WO2012127402A1 - System and method for monitoring and controlling fuel cell power plant in a vehicle - Google Patents

System and method for monitoring and controlling fuel cell power plant in a vehicle Download PDF

Info

Publication number
WO2012127402A1
WO2012127402A1 PCT/IB2012/051299 IB2012051299W WO2012127402A1 WO 2012127402 A1 WO2012127402 A1 WO 2012127402A1 IB 2012051299 W IB2012051299 W IB 2012051299W WO 2012127402 A1 WO2012127402 A1 WO 2012127402A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
cell stack
temperature
air
Prior art date
Application number
PCT/IB2012/051299
Other languages
French (fr)
Other versions
WO2012127402A4 (en
Inventor
Raja MUNUSAMY
Bhut Bhaveshkumar DHIRAJLAL
Original Assignee
Tata Motors Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Motors Limited filed Critical Tata Motors Limited
Publication of WO2012127402A1 publication Critical patent/WO2012127402A1/en
Publication of WO2012127402A4 publication Critical patent/WO2012127402A4/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04134Humidifying by coolants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04268Heating of fuel cells during the start-up of the fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Embodiments of the present disclosure relate to fuel cell stack. More particularly, the embodiments relate to monitoring and controlling parameters of a fuel cell stack.
  • Fuel cell is defined as an electrochemical cell that directly converts chemical energy of a fuel into electrical energy. Unlike a conventional battery, the fuel cell can continuously produce electricity as long as the fuel and air are supplied thereto. Hydrogen is used as the fuel of the fuel cell includes pure hydrogen and reformed hydrogen produced by a reforming process using a hydrocarbon such as methane or ethanol. Although the pure oxygen improves efficiency of the fuel cell, there may be a problem that additional cost and undesirable increase of weight are entailed for providing a tank for the pure oxygen.
  • the condensed water from anode and water flooded from electrode which had crossed over from cathode to anode due to concentration gradient needs to be purged out periodically at regular intervals. And purging is also required to remove the accumulated of impurities like inert gases like nitrogen during the generation and compression and dispensing of hydrogen. There is also purging requirement during startup for removal of entrapped air and also flushing out of hydrogen from anode during emergency shutdown.
  • the fuel cell voltage increases at a given operating current density because higher the operating temperature the more active the reactants. The higher the operating temperature the water vapor present is more in the reactant stream to maintain a given relative humidity. This makes it more difficult to maintain a relative humidity at or near 100%.
  • the present disclosure provides a system to monitor and control fuel cell power plant in a vehicle comprising a fuel cell stack to provide power supply to the vehicle; hydrogen storage system interfaced with a control unit to store and supply hydrogen fuel at predefined state to the fuel cell stack; an air subsystem interfaced with the control unit to provide air supply to the fuel cell stack; thermal management system interfaced with the control unit to control temperature of the fuel cell stack; wiring harness to provide connectivity between plurality of equipments of the fuel cell power plant; and the control unit to monitor and control the hydrogen and air supply, and temperature of the fuel cell stack; and the disclosure also provides for a method of monitoring and controlling fuel cell power plant in a vehicle, said method comprising acts of estimating current value based on power supply requirement of the vehicle and auxiliaries of the fuel cell power plant; generating control signals by the controller for predefined parameters of corresponding components of the fuel cell plant based on the current value; monitoring the predefined parameters using plurality of corresponding sensors and comparing said parameter values with predefined values; and maintaining the parameters with in specified limits else generating alarm to
  • the main object of the instant disclosure is to obviate the above mentioned drawbacks.
  • Another object of the present disclosure is to provide a system to monitor and control parameters of a fuel cell power plant.
  • Yet another object of the present disclosure is to provide a method for monitoring and controlling parameters of a fuel cell power plant.
  • Figure 1 illustrates a system block diagram of a fuel cell power plant in a vehicle, as one embodiment.
  • Figure 2 illustrates flow chart for a method of controlling the parameters of the fuel cell power plant in a vehicle.
  • Figure 3 illustrates a block diagram of the control unit and the fuel cell power plant.
  • Figure 4 illustrates a system for recirculation and hydrogen and bleeding of impurities in hydrogen subsystem.
  • Figure 5 illustrates the block diagram to thermal management system to control the temperature of the fuel cell stack.
  • a fuel cell stack is regulated by varying pressure and flow rate of the fuel, oxidant and coolant, using which the fuel cell stack is operated.
  • the gases in the fuel cell stack must be humidified and the coolant temperature must be controlled.
  • the fuel cell stack is surrounded by a fuel system, fuel delivery system, air system, stack cooling system and humidification system.
  • the fuel cell stack system during operation the output power generated must be conditioned and absorbed by a load. If unsafe operating conditions occur suitable alarms must shut down the process and a cell voltage monitoring system must monitor fuel cell stack performance.
  • FIG. 1 shows an exemplary block diagram of the fuel cell power plant system as one embodiment.
  • the major components of the fuel cell plant system are hydrogen storage system consisting of fuel cell stack 102, hydrogen storage and regulation system 106 and hydrogen module or subsystem 104; air module or subsystem 108; and thermal management system comprising of radiator 110, coolant tank 114 and coolant pump 112.
  • the hydrogen storage and regulation system 106 receives hydrogen fuel, stores it and dispenses.
  • the fuel or hydrogen storage system consists of a fuelling circuit, the storage cylinders, a high pressure circuit and a motive pressure circuit.
  • the hydrogen storage and regulation system consists of hydrogen cylinder to receive and store the hydrogen fuel, pressure relief valve to monitor the pressure of hydrogen fuel, electrically activated solenoid valve to supply the hydrogen to the fuel cell stack, high pressure regulator and a dome loaded regulator to control the flow rate of hydrogen and plurality of mechanical interface blocks for mounting plurality of sensors.
  • the sensors measure the temperature and pressure of the hydrogen.
  • the hydrogen module or subsystem 104 provides hydrogen fuel to the fuel cell stack 102, at the required temperature, pressure, humidity, and flow rate.
  • the hydrogen subsystem also removes anode waste gases and water.
  • the hydrogen subsystem delivers hydrogen safely, in the correct amount, at the right state i.e. pressure, temperature, humidity to the fuel cell stack.
  • the hydrogen subsystem removes the excess hydrogen required for purging in a safe and efficient manner by delivering it to the air subsystem.
  • the hydrogen subsystem 104 consists of hydrogen flow meter to control the flow of hydrogen fuel, a hydrogen recirculation blower 404 provided in between anode compartment 102a of the fuel cell stack 102 and the hydrogen circulation line 408 for recirculating the hydrogen through the humidification system 410.
  • the fuel cell stack 102 consists of an anode compartment 102a and a cathode compartment 102b.
  • the humidification system 410 humidifies the hydrogen before supplying to the fuel cell stack 102.
  • a check valve 406 is placed in between the hydrogen recirculation blower 404 and the hydrogen circulation line 408 to provide a unidirectional flow of recirculated hydrogen.
  • the check valve 406 also increases a pressure of re-circulating hydrogen.
  • a nitrogen storage and delivery subsystem (416) is provided in the hydrogen subsystem 104 for storing and supplying nitrogen to a fuel cell stack (102) through a solenoid valve (414a) and a humidification system (410) via hydrogen circulation line (408).
  • the nitrogen storage and delivery sub system (416) comprises a nitrogen cylinder for storing a nitrogen gas, electrically actuated solenoid valve (414a) for supplying nitrogen to a fuel cell stack (102) to flush out inert gases.
  • a hydrogen purging and diffusing system 412 provided in between the fuel cell stack 102 and the hydrogen recirculation blower 404 for removal of condensed water and accumulated impurities from the fuel cell stack 102.
  • the hydrogen purging and diffusing system 412 comprises a bleed valve 418 for purging condensed water accumulated in anode compartment 102a of the fuel cell stack 102 and water flooded from cathode compartment to anode compartment.
  • a solenoid valve 414c is used to flush out accumulated impurities and entrapped air through the purge diffuser with fan.
  • Hydrogen when excess at the anode compartment 102a will be directed to the hydrogen recirculation blower 404 for recirculation.
  • constantly purging bleed valve 418 and electrically actuated solenoid valve 414c are provided for purging accumulated impurities and entrapped air.
  • the electrically actuated solenoid valve can be activated based on requirement.
  • the air subsystem 108 delivers required amount of air to the fuel cell stack safely. Also, the delivered air is in the required amount, at appropriate state i.e. pressure, temperature, humidity.
  • the air subsystem comprises of air mass flow meter to control the flow of air into the fuel cell stack, air compressor is connected to the heater and water dispensing system 110 for supplying required air flow based on power supply demand.
  • Mechanical interface blocks are provided for mounting temperature, pressure and humidity sensors.
  • Thermal management system removes heat from the fuel cell stack and regulates output power. Also, the thermal management system provides regulated power to balance of power plant equipment. The fuel cell stack is required to be maintained within acceptable temperature levels i.e. in between 65°C and 75°C. As shown in the figure 5, the thermal management system comprises a radiator 110 connected to an inlet of the fuel cell stack 102.
  • the radiator 110 consisting of plurality of fans to reduce heat from the fuel cell stack 102.
  • a coolant pump 112 connected to the fuel cell stack 102 to circulate coolant from the coolant tank 114 to the fuel cell stack 102.
  • An air compressor 108 is connected to the heater and water dispensing system 502 for supplying required air flow to the system based on demand.
  • a humidification system or humidifier 504 is connected to the heater and water dispensing system to humidify the air and takes required heat for humidification from the hot fluid coming out of the stack.
  • a temperature sensor 506 connected to an outlet of the fuel cell stack 102 to measure temperature of the coolant coming out of the fuel cell stack.
  • the heater and water dispensing system 502 connected to the coolant pump 112 to heat the coolant.
  • a controller is connected to the coolant pump to monitor the temperature of the fuel cell stack 102.
  • the controller 112 receives temperature level from the temperature sensor 108, calculates temperature variation by comparing received temperature level with predefined temperature level at a given time to switch ON or OFF predetermined number of radiator fans to control the temperature of the fuel cell stack 102.
  • the fuel cell stack generates continuous power if its operating temperature is more than specified limit of around 40°C. At the start of the vehicle in cold ambient temperature, which is below to the specified limit, so in order to start the vehicle heater is used to heat the coolant and raise the system temperature by certain degree and meet the requirement. Thus the fuel cell stack is maintained in the temperature range between 65°C to 75°C for better functionality, and increase in durability and life of the fuel cell stack.
  • heat is generated as a byproduct.
  • the heat generated is proportional to the generated power.
  • the generated heat is removed from the system by using a radiator or a cooling system by switching on plurality of fans.
  • Wiring harness 118 provides the connectivity of power plant equipments, sensors and transducers to controller.
  • the wiring harness will take care of powering of equipments and sensors. Based on the controller signals, it passes the signals to the corresponding components in the system.
  • the wiring harness senses the data from the sensors and sends them to controller.
  • Wiring harness comprises of relays, CAN cable, converter's such as current to voltage, voltage to current converter, current booster, and voltage dividers and fuses.
  • the wiring harness 118 is connected with hardware in loop block 120 to perform calculations and store data and instructions and control the operation of the fuel cell system.
  • the control system consists of sensors, transducers and hardware in loop 120. During the operation of fuel cell stack system, the output power generated is conditioned and absorbed by a load bank 116.
  • the block diagram of the fuel cell power plant controlled by a control unit or controller 216 is illustrated in figure 2.
  • the controller receives input signals from the sensors and transducers 214 connected to the components or equipments 202 of the fuel cell power plant, and controls the respective components based on the values sensed.
  • Air module subsystem 108 assess air flow rate required to be maintained based on the signal for power demand. Hence, there is a need for finer control of air flow into the fuel cell in order to prevent the fuel cell stack from starvation of oxygen. Even at cathode side input of fuel cell stack required highly humid air i.e. around 90 to 100 % RH.
  • the controller generates RPM signals from power demand and air compressor 204 gets the signals from controller 216 which provides the RPM rate at which it has to be run to get demanded power.
  • Air compressor 204 blows the required quantity of pressurized air to the air humidifier with required pressure.
  • the air humidifier gets the air from compressor and vaporized water from water dispensing system and produces humid air.
  • the humid air is passed to the cathode compartment of fuel cell stack with little pressure drop.
  • the hydrogen subsystem 104 regulates the flow of hydrogen to the fuel cell stack, as per the power demand.
  • the flow rate is controlled by adjusting the dome loaded pressure regulator in the subsystem. Dome loaded pressure regulator senses the activation pressure from air compressor output.
  • the controller strategy has to account for regulating the pressure of hydrogen in hydrogen subsystem as per the load requirements and pressure balancing between anode compartment and cathode compartment.
  • the pressures of anode and cathode compartments of the fuel cell stack are measured using pressure transducers.
  • the flow rate of hydrogen can be controlled based on the power requirement, the required hydrogen pressure maintained can be estimated and pressure of hydrogen can be adjusted with the help of dome loaded pressure regulator or electronumetic pressure regulator.
  • the signal from the pressure transducer in the cathode compartment could be used as input for regulating the pressure of hydrogen in the anode compartment.
  • Dome loaded pressure regulator passes the hydrogen to the hydrogen humidifier, where it gets humidified and goes to the anode compartment of fuel cell stack.
  • the controller 216 is connected to the coolant pump 206 to monitor the temperature of the fuel cell stack.
  • the controller 216 receives temperature levels from the temperature sensor connected to an outlet of the fuel cell stack.
  • the controller calculates temperature variation by comparing received temperature level with predefined temperature level at a given time to switch ON or OFF predetermined number of radiator fans to control the temperature of the fuel cell stack.
  • the controller monitors the relative humidity value in the fuel cell power plant, compares the monitored values with the set limit. Based on the comparison of relative humidity, the controller starts or stops the dosing pump 212.
  • Figure 3 illustrates a method for monitoring and controlling parameters of fuel cell power plant in a vehicle as a flow chart 300. The following are the steps:
  • step 302 power demand from vehicle and at step 304 power demand from auxiliaries of fuel cell power plant are measured or estimated, combining both the power demands obtains the total power demand for the fuel cell power plant. Based on the total power demand, current demand of the load is estimated as shown in the step 306 of the figure 3.
  • the power demand is provided by vehicle management system based on the accelerator pedal signal.
  • vehicle power demand plus power requirement from auxiliary systems i.e. coolant pump, air compressor, radiator, hydrogen recirculation blower
  • auxiliary systems i.e. coolant pump, air compressor, radiator, hydrogen recirculation blower
  • the controller will generate control signals to air compressor rpm as shown in step 308, coolant pump rpm as shown in step 310 and hydrogen recirculation blower controller at step 312.
  • the controller monitors the parameters such as hydrogen pressure, air pressure, air and hydrogen humidity, coolant temperature, air mass flow rate, and hydrogen leak.
  • the values of the parameters are obtained from the respective sensors.
  • the controller monitors temperature value obtained from the temperature sensor i.e. the temperature of the coolant coming out of the fuel sell stack. Based on the temperature values controller sends the appropriate signal to the thermal management system as shown at step 322, which switches on the heater if the temperature is below the specified level else switches ON/ OFF the radiator fans, at step 324.
  • the controller blows an alarm and shutdown the signals to the controller, which is shown in the step 326 of the figure 3.
  • the controller will decide on what mode it should execute the system after looking safety parameters.
  • the controller monitors the relative humidity value, compares with the set limit, as shown in steps 328 and 332 of figure 3. Based on the comparison of relative humidity, the controller decides when to start the dosing pump, as shown in step 330 and stop dosing pump, as shown in step 334.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A system and a method to monitor and control malfunctioning associated with operating parameters of the fuel cell power plant in a vehicle. The system comprises a fuel cell stack to provide power supply to the vehicle. A hydrogen storage system interfaced with a control unit to store and supply hydrogen fuel at predefined state to the fuel cell stack. An air subsystem provides air supply to the fuel cell stack. A thermal management system controls temperature of the fuel cell stack. A control unit monitors and control the hydrogen and air supply, and temperature of the fuel cell stack with in specified limits.

Description

SYSTEM AND METHOD FOR MONITORING AND CONTROLLING FUEL CELL POWER PLANT IN A VEHICLE
TECHINCAL FIELD
Embodiments of the present disclosure relate to fuel cell stack. More particularly, the embodiments relate to monitoring and controlling parameters of a fuel cell stack.
BACKGROUND OF DISCLOSURE
Fuel cell is defined as an electrochemical cell that directly converts chemical energy of a fuel into electrical energy. Unlike a conventional battery, the fuel cell can continuously produce electricity as long as the fuel and air are supplied thereto. Hydrogen is used as the fuel of the fuel cell includes pure hydrogen and reformed hydrogen produced by a reforming process using a hydrocarbon such as methane or ethanol. Although the pure oxygen improves efficiency of the fuel cell, there may be a problem that additional cost and undesirable increase of weight are entailed for providing a tank for the pure oxygen.
In the fuel cell system more hydrogen is supplied than the stochiometric ratio to the anode compartment of the fuel cell stack to prevent fuel cell stack for starving of hydrogen. During operation of fuel cell stack, hydrogen consumed and there is condensation water vapour to liquid water and also accumulation of inert gases like nitrogen as impurities which needs to be purged continuously or periodically. There is also requirement for recirculation of excess hydrogen in the anode compartment to the fuel cell stack.
Further, the condensed water from anode and water flooded from electrode which had crossed over from cathode to anode due to concentration gradient needs to be purged out periodically at regular intervals. And purging is also required to remove the accumulated of impurities like inert gases like nitrogen during the generation and compression and dispensing of hydrogen. There is also purging requirement during startup for removal of entrapped air and also flushing out of hydrogen from anode during emergency shutdown. At higher operating temperatures, the fuel cell voltage increases at a given operating current density because higher the operating temperature the more active the reactants. The higher the operating temperature the water vapor present is more in the reactant stream to maintain a given relative humidity. This makes it more difficult to maintain a relative humidity at or near 100%. The higher the stack outlet temperature, the more water is evaporated in the stack, which reduces the heating load on the coolant system. Hence, the higher the temperature the more water can be evaporated. Heat is absorbed in evaporating the water; all the heat used in evaporation is heat that would otherwise have to be rejected by the coolant system.
Lower operating temperatures of the fuel cell stack results in longer stack life, which is due to better humidification. Operation at lower stack temperatures may result in water management problems. Reducing the amount of water vapor required to achieve 100% RH (relative humidity) is a mixed blessing; if the RH exceeds 100%, due to water formation in the cathode or water crossover in the anode, water droplets will form. If the quantity of liquid water present is more, it can block the cell channels and result in cell starvation.
In light of forgoing discussion, there is a need to control the parameters i.e. hydrogen and air pressure, temperature of the fuel cell stack and remove the impurities from the fuel cell stack system.
STATEMENT OF THE DISCLOSURE
Accordingly the present disclosure provides a system to monitor and control fuel cell power plant in a vehicle comprising a fuel cell stack to provide power supply to the vehicle; hydrogen storage system interfaced with a control unit to store and supply hydrogen fuel at predefined state to the fuel cell stack; an air subsystem interfaced with the control unit to provide air supply to the fuel cell stack; thermal management system interfaced with the control unit to control temperature of the fuel cell stack; wiring harness to provide connectivity between plurality of equipments of the fuel cell power plant; and the control unit to monitor and control the hydrogen and air supply, and temperature of the fuel cell stack; and the disclosure also provides for a method of monitoring and controlling fuel cell power plant in a vehicle, said method comprising acts of estimating current value based on power supply requirement of the vehicle and auxiliaries of the fuel cell power plant; generating control signals by the controller for predefined parameters of corresponding components of the fuel cell plant based on the current value; monitoring the predefined parameters using plurality of corresponding sensors and comparing said parameter values with predefined values; and maintaining the parameters with in specified limits else generating alarm to alert and switch OFF system if the parameters value exceeds predefined values by varying the operating conditions to control the fuel cell power plant. OBJECTIVES OF THE DISCLOSURE
The main object of the instant disclosure is to obviate the above mentioned drawbacks.
Another object of the present disclosure is to provide a system to monitor and control parameters of a fuel cell power plant.
Yet another object of the present disclosure is to provide a method for monitoring and controlling parameters of a fuel cell power plant. BRIEF DESCRIPTION OF THE ACCOMPANYING FIGURES
The novel features and characteristic of the disclosure are set forth in the appended claims. The disclosure itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying figures. One or more embodiments are now described, by way of example only, with reference to the accompanying figures wherein like reference numerals represent like elements and in which:
Figure 1 illustrates a system block diagram of a fuel cell power plant in a vehicle, as one embodiment.
Figure 2 illustrates flow chart for a method of controlling the parameters of the fuel cell power plant in a vehicle. Figure 3 illustrates a block diagram of the control unit and the fuel cell power plant.
Figure 4 illustrates a system for recirculation and hydrogen and bleeding of impurities in hydrogen subsystem.
Figure 5 illustrates the block diagram to thermal management system to control the temperature of the fuel cell stack.
The figures depict embodiments of the disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the disclosure described herein.
DETAILED DESCRIPTION
The foregoing has broadly outlined the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter which form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims. The novel features which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
To overcome the drawbacks mentioned in the background, a fuel cell stack is regulated by varying pressure and flow rate of the fuel, oxidant and coolant, using which the fuel cell stack is operated. In addition, the gases in the fuel cell stack must be humidified and the coolant temperature must be controlled. To achieve the said objectives, the fuel cell stack is surrounded by a fuel system, fuel delivery system, air system, stack cooling system and humidification system. Also, the fuel cell stack system during operation, the output power generated must be conditioned and absorbed by a load. If unsafe operating conditions occur suitable alarms must shut down the process and a cell voltage monitoring system must monitor fuel cell stack performance. These functions are performed by electrical and control systems.
Figure 1 shows an exemplary block diagram of the fuel cell power plant system as one embodiment. The major components of the fuel cell plant system are hydrogen storage system consisting of fuel cell stack 102, hydrogen storage and regulation system 106 and hydrogen module or subsystem 104; air module or subsystem 108; and thermal management system comprising of radiator 110, coolant tank 114 and coolant pump 112. The hydrogen storage and regulation system 106 receives hydrogen fuel, stores it and dispenses. The fuel or hydrogen storage system consists of a fuelling circuit, the storage cylinders, a high pressure circuit and a motive pressure circuit. The hydrogen storage and regulation system consists of hydrogen cylinder to receive and store the hydrogen fuel, pressure relief valve to monitor the pressure of hydrogen fuel, electrically activated solenoid valve to supply the hydrogen to the fuel cell stack, high pressure regulator and a dome loaded regulator to control the flow rate of hydrogen and plurality of mechanical interface blocks for mounting plurality of sensors. The sensors measure the temperature and pressure of the hydrogen. The hydrogen module or subsystem 104 provides hydrogen fuel to the fuel cell stack 102, at the required temperature, pressure, humidity, and flow rate. The hydrogen subsystem also removes anode waste gases and water. The hydrogen subsystem delivers hydrogen safely, in the correct amount, at the right state i.e. pressure, temperature, humidity to the fuel cell stack. Also, the hydrogen subsystem removes the excess hydrogen required for purging in a safe and efficient manner by delivering it to the air subsystem. As shown in figure 4, the hydrogen subsystem 104 consists of hydrogen flow meter to control the flow of hydrogen fuel, a hydrogen recirculation blower 404 provided in between anode compartment 102a of the fuel cell stack 102 and the hydrogen circulation line 408 for recirculating the hydrogen through the humidification system 410. The fuel cell stack 102 consists of an anode compartment 102a and a cathode compartment 102b. The humidification system 410 humidifies the hydrogen before supplying to the fuel cell stack 102. A check valve 406 is placed in between the hydrogen recirculation blower 404 and the hydrogen circulation line 408 to provide a unidirectional flow of recirculated hydrogen. The check valve 406 also increases a pressure of re-circulating hydrogen.
A nitrogen storage and delivery subsystem (416) is provided in the hydrogen subsystem 104 for storing and supplying nitrogen to a fuel cell stack (102) through a solenoid valve (414a) and a humidification system (410) via hydrogen circulation line (408). The nitrogen storage and delivery sub system (416) comprises a nitrogen cylinder for storing a nitrogen gas, electrically actuated solenoid valve (414a) for supplying nitrogen to a fuel cell stack (102) to flush out inert gases. A hydrogen purging and diffusing system 412 provided in between the fuel cell stack 102 and the hydrogen recirculation blower 404 for removal of condensed water and accumulated impurities from the fuel cell stack 102. The hydrogen purging and diffusing system 412 comprises a bleed valve 418 for purging condensed water accumulated in anode compartment 102a of the fuel cell stack 102 and water flooded from cathode compartment to anode compartment. A solenoid valve 414c is used to flush out accumulated impurities and entrapped air through the purge diffuser with fan.
Hydrogen when excess at the anode compartment 102a will be directed to the hydrogen recirculation blower 404 for recirculation. In between anode outlet and hydrogen recirculation blower, constantly purging bleed valve 418 and electrically actuated solenoid valve 414c are provided for purging accumulated impurities and entrapped air. The electrically actuated solenoid valve can be activated based on requirement. The air subsystem 108 delivers required amount of air to the fuel cell stack safely. Also, the delivered air is in the required amount, at appropriate state i.e. pressure, temperature, humidity. The air subsystem comprises of air mass flow meter to control the flow of air into the fuel cell stack, air compressor is connected to the heater and water dispensing system 110 for supplying required air flow based on power supply demand. Mechanical interface blocks are provided for mounting temperature, pressure and humidity sensors.
The air which is in excess quantity from the cathode compartment is saturated air. Water condenser extracts the water from that air and passes condensed air to the self regulating air throttle valve and condensed water to water tank. The water from the water tank will be further used in humidifiers. Self regulating air throttle valve creates required back pressure for cathode compartment. Thermal management system (110, 112 and 114) removes heat from the fuel cell stack and regulates output power. Also, the thermal management system provides regulated power to balance of power plant equipment. The fuel cell stack is required to be maintained within acceptable temperature levels i.e. in between 65°C and 75°C. As shown in the figure 5, the thermal management system comprises a radiator 110 connected to an inlet of the fuel cell stack 102. The radiator 110 consisting of plurality of fans to reduce heat from the fuel cell stack 102. A coolant pump 112 connected to the fuel cell stack 102 to circulate coolant from the coolant tank 114 to the fuel cell stack 102. An air compressor 108 is connected to the heater and water dispensing system 502 for supplying required air flow to the system based on demand. A humidification system or humidifier 504 is connected to the heater and water dispensing system to humidify the air and takes required heat for humidification from the hot fluid coming out of the stack. A temperature sensor 506 connected to an outlet of the fuel cell stack 102 to measure temperature of the coolant coming out of the fuel cell stack. The heater and water dispensing system 502 connected to the coolant pump 112 to heat the coolant. A controller is connected to the coolant pump to monitor the temperature of the fuel cell stack 102. The controller 112 receives temperature level from the temperature sensor 108, calculates temperature variation by comparing received temperature level with predefined temperature level at a given time to switch ON or OFF predetermined number of radiator fans to control the temperature of the fuel cell stack 102. The fuel cell stack generates continuous power if its operating temperature is more than specified limit of around 40°C. At the start of the vehicle in cold ambient temperature, which is below to the specified limit, so in order to start the vehicle heater is used to heat the coolant and raise the system temperature by certain degree and meet the requirement. Thus the fuel cell stack is maintained in the temperature range between 65°C to 75°C for better functionality, and increase in durability and life of the fuel cell stack. As the fuel cell stacks generate power, heat is generated as a byproduct. The heat generated is proportional to the generated power. The generated heat is removed from the system by using a radiator or a cooling system by switching on plurality of fans.
Wiring harness 118 provides the connectivity of power plant equipments, sensors and transducers to controller. The wiring harness will take care of powering of equipments and sensors. Based on the controller signals, it passes the signals to the corresponding components in the system. The wiring harness senses the data from the sensors and sends them to controller. Wiring harness comprises of relays, CAN cable, converter's such as current to voltage, voltage to current converter, current booster, and voltage dividers and fuses. The wiring harness 118 is connected with hardware in loop block 120 to perform calculations and store data and instructions and control the operation of the fuel cell system. The control system consists of sensors, transducers and hardware in loop 120. During the operation of fuel cell stack system, the output power generated is conditioned and absorbed by a load bank 116.
The block diagram of the fuel cell power plant controlled by a control unit or controller 216 is illustrated in figure 2. The controller receives input signals from the sensors and transducers 214 connected to the components or equipments 202 of the fuel cell power plant, and controls the respective components based on the values sensed. Air module subsystem 108 assess air flow rate required to be maintained based on the signal for power demand. Hence, there is a need for finer control of air flow into the fuel cell in order to prevent the fuel cell stack from starvation of oxygen. Even at cathode side input of fuel cell stack required highly humid air i.e. around 90 to 100 % RH. Therefore, the controller generates RPM signals from power demand and air compressor 204 gets the signals from controller 216 which provides the RPM rate at which it has to be run to get demanded power. Air compressor 204 blows the required quantity of pressurized air to the air humidifier with required pressure. The air humidifier gets the air from compressor and vaporized water from water dispensing system and produces humid air. The humid air is passed to the cathode compartment of fuel cell stack with little pressure drop.
The hydrogen subsystem 104 regulates the flow of hydrogen to the fuel cell stack, as per the power demand. The flow rate is controlled by adjusting the dome loaded pressure regulator in the subsystem. Dome loaded pressure regulator senses the activation pressure from air compressor output. Hence, there is a need for finer control of hydrogen flow into the fuel cell in order to prevent the fuel cell stack from starvation of hydrogen. Thus, the controller strategy has to account for regulating the pressure of hydrogen in hydrogen subsystem as per the load requirements and pressure balancing between anode compartment and cathode compartment.
The pressures of anode and cathode compartments of the fuel cell stack are measured using pressure transducers. The flow rate of hydrogen can be controlled based on the power requirement, the required hydrogen pressure maintained can be estimated and pressure of hydrogen can be adjusted with the help of dome loaded pressure regulator or electronumetic pressure regulator. The signal from the pressure transducer in the cathode compartment could be used as input for regulating the pressure of hydrogen in the anode compartment. Thus, the methods ensure supply of hydrogen is adequate to the fuel cell stack and hydrogen pressure is maintained to avoid stack from hydrogen starvation. Also, the pressure balancing between anode and cathode compartments is maintained. Dome loaded pressure regulator passes the hydrogen to the hydrogen humidifier, where it gets humidified and goes to the anode compartment of fuel cell stack. The controller 216 is connected to the coolant pump 206 to monitor the temperature of the fuel cell stack. The controller 216 receives temperature levels from the temperature sensor connected to an outlet of the fuel cell stack. The controller calculates temperature variation by comparing received temperature level with predefined temperature level at a given time to switch ON or OFF predetermined number of radiator fans to control the temperature of the fuel cell stack.
The controller monitors the relative humidity value in the fuel cell power plant, compares the monitored values with the set limit. Based on the comparison of relative humidity, the controller starts or stops the dosing pump 212.
Figure 3 illustrates a method for monitoring and controlling parameters of fuel cell power plant in a vehicle as a flow chart 300. The following are the steps:
At step 302, power demand from vehicle and at step 304 power demand from auxiliaries of fuel cell power plant are measured or estimated, combining both the power demands obtains the total power demand for the fuel cell power plant. Based on the total power demand, current demand of the load is estimated as shown in the step 306 of the figure 3.
The power demand is provided by vehicle management system based on the accelerator pedal signal. The vehicle power demand plus power requirement from auxiliary systems (i.e. coolant pump, air compressor, radiator, hydrogen recirculation blower) of balance of power plant is the actual power requirement from fuel cell stack.
Based on the current demand, the controller will generate control signals to air compressor rpm as shown in step 308, coolant pump rpm as shown in step 310 and hydrogen recirculation blower controller at step 312.
At step 314, the controller monitors the parameters such as hydrogen pressure, air pressure, air and hydrogen humidity, coolant temperature, air mass flow rate, and hydrogen leak. The values of the parameters are obtained from the respective sensors. At step 316, the controller monitors temperature value obtained from the temperature sensor i.e. the temperature of the coolant coming out of the fuel sell stack. Based on the temperature values controller sends the appropriate signal to the thermal management system as shown at step 322, which switches on the heater if the temperature is below the specified level else switches ON/ OFF the radiator fans, at step 324.
If any parameters go out of specified limit as shown in the step 324, the controller blows an alarm and shutdown the signals to the controller, which is shown in the step 326 of the figure 3. The controller will decide on what mode it should execute the system after looking safety parameters.
At step 320, the controller monitors the relative humidity value, compares with the set limit, as shown in steps 328 and 332 of figure 3. Based on the comparison of relative humidity, the controller decides when to start the dosing pump, as shown in step 330 and stop dosing pump, as shown in step 334.
The present disclosure is not to be limited in terms of the particular embodiments described in this application, which are intended as illustrations of various aspects. Many modifications and variations can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. Functionally equivalent methods and devices within the scope of the disclosure, in addition to those enumerated herein, will be apparent to those skilled in the art from the foregoing descriptions. Such modifications and variations are intended to fall within the scope of the appended claims. The present disclosure is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims

We claim
1. A system to monitor and control fuel cell power plant 100 in a vehicle comprising: a fuel cell stack 102 to provide power supply to the vehicle 122;
hydrogen storage system (104, 106) interfaced with a control unit to store and supply hydrogen fuel at predefined state to the fuel cell stack;
an air subsystem 108 interfaced with the control unit to provide air supply to the fuel cell stack;
thermal management system (110, 112 and 114) interfaced with the control unit to control temperature of the fuel cell stack;
wiring harness 118 to provide connectivity between plurality of equipments of the fuel cell power plant;
the control unit to monitor and control the hydrogen and air supply, and temperature of the fuel cell stack.
2. The system as claimed in claim 1, wherein the hydrogen storage system comprises:
hydrogen storage and regulation system 106 to store and dispense the hydrogen fuel based on power requirement of the vehicle;
hydrogen subsystem 104 to supply the hydrogen fuel to the fuel cell stack at predefined state through a solenoid valve and a humidification system via hydrogen circulation line from the hydrogen storage system.
3. The system as claimed in claim 1, wherein the hydrogen storage and regulation system 106 comprises:
a hydrogen cylinder for storing hydrogen gas;
pressure relief valve to monitor the pressure of hydrogen;
electrically activated solenoid valve to supply the hydrogen to the fuel cell stack;
pressure regulator and a dome loaded regulator to regulate the pressure of hydrogen and there by control the flow rate of hydrogen;
plurality of sensor interface blocks for mounting plurality of sensors.
The system as claimed in claim 1, wherein the hydrogen subsystem 104 comprises:
a hydrogen recirculation blower connected to the fuel cell stack for recirculating the hydrogen through a humidification system;
a hydrogen purging and diffusing system to remove condensed water and other impurities from the fuel cell stack.
The system as claimed in claim 1, wherein the fuel cell power plant consists of plurality of pressure transducers to measure pressure of hydrogen in the fuel cell stack.
The system as claimed in claim 1, wherein the fuel cell power plant consists of plurality of temperature and humidity sensors interfaced with the control unit to measure temperature and humidity of the fuel cell stack.
The system as claimed in claim 1, wherein the thermal management system comprises:
a radiator 110 connected to an inlet of the fuel cell stack 102, said radiator 110 consisting of plurality of fans ranging between 1 to 12 for reducing heat from the fuel cell stack 102;
a coolant pump 112 connected to the fuel cell stack 102 through the radiator 110 to circulate coolant to the fuel cell stack;
a temperature sensor connected to an outlet of the fuel cell stack, said temperature sensor measures temperature of the coolant coming out of the fuel cell stack;
heater and water dispensing system is connected to the coolant pump to heat the coolant for faster start up of fuel cell power system requiring at ambient temperature;
a humidifier system is connected to the heater and water dispensing system and the fuel cell stack to control humidity.
The system as claimed in claim 7, wherein the controller switches ON the heater to heat the coolant if the temperature is less than 40° C.
9. A method of monitoring and controlling fuel cell power plant in a vehicle, said method comprising acts of:
estimating current value based on power demand of the vehicle and auxiliaries of the fuel cell power plant;
generating control signals by the controller for predefined parameters of corresponding components of the fuel cell plant based on the current value and sensor inputs;
monitoring the predefined parameters using plurality of corresponding sensors and comparing said parameter values with predefined values;
maintaining the parameters with in specified limits else generating alarm to alert and switch OFF system if the parameters value exceeds predefined values by varying the operating conditions to control the fuel cell power plant.
10. The method as claimed in claim 9, wherein the predefined parameters are at least one of hydrogen pressure, air pressure, air and hydrogen humidity's, and coolant temperature.
11. The method as claimed in claim 9, wherein the control signals comprises of air compressor RPM for air subsystem component, coolant pump RPM for thermal management and hydrogen recirculation blower controller signal for hydrogen subsystem and control signal for water dosing pump of humidifier system.
12. The method as claimed in claim 9, wherein the components of the fuel cell plant comprises air compressor for providing air supply, coolant pump for supplying coolant to the fuel cell stack, hydrogen recirculation blower for re-circulating the hydrogen and water dosing pump for dosing water for humidification.
13. The method as claimed in claim 9, wherein the predefined value of the coolant temperature ranges between 65°C to 75°C.
14. The method as claimed in claim 9, wherein the predefined value of the hydrogen pressure ranges between 0 to 320 kPa, air pressure ranges between 0 to 300 kPa, and relative humidity of air and hydrogen varies between 65 to 100%.
15. A system to monitor and control fuel cell power plant in a vehicle and a method thereof are substantially as herein above described and as illustrated in accompanying drawings.
PCT/IB2012/051299 2011-03-24 2012-03-19 System and method for monitoring and controlling fuel cell power plant in a vehicle WO2012127402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN873MU2011 2011-03-24
IN873/MUM/2011 2011-03-24

Publications (2)

Publication Number Publication Date
WO2012127402A1 true WO2012127402A1 (en) 2012-09-27
WO2012127402A4 WO2012127402A4 (en) 2012-11-15

Family

ID=46085097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/051299 WO2012127402A1 (en) 2011-03-24 2012-03-19 System and method for monitoring and controlling fuel cell power plant in a vehicle

Country Status (1)

Country Link
WO (1) WO2012127402A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107017421A (en) * 2017-03-09 2017-08-04 北京交通大学 A kind of fuel of fuel cell car is monitored and EGR in real time
CN108470928A (en) * 2017-02-20 2018-08-31 武汉众宇动力***科技有限公司 Fuel system and its detection method for unmanned plane fuel cell
CN109659586A (en) * 2018-12-28 2019-04-19 佛山索弗克氢能源有限公司 Hydrogen gas generation energy storage device and its starting method
CN111430750A (en) * 2020-04-02 2020-07-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack
CN113375040A (en) * 2020-03-09 2021-09-10 本田技研工业株式会社 Gas control system and gas control method
IT202000005917A1 (en) * 2020-03-19 2021-09-19 Metatron S P A FUEL CELL SYSTEM AND ELECTRONIC FUEL PRESSURE REGULATOR FOR SUCH SYSTEM
CN113707919A (en) * 2021-07-27 2021-11-26 武汉海亿新能源科技有限公司 Method and system for judging, regulating and controlling internal humidity of fuel cell system stack
CN113991145A (en) * 2021-10-27 2022-01-28 广东电网有限责任公司 Management system for inlet dynamic water of power generation cell stack reaction and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021468A1 (en) * 2000-03-08 2001-09-13 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system
US20060003193A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented fuel cell system
US20060035120A1 (en) * 2002-12-03 2006-02-16 Hiromasa Sakai Fuel cell system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010021468A1 (en) * 2000-03-08 2001-09-13 Honda Giken Kogyo Kabushiki Kaisha Fuel cell system
US20060035120A1 (en) * 2002-12-03 2006-02-16 Hiromasa Sakai Fuel cell system
US20060003193A1 (en) * 2004-06-30 2006-01-05 Stabler Francis R Thermoelectric augmented fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470928A (en) * 2017-02-20 2018-08-31 武汉众宇动力***科技有限公司 Fuel system and its detection method for unmanned plane fuel cell
CN107017421A (en) * 2017-03-09 2017-08-04 北京交通大学 A kind of fuel of fuel cell car is monitored and EGR in real time
CN107017421B (en) * 2017-03-09 2024-03-19 北京交通大学 Fuel real-time monitoring and recycling device of fuel cell automobile
CN109659586A (en) * 2018-12-28 2019-04-19 佛山索弗克氢能源有限公司 Hydrogen gas generation energy storage device and its starting method
CN109659586B (en) * 2018-12-28 2023-05-26 佛山索弗克氢能源有限公司 Hydrogen power generation and energy storage device and starting method thereof
CN113375040A (en) * 2020-03-09 2021-09-10 本田技研工业株式会社 Gas control system and gas control method
IT202000005917A1 (en) * 2020-03-19 2021-09-19 Metatron S P A FUEL CELL SYSTEM AND ELECTRONIC FUEL PRESSURE REGULATOR FOR SUCH SYSTEM
WO2021186316A1 (en) * 2020-03-19 2021-09-23 Metatron S.P.A A method for controlling a fuel cell system, an electronic fuel pressure regulator for performing this method, and fuel cell system comprising this regulator
CN111430750A (en) * 2020-04-02 2020-07-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack
CN111430750B (en) * 2020-04-02 2023-02-17 重庆大学 Intelligent control system for anode pressure of fuel cell automobile stack
CN113707919A (en) * 2021-07-27 2021-11-26 武汉海亿新能源科技有限公司 Method and system for judging, regulating and controlling internal humidity of fuel cell system stack
CN113991145A (en) * 2021-10-27 2022-01-28 广东电网有限责任公司 Management system for inlet dynamic water of power generation cell stack reaction and control method thereof

Also Published As

Publication number Publication date
WO2012127402A4 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
WO2012127402A1 (en) System and method for monitoring and controlling fuel cell power plant in a vehicle
US6960401B2 (en) Fuel cell purging method and apparatus
US8232014B2 (en) Fuel cell operational methods for hydrogen addition after shutdown
US10122030B2 (en) Fuel cell system and method of controlling operation of fuel cell
US6861167B2 (en) Fuel cell resuscitation method and apparatus
JP4871219B2 (en) System level adjustment to increase stack inlet RH
US8399142B2 (en) Relative humidity profile control strategy for high current density stack operation
US6696192B2 (en) Fuel cell system
US8124290B2 (en) Operating fuel cell during down time on cryogenic hydrogen boil-off
US6979508B2 (en) Fuel cell with integrated feedback control
US6913847B2 (en) Fuel cell system having a hydrogen sensor
US7867661B2 (en) Fuel cell system and method
JP5324756B2 (en) Multi-pressure controlled control to minimize RH excursion during transients
US20020061426A1 (en) Cooling system and cooling process of fuel cell
US20100167144A1 (en) Fuel cell system and operation method thereof
AU2002355303A1 (en) Fuel cell resuscitation method and apparatus
JP2010510463A (en) Hydrogen filling method and hydrogen filling place
US20100055523A1 (en) Fuel cell system
JPWO2010073385A1 (en) Fuel cell system
CA2917408C (en) Fuel cell system and method for controlling fuel cell system
US20170250426A1 (en) Power generation stopping method for fuel cell system and fuel cell system
JP2000243422A (en) Fuel cell system and fuel cell cooling method
US8927165B2 (en) Stack cathode inlet RH (relative humidity) control without RH sensing device feedback
US8273501B2 (en) System and method for hydrating a proton exchange membrane fuel cell
JP5310740B2 (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12720959

Country of ref document: EP

Kind code of ref document: A1