WO2012124092A1 - Microimaging probe and manufacturing method thereof - Google Patents

Microimaging probe and manufacturing method thereof Download PDF

Info

Publication number
WO2012124092A1
WO2012124092A1 PCT/JP2011/056301 JP2011056301W WO2012124092A1 WO 2012124092 A1 WO2012124092 A1 WO 2012124092A1 JP 2011056301 W JP2011056301 W JP 2011056301W WO 2012124092 A1 WO2012124092 A1 WO 2012124092A1
Authority
WO
WIPO (PCT)
Prior art keywords
grin lens
image fiber
sheath
end surface
image
Prior art date
Application number
PCT/JP2011/056301
Other languages
French (fr)
Japanese (ja)
Inventor
元 虫明
寛 八尾
実 小山内
鈴木 太郎
Original Assignee
東洋ガラス株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社, 国立大学法人東北大学 filed Critical 東洋ガラス株式会社
Priority to PCT/JP2011/056301 priority Critical patent/WO2012124092A1/en
Publication of WO2012124092A1 publication Critical patent/WO2012124092A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts

Definitions

  • the present invention relates to a micro-imaging probe that can be inserted into a very fine portion to acquire an image.
  • an optical probe for observing the inside of a body cavity of a living body and performing biopsy or treatment of a tissue in the body cavity.
  • Such an optical probe is disclosed in, for example, the following patent documents.
  • the tip diameter of such an optical probe is several mm to tens of mm even if it is thin.
  • a method using a two-photon excitation confocal microscope uses a near-infrared ultrashort pulse laser as an excitation light source for the fluorescent dye, so that the excitation light of the fluorescent dye reaches the deep part (several hundred ⁇ m) of the living body, and as a result, deep imaging is possible. Is the method.
  • the conventional optical probe Since the conventional optical probe has a thin tip portion with a diameter of several millimeters to several tens of millimeters, its use is limited and is not suitable for, for example, observation of brain cells. Although it is possible to directly puncture a living body with an image fiber having a diameter of about 340 to 400 ⁇ m, it is highly possible that the tissue is in contact with the distal end surface of the image fiber and damaged at the time of puncture. It is not preferable.
  • the excitation light of the fluorescent dye reaches the deep part of the living body, and as a result, It is a method that imaging is possible.
  • the distance that the light reaches is at most several hundred ⁇ m deep, and even when a mouse or rat is used, the deep part of the cerebrum cannot be imaged. Can only image near the surface of the cerebral cortex.
  • it is necessary to fix an animal under the objective lens of a microscope it cannot be applied to an animal that is moving freely.
  • the near-infrared ultrashort pulse laser is expensive, the cost of the system is very high, and it cannot be expected to spread to the general public.
  • a very fine micro-imaging probe it is possible not only to select the depth to be observed by inserting the probe into the brain, but also to connect with the microscope using a fiber and freely Light measurement and light stimulation are possible even for animals that act. Also, the cost can be reduced to each stage as compared with the method using the two-photon excitation confocal microscope.
  • the micro-imaging probe can not only elucidate the information processing mode in the neural circuit of the brain, but also enables observation of each part in the living body with minimal burden on the subject.
  • the object of the present invention is to develop a novel micro-imaging probe that is much finer than conventional ones.
  • the present invention is a micro-imaging probe having an image fiber and a GRIN lens fixed to the front end thereof, wherein the front end surface of the image fiber and the rear end surface of the GRIN lens face each other with a predetermined distance therebetween. is there.
  • the GRIN lens (Graded Index lens) is a cylindrical lens that exhibits a lens action due to a refractive index distribution in the radial direction.
  • the image fiber has a large number of pixel fibers in the core, and each pixel fiber constitutes one pixel.
  • a GRIN lens that is thinner than the image fiber because the diameter of the probe tip can be reduced.
  • the diameter of the sheath tube at the tip of the probe can be about 200 to 400 ⁇ m.
  • the image fiber one having a pixel (pixel fiber) number of 10000 or more and a diameter of about 340 to 400 ⁇ m can be used. Therefore, even the thickest portion of the sheath can have a diameter of 600 ⁇ m or less.
  • the present invention is such that a GRIN lens whose outer peripheral surface is covered with a sheath tube is inserted and fixed on the distal end side of the cylindrical sheath, and an image fiber is inserted and fixed on the rear end side of the sheath.
  • Item 2 The microimaging probe according to Item 1.
  • the present invention also includes a step of inserting a GRIN lens into the sheath tube and covering the outer periphery with the sheath tube; Polishing the sheath tube with the GRIN lens to adjust the length of the GRIN lens;
  • a method of manufacturing a micro-imaging probe comprising: a step of inserting and fixing a GRIN lens having a cylindrical sheath covered with a sheath tube on a distal end side and a distal end portion of an image fiber on a rear end side.
  • the GRIN lens can be covered with a sheath tube before being attached to the sheath, and the sheath tube and the GRIN lens can be polished together to prevent damage to the lens during polishing. While polishing in this way, the GRIN lens with a sheath tube is temporarily fixed to the sheath to confirm the coupling state to the image fiber (the sharpness of the image to be sent), and polishing is continued until the coupling state is the best, and then the sheath The GRIN lens with tube is completely fixed to the sheath.
  • the micro-imaging probe of the present invention can have a diameter of about 250 to 300 ⁇ m thinner than the image fiber and a diameter of the thickest sheath portion of about 440 to 600 ⁇ m at the distal end, which is much thinner than conventional probes.
  • the degree of invasiveness at the time of entry is low, and it is possible to observe each tissue in the living body while minimizing the burden on the subject.
  • it is possible to observe a living tissue that is distant from the tip surface of the probe it is possible to observe a tissue that is hardly damaged during insertion.
  • FIG. 1 is a cross-sectional explanatory view of a micro imaging probe 1 of an embodiment.
  • the micro imaging probe 1 includes a GRIN lens 2, a sheath tube 3, an image fiber 4 and a sheath 5.
  • the GRIN lens 2 has an outer diameter of 125 ⁇ m, is inserted into a zirconia sheath tube 3 having an outer diameter of 250 ⁇ m, is bonded and fixed, and the outer peripheral surface is covered with the sheath tube.
  • the image fiber 4 has 10,000 pixels and an outer diameter of 400 ⁇ m.
  • the sheath 5 is made of zirconia and has an outer diameter of 600 ⁇ m.
  • the GRIN lens 2 covered with the sheath tube 3 is inserted into the distal end side of the sheath 5 and bonded and fixed, and the image fiber 4 is inserted into the rear end side and bonded and fixed.
  • the material of the sheath tube and the sheath may be metal or glass, but it is desirable to make the material from the viewpoint of preventing stray light and from the viewpoint of strength.
  • the length is adjusted by polishing. At this time, it is temporarily fixed to the sheath 5 after being polished to some extent, and confirms the combined state of the GRIN lens and the image fiber (the sharpness of the image to be sent), polished until the combined state is the best, temporarily fixed to the sheath, Repeat the check of the connection status.
  • FIG. 2 is an explanatory diagram of the engagement state of the GRIN lens and the image fiber.
  • the light 8 from the object is incident on the front end surface of the GRIN lens 2, travels while meandering in the lens with a sine curve, exits from the rear end surface, and enters the image fiber on the front end surface. Thereafter, the light travels inside the image fiber 4 and exits from the rear end face.
  • the length of the GRIN lens 2 is related to the distance L2 between the rear end surface of the GRIN lens and the front end surface of the image fiber and the magnification m of the image.
  • two 1 pitches are included in the intermediate portion of the GRIN lens.
  • One pitch is 1 ⁇ 2 of the meandering period of light, and these two pitches are arbitrary regions and may be omitted, but an arbitrary number of pitches can be inserted in consideration of handling.
  • the magnification m is preferably set to be approximately the same as the ratio of the core diameter of the image fiber 4 to the diameter of the GRIN lens 2.
  • the microimaging probe 1 can be used as shown in FIG. 4, for example. As shown in the figure, the tip 1 of the micro-imaging probe 1 is inserted into a subject 7 (for example, a mouse brain), and the rear end of the image fiber 4 is coupled to the objective lens 6 of the microscope. Thereby, the tissue of the subject 7 can be imaged with a microscope.
  • a subject 7 for example, a mouse brain
  • the micro-imaging probe of the present invention can be used for observation in the experimental animal brain in basic research. Further, for example, by replacing the deep brain stimulation in the clinic, which has been conventionally performed by electrical stimulation, with light stimulation, it becomes possible to perform stimulation at a pinpoint in which nerve cells are specified. Moreover, application as a purely optical microendoscope (catheter etc.) is also possible. Furthermore, it can also be used as an industrial endoscope for visually monitoring a finely processed portion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)

Abstract

This microimaging probe is substantially more compact than conventional microimaging probes. A GRIN lens is fixed on the front end side of an image fiber such that the front end surface of the image fiber and the back end surface of the GRIN lens face one another at a prescribed interval. By allowing the front end surface of the image fiber and the back end surface of the GRIN lens to face one another at a prescribed interval, an enlarged image is formed on the front end surface of an image fiber of a different diameter, and images can be efficiently transmitted.

Description

マイクロイメージングプローブ及びその製造方法Microimaging probe and manufacturing method thereof
 本発明は、非常に微細な部分に挿入して画像を取得できるマイクロイメージングプローブに関する。 The present invention relates to a micro-imaging probe that can be inserted into a very fine portion to acquire an image.
 従来、生体の体腔内を観察し、また体腔内の組織の生検や治療を行なうための光プローブが知られている。このような光プローブは、例えば下記特許文献などに開示されている。このような光プローブの先端部直径は細いものでも数mmないし十数mmであった。 Conventionally, an optical probe for observing the inside of a body cavity of a living body and performing biopsy or treatment of a tissue in the body cavity is known. Such an optical probe is disclosed in, for example, the following patent documents. The tip diameter of such an optical probe is several mm to tens of mm even if it is thin.
 また、脳の神経回路における情報処理様式を解明するため、二光子励起共焦点顕微鏡を用いた方法がある。この方法は、蛍光色素の励起光源として近赤外超短パルスレーザーを用いているため、生体の深部(数百μm)まで蛍光色素の励起光が到達し、結果として深部のイメージングができる、という方法である。 Also, there is a method using a two-photon excitation confocal microscope to elucidate the information processing mode in the neural circuit of the brain. This method uses a near-infrared ultrashort pulse laser as an excitation light source for the fluorescent dye, so that the excitation light of the fluorescent dye reaches the deep part (several hundred μm) of the living body, and as a result, deep imaging is possible. Is the method.
特開2010-142422JP2010-142422 特開2008-307397JP2008-307397
 前記従来の光プローブは、先端部の直径が細いものでも数mmないし十数mmであるので、その用途は限定され、例えば脳細胞の観察などには不向きである。直径340~400μm程度のイメージファイバを生体に直接穿刺して観察することも可能であるが、この場合、イメージファイバ先端面に接触している、穿刺時にダメージを受けた組織である可能性が高く、好ましくない。 Since the conventional optical probe has a thin tip portion with a diameter of several millimeters to several tens of millimeters, its use is limited and is not suitable for, for example, observation of brain cells. Although it is possible to directly puncture a living body with an image fiber having a diameter of about 340 to 400 μm, it is highly possible that the tissue is in contact with the distal end surface of the image fiber and damaged at the time of puncture. It is not preferable.
 前記の二光子励起共焦点顕微鏡を用いた方法は、蛍光色素の励起光源として近赤外超短パルスレーザーを用いているため、生体の深部まで蛍光色素の励起光が到達し、結果として深部のイメージングができる、という方法である。しかし、この方法では光が到達する距離は長くても数百μmの深さまでであり、マウスあるいはラットを用いた場合でも、大脳の深部をイメージングすることはできないし、サルなど霊長類に対しては、大脳皮質の表層付近しかイメージングすることはできない。また、顕微鏡の対物レンズ下に動物を固定する必要があるため、自由行動中の動物に対しては適用できない。さらに、近赤外超短パルスレーザーが高価であることから、システムのコストは非常に高額となり、一般への普及は期待できない。 Since the method using the two-photon excitation confocal microscope uses a near-infrared ultrashort pulse laser as an excitation light source of the fluorescent dye, the excitation light of the fluorescent dye reaches the deep part of the living body, and as a result, It is a method that imaging is possible. However, with this method, the distance that the light reaches is at most several hundred μm deep, and even when a mouse or rat is used, the deep part of the cerebrum cannot be imaged. Can only image near the surface of the cerebral cortex. Moreover, since it is necessary to fix an animal under the objective lens of a microscope, it cannot be applied to an animal that is moving freely. Furthermore, since the near-infrared ultrashort pulse laser is expensive, the cost of the system is very high, and it cannot be expected to spread to the general public.
 非常に微細なマイクロイメージングプローブが開発されれば、脳にプローブを刺入することにより、観察対象となる深さを自由に選ぶことができるだけでなく、ファイバを用いて顕微鏡と結合し、自由に行動する動物に対しても光計測・光刺激が可能である。また、コストも前記二光子励起共焦点顕微鏡を用いた方法に比べて各段に低減できる。 If a very fine micro-imaging probe is developed, it is possible not only to select the depth to be observed by inserting the probe into the brain, but also to connect with the microscope using a fiber and freely Light measurement and light stimulation are possible even for animals that act. Also, the cost can be reduced to each stage as compared with the method using the two-photon excitation confocal microscope.
 また、マイクロイメージングプローブは、脳の神経回路における情報処理様式の解明のみならず、被験者の負担を最小限にして生体内各部の観察が可能となる。 In addition, the micro-imaging probe can not only elucidate the information processing mode in the neural circuit of the brain, but also enables observation of each part in the living body with minimal burden on the subject.
 本発明は、従来に比べて格段に微細な、新規なマイクロイメージングプローブを開発することを課題とするものである。 The object of the present invention is to develop a novel micro-imaging probe that is much finer than conventional ones.
〔請求項1〕
 本発明は、イメージファイバと、その先端側に固定したGRINレンズを有し、前記イメージファイバの先端面とGRINレンズの後端面が所定間隔離れて対向していることを特徴とするマイクロイメージングプローブである。
[Claim 1]
The present invention is a micro-imaging probe having an image fiber and a GRIN lens fixed to the front end thereof, wherein the front end surface of the image fiber and the rear end surface of the GRIN lens face each other with a predetermined distance therebetween. is there.
 GRINレンズ(Graded Indexレンズ)は、半径方向の屈折率分布によりレンズ作用を呈する円柱形レンズである。
 イメージファイバはコアに多数の画素ファイバを有し、各画素ファイバが1画素を構成するものである。
The GRIN lens (Graded Index lens) is a cylindrical lens that exhibits a lens action due to a refractive index distribution in the radial direction.
The image fiber has a large number of pixel fibers in the core, and each pixel fiber constitutes one pixel.
 GRINレンズはイメージファイバより細いものを用いた方がプローブ先端の径を細くでき、有利である。イメージファイバの先端面とGRINレンズの後端面が所定間隔離れるように対向させることで、径の異なるイメージファイバの先端面に拡大像を結像させ、効率よく画像を送ることができる。 It is advantageous to use a GRIN lens that is thinner than the image fiber because the diameter of the probe tip can be reduced. By causing the front end surface of the image fiber and the rear end surface of the GRIN lens to face each other at a predetermined distance, a magnified image can be formed on the front end surface of the image fiber having a different diameter, and the image can be sent efficiently.
 GRINレンズは、直径が80~300μm程度のものを用いることができるので、プローブ先端部の鞘管の直径は200~400μm程度とすることがでる。イメージファイバとしては画素(画素ファイバ)数10000以上で直径340~400μm程度のものを用いることができるので、シースの最も太い部分でも直径600μm以下にすることができる。 Since the GRIN lens having a diameter of about 80 to 300 μm can be used, the diameter of the sheath tube at the tip of the probe can be about 200 to 400 μm. As the image fiber, one having a pixel (pixel fiber) number of 10000 or more and a diameter of about 340 to 400 μm can be used. Therefore, even the thickest portion of the sheath can have a diameter of 600 μm or less.
〔請求項2〕
 また本発明は、筒状シースの先端側に、鞘管に挿入して外周面を鞘管で被覆したGRINレンズを挿入固定し、前記シースの後端側にイメージファイバを挿入固定してなる請求項1に記載のマイクロイメージングプローブである。
[Claim 2]
Further, the present invention is such that a GRIN lens whose outer peripheral surface is covered with a sheath tube is inserted and fixed on the distal end side of the cylindrical sheath, and an image fiber is inserted and fixed on the rear end side of the sheath. Item 2. The microimaging probe according to Item 1.
〔請求項3〕
 また本発明は、鞘管にGRINレンズを挿入しその外周を鞘管で被覆するステップと、
該鞘管をGRINレンズと共に研磨してGRINレンズの長さを調整するステップと、
筒状シースの、先端側に鞘管で被覆したGRINレンズを、後端側にイメージファイバの先端部を挿入固定するステップを有することを特徴とするマイクロイメージングプローブの製造方法である。
[Claim 3]
The present invention also includes a step of inserting a GRIN lens into the sheath tube and covering the outer periphery with the sheath tube;
Polishing the sheath tube with the GRIN lens to adjust the length of the GRIN lens;
A method of manufacturing a micro-imaging probe, comprising: a step of inserting and fixing a GRIN lens having a cylindrical sheath covered with a sheath tube on a distal end side and a distal end portion of an image fiber on a rear end side.
 本発明において、GRINレンズの長さを正確に調整することが重要である。GRINレンズをシースに取り付ける前に鞘管で被覆し、鞘管とGRINレンズを共に研磨することで研磨中のレンズの損傷を防ぐことができる。このように研磨しながら、鞘管付きGRINレンズをシースに仮固定してイメージファイバへの結合状態(送られる画像の鮮明さ)を確認し、結合状態が最良となるまで研磨を続け、その後鞘管付きGRINレンズをシースに完全に固定する。 In the present invention, it is important to accurately adjust the length of the GRIN lens. The GRIN lens can be covered with a sheath tube before being attached to the sheath, and the sheath tube and the GRIN lens can be polished together to prevent damage to the lens during polishing. While polishing in this way, the GRIN lens with a sheath tube is temporarily fixed to the sheath to confirm the coupling state to the image fiber (the sharpness of the image to be sent), and polishing is continued until the coupling state is the best, and then the sheath The GRIN lens with tube is completely fixed to the sheath.
 本発明のマイクロイメージングプローブは、先端部で、イメージファイバよりも細い直径250~300μm程度、最も太いシース部分直径440~600μm程度にでき、従来のプローブに比べて格段に細いものとなるので、刺入時における侵襲度が低く、被験者の負担を最小限にして生体内各部組織の観察が可能となる。また、プローブの先端面から離れている生体組織を観察できるので、刺入時のダメージを殆ど受けていない組織の観察が可能である。
 さらに、例えば脳の神経回路における情報処理様式を研究する場合、脳にプローブを刺入することにより、観察対象となる深さを自由に選ぶことができるだけでなく、顕微鏡と結合し、自由に行動する動物に対しても光計測・光刺激が可能となる。
The micro-imaging probe of the present invention can have a diameter of about 250 to 300 μm thinner than the image fiber and a diameter of the thickest sheath portion of about 440 to 600 μm at the distal end, which is much thinner than conventional probes. The degree of invasiveness at the time of entry is low, and it is possible to observe each tissue in the living body while minimizing the burden on the subject. In addition, since it is possible to observe a living tissue that is distant from the tip surface of the probe, it is possible to observe a tissue that is hardly damaged during insertion.
Furthermore, for example, when studying the information processing mode in the neural circuit of the brain, it is possible not only to freely select the depth to be observed by inserting a probe into the brain, but also to freely connect with a microscope and act freely It is possible to measure light and stimulate light even with animals.
実施例のマイクロイメージングプローブの断面説明図である。It is sectional explanatory drawing of the micro imaging probe of an Example. GRINレンズとイメージファイバの光の係合の説明図である。It is explanatory drawing of engagement of the light of a GRIN lens and an image fiber. GRINレンズとイメージファイバの端面距離L、像の倍率mの説明図である。End plane distance L 2 of the GRIN lens and the image fiber is an explanatory diagram of the magnification m of the image. マイクロイメージングプローブの使用例の説明図である。It is explanatory drawing of the usage example of a micro imaging probe.
 図1は実施例のマイクロイメージングプローブ1の断面説明図である。
 マイクロイメージングプローブ1は、GRINレンズ2、鞘管3、イメージファイバ4及びシース5からなる。
 GRINレンズ2は外径125μmで、外径250μmのジルコニア製の鞘管3に挿入し、接着固定され、外周面が鞘管で被覆された状態である。
 イメージファイバ4は画素数10000で外径は400μmである。
 シース5はジルコニア製で外径が600μmである。
 シース5の先端側に鞘管3で被覆したGRINレンズ2を挿入し、接着固定し、後端側にイメージファイバ4を挿入し、接着固定している。
 鞘管及びシースの材質は金属やガラスが考えられるが、迷光を防ぐためと強度の観点から金属製にすることが望ましい。
FIG. 1 is a cross-sectional explanatory view of a micro imaging probe 1 of an embodiment.
The micro imaging probe 1 includes a GRIN lens 2, a sheath tube 3, an image fiber 4 and a sheath 5.
The GRIN lens 2 has an outer diameter of 125 μm, is inserted into a zirconia sheath tube 3 having an outer diameter of 250 μm, is bonded and fixed, and the outer peripheral surface is covered with the sheath tube.
The image fiber 4 has 10,000 pixels and an outer diameter of 400 μm.
The sheath 5 is made of zirconia and has an outer diameter of 600 μm.
The GRIN lens 2 covered with the sheath tube 3 is inserted into the distal end side of the sheath 5 and bonded and fixed, and the image fiber 4 is inserted into the rear end side and bonded and fixed.
The material of the sheath tube and the sheath may be metal or glass, but it is desirable to make the material from the viewpoint of preventing stray light and from the viewpoint of strength.
 鞘管3で被覆したGRINレンズ2は、シースに固定するに先立って、研磨により長さ調整が行われる。このとき、ある程度研磨した状態でシース5に仮固定し、GRINレンズとイメージファイバの結合状態(送られる画像の鮮明さ)を確認し、結合状態が最良となるまで研磨、シースへの仮固定、結合状態の確認作業を繰り返す。 Before the GRIN lens 2 covered with the sheath tube 3 is fixed to the sheath, the length is adjusted by polishing. At this time, it is temporarily fixed to the sheath 5 after being polished to some extent, and confirms the combined state of the GRIN lens and the image fiber (the sharpness of the image to be sent), polished until the combined state is the best, temporarily fixed to the sheath, Repeat the check of the connection status.
 図2はGRINレンズとイメージファイバの係合状態の説明図である。
 物体からの光8はGRINレンズ2の先端面に入射し、レンズ内をサインカーブで蛇行しながら進行して、後端面から出射し、イメージファイバの先端面に結像した状態で入射する。
 その後、光はイメージファイバ4の内部を進行し、その後端面から出射する。
FIG. 2 is an explanatory diagram of the engagement state of the GRIN lens and the image fiber.
The light 8 from the object is incident on the front end surface of the GRIN lens 2, travels while meandering in the lens with a sine curve, exits from the rear end surface, and enters the image fiber on the front end surface.
Thereafter, the light travels inside the image fiber 4 and exits from the rear end face.
 GRINレンズ2の長さは、GRINレンズ後端面とイメージファイバ先端面の間隔Lと像の倍率mに関係する。図2の場合、GRINレンズの中間部に1ピッチが2個入っている。1ピッチは光の蛇行周期の1/2で、この2ピッチは任意領域であり、無くても良いのであるが、ハンドリングを考慮して任意の数のピッチを挿入することができる。 The length of the GRIN lens 2 is related to the distance L2 between the rear end surface of the GRIN lens and the front end surface of the image fiber and the magnification m of the image. In the case of FIG. 2, two 1 pitches are included in the intermediate portion of the GRIN lens. One pitch is ½ of the meandering period of light, and these two pitches are arbitrary regions and may be omitted, but an arbitrary number of pitches can be inserted in consideration of handling.
 GRINレンズ後端面とイメージファイバ先端面の間隔Lと像の倍率mは、図3に示すように求めることができる。
 図3における符号の意味は次の通りである。
: 物体とGRINレンズ先端面の間隔
: GRINレンズの中心屈折率
g : GRINレンズの集光能力を表わす定数
: GRINレンズの長さ
Magnification m of distance L 2 and the image of the GRIN lens rear surface and the image fiber tip surface can be obtained as shown in FIG.
The meanings of the symbols in FIG. 3 are as follows.
L 1 : Distance between the object and the GRIN lens front end surface n 1 : Center refractive index of GRIN lens g: Constant indicating the light collecting ability of GRIN lens z 2 : Length of GRIN lens
 倍率mは、イメージファイバ4のコア径とGRINレンズ2の径の比とほぼ同じに設定することが望ましい。 The magnification m is preferably set to be approximately the same as the ratio of the core diameter of the image fiber 4 to the diameter of the GRIN lens 2.
 マイクロイメージングプローブ1は、例えば図4に示すように使用することができる。
 同図に示すように、マイクロイメージングプローブ1の先端部1を被検体7(例えばマウスの脳)に刺入し、イメージファイバ4の後端を顕微鏡の対物レンズ6に結合する。こにより、被検体7の組織を顕微鏡でイメージングすることができる。
The microimaging probe 1 can be used as shown in FIG. 4, for example.
As shown in the figure, the tip 1 of the micro-imaging probe 1 is inserted into a subject 7 (for example, a mouse brain), and the rear end of the image fiber 4 is coupled to the objective lens 6 of the microscope. Thereby, the tissue of the subject 7 can be imaged with a microscope.
 本発明のマイクロイメージングプローブは、基礎研究における実験動物脳内の観察に用いることができる。また、例えば従来は電気刺激で行っていた臨床における脳深部刺激を光刺激に置き換えることにより、神経細胞を特定したピンポイントでの刺激を行えるようになる。また、純粋に光学的な微細内視鏡としての応用(カテーテルなど)も可能である。さらに、微細加工部分を視覚的にモニタリングする工業用内視鏡として使用することもできる。 The micro-imaging probe of the present invention can be used for observation in the experimental animal brain in basic research. Further, for example, by replacing the deep brain stimulation in the clinic, which has been conventionally performed by electrical stimulation, with light stimulation, it becomes possible to perform stimulation at a pinpoint in which nerve cells are specified. Moreover, application as a purely optical microendoscope (catheter etc.) is also possible. Furthermore, it can also be used as an industrial endoscope for visually monitoring a finely processed portion.
 1 マイクロイメージングプローブ
 2 GRINレンズ
 3 鞘管
 4 イメージファイバ
 5 シース
 6 対物レンズ
 7 被検体
 8 光
DESCRIPTION OF SYMBOLS 1 Micro imaging probe 2 GRIN lens 3 Sheath tube 4 Image fiber 5 Sheath 6 Objective lens 7 Subject 8 Light

Claims (3)

  1. イメージファイバと、その先端側に固定したGRINレンズを有し、前記イメージファイバの先端面とGRINレンズの後端面が所定間隔離れて対向していることを特徴とするマイクロイメージングプローブ。 A micro-imaging probe having an image fiber and a GRIN lens fixed to the front end thereof, wherein the front end surface of the image fiber and the rear end surface of the GRIN lens face each other with a predetermined distance therebetween.
  2. 筒状シースの先端側に、鞘管に挿入して外周面を鞘管で被覆したGRINレンズを挿入固定し、前記シースの後端側にイメージファイバを挿入固定してなる請求項1に記載のマイクロイメージングプローブ。 The GRIN lens having an outer peripheral surface covered with a sheath tube is inserted and fixed on the distal end side of the cylindrical sheath, and an image fiber is inserted and fixed on the rear end side of the sheath. Micro imaging probe.
  3. 鞘管にGRINレンズを挿入しその外周を鞘管で被覆するステップと、
    該鞘管をGRINレンズと共に研磨してGRINレンズの長さを調整するステップと、
    筒状シースの、先端側に鞘管で被覆したGRINレンズを、後端側にイメージファイバの先端部を挿入固定するステップを有することを特徴とするマイクロイメージングプローブの製造方法。
    Inserting a GRIN lens into the sheath tube and covering the outer periphery with the sheath tube;
    Polishing the sheath tube with the GRIN lens to adjust the length of the GRIN lens;
    A method of manufacturing a micro-imaging probe, comprising: a step of inserting and fixing a GRIN lens having a cylindrical sheath coated with a sheath tube on a distal end side and a distal end portion of an image fiber on a rear end side.
PCT/JP2011/056301 2011-03-16 2011-03-16 Microimaging probe and manufacturing method thereof WO2012124092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056301 WO2012124092A1 (en) 2011-03-16 2011-03-16 Microimaging probe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/056301 WO2012124092A1 (en) 2011-03-16 2011-03-16 Microimaging probe and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012124092A1 true WO2012124092A1 (en) 2012-09-20

Family

ID=46830220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056301 WO2012124092A1 (en) 2011-03-16 2011-03-16 Microimaging probe and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2012124092A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129136A1 (en) * 2014-02-25 2015-09-03 オリンパス株式会社 Endoscope device
WO2016193051A1 (en) * 2015-06-03 2016-12-08 Koninklijke Philips N.V. Medical optical connector system
WO2017183253A1 (en) * 2016-04-19 2017-10-26 株式会社フジクラ Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
WO2022210834A1 (en) * 2021-03-31 2022-10-06 国立研究開発法人理化学研究所 Tomographic image processing device, tomographic image processing method, program, information recording medium, and puncture member
WO2023102949A1 (en) * 2021-12-11 2023-06-15 中国科学院深圳先进技术研究院 Miniature single-photon fluorescence microscope implantation device and implantation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091789A (en) * 1999-08-05 2001-04-06 Jds Uniphase Inc Optical device, optical filter and optical filer system
JP2007034046A (en) * 2005-07-28 2007-02-08 Fujifilm Holdings Corp Grin lens member, grin lens array, and manufacturing method
JP2007530945A (en) * 2004-03-23 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー Forward scanning imaging fiber optic detector
JP2008188081A (en) * 2007-02-01 2008-08-21 Hoya Corp Oct probe and oct system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091789A (en) * 1999-08-05 2001-04-06 Jds Uniphase Inc Optical device, optical filter and optical filer system
JP2007530945A (en) * 2004-03-23 2007-11-01 カリフォルニア インスティテュート オブ テクノロジー Forward scanning imaging fiber optic detector
JP2007034046A (en) * 2005-07-28 2007-02-08 Fujifilm Holdings Corp Grin lens member, grin lens array, and manufacturing method
JP2008188081A (en) * 2007-02-01 2008-08-21 Hoya Corp Oct probe and oct system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129136A1 (en) * 2014-02-25 2015-09-03 オリンパス株式会社 Endoscope device
JP2018516391A (en) * 2015-06-03 2018-06-21 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Medical optical connector system
WO2016193051A1 (en) * 2015-06-03 2016-12-08 Koninklijke Philips N.V. Medical optical connector system
US10299661B2 (en) 2015-06-03 2019-05-28 Koninklijke Philips N.V. Medical optical connector system
CN107666849A (en) * 2015-06-03 2018-02-06 皇家飞利浦有限公司 Medical optics connector system
CN108292018A (en) * 2016-04-19 2018-07-17 株式会社藤仓 The manufacturing method of light device, the manufacturing method of laser aid, laser aid beam quality method of adjustment
JP2017194525A (en) * 2016-04-19 2017-10-26 株式会社フジクラ Method of manufacturing optical device, method of manufacturing laser apparatus, and method of adjusting beam quality of laser apparatus
WO2017183253A1 (en) * 2016-04-19 2017-10-26 株式会社フジクラ Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
EP3447553A4 (en) * 2016-04-19 2019-11-27 Fujikura Ltd. Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
CN108292018B (en) * 2016-04-19 2020-08-28 株式会社藤仓 Method for manufacturing optical device, method for manufacturing laser device, and method for adjusting beam quality of laser device
US10935729B2 (en) 2016-04-19 2021-03-02 Fujikura Ltd. Method for manufacturing optical device, method for manufacturing laser device, method for adjusting beam quality of laser device
WO2022210834A1 (en) * 2021-03-31 2022-10-06 国立研究開発法人理化学研究所 Tomographic image processing device, tomographic image processing method, program, information recording medium, and puncture member
WO2023102949A1 (en) * 2021-12-11 2023-06-15 中国科学院深圳先进技术研究院 Miniature single-photon fluorescence microscope implantation device and implantation method

Similar Documents

Publication Publication Date Title
CN107069391B (en) Femtosecond pulse laser modulator and miniature two-photon microscopic imaging device with same
US9839361B2 (en) Optical analysis system and approach therefor
Lee et al. Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide‐field, full‐color imaging
WO2012124092A1 (en) Microimaging probe and manufacturing method thereof
Vyas et al. Fiber bundle shifting endomicroscopy for high-resolution imaging
JP7109031B2 (en) A system for axially resolved light collection from tapered waveguides
US20120283516A1 (en) Dark field endoscopic microscope
Hooks et al. Intramural multisite recording of transmembrane potential in the heart
US20130324858A1 (en) Multi-path, multi-magnification, non-confocal fluorescence emission endoscopy apparatus and methods
US8099156B1 (en) Cochlear optical analysis system and approach therefor
Meza et al. Comparing high‐resolution microscopy techniques for potential intraoperative use in guiding low‐grade glioma resections
JP6389828B2 (en) Optical device for use with a medical imaging device
Osanai et al. Development of a micro-imaging probe for functional brain imaging
Eriksson et al. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation
Bijoch et al. Novel design and application of high-NA fiber imaging bundles for In vivo brain imaging with two-photon scanning fluorescence microscopy
Williams et al. Wearable second harmonic generation imaging: the sarcomeric bridge to the clinic
Meneghetti et al. Opsin-free optical neuromodulation and electrophysiology enabled by a soft monolithic infrared multifunctional neural interface
JP6170498B2 (en) Optical microscope probe for scanning microscope imaging of related objects
Yu et al. Functional monitoring and imaging in deep brain structures
RU2584922C1 (en) Multichannel fibre-optic neural interface for multimodal microscopy of animal brain
JPWO2017170662A1 (en) Optical imaging device
Perchant et al. An integrated fibered confocal microscopy system for in vivo and in situ fluorescence imaging-applications to endoscopy in small animal imaging
Kim et al. Computational Cannula Microscopy: Fluorescent Imaging Through Ultra-Thin Glass Needle
Xu et al. Miniaturized scanning optical probe for multimodal nonlinear endomicroscopic imaging
Huland et al. Intravital multiphoton endoscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP