WO2012122785A2 - 用锅炉烟气余热加热导热油的*** - Google Patents

用锅炉烟气余热加热导热油的*** Download PDF

Info

Publication number
WO2012122785A2
WO2012122785A2 PCT/CN2011/080030 CN2011080030W WO2012122785A2 WO 2012122785 A2 WO2012122785 A2 WO 2012122785A2 CN 2011080030 W CN2011080030 W CN 2011080030W WO 2012122785 A2 WO2012122785 A2 WO 2012122785A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
flue gas
economizer
boiler
transfer oil
Prior art date
Application number
PCT/CN2011/080030
Other languages
English (en)
French (fr)
Other versions
WO2012122785A3 (zh
Inventor
钱学略
刘兵
Original Assignee
上海伏波环保设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海伏波环保设备有限公司 filed Critical 上海伏波环保设备有限公司
Priority to DE112011105040.2T priority Critical patent/DE112011105040B4/de
Priority to RU2013145811/06A priority patent/RU2586036C2/ru
Publication of WO2012122785A2 publication Critical patent/WO2012122785A2/zh
Publication of WO2012122785A3 publication Critical patent/WO2012122785A3/zh
Priority to US14/027,265 priority patent/US20140007823A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/124Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using fluid fuel
    • F24H1/125Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using fluid fuel combined with storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/36Water and air preheating systems
    • F22D1/38Constructional features of water and air preheating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/50Feed-water heaters, i.e. economisers or like preheaters incorporating thermal de-aeration of feed-water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D7/00Central heating systems employing heat-transfer fluids not covered by groups F24D1/00 - F24D5/00, e.g. oil, salt or gas

Definitions

  • the invention relates to the absorption and utilization of waste heat of boiler flue gas, in particular to a system for heating heat transfer oil by using residual heat of boiler flue gas. Background technique
  • the organic heat carrier furnace began in the United States in the 1930s and was first created by the American Daosheng Chemical Company. It is used to be called the Daosheng Furnace and gradually formed a series.
  • the organic heat carrier is used as an intermediate carrier for transmitting thermal energy, and the heat energy generated by the combustion of the fuel is transferred to the organic heat carrier through the heating surface of the heating furnace, so that the heat carrier is heated to a certain temperature, and then fed into the heat pump by a circulating oil pump.
  • the low-temperature organic heat carrier after releasing the heat energy is returned to the heating furnace and heated again, so that the organic heat carrier heating furnace can supply heat to the outside. It has the following characteristics that cannot be replaced by other types of boilers: 1.
  • the flue gas emitted by the boiler contains acid gas.
  • the temperature of the smoke When the temperature of the smoke is high, they will flow through the heated surfaces of the boiler in a gaseous state until they are removed into the desulfurization tower.
  • the temperature of the smoke When the temperature of the smoke is below a certain temperature, they combine with water vapor in the flue gas to form sulfuric acid and corrode the heat exchange equipment. Low temperature corrosion typically occurs in the cold end of the air preheater and in the economizer where the feed water temperature is low.
  • the temperature of the heated surface When the temperature of the heated surface is lower than the dew point of the flue gas, the water vapor in the flue gas and the sulfuric acid formed by the combustion of sulfur (only a small part of the sulfur fuel product) will condense on the heating surface.
  • the boiler exhaust gas temperature is usually designed to be high.
  • the new boiler is about 140 °C. After running for a period of time, it tends to be as high as 160 °C. The direct emission of this part of the flue gas causes a large Energy waste.
  • the problem to be solved by the present invention is to provide a system for heating a heat transfer oil using waste heat of a boiler flue gas to overcome the above problems in the prior art.
  • the system for heating heat-conducting oil by using waste heat of boiler flue gas comprises an economizer and an air preheater disposed in the flue according to the direction of the flue gas flow, and further comprising a heat transfer oil heater disposed in the economizer of the flue
  • the heat transfer oil heater is connected to the heat equipment through a circulation pipe, and a circulation pump is arranged on the circulation pipe.
  • the invention further comprises a flue gas waste heat recovery and utilization device, wherein the flue gas waste heat recovery and utilization device comprises a heat absorption section and a heat release section connected by a circulation pipeline, wherein the heat absorption section is placed behind the air preheater in the flue, and the heat release section is disposed It is placed on the water inlet pipe of the economizer or in the air inlet passage of the air preheater.
  • the flue gas waste heat recovery and utilization device of the invention generally has a working medium of high temperature forced circulation water or natural circulation steam, so the heat transfer coefficient is much higher than the flue gas side, so that the wall surface temperature is determined by the temperature of the working medium side, and the system automatically controls
  • the device can adjust the wall temperature arbitrarily with the change of the boiler load so that it is always higher than the temperature of the flue gas dew point, so that the equipment can be recovered from the waste heat of the acid to the maximum extent.
  • the water inlet pipe of the economizer when the heat release section is placed on the water inlet pipe of the economizer, the water inlet pipe of the economizer is further provided with a deaerator and a high pressure heater, and the boiler feed water sequentially flows through the The heat release section, the deaerator, and the high pressure heater are then flowed into the economizer.
  • the water pump connected to the water pipe connected between the deaerator and the high pressure heater of the present invention is provided with a feed water pump.
  • the inlet pipe of the high-pressure heater of the present invention is in communication with the inlet pipe of the deaerator, and the condensed water drain pipe of the high-pressure heater is connected to the deaerator.
  • the invention further comprises a control system, two temperature sensors and a plurality of flow regulating valves, wherein the temperature sensor and the flow regulating valve are respectively connected to the control system, wherein one temperature sensor is disposed on the heat absorption section, and the other temperature sensor is provided On the flue between the economizer and the air preheater or on the outlet pipe of the economizer, one of the boiler feed water flows into the deaerator through the first flow regulating valve, and the other boiler feed water passes through the second flow regulating valve. And the heat release section flows into the deaerator, and the third flow regulating valve is disposed on the inlet pipe of the high pressure heater.
  • the invention further comprises a control system, a temperature sensor and a flow regulating damper when the heat releasing section is placed in the air inlet passage of the air preheater, wherein the temperature sensor and the flow regulating damper are respectively connected to the control system, and the temperature sensor is arranged at In the heat absorption section, the flow regulating damper is disposed in the air inlet passage of the air preheater, and is placed in front of the heat release section in the air inlet direction.
  • the present invention also includes an oil and gas separator disposed on a circulation pipe between the heat transfer oil heater and the heat device.
  • the oil and gas separator of the present invention is also connected to an expansion tank which is connected to the oil injection pump.
  • the system for heating the heat-conducting oil with the waste heat of the boiler flue gas of the invention fully utilizes the smoke The residual heat of the gas, by changing the order of the heating surface of the boiler tail, while reducing the efficiency and output of the original boiler, reducing the exhaust temperature of the boiler, recovering the residual heat of the boiler flue gas, and heating the heat recovered by the heat carrier - heat transfer oil, Used in many industries such as petroleum, chemical, textile, printing and dyeing, rubber, leather, food, wood processing, etc.
  • FIG. 1 is a schematic view showing a specific embodiment of a system for heating a heat transfer oil by using boiler flue gas waste heat.
  • FIG. 2 is a schematic view of another embodiment of the system for heating heat transfer oil using boiler flue gas waste heat. detailed description
  • the invention uses a boiler flue gas waste heat to heat the heat transfer oil system, comprising an economizer and an air preheater disposed in the flue according to the direction of the flue gas flow, and a heat transfer oil heater disposed in front of the economizer in the flue, the heat conduction
  • the oil heater is connected to the heat device through a circulation pipe, and a circulation pump is arranged on the circulation pipe.
  • the flue gas 1 is sequentially arranged in the direction of the flue gas flow: a heat transfer oil heater 2, an economizer 3 and an air preheater 4, and the heat transfer oil heater 2 is connected to the heat device 19 through a circulation pipe.
  • a circulation pump 12 is provided on the circulation pipe to drive the circulation of the heat carrier in the heat transfer oil heater.
  • the flue gas in the flue gas of the boiler tail transfers part of the heat to the heat carrier in the heat transfer oil heater 2 (the heat carrier includes but is not limited to the heat transfer oil, the same applies hereinafter), the heat carrier is driven by the circulation pump 12, and the heat device 19 is used. The heat is released, and the process of heating and exothermic is repeated.
  • Thermal equipment 19 can be used in many industries such as petroleum, chemical, textile, printing and dyeing, rubber, leather, food, wood processing, etc.
  • the heat exchanger oil heater 2 is placed in front of the economizer 3 to absorb the residual heat of the flue gas entering the economizer, where the flue gas temperature is high and the heat is high, so that the flue gas residual heat in the boiler flue can be fully utilized.
  • An oil and gas separator 18 is further disposed on the circulation pipe between the heat transfer oil heater 2 and the heat utilization device 19.
  • One oil inlet pipe of the oil separator 18 is connected to the oil discharge pipe of the expansion tank 17, and the oil inlet pipe and the oil injection pump of the expansion tank 17 16 is connected, and the expansion tank 17 is also connected to an oil reservoir 15.
  • the oil storage tank 15 functions to store heat transfer oil when the equipment is shut down for maintenance; the oil injection pump 16 functions to inject new oil and discharge old oil; the expansion tank 17 is used for heating expansion buffer after the heat transfer oil is heated; the oil separator 18 functions as Separate the moisture that may be mixed in the heat transfer oil to improve the heat transfer effect of the heat transfer oil.
  • a flue gas waste heat recovery and utilization device is disposed behind the air preheater 4, and the flue gas waste heat recovery and utilization device can recover part of flue gas waste heat and feed back to the economizer or the air preheater, saving coal. The heat of the device or the air preheater is compensated.
  • the flue gas waste heat recovery device comprises a heat absorption section 5 and a heat release section 6 connected through a circulation pipe, and the heat absorption section 5 is placed in the flue behind the air preheater to absorb part of the flue gas.
  • the residual heat, the heat release section 6 of the flue gas waste heat recovery device is placed on the water inlet pipe of the economizer 3. After the flue gas flows through the heat absorption section 5, it enters the desulfurization and dust removal equipment for processing.
  • the water inlet pipe of the economizer 3 is further provided with a deaerator 14 , a feed water pump 7 and a high pressure heater 11 , and the boiler feeds two water into the deaerator 14 , one of which passes through the first flow regulating valve. 21 directly flows into the deaerator 14 , and the other path flows through the second flow regulating valve 9 through the heat release section 6 of the flue gas waste heat recovery device to absorb heat and then flows into the deaerator 14; the boiler feed water flows out from the deaerator 14 After the water pump 7 flows into the high pressure heater 11, it is heated by the high pressure heater 11 and then enters the economizer 3.
  • the inlet pipe of the high-pressure heater 11 is connected to the inlet pipe of the deaerator 14, and the third flow regulating valve 13 is provided on the inlet pipe of the high-pressure heater 11, and the condensed water pipe of the high-pressure heater 11 It is connected to the deaerator 14.
  • the high-pressure heater and the deaerator share a hot steam source, and the vapor source partially enters the deaerator 14 directly, and some of the vapors heat the boiler feed water through the high-pressure heater 11, and the heat-dissipated gas becomes condensed water through the high-pressure heater.
  • the condensate drain pipe between the deaerator 14 and the deaerator 14 flows into the deaerator 14.
  • the system further comprises a control system, two temperature sensors 8, 10 and a plurality of flow regulating valves 9, 13, 21, the temperature sensor and the flow regulating valve are respectively connected with the control system; the temperature sensor 8 is located at the exhaust heat recovery device of the flue gas.
  • the wall temperature of the measuring device is measured on the section 5, and the temperature sensor 10 is located in the flue between the economizer 3 and the air preheater 4 or on the outlet pipe of the economizer, and the flow regulating valve 9 and the flow regulating valve 21 are adjusted to ensure entry.
  • the amount of water entering the exothermic section 6 is adjusted to control the required amount of heat, thereby avoiding the acid dew corrosion of the endothermic section 5 of the flue gas waste heat recovery and utilization device, and maximally recovering the flue gas. Waste heat.
  • the heat transfer oil heater 2 absorbs the waste heat of the flue gas in the flue to heat the heat transfer oil, and the specific heat absorption is determined according to the calculation of the acid dew point temperature of the flue gas; assuming that the exhaust temperature of the outlet of the original boiler system air preheater 4 is Ti, the acid dew point The temperature is T2.
  • the wall temperature of the endothermic section 5 in contact with the flue gas should be higher than T 2 , leaving a safety margin of 10 ° C.
  • the temperature of the flue gas and the wall surface temperature of the heat absorption section 5 should have a certain heat transfer temperature difference, so as to ensure that the arrangement of the heating surface of the flue gas waste heat recovery and utilization device is economical and reasonable, so the flue gas waste heat recovery device exhaust gas temperature at this time
  • T3 the heat transfer temperature difference of about 15 °C, denoted as T3
  • the energy saving temperature drop space of the original boiler system can be calculated as ⁇ - ⁇ 3, because the flue gas waste heat recovery and utilization device is used for indirect compensation.
  • the heat exchange loss of the economizer 3 does not provide heat to the outside, so the actual energy saving amount is the external heat supply of the heat transfer oil heater 2, and it is obvious that the temperature of the inlet and outlet of the heat transfer oil heater 2 cannot be greater than ⁇ - ⁇ 3, In order to protect The original boiler thermal system is as far as possible unaffected by the installation of the apparatus of the invention.
  • the temperature difference between the inlet and outlet of the heat transfer oil heater 2 is generally designed to be 30 ° C, so as to select a suitable heat transfer oil cycle
  • the flow rate transfers the absorbed heat to the heating device 19; the heat transfer oil heater 2 absorbs part of the heat of the flue gas to cause a decrease in the absorption amount of the economizer 3 and the air preheater 4, and we install a water inlet pipe on the economizer 3
  • the high-pressure heater 11 adjusts the boiler feed water temperature by thermal calculation, so that the flue gas temperature and water temperature of the economizer 3 are close to or slightly higher than the original system, so that the economizer 3 and the air preheater 4 are not exposed to heat conduction. The effect of the oil heater.
  • the heat source steam connected to the high-pressure heater 11 is the steam extraction of the oxygen removal device 14. This part of the steam extraction is used to heat the boiler feed water into the deaerator 14; it is used to make the high-pressure heater 11 heat source, so To ensure that the total extraction heat is constant, an alternative heat source that is heated into the deaerator 14 make-up water must be sought.
  • the exhaust temperature of the boiler is 140 ⁇ 160°C, and the temperature of the heated make-up water is usually 20°C. If the flue gas directly exchanges heat with the boiler make-up water, the wall temperature of the heat exchanger is close to the temperature of the flue gas acid dew point, which may cause heat exchange. The acid dew corrosion of the device, this embodiment solves this problem by the flue gas waste heat recovery device.
  • the heat absorption section 5 is placed in the flue to absorb heat transfer to the working medium, and the working medium is transferred to the boiler feed water of 20 ° C in the heat release section 6.
  • the working mechanism of the working medium is usually high temperature forced circulation water or natural circulation steam, so The heat transfer coefficient is much higher than the flue gas side, so that the wall temperature is determined by the temperature of the working medium side. Therefore, the endothermic section 5 can be controlled from acid dew corrosion by controlling the temperature of the working medium.
  • FIG. 2 another embodiment of the system for heating heat transfer oil by using boiler flue gas waste heat, wherein the difference from the above embodiment is as follows:
  • the heat release section 6 of the flue gas waste heat recovery and utilization device is placed in the air preheater 4
  • the flue gas waste heat recovery and utilization device is mainly used to heat the inlet air temperature of the air preheater.
  • the inlet pipe of the economizer may be provided with a low pressure heater or the like.
  • the control system of this embodiment is connected to a temperature sensor 8 and a flow regulating damper 20, the temperature sensor 8 is set on the heat absorption section to test the wall surface temperature, and the flow regulating damper 20 is arranged in the air inlet passage of the air preheater 4, and The air inlet direction is placed in front of the heat release section 6, thereby adjusting the heat absorption amount of the heat absorption section.
  • the heat absorbed by the flue gas waste heat recovery device of the present embodiment only heats the air supplied to the air preheater, and compensates for the reduction of the heat exchange amount of the air preheater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Supply (AREA)

Description

用锅炉烟气余热加热导热油的*** 技术领域
本发明涉及锅炉烟气余热吸收利用方面, 特别涉及一种用锅炉烟气余热加热导热 油的***。 背景技术
有机热载体炉 20世纪 30年代始于美国, 由美国道生化学公司首创, 习惯称为道生 炉, 并逐步形成系列。 它采用有机热载体作为传输热能的中间载体, 将燃料燃烧产生 的热能,通过加热炉受热面把热能传递给有机热载体,使热载体被加热到一定的温度, 然后用循环油泵将其送入用热设备, 释放热能后的低温有机热载体再返回加热炉中重 新被加热, 如此往复循环, 即可达到有机热载体加热炉向外界供热的目的。 它有如下 几个其它种类锅炉所无法取代的特点: 1、 可在较低的工作压力下获得较高温度的热 介质; 2、 液相循环供热, 无冷凝排放热损失, 供热***热效率高; 3、 由于运行控制 方便、 传热均勾, 所以能满足用热***精确的工艺温度要求。 因此在石油、 化工、 纺 织、 印染、 橡胶、 制革、 食品、 木材加工等许多行业中得到了日益广泛的应用。 同时 正如前述的优点一可在较低的工作压力下获得较高温度的热介质那样, 这些热介质 的温度一般为 200~300°C, 有的甚至更高。
锅炉排放的烟气中含有酸性气体, 烟温高时它们会以气态的形式流经锅炉各受热 面直至到脱硫塔里被除去。 当烟温低于某一温度时, 它们会与烟气中的水蒸气结合成 硫酸而腐蚀换热设备。低温腐蚀通常出现在空气预热器的冷端以及给水温度低的省煤 器中。 当受热面的温度低于烟气的露点时, 烟气中的水蒸气和煤燃烧后所生成的三氧 化硫 (只是硫的燃料产物的很少一部分) 结合成的硫酸会凝结在受热面上, 严重腐蚀 受热面。为避免锅炉尾部受热面的酸露腐蚀,通常锅炉排烟温度设计较高, 新锅炉 140 °C左右, 运行一段时间后往往会高达 160 °C, 这部分烟气的直接排放造成了很大的能 源浪费。
由于前面所述的锅炉的排烟温度通常在 140〜160°C左右, 而技术背景第一段提及 的热介质的温度一般为 200~300°C,直接的热交换换热技术不可能从 140~160°C的烟气 换热给 200~300°C的导热油。因此要想回收这部分低温热量来加热工艺需求的 200~300
°〇导热油, 必须重新布置锅炉的尾部受热面。 发明内容
本发明所要解决的问题是提供一种用锅炉烟气余热加热导热油的***, 克服现有 技术中的上述问题。
本发明用锅炉烟气余热加热导热油的***, 包括按烟气流经方向设在烟道内的省 煤器和空预器, 还包括导热油加热器, 设在所述烟道内省煤器的前方, 导热油加热器 通过循环管与用热设备相连, 循环管上设有循环泵。
本发明还包括烟气余热回收利用装置, 烟气余热回收利用装置包括通过循环管道 相连的吸热段和放热段, 吸热段置于所述烟道内空预器的后方, 放热段置于所述省煤 器的进水管道上或置于所述空预器的进风通道内。
本发明所述烟气余热回收利用装置, 其工作介质常为高温强制循环水或自然循环 蒸汽, 因此其传热系数远高于烟气侧, 使得壁面温度由工作介质侧温度决定, ***自 动控制装置可随锅炉负荷的变动随意调节壁温使其始终高于烟气酸露点温度, 使设备 免受酸露腐蚀的前提下最大程度回收排烟余热。
本发明当所述放热段置于所述省煤器的进水管道上时, 所述省煤器的进水管道上 还设有除氧器和高压加热器, 锅炉给水依次流经所述放热段、 除氧器、 高压加热器后 再流入所述省煤器。
本发明所述除氧器和高压加热器间相连的水管上设有给水泵。
本发明所述高压加热器的进汽管与所述除氧器的进汽管相连通, 高压加热器的凝 结水疏水管与除氧器相连接。
本发明还包括控制***、 两个温度传感器和多个流量调节阀, 所述温度传感器和 流量调节阀分别与控制***相连, 其中一个温度传感器设于所述吸热段上, 另一个温 度传感器设于所述省煤器和空预器间的烟道上或者所述省煤器的出水管上, 其中一路 锅炉给水经第一流量调节阀流入除氧器, 另一路锅炉给水经第二流量调节阀和放热段 流入除氧器, 第三流量调节阀设在所述高压加热器的进汽管上。
本发明当所述放热段置于所述空预器的进风通道内时, 还包括控制***、 温度传 感器和流量调节风门, 温度传感器和流量调节风门分别与控制***相连, 温度传感器 设于所述吸热段上, 流量调节风门设在所述空预器的进风通道内, 并按进风方向置于 放热段的前方。
本发明还包括油气分离器, 设在所述导热油加热器与用热设备间的循环管上。 本发明所述油气分离器还与一膨胀槽相连, 膨胀槽与注油泵相连。
通过以上技术方案, 本发明的用锅炉烟气余热加热导热油的***, 充分利用了烟 气余热, 通过改变锅炉尾部受热面布置顺序, 在保证原锅炉效率与出力的同时, 降低 锅炉排烟温度, 回收锅炉烟气部分余热, 并将其回收的热量加热热载体——导热油, 可应用于石油、 化工、 纺织、 印染、 橡胶、 制革、 食品、 木材加工等许多行业。 并在 保证烟气流经的所有设备免受酸露腐蚀的前提下, 最大程度地回收烟气余热, 提升了 能源的可利用品位, 提高了锅炉排烟品位, 使热能利用形式多样化。 附图说明
图 1本发明用锅炉烟气余热加热导热油的***的一具体实施例示意图。
图 2本发明用锅炉烟气余热加热导热油的***的另一实施例示意图。 具体实施方式
本发明用锅炉烟气余热加热导热油的***, 包括按烟气流经方向设在烟道内的 省煤器和空预器, 还包括设在烟道内省煤器前方的导热油加热器, 导热油加热器通 过循环管与用热设备相连, 循环管上设有循环泵。
如图 1所示, 烟道 1内按烟气流经方向依次设置: 导热油加热器 2、 省煤器 3和空预 器 4, 导热油加热器 2通过循环管道与用热设备 19相连, 并在循环管道上设有循环泵 12 来驱动导热油加热器中热载体的循环。 锅炉尾部烟道 1中的烟气把部分热量传给导热 油加热器 2中的热载体 (热载体包括但不仅限于导热油, 以下同) , 热载体由循环泵 12驱动, 在用热设备 19中放出热量, 并循环重复加热、 放热这一过程。 用热设备 19可 以应用于石油、 化工、 纺织、 印染、 橡胶、 制革、 食品、 木材加工等许多行业中。 本 发明把导热油加热器 2置于省煤器 3前方, 吸收进入省煤器的烟气余热, 此处烟气温度 高、 热量高, 因此, 可以充分利用锅炉烟道内的烟气余热。
导热油加热器 2与用热设备 19之间的循环管道上还设有油气分离器 18, 油气分离 器 18的一个进油管与膨胀槽 17的出油管相连, 膨胀槽 17的进油管与注油泵 16相连, 膨胀槽 17还与一储油槽 15相连。 储油槽 15其作用为设备停运检修时储存导热油; 注 油泵 16其作用为注入新油、 排放旧油; 膨胀槽 17为导热油加热后受热膨胀缓冲之用; 油气分离器 18其作用为分离导热油中可能混有的水分, 改善导热油传热效果。
由于导热油加热器的置入, 会导致进入省煤器及其后方空预器的烟温变低, 可 能会影响省煤器、 空预器等设备的使用。 因此, 本发明的一个优选实施例在空预器 4 后方加设一个烟气余热回收利用装置, 烟气余热回收利用装置可以回收部分烟气余 热回馈给省煤器或空预器, 对省煤器或空预器的热量进行补偿。 在其中一个更优的实施例中, 烟气余热回收利用装置包括通过循环管道相连的 吸热段 5和放热段 6, 吸热段 5置于空预器后方的烟道内, 吸收部分烟气余热, 烟气余 热回收装置的放热段 6置于省煤器 3的进水管道上。烟气流过吸热段 5后进入脱硫除尘 设备进行处理。
本实施例中, 省煤器 3的进水管道上还设有除氧器 14、 给水泵 7和高压加热器 11, 锅炉给水分两路进入除氧器 14, 其中一路通过第一流量调节阀 21直接流入除氧器 14, 另一路通过第二流量调节阀 9流经烟气余热回收利用装置的放热段 6吸热后再流入除 氧器 14; 锅炉给水从除氧器 14流出通过给水泵 7后流入高压加热器 11, 经高压加热器 11加热后再进入省煤器 3。 并高压加热器 11的进汽管与除氧器 14的进汽管相连通, 并 在高压加热器 11的进汽管上设有第三流量调节阀 13, 高压加热器 11的凝结水疏水管 与除氧器 14相连。 高压加热器和除氧器共用一个热汽源, 热汽源部分汽体直接进入 除氧器 14, 部分汽体通过高压加热器 11加热锅炉给水, 散热后的气体变成冷凝水通 过高压加热器 11与除氧器 14间的凝结水疏水管流入除氧器 14。
本***还包括控制***、 两个温度传感器 8、 10和多个流量调节阀 9、 13、 21, 温度传感器和流量调节阀分别与控制***相连; 温度传感器 8位于烟气余热回收利用 装置吸热段 5上测量设备的壁面温度, 温度传感器 10位于省煤器 3与空预器 4间的烟道 中或省煤器的出水管上, 通过调节流量调节阀 9和流量调节阀 21, 在保证进入除氧器 14水量不变的条件下, 调节进入放热段 6内的水量来控制所需热量, 以此避免烟气余 热回收利用装置吸热段 5受酸露腐蚀, 最大程度地回收排烟余热。
导热油加热器 2吸收烟道内烟气余热来加热导热油, 具体的吸热量根据烟气的酸 露点温度计算来决定; 假设原锅炉***空预器 4的出口排烟温度为 Ti, 酸露点温度为 T2 , 为保证烟气余热回收利用装置吸热段 5不受酸露腐蚀, 此时吸热段 5与烟气接触的 壁面温度应比 T2高, 留 10°C的安全余量, 同时烟气的温度与吸热段 5的壁面温度应留 有一定的传热温差, 才能保证烟气余热回收利用装置受热面的布置经济合理, 因此此 时的烟气余热回收利用装置排烟温度为 T2+1CTC的安全余量 +约 15°C的传热温差, 记为 T3, 可以计算出原锅炉***的节能温降空间为 Π- Τ3, 由于烟气余热回收利用装置是 用来间接补偿省煤器 3的换热损失, 并没有对外提供热量, 因此真正回收的节能量为 导热油加热器 2的对外供热, 显然导热油加热器 2的进出口烟气温降不能大于 Π- Τ3, 这样才能保证原锅炉热力***尽可能地不受加装本发明设备的影响。
导热油加热器 2的进出口油温温差一般设计为 30°C, 以此选择合适的导热油循环 流量来把吸收的热量传递给用热设备 19; 导热油加热器 2吸收烟气部分热量造成省煤 器 3、 空预器 4吸收量的减少, 我们在省煤器 3的进水管上安装一个高压加热器 11, 通 过热力计算, 调整锅炉给水温度, 使得省煤器 3出口烟温和水温和原***接近或略高 于原***, 这样使得省煤器 3、 空预器 4不受接入导热油加热器的影响。
接入高压加热器 11的热源用汽为去除氧器 14的抽汽, 这部分抽汽原是用于加热进 除氧器 14的锅炉给水; 现用来做高压加热器 11热源, 因此若要保证总抽汽热量不变, 必须寻找一加热进除氧器 14补给水的替代热源。 锅炉的排烟温度为 140〜160°C, 加热 的补给水温度通常为 20°C, 若烟气直接和锅炉补给水换热, 换热器壁面温度接近烟气 酸露点温度, 可能造成换热设备的酸露腐蚀, 本实施例通过烟气余热回收装置解决这 一问题。 吸热段 5置于烟道中吸收热量传递给工作介质, 工作介质再在放热段 6传递给 20°C的锅炉补给水, 工作介质工作机理通常为高温强制循环水或自然循环蒸汽, 因此 其传热系数远高于烟气侧, 使得壁面温度由工作介质侧温度决定, 因此, 可以通过控 制工作介质的温度来控制吸热段 5免受酸露腐蚀。
如图 2所示, 本发明用锅炉烟气余热加热导热油的***的另一实施例, 其中与上 述实施例区别在于: 烟气余热回收利用装置的放热段 6置于空预器 4的进风通道内, 烟 气余热回收利用装置主要用来加热空预器的进风风温。本实施例中省煤器的进水管上 可设有低压加热器或其他。 本实施例的控制***与一个温度传感器 8和一个流量调节 风门 20相连, 温度传感器 8设在吸热段上测试壁面温度, 流量调节风门 20设在空预器 4 的进风通道内, 并按进风方向置于放热段 6的前方, 以此调节吸热段的吸热量。 本实 施例烟气余热回收装置吸收的热量只加热进入空预器的送风, 补偿空预器换热量的减 少。

Claims

权利要求书
1.一种用锅炉烟气余热加热导热油的***, 包括按烟气流经方向设在烟道 (1) 内的省煤器 (3) 和空预器 (4) , 其特征在于, 还包括导热油加热器 (2) , 设 在所述烟道内省煤器(3)的前方,导热油加热器(2)通过循环管与用热设备(19) 相连, 循环管上设有循环泵 (12) 。
2.根据权利要求 1 所述的***, 其特征在于, 还包括烟气余热回收利用装置, 所 述烟气余热回收利用装置包括通过循环管道相连的吸热段 (5) 和放热段 (6) , 吸热段 (5) 置于所述烟道内空预器 (4) 的后方, 放热段 (6) 置于所述省煤器
(3) 的进水管道上或置于所述空预器 (4) 的进风通道内。
3.根据权利要求 2 所述的***, 其特征在于, 当所述放热段 (6) 置于所述省煤 器 (3) 的进水管道上时, 所述省煤器 (3) 的进水管道上还设有除氧器 (14)和 高压加热器 (11) , 锅炉给水依次流经所述放热段 (6) 、 除氧器 (14) 、 高压 加热器 (11) 后再流入所述省煤器 (3) 。
4.根据权利要求 3 所述的***,其特征在于,所述除氧器(14)和高压加热器(11) 间相连的水管上设有给水泵 (7) 。
5.根据权利要求 3 所述的***, 其特征在于, 所述高压加热器 (11) 的进汽管与 所述除氧器(14) 的进汽管相连通, 高压加热器(11) 的凝结水疏水管与除氧器
(14) 相连接。
6.根据权利要求 5 所述的***, 其特征在于, 还包括控制***、 两个温度传感器 (8、 10)和多个流量调节阀 (9、 13、 21) , 所述温度传感器和流量调节阀分别 与控制***相连, 其中一个温度传感器(8)设于所述吸热段(5)上, 另一个温 度传感器(10)设于所述省煤器(3)和空预器(4) 间的烟道上或设于所述省煤 器的出水管上, 其中一路锅炉给水经第一流量调节阀 (21)流入除氧器, 另一路 锅炉给水经第二流量调节阀(9)和放热段(6)流入除氧器,第三流量调节阀(13 ) 设在所述高压加热器的进汽管上。
7.根据权利要求 2 所述的***, 其特征在于, 当所述放热段 (6) 置于所述空预 器(4)的进风通道内时,还包括控制***、温度传感器(8)和流量调节风门(20), 温度传感器和流量调节风门分别与控制***相连, 温度传感器 (8) 设于所述吸 热段 (5 ) 上, 流量调节风门 (20) 设在所述空预器的进风通道内, 并按进风方 向置于放热段 (6) 的前方。
8.根据权利要求 1 所述的***, 其特征在于, 还包括油气分离器 (18) , 设在所 述导热油加热器 (2) 与用热设备 (19) 间的循环管上。
9.根据权利要求 8 所述的***, 其特征在于, 所述油气分离器 (18)还与一膨胀 槽 (17) 相连, 膨胀槽 (17) 与注油泵 (16) 相连。
PCT/CN2011/080030 2011-03-16 2011-09-22 用锅炉烟气余热加热导热油的*** WO2012122785A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112011105040.2T DE112011105040B4 (de) 2011-03-16 2011-09-22 System zum Heizen von Wärmeübertragungsöl unter Verwendung von Kesselabgasabwärme
RU2013145811/06A RU2586036C2 (ru) 2011-03-16 2011-09-22 Система для нагрева масла в качестве теплоносителя с использованием отработанного тепла котельного газа
US14/027,265 US20140007823A1 (en) 2011-03-16 2013-09-16 Heating system for heating heat-transfer oil usingboiler flue gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120069052.6 2011-03-16
CN201120069052.6U CN202032740U (zh) 2011-03-16 2011-03-16 用锅炉烟气余热加热导热油的***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/027,265 Continuation-In-Part US20140007823A1 (en) 2011-03-16 2013-09-16 Heating system for heating heat-transfer oil usingboiler flue gas

Publications (2)

Publication Number Publication Date
WO2012122785A2 true WO2012122785A2 (zh) 2012-09-20
WO2012122785A3 WO2012122785A3 (zh) 2013-05-02

Family

ID=44895035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080030 WO2012122785A2 (zh) 2011-03-16 2011-09-22 用锅炉烟气余热加热导热油的***

Country Status (5)

Country Link
US (1) US20140007823A1 (zh)
CN (1) CN202032740U (zh)
DE (1) DE112011105040B4 (zh)
RU (1) RU2586036C2 (zh)
WO (1) WO2012122785A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166358A (zh) * 2017-06-21 2017-09-15 安徽省化工设计院 一种生产双热载体的新型锅炉***
CN112379703A (zh) * 2020-10-19 2021-02-19 嘉兴壹度智慧节能技术有限公司 基于差异化温度调控的印染废水余热回收利用***
CN114110736A (zh) * 2021-11-25 2022-03-01 广西电网有限责任公司电力科学研究院 一种不同汽温抽汽非接触式换热供汽方法
CN114941901A (zh) * 2022-05-27 2022-08-26 华能(浙江)能源开发有限公司长兴分公司 一种烟气加热导热油精确控温***

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183086B (zh) * 2011-03-16 2013-12-18 上海伏波环保设备有限公司 用锅炉烟气余热加热导热油的***
CN104990065B (zh) * 2015-06-11 2017-08-18 江苏永钢集团有限公司 汽轮机发电机组中的锅炉给水循环除氧***
CN105605552A (zh) * 2016-03-15 2016-05-25 山东钢铁股份有限公司 一种锅炉汽轮机***中除氧器乏汽的热能回收装置
CN105605553A (zh) * 2016-03-25 2016-05-25 中冶南方工程技术有限公司 一种带空气能预热器的除氧器
CN105910094B (zh) * 2016-06-16 2017-11-03 赖正平 燃气燃油、熔盐一体化蒸汽锅炉
CN106152109B (zh) * 2016-06-16 2018-02-06 赖正平 燃气燃油熔盐一体化锅炉热分离物质的装置
CN106592048B (zh) * 2017-01-25 2018-12-07 江阴市智鸿节能环保科技有限公司 采用导热油加热的加弹机热箱换热***
US10184690B2 (en) * 2017-02-09 2019-01-22 Bock Water Heaters, Inc. Condensing water heater and condensation control system
CN109340805B (zh) * 2018-10-25 2024-06-04 四川杰瑞恒日天然气工程有限公司 一种基于燃气发电机烟气余热梯级综合利用装置
CN110360536A (zh) * 2019-06-20 2019-10-22 上海铭芮节能科技有限公司 一种新型锅炉烟气节能处理***
CN110411227B (zh) * 2019-08-05 2020-09-29 中南大学 一种电弧炉用高温烟气热回收预热式氧枪及其应用方法
CN111238039B (zh) * 2020-03-17 2024-05-17 中国华能集团清洁能源技术研究院有限公司 一种导热油储热的防锅炉低温腐蚀装置及工作方法
CN111636934B (zh) * 2020-05-24 2021-03-16 西安交通大学 一种高效清洁高变负荷速率燃煤发电***及运行方法
CN113465423B (zh) * 2020-07-23 2022-04-15 中北大学 一种烟气监测热管***
CN112944385A (zh) * 2021-04-09 2021-06-11 西安热工研究院有限公司 一种热一次风加热***
CN114183923B (zh) * 2022-02-16 2022-06-28 浙江百能科技有限公司 一种燃气导热油炉综合利用***及控制方法
CN116221981B (zh) * 2023-05-10 2023-07-25 涿州瑞特韦尔机械设备有限公司 一种升温效率高的换热机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006726A1 (en) * 2000-07-14 2002-01-24 Anders Kullendorff Process for heat extraction and power production with heat recovery
RU2185569C1 (ru) * 2001-01-23 2002-07-20 Ульяновский государственный технический университет Котельная установка
CN1800062A (zh) * 2005-12-14 2006-07-12 上海金州环境工程有限公司 污泥干化与焚烧工艺及其***装置
CN200952825Y (zh) * 2006-09-21 2007-09-26 四川东方锅炉工业锅炉集团有限公司 带导热油加热装置的复合锅炉
CN201050944Y (zh) * 2007-05-30 2008-04-23 中冶京诚工程技术有限公司 电炉烟气余热回收装置
CN201715544U (zh) * 2010-08-20 2011-01-19 熊亚东 烟气余热回收***
CN201852277U (zh) * 2010-11-19 2011-06-01 王海波 带相变换热器的锅炉余热高效回收装置
CN102183086A (zh) * 2011-03-16 2011-09-14 上海伏波环保设备有限公司 用锅炉烟气余热加热导热油的***

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941571A (en) * 1959-01-05 1963-11-13 Green & Son Ltd An improved method of utilising the waste heat of furnace gases
US3366093A (en) * 1966-02-28 1968-01-30 Foster Wheeler Corp Start-up system for once-through vapor generators
US4353207A (en) * 1980-08-20 1982-10-12 Westinghouse Electric Corp. Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US4582122A (en) * 1983-08-10 1986-04-15 Linde Aktiengesellschaft Efficient waste heat recovery process from sulfur containing flue gas
SU1606811A1 (ru) * 1988-06-14 1990-11-15 Всесоюзный Научно-Исследовательский И Проектно-Технологический Институт Электроизоляционных Материалов И Фольгированных Диэлектриков Установка дл дожигани сбросных газов
KR20020051105A (ko) * 2000-12-22 2002-06-28 이구택 건식 소화 설비 내의 급수예열기의 결로 방지방법
US6609483B1 (en) * 2002-02-27 2003-08-26 The Babcock & Wilcox Company System for controlling flue gas exit temperature for optimal SCR operations
JP3702266B2 (ja) * 2002-11-13 2005-10-05 三菱重工業株式会社 デュアル燃料型一軸コンバインドプラントにおける蒸気タービン出力推定装置
US8336507B2 (en) * 2007-08-28 2012-12-25 Guan-Ming LAO Protection for heat transfer oil boiler
RU96865U1 (ru) * 2010-05-11 2010-08-20 Общество с ограниченной ответственностью "Газмонтажсвязь" Установка по переработке и утилизации нефтесодержащего продукта

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006726A1 (en) * 2000-07-14 2002-01-24 Anders Kullendorff Process for heat extraction and power production with heat recovery
RU2185569C1 (ru) * 2001-01-23 2002-07-20 Ульяновский государственный технический университет Котельная установка
CN1800062A (zh) * 2005-12-14 2006-07-12 上海金州环境工程有限公司 污泥干化与焚烧工艺及其***装置
CN200952825Y (zh) * 2006-09-21 2007-09-26 四川东方锅炉工业锅炉集团有限公司 带导热油加热装置的复合锅炉
CN201050944Y (zh) * 2007-05-30 2008-04-23 中冶京诚工程技术有限公司 电炉烟气余热回收装置
CN201715544U (zh) * 2010-08-20 2011-01-19 熊亚东 烟气余热回收***
CN201852277U (zh) * 2010-11-19 2011-06-01 王海波 带相变换热器的锅炉余热高效回收装置
CN102183086A (zh) * 2011-03-16 2011-09-14 上海伏波环保设备有限公司 用锅炉烟气余热加热导热油的***

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107166358A (zh) * 2017-06-21 2017-09-15 安徽省化工设计院 一种生产双热载体的新型锅炉***
CN107166358B (zh) * 2017-06-21 2023-10-03 安徽省化工设计院 一种生产双热载体的锅炉***
CN112379703A (zh) * 2020-10-19 2021-02-19 嘉兴壹度智慧节能技术有限公司 基于差异化温度调控的印染废水余热回收利用***
CN112379703B (zh) * 2020-10-19 2022-02-22 嘉兴壹度智慧节能技术有限公司 基于差异化温度调控的印染废水余热回收利用***
CN114110736A (zh) * 2021-11-25 2022-03-01 广西电网有限责任公司电力科学研究院 一种不同汽温抽汽非接触式换热供汽方法
CN114110736B (zh) * 2021-11-25 2023-02-28 广西电网有限责任公司电力科学研究院 一种不同汽温抽汽非接触式换热供汽方法
CN114941901A (zh) * 2022-05-27 2022-08-26 华能(浙江)能源开发有限公司长兴分公司 一种烟气加热导热油精确控温***
CN114941901B (zh) * 2022-05-27 2023-06-30 华能(浙江)能源开发有限公司长兴分公司 一种烟气加热导热油精确控温***

Also Published As

Publication number Publication date
US20140007823A1 (en) 2014-01-09
RU2586036C2 (ru) 2016-06-10
CN202032740U (zh) 2011-11-09
DE112011105040T5 (de) 2013-12-19
DE112011105040B4 (de) 2017-11-09
RU2013145811A (ru) 2015-04-27
WO2012122785A3 (zh) 2013-05-02

Similar Documents

Publication Publication Date Title
WO2012122785A2 (zh) 用锅炉烟气余热加热导热油的***
EP2375012B1 (en) Boiler apparatus
CN102997267B (zh) 一种相变换热器与净烟气加热器联合的烟气再热装置
CN102734787B (zh) 顺流式锅炉烟气余热回收***
TW201245055A (en) System for drying sludge by steam extracted from boiler set with thermal compensation
WO2013040977A1 (zh) 提高烟气余热利用品位的***
WO2014005476A1 (zh) 顺流式锅炉烟气余热回收***
TW201243262A (en) System for heating heat conducting oil by using waste heat of boiler flue gas
WO2012097602A1 (zh) 利用烟气余热产生低压蒸汽的***
CN202927865U (zh) 一种余热回收装置
CN106322427A (zh) 循环流化床锅炉排渣余热利用***及方法
CN105091008A (zh) 一种可控温的火电厂scr脱硝反应催化装置
CN102494329B (zh) 锅炉烟气余热综合利用装置
CN201697098U (zh) 余热锅炉出口烟气温度调节***
CN202692016U (zh) 顺流式锅炉烟气余热回收***
CN210688281U (zh) 一种烟气处理***
WO2014048089A1 (zh) 自然循环间接式烟气再热器
CN207849346U (zh) 利用中温烟气加热凝结水的汽轮机回热***
CN105841176B (zh) 低温废气的脱硫脱硝洁净排放装置
CN110906298A (zh) 一种提高转炉余热蒸汽干度的***
KR200234751Y1 (ko) 배열회수시스템용순환수장치
CN109945224A (zh) 低温余热利用***
CN213273895U (zh) 一种复合相变换热器的余热高效回收装置
CN204569809U (zh) 焦炉烟道气余热利用装置
CN110925745B (zh) 一种新型冷烟再循环机组效率提升***及控制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1120111050402

Country of ref document: DE

Ref document number: 112011105040

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2013145811

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11861234

Country of ref document: EP

Kind code of ref document: A2