral area of the turbine chamber 22. An outlet port 24 for discharging exhaust gas from the turbine chamber 22 is provided in the center of the front side of the scroll portion 21. The inlet portion 25 is provided at a side portion of the scroll portion 21, and defines a gas introduction passage 26 for introducing exhaust gas into the turbine chamber 22. A waste gate port 8 is set at the latter half position of the gas introduction passage 26. An inlet flange 27 is provided at the outer end of the inlet portion 25. The gas introduction passage 26 has an outer end located on the inlet flange 27 side and an inner end located on the turbine chamber 22 side. As shown in FIG. 3, the inlet flange 27 is configured as a counterpart flange corresponding to the connection flange 17 provided in the engine head 15 or the exhaust manifold 16.
 そして図2(B)に示すように、本発明のタービンハウジングにおいては、ガス導入通路26内に略円筒状の管状体30が挿入及び配置されている。管状体30の外周面とガス導入通路26の内壁との間には、エアギャップ31が確保される。その結果、ガス導入通路26が実質的な二重壁構造となり、ガス導入通路の耐熱性および保温性が改善される等の上記「発明の効果」欄に記載したような種々の利点がもたらされる。管状体30は、好ましくは、ステンレス鋼板などの金属板に曲げ加工などの機械的加工を施して作られている。管状体30は、好ましくは、それが入口フランジ27とウェイストゲートポート8との間の領域を占める程度の長さを有している。管状体30がウェイストゲートポート8を遮蔽するような位置に配置されることは好ましくない。 As shown in FIG. 2B, in the turbine housing of the present invention, a substantially cylindrical tubular body 30 is inserted and arranged in the gas introduction passage 26. An air gap 31 is secured between the outer peripheral surface of the tubular body 30 and the inner wall of the gas introduction passage 26. As a result, the gas introduction passage 26 has a substantially double wall structure, and various advantages such as those described in the above “Effects of the Invention” column, such as improvement in heat resistance and heat retention of the gas introduction passage, are brought about. . The tubular body 30 is preferably made by subjecting a metal plate such as a stainless steel plate to mechanical processing such as bending. The tubular body 30 is preferably long enough to occupy the area between the inlet flange 27 and the wastegate port 8. It is not preferable that the tubular body 30 is disposed at a position that shields the waste gate port 8.
 なお、図3(A)に示すように、本発明のタービンハウジングを排気マニホールド16に連結した場合には、排気マニホールド16の配管集合部からタービンハウジング6内のタング部28(図2(B)参照)までの範囲に存在するガス通路壁の表面温度を、管状体30が無い場合よりも低減させることができる。そして、タービンハウジングの耐久性および信頼性を向上させることができる。他方、図3(B)に示すように、本発明のタービンハウジングをエンジンヘッド15に連結した場合には、排気マニホールド16への連結時とは異なる利点がある。つまり、エンジンヘッド15は冷却水で強制冷却されることから、ヘッド取付け面の温度はかなり低いのに対し、タービンハウジングの入口ポートからタング部28までの領域はヘッド取付け面に比べてかなり高温である。このため、図4のグラフに示すように、従来例(管状体無しの場合)においては、入口ポートからタング部28に至る範囲の温度分布が急勾配となっていた。これに対し、入口部25に管状体30を適用した本発明によれば、入口ポートからタング部28に至る範囲の温度分布を従来例よりも全体的に低く、且つ、温度勾配を緩やかにすることができる。従って、本発明によれば、タービンハウジングの耐久性および信頼性を向上させることができる。 As shown in FIG. 3 (A), when the turbine housing of the present invention is connected to the exhaust manifold 16, the tongue portion 28 (FIG. 2 (B)) in the turbine housing 6 from the piping assembly portion of the exhaust manifold 16 is provided. The surface temperature of the gas passage wall existing in the range up to (see) can be reduced as compared with the case where the tubular body 30 is not provided. And durability and reliability of a turbine housing can be improved. On the other hand, as shown in FIG. 3B, when the turbine housing of the present invention is connected to the engine head 15, there is an advantage different from the connection to the exhaust manifold 16. That is, since the engine head 15 is forcibly cooled by the cooling water, the temperature of the head mounting surface is considerably low, whereas the region from the turbine housing inlet port to the tongue portion 28 is considerably hotter than the head mounting surface. is there. For this reason, as shown in the graph of FIG. 4, in the conventional example (in the case where there is no tubular body), the temperature distribution in the range from the inlet port to the tongue 28 is steep. On the other hand, according to the present invention in which the tubular body 30 is applied to the inlet portion 25, the temperature distribution in the range from the inlet port to the tongue portion 28 is generally lower than that of the conventional example, and the temperature gradient is made gentle. be able to. Therefore, according to the present invention, durability and reliability of the turbine housing can be improved.
 以下、本発明に従う管状体30の適用範囲と保持構造に関する幾つかのバリエーションを説明する。 Hereinafter, some variations regarding the application range and holding structure of the tubular body 30 according to the present invention will be described.
 図5(A)に示す管状体30は、その外端に形成された環状板部32(例えば鍔)を有している。この環状板部32が入口フランジ27と前記エンジンヘッド又は排気マニホールドの接続フランジ17との間に挟まれることで、管状体30は入口部25のガス導入通路26内に支持されている。管状体30の本体部の直径は、ガス導入通路26の内直径よりも小さく設定されており、管状体30の本体部外周面とガス導入通路26の内壁との間にはエアギャップ31が確保されている。金属メッシュからなる環状部材40が、管状体30の本体部の外側に外嵌されると共に、スポット溶接によって固定されている。この金属メッシュ環状部材40は、管状体30とガス導入通路26の内壁との間に介在して当該管状体30の中央部または内端部を支持する。つまり、金属メッシュ環状部材40は、管状体30の一部を支持する支持部材としての役目、及び、所定幅のエアギャップ31を確保するスペーサとしての役目を果たす。図5(A)の構造によれば、二つのフランジ間に挟持された環状板部32、及び、ガス導入通路26の内壁に接触する金属メッシュ環状部材40によって、管状体30は安定的に保持される。また、エンジンからの高温の排気ガスが入口フランジ27に直接当たらないので、熱容量の大きな入口フランジ27を介して排気ガスから熱量が奪われるのを防止又は抑制することができる。 The tubular body 30 shown in FIG. 5 (A) has an annular plate portion 32 (for example, a ridge) formed at the outer end thereof. The annular plate portion 32 is sandwiched between the inlet flange 27 and the connection flange 17 of the engine head or the exhaust manifold, so that the tubular body 30 is supported in the gas introduction passage 26 of the inlet portion 25. The diameter of the main body portion of the tubular body 30 is set smaller than the inner diameter of the gas introduction passage 26, and an air gap 31 is secured between the outer peripheral surface of the main body portion of the tubular body 30 and the inner wall of the gas introduction passage 26. Has been. An annular member 40 made of a metal mesh is fitted on the outside of the main body portion of the tubular body 30 and is fixed by spot welding. The metal mesh annular member 40 is interposed between the tubular body 30 and the inner wall of the gas introduction passage 26 and supports the central portion or the inner end portion of the tubular body 30. That is, the metal mesh annular member 40 serves as a support member that supports a part of the tubular body 30 and serves as a spacer that secures the air gap 31 having a predetermined width. According to the structure of FIG. 5A, the tubular body 30 is stably held by the annular plate portion 32 sandwiched between the two flanges and the metal mesh annular member 40 that contacts the inner wall of the gas introduction passage 26. Is done. Further, since the high-temperature exhaust gas from the engine does not directly hit the inlet flange 27, it is possible to prevent or suppress the heat quantity from being taken from the exhaust gas through the inlet flange 27 having a large heat capacity.
 図5(B)は、ガス導入通路26が入口部25の奥で曲がっている場合の管状体30を示す。図5(B)の管状体30では、その内端部が湾曲部33として形成されている。この湾曲部33によって排気ガスの流れが案内されるため、高温の排気ガスがガス導入通路26の湾曲した内壁26aに直接当たらず、当該湾曲した内壁26aがヒートスポット(過度に熱せられた部位)になるのを回避することができる。 FIG. 5 (B) shows the tubular body 30 when the gas introduction passage 26 is bent at the back of the inlet portion 25. In the tubular body 30 in FIG. 5B, the inner end portion is formed as a curved portion 33. Since the flow of the exhaust gas is guided by the curved portion 33, the high-temperature exhaust gas does not directly hit the curved inner wall 26a of the gas introduction passage 26, and the curved inner wall 26a is a heat spot (a portion heated excessively). Can be avoided.
 図6(A)~(D)は、金属メッシュ環状部材40に代わり得る、管状体30の中央部または内端部の支持構造を提示するものである。なお、図6及びその他の図面中の一点鎖線Cは、管状体30及びガス導入通路26の中心軸線を示す。 6 (A) to 6 (D) show a support structure for the central portion or the inner end portion of the tubular body 30 that can replace the metal mesh annular member 40. FIG. 6 and other drawings indicate the center axis of the tubular body 30 and the gas introduction passage 26.
 図6(A)の支持構造では、入口部25のガス導入通路26を形成する内壁の一部が、円錐面状に形成されて、縦断面がテーパーな形状を持った内壁部26bとして提供されている。そして、管状体30の内端の周縁34が前記テーパーな内壁部26bに当接して、当該管状体30の内端部を支持している。 6A, a part of the inner wall forming the gas introduction passage 26 of the inlet 25 is formed as a conical surface and is provided as an inner wall 26b having a tapered longitudinal section. ing. The peripheral edge 34 of the inner end of the tubular body 30 abuts on the tapered inner wall portion 26b, and supports the inner end portion of the tubular body 30.
 図6(B)の支持構造では、入口部25のガス導入通路26を形成する内壁の一部が、円錐面状に形成されて、縦断面がテーパーな形状を持った内壁部26bとして提供されている。その一方で、管状体30は、その本体の外周面から半径方向外向きに突出する突部35を有している。この突部35は、単一の環状突条であってもよいし、周方向に配列された複数の突起部の集りであってもよい。そして、その単一又は複数の突部35が前記テーパーな内壁部26bに当接して、当該管状体30の中央部を支持している。 In the support structure of FIG. 6B, a part of the inner wall forming the gas introduction passage 26 of the inlet portion 25 is provided as an inner wall portion 26b having a conical surface shape and a tapered longitudinal section. ing. On the other hand, the tubular body 30 has a protrusion 35 that protrudes radially outward from the outer peripheral surface of the main body. The protrusion 35 may be a single annular protrusion, or a group of a plurality of protrusions arranged in the circumferential direction. And the single or several protrusion part 35 contact | abuts to the said taper inner wall part 26b, and is supporting the center part of the said tubular body 30. FIG.
 図6(C)の支持構造では、入口部25のガス導入通路26を形成する内壁はほぼストレートに延びている。その一方で、管状体30は、その内端部近傍に配置され且つその外周面から半径方向外向きに突出する突部35を有している。この突部35は、単一の環状突条であってもよいし、周方向に配列された複数の突起部の集りであってもよい。そして、その単一又は複数の突部35が前記ガス導入通路26の内壁に当接して、当該管状体30の内端部を支持している。 6 (C), the inner wall forming the gas introduction passage 26 of the inlet 25 extends substantially straight. On the other hand, the tubular body 30 has a protrusion 35 that is disposed in the vicinity of the inner end thereof and protrudes radially outward from the outer peripheral surface thereof. The protrusion 35 may be a single annular protrusion, or a group of a plurality of protrusions arranged in the circumferential direction. The single or plural protrusions 35 abut against the inner wall of the gas introduction passage 26 to support the inner end portion of the tubular body 30.
 図6(D)の支持構造では、入口部25のガス導入通路26を形成する内壁はほぼストレートに延びている。その一方で、管状体30は、その内端において、当該内端部を半径方向外向きに折り曲げることで形成された折り曲げ端36を有している。この折り曲げ端36は、単一の環状体であってもよいし、周方向に配列された複数の折り曲げ小片の集りであってもよい。そして、その単一又は複数の折り曲げ端36が前記ガス導入通路26の内壁に当接して、当該管状体30の内端部を支持している。 6 (D), the inner wall forming the gas introduction passage 26 of the inlet 25 extends substantially straight. On the other hand, the tubular body 30 has a bent end 36 formed by bending the inner end portion radially outward at the inner end thereof. The bent end 36 may be a single annular body or a collection of a plurality of bent pieces arranged in the circumferential direction. The single or plural bent ends 36 abut against the inner wall of the gas introduction passage 26 to support the inner end portion of the tubular body 30.
 図7は、環状板部32の挟着構造の変更例を示す。図7(A)に示すように、環状板部32の厚さt1は、好ましくは0.8~1.5mmに設定される。従って、接続フランジ17及び入口フランジ27のフランジ対向面間には、前記厚さt1に相当する幅を持ったクリアランスが存在する。入口フランジ27のフランジ対向面上には、高さt2(t2<t1)の環状の段差部27aが設けられている。段差部27aの高さt2は、好ましくは0.5~1.0mmである。そして、幅(t1-t2)のクリアランスは、環状のガスケット41によってシールされている。このガスケット41は、環状板部32の直径よりも大きな直径を有して、環状板部32を取り囲むように配設される。 FIG. 7 shows a modified example of the sandwiching structure of the annular plate portion 32. As shown in FIG. 7A, the thickness t1 of the annular plate portion 32 is preferably set to 0.8 to 1.5 mm. Therefore, a clearance having a width corresponding to the thickness t1 exists between the flange facing surfaces of the connection flange 17 and the inlet flange 27. On the flange facing surface of the inlet flange 27, an annular stepped portion 27a having a height t2 (t2 <t1) is provided. The height t2 of the stepped portion 27a is preferably 0.5 to 1.0 mm. The clearance of the width (t1-t2) is sealed by the annular gasket 41. The gasket 41 has a diameter larger than that of the annular plate portion 32 and is disposed so as to surround the annular plate portion 32.
 更に図7(B)に示すように、入口フランジ27には少なくとも一つの位置決め穴27b(本例では二つ)が設けられている。これに呼応して、接続フランジ17には上記位置決め穴27bに対応する位置決め穴が設けられると共に、環状板部32にも上記位置決め穴27bに対応する位置決め穴が貫通形成されている。そして、入口フランジ27の位置決め穴27b、環状板部32の位置決め穴、及び接続フランジ17の位置決め穴を一致させ、これらの穴を貫く位置決めピン42(図7(A)参照)を装着することで、入口部25及び入口フランジ27に対する管状体30の回転方向の位置決め及び回り止めを達成できる。 Further, as shown in FIG. 7B, the inlet flange 27 is provided with at least one positioning hole 27b (two in this example). Correspondingly, a positioning hole corresponding to the positioning hole 27b is provided in the connection flange 17, and a positioning hole corresponding to the positioning hole 27b is also formed through the annular plate portion 32. Then, the positioning hole 27b of the inlet flange 27, the positioning hole of the annular plate portion 32, and the positioning hole of the connection flange 17 are matched, and a positioning pin 42 (see FIG. 7A) penetrating these holes is attached. In addition, positioning and rotation prevention of the tubular body 30 with respect to the inlet portion 25 and the inlet flange 27 can be achieved.
 なお、位置決めピン42を使用した管状体の位置決め及び回り止めの構造に代えて、あるいはその構造と共に、図7(B)に示すようなスリット(切り欠き凹部)27cを用いた構造を採用してもよい。即ち、入口フランジ27の環状の段差部27aの一部に、スリット27cを形成する。管状体30の環状板部32の外周部に、スリット27cに係合し得る係合突部を形成する。そして、その環状板部32の係合突部をスリット27cに係合させることで、管状体30の位置決め及び回り止めを達成する。 It should be noted that a structure using slits (notched recesses) 27c as shown in FIG. 7B is employed instead of or together with the structure of positioning and rotation prevention of the tubular body using the positioning pins 42. Also good. That is, the slit 27 c is formed in a part of the annular step portion 27 a of the inlet flange 27. An engaging protrusion that can engage with the slit 27 c is formed on the outer peripheral portion of the annular plate portion 32 of the tubular body 30. And the positioning and rotation prevention of the tubular body 30 are achieved by engaging the engagement protrusion of the annular plate portion 32 with the slit 27c.
 図8(A)は、環状板部32の挟着構造の変更例を示す。図8(A)に示すように、図7の設計と同様、入口フランジ27のフランジ対向面上には、環状の段差部27aが設けられている。接続フランジ17と入口フランジ27との間には、管状体30の環状板部32と、金属メッシュリング43とが挟まれている。金属メッシュリング43は、環状板部32と入口フランジ27との間に配置される。リング43を構成する金属メッシュは、好ましくはステンレス鋼メッシュである。金属メッシュリング43は、温度変化に応じて膨張又は収縮するスペーサとして機能する。金属メッシュリング43の使用は、管状体30自体およびその取付け構造の耐久性および信頼性を向上させる。 FIG. 8A shows an example of a change in the sandwiching structure of the annular plate portion 32. As shown in FIG. 8A, an annular stepped portion 27a is provided on the flange-facing surface of the inlet flange 27 as in the design of FIG. An annular plate portion 32 of the tubular body 30 and a metal mesh ring 43 are sandwiched between the connection flange 17 and the inlet flange 27. The metal mesh ring 43 is disposed between the annular plate portion 32 and the inlet flange 27. The metal mesh constituting the ring 43 is preferably a stainless steel mesh. The metal mesh ring 43 functions as a spacer that expands or contracts according to a temperature change. The use of the metal mesh ring 43 improves the durability and reliability of the tubular body 30 itself and its mounting structure.
 図8(B)は、環状板部32の挟着構造の変更例を示す。図8(B)に示すように、図7の設計と同様、入口フランジ27のフランジ対向面上には、環状の段差部27aが設けられている。管状体30の環状板部32は、その外周端において渦巻き状に加工されたカール部32aを有している。このカール部32aは、環状板部32の本来の厚みよりも大きな厚み(本例では約3倍の厚み)を提供する。そして、この厚肉化されたカール部32aが接続フランジ17と入口フランジ27との間に挟まれている。その厚肉化されたカール部32aを二つのフランジ(17,27)間に配置することで、接続フランジ17と段差部27aとの間に配置されるガスケット41のシール性能が向上する。 FIG. 8B shows an example of a change in the sandwiching structure of the annular plate portion 32. As shown in FIG. 8B, an annular stepped portion 27a is provided on the flange-facing surface of the inlet flange 27 as in the design of FIG. The annular plate portion 32 of the tubular body 30 has a curled portion 32a processed into a spiral shape at the outer peripheral end thereof. The curled portion 32a provides a thickness larger than the original thickness of the annular plate portion 32 (in this example, about three times the thickness). The thickened curled portion 32 a is sandwiched between the connection flange 17 and the inlet flange 27. By disposing the thickened curled portion 32a between the two flanges (17, 27), the sealing performance of the gasket 41 disposed between the connecting flange 17 and the stepped portion 27a is improved.
 図9は、管状体30の本体の変更例を示す。図9に示すように、管状体30の本体は、エンジンヘッド又は排気マニホールドの接続フランジ17の内側領域にまで進入する延長された外端部37を有していてもよい。この場合、環状板部32は、その内周縁部32bが管状体本体の外周壁に対し溶接されることで管状体30に固定される。図9の設計によれば、入口フランジ27のみならず接続フランジ17も高温の排気ガスの直接接触から守られるので、排気ガスは両フランジ(17,27)によって熱を奪われない。それ故、ウェイストゲートポート8、バイパス通路11および下流側排気通路13を経由して触媒コンバータ12に供給される高温の排気ガスによって、排気ガス浄化触媒が早期に活性化される。 FIG. 9 shows a modification example of the main body of the tubular body 30. As shown in FIG. 9, the body of the tubular body 30 may have an extended outer end 37 that extends into the inner region of the connection flange 17 of the engine head or exhaust manifold. In this case, the annular plate portion 32 is fixed to the tubular body 30 by welding its inner peripheral edge portion 32b to the outer peripheral wall of the tubular body main body. According to the design of FIG. 9, not only the inlet flange 27 but also the connection flange 17 is protected from direct contact with hot exhaust gas, so that the exhaust gas is not deprived of heat by both flanges (17, 27). Therefore, the exhaust gas purification catalyst is activated early by the high-temperature exhaust gas supplied to the catalytic converter 12 via the waste gate port 8, the bypass passage 11 and the downstream exhaust passage 13.
 本発明の第2観点に従うタービンハウジングを、図10を参照して説明する。なお、既に説明済みのタービンハウジングの一般的又は共通的構成要素については、重複説明はしない。 A turbine housing according to the second aspect of the present invention will be described with reference to FIG. It should be noted that common or common components of the turbine housing that have already been described are not redundantly described.
 図10に示すように、タービンハウジングの入口部25のガス導入通路26内には、そのガス導入通路26の内壁との間にエアギャップ31を確保するための管状体30が挿入されている。図10の管状体30は、その外端において周方向に延びるように形成された環状突条51を有している。この環状突条51は、環状のリムあるいは環状の板部として提供される。他方で、入口部25は、ガス導入通路26の外端近傍において当該ガス導入通路26の内壁に形成された環状溝52を有している。この環状溝52の幅は環状突条51の幅にほぼ対応する。環状溝52cの深さは0.5~2.0mmに設定される。そして、環状突条51が環状溝52に係合されることで、管状体30がガス導入通路26内に支持されている。なお、入口フランジ27の内周部には、円錐面状に形成されたテーパーなガイド面53が形成されている。このテーパーなガイド面53は、管状体30をガス導入通路26に挿入する際に、環状突条51をその中心に向けてすぼめるように作用して、環状突条51の環状溝52への円滑な嵌合を促進する。 As shown in FIG. 10, a tubular body 30 for securing an air gap 31 between the gas introduction passage 26 and the inner wall of the gas introduction passage 26 is inserted into the gas introduction passage 26 of the inlet 25 of the turbine housing. The tubular body 30 in FIG. 10 has an annular ridge 51 formed so as to extend in the circumferential direction at the outer end thereof. The annular protrusion 51 is provided as an annular rim or an annular plate portion. On the other hand, the inlet portion 25 has an annular groove 52 formed on the inner wall of the gas introduction passage 26 in the vicinity of the outer end of the gas introduction passage 26. The width of the annular groove 52 substantially corresponds to the width of the annular protrusion 51. The depth of the annular groove 52c is set to 0.5 to 2.0 mm. The tubular body 30 is supported in the gas introduction passage 26 by the annular protrusion 51 being engaged with the annular groove 52. A tapered guide surface 53 formed in a conical surface is formed on the inner peripheral portion of the inlet flange 27. The tapered guide surface 53 acts to squeeze the annular ridge 51 toward the center when the tubular body 30 is inserted into the gas introduction passage 26, so that the annular ridge 51 enters the annular groove 52. Promotes smooth mating.
 なお、図10では、管状体30を支持する補助的構造として、金属メッシュ環状部材40を採用している。この金属メッシュ環状部材40に代えて、図6(A)~(D)に示すような、管状体30の中央部または内端部の支持構造を採用してもよい。 In FIG. 10, a metal mesh annular member 40 is adopted as an auxiliary structure for supporting the tubular body 30. Instead of the metal mesh annular member 40, a support structure at the center or inner end of the tubular body 30 as shown in FIGS. 6 (A) to (D) may be adopted.
 本発明の第3観点に従うタービンハウジングを、図11を参照して説明する。なお、既に説明済みのタービンハウジングの一般的または共通的構成要素については、重複説明はしない。 A turbine housing according to the third aspect of the present invention will be described with reference to FIG. It should be noted that common or common components of the turbine housing that have already been described are not redundantly described.
 図11に示すように、入口フランジ27の内周部は、円錐面状に形成されたテーパーな壁部61として構成されている。このテーパーな壁部61は、入口部25のガス導入通路26を形成する内壁の一部でもある。このガス導入通路26内には、そのガス導入通路26の内壁との間にエアギャップ31を確保するための管状体30が挿入されている。図11の管状体30は、その内端側に形成された小径部62、外端側に形成された大径部64、及び、小径部62と大径部64とをつなぐ中間部63を含んでいる。大径部64は小径部62よりも大きな直径を有する。入口フランジ27と接続フランジ17との締結時には、大径部64の外端部64aは接続フランジ17から押圧を受ける。すると、大径部64の内端部64b(即ち大径部64と中間部63との境界部位)が前記テーパーな壁部61に強制当接される。その結果、接続フランジ17とテーパーな壁部61との間に大径部64が挟持され、管状体30がガス導入通路26内に支持される。 As shown in FIG. 11, the inner peripheral portion of the inlet flange 27 is configured as a tapered wall portion 61 formed in a conical shape. The tapered wall portion 61 is also a part of the inner wall that forms the gas introduction passage 26 of the inlet portion 25. A tubular body 30 for securing an air gap 31 between the gas introduction passage 26 and the inner wall of the gas introduction passage 26 is inserted into the gas introduction passage 26. The tubular body 30 in FIG. 11 includes a small diameter portion 62 formed on the inner end side, a large diameter portion 64 formed on the outer end side, and an intermediate portion 63 that connects the small diameter portion 62 and the large diameter portion 64. It is out. The large diameter portion 64 has a larger diameter than the small diameter portion 62. When the inlet flange 27 and the connection flange 17 are fastened, the outer end portion 64 a of the large diameter portion 64 is pressed from the connection flange 17. Then, the inner end portion 64 b of the large diameter portion 64 (that is, the boundary portion between the large diameter portion 64 and the intermediate portion 63) is forcibly brought into contact with the tapered wall portion 61. As a result, the large-diameter portion 64 is sandwiched between the connection flange 17 and the tapered wall portion 61, and the tubular body 30 is supported in the gas introduction passage 26.
 なお、図11では、管状体30を支持する補助的構造として、金属メッシュ環状部材40を採用している。この金属メッシュ環状部材40に代えて、図6(A)~(D)に示すような、管状体30の中央部または内端部の支持構造を採用してもよい。 In FIG. 11, a metal mesh annular member 40 is employed as an auxiliary structure for supporting the tubular body 30. Instead of the metal mesh annular member 40, a support structure at the center or inner end of the tubular body 30 as shown in FIGS. 6 (A) to (D) may be adopted.
 本発明のタービンハウジングは、自動車用エンジン等の内燃エンジン用のターボチャージャーに適用することができる。 The turbine housing of the present invention can be applied to a turbocharger for an internal combustion engine such as an automobile engine.
 3…排気タービン、6…タービンハウジング、8…ウェイストゲートポート、15…エンジンヘッド、16…排気マニホールド、17…接続フランジ、21…スクロール部、22…タービン室、23…スクロール状の排気ガス通路、24…出口ポート、25…入口部、26…ガス導入通路、26b…テーパーな内壁部、27…入口フランジ、30…管状体、31…エアギャップ、32…環状板部、34…管状体の内端周縁、35…単一又は複数の突部、36…折り曲げ端、40…金属メッシュ環状部材、41…環状のガスケット、51…環状突条、52…環状溝、61…テーパーな壁部、62…小径部、64…大径部。 DESCRIPTION OF SYMBOLS 3 ... Exhaust turbine, 6 ... Turbine housing, 8 ... Waste gate port, 15 ... Engine head, 16 ... Exhaust manifold, 17 ... Connection flange, 21 ... Scroll part, 22 ... Turbine chamber, 23 ... Scroll-like exhaust gas passage, 24 ... outlet port, 25 ... inlet, 26 ... gas introduction passage, 26b ... tapered inner wall, 27 ... inlet flange, 30 ... tubular body, 31 ... air gap, 32 ... annular plate, 34 ... inside tubular body End peripheral edge, 35 ... single or plural protrusions, 36 ... bent end, 40 ... metal mesh annular member, 41 ... annular gasket, 51 ... annular protrusion, 52 ... annular groove, 61 ... tapered wall, 62 ... small diameter part, 64 ... large diameter part.

Claims (10)

  1.  排気タービンを収容するタービン室を有すると共に、そのタービン室の一部が排気ガス通路を形成するスクロール部であって、その正面側中央には前記タービン室から排気ガスを排出するための出口ポートが設けられているスクロール部と、
     前記スクロール部の側部に設けられて、前記タービン室に排気ガスを導入するためのガス導入通路を区画形成する入口部と、
     エンジンヘッド又は排気マニホールドに設けられた接続フランジに対応するように、前記入口部の外端に設けられた入口フランジと、を備え、
     前記スクロール部、入口部および入口フランジが一体鋳造されてなる、ターボチャージャー用のタービンハウジングにおいて、
     前記入口部(25)のガス導入通路(26)内には、そのガス導入通路(26)の内壁との間にエアギャップ(31)を確保するための管状体(30)が挿入され、
     前記管状体(30)は、その外端部又はその近傍において環状板部(32)を有しており、
     前記管状体(30)は、その環状板部(32)が前記入口フランジ(27)と前記エンジンヘッド又は排気マニホールドの接続フランジ(17)との間に挟まれることにより、前記ガス導入通路(26)内に支持される、ことを特徴とするタービンハウジング。
    The scroll chamber has a turbine chamber for accommodating an exhaust turbine, and a part of the turbine chamber forms an exhaust gas passage, and an outlet port for discharging exhaust gas from the turbine chamber is provided at the front center of the scroll portion. A scroll part provided;
    An inlet portion provided on a side portion of the scroll portion and defining a gas introduction passage for introducing exhaust gas into the turbine chamber;
    An inlet flange provided at an outer end of the inlet portion so as to correspond to a connection flange provided in the engine head or the exhaust manifold,
    In the turbine housing for a turbocharger, in which the scroll portion, the inlet portion and the inlet flange are integrally cast,
    In the gas introduction passage (26) of the inlet portion (25), a tubular body (30) for securing an air gap (31) between the inner wall of the gas introduction passage (26) is inserted,
    The tubular body (30) has an annular plate portion (32) at or near its outer end,
    The annular body (30) of the tubular body (30) is sandwiched between the inlet flange (27) and the connection flange (17) of the engine head or exhaust manifold, whereby the gas introduction passage (26 A turbine housing characterized in that the turbine housing is supported in a).
  2.  排気タービンを収容するタービン室を有すると共に、そのタービン室の一部が排気ガス通路を形成するスクロール部であって、その正面側中央には前記タービン室から排気ガスを排出するための出口ポートが設けられているスクロール部と、
     前記スクロール部の側部に設けられて、前記タービン室に排気ガスを導入するためのガス導入通路を区画形成する入口部と、
     エンジンヘッド又は排気マニホールドに設けられた接続フランジに対応するように、前記入口部の外端に設けられた入口フランジと、を備え、
     前記スクロール部、入口部および入口フランジが一体鋳造されてなる、ターボチャージャー用のタービンハウジングにおいて、
     前記入口部(25)のガス導入通路(26)内には、そのガス導入通路(26)の内壁との間にエアギャップ(31)を確保するための管状体(30)が挿入され、
     前記管状体(30)は、その外端部又はその近傍において環状突条(51)を有しており、
     前記入口部(25)は、前記ガス導入通路(26)の外端近傍において当該ガス導入通路の内壁に形成された環状溝(52)を有しており、
     前記管状体(30)は、その環状突条(51)が前記環状溝(52)に係合されることにより、前記ガス導入通路(26)内に支持される、ことを特徴とするタービンハウジング。
    The scroll chamber has a turbine chamber for accommodating an exhaust turbine, and a part of the turbine chamber forms an exhaust gas passage, and an outlet port for discharging exhaust gas from the turbine chamber is provided at the front center of the scroll portion. A scroll part provided;
    An inlet portion provided on a side portion of the scroll portion and defining a gas introduction passage for introducing exhaust gas into the turbine chamber;
    An inlet flange provided at an outer end of the inlet portion so as to correspond to a connection flange provided in the engine head or the exhaust manifold,
    In the turbine housing for a turbocharger, in which the scroll portion, the inlet portion and the inlet flange are integrally cast,
    In the gas introduction passage (26) of the inlet portion (25), a tubular body (30) for securing an air gap (31) between the inner wall of the gas introduction passage (26) is inserted,
    The tubular body (30) has an annular ridge (51) at or near its outer end,
    The inlet portion (25) has an annular groove (52) formed in the inner wall of the gas introduction passage in the vicinity of the outer end of the gas introduction passage (26),
    The tubular body (30) is supported in the gas introduction passage (26) by engaging the annular protrusion (51) with the annular groove (52). .
  3.  排気タービンを収容するタービン室を有すると共に、そのタービン室の一部が排気ガス通路を形成するスクロール部であって、その正面側中央には前記タービン室から排気ガスを排出するための出口ポートが設けられているスクロール部と、
     前記スクロール部の側部に設けられて、前記タービン室に排気ガスを導入するためのガス導入通路を区画形成する入口部と、
     エンジンヘッド又は排気マニホールドに設けられた接続フランジに対応するように、前記入口部の外端に設けられた入口フランジと、を備え、
     前記スクロール部、入口部および入口フランジが一体鋳造されてなる、ターボチャージャー用のタービンハウジングにおいて、
     前記入口部(25)のガス導入通路(26)を形成する内壁の一部は、円錐面状に形成されたテーパーな壁部(61)として構成されており、
     前記入口部(25)のガス導入通路(26)内には、そのガス導入通路(26)の内壁との間にエアギャップ(31)を確保するための管状体(30)が挿入され、
     前記管状体(30)は、その内端側に形成された小径部(62)および外端側に形成された大径部(64)を含むと共に、前記大径部(64)は前記小径部(62)よりも大きな直径を有しており、
     前記管状体(30)は、その大径部の外端部(64a)が前記接続フランジ(17)による押圧を受けて当該大径部の内端部(64b)が前記テーパーな壁部(61)に当接することにより、前記ガス導入通路(26)内に支持される、ことを特徴とするタービンハウジング。
    The scroll chamber has a turbine chamber for accommodating an exhaust turbine, and a part of the turbine chamber forms an exhaust gas passage, and an outlet port for discharging exhaust gas from the turbine chamber is provided at the front center of the scroll portion. A scroll part provided;
    An inlet portion provided on a side portion of the scroll portion and defining a gas introduction passage for introducing exhaust gas into the turbine chamber;
    An inlet flange provided at an outer end of the inlet portion so as to correspond to a connection flange provided in the engine head or the exhaust manifold,
    In the turbine housing for a turbocharger, in which the scroll portion, the inlet portion and the inlet flange are integrally cast,
    A part of the inner wall forming the gas introduction passage (26) of the inlet portion (25) is configured as a tapered wall portion (61) formed in a conical shape,
    In the gas introduction passage (26) of the inlet portion (25), a tubular body (30) for securing an air gap (31) between the inner wall of the gas introduction passage (26) is inserted,
    The tubular body (30) includes a small diameter portion (62) formed on the inner end side and a large diameter portion (64) formed on the outer end side, and the large diameter portion (64) is the small diameter portion. (62) has a larger diameter,
    In the tubular body (30), the outer end (64a) of the large-diameter portion is pressed by the connection flange (17), and the inner end (64b) of the large-diameter portion is tapered (61). The turbine housing is supported in the gas introduction passage (26) by abutting on the gas turbine.
  4.  前記管状体(30)の外側には、金属メッシュからなる環状部材(40)が外嵌されており、この金属メッシュ環状部材(40)が、当該管状体(30)と前記ガス導入通路(26)の内壁との間に介在して当該管状体(30)の中央部または内端部を支持する、
    ことを特徴とする請求項1,2または3に記載のタービンハウジング。
    An annular member (40) made of a metal mesh is fitted on the outside of the tubular body (30), and the metal mesh annular member (40) is connected to the tubular body (30) and the gas introduction passage (26). ) To support the central part or the inner end of the tubular body (30).
    The turbine housing according to claim 1, 2 or 3.
  5.  前記入口部(25)のガス導入通路(26)を形成する内壁の一部が、円錐面状に形成されたテーパーな内壁部(26b)として構成されており、前記管状体(30)の内端の周縁(34)が、前記テーパーな内壁部(26b)に当接して、当該管状体(30)の内端部を支持する、
    ことを特徴とする請求項1,2または3に記載のタービンハウジング。
    A part of the inner wall forming the gas introduction passageway (26) of the inlet part (25) is configured as a tapered inner wall part (26b) formed in a conical surface, and the inner part of the tubular body (30) The peripheral edge (34) of the end is in contact with the tapered inner wall (26b) to support the inner end of the tubular body (30).
    The turbine housing according to claim 1, 2 or 3.
  6.  前記管状体(30)は、その外周面から半径方向に突出する単一又は複数の突部(35)を有しており、前記単一又は複数の突部(35)が、前記ガス導入通路(26)の内壁に当接して、当該管状体(30)の中央部または内端部を支持する、
    ことを特徴とする請求項1,2または3に記載のタービンハウジング。
    The tubular body (30) has a single or a plurality of protrusions (35) protruding radially from the outer peripheral surface thereof, and the single or a plurality of protrusions (35) are the gas introduction passage. Abutting the inner wall of (26) and supporting the central portion or inner end portion of the tubular body (30);
    The turbine housing according to claim 1, 2 or 3.
  7.  前記管状体(30)は、その内端において、当該内端部を半径方向外向きに折り曲げることで形成された折り曲げ端(36)を有しており、前記管状体の折り曲げ端(36)が、前記ガス導入通路(26)の内壁に当接して、当該管状体(30)の内端部を支持する、
    ことを特徴とする請求項1,2または3に記載のタービンハウジング。
    The tubular body (30) has, at its inner end, a bent end (36) formed by bending the inner end portion radially outward, and the bent end (36) of the tubular body is Abutting the inner wall of the gas introduction passage (26) to support the inner end of the tubular body (30),
    The turbine housing according to claim 1, 2 or 3.
  8.  前記管状体(30)は金属板から作られている、ことを特徴とする請求項1~7のいずれか一項に記載のタービンハウジング。 The turbine housing according to any one of claims 1 to 7, wherein the tubular body (30) is made of a metal plate.
  9.  前記管状体(30)は、前記入口フランジ(27)と、前記入口部のガス導入通路(26)の後半位置に設けられたウェイストゲートポート(8)との間の領域に配置されている、ことを特徴とする請求項1~8のいずれか一項に記載のタービンハウジング。 The tubular body (30) is disposed in a region between the inlet flange (27) and a waste gate port (8) provided at a second half position of the gas introduction passage (26) of the inlet. The turbine housing according to any one of claims 1 to 8, wherein:
  10.  前記入口フランジ(27)と前記エンジンヘッド又は排気マニホールドの接続フランジ(17)との間には、環状のガスケット(41)が設けられており、このガスケット(41)は、前記管状体(30)の環状板部、環状突条または外端部の直径よりも大きな直径を有して、当該管状体(30)の環状板部、環状突条または外端部を取り囲むように配設されている、ことを特徴とする請求項1~9のいずれか一項に記載のタービンハウジング。 An annular gasket (41) is provided between the inlet flange (27) and the connection flange (17) of the engine head or exhaust manifold, and the gasket (41) is formed of the tubular body (30). The annular plate portion, the annular protrusion, or the outer end portion has a diameter larger than that of the annular plate portion, the annular protrusion, or the outer end portion of the tubular body (30). The turbine housing according to any one of claims 1 to 9, wherein:
PCT/JP2011/001703 2011-03-23 2011-03-23 Turbine housing WO2012127531A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013505616A JP5667286B2 (en) 2011-03-23 2011-03-23 Turbine housing
PCT/JP2011/001703 WO2012127531A1 (en) 2011-03-23 2011-03-23 Turbine housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001703 WO2012127531A1 (en) 2011-03-23 2011-03-23 Turbine housing

Publications (1)

Publication Number Publication Date
WO2012127531A1 true WO2012127531A1 (en) 2012-09-27

Family

ID=46878735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001703 WO2012127531A1 (en) 2011-03-23 2011-03-23 Turbine housing

Country Status (2)

Country Link
JP (1) JP5667286B2 (en)
WO (1) WO2012127531A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022592A1 (en) * 2013-08-16 2015-02-19 Wescast Industries, Inc. Turbine housing
WO2017195441A1 (en) * 2016-05-11 2017-11-16 株式会社Ihi Turbine housing and supercharger
WO2018109933A1 (en) * 2016-12-16 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
WO2018109934A1 (en) * 2016-12-16 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
WO2019044777A1 (en) * 2017-08-28 2019-03-07 株式会社豊田自動織機 Turbocharger
WO2019064388A1 (en) * 2017-09-27 2019-04-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and supercharger provided with same
CN110234855A (en) * 2017-03-24 2019-09-13 三菱重工发动机和增压器株式会社 Shell, exhaust turbine supercharger turbine and the manufacturing method of exhaust turbine supercharger turbine
JP2021055621A (en) * 2019-09-30 2021-04-08 ダイハツ工業株式会社 Exhaust turbo supercharger
JP2022181467A (en) * 2021-05-26 2022-12-08 フタバ産業株式会社 Exhaust pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542626U (en) * 1991-11-12 1993-06-11 日本特殊陶業株式会社 Exhaust gas purification device for internal combustion engine
JP2010203261A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Variable displacement exhaust turbocharger
JP2011017314A (en) * 2009-07-10 2011-01-27 Yanmar Co Ltd Exhaust device of multicylinder engine
JP2011043085A (en) * 2009-08-20 2011-03-03 Honda Motor Co Ltd Catalyst carrier holding structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828256A (en) * 1994-07-22 1996-01-30 Nissan Motor Co Ltd Exhaust double pipe
JP3250454B2 (en) * 1996-05-01 2002-01-28 トヨタ自動車株式会社 Double pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542626U (en) * 1991-11-12 1993-06-11 日本特殊陶業株式会社 Exhaust gas purification device for internal combustion engine
JP2010203261A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd Variable displacement exhaust turbocharger
JP2011017314A (en) * 2009-07-10 2011-01-27 Yanmar Co Ltd Exhaust device of multicylinder engine
JP2011043085A (en) * 2009-08-20 2011-03-03 Honda Motor Co Ltd Catalyst carrier holding structure

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105658929A (en) * 2013-08-16 2016-06-08 威斯卡特工业有限公司 Turbine housing
EP3033504A4 (en) * 2013-08-16 2017-02-08 Wescast Industries, Inc. Turbine housing
US9828913B2 (en) 2013-08-16 2017-11-28 Wescast Industries, Inc. Turbine housing
WO2015022592A1 (en) * 2013-08-16 2015-02-19 Wescast Industries, Inc. Turbine housing
JPWO2017195441A1 (en) * 2016-05-11 2019-01-31 株式会社Ihi Turbine housing and turbocharger
WO2017195441A1 (en) * 2016-05-11 2017-11-16 株式会社Ihi Turbine housing and supercharger
CN109415970B (en) * 2016-12-16 2021-07-16 三菱重工发动机和增压器株式会社 Turbine housing, exhaust turbine, and supercharger
US10907649B2 (en) 2016-12-16 2021-02-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing, exhaust turbine, and turbocharger
JPWO2018109933A1 (en) * 2016-12-16 2018-12-13 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
WO2018109934A1 (en) * 2016-12-16 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
CN109415970A (en) * 2016-12-16 2019-03-01 三菱重工发动机和增压器株式会社 Turbine cylinder, exhaust steam turbine and booster
EP3460214A4 (en) * 2016-12-16 2019-12-18 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing, exhaust turbine, and turbocharger
WO2018109933A1 (en) * 2016-12-16 2018-06-21 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
JPWO2018109934A1 (en) * 2016-12-16 2018-12-13 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing, exhaust turbine, and turbocharger
US10907541B2 (en) 2016-12-16 2021-02-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing, exhaust turbine, and turbocharger
CN110234855B (en) * 2017-03-24 2022-03-29 三菱重工发动机和增压器株式会社 Housing of turbine for exhaust turbocharger, and manufacturing method
US11162412B2 (en) 2017-03-24 2021-11-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Casing for exhaust turbocharger turbine, exhaust turbocharger turbine, and manufacturing method thereof
CN110234855A (en) * 2017-03-24 2019-09-13 三菱重工发动机和增压器株式会社 Shell, exhaust turbine supercharger turbine and the manufacturing method of exhaust turbine supercharger turbine
JPWO2018173298A1 (en) * 2017-03-24 2019-11-07 三菱重工エンジン&ターボチャージャ株式会社 Exhaust turbocharger turbine casing, exhaust turbocharger turbine, and manufacturing method
JPWO2019044777A1 (en) * 2017-08-28 2020-09-03 株式会社豊田自動織機 Turbocharger
US11231047B2 (en) 2017-08-28 2022-01-25 Kabushiki Kaisha Toyota Jidoshokki Turbocharger
WO2019044777A1 (en) * 2017-08-28 2019-03-07 株式会社豊田自動織機 Turbocharger
JPWO2019064388A1 (en) * 2017-09-27 2020-04-09 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and supercharger provided with the same
WO2019064388A1 (en) * 2017-09-27 2019-04-04 三菱重工エンジン&ターボチャージャ株式会社 Turbine housing and supercharger provided with same
US11221022B2 (en) 2017-09-27 2022-01-11 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine housing and turbocharger including the same
JP2021055621A (en) * 2019-09-30 2021-04-08 ダイハツ工業株式会社 Exhaust turbo supercharger
JP7252108B2 (en) 2019-09-30 2023-04-04 ダイハツ工業株式会社 exhaust turbocharger
JP2022181467A (en) * 2021-05-26 2022-12-08 フタバ産業株式会社 Exhaust pipe
JP7384854B2 (en) 2021-05-26 2023-11-21 フタバ産業株式会社 Exhaust pipe
US11898478B2 (en) 2021-05-26 2024-02-13 Futaba Industrial Co., Ltd. Exhaust pipe

Also Published As

Publication number Publication date
JPWO2012127531A1 (en) 2014-07-24
JP5667286B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5667286B2 (en) Turbine housing
US10001142B2 (en) Turbine casing of an exhaust-gas turbocharger
US9261109B2 (en) Turbine housing and exhaust gas turbine supercharger
US9719374B2 (en) Turbine housing and exhaust gas turbine supercharger
CN108757063B (en) Turbine housing
EP2287453B1 (en) Exhaust treatment device and manufacturing method thereof
JP2005147139A (en) Housing for turbo-supercharger of internal combustion engine
US11255257B2 (en) Turbocharger
JP6097070B2 (en) Exhaust gas exhaust system
JP4779898B2 (en) Turbine housing
JP2007120396A (en) Turbine housing of turbocharger for internal combustion engine
JP6806262B2 (en) Turbocharger
WO2019044776A1 (en) Turbocharger
WO2013137105A1 (en) Catalytic converter
JP2006161573A (en) Turbine housing for turbocharger
JP6353769B2 (en) Turbine housing
US11300041B2 (en) Turbocharger
JP4729462B2 (en) Turbocharger fitting
JP2021179196A (en) Exhaust catalyst device of internal combustion engine
JP2010255611A (en) Exhaust manifold in double pipe structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861433

Country of ref document: EP

Kind code of ref document: A1