WO2012123177A1 - Steuerung einer versorgungsspannung - Google Patents

Steuerung einer versorgungsspannung Download PDF

Info

Publication number
WO2012123177A1
WO2012123177A1 PCT/EP2012/051660 EP2012051660W WO2012123177A1 WO 2012123177 A1 WO2012123177 A1 WO 2012123177A1 EP 2012051660 W EP2012051660 W EP 2012051660W WO 2012123177 A1 WO2012123177 A1 WO 2012123177A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
emitter
base
control voltage
Prior art date
Application number
PCT/EP2012/051660
Other languages
English (en)
French (fr)
Inventor
Juergen Mack
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN2012800125538A priority Critical patent/CN103403995A/zh
Priority to US14/003,152 priority patent/US20140063858A1/en
Priority to EP12703493.2A priority patent/EP2684273B1/de
Publication of WO2012123177A1 publication Critical patent/WO2012123177A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors
    • H03K17/7955Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors using phototransistors

Definitions

  • the invention relates to a circuit for providing a supply voltage.
  • the invention relates to an electronic circuit for providing a supply voltage for charging an electrical energy store.
  • a charger For charging electrical energy storage, such as NiCd or NiMH batteries, a charger is used, which is operated at a supply voltage and provides a charging voltage to the energy storage, which ensures its charging.
  • a very simple safety device In order to protect both the energy storage device and the charger against unusual operating conditions, often only a very simple safety device is used, which works according to the so-called "crowbar principle.”
  • a component of the charging device is intentionally destroyed when an exceptional operating state occurs
  • the component to be destroyed may include a dedicated fuse, but it may also be a component, such as a diode or a transistor, that performs another function during normal operation of the charger, by an excessive voltage or excessive current Power can be destroyed deliberately.
  • the invention is therefore an object of the invention to provide a non-destructive shutdown mechanism for a switching power supply.
  • a switch-off device for a switched-mode power supply, wherein the
  • Switching power supply comprises a drive means for a first transistor for generating a transformable voltage comprises a second transistor of the PNP type and a third transistor of the NPN type, wherein the base of the second transistor with the collector of the third transistor and the base of the third transistor with the Collector of the second transistor is connected. Furthermore, the emitter of the third transistor is connected to ground and the emitter of the second transistor is connected to a control voltage terminal of the drive device, wherein the control voltage connection is designed to prevent the generation of the voltage by the first transistor when the control voltage connection is grounded, so that the generation of the voltage is inhibited when the base of the third transistor is applied with a voltage which exceeds a predetermined threshold value.
  • Base of the third transistor is connected to a sufficiently high cut-off voltage.
  • the control voltage connection remains connected to ground even when the cut-off voltage drops again. Only when the voltage applied to the cut-off device has decayed far enough, for example because the switching power supply is switched off, the through-control of the control voltage terminal to ground, so that the switching power supply can be turned on again. As a result, a longer shutdown for the switching power supply is enforced, which can increase a security of the switching power supply and a consumer connected to it. For example, the shutdown may be triggered by a detected overtemperature and the shutdown may be long enough take that element cools down so far that operation of the switching power supply can be done again.
  • control voltage terminal comprises a control terminal of the first transistor.
  • the shutdown can be done with any type primary switched mode power supply, especially those that are constructed as a self-oscillator.
  • control voltage terminal comprises a control terminal of a voltage source for providing an operating voltage for the drive device for the first transistor.
  • a function of the drive device can be utilized, which adjusts the activation of the first transistor in the case of an undervoltage.
  • the turn-off device can also be used on a switched-mode power supply which uses an integrated circuit as a drive device which has no dedicated input for switching off and in one embodiment also comprises the first transistor.
  • a first capacitor may be connected and / or between the base and the emitter of the
  • NPN transistor can be connected to a second capacitor.
  • the turn-off device can each be more resistant to interference pulses.
  • a storage capacitor may be provided between the emitter of the second transistor and the emitter of the third transistor.
  • an optocoupler is provided to separate a potential of the turn-off pulse from the turn-off device.
  • Figure 1 is a block diagram of an apparatus with a switching power supply
  • Figure 2 is a circuit in the device of Figure 1
  • Figure 3 is a variation of the circuit of Figure 2;
  • Figure 4 shows another embodiment of a circuit in the device of Figure 1;
  • Figure 5 illustrates a variation of the circuit of Figure 4.
  • FIG. 1 shows a schematic block diagram of a device 100 and an energy store 105 which can be connected to the device 100.
  • the energy store 105 is an accumulator, for example based on lithium-ion or nickel-metal hydride.
  • the device 100 is a charger for the energy storage 105.
  • the device 100 comprises a mains connection 110, a rectifier 150, a switching device 155, a transformer 160, a further rectifier 165, a control amplifier 170, an optocoupler 175 and a controller 180 with a turn-off device 130.
  • the power supply 110 is used for connection to a mains voltage U N of a power supply network, in particular an AC voltage network with 1 10V / 60Hz or 230V / 50Hz.
  • the power connector 1 10 is connected to the rectifier 150.
  • the rectifier 150 filters and rectifies the mains voltage U N and, on its basis, provides the intermediate circuit voltage U Z K, which is a DC voltage.
  • the intermediate circuit voltage U Z K feeds the controller 180 with the turn-off device 130 and the switching device 155.
  • the switching device 155 converts the intermediate-circuit voltage U Z K into a transformer 160 through the transformer 160. voltage and provides the converted voltage to the transformer 160 ready.
  • the voltage provided may have a square, stepped, trapezoidal, sinusoidal or other form processable by the transformer 160. In this case, usually a frequency is used which lies above the frequency of the mains voltage U N , for example 50 kHz to 200 kHz, in particular 100 kHz.
  • the transformer 160 transforms the converted voltage which the rectifier 165 converts to the output voltage U au s provided to the charge controller 135.
  • An output of the charge controller 135 is connected to a first charge port 140 of the
  • the energy storage 105 can be connected by means of corresponding charging connections 140, 145 to the charging device 100 in order to be charged on the charging device 100.
  • the charge controller 135 has a switch-off function with undervoltage. If the output voltage Uout drops below a predetermined value, then the charge controller 135 adjusts the charging of the energy store 105.
  • the energy storage 105 is charged at a constant voltage. In this case, the charge controller 135 can be omitted and the charging voltage U L is provided by the output voltage U out .
  • a plurality of the elements 120 to 135 may be integrated with each other in one component.
  • the output voltage U out is monitored by the variable gain amplifier 170 which, in response to the output voltage U out, provides a signal which is provided by means of the optocoupler 175 to the controller 180.
  • the controller 180 generates, based on the provided signal, a control signal for the switching device 155 to be generated by the rectifier 165
  • the shutdown device 130 is configured to be triggered by a cut-off voltage Utrig. Is the disconnecting device triggered 130, it engages in such a way in the function of the controller 180 a, that the switching device 155 may no longer switch, so that the transfer of energy through the transformer 160 comes to a halt and the output voltage U out is switched off.
  • the cut-off voltage U tg may be based on, for example, a Overvoltage, an undervoltage, an overcurrent, an undercurrent, an over-temperature and / or an under-temperature of any element on the charger 100 be provided.
  • the controller 180 may immediately derive a control voltage provided to the switching device 155 by the controller 180 to ground.
  • the controller 180 includes a voltage source 120 for providing an operating voltage to the controller 180, and the shutdown device 130 affects the voltage source 120 such that the provided operating voltage drops to an extent that activates undervoltage protection of the controller 180 that controls the control voltage. which is provided to the switching device 155, turns off.
  • part of the controller 180 may be in the form of an integrated circuit (IC), which may be designed to be integrated with the switching device 155.
  • the voltage source 120 for the operating voltage of the integrated controller 180 is not integrated and may be influenced by the shutdown device 130.
  • FIG. 2 shows a circuit 200 in the charger 100 from FIG. 1.
  • the circuit 200 represents the voltage source 120 and the shutdown device 130 in the controller 180 in FIG.
  • the embodiment of the shut-off device 130 shown in FIG. 2 is particularly suitable when the control of the switching device 155 is carried out by means of a controller 180 designed as an integrated circuit.
  • the voltage source 120 is switched off, so that the remaining controller 180 detects an undervoltage and sets the control of the switching device 155.
  • the voltage source 120 in FIG. 2 is essentially formed by an NPN transistor T1, a Zener diode D2 and a resistor R2.
  • the shutdown device 130 is composed of transistors T2 and T3, capacitors C2 and C3 and a resistor R3.
  • the intermediate circuit voltage U Z K is connected via a Wderstand R1 as the auxiliary voltage Uhiif to the collector of the NPN transistor T1.
  • a capacitor C1 preferably an electrolytic capacitor with high storage capacity, to ground.
  • the emitter of the NPN transistor T1 provides the supply voltage Ucc.
  • the provision takes place as a function of a control voltage U S t, which at the
  • control voltage terminal 205 Base of the NPN transistor T1, here referred to as control voltage terminal 205, applied.
  • the resistor R2 is connected in series with a Zener diode D2 from the collector of the NPN transistor T1 to ground.
  • a predetermined voltage drops across the zener diode D2 as long as the auxiliary voltage U h n f across the series connection of the resistor R2 and the zener diode D2 exceeds the predetermined voltage.
  • the base of the NPN transistor T1 and the control voltage terminal 205 is connected between the resistance R2 and the Zener diode D2.
  • the NPN transistor T1 is usually operated by means of the control voltage U s t in saturation, that is, no limitation or regulation of the supply voltage Ucc takes place. If the NPN transistor T1 leaves this operating point, a power loss within the NPN transistor T1 is converted into heat.
  • an additional voltage U aux is coupled to the collector of the transistor T1.
  • the amount of the additional voltage U aU x is usually determined empirically and selected for safety's sake by a predetermined amount of a few volts above the empirically determined voltage.
  • an operating point of the NPN transistor T1 can be influenced with respect to a limiting behavior. This operating point can be shifted by the circuit around the transistors T2 and T3, so that the NPN transistor T1 amplified limited after the trigger voltage Utrig has risen above the predetermined threshold.
  • Transistor T2 is a PNP transistor while transistor T3 is an NPN transistor.
  • the base of the transistor T2 is connected to the collector of the transistor T3 and the base of the transistor T3 to the collector of the transistor T2.
  • the emitter of the transistor T2 leads to the base of the NPN transistor T1, the emitter of the transistor T3 is connected to ground.
  • the capacitors C2 and C3 are arranged between the base and the emitter of the transistor T2 and the transistor T3.
  • the cut-off voltage The voltage U t ng is coupled by means of the resistor R3 to the base of the transistor T3 and the collector of the transistor T2, wherein the resistor R3 serves to limit the current through the base-emitter path of the transistor T3.
  • both transistors T2 and T3 are off. If the cut-off voltage U t ng exceeds a predetermined value, the transistor T3 turns on and its collector-emitter path becomes conductive. As a result, the base of the transistor T2 is pulled to ground, so that the transistor T2 also turns on and its emitter-collector path becomes conductive. Thereby, the control voltage U s t, which is applied to the emitter of the transistor T2, passed through to the collector of the transistor T2 and thus to the base of the transistor T3, so that the transistor T3 remains in the conductive state, regardless of whether the cut-off voltage U t again falls below the predetermined value or not.
  • the capacitors C2 and C3 of the turn-off device 130 ensure that when switching on the circuit 200, ie when the intermediate circuit voltage U Z K and the additional voltage U aux increase from 0, the two transistors T2 and T3 initially remain in the non-conductive state, if the switch-off voltage U tri g at this time is below the predetermined value.
  • the intermediate circuit voltage U Z K is interrupted, for example, by the charger 100 is disconnected from the power supply network at the power supply 1 10, or by a main switch of the device 100 prevents the provision of the intermediate circuit voltage U Z K.
  • the transistors T2 and T3 remain in the conductive state until the capacitor C1, which is connected in parallel to the auxiliary voltage U h n f , and the capacitor capacitor C4, which is connected in parallel to the intermediate circuit voltage U Z K discharged.
  • the discharge process of the capacitor C4 can take several seconds to several minutes. If the intermediate circuit voltage UZK is provided again during the discharge time, the transistors T2 and T3 remain in the conducting state and the supply voltage Ucc remains switched off.
  • FIG. 3 shows a variation of the circuit 200 from FIG. 1.
  • the cut-off voltage U tri g is decoupled from the transistors T2 and T3 by means of an opto-coupler IM.
  • the optocoupler IM comprises a light-emitting diode which can be controlled by means of the cut-off voltage U tri g .
  • the light-emitting diode acts on a phototransistor of the optocoupler IM until the phototransistor turns on and there is a conductive connection on its collector-emitter path.
  • the emitter and the collector of the phototransistor are led out at the optocoupler LH, wherein the emitter is connected to the base of the transistor T3 and the collector via the resistor R3 to the auxiliary voltage Umif at the collector of the NPN transistor T1. If the light emitting diode in the optocoupler LH lights, the base of the NPN transistor T3 is set to a potential which is derived from Umif and drives through the transistor T3. The remaining function of the transistors T2 and T3 is described above with reference to FIG. By using the opto-coupler LH, the cut-off voltage Ut r ig is galvanically isolated from the rest of the circuit 200.
  • FIG. 4 shows a further embodiment of a circuit 200 in the device from FIG. 1.
  • the circuit 200 represents the turn-off device 130 in the controller 180 in FIG. 1; Furthermore, a connection to a non-illustrated part of the controller 180 and a FET transistor T1 1 are shown, which represents the switching device 155 in Fig. 1.
  • a gate terminal of the FET transistor T1 1 forms the control voltage terminal 205.
  • the FET transistor T1 1 may be a power transistor, through which a large portion of an electrical power provided by the switching power supply 100 flows.
  • Transistor T1 1 be a MOSFET. In another embodiment, a thyristor or other electronic switching element may be used instead of the FET transistor T1 1.
  • the embodiment of the turn-off device 130 shown in FIG. 4 can be used to switch off the FET transistor T1 1 and then to I Advantages, if another influence on the controller 180 is not given.
  • the control terminal of the FET transistor T1 1 is grounded, so that the transformer 160 is no longer supplied with voltage and the energy transmission through the transformer 160 comes to a standstill.
  • the remaining illustrated components correspond substantially to the components used in the embodiment of FIG. 2, but have been preceded by 1 for the sake of clarity.
  • the illustrated shutdown device 130 consisting of the transistors T12 and
  • control voltage at the control voltage terminal 205 is replaced by a
  • control voltage on control voltage input 205 of the FET transistor T11 is lowered by the cut-off device 130, if the switch-off voltage U tr i g exceeds a predetermined value. This will be the
  • FET transistor T11 is substantially turned off, so that the transformer 160 voltage is no longer provided and the energy transfer through the transformer 160 comes to a standstill.
  • the lowering is maintained, even if the cut-off voltage U tg drops below the predetermined value.
  • the DC link voltage U Z K must be interrupted.
  • FIG. 5 shows a variation of the circuit 200 of Figure 4.
  • an optocoupler U1 1 is provided which corresponds to the optocoupler U1 to the cut-off voltage U tr i g of the remaining elements of Isolate circuit 200 galvanically.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung betrifft eine Abschalteinrichtung für ein Schaltnetzteil, wobei das Schaltnetzteil eine Ansteuereinrichtung für einen ersten Transistor zur Erzeugung einer transformierbaren Spannung umfasst. Dabei umfasst die Abschalteinrichtung einen zweiten Transistor vom PNP-Typ und einen dritten Transistor vom NPN-Typ, wobei die Basis des zweiten Transistors mit dem Kollektor des dritten Transistors und die Basis des dritten Transistors mit dem Kollektor des zweiten Transistors verbunden ist. Ferner ist der Emitter des dritten Transistors mit Masse verbunden. Der Emitter des zweiten Transistors ist mit einem Steuerspannungsanschluss der Ansteuereinrichtung verbunden, wobei der Steuerspannungsanschluss dazu eingerichtet ist, die Erzeugung der Spannung durch den ersten Transistor zu unterbinden, wenn der Steuerspannungsanschluss an Masse gelegt wird, so dass die Erzeugung der Spannung unterbunden wird, wenn die Basis des dritten Transistors mit einer Spannung beaufschlagt wird, die einen vorbestimmten Schwellenwert übersteigt.

Description

Beschreibung
Titel
Steuerung einer Versorgungsspannung Die Erfindung betrifft eine Schaltung zur Bereitstellung einer Versorgungsspannung. Insbesondere betrifft die Erfindung eine elektronische Schaltung zur Bereitstellung einer Versorgungsspannung zum Aufladen eines elektrischen Energiespeichers. Stand der Technik
Zum Aufladen elektrischer Energiespeicher, beispielsweise NiCd- oder NiMH- Akkumulatoren, wird ein Ladegerät verwendet, das an einer Versorgungsspannung betrieben wird und eine Ladespannung an den Energiespeicher bereitstellt, die dessen Aufladung gewährleistet. Zur Absicherung sowohl des Energiespeichers als auch des Ladegeräts gegen außergewöhnliche Betriebszustände wird häufig nur eine sehr einfache Sicherungseinrichtung verwendet, die nach dem so genannten„Crowbar-Prinzip" arbeitet. Hierbei wird bei Auftreten eines außergewöhnlichen Betriebszustands ein Bauelement des Ladegeräts gezielt zerstört, um das Ladegerät abzuschalten und in einen sicheren Betriebszustand zu verbringen. Das zu zerstörende Bauelement kann eine dedizierte Sicherung umfassen. Es kann aber auch ein Bauteil, beispielsweise eine Diode oder ein Transistor, das im Normalbetrieb des Ladegeräts eine weitere Funktion ausfüllt, durch eine überhöhte Spannung oder einen überhöhten Strom gezielt zerstört werden.
Dabei ist nachteilig, dass das Ladegerät nach der Zerstörung des Bauteils nicht ohne Weiteres wieder in Betrieb genommen werden kann. Ferner ist es prinzipbedingt nicht möglich, eine Funktion des Abschaltmechanismus beispielsweise im Rahmen einer Qualitätssicherung zu überprüfen. Es besteht somit stets eine gewisse Unsicherheit, ob der Abschaltmechanismus seiner Aufgabe überhaupt nachkommen kann. Der Erfindung liegt daher die Aufgabe zugrunde, einen zerstörungsfreien Abschaltmechanismus für ein Schaltnetzteil anzugeben.
Die Erfindung löst diese Aufgabe durch eine Schaltung mit den Merkmalen von Anspruch 1. Unteransprüche geben bevorzugte Ausführungsformen wieder.
Offenbarung der Erfindung Eine erfindungsgemäße Abschalteinrichtung für ein Schaltnetzteil, wobei das
Schaltnetzteil eine Ansteuereinrichtung für einen ersten Transistor zur Erzeugung einer transformierbarenSpannung umfasst, umfasst einen zweiten Transistor vom PNP-Typ und einen dritten Transistor vom NPN-Typ, wobei die Basis des zweiten Transistors mit dem Kollektor des dritten Transistors und die Basis des dritten Transistors mit dem Kollektor des zweiten Transistors verbunden ist. Ferner ist der Emitter des dritten Transistors mit Masse und der Emitter des zweiten Transistors mit einem Steuerspannungsanschluss der Ansteuereinrichtung verbunden, wobei der Steuerspannungsanschluss dazu eingerichtet ist, die Erzeugung der Spannung durch den ersten Transistor zu unterbinden, wenn der Steu- erspannungsanschluss an Masse gelegt wird, so dass die Erzeugung der Spannung unterbunden wird, wenn die Basis des dritten Transistors mit einer Spannung beaufschlagt wird, die einen vorbestimmten Schwellenwert übersteigt.
Die beschriebene Abschalteinrichtung aus zwei Transistoren schaltet das Schalt- netzteil über den Steuerspannungsanschluss sicher und effektiv ab, wenn die
Basis des dritten Transistors mit einer ausreichend hohen Abschaltspannung verbunden wird. Dabei bleibt der Steuerspannungsanschluss auch dann an Masse geschaltet, wenn die Abschaltspannung wieder absinkt. Erst wenn die an der Abschalteinrichtung anliegende Spannung weit genug abgeklungen ist, etwa weil das Schaltnetzteil abgeschaltet ist, löst sich die Durchsteuerung des Steuerspannungsanschlusses an Masse, so dass das Schaltnetzteil wieder eingeschaltet werden kann. Dadurch wird eine längere Abschaltung für das Schaltnetzteil erzwungen, die eine Sicherheit des Schaltnetzteil und eines mit ihm verbundenen Verbrauchers erhöhen kann. Beispielsweise kann die Abschaltung durch eine de- tektierte Übertemperatur ausgelöst sein und die Abschaltung kann lange genug dauern, dass das betreffende Element so weit abkühlt, dass ein Betrieb des Schaltnetzteils wieder erfolgen kann.
In einer ersten Ausführungsform umfasst der Steuerspannungsanschluss einen Steueranschluss des ersten Transistors. Dadurch kann die Abschaltung bei jeder Art primär getaktetem Schaltnetzteil erfolgen, insbesondere solchen, die als Selbstschwinger aufgebaut sind.
In einer zweiten Ausführungsform umfasst der Steuerspannungsanschluss einen Steueranschluss einer Spannungsquelle zur Bereitstellung einer Betriebsspannung für die Ansteuereinrichtung für den ersten Transistor. Dadurch kann eine Funktion der Ansteuereinrichtung ausgenutzt werden, die bei einer Unterspannung die Ansteuerung des ersten Transistors einstellt. Dadurch kann die Abschalteinrichtung auch an einem Schaltnetzteil eingesetzt werden, das einen integrierten Schaltkreis als Ansteuereinrichtung verwendet, der keinen dedizierten Eingang zur Abschaltung aufweist und der in einer Ausführungsform auch den ersten Transistor umfasst.
Zwischen dem Emitter und der Basis des PNP-Transistors kann ein erster Kon- densator verbunden sein und/oder zwischen der Basis und dem Emitter des
NPN-Transistors kann ein zweiter Kondensator verbunden sein. Dadurch kann die Abschalteinrichtung jeweils resistenter gegen Störimpulse sein.
Zwischen dem Emitter des zweiten Transistors und dem Emitter des dritten Tran- sistors kann ein Speicherkondensator vorgesehen sein. Dadurch kann eine Abschaltzeit verlängert sein, so dass eine Abschaltung des Schaltnetzteils wenigstens eine vorbestimmte Zeit dauert.
In einer Ausführungsform ist ein Optokoppler vorgesehen, um ein Potential des Abschaltimpulses von der Abschalteinrichtung zu trennen. Dadurch kann eine Betriebssicherheit, beispielsweise in einem netzbetriebenen Ladegerät, sichergestellt sein.
Die Erfindung wird nun mit Bezug auf die beigefügten Figuren genauer beschrieben, in denen: Figur 1 ein Blockschaltbild eines Geräts mit einem Schaltnetzteil; Figur 2 eine Schaltung im Gerät aus Figur 1 ; Figur 3 eine Variation der Schaltung von Figur 2;
Figur 4 eine weitere Ausführungsform einer Schaltung im Gerät aus Figur 1 ; und
Figur 5 eine Variation der Schaltung von Figur 4 darstellt.
Genaue Beschreibung von Ausführungsformen
Figur 1 zeigt ein schematisches Blockschaltbild eines Geräts 100 und eines mit dem Gerät 100 verbindbaren Energiespeichers 105. Der Energiespeicher 105 ist ein Akkumulator, beispielsweise auf Lithium-Ionen- oder Nickel-Metallhydrid- Basis. Das Gerät 100 ist ein Ladegerät für den Energiespeicher 105.
Das Gerät 100 umfasst einen Netzanschluss 110, einen Gleichrichter 150, eine Schalteinrichtung 155, einen Transformator 160, einen weiteren Gleichrichter 165, einen Regelverstärker 170, einen Optokoppler 175 und eine Steuerung 180 mit einer Abschalteinrichtung 130.
Der Netzanschluss 110 dient zur Verbindung mit einer Netzspannung UN eines Energieversorgungsnetzes, insbesondere eines Wechselspannungsnetzes mit 1 10V/60Hz oder 230V/50Hz. Der Netzanschluss 1 10 ist mit dem Gleichrichter 150 verbunden. Der Gleichrichter 150 filtert und richtet die Netzspannung UN gleich und stellt auf deren Basis die Zwischenkreisspannung UZK bereit, die eine Gleichspannung ist.
Die Zwischenkreisspannung UZK speist die Steuerung 180 mit der Abschalteinrichtung 130 sowie die Schalteinrichtung 155. Die Schalteinrichtung 155 wandelt die Zwischenkreisspannung UZK in eine durch den Transformator 160 transfor- mierbare Spannung um und stellt die umgewandelte Spannung dem Transformator 160 bereit. Die bereitgestellte Spannung kann eine Rechteck-, Stufen-, Trapez-, Sinus- oder andere durch den Transformator 160 verarbeitbare Form aufweisen. Dabei wird üblicherweise eine Frequenz verwendet, die über der Fre- quenz der Netzspannung UN liegt, beispielsweise 50 kHz bis 200 kHz, insbesondere 100 kHz. Der Transformator 160 transformiert die umgewandelte Spannung, die der Gleichrichter 165 in die Ausgangsspannung Uaus umwandelt, die dem Laderegler 135 bereitgestellt wird. Ein Ausgang des Ladereglers 135 ist an einem ersten Ladeanschluss 140 des
Ladegeräts 100 herausgeführt; ein zweiter Ladeanschluss 145 ist direkt mit dem Gleichrichter 165 verbunden. Der Energiespeicher 105 ist mittels korrespondierender Ladeanschlüsse 140, 145 mit dem Ladegerät 100 verbindbar, um am Ladegerät 100 aufgeladen zu werden. In einer bevorzugten Ausführungsform weist der Laderegler 135 eine Abschaltfunktion bei Unterspannung auf. Sinkt die Ausgangsspannung Uaus unter einen vorbestimmten Wert, so stellt der Laderegler 135 das Laden des Energiespeichers 105 ein. In einer Ausführungsform wird der Energiespeicher 105 an einer konstanten Spannung geladen. Dabei kann der Laderegler 135 entfallen und die Ladespannung UL wird durch die Ausgangs- Spannung Uaus bereitgestellt. In weiteren Ausführungsformen können mehrere der Elemente 120 bis 135 miteinander in einem Bauteil integriert sein.
Die Ausgangsspannung Uaus wird durch den Regelverstärker 170 überwacht, der in Abhängigkeit der Ausgangsspannung Uaus ein Signal bereitstellt, das mittels des Optokopplers 175 der Steuerung 180 bereitgestellt wird. Die Steuerung 180 generiert auf der Basis des bereitgestellten Signals ein Steuersignal für die Schalteinrichtung 155, um die durch den Gleichrichter 165 generierte
Gleichspannungauf eine vorbestimmte Spannung bzw. den durch den Gleichrichter 165 bereitgestellten Strom auf einen vorbestimmten Strom zu regeln.
Die Abschalteinrichtung 130 ist dazu eingerichtet, mittels einer Abschaltspannung Utrig ausgelöst zu werden. Ist die Abschalteinrichtung 130 ausgelöst, so greift sie derart in die Funktion der Steuerung 180 ein, dass die Schalteinrichtung 155 nicht mehr durchschalten kann, so dass die Energieübertragung über den Transformator 160 zum erliegen kommt und die Ausgangsspannung Uaus abgeschaltet ist. Die Abschaltspannung Ut g kann auf der Basis beispielsweise einer Überspannung, einer Unterspannung, einem Überstrom, einem Unterstrom, einer Übertemperatur und/oder einer Untertemperatur eines beliebigen Elements am Ladegerät 100 bereitgestellt sein.
In einer Ausführungsform kann die Steuerung 180 unmittelbar eine Steuerspannung, die der Schalteinrichtung 155 durch die Steuerung 180 bereitgestellt wird, nach Masse ableiten. In einer anderen Ausführungsform umfasst die Steuerung 180 eine Spannungsquelle 120 zur Bereitstellung einer Betriebsspannung für die Steuerung 180 und die Abschalteinrichtung 130 beeinflusst die Spannungsquelle 120 derart, dass die bereitgestellte Betriebsspannung so weit absinkt, dass ein Unterspannungsschutz der Steuerung 180 aktiviert wird, der die Steuerspannung, die der Schalteinrichtung 155 bereitgestellt wird, abschaltet. Dabei kann ein Teil der Steuerung 180 in Form eines Integrierten Schaltkreises (IC) vorliegen, der mit der Schalteinrichtung 155 integriert ausgeführt sein kann. In diesem Fall ist die Spannungsquelle 120 für die Betriebsspannung der integrierten Steuerung 180 nicht mit integriert und kann durch die Abschalteinrichtung 130 beeinflusst werden.
Figur 2 zeigt eine Schaltung 200 im Ladegerät 100 aus Figur 1 . Die Schaltung 200 repräsentiert die Spannungsquelle 120 und die Abschalteinrichtung 130 in der Steuerung 180 in Figur 1 . Die in Figur 2 dargestellte Ausführungsform der Abschalteinrichtung 130 eignet sich besonders dann, wenn die Ansteuerung der Schalteinrichtung 155 mittels einer als integrierter Schaltkreis ausgeführten Steuerung 180 durchgeführt wird. Um das Schaltnetzteil 100 abzuschalten, wird die Spannungsquelle 120 abgeschaltet, so dass die restliche Steuerung 180 eine Unterspannung detektiert und die Ansteuerung der Schalteinrichtung 155 einstellt.
Die Spannungsquelle 120 in Figur 2 ist im Wesentlichen durch einen NPN- Transistor T1 , eine Zenerdiode D2 und einen Widerstand R2 gebildet. Die Abschalteinrichtung 130 ist aufgebaut aus Transistoren T2 und T3, Kondensatoren C2 und C3 sowie einem Widerstand R3.
Die Zwischenkreisspannung UZK ist über einen Wderstand R1 als Hilfsspannung Uhiif mit dem Kollektor des NPN-Transistors T1 verbunden. Vom Kollektor des NPN-Transistors T1 aus führt ein Kondensator C1 , vorzugsweise ein Elektrolytkondensator mit hoher Speicherfähigkeit, an Masse.
Der Emitter des NPN-Transistors T1 stellt die Versorgungsspannung Ucc bereit. Das Bereitstellen erfolgt in Abhängigkeit einer Steuerspannung USt, die an der
Basis des NPN-Transistors T1 , hier als Steuerspannungsanschluss 205 bezeichnet, anliegt. Um eine geeignete Steuerspannung USt zu erzeugen, ist der Widerstand R2 in Serie mit einer Zenerdiode D2 vom Kollektor des NPN-Transistors T1 an Masse geschaltet. Über der Zenerdiode D2 fällt eine vorbestimmte Spannung ab, so lange die Hilfsspannung Uhnf über der Serienschaltung aus dem Widerstand R2 und der Zenerdiode D2 die vorbestimmte Spannung übersteigt. Die Basis des NPN-Transistors T1 bzw. der Steuerspannungsanschluss 205 ist zwischen dem Wderstand R2 und der Zenerdiode D2 verbunden. Der NPN-Transistor T1 wird üblicherweise mittels der Steuerspannung Ust in Sättigung betrieben, d. h., dass keine Begrenzung bzw. Regelung der Versorgungsspannung Ucc stattfindet. Verlässt der NPN-Transistor T1 diesen Arbeitspunkt, so wird eine Verlustleistung innerhalb des NPN-Transistors T1 in Wärme umgesetzt. Mittels der Diode D1 wird eine Zusatzspannung Uaux an den Kollektor des Transistors T1 eingekoppelt. Der Betrag der Zusatzspannung UaUx Wird üblicherweise empirisch ermittelt und sicherheitshalber um einen vorbestimmten Betrag von einigen Volt oberhalb der empirisch ermittelten Spannung gewählt. Durch geeignete Wahl der Zenerdiode D2 kann ein Arbeitspunkt des NPN-Transistors T1 bezüglich eines Begrenzungsverhaltens beeinflusst werden. Dieser Arbeits- punkt kann durch die Schaltung um die Transistoren T2 und T3 verschoben werden, so dass der NPN-Transistor T1 verstärkt begrenzt, nachdem die Auslösespannung Utrig über den vorbestimmten Schwellenwert angestiegen ist.
Die Bauteile der Abschalteinrichtung 130 sind zwischen der Basis des NPN- Transistors T1 und Masse geschaltet. Transistor T2 ist ein PNP-Transistor, während Transistor T3 ein NPN-Transistor ist. Die Basis des Transistors T2 ist mit dem Kollektor des Transistors T3 und die Basis des Transistors T3 mit dem Kollektor des Transistors T2 verbunden. Der Emitter des Transistors T2 führt zur Basis des NPN-Transistors T1 , der Emitter des Transistors T3 ist mit Masse ver- bunden. Die Kondensatoren C2 und C3 sind zwischen der Basis und dem Emitter des Transistors T2 bzw. des Transistors T3 angeordnet. Die Abschaltspan- nung Utng wird mittels des Widerstands R3 an die Basis des Transistors T3 bzw. den Kollektor des Transistors T2 eingekoppelt, wobei der Widerstand R3 dazu dient, den Strom durch die Basis-Emitter-Strecke des Transistors T3 zu begrenzen.
Im Normalbetrieb der Schaltung 200 sperren beide Transistoren T2 und T3. Übersteigt die Abschaltspannung Utng einen vorbestimmten Wert, so schaltet der Transistor T3 durch und seine Kollektor-Emitter-Strecke wird leitend. Dadurch wird die Basis des Transistors T2 gegen Masse gezogen, so dass der Transistor T2 ebenfalls durchschaltet und seine Emitter-Kollektor-Strecke leitend wird. Dadurch wird die Steuerspannung Ust, die am Emitter des Transistors T2 anliegt, an den Kollektor des Transistors T2 und damit an die Basis des Transistors T3 durchgeleitet, so dass der Transistor T3 im leitenden Zustand verbleibt, unabhängig davon, ob die Abschaltspannung Utng wieder unter den vorbestimmten Wert absinkt oder nicht.
Während die Transistoren T2 und T3 leiten, fließt ein Strom parallel zur Zenerdi- ode D2, so dass die Spannungsquelle 120 derart verstimmt ist, dass die Steuerspannung Ust absinkt. Dadurch sperrt der NPN-Transistors T1 und die Versor- gungsspannung Ucc bricht auf nahezu 0 zusammen.
Die Kondensatoren C2 und C3 der Abschalteinrichtung 130 stellen sicher, dass beim Einschalten der Schaltung 200, wenn also die Zwischenkreisspannung UZK und die Zusatzspannung Uaux von 0 ansteigen, die beiden Transistoren T2 und T3 zunächst im nicht leitenden Zustand bleiben, falls die Abschaltspannung Utrig zu diesem Zeitpunkt unterhalb des vorbestimmten Werts liegt.
Um die Transistoren T2 und T3 der ausgelösten Abschalteinrichtung 130 wieder in einen nicht leitenden Zustand zu bringen, ist es erforderlich, die Steuerspan- nung Ust, aus der die beiden Transistoren T2 und T3 gespeist werden, bis auf 0 abzusenken. Zu diesem Zweck wird üblicherweise die Zwischenkreisspannung UZK unterbrochen, beispielsweise, indem das Ladegerät 100 am Netzanschluss 1 10 vom Versorgungsnetzwerk getrennt wird, oder indem ein Hauptschalter des Geräts 100 die Bereitstellung der Zwischenkreisspannung UZK verhindert. Die Transistoren T2 und T3 bleiben noch so lange im leitenden Zustand, bis der Kondensator C1 , der parallel zur Hilfsspannung Uhnf geschaltet ist, und der Konden- sator C4, der parallel zur Zwischenkreisspannung UZK geschaltet ist, entladen sind. Der Entladevorgang des Kondensators C4 kann einige Sekunden bis hin zu mehreren Minuten dauern. Wird während der Entladezeit die Zwischenkreisspannung UZK wieder bereitgestellt, bleiben die Transistoren T2 und T3 im leitenden Zustand und die Versorgungsspannung Ucc bleibt abgeschaltet.
Figur 3 zeigt eine Variation der Schaltung 200 aus Figur 1. Hier ist die Abschaltspannung Utrig mittels eines Optokopplers IM von den Transistoren T2 und T3 entkoppelt. Der Optokoppler IM umfasst eine Leuchtdiode, die mittels der Abschaltspannung Utrig angesteuert werden kann. Die Leuchtdiode wirkt auf einen Phototransistor des Optokopplers IM , bis der Phototransistor durchsteuert und eine leitende Verbindung auf seiner Kollektor-Emitter-Strecke besteht. Der Emitter und der Kollektor des Phototransistors sind am Optokoppler LH herausgeführt, wobei der Emitter mit der Basis des Transistors T3 und der Kollektor über den Widerstand R3 mit der Hilfsspannung Umif am Kollektor des NPN-Transistors T1 verbunden ist. Leuchtet die Leuchtdiode im Optokoppler LH , so wird die Basis des NPN-Transistors T3 auf ein Potential gelegt, das aus Umif abgeleitet ist und den Transistor T3 durchsteuert. Die restliche Funktion der Transistoren T2 und T3 ist oben mit Bezug auf Figur 2 beschrieben. Durch Einsatz des Optokopplers LH ist die Abschaltspannung Utrig galvanisch vom Rest der Schaltung 200 getrennt.
Figur 4 zeigt eine weitere Ausführungsform einer Schaltung 200 im Gerät aus Figur 1. Die Schaltung 200 repräsentiert die Abschalteinrichtung 130 in der Steue- rung 180 in Figur 1 ; ferner sind ein Anschluss zu einem nicht dargestellten Teil der Steuerung 180 und ein FET-Transistor T1 1 dargestellt, der die Schalteinrichtung 155 in Fig. 1 repräsentiert. Ein Gate-Anschluss des FET-Transistors T1 1 bildet hier den Steuerspannungsanschluss 205. Der FET-Transistor T1 1 kann ein Leistungstransistor sein, durch den ein großer Anteil einer durch das Schaltnetz- teil 100 bereitgestellten elektrischen Leistung fließt. Insbesondere kann der FET-
Transistor T1 1 ein MOSFET sein. In einer anderen Ausführungsform kann auch an Stelle des FET-Transistors T1 1 ein Thyristor oder ein anderes elektronisches Schaltelement verwendet werden.
Die in Figur 4 dargestellte Ausführungsform der Abschalteinrichtung 130 kann zur Abschaltung des FET-Transistors T1 1 verwendet werden und ist dann zu I Vorzügen, wenn eine andere Einflussmöglichkeit auf die Steuerung 180 nicht gegeben ist. Um das Schaltnetzteil 100 abzuschalten, wird die der Steueranschluss des FET-Transistors T1 1 an Masse gelegt, so dass dem Transformator 160 keine Spannung mehr bereitgestellt wird und die Energieübertragung durch den Transformator 160 zum erliegen kommt.
Die restlichen dargestellten Bauteile entsprechen im Wesentlichen den in der Ausführungsform von Figur 2 verwendeten Bauteilen, wurden der Klarheit halber jedoch mit einer vorangestellten 1 gekennzeichnet. Insbesondere entspricht die dargestellte Abschalteinrichtung 130, bestehend aus den Transistoren T12 und
T13 sowie den Kondensatoren C12 und C13 und dem Widerstand R13, der Abschalteinrichtung 130 in Figur 2 aus den Transistoren T2, T3 sowie den Kondensatoren C2, C3 und dem Wderstand R3. Die Steuerspannung am Steuerspannungsanschluss 205 wird durch einen
Spannungsteiler mittels der Wderstände R11 und R12 aus der Zwischenkreis- spannung UZK bereitgestellt. Der Emitter des PNP-Transistors T12 ist mittels der Diode D11 mit dem Steuerspannungsanschluss 205 des FET-Transistors T1 1 verbunden. Ein Kondensator analog zu C1 aus Figur 2 ist in der dargestellten Ausführungsform nicht vorgesehen.
In entsprechender Weise wie oben bezüglich der Ausführungsform von Figur 2 beschrieben ist, wird die Steuerspannung am Steuerspannungseingang 205 des FET-Transistors T11 durch die Abschalteinrichtung 130 abgesenkt, falls die Ab- schaltspannung Utrig einen vorbestimmten Wert übersteigt. Dadurch wird der
FET-Transistor T11 im Wesentlichen abgeschaltet, so dass dem Transformator 160 keine Spannung mehr bereitgestellt wird und die Energieübertragung durch den Transformator 160 zum erliegen kommt. Die Absenkung bleibt aufrecht erhalten, auch wenn die Abschaltspannung Ut g unter den vorbestimmten Wert ab- sinkt. Um die Absenkung aufzuheben, muss zunächst die Zwischenkreisspan- nung UZK unterbrochen werden.
Figur 5 zeigt eine Variation der Schaltung 200 von Figur 4. In entsprechender Weise wie oben mit Bezug auf Figur 3 erläutert wurde, ist ein Optokoppler U1 1 vorgesehen, der dem Optokoppler U1 entspricht, um die Abschaltspannung Utrig von den restlichen Elementen der Schaltung 200 galvanisch zu trennen.

Claims

Ansprüche
Abschalteinrichtung (200) für ein Schaltnetzteil, wobei das Schaltnetzteil eine Ansteuereinnchtung (180) für einen ersten Transistor (T1) zur Erzeugung einer transformierbaren Spannung umfasst, und:
- die Abschalteinrichtung einen zweiten (T2, T12) Transistor vom PNP-Typ und einen dritten Transistor (T3, T13) vom NPN-Typ umfasst;
- die Basis des zweiten Transistors (T2, T12) mit dem Kollektor des dritten Transistors (T3, T13) verbunden ist;
- die Basis des dritten Transistors (T3, T13) mit dem Kollektor des zweiten Transistors (T2, T12) verbunden ist;
- der Emitter des dritten Transistors (T3, T13) mit Masse verbunden ist, und
- der Emitter des zweiten Transistors (T2, T12) mit einem Steuerspan- nungsanschluss (205) der Ansteuereinnchtung (180) verbunden ist, wobei der Steuerspannungsanschluss (205) dazu eingerichtet ist, die Erzeugung der Spannung durch den ersten Transistor (T1) zu unterbinden, wenn der Steuerspannungsanschluss (205) an Masse gelegt wird,
- so dass die Erzeugung der Spannung unterbunden wird, wenn die Basis des dritten Transistors (T3, T13) mit einer Spannung beaufschlagt wird, die einen vorbestimmten Schwellenwert übersteigt.
Abschalteinrichtung (200) nach Anspruch 1 , wobei der Steuerspannungsanschluss (205) einen Steueranschluss des ersten Transistors (T1) umfasst.
Abschalteinrichtung (200) nach Anspruch 1 , wobei der Steuerspannungsanschluss (205) einen Steueranschluss einer Spannungsquelle (120) zur Bereitstellung einer Betriebsspannung für die Ansteuereinnchtung (180) für den ersten Transistor (T1) umfasst. 4. Abschalteinrichtung (200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein erster Kondensator (C2) zwischen dem Emitter und der Basis des PNP-Transistors (T2, T12) verbunden ist.
5. Abschalteinrichtung (200) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein zweiter Kondensator (C3) zwischen der Basis und dem Emitter des NPN-Transistors (T3, T13) verbunden ist.
6. Abschalteinrichtung (200) nach einem der vorangehenden Ansprüche, wobei ein Speicherkondensator (C1 , C4) zwischen dem Emitter des zweiten Transistors (T2, T12) und dem Emitter des dritten Transistors (T3, T13) vorgesehen ist,
7. Abschalteinrichtung (200) nach einem der vorangehenden Ansprüche, wobei ein Optokoppler (IM , U 1 1 ) vorgesehen ist, um ein Potential der Abschaltspannung (Uthg) von der Abschalteinrichtung (130) zu trennen.
PCT/EP2012/051660 2011-03-11 2012-02-01 Steuerung einer versorgungsspannung WO2012123177A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012800125538A CN103403995A (zh) 2011-03-11 2012-02-01 供电电压的控制
US14/003,152 US20140063858A1 (en) 2011-03-11 2012-02-01 Supply voltage control
EP12703493.2A EP2684273B1 (de) 2011-03-11 2012-02-01 Steuerung einer versorgungsspannung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011005416A DE102011005416A1 (de) 2011-03-11 2011-03-11 Steuerung einer Versorgungsspannung
DE102011005416.2 2011-03-11

Publications (1)

Publication Number Publication Date
WO2012123177A1 true WO2012123177A1 (de) 2012-09-20

Family

ID=45581855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051660 WO2012123177A1 (de) 2011-03-11 2012-02-01 Steuerung einer versorgungsspannung

Country Status (5)

Country Link
US (1) US20140063858A1 (de)
EP (1) EP2684273B1 (de)
CN (1) CN103403995A (de)
DE (1) DE102011005416A1 (de)
WO (1) WO2012123177A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846402A (zh) * 2016-06-01 2016-08-10 江苏安纳金机械有限公司 一种电源保护电路
CN110635457B (zh) * 2019-11-12 2022-03-29 苏州工业园区天和仪器有限公司 新型交流电压检测保护电路及方法
CN112688277B (zh) * 2021-01-08 2023-03-10 四川湖山电器股份有限公司 一种开关电源过流保护检测装置及开关电源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013492A1 (en) * 1999-08-13 2001-02-22 Majeel Laboratories Pte Ltd A switch circuit
US6194871B1 (en) * 1999-12-03 2001-02-27 Fujitsu Limited Charge and discharge control circuit and apparatus for secondary battery
US20080303580A1 (en) * 2007-06-11 2008-12-11 Thomas Stegmayr Control circuit for a high-side semiconductor switch for switching a supply voltage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8200616A (nl) * 1982-02-17 1983-09-16 Philips Nv Geschakelde zelfoscillerende voedingsspanningsschakeling.
JPH07101822B1 (de) * 1986-11-21 1995-11-01
CN87214809U (zh) * 1987-10-28 1988-09-28 武汉水利电力学院 晶体管开关式励磁调节装置
AU5679796A (en) * 1995-05-11 1996-11-29 Ericsson Inc. Power control circuit for a battery operated device
CN201018409Y (zh) * 2007-02-07 2008-02-06 深圳创维-Rgb电子有限公司 电源电路中功率因数校正器的过压保护电路
CN201038731Y (zh) * 2007-04-17 2008-03-19 青岛海信电器股份有限公司 过压保护电路
US8049250B2 (en) * 2008-10-27 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Circuit and method for power clamp triggered dual SCR ESD protection
CN101965077B (zh) * 2009-07-21 2013-10-09 富准精密工业(深圳)有限公司 发光二极管灯具保护电路
CN101887076B (zh) * 2010-06-22 2012-11-21 深圳和而泰智能控制股份有限公司 一种隔离传感器的电路及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013492A1 (en) * 1999-08-13 2001-02-22 Majeel Laboratories Pte Ltd A switch circuit
US6194871B1 (en) * 1999-12-03 2001-02-27 Fujitsu Limited Charge and discharge control circuit and apparatus for secondary battery
US20080303580A1 (en) * 2007-06-11 2008-12-11 Thomas Stegmayr Control circuit for a high-side semiconductor switch for switching a supply voltage

Also Published As

Publication number Publication date
DE102011005416A1 (de) 2012-09-13
EP2684273A1 (de) 2014-01-15
CN103403995A (zh) 2013-11-20
EP2684273B1 (de) 2016-04-20
US20140063858A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
EP0046515B1 (de) Sperrschwinger-Schaltnetzteil
EP3414778B1 (de) Schutzschaltung für ein photovoltaik (pv)-modul, verfahren zum betrieb der schutzschaltung und photovoltaik (pv)-anlage mit einer derartigen schutzschaltung
DE2728608A1 (de) Gleichspannungswandler
DE3006565A1 (de) Schaltung zur begrenzung des einschaltstromstosses insbesondere fuer gleichrichter und netzgeraete
DE10018229B4 (de) Verfahren zur Regulierung des Ausgangsstroms und/oder der Ausgangsspannung eines Schaltnetzteils
DE3421133A1 (de) Schaltungsanordnung zur versorgung der regel- und steuereinrichtung eines geregelten gleichspannungswandlers
EP2684273B1 (de) Steuerung einer versorgungsspannung
EP0419727A1 (de) Schaltungsanordnung für ein geregeltes Sperrwandler-Schaltnetzteil
DE102008025986A1 (de) Überspannungsschutzvorrichtung für ein spannungsempfindliches Leistungshalbleiterbauteil
EP0339598A2 (de) Schutzschaltung für kapazitive Lasten
DE102019125201A1 (de) Verfahren zum Betreiben eines Leistungssystems und einer Leistungsschaltung
DE2110427A1 (de) Schaltungsanordnung zur Abgabe einer bestimmten Ausgangsspannung auf die Aufnahme einer Eingangsspannung hin
DE112017002638T5 (de) Schaltnetzteil
DE19920625A1 (de) Schutzschaltung für einen Schalter sowie Schaltnetzteil
DE10357250A1 (de) Elektronische Schaltungseinrichtung mit Überstromsicherung und Steuerverfahren
EP2218164A1 (de) Stromversorgungsanordnung mit überwachung des ausgangsstroms
EP0635171B1 (de) Elektronisches schaltnetzteil
DE2904452A1 (de) Spannungskonstanthalter
EP2218167A1 (de) Sperrwandler
EP2218165B1 (de) Stromversorgungsanordnung mit überwachung der sekundärspannung
EP2675037A1 (de) Betriebssteuervorrichtung und Verfahren zur Steuerung des Betriebs einer Beleuchtungsanordnung mit Notbeleuchtung
EP3491738B1 (de) Verfahren und vorrichtung zur ansteuerung eines halbleiterschalters
DE102012217898B4 (de) Verfahren und Vorrichtung zum Betreiben eines Gleichspannungswandlers
DE2535346A1 (de) Hysteretische energieversorgungsschaltung fuer den ablenkteil eines fernsehempfaengers
DE3109087C2 (de) Fernspeiseeinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12703493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012703493

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14003152

Country of ref document: US