WO2012126160A1 - 一种模块化多电平变流器的均压控制方法 - Google Patents

一种模块化多电平变流器的均压控制方法 Download PDF

Info

Publication number
WO2012126160A1
WO2012126160A1 PCT/CN2011/001813 CN2011001813W WO2012126160A1 WO 2012126160 A1 WO2012126160 A1 WO 2012126160A1 CN 2011001813 W CN2011001813 W CN 2011001813W WO 2012126160 A1 WO2012126160 A1 WO 2012126160A1
Authority
WO
WIPO (PCT)
Prior art keywords
submodule
sub
state
bridge arm
module
Prior art date
Application number
PCT/CN2011/001813
Other languages
English (en)
French (fr)
Inventor
庞辉
贺之渊
赵岩
苑春明
刘栋
李文津
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Priority to US14/005,266 priority Critical patent/US20140002048A1/en
Publication of WO2012126160A1 publication Critical patent/WO2012126160A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M11/00Power conversion systems not covered by the preceding groups
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • the present invention relates to a control method, and in particular to a voltage equalization control method for a current transformer. Background technique
  • the difference of charge, discharge, loss and capacitance value of the sub-modules in each arm of the modular multi-level converter will make the capacitance voltage unbalanced, which will damage the normal operation of the converter, in order to ensure modular multi-level converter.
  • the normal operation of the device, the traditional sub-module capacitor voltage equalization control method is:
  • the initial switching state of the sub-module is not considered.
  • the sub-module is highly arbitrarily switched, and the switching state of a large number of sub-modules may need to be changed. If there are sub-modules in the phase unit that are cut off, the same number of sub-modules must be input at the same time to keep the total DC voltage constant; ⁇ Different from the characteristics of the power electronics and the introduction of dead time, the technology of different sub-modules This and the resection cannot be completely simultaneous, which causes the total DC voltage to fluctuate; the more submodules that need to be changed in the switching state, the more the total DC voltage fluctuates.
  • the switching frequency of the sub-module is too high, which makes the switching frequency and switching loss of the power electronic device larger, and reduces the efficiency of the modular multi-level converter type DC transmission system.
  • the object of the present invention is to provide a voltage equalization control method for a modular multilevel converter according to the above-mentioned drawbacks of the prior art, which combines the direction of the bridge arm current and the initial working state of the submodule, and the reasonable adjustment The operating state of the module reduces the switching frequency of the device.
  • the invention provides a voltage equalization control method for a modular multilevel converter, which comprises the following steps: 1) Determine whether the direction of the bridge arm current is positive or negative;
  • the voltage equalization control method of the first preferred modular multilevel converter provided by the present invention, if the bridge arm current is in the positive direction, the bridge arm current charges the capacitance of the submodule in the output state, and finds that The submodule with the highest capacitance voltage amplitude in the submodule of the output state, and finds the submodule with the lowest capacitance voltage amplitude in the submodule in the bypass state.
  • the second preferred modular multilevel converter equalization control method provided by the present invention, in the bridge arm current direction ij, if the bridge arm level output increases, the submodule that is about to be bypassed For the output state, the submodule with the lowest capacitor voltage is input from the submodule in the bypass state;
  • the voltage equalization control method of the third preferred modular multilevel converter provided by the present invention is provided in the forward direction of the bridge arm current, and if the submodule is not required to be put into or bypassed, the judgment is output. Whether the maximum value of the capacitor voltage of the submodule of the state exceeds the given limit. If the given limit is exceeded, the submodule is swapped with the state of the capacitor voltage in the bypass submodule. If the limit is not exceeded, the above operation is not required.
  • the voltage equalization control method of the fifth preferred modular multilevel converter provides a sub-module conversion in a bypass state if the bridge arm level output increases in the negative direction of the bridge arm current. For the output state, the submodule with the highest capacitor voltage is input from the submodule in the bypass state;
  • the sixth preferred method for equalizing voltage control of a modular multilevel converter provided by the present invention is provided in the negative direction of the bridge arm current, if it is not required to input or bypass the submodule, Whether the minimum value of the capacitor voltage of the submodule in the output state exceeds the given limit. If the given limit is exceeded, the submodule is swapped with the highest performing capacitor voltage in the bypass submodule. , if the limit is not exceeded, no need to enter Do the above.
  • the seventh preferred modular multilevel converter voltage equalization control method provided by the present invention, wherein the input is to turn on one of the IGBTs in the submodule.
  • the present invention provides an equalization control method for an eighth preferred modular multilevel converter, wherein the IGBT module is an IGBT module above.
  • the above method is: if the bridge arm current charges the sub-module, find the sub-module with the highest capacitance voltage amplitude in the sub-module in the output state, and find that the sub-module in the bypass state has the lowest capacitance voltage amplitude.
  • Submodule if the bridge arm level output increases, the submodule with the lowest capacitor voltage is input from the submodule in the bypass state; if the bridge arm level output decreases, the capacitor is from the submodule in the output state
  • the highest voltage sub-module is bypassed; if the bridge arm level output is unchanged, it is judged whether the maximum value of the capacitor voltage of the sub-module in the output state exceeds the given limit. If the given limit is exceeded, the sub-module is exceeded.
  • the module is swapped with the state in which the amplitude of the capacitor voltage in the bypass state sub-module is the lowest. If the limit is not exceeded, the working state of each sub-module is kept unchanged;
  • the bridge arm current discharges the sub-module, find the sub-module with the lowest capacitance voltage value in the sub-module in the output state, and find the sub-module with the highest capacitance voltage amplitude in the sub-module in the bypass state;
  • the bridge arm level output is increased, the submodule with the highest capacitor voltage is input from the submodule in the bypass state; if the bridge arm level output is decreased, the submodule with the lowest capacitor voltage from the submodule in the output state is input.
  • Bypass if the bridge arm level output does not change, determine whether the minimum value of the capacitor voltage of the submodule in the output state exceeds the given limit. If the given limit is exceeded, the submodule is in the bypass state. In the submodule, the state of the capacitor voltage is the highest, and if the limit is not exceeded, the working state of each submodule is kept unchanged.
  • the voltage equalization control method of a modular multilevel converter provided by the invention has the following advantages:
  • the working voltage of the sub-module can be changed to ensure that the amplitude of the capacitor voltage of the sub-module is within a certain range
  • FIG. 1 is a schematic diagram of an operation method of a voltage equalization control method of a modular multilevel converter provided by the present invention
  • Figure 2 A method for equalizing voltage control of a modular multilevel converter provided by the present invention - an operational principle diagram of a bypass state;
  • FIG. 3 is a schematic structural view of an MMC (Modular Multilevel Converter) for a voltage equalization control method of a modular multilevel converter provided by the present invention
  • Tl IGBT module
  • T2 IGBT module
  • Dl freewheeling diode
  • Example 1 The method for equalizing the voltage equalization of a modular multilevel converter provided by the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
  • Example 1 The method for equalizing the voltage equalization of a modular multilevel converter provided by the present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
  • the bridge arm current charges the capacitor of the submodule in the output state, and then finds the submodule with the highest capacitance voltage amplitude in the submodule in the output state, and finds that it is in the bypass state. a submodule having the lowest capacitance voltage amplitude in the submodule;
  • the bridge arm current is positive, if the bridge arm level output increases and the submodule in the bypass state is converted to the output state, the submodule with the lowest capacitor voltage is input from the submodule in the bypass state.
  • the bridge arm current is positive, if the bridge arm level output is reduced, the submodule that is about to output is converted to the bypass state, then the submodule with the highest capacitor voltage is placed from the submodule in the output state. If the bridge arm current is in the positive direction, if it is not necessary to input or bypass the submodule, determine whether the maximum value of the capacitor voltage of the submodule in the output state exceeds the given limit. Given the limit, Then, the submodule is swapped with the state in which the amplitude of the capacitor voltage in the bypass state submodule is the lowest. If the limit is not exceeded, the above operation is not required;
  • the bridge arm current discharges the capacitance of the submodule in the output state, and then finds the submodule with the lowest capacitance voltage amplitude in the submodule in the output state, and finds that it is in the bypass state. a submodule having the highest capacitance voltage amplitude in the submodule;
  • the bridge arm current is in the negative direction
  • the bridge arm current is in the negative direction
  • the bridge arm current is in the negative direction
  • the bridge arm level output is reduced, the submodule that is about to be in the output state is converted to the bypass state, and the submodule with the lowest capacitor voltage is placed from the submodule in the output state.
  • the bridge arm current is in the negative direction, if it is not necessary to input or bypass the submodule, determine whether the minimum value of the capacitor voltage of the submodule in the output state exceeds the given limit. Given the limit, this submodule is swapped with the highest performing capacitor voltage amplitude in the bypass submodule. If the limit is not exceeded, the above operation is not required.
  • the input is to turn on one of the IGBTs in the sub-module. As shown in Figure 1, the IGBT module above in Figure 1 is turned on.
  • the modular multilevel converter is a newer multi-level voltage source converter. Its operating structure is shown in Figure 1.
  • the 3 ⁇ 4 converter can output a very high level on the AC side. Used in the field of high voltage and high power conversion.
  • the sub-modules exhibit different operating states by controlling the turn-on and turn-off of the switching devices in the sub-module.
  • T1 is turned on and T2 is turned off in the sub-module
  • the bridge arm charges and discharges the capacitor of the sub-module, and the sub-module is in the output state.
  • T1 is turned off and T2 is turned on in the submodule
  • the submodule capacitor is bypassed, and the submodule is in the bypass state.
  • the positive direction of the current is shown in Figure 1. If the bridge arm current is positive, the capacitance of the submodule in the output state is charged: otherwise, the capacitance of the submodule in the output state is discharged.
  • Modular Multilevel Converters consist of six bridge arms, each of which is composed of ⁇ n series of submodules.
  • the structure of each submodule is shown in Figure 1. It is shown that during normal operation, the bridge arm controller controls the working state of each sub-module in the bridge arm according to the modulation algorithm of the MMC. During normal operation, there are two working states for each MMC submodule, as shown in Figure 1 and Figure 2.
  • each sub-module is in the output state for different times, and the magnitude of the bridge arm current is different in the output state. Therefore, the amplitude of the capacitor voltage of each sub-module will be different. This will cause the imbalance of the capacitor voltage of each sub-module in the MMC.
  • the capacitance voltage of some sub-modules continues to rise, and the capacitance voltage of other sub-modules continues to decrease, which makes the national C unable to continue to operate stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

一种模块化多电平变流器的均压控制方法 技术领域
本发明涉及控制方法, 具体地讲, 涉及变流器的均压控制方法。 背景技术
模块化多电平变流器各桥臂中子模块充放电、 损耗和电容值等的差异会使其电容电 压出现不均衡, 危害变流器的正常运行, 为了保证模块化多电平变流器的正常运行, 传 统的子模块电容电压均衡控制方法为:
(1)快速监测子模块电容电压值并进行排序; (2)监测各桥臂电流方向, 判定其对桥 臂子模块的充放电情况; (3)在触发控制动作时, 如果桥臂电流使子模块充电, 则按照 电容电压由低到高的顺序投入相应数量的子模块:如果桥臂电流使子模块放电, 则按照 相反的顺序投入相应数量的子模块。
但是传统方法存在较大问题:
首先, 没有考虑子模块的初始投切状态, 每个电平变化时刻, 子模块投切的随意性 很大, 可能有大量子模块的投切状态需要改变。 若相单元中有子模块被切除, 则必须同 时投入相同数量的子模块以维持总直流电压恒定; ώ于电力电子器件的丌关特性存在差 异以及死区时间的引入, 不同子模块的技入和切除不可能完全同时, 这会造成总直流电 压波动; 投切状态需要改变的子模块越多, 则总直流电压的波动越剧烈。
其次, 子模块的投切频率太高, 使电力电子器件的开关频率和开关损耗较大, 降低 了模块化多电平换流器型直流输电***的效率。
再次, ώ于模块化多电平换流器型直流输电***的桥臂子模块数很多, 对子模块电 容电压的监测和排序需要占用较多的时间, 这会在触发控制中引入较大的延迟, 降低换 流器跟踪调制波的速度。 发明内容
本发明的目的在于, 针对现有技术存在的上述缺陷, 提供一种模块化多电平变流器 的均压控制方法, 该方法结合桥臂电流的方向和子模块的初始工作状态, 合理调整子模 块工作状态, 降低器件的开关频率。
本发明提供的一种模块化多电平变流器的均压控制方法,其特征在于包括以下歩骤: 1 ) 判断桥臂电流的方向为正方向还是负方向;
2 ) 找出处于输出状态的子模块中电容电压幅值最高的子模块,同时找出处于旁路状 态的子模块中电容电压幅值最低的子模块;
3 ) 判断是否对子模块进行投入或旁路操作。
本发明提供的第一优选的模块化多电平变流器的均压控制方法, 如果桥臂电流为正 方向,则桥臂电流对处于输出状态的子模块的电容进行充电, 则找出处于输出状态的子 模块中电容电压幅值最高的子模块,同时找出处于旁路状态的子模块中电容电压幅值最 低的子模块。
本发明提供的第二优选的模块化多电平变流器的均压控制方法, 在桥臂电流为 方 向的 ij提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模块转换为输出状态, 则 从处于旁路状态的子模块中将电容电压最低的子模块投入;
在桥臂电流为正方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最高的子模块旁路。
本发明提供的第三优选的模块化多电平变流器的均压控制方法, 在桥臂电流为正方 向的 提下, 如果不需要对子模块进行投入或旁路操作时, 判断处于输出状态的子模块 的电容电压的最大值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁 路状态子模块中电容电压幅值最低的进行状态对换, 如果没有超出限值, 则不需进行上 述操作。
本发明提供的第四优选的模块化多电平变流器的均压控制方法, 如果桥臂电流为负
7:;向, 则桥臂电流对处于输出状态的子模块的电容进行放电, 则找出处于输出状态的子 模块中电容电压幅值最低的子模块,同时找出处于旁路状态的子模块中电容电压幅值最 高的子模块。
本发明提供的第五优选的模块化多电平变流器的均压控制方法, 在桥臂电流为负方 向的前提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模块转换为输出状态, 则 从处于旁路状态的子模块中将电容电压最高的子模块投入;
在桥臂电流为负方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最低的子模块旁路。
本发明提供的第六优选的一种模块化多电平变流器的均压控制方法, 在桥臂电流为 负方向的 提下, 如果不需要对子模块进行投入或旁路操作时, 判断处于输出状态的子 模块的电容电压的最小值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处 于旁路状态子模块中电容电压幅值最高的进行状态对换, 如果没有超出限值, 则不需进 行上述操作。
本发明提供的第七优选的模块化多电平变流器的均压控制方法, 所述投入为将子模 块中的其中一个 IGBT导通。
本发明提供的第八优选的模块化多电平变流器的均压控制方法,所述 IGBT模块为处 于上方的 IGBT模块。
即上述方法为: 如果桥臂电流对子模块进行充电, 则找出处于输出状态的子模块中 电容电压幅值最高的子模块,同时找出处于旁路状态的子模块中电容电压幅值最低的子 模块; 如果桥臂电平输出增加, 则从处于旁路状态的子模块中将电容电压最低的子模块 投入; 如果桥臂电平输出减少, 则从处于输出状态的子模块中将电容电压最高的子模块 旁路; 如果桥臂电平输出不变, 则判断处于输出状态的子模块的电容电压的最大值是否 超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压 幅值最低的进行状态对换, 如果没有超出限值, 则保持各子模块工作状态不变;
如果桥臂电流对子模块进行放电, 则找出处于输出状态的子模块中电容电压幅值最 低的子模块,同时找出处于旁路状态的子模块中电容电压幅值最高的子模块; 如果桥臂 电平输出增加, 则从处于旁路状态的子模块中将电容电压最高的子模块投入; 如果桥臂 电平输出减少, 则从处于输出状态的子模块中将电容电压最低的子模块旁路; 如果桥臂 电平输出不变, 判断处于输出状态的子模块的电容电压的最小值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压幅值最高的进行状 态对换, 如果没有超出限值, 则保持各子模块工作状态不变。
与现有技术相比, 本发明提供的一种模块化多电平变流器的均压控制方法具有以下 优点:
1、 考虑了子模块的初始投切状态, 在桥臂电平输出变化时刻, 杜绝了子模块投切的 随意性, 降低了子模块的开关频率;
2、 在桥臂电平输出不变时, 可以通过子模块工作状态的改变, 保证子模块电容电压 幅值在一定范围内;
3、 在子模块状态转换时, 仅搜索电容电压幅值最大、 最小的子模块, 有效减少了桥 臂控制器的计算负荷, 可以提高桥臂控制器的控制周期, 减小了触发控制中的延迟, 加 快桥臂控制器对调制信号的跟踪速度, 提高变流器的运行性能;
4、 本方法提出的子模块电容电压均衡控制方法更适合应用于子模块数量众多的高 压大容量变流器领域。 附图说明- 图 1 : 本发明提供的一种模块化多电平变流器的均压控制方法 -投入状态的操作原 理图;
图 2: 本发明提供的一种模块化多电平变流器的均压控制方法 -旁路状态的操作原 理图;
图 3 : 本发明提供的一种模块化多电平变流器的均压控制方法的 MMC (模块化多电 平变流器) 结构示意图;
图中: Tl、 IGBT模块; T2、 IGBT模块, Dl、 续流二极管; D2、 续流二极管; (:、 电 容。 具体实施方式:
以下通过附图及实施例对本发明提供的一种模块化多电平变流器的均压控制方法做 进一歩更详细的说明。 实施例 1
本实施例的模块化多电平变流器的均压控制方法, 包括以下歩骤:
1 ) 判断桥臂电流的方向为正方向还是负方向;
2 ) 找出处于输出状态的子模块中电容电压幅值最高的子模块,同时找出处于旁路状 态的子模块中电容电压幅值最低的子模块;
3 ) 判断是否对子模块进行投入或旁路操作。
具体操作如下:
判断桥臂电流的方向;
如果桥臂电流为 ιΗ方向,则桥臂电流对处于输出状态的子模块的电容进行充电, 则找 出处于输出状态的子模块中电容电压幅值最高的子模块,同时找出处于旁路状态的子模 块中电容电压幅值最低的子模块;
在桥臂电流为正方向的前提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模 块转换为输出状态, 则从处于旁路状态的子模块中将电容电压最低的子模块投入; 在桥臂电流为正方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最高的子模块旁路; 在桥臂电流为正方向的前提下, 如果不需要对子模块进行投入或旁路操作时, 判断 处于输出状态的子模块的电容电压的最大值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压幅值最低的进行状态对换, 如果没有超 出限值, 则不需进行上述操作;
如果桥臂电流为负方向, 则桥臂电流对处于输出状态的子模块的电容进行放电, 则 找出处于输出状态的子模块中电容电压幅值最低的子模块,同时找出处于旁路状态的子 模块中电容电压幅值最高的子模块;
在桥臂电流为负方向的前提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模 块转换为输出状态, 则从处于旁路状态的子模块中将电容电压最高的子模块投入; 在桥臂电流为负方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最低的子模块旁路; 在桥臂电流为负方向的前提下, 如果不需要对子模块进行投入或旁路操作时, 判断 处于输出状态的子模块的电容电压的最小值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压幅值最高的进行状态对换,如果没有超 出限值, 则不需进行上述操作。
投入为将子模块中的其中一个 IGBT导通,如图 1所示, 即将图 1中处于上方的 IGBT 模块导通。
模块化多电平变流器是一种较新的多电平电压源变流器, 其操作结构如图 1所示, ¾变流器可以在交流侧输出达到很高的电平数, 适合用于高压大功率变换领域。
在运行中, 通过控制子模块中各开关器件的开通和关断, 子模块呈现不同的工作状 态。 当子模块中 T1导通、 T2关断时, 桥臂电流对子模块电容充、 放电, 此时子模块处 于输出状态。 当子模块中 T1关断、 T2导通时, 子模块电容被旁路, 此时子模块处于旁 路状态。 电流正方向如图 1所示, 若桥臂电流为正, 处于输出状态的子模块的电容被充 电:反之, 处于输出状态的子模块的电容被放电。
如图 3所示, 模块化多电平变流器 (Modular Multilevel Converters, MMC) 由六 个桥臂组成, 每个桥臂 ώ η个串联的子模块组成, 每个子模块的结构如图 1所示, 在正 常运行过程中, 桥臂控制器根据 MMC的调制算法控制桥臂中各子模块的工作状态。 在正常工作过程中, 每个 MMC子模块的工作状态有两种, 如图 1、 图 2所示。
输出状态: Τ, (子模块中上桥臂 IGBT) 丌通, L (子模块中下桥臂 IGBT) 关断 在这种状态下, 当电流 向子模块内部流动时 (如图 1 左图所示), 将通过续流二极管 D1流入电容, 对电容充电; 当电流 ζ'流出子模块时 (如图 1右图所示), 电流将通过 T1 为电容放电。 不管电流 处于何种流通方向, 子模块的输出端电压都表现为电容电压, 即"" 。 因此这种工作状态是子模块电路的一种输出状态。
旁路状态: L (子模块中上桥臂 IGBT) 关断, L (子模块中下桥臂 IGBT) 开通 在这种状态下, 当电流 向子模块内部流动时 (如图 2左图所示), 电流将通过 T2; 当 电流 7'流出子模块时, 电流将通过续流二极管 D2。 对于这种状态, 不管电流 方向如何, 子模块的输出电压都将为零, 即"' ' = ()
设 MMC桥臂电流正方向, 如图 3所示, 当桥臂电流为正时, 处于输出状态的子模块 电容被充电, 电容电压幅值升高; 当桥臂电流为负时, 处于输出状态的子模块电容被放 电, 电容电压幅值降低。
在 TH常运行过程中, 每个子模块处于输出状态的时间不同, 而且在输出状态时桥臂 电流的幅值大小也不相同。 因此每个子模块电容电压的幅值将各不相同。 这将引起 MMC 中各子模块电容电压的不平衡, 有些子模块的电容电压持续升高, 另一些子模块的电容 电压持续降低, 进而使得國 C无法持续稳定的运行。
通过國 C的均压控制可以保证在 MMC JH常运行过程中各子模块的电容电压均保持在 一定范围内, 进而保证 MMC的持续可靠运行。
最 应当说明的是: 以上实施例仅川以说明本发明的技术方案而非对其限制, 尽管参照上述实 施例对本发明进行了详细的说明, 所属领域的^通技术人员应当理解: 技术人员阅读本中 ii 兑明 15 后依然可以对本发明的 A.体实施方式进 ^修改成者^同替换, 但这些修改或变更均未脱离本发明中 待批的权利耍求保护范闱之内。

Claims

权 利 要 求
1、 一种模块化多电平变流器的均压控制方法,其特征在于包括以下歩骤:
1 ) 判断桥臂电流的方向为正方向还是负方向;
2 ) 找出处于输出状态的子模块中电容电压幅值最高的子模块,同时找出处于旁路状 态的子模块中电容电压幅值最低的子模块;
3 ) 判断是否对子模块进行投入或旁路操作。
2、 根据权利要求 1所述的模块化多电平变流器的均压控制方法,其特征在于: 如果桥臂电流为正方向, 则桥臂电流对处于输出状态的子模块的电容进行充电, 则 找出处于输出状态的子模块中电容电压幅值最高的子模块, 同时找出处于旁路状态的子 模块中电容电压幅值最低的子模块。
3、 根据权利要求 2所述的模块化多电平变流器的均压控制方法,其特征在于: 在桥臂电流为正方向的前提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模 块转换为输出状态, 则从处于旁路状态的子模块中将电容电压最低的子模块投入; 在桥臂电流为正方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最高的子模块旁路。
4、 根据权利要求 3所述的模块化多电平变流器的均压控制方法,其特征在于- 在桥臂电流为正方向的前提下, 如果不需要对子模块进行投入或旁路操作时, 判断 处于输出状态的子模块的电容电压的最大值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压幅值最低的进行状态对换,如果没有超 出限值, 则不需进行上述操作。
5、 根据权利要求 1所述的模块化多电平变流器的均压控制方法,其特征在于: 如果桥臂电流为负方向, 则桥臂电流对处于输出状态的子模块的电容进行放电, 则 找出处于输出状态的子模块中电容电压幅值最低的子模块,同时找出处于旁路状态的子 模块中电容电压幅值最高的子模块。
6、 根据权利要求 1所述的模块化多电平变流器的均压控制方法,其特征在于: 在桥臂电流为负方向的 提下, 如果桥臂电平输出增加, 即将处于旁路状态的子模 块转换为输出状态, 则从处于旁路状态的子模块中将电容电压最高的子模块投入; 在桥臂电流为负方向的前提下, 如果桥臂电平输出减少, 即将处于输出状态的子模 块转换为旁路状态, 则从处于输出状态的子模块中将电容电压最低的子模块旁路。
7、 根据权利要求 1所述的模块化多电平变流器的均压控制方法,其特征在于: 在桥臂电流为负方向的前提下, 如果不需要对子模块进行投入或旁路操作时, 判断 处于输出状态的子模块的电容电压的最小值是否超出给定的限值, 如果超出给定限值, 则将此子模块与处于旁路状态子模块中电容电压幅值最高的进行状态对换, 如果没有超 出限值, 则不需进行上述操作。
8、 根据权利要求 1或 3或 6所述的模块化多电平变流器的均压控制方法,其特征在 于所述投入为将子模块中的其中一个 IGBT模块导通。
9、 根据权利要求 8 所述的模块化多电平变流器的均压控制方法,其特征在于所述 IGBT模块为处于上方的 IGBT模块。
PCT/CN2011/001813 2011-03-21 2011-10-31 一种模块化多电平变流器的均压控制方法 WO2012126160A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/005,266 US20140002048A1 (en) 2011-03-21 2011-10-31 Voltage balancing control method for modular multilevel converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110067984.1A CN102130619B (zh) 2011-03-21 2011-03-21 一种模块化多电平变流器的均压控制方法
CN201110067984.1 2011-03-21

Publications (1)

Publication Number Publication Date
WO2012126160A1 true WO2012126160A1 (zh) 2012-09-27

Family

ID=44268537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001813 WO2012126160A1 (zh) 2011-03-21 2011-10-31 一种模块化多电平变流器的均压控制方法

Country Status (3)

Country Link
US (1) US20140002048A1 (zh)
CN (1) CN102130619B (zh)
WO (1) WO2012126160A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
EP3046247A4 (en) * 2013-09-10 2017-06-14 National Institute of Advanced Industrial Science and Technology Power conversion circuit and device
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
CN114024458A (zh) * 2021-11-08 2022-02-08 华北电力大学(保定) 电容电压均衡控制方法及换流器

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9502960B2 (en) 2010-11-30 2016-11-22 Technische Universitaet Muenchen Multi-level converter topology with the possibility of dynamically connecting individual modules in series and in parallel
CN102130619B (zh) * 2011-03-21 2014-07-02 中国电力科学研究院 一种模块化多电平变流器的均压控制方法
CN102355154B (zh) * 2011-09-19 2015-04-29 中电普瑞科技有限公司 一种级联型变流器的保护方法
CN102420533B (zh) * 2011-12-04 2013-12-25 中国科学院电工研究所 一种混合多电平换流电路拓扑结构及其控制方法
US9099938B2 (en) * 2011-12-16 2015-08-04 Empower Micro Systems Bi-directional energy converter with multiple DC sources
KR101221159B1 (ko) * 2011-12-30 2013-01-10 연세대학교 산학협력단 멀티레벨 컨버터의 제어방법
DE102012202173B4 (de) * 2012-02-14 2013-08-29 Siemens Aktiengesellschaft Verfahren zum Betrieb eines mehrphasigen, modularen Multilevelstromrichters
WO2014023334A1 (en) 2012-08-07 2014-02-13 Abb Ab Method and device for controlling a multilevel converter
US20150288287A1 (en) * 2012-09-21 2015-10-08 Aukland Uniservices Limited Modular multi-level converters
WO2014082655A1 (en) 2012-11-27 2014-06-05 Abb Technology Ltd A multilevel converter with cells being selected based on phase arm current
CN103036452B (zh) * 2012-12-10 2015-03-25 国网智能电网研究院 一种基于全控器件的电压源换流器的子模块单元
CN103066567B (zh) * 2012-12-11 2014-03-19 国网智能电网研究院 一种基于投切数的分层分段式电容平衡控制方法
CN103078539B (zh) * 2013-01-15 2015-02-11 南京南瑞继保电气有限公司 一种模块化多电平换流器的充电方法
EP2762347A1 (de) * 2013-01-31 2014-08-06 Siemens Aktiengesellschaft Modularer Hochfrequenz-Umrichter und Verfahren zum Betrieb desselben
CN103199729B (zh) * 2013-04-10 2016-01-20 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
CN103259432B (zh) * 2013-04-11 2015-05-13 国家电网公司 一种三相全桥模块化多电平换流器桥臂电容平衡控制方法
CN103199719B (zh) * 2013-04-17 2015-06-24 华北电力大学 一种模块化多电平换流器的子模块电容电压优化均衡方法
CN103633870A (zh) * 2013-11-19 2014-03-12 国家电网公司 一种模块化多电平换流器的子模块电容电压平衡优化方法
CN103701343B (zh) * 2013-12-21 2017-01-11 华南理工大学 三相桥式模块单元串联组合高压变换器
CN103701350B (zh) * 2014-01-13 2016-01-20 清华大学 低频工况下模块化多电平变流器电容电压波动抑制方法
US9966874B2 (en) * 2014-01-15 2018-05-08 Virginia Tech Intellectual Properties, Inc. Power-cell switching-cycle capacitor voltage control for modular multi-level converters
WO2015136552A2 (en) * 2014-03-12 2015-09-17 Indian Institute Of Technology Bombay A modular multilevel converter (mmc) sub-module structure for reducing switching losses
CN103929081B (zh) * 2014-04-14 2016-08-24 中国西电电气股份有限公司 一种用于模块化多电平换流器的子模块均压方法
CN103956925B (zh) * 2014-04-28 2016-04-06 浙江大学 一种混杂式mmc电容电压的均衡控制方法
CN103973088B (zh) * 2014-05-22 2017-01-04 中国南方电网有限责任公司电网技术研究中心 基于峰值预测的模块化多电平换流器桥臂间电压平衡方法
CN104218833A (zh) * 2014-05-26 2014-12-17 长沙理工大学 一种灵活的模块化多电平换流器子模块电容均压调制方法
CN104038060B (zh) * 2014-06-03 2016-08-24 中国科学院电工研究所 柔性直流输电***模块化多电平换流器均压方法
CN104038052B (zh) * 2014-06-23 2016-07-06 上海交通大学 模块化多电平换流器电压均衡控制方法
KR101608280B1 (ko) 2014-07-15 2016-04-01 전남대학교산학협력단 하프 레벨 그룹을 포함하는 모듈형 멀티레벨 컨버터의 스위칭 방법
US9966777B2 (en) 2014-07-17 2018-05-08 Nec Corporation Modular multilevel converter for hybrid energy storage
DE102014110410A1 (de) 2014-07-23 2016-01-28 Universität der Bundeswehr München Modulares Energiespeicher-Direktumrichtersystem
US9537421B2 (en) * 2014-08-22 2017-01-03 General Electric Company Multilevel converter
CN104393777B (zh) * 2014-11-26 2016-08-17 华北电力大学 半桥模块化多电平变换器子模块电压控制方法
EP3032680A1 (en) 2014-12-12 2016-06-15 ABB Technology AG Standby and charging of modular multilevel converters
JP6370702B2 (ja) * 2014-12-24 2018-08-08 株式会社東芝 電力変換装置
CN104702114B (zh) * 2015-03-05 2017-07-18 清华大学 一种开关电容接入的高频链双向直流变压器及其控制方法
TWI530082B (zh) * 2015-03-06 2016-04-11 國立清華大學 可允許電感值變化之三相模組化多階換流器電流控制方法
CN104811069B (zh) * 2015-05-13 2017-07-21 山东大学 一种模块化多电平逆变器的预测控制方法
CN104917406B (zh) * 2015-05-27 2017-05-24 浙江大学 一种适用于mmc的基于共模注入的最近电平逼近调制方法
KR102020323B1 (ko) 2015-07-02 2019-11-04 엘에스산전 주식회사 모듈형 멀티 레벨 컨버터 및 모듈형 멀티 레벨 컨버터의 전압 밸런싱 제어 방법
CN105006972B (zh) * 2015-07-14 2018-01-05 国家电网公司 一种高压直流mmc在基频调制下的均压方法
CN105245087B (zh) * 2015-10-26 2017-11-14 南方电网科学研究院有限责任公司 基于分类的模块化多电平换流器电容均压控制方法
CN105375801B (zh) * 2015-10-30 2017-11-14 南方电网科学研究院有限责任公司 一种模块化多电平换流器均压控制方法
CN105426579B (zh) * 2015-11-02 2018-10-19 许继电气股份有限公司 一种模块化多电平换流器宽频建模方法
KR101983524B1 (ko) * 2015-12-18 2019-05-28 에이비비 슈바이쯔 아게 델타 구성을 갖는 모듈형 멀티레벨 컨버터에서의 전압 밸런싱
CN105429497B (zh) * 2016-01-07 2017-12-08 江苏省电力公司电力科学研究院 优化的mmc子模块电容电压均衡控制方法
CN105827106B (zh) * 2016-03-11 2018-08-10 广东明阳龙源电力电子有限公司 一种柔性直流输电***中mmc零冲击启动并网方法
CN105811793B (zh) * 2016-04-26 2018-07-17 西安交通大学 基于自取能电源跳频控制的模块化多电平换流器均压方法
CN105897025A (zh) * 2016-05-05 2016-08-24 上海电机学院 一种模块化多电平变流器子模块电压均衡方法
FR3053854B1 (fr) * 2016-07-05 2018-08-17 Supergrid Institute Module de controle de l'energie interne d'un convertisseur
CN106655348B (zh) * 2016-11-21 2019-06-14 许继电源有限公司 基于级联储能变流器的电池组充电控制方法和控制装置
CN107453633B (zh) * 2017-08-03 2019-04-12 华中科技大学 一种mmc直流电压外环控制器及生成方法
CN107528488B (zh) * 2017-08-21 2019-08-06 许继集团有限公司 柔性直流输电换流阀子模块开关频率优化方法及控制***
CN107612396B (zh) * 2017-09-27 2019-10-18 华北电力大学(保定) Mmc飞跨电容子模块电容电压平衡控制方法
CN108933446B (zh) * 2018-08-22 2021-02-19 山东建筑大学 一种混合mmc换流器单元投退时的子模块稳压控制方法
CN109274285B (zh) * 2018-10-24 2020-04-03 南方电网科学研究院有限责任公司 一种混合型模块化多电平换流器的电容电压平衡方法
EP3876410A1 (de) * 2020-03-03 2021-09-08 Siemens Aktiengesellschaft Stromrichter und regelungsverfahren dafür
US11515818B2 (en) * 2020-03-25 2022-11-29 King Fahd University Of Petroleum And Minerals Common-mode voltage reduction of a SiC based dual T-type drive system
US11682968B2 (en) * 2020-04-09 2023-06-20 Virginia Tech Intellectual Properties, Inc. Control of power converters having integrated capacitor blocked transistor cells
CN111917318B (zh) * 2020-07-08 2021-12-10 南京南瑞继保电气有限公司 一种模块化多电平换流器的桥臂电流方向确定方法
CN112600451B (zh) * 2020-11-17 2021-11-16 西安西电电力***有限公司 一种柔直换流阀功率模块电容电压均压方法
CN113138351B (zh) * 2021-04-20 2022-09-06 东南大学 基于子模块投入时间的模块化多电平变换器电容监测方法
CN115842484B (zh) * 2023-02-21 2023-05-02 湖南大学 一种单相四桥臂模块化多电平变换器及其调控方法
CN117977919B (zh) * 2024-03-29 2024-06-04 南昌工程学院 模块化多电平换流器高频抑制方法和柔性直流输电***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090102436A1 (en) * 2007-10-18 2009-04-23 Gerardo Escobar Valderrama Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
US20090196078A1 (en) * 2008-02-06 2009-08-06 Rainer Gruber Static converter
CN101860203A (zh) * 2010-05-28 2010-10-13 浙江大学 模块化多电平换流器型直流输电***的优化均压控制方法
US20110019449A1 (en) * 2009-07-21 2011-01-27 Shuji Katoh Power converter apparatus
CN102130619A (zh) * 2011-03-21 2011-07-20 中国电力科学研究院 一种模块化多电平变流器的均压控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8892791B2 (en) * 2003-12-05 2014-11-18 Keysight Technologies, Inc. Communications system for implementation of synchronous, multichannel, galvanically isolated instrumentation devices
DK2122817T3 (en) * 2007-01-17 2018-03-12 Siemens Ag Control of a phase module branch of a multi-level converter
DE102008014898B4 (de) * 2008-03-19 2018-09-27 Siemens Aktiengesellschaft Verfahren zur Steuerung eines mehrphasigen Stromrichters mit verteilten Energiespeichern bei niedrigen Ausgangsfrequenzen
EP2416486B1 (en) * 2009-03-30 2018-05-30 Hitachi, Ltd. Power conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090102436A1 (en) * 2007-10-18 2009-04-23 Gerardo Escobar Valderrama Controller for the three-phase cascade multilevel converter used as shunt active filter in unbalanced operation with guaranteed capacitors voltages balance
US20090196078A1 (en) * 2008-02-06 2009-08-06 Rainer Gruber Static converter
US20110019449A1 (en) * 2009-07-21 2011-01-27 Shuji Katoh Power converter apparatus
CN101860203A (zh) * 2010-05-28 2010-10-13 浙江大学 模块化多电平换流器型直流输电***的优化均压控制方法
CN102130619A (zh) * 2011-03-21 2011-07-20 中国电力科学研究院 一种模块化多电平变流器的均压控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING, GUANJUN ET AL.: "Submodule Capacitance Parameter and Voltage Balancing Scheme of aNew Multilevel VSC Modular.", PROCEEDINGS OF THE CSEE., vol. 29, no. 30, 25 October 2009 (2009-10-25), pages 1 - 6 *
LIU, ZHONGQI ET AL.: "VSC-HVDC System Based on Modular Multilevel Converters.", AUTOMATION OF ELECTRIC POWER SYSTEMS., vol. 34, no. 2, 25 January 2010 (2010-01-25), pages 53 - 58 *
MAKOTO HAGIWARA ET AL.: "Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters.", IEEE TRANSACTIONS ON POWER ELECTRONICS., vol. 24, no. 7, July 2009 (2009-07-01), pages 1737 - 1746 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
EP3046247A4 (en) * 2013-09-10 2017-06-14 National Institute of Advanced Industrial Science and Technology Power conversion circuit and device
US9774241B2 (en) 2013-09-10 2017-09-26 National Institute Of Advanced Industrial Science And Technology Power conversion circuit and device
US10700588B2 (en) 2014-03-26 2020-06-30 Solaredge Technologies Ltd. Multi-level inverter
US10680506B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US10680505B2 (en) 2014-03-26 2020-06-09 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10404154B2 (en) 2014-03-26 2019-09-03 Solaredge Technologies Ltd Multi-level inverter with flying capacitor topology
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10153685B2 (en) 2014-03-26 2018-12-11 Solaredge Technologies Ltd. Power ripple compensation
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
CN114024458A (zh) * 2021-11-08 2022-02-08 华北电力大学(保定) 电容电压均衡控制方法及换流器
CN114024458B (zh) * 2021-11-08 2023-10-10 华北电力大学(保定) 电容电压均衡控制方法及换流器

Also Published As

Publication number Publication date
CN102130619B (zh) 2014-07-02
US20140002048A1 (en) 2014-01-02
CN102130619A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2012126160A1 (zh) 一种模块化多电平变流器的均压控制方法
Gupta et al. A novel multilevel inverter based on switched DC sources
JP5002706B2 (ja) 電力変換装置
CN101847939B (zh) 用于控制单相dc/ac转换器的方法和转换器装置
RU2676226C1 (ru) Способ модуляции сигнала управления модульного многоуровневого преобразователя и способ изоляции повреждения
CN109302119B (zh) 全周期低共模电压运行的控制方法、控制器及***
US8908405B2 (en) Snubber circuit and inverter with the same
CN109149986B (zh) 一种类三电平混合式模块化多电平变换器及其控制方法
WO2021022953A1 (zh) 基于可控关断的混合式换流器及其控制方法
US10601303B2 (en) Control method and device for circuit with a bridge arm of a switch
EP2536016B1 (en) Switching branch for three-level rectifier, and three-phase three-level rectifier
CN108539987B (zh) 一种模块化多电平直流固态变压器及其充电控制方法
TW201703418A (zh) 五電平變換裝置
CN105429495A (zh) 一种使用多态子模块的模块化多电平变换器
CN107645249A (zh) 一种基于载波移相调制的多电平变换器变频运行控制方法
TWI539736B (zh) 五電平變換裝置
JP5710387B2 (ja) 電力変換装置
CN112311273A (zh) 一种基于谐振回路的混合式换流器拓扑结构及其控制方法
JP7021623B2 (ja) マルチレベル電力変換装置
CN107968560B (zh) 一种中高频模块化多电平换流器死区控制方法
CN113054673B (zh) 一种三相不平衡换相开关
CN112886840B (zh) 一种模块化多电平变换器损耗优化控制方法
JP7276006B2 (ja) スナバ回路および電力変換装置
Wang et al. A VSFPWM method of three-phase CSI for EMI mitigation based on DC current ripple prediction
CN106787824B (zh) 子模块电路及控制方法和模块化多电平换流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005266

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861398

Country of ref document: EP

Kind code of ref document: A1